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ABSTRACT

Constant Displacement Rate Experiments and Constitutive

Modeling of Asphalt Mixtures. (December 2004)

Pradeep Hariharakumar, B. Tech, Indian Institute of Technology, Madras;

M.S, Texas A&M University

Co–Chairs of Advisory Committee: Dr. K. R. Rajagopal
Dr. D. N. Little

The focus of this dissertation is on constant displacment rate experiments on

asphalt concrete and on developing continuum models in a general thermo-mechanical

setting which will corroborate with the experimental results. Modeling asphalt con-

crete and predicting its response is of great importance to the pavement industry.

More than 90 percent of the US Highways uses asphalt concrete as a pavement ma-

terial.

Asphalt concrete exhibits nonlinear response even at small strains and the re-

sponse of asphalt concrete to different types of loading is quite different. The proper-

ties of asphalt concrete are highly influenced by the type and amount of the aggregates

and the asphalt used. The internal structure of asphalt concrete keeps on evolving

during the loading process. This is due to the influence of different kinds of activities

at the microlevel and also due to the interaction with the environment. The proper-

ties of asphalt concrete depend on its internal structure. Hence we need to take the

evolution of the internal structure in modeling the response of asphalt concrete.

Experiments were carried out at different confinement pressures and displacement

rates on cylindrical samples of asphalt concrete. Two different aggregates were used

to make the sample - limestone and granite. The samples were tested at a constant

displacement rate at a given confinement pressure. The force required to maintain
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this constant displacement rate is measured and recorded.

The frame-work has been developed using the idea of multiple natural configura-

tions that was introduced recently to study a variety of non-linear dissipative response

of materials. By specifying the forms of the stored energy and rate of dissipation func-

tion of the material, specific models were developed using this frame work. In this

work both a compressible and an incompressible model were developed by choos-

ing appropriate forms of stored energy and rate of dissipation function. Finally the

veracity of the models were tested by corroborating with the experimental results.

It is anticipated that the present work will aid in the development of better con-

stitutive equations which in turn will accurately model asphalt concrete in laboratory

and in field.
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CHAPTER I

INTRODUCTION

In this chapter we will quickly review some of the basics of continuum mechanics.

We will introduce all the basic notions including stress and strain measures. A more

detailed description can be found in standard text books [1], [2], [3].

A. Kinematics

A body B is a set whose elements can be put into bijective correspondence with

the points of a region of a Euclidean point space E . The elements of the body are

called particles. Mappings of this body B to a three dimensional Euclidean point

space are called embodiers. The image of B through the embodier, K(B), is called the

configuration of the body. The body may occupy different configurations (Kt(B)) at

different instances of time. A motion X of B is a mapping of the elements of B onto

points in E at time t:

x = X (P, t) ∀P ∈ B, ∀t ∈ I (1.1)

where I is an interval of the reals R. At any time t, x ∈ Kt(B)), the configuration

occupied by the body at time t.

It is convenient to refer everything concerning B and its motion to a particular

configuration, called the reference configuration, which is need not necessarily be the

configuration occupied by the body. Since the K’s are one to one, we can always find a

one to one mapping XKR which maps the reference configuration to the configuration

This dissertation follows the style of IEEE Transactions on Automatic Control.
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occupied by the body at any time t:

x = XKR(X, t) ∀X ∈ KR(B), ∀t ∈ I (1.2)

where KR(B) denotes the reference configuration of the body B). Henceforth we will

drop the subscript KR for simplicity of notation and denote x = X (X, t).

Any physical quantity can be defined on the body, either on KR(B) × R or on

Kt(B)×R . i.e. for any function φ,

φ = φ̃(X, t) = φ̂(x, t) (1.3)

If you define a quantity (φ) in terms of the position of a particle in the reference

configuration (φ(X, t)) it is called Lagrangean description or material description,

while if you define it in terms of the position of a particle in the current configuration

(φ(x, t)) it is called Eulerian description or spatial description. The velocity of a

particle is defined by

v(X, t) :=
∂X (X, t)

∂t
(1.4)

The acceleration of a particle is given by

a(X, t) :=
∂2X (X, t)

∂t2
(1.5)

The spatial description of acceleration field can be expressed as:

a(x, t) =
∂v(x, t)

∂t
+ gradv(x, t)v(x, t) (1.6)

where

gradv(x, t) =
∂v(x, t)

∂x



3

For convenience of notation we define the following:

∂p

∂t
:=

∂p(x, t)

∂t
(1.7)

Dp

Dt
:=

∂p(X, t)

∂t
(1.8)

ṗ :=
∂p(X, t)

∂t
(1.9)

gradp :=
∂p(x, t)

∂x
(1.10)

∇p :=
∂p(X, t)

∂X
(1.11)

Div(u) := trace(∇u) (1.12)

div(u) := trace(gradu) (1.13)

Here p can be a scalar, vector or a tensor and u is a vector.

The spatial gradient of the velocity is denoted by L:

L(x, t) :=
∂v(x, t)

∂x
= ḞF

−1
(1.14)

L can be decomposed into:

L = D + W (1.15)

where D is the symmetrical part and W is the skew-symmetric part of the gradient

of velocity. The second order tensor

F(X, t) :=
∂X (X, t)

∂X
(1.16)

is called the deformation gradient and it gives information on how the body is de-

formed locally. The absolute value of determinant of F at a point gives the ratio of

the deformed volume to the undeformed volume of an infinitesimal parallelopiped at

that point. The determinant of F will either be always positive or always negative

throughout the body depending upon the reference configuration chosen. Since the
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motion is one to one, determinant of F can never be zero.

Since F is invertible, we can use polar decomposition to get

F = RU = VR (1.17)

where U and V are symmetric positive definite tensors. R is an orthogonal tensor.

Det(R) will carry the same sign throughout the motion at all points on the body.

Henceforth we will assume that the reference configuration is one of the configura-

tions occupied by the body during its motion. Hence det(F) and det(R) will always

be greater than zero. Then R is a proper rotation and (1.17) tells us that every

deformation can be decomposed locally as a pure stretch followed by a pure rotation

or a pure rotation followed by a pure stretch. U and V have the same eigenvalues but

different eigenvectors. In fact, if u is an eigenvector of U then Ru is an eigenvector

of V. This means that the material filaments along the eigenvectors of U in the

undeformed configuration is mapped into material filaments along the eigenvectors of

V in the deformed configuration.

The right and left Cauchy-Green stretch tensors are defined by:

C := U2 = FTF (1.18)

B := V2 = FFT (1.19)

The Green-St.Venant strain tensor(E) and the Almansi-Hamel strain tensor (e) are

defined in terms of B and C.

E :=
C− I

2
(1.20)

e :=
I−B−1

2
(1.21)

It is convenient to write the strain tensors in terms of the displacement u (X, t) that
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the particles may undergo.

u(X, t) := x(X, t)−X (1.22)

It immediately follows that,

F = I +∇u (1.23)

F−1 = I− gradu (1.24)

C = I +∇u +∇uT +∇uT∇u (1.25)

B−1 = I− gradu− (gradu)T + (gradu)Tgradu (1.26)

E =
1

2
(∇u +∇uT +∇uT∇u) (1.27)

e =
1

2

(
gradu + (gradu)T − (gradu)Tgradu

)
(1.28)

1. Homogeneous deformation

A deformation of the form

x = AX + a (1.29)

where A and a are functions of time only is called a homogeneous deformation. We

can easily see that A = F. Homogeneous deformations maps straight lines in the

reference configuration to straight lines in the deformed configuration; two parallel

straight lines deform into two parallel straight lines. Biaxial extension, dilatation,

and simple shear are examples of homogeneous deformations.
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B. Kinetics

1. Stress tensor

Suppose we are interested in finding out the forces acting in the interior of a continuous

body. Consider a part P of a body B. P occupies a region V and is obtained by

cutting an imaginary surface S through Ωt which is the region occupied by a body B

at time t. Let us assume that V and S possess sufficient smoothness and continuity

properties. We make a distinction between body forces which are forces acting from a

distance and contact forces which are forces due to the contact between two surfaces.

Let us assume that the effect of all the forces acting along a surface can be

adequately represented by a single vector field defined over the surface. We also

assume that the effect of body forces can be represented by another vector field

defined over the region V. It is possible for couples as well as forces to be transmitted

across a surface. But we consider only the latter.

We define the traction vector at a point x as

t(x, t,S) := lim
δa→0

δf

δa
(1.30)

where δa is the area of an element of S containing x and δf is the surface force

transmitted across δa from the inside to the outside of the region V at time t. Thus

traction vector t at a point will be different for different surfaces. Let us make an

additional assumption that t at x depends on S only through its outward normal n

at x. It has been proved by Cauchy that the traction vector t(x, t,n) at any spatial

position x and time t on any surface with normal n is uniquely determined by the

traction vectors at x and time t on any three linearly independent planes. t(x,t,n)
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has the following properties.

t(x, t,n) = −t(x, t,−n) (1.31)

t(x, t,n) = TT(x,t)n (1.32)

Equation (1.31) is called the Cauchy’s Reciprocal theorem. It is analogous to Newton’s

third law in particle dynamics. Equation (1.32) is called the Existence theorem or

Cauchy’s Fundamental theorem. It basically states that the traction vector is linearly

related to the normal vector on the surface. The tensor field T(x, t) is called the

Cauchy stress tensor. The components Tij of the stress tensor T in cartesian co-

ordinates denotes the component of the traction vector in the direction of ej on a

plane whose normal is ei. Note that the Cauchy stress tensor will be symmetric for

non-polar bodies due to the balance of angular momentum.

The stress tensor T is an Eulerian measure of stress. There are two other mea-

sures of stress. The first Piola-Kirchoff stress tensor enables us to calculate the trac-

tion vector in the current configuration measured per unit area of the corresponding

element in the reference configuration. Since an infinitesimal area in the reference

configuration (dA) is deformed into an infinitesimal area in the current configuration

(da) by da = det(F)F−TdA, the first Piola-Kirchoff stress tensor is given by:

S = det(F)F−1T (1.33)

The second Piola-Kirchhoff stress tensor is defined by:

S̃ = det(F)F−1TF−T (1.34)

When acted on a unit normal in the reference configuration, the second Piola-Kirchoff

stress tensor gives a pseudo traction vector (t̃ = F
−1

t). Second Piola-Kirchoff stress
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tensor is a Lagrangean measure of stress. First Piola-Kirchhoff stress tensor is not

symmetric whereas second Piola-Kirchhoff stress tensor is symmetric provided the

Cauchy stress tensor is symmetric.

2. Balance of mass, linear momentum and angular momentum

There are some physical quantities such as mass, electric charge and momentum which

are conserved during the motion of a body regardless of the material class which the

body may belong to. It is desirable to distinguish between such equations from the

equations which describe the behavior of a particular materials or classes of materials

(constitutive equations).

Balance of mass expresses the fact that the mass of any part of a body remain

unaltered during the course of motion of the body.

∫

Ω

ρdV =

∫

Ω0

ρdV0 (1.35)

where Ω and ρ are the material volume occupied by the body and it’s density in

the current configuration and Ω0 and ρ0 are it’s volume an density in the reference

configuration. If the integrands are continuous, this reduces to the Lagrangean form

of the conservation of mass:

ρ0 = ρ0 det(F) (1.36)

The Eulerian local form of conservation of mass is given by:

∂ρ

∂t
+ div(ρv) = 0 (1.37)

If the material undergoes an isochoric motion, (1.37) reduces to:

div(v) = 0 (1.38)
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An incompressible material is one which can undergo only isochoric motions.

The rate of change of linear momentum of the particles which instantaneously lie

within a fixed region Ω is proportional to the resultant force applied to the material

occupying Ω.

D

Dt

∫

Ω

ρvdV =

∫

Ω

ρbdV +

∫

∂Ω

t(x, t,n)dS (1.39)

where b is the body force per unit mass of the body and t(x, t,n) is the traction

vector acting on the surface of Ω. If the integrands are continuous this will reduce to:

div(T) + ρb = ρa (1.40)

where a is the acceleration vector. Equation (1.40) represents the Eulerian form of

the balance of linear momentum for a continuum. The Lagrangean form of the above

equation is

DivST + ρ0b = ρ0ẍ (1.41)

If x is the position vector from an arbitrarily chosen origin, then the conservation

of angular momentum for a continuum gives

D

Dt

∫

Ω

ρx× vdV =

∫

Ω

ρx× bdV +

∫

∂Ω

x× t(x, t,n)dS (1.42)

This leads to T = TT in the absence of body couples.

3. Conservation of energy

The kinetic energy (K) and internal energy (E) of a body occupying a region Ω at

an instant of time t is given by:

K =
1

2

∫

Ω

ρv.vdV (1.43)

E =

∫

Ω

ρedV (1.44)
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where e is the internal energy density. If q denotes the heat-flux vector, then the

mathematical formulation of the conservation of energy takes the form

D

Dt

∫

Ω

ρ(
1

2
v.v + e)dV =

∫

Ω

ρb.vdV +

∫

∂Ω

(t(x, t,n).v − q.n)dS (1.45)

From the conservation of linear momentum and the symmetry of the Cauchy stress

tensor we arrive at the local Eulerian form of the conservation of energy.

ρ
De

Dt
= T.D− gradq (1.46)

where D is the symmetric part of the spatial gradient of velocity.

Second law of thermodynamics gives additional constraints on the motion of the

body. Since temperature is not of concern for the problem under consideration, we will

omit a full thermodynamic formulation required for a general problem in continuum

mechanics.

C. Constitutive Equations

Constitutive equations are particular to individual materials, or classes of materials,

and they serve to distinguish one material from another. It specifies how the response

of a particular class material may differ from another class of material in response

to a given stimuli. It specifies the dependence of stress in a body on kinematical

variables such as strain tensor or rate of deformation tensor.

1. Elastic body

One commonly used constitutive equation is that the stress tensor is a single valued

function of the deformation gradient tensor.

T = f(F) (1.47)
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Materials which satisfy (1.47) are said to be Cauchy elastic. If, in addition to (1.47),

we suppose that the whole of the stress power is absorbed into, or derived from, a

strain energy function W depending only on F, the material is said to be Green elastic

or hyperelastic.

D

Dt

∫

Ω

ρ

ρ0
WdV =

∫

Ω

T.DdV (1.48)

Since (1.48) holds for all parts of the body and since the integrand is continuous, we

get,

ρ

ρ0

DW

Dt
= T.D (1.49)

2. Material frame indifference

Consider two motions given below.

x = X (X, t) (1.50)

x̂ = Q(t)X (X, t) + c(t) (1.51)

Equation (1.51) describes a motion in which each particle is in the same position

as in (1.50), relative to the rest of the body, but at each instant of time, the body

has been rotated and translated, as a rigid body from its position in (1.50). Since the

relative positions of the particles in both the motions are the same, we expect that W

at a particle X is same in both motions at each instant of time. Mathematically this

is equivalent to the requirement that W should be invariant under transformations of

(1.50) to arbitrary moving right handed reference frames. This is called the principle

of material frame indifference. Physically this means that two observers, even if they

are in relative motion, will observe the same stress and strain fields in a given body.

The deformation gradient for the motion given by (1.51) is

F̂ = QF (1.52)
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Since W should be invariant with respect to rigid body motions,

W (F) = W (QF) (1.53)

Since (1.53) holds for all Q including RT, W can depend on F only through C.

W (F) = W̃ (C) (1.54)

Now equation (1.49) reduce to

ρ

ρ0

DW

Dt
=

ρ

ρ0

∂W

∂C

D

Dt
(C) = T.D (1.55)

This gives

T =
ρ

ρ0
F

{(
∂W

∂C

)
+

(
∂W

∂C

)T}
FT (1.56)

S =

{(
∂W

∂C

)
+

(
∂W

∂C

)T}
FT (1.57)

3. Isotropy

If the mechanical response of a material does not depend on the orientation of the

body with respect to the testing apparatus, the body is said to be isotropic. Consider

two motions given by

x = X (X, t) (1.58)

x̄ = X (QX, t) (1.59)

If x = x̄ for all Q then the material is said to be isotropic. Since the left Cauchy

Green stretch tensor of (1.59) is related to that of (1.58) by C̄ = QCQT, we have,

for an isotropic material,

W (C) = W̃ (QCQT) (1.60)
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for all Q. Then it follows that W is dependent on C only through the principal

invariants of C or B. Using (1.56) and the material frame indifference of T, we can

express T as

T = f̄(B) = f0I + f1B + f−1B
−1 (1.61)

where f0, f1 and f−1 are scalar functions of the invariants of B. So far we have

been dealing with compressible elastic solids. The stress tensor for an incompressible,

isotropic, elastic solid has the form

T = −pI + 2
∂W

∂I1

B− 2
∂W

∂I2

B−1 (1.62)

where p is an arbitrary scalar, I1 and I2 are the first and second invariants of B.

4. Neo-Hookean material

For an incompressible material, the third invariant of B is 1 and hence

W = W (I1, I2) (1.63)

Two simple forms of W suggested are one by Treolar

W = C1(I1 − 3) (1.64)

where C1 is a constant and the other one by Mooney

W = C1(I1 − 3) + C2(I2 − 3) (1.65)

where C1 and C2 are constants. Materials which have a strain energy function satis-

fying (1.64) are called neo-Hookean. Materials which admit strain energy function of

the form (1.65) are called Mooney-Rivlin materials. The stress tensor for neo-Hookean
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and Mooney-Rivlin materials are of the form

T = −pI + 2C1B (neo-Hookean) (1.66)

T = −pI + 2C1B− 2C2B
−1 (Mooney-Rivlin) (1.67)
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CHAPTER II

CONSTANT AXIAL DISPLACEMENT RATE EXPERIMENTS OF ASPHALT

CONCRETE SPECIMENS

A. Introduction

The response of the asphalt concrete specimens to constant displacement rate tests

are measured at different confinement pressures in the experiment. The method of

preparation of the asphalt concrete samples and the experimental procedure are pre-

sented. The axial force required to keep the constant displacement rate was measured

and documented. The experiments were carried out for three different confinement

pressures and four different displacement rates. Two different aggregates, namely

Limestone and Granite were used for making the asphalt concrete samples. Results

exhibit a peak stress in the experiment after which the force required to keep the

constant displacment rate decays down to a constant value. This behavior is akin to

that of dense granular specimens.

B. Sample Preparation

The preparation of test samples require utmost care and patience to ensure identical

samples. Each step in the preparation process is crucial in determining the final re-

sponse of the asphalt concrete specimens. For instance a reduction of aggregate fines

of 3 % can produce a change in fatigue life of up to 300 % (Harvey and Monismith,

1993). The American Society for Testing and Materials (ASTM) has laid down de-

tailed guide lines and testing procedures in order to standardize the testing procedure

and the methods of peraparation. For example, ASTM D5-97 relates with the test

method for penetration of bituminous materials whereas ASTM D1073-99 deals with
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the specification for fine aggregate for bituminous mixtures. We followed the ASTM

guidelines in the preparation of the test specimens.

Broadly, the preparation of the sample can be classified into the following:

i) Separation of aggregates into different aggregate size fractions

ii) Mix design

iii) Prepare batch mixes

iv) Preheat the batch mixes and asphalt

v) Batch mixing of asphalt and aggregate

vi) Oven aging

vii) Compaction using a gyratory compactor

viii) Air void determination

1. Aggregate separation

The aggregates used in the highway construction are largely obtained from local

supplies of natural rock. This aggregate obtained from the quarry will range from

very fine soil to large sized rocks. The properties of the final test sample will largely be

determined by the overall size of the aggregates and the relative percentages of various

sizes of aggregates in the sample. In order to ensure the same relative percentages of

sizes of aggregates in the final sample, one need to blend the aggregates keeping the

relative percentage of aggregate sizes constant. Hence it is important that one should

first separate the aggregates into different sized particles.

Aggregates are separated into different sized fractions through sieving. Sieves

typically used for sieve analysis are: 2 inches, 1 1/2 inches, 1 inch, 3/4 inch, 1/2 inch,

3/8 inch, No. 4, No. 8, No. 16, No. 30, No. 50, No. 100 and No. 200. A 3/8 inch

sieve has openings equal to 3/8 inch. A No. 8 sieve has 8 openings per inch. A No.8

sieve size will be smaller than 1/8 inch, since the diameter of the wire should also be
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taken into consideration when calculating the sieve size. The sizes of successive sieves

usually differ by a factor of 2. So when plotted on a logarithmic scale, the distance

between adjacent sieve sizes are equal.

2. Mix design

The objective of a mix design is to determine the right combination of asphalt cement

and aggregate that will give a stable and strong pavement structure. Mix design

involves selecting the appropriate blend of aggregate sources to produce a proper

gradation of mineral aggregate, and selecting the type and amount of asphalt to be

used as a binder for that gradation.

Aggregate gradation is the distribution of particle sizes expressed as a percent of

the total weight. The gradation of an aggregate is normally expressed as total percent

passing various sieve sizes. Gradation of an aggregate can be graphically represented

by a gradation curve for which the ordinate is the total percent by weight passing a

given size on an arithmetic scale, while the abscissa is the particle size plotted to a

logarithmic scale. The gradation of an aggregate is determined by a sieve analysis.

Standard proecdures for a dry sieve analysis are given in ASTM C136.

Gradation is one of the most important properties of the aggregate. It influences

all the important properties of the asphalt concrete specimen including its strenght,

durability, permeability, workability, moisture susceptibility etc. It might seem rea-

sonable to assume that the best gradation is the one that gives the densest particle

packing. This densest packing will provide increased stability through increased inter-

particle contacts and reduced air voids in the aggregate matrix. However a sufficient

amount of air voids is required in the asphalt concrete to incorporate enough asphalt

cement to ensure durability. Also some amount of air voids is necessary in the mix-

ture to avoid bleeding and rutting of the pavements. Another unwanted effect of the
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densest packing is that the mixture will be more sensitive to slight changes in the

asphalt content.

One of the best known gradations for maximum density is the Fuller’s curve

proposed by Fuller and Thompson. The equation for Fuller’s maximum density curve

is:

P = 100(d/D)n (2.1)

where d is the diameter of the sieve size, P is the total percent passing, and D is the

maximum size of the aggregate. Studies by Fuller and Thompson showed that the

maximum density can be obtained when n = 0.5.

The Federal Highway Administration introduced an aggregate grading chart

which is based on the Fuller gradation but uses a 0.45 exponent in the equation.

The maximum density line in this chart is easily obtained by drawing a straight line

from the origin at the lower left of the chart to the actual percentage point of the

nominal maximum size. the nominal maximum size is defined as the largest sieve size

in the specification upon which any material is retained.

As said before, one may not want the maximum density gradation of aggregates

to provide adequate film thickness for maximum durability without bleeding. Hence

deviations from the maximum density curves are necessary in order to increase the

total voids in the mineral aggregate (VMA). Minimum VMA requirements have been

suggested to take this into account. This will vary with the maximum nominal aggre-

gate size. Some asphalt paving agencies prefer that the gradation be approximately

parallel to the maximum density grading, and offset from it a few points above or

below that line. The requirement for minimum VMA is necessary to ensure that there

are sufficient voids in the aggregate to allow enough asphalt to be added to provide

a durable mix and sufficient air voids to maintain stability.
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Most specifications for HMA (Hot Mix Asphalt) require well or dense graded

aggregate gradations with the middle portion of the curves approximately parallel

to the maximum density curves. ASTM D 3515 recommends some gradation limits

to be used with asphalt mixtures. This is shown in table I. For the most part, the

maximum density curve for a 3/4 inch maximum size aggregate fits inside these limits.

A large number of blending methods have been developed to obtain a desired

gradation. The suitability of these methods depends on the types of specification and

the number of aggregates involved. The basic formula for expressing the combination

is

p = Aa+Bb + Cc+ . . . (2.2)

where, p = the percent of material passing a given sieve for the combined aggregates

A, B, C, . . .

A, B, C, . . . = the percent of material passing a given sieve for each aggregate A, B,

C,. . .

a, b, c, . . . = proportions of aggregates A, B, C, . . . to be used in the blend, a + b +

c, . . . = 1.00.

The most common method of determining the proportions of aggregate to use to

meet specification requirements is through trial and error. A trial blend is selected and

calculations are made using equation (2.2) to determine the percent passing each sieve

size for the blend. This grading is then compared with the specification requirements.

The process is repeated for the critical sieves until a satisfactory or optimum blend

is obtained.

An aggregate gradation was obtained which will meet the specification require-

ments for the both the limestone and granite aggregates to be used for making the
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Table I. ASTM D 3515 Gradation specification for dense mixtures
Dense Mixtures

Sieve Size Mix Designation and Nominal Maximum Size of Aggregate
2 inch 1 1/2 inch 1 inch 3/4 inch 1/2 inch 3/8 inch No. 4 No. 8 No. 16

Grading of Total Aggregate (Coarse Plus Fine Plus Filler if Required)
Amounts Finer than Each Laboratory Sieve (Square Opening), Percent by Weight

2 1/2 inch 100 - - - - - - - -

2 inch 90 to 100 100 - - - - - - -

1 1/2 inch - 90 to 100 100 - - - - - -

1 inch 60 to 80 - 90 to 100 100 - - - - -

3/4 inch - 56 to 80 - 90 to 100 100 - - - -

1/2 inch 35 to 65 - 56 to 80 - 90 to 100 100 - - -

3/8 inch - - - 56 to 80 - 90 to 100 100 - -

No. 4 17 to 47 23 to 53 29 to 59 35 to 65 44 to 74 55 to 85 80 to 100 - 100

No. 8 10 to 36 15 to 41 19 to 45 23 to 49 28 to 58 32 to 67 65 to 100 - 95 to 100

No. 16 - - - - - - 40 to 80 - 85 to 100

No. 30 - - - - - - 25 to 65 - 70 to 95

No. 50 3 to 15 4 to 16 5 to 17 5 to 19 5 to 21 7 to 23 7 to 40 - 45 to 75

No. 100 - - - - - - 3 to 20 - 20 to 40

No. 200 0 to 5 0 to 6 1 to 7 2 to 8 2 to 10 2 to 10 2 to 10 - 9 to 20
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Table II. Gradation of the mixes

Mix Limestone Granite

Sieve Size,mm Percent Passing

12.5 98.8 98.8

9.5 79.5 79.5

4.75 46.2 46.2

2.36 31.6 31.6

1.18 24.5 24.5

0.6 17.8 17.8

0.3 11.2 11.2

0.15 6.3 6.3

0.075 1.5 1.5

Pan 0 0

samples. This is shown in table II. The gradation curve is shown in figure 1. The

asphalt content was fixed as 4.85 percent of the weight of the mix.

3. Preparation of batch mixes

After the mix design the amount of aggregates required to make one sample is deter-

mined. This is obtained by making a trial sample or from past experience. A sligthly

higher quantity of aggregates is used to take care of the losses which may occur when

transferring and mixing. Once the quantity of aggregates required to make a sample

is determined, the required quantity of the different fractions are obtained from the

mix design. Then each fraction of aggregate is carefully weighed and mixed together

to obtain the batch mix.
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4. Preheat batch mixes and asphalt to mixing temperature

The batch mix and the asphalt is heated to a mixing temperature of 1550C. The

mixing temperature is the temperature at which the kinematic viscosity of asphalt

is 170± 20 centistokes. (Centistoke is the viscosity of a liquid in centipoise divided

by the density of the liquid at the same temperature. One centipoise is 1/100 th

of a poise (1 poise = 1 dyne sec per square centimeter). Water at 68.4 F has an

absolute viscosity of one centipoise). The batch mix is kept in the oven at the mixing

temperature for at least 4 hours. The asphalt is kept at the mixing temperature for

1 hour. Similarly all the mixing tools and equipment is also preheated to the mixing

temperature.

5. Mixing

Once the batch mix is preheated to the mixing temperature, the aggregate is trans-

ferred to the preheated mixing bowl. The required amount of asphalt as determined

by the binder content in the mix design is carefully poured into the mixing bowl.

Extreme care has to be taken at this stage since even a slight increase or decrease

in the asphalt content will drastically change the properties of the asphalt concrete

specimen. Also care should be taken so as to minimize the loss of asphalt which

adheres to the walls of the bowl. The batch mix is mixed with the hot asphalt at the

mixing temperature using a mechanical mixer (see figure 2)

6. Oven aging

Once the mixing is completed, the mix is spread out on a relatively wide pan and

kept inside the oven at the compaction temperature (1350C) for 2 hours.. Care should

be taken out so as not to lose the fines sticking to the sides of the mixing bowl in



24

Fig. 2. Mechanical mixer for mixing asphalt and the aggregates

the process. The compaction temperature is the temperature at which the kinematic

viscosity of asphalt is 280± 30 centistokes. Also the mould and any other equipment

used in the compaction process are also kept in the oven at this time.

7. Compaction

After oven aging, the required amount of mix is filled in the mould in three stages.

After each stage the mix is hand compacted by poking it with a spatula 20 times.

The amount of mix required is fixed by trial and error so as to get the required height

of the final compacted specimen. Once the mould is filled, the mix is compacted

using a servopac gyratory compactor. The mix is compacted till the air voids in the

mix reduces to the required value. In the experiment, the target air voids was 7%.

The samples made were of 4 inches diameter and 6 inches height. The mould for the

preparation of 4 inch by 6 inch sample is shown in figure 3.

The superpave gyratory compactor has been designed to compact HMA samples



25

Fig. 3. Mould used in the preparation of the samples

to a density similar to that obtained in the field under traffic. It also tends to

orient the aggregate particles similar to that observed in the field. Although the

Superpave gyratory has some similarities to other gyratory compactors, it is a unique

piece of equipent. There are three parameters that control the compaction effort on

the Superpave machine. These settings are vertical pressure, angle of gyration and

number of gyrations. For the Superpave procedure, the vertical pressure is set at 600

kPa and the angle of gyration is set at 1.25 degrees. The gyrations are applied at a

rate of 30 revolutions per minute. The picture of the superpave gyratory compactor

used to compact the mix is shown in figure 4. The final compacted specimen is shown

in figure 5 and a cut cross section of the finished sample is shown in figure 6.
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Fig. 4. Superpave gyratory compactor

8. Determination of air voids

For determining the air voids, it is first necessary to calcualte both ethe theoretical

maximum specific gravity (Rice specific gravity) of the mix and also the bulk specific

gravity of the compacted asphalt concrete specimen. The ratio of the weight in air

of a unit volume of an uncompacted bituminous paving mixture (without air voids)

at a stated temperature to the weight of an equal volume of a gas-free distilled water

at a stated temperature is called the Rice Specific Gravity of the mixture. The test

method for finding the theoretical maximum specific gravity of bituminous paving

mixtures is described in ASTM D 2041. The theoretical maximum specific gravity
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Fig. 5. Compacted specimen

can be determined by the following equation:

Gmm =
A

A− C (2.3)

where, Gmm = rice specific gravity of the asphalt mix, A = mass of oven dry sample

in air and C = mass of water displaced by the sample.

The compacted specimens will have air voids in it, and hence the bulk specific

gravity of the specimen with the air voids will be less than the rice specific gravity

of the mix. The bulk specific gravity of the sample is the ration of the weight of a

unit volume of a compacted specimen (including permeable air voids) at 250 C to

the weight of an equal volume of gas-free distilled water at the same temperature.

The detailed procedure for carrying out this test is described in ASTM D 2726. The

compacted specimen is dryed in air for 2-3 days. The dry weight of the specimen in

air is taken (A). The specimen is immersed in a water bath at 250 C for 4 minutes and
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Fig. 6. Cross section of a granite sample

the weight of the specimen in water is determined (C). The specimen is taken out

of water, and blotted quickly with a damp towel so as to surface dry the specimen.

Then determine the weight of this surface dried specimen by weighing in air (B).

Then the bulk specific gravity (Gmb) of the sample is given by:

Gmb =
A

B − C . (2.4)

The percent of air voids in the specimen can be determined from Gmb and Gmm:

Percent air voids =

(
1− Gmb

Gmm

)
100. (2.5)

Once the actual air voids in the sample is determined, it is compared with the

target air voids. Even though the specimen is compacted for the target air voids, the

actual air voids in the specimen can be different from this target air voids. If there

is too much deviation between the actual air voids and target air voids, the sample
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is thrown and a new sample is made. After measuring the air voids, the sample is

again air dried for 7 days before conducting the experiment.

C. Constant Displacement Rate Experiments

In the experiment, the sample is subjected to a hydrostatic confining pressure. An

axial load is applied so that the top ram moves at a constant displacment rate.

The force required to maintain this displacement rate is recorded. A table showing

the different confinement pressures and displacement rates used for both type of

aggregates is shown in table III. A schematic of the experiment is showin in figure 7.

The experiment was carried out using an MTS machine. All the tests were

conducted at 1300 F. The sample is kept at the testing temperature for 2 hours prior

to the test to ensure that the whole sample reaches a steady state temperature. The

MTS machine has a temperature chamber which will keep the testing environment

at the requisite temperature. During testing, the sample is placed in a triaxial cell

and is kept inside the temperature chamber. MTS triaxial cells are configurable for a

wide range of tests including triaxial asphalt resarch, soil resilient modulus, dynamics

foundation research as well as liquefaction. Air was used as a confining fluid to

Table III. Materials, confinement pressures and displacement rates used in the exper-

iment

Material - Limestone

Confinement Pressure Disp. rates

0 psi 0.1 mm/min

15 psi 0.5 mm/min

30 psi 2.5 mm/min

12.5 mm/min

Material - Georgia Granite

Confinement Pressure Disp. rates

0.1 mm/min

15 psi 0.5 mm/min

30 psi 2.5 mm/min

12.5 mm/min
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Fig. 7. Schematic of the experiment

generate the confining pressure. A picture of the MTS machine with the temperature

chamber is shown in figure 8 and without the temperature chamber is shown in figure

9.

The sample is placed in the triaxial cell and the cell is placed inside temperature

chamber. The confinement pressure is brought to a requisite value. The top ram is

moved at constant rate. The apparatus is computer controlled and the force required

to maintain this displacement rate is recorded. A typical experimental result is shown

in figure 10.



31

Fig. 8. MTS machine with the temperature chamber
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Fig. 9. MTS machine with temperature chamber removed

Time

T zz
 

t=τ 

Fig. 10. Typical experimental result
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CHAPTER III

AN INCOMPRESSIBLE CONSTITUTIVE MODEL FOR ASPHALT MIXTURES

This study is concerned with the constitutive modeling of asphalt concrete mixtures.

The response of the asphalt concrete pavement depends on its internal structure. The

internal structure of the asphalt concrete mixture evolves during the loading process.

Here we develop a one constituent model for asphalt concrete mixture by associat-

ing different natural configurations (stress-free configurations) with distinct internal

structures of the body. The evolution of the natural configurations is determined

using a thermodynamic criterion, namely the maximization of the rate of dissipation.

Making appropriate assumptions concerning the manner in which the body stores

and dissipates energy, the constitutive relations for the stress is deduced. Constant

displacement rate experiments are carried out at different confinement pressures on

asphalt concrete specimens made of two different aggregates - granite and limestone.

The efficacy of the model in predicting the mechanical response of asphalt concrete

mixtures is shown by corroborating the model predictions with the experimental re-

sults.

A. Introduction

Asphalt concrete exhibits nonlinear response even at small strains and the response of

the material to different types of loading (tension and compression) is quite different.

In addition to this, the response of asphalt concrete is more sensitive to variations in

temperature than to the changes in magnitude of the load.

The response of asphalt mixtures depends on the type and percentage of asphalt

and aggregates. Asphalt from different crude sources have different chemical compo-

sitions and hence different properties. The properties of asphalt are highly dependent
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on the type of refining process used. Also the structure of asphalt keeps on changing

from the time it leaves the refinery to the final mixing in the hot mix asphalt plant

due to repeated heating and cooling during its transport. Depending on the tempera-

ture and the type of loading, asphalt can respond like brittle-elastic solid, viscoelastic

solid, viscoelastic fluid or a Newtonian fluid. In general, the viscosity of asphalt can

be a function of the pressure1 (see Saal and Koens [4]). In addition to all this, asphalt

is extremely sensitive to temperature.

Asphalt concrete is made up of different sizes and fractions of aggregates and this

will give rise to air voids in the asphalt concrete during the manufacturing process.

The properties of asphalt concrete depend on the type of aggregates, the distribution

of the different sizes of aggregate particles, the relative percentage of each of the

components and also on the percentage and distribution of air voids.

The initial microstructure of an asphalt concrete mix is largely determined by the

manufacturing process. Due to the influence of different activities at the microlevel

and also due to the interactions with the environment, there is a progressive change

in the microstructure of asphalt concrete. The change in microstructure occurs due

to the interaction at the constituent interface or within the constituents themselves.

Micro-mechanical activities like reduction of air voids due to traffic densification,

debonding and possible rebonding of aggregate contact points under dynamic traffic

loads etc., act at the constituent interfaces. The changes in the rheological and micro-

structural properties of asphalt during its life time and aggregate disintegration are

some of the micro-mechanical activities occurring within the constituents. Hence,

there is a change in the internal structure of asphalt concrete during its lifetime. This

change in internal structure will give rise to a change in the mechanical response of

1By pressure here we mean the mean normal stress.
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asphalt concrete during its life time. From this discussion it should be clear that one

needs a model which will take into account the evolution of the internal structure for

modeling asphalt concrete.

Studies assuming asphalt concrete to be viscoelastic use either a spring-dashpot

analogy in the form of a Burgers’ model (Burgers [5], Lee et al. [6], Monismith and

Secor [7] etc.) or some other ad hoc form of viscoelastic constitutive equation (Huang

[8], Kim and Little [9]). Huschek [10] modeled asphalt concrete as a three phase sys-

tem consisting of regions characterized by viscosity, modulus of elasticity and modulus

of plasticity. Van der Poel [11] modeled asphalt concrete as concentrated solutions of

elastic spheres in an elastic medium. Other models have been proposed that appeal to

a “correspondence principle” proposed by Schapery to generate non-linear viscoelastic

models from non-linear elastic models (see Park et al.[12]). But it has been shown re-

cently that the models generated by appealing to the correspondence principle cannot

satisfy the balance of angular momentum (see Rajagopal and Srinivasa [13]). Studies

which take into consideration the microstructure of asphalt concrete have also been

carried out. But they either neglect the evolution of the microstructure or take it

into account by means of some “shift factors”. Nijboer [14] uses the analogy of soil

mechanics for modeling asphalt concrete. According to his model, the deformation

resistance of asphalt concrete is comprised of an initial resistance, internal friction

and viscous resistance. Hills [15] developed models which explains the long term creep

behavior of asphalt by characterizing the internal structure of the mix by means of

the asphalt thickness. Boutin and Auriault [16] use the analogy of a porous media

saturated by a viscoelastic fluid to describe asphalt concrete behavior. Florea [17, 18]

uses a viscoplastic potential for developing an elastic/viscoplastic model for asphalt

concrete. With the advent of computer tomography and other imaging techniques ad-

ditional information about the internal structure of asphalt concrete can be obtained.
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Masad et al. [19, 20] studied the effect of compaction on the internal structure of

asphalt concrete. Masad and Button [21] used a imaging technique to measure the

aggregate angularity and texture in asphalt concrete. Recently Murali Krishnan and

Rajagopal [22] have modeled asphalt concrete based on a thermodynamic framework

which takes into account the effect of microstructure and its evolution.

Most of the traditional methods of modeling asphalt concrete have not considered

in detail the change in the microstructure of asphalt concrete as the material deforms,

and assume that the Cauchy stress tensor is dependent upon the deformation gradient

measured from a single reference configuration. For a material like asphalt concrete

whose constitutive behavior is dependent on the internal structure and its change,

this would not be correct. Here we will develop a model using a thermodynamical

framework which takes into account the evolution of the internal structure of the ma-

terial. This framework has been used to explain the material response of a large class

of materials including multinetwork theory for polymers (Rajagopal and Wineman

[23]), traditional plasticity (Rajagopal and Srinivasa [24, 25]), twinning (Rajagopal

and Srinivasa [26]), viscoelastic liquids (Rajagopal and Srinivasa [27]) and growth

of biological materials (Humphrey and Rajagopal [28]). This model is based on the

notion of natural configurations, the preferred natural configuration corresponding to

the preferred stress free configuration associated with the current configuration occu-

pied by the body. The natural configurations evolve as the material is deformed, and

this change in the natural configuration is associated with the dissipative response of

the material. An irreversible thermo-mechanical process is characterized by a positive

rate of entropy production. The entropy production can be due to different mecha-

nisms, for e.g., due to phase change, conversion of mechanical working into energy in

its thermal form (heat), chemical reactions, heat conduction etc. In this work we use

the term rate of dissipation synonymously with the rate of entropy production due
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to mechanical working (strictly speaking the rate of dissipation is the product of the

rate of entropy production, density and the absolute temperature). The evolution of

the natural configurations is determined by a ‘maximum rate of dissipation’ criterion

subject to the constraint that the difference between the stress power and the rate

of change of stored energy is equal to the rate of dissipation. A variety of energet-

ically consistent rate type models can be developed by choosing different forms for

the stored energy and the rate of dissipation for the material.

The specific influence of different sizes and shapes of aggregates on the overall

mechanical behavior of asphalt concrete is difficult to understand completely. In the

present work, we will make no attempt to take into account the influence of each

of these parameters separately. We will develop a phenomenological model that will

capture all these factors in a global sense. However, the framework developed here

allows one to easily incorporate these individual components into the model once the

specifics of the influence of these components on the behavior of asphalt concrete are

obtained. For example if one knows the effect of angularity on the stored energy of

the specimen and on the rate of dissipation, one can incorporate those by explicitly

taking these into account in the stored energy function and rate of dissipation function

in the model.

In their work Murali Krishnan and Rajagopal [22] used a two constituent con-

strained model for asphalt concrete. In this work we model asphalt concrete as a

single constituent. That this itself is effective to capture the behavior of asphalt con-

crete shows the efficacy of this model. Also, in this study we assume that the rate

of dissipation is a function of the mean normal stress. The physical motivation in

using such a model is explained later. Using this model we are able to effectively

capture the response of asphalt concrete under different confinement pressures. In

this work we model the response of asphalt concrete under constant displacement rate
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tests as opposed to the creep tests modeled by Murali Krishnan and Rajagopal. As

can be seen from the experimental results, the axial stress increases, attains a peak

value and then decreases in a constant displacement rate test. The model was able

to predict reasonably well this peak stress attained in a constant displacement rate

test for various confinement pressures.

We will first introduce the notion of natural configurations and use it to develop

a thermodynamically consistent model for asphalt concrete. Constant displacement

rate tests on asphalt concrete specimens in triaxial compression have been conducted

as part of this study. We then use the developed model to corroborate the experimen-

tal results, and we find that the predictions of the model agree reasonably well with

the experimental results. It is important to recognize that just one set of material

parameters is used to corroborate all the experimental data.

B. Preliminaries

Consider a body B in a configuration κR(B). For ease of notation, we shall use κR

to denote κR(B). Let X denote a typical position of a material point in κR. Let

κt denote the configuration occupied by the body B at time t. The motion of the

body is defined as the one-to-one mapping which assigns to each point X in κR a

corresponding point x in κt:

x = χκR(X, t). (3.1)

The deformation gradient FκR is defined through:

FκR =
∂χκR
∂X

. (3.2)

The left and right Cauchy-Green stretch tensors BκR and CκR are defined through:

BκR = FκRFT
κR
, CκR = FT

κR
FκR . (3.3)
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Asphalt concrete is a mixture of continuously graded aggregates, filler and as-

phalt. To model asphalt concrete as a mixture (see Rajagopal and Tao [29]) consisting

of different aggregate sizes, asphalt and air voids is extremely difficult. However one

can look at the overall mechanical behavior of asphalt concrete as made up of the

mechanical behavior of asphalt mastic (asphalt and filler particles) and aggregate ma-

trix (Murali Krishnan and Rajagopal [22], Wood and Goetz [30] etc.). The aggregate

matrix acts as a skeleton in which the voids are filled with asphalt mastic and the air

voids. The asphalt mastic acts as a lubricant which allows for the relative motion of

the aggregate matrix. Such an approach is used in the work of Murali Krishnan and

Rajagopal [22]. They used a constrained two constituent model which allowed them

to take into account the properties of asphalt mastic and aggregate matrix separately

in the model. However, in this work we will model asphalt concrete as a single con-

tinuum. The stored energy function and the rate of dissipation function we choose

will capture the properties of asphalt mastic and aggregate matrix in a global sense.

We will demonstrate that this one constituent model can successfully corroborate the

experimental results.

Any acceptable process has to satisfy the appropriate balance laws. The appro-

priate balance laws for the problem at hand are the conservation of mass, linear and

angular momentum and energy. The conservation of mass is given by

ρ̇ + ρ div(v) = 0, (3.4)

where ρ is the density and v is the velocity of the material.

We assume the asphalt mixture consisting of aggregate particles and asphalt to

be incompressible. This assumption simplifies the problem at hand. In actuality

density changes do occur in the bulk of the material (Huang [8]). The density change

can be taken into account by appropriately modifying the theory. If we assume the
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asphalt mixture to be incompressible, the conservation of mass reduces to

div(v) = 0. (3.5)

The conservation of linear momentum is given by

ρ

[
∂v

∂t
+ (∇v)v

]
= divT + ρg, (3.6)

where g is the acceleration due to gravity and T is the Cauchy stress tensor. In

the absence of internal couples, conservation of angular momentum implies that the

Cauchy stress tensor is symmetric. The conservation of energy gives:

ρε̇ + divq = T · L + ρr, (3.7)

where ε is the internal energy, q is the heat flux vector and r is the radiant heating.

The second law of thermodynamics is often used in continuum mechanics in the

form of the Clausius-Duhem inequality (see Truesdell and Noll [2]). In the present

work we will introduce the second law in the form of an equality by introducing a

balance law for entropy. This approach is similar to that of Green and Naghdi [31]

and Rajagopal and Srinivasa [25]. The balance law for entropy then takes the form

ρζ̇ + div
(q

θ

)
= ρ

r

θ
+ ρΞ, Ξ ≥ 0, (3.8)

where ζ is the entropy, θ is the absolute temperature and Ξ is the rate of entropy

production. Combining the balance of energy and the balance of entropy gives the

reduced energy-dissipation equation:

T · L− ρψ̇ − ρζθ̇ − q · gradθ

θ
= ρθΞ = ξ ≥ 0, (3.9)

where ψ is the Helmholtz potential and is given by ψ = ε − θζ and ξ is the rate of

dissipation. We shall assume that the rate of dissipation can be split into two parts,
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one pertaining to heat conduction and the other related to the rate at which work is

converted into energy in its thermal form. Assuming that the rate of dissipation due

to heat conduction is given by

ξc = −q · gradθ

θ
≥ 0, (3.10)

we can rewrite (3.9) as:

T · L− ρψ̇ − ρζθ̇ = ξd ≥ 0. (3.11)

In this work, we use the reduced energy-dissipation equation in the above form

to place restrictions on the constitutive equations.

C. Modeling of Asphalt Concrete

Corresponding to each current configuration κt we associate a natural configuration

κp(t). In figure 11, κR is a reference configuration, κt is the configuration currently

occupied by the material and κp(t) is the natural configuration associated with the

material that is currently in the configuration κt. The preferred natural configuration

κp(t) corresponds to the preferred stress free configuration associated with the current

configuration κt occupied by the body at time t, i.e., this is the configuration the body

attains on the removal of the external stimuli, given a class of admissible processes.

For a more detailed discussion of natural configurations the readers are referred to the

papers by Rajagopal [32], Rajagopal and Srinivasa [27, 24, 25] and Rao and Rajagopal

[33]. Most real materials can exist in a variety of stress free configurations and these

configurations are not necessarily related to each other by rigid body motions. It is

possible for materials to possess more than one natural configuration (see Rajagopal

and Srinivasa [26, 27, 34], Rao and Rajagopal [33]). In polymeric materials with

more than one relaxation mechanism, it is common to use models with more than
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Fig. 11. Natural configuration associated with the current configuration

one relaxation time. These models with multiple relaxation times are equivalent to

viscoelastic fluid models with multiple sets of natural configuration. Murali Krishnan

and Rajagopal [35]) assign more than one relaxation mechanism for asphalt concrete,

one pertaining to the movement of the aggregate particles and the other pertaining

to asphalt mastic (see also Wood and Goetz [30]). But in this work we shall assume

just one relaxation mechanism which will effectively capture the overall relaxation

of the asphalt mixture. The relaxation mechanism of the model is determined by

the evolution of the natural configuration which in turn is determined by the rate

of dissipation function. Since we are assuming only one relaxation mechanism, we

shall associate only one natural configuration (κp(t)) corresponding to each current

configuration (κt).

We assume that the asphalt mixture has an instantaneous elastic response from

the natural configuration κp(t). The gradient of the mapping from κp(t) to κt is defined

as Fκp(t) . The natural configuration κp(t) is not fixed as in the case of an elastic solid
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but evolves as the material is deformed. This change in the natural configuration

is associated with the dissipative response of the material. We define G to be the

mapping between the tangent spaces of κR and the natural configuration κp(t), i.e.,

G = FκR→κp(t) = F−1
κp(t)

FκR. (3.12)

We define:

Bκp(t) = Fκp(t)F
T
κp(t)

. (3.13)

We define the velocity gradient L in the conventional way and introduce a corre-

sponding velocity gradient Lκp(t) through (Rajagopal and Srinivasa [27]),

L = ḞκRF−1
κR
, (3.14)

Lκp(t) = ĠG−1. (3.15)

Also,

Dκp(t) =
1

2
(Lκp(t) + LT

κp(t)
), (3.16)

D =
1

2
(L + LT ). (3.17)

We define the Oldroyd derivative of Bκp(t) as:

B
∇

:= Ḃκp(t) − LBκp(t) −Bκp(t)L
T = −2Fκp(t)Dκp(t)F

T
κp(t)

, (3.18)

where the inverted triangle denotes the upper convected Oldroyd derivative and the

superposed dot is the material time derivative. Specifying Dκp(t) amounts to pre-

scribing the manner in which the underlying natural configurations evolve. We shall

assume that the motion associated with the natural configurations are also isochoric,

i.e.,

tr(Dκp(t)) = 0. (3.19)
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Since asphalt concrete is a mixture of different sized aggregate particles and

asphalt, it exhibits anisotropic behavior. The initial anisotropy of an asphalt con-

crete specimen depends on the aggregate characteristics, aggregate gradation and the

compaction method used to prepare the specimen (Masad et al. [19, 20]). Since the

internal structure of asphalt concrete keeps on evolving during loading, the anisotropy

of the material also evolves with it.

As we observed before, the initial anisotropy and the evolution of the anisotropy

in an asphalt concrete specimen is highly dependent on the aggregate characteristics,

aggregate gradation, the compaction method used and the testing condition. One big

obstacle in taking into account anisotropy in modeling asphalt concrete is the lack

of experimental data. The modern tools of X-Ray Computed Tomography (CT) and

Image Analysis Techniques (IAT) look more promising in this regard. Even if one

knows that the relative aggregate orientation is horizontal in a specimen prepared

using a gyratory compactor one still does not have the experimental data which can

correlate this with the response of the specimen. This gets further complicated by the

fact that the internal structure and the anisotropy of the material keep on evolving

during the loading process. Similarly one should have enough experimental data to

conclude how the aggregate characteristics, gradation etc., affects the anisotropy of

the final compacted specimen. It is imperative to resolve the above issues before one

can take anisotropy into account in modeling asphalt concrete.

The anisotropy can be taken into account in modeling asphalt concrete using

the framework developed here. One needs to take into account not only the initial

anisotropy but also its evolution as the material deforms. The anisotropy can be built

into the framework by requiring the stored energy and the rate of dissipation function

to depend on the directions of anisotropy also. Here for simplicity we model asphalt

concrete as an isotropic material.
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The internal energy and the entropy are assumed to depend on the temperature

θ and the first two invariants of Bκp(t) : Iκp(t) , IIκp(t).

ε = ε(θ, Iκp(t) , IIκp(t)), (3.20)

ζ = ζ(θ, Iκp(t), IIκp(t)), (3.21)

where Iκp(t) = tr(Bκp(t)), IIκp(t) = tr(Bκp(t)
2). Hence the Helmholtz potential has the

form:

ψ = ψ(θ, Iκp(t) , IIκp(t)). (3.22)

The above assumptions are tantamount to assuming that the instantaneous elastic

response is that of an incompressible material that is isotropic with respect to κp(t).

Since asphalt concrete is a mixture of aggregate particles of various sizes bound

together by asphalt, a higher confinement pressure will increase the resistance to de-

formation. The pressure in the lateral direction will mobilize more aggregate interlock

and hence the deformation resistance of asphalt concrete is a function of the confine-

ment pressure. The fact that the confinement pressure will increase the resistance to

deformation in well known (see Endersby [36], Nijboer [14]). Since the rate of dissipa-

tion is a measure of the rate at which work is converted to energy in its thermal form,

it should in some way reflect this dependence on the confinement pressure. Hence we

assume the following form for the rate of dissipation function:

ξ = ξ(θ,Bκp(t),Dκp(t), tr(T)). (3.23)

The dependence of the rate of dissipation on the pressure is not new. In general,

the rate of dissipation of a fluid is dependent on the viscosity of the fluid see Stokes

[37], Bridgman [38]). While the dependence of viscosity on pressure is not immediately

obvious in common flows like the flow of water in a pipe, it can have significant effect
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when the change in pressure is sufficiently large (Hron et al. [39]). It is possible

that for liquids such as water, the effect of change in pressure on density is not

significant over a wide range of pressures but viscosity can change significantly (even

exponently) with pressure. Extensive experiments have been carried out to find the

effect of pressure on the viscosity of various fluids (Bridgman [38]). Recently several

experiments have been carried out which also document the dependence of viscosity

on pressure (mean normal stress) (see Cutler et al. [40], Griest et al. [41], Johnson

and Cameron [42] and Johnson and Tevaarwerk [43]).

Now we shall give specific forms for constitutive equations. For the internal

energy we assume that, it is a linear function of temperature and that the change in

internal energy due to deformation is dependent on the first invariant of Bκp(t).

ε = Cθ + A+ f(Iκp(t)), (3.24)

ζ = Cln(θ) + B. (3.25)

where Iκp(t) = tr(Bκp(t)).

We assume the following form for the rate of dissipation function:

ξ = η1(Bκp(t), tr(T))Dκp(t)
·Bκp(t)

Dκp(t)
. (3.26)

Here η1(Bκp(t)) is the viscosity of the material.

Substituting (4.24) and (4.25) into (3.9), we get:

T · L− ρḟ(Iκp(t)) = ξ. (3.27)

Since we are assuming asphalt concrete to be isotropic, we can choose, without

any loss of generality, the natural configurations κp(t) to be such that

Fκp(t) = Vκp(t). (3.28)
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Using (4.10) for Ḃκp(t) and using (3.28), we get,

[
T− 2ρ

∂f

∂Iκp(t)

Bκp(t)

]
·D =

[
η1(Bκp(t), tr(T))Bκp(t)Dκp(t) − 2ρ

∂f

∂Iκp(t)

Bκp(t)

]
·Dκp(t) .

(3.29)

Since we are looking for forms that are sufficient to satisfy the above equation,

and since we are assuming that the material is incompressible, we can stipulate

T = −pI + 2ρ
∂f

∂Iκp(t)

Bκp(t) . (3.30)

We will choose the specific form

f(Iκp(t)) =
1

2ρ
µ(Iκp(t))(Iκp(t) − 3) (3.31)

for f(Iκp(t)). This means that we are assuming that the storage of energy due to

deformation in the material is similar to that of a neo-Hookean material. We shall

choose

µ1(Iκp(t)) = µ(Iκp(t)) + (Iκp(t) − 3)
∂µ(Iκp(t))

∂Iκp(t)
. (3.32)

Then (3.30) becomes

T = −pI + µ1(Iκp(t))Bκp(t). (3.33)

Note that since tr(Dκp(t)) = 0 (natural configuration is also one of the possible

configurations that the body can occupy),

T ·Dκp(t) = η1(Bκp(t), tr(T))Bκp(t)Dκp(t) ·Dκp(t) = ξ. (3.34)

Equation (4.27) imposes a constraint in the evolution of natural configurations.

At this point, we do not know how the natural configurations evolve. We assume that

for a fixed Bκp(t) and D, Dκp(t) should be such that it maximizes the rate of entropy

production. We maximize ξ subject to the constraints (4.27) and tr(Dκp(t)) = 0. One
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could also keep Bκp(t) fixed and maximize ξ with respect to both D and Dκp(t) (see

Rajagopal and Srinivasa [44]).

This gives

Vκp(t)Dκp(t)Vκp(t) =
µ1(Iκp(t))

η1(Bκp(t), tr(T))

[
Bκp(t) − λI

]
. (3.35)

Taking the dot product of (3.35) with B−1
κp(t)

and noting that tr(Vκp(t)Dκp(t)V
−1
κp(t)

) =

tr(Dκp(t)) = 0,

λ =
3

tr(B−1
κp(t)

)
. (3.36)

So (4.10) becomes

−1

2
B
∇

=
µ1(Iκp(t))

η1(Bκp(t), tr(T))

[
Bκp(t) − λI

]
. (3.37)

Hence the evolution equation is given by (4.43) and the stress is given by (4.26).

So far we have not assumed any form for the functions µ1(Iκp(t)), or η1(Bκp(t) , tr(T)).

D. Experiment - Constant axial displacement rate testing of asphalt mixtures

There are different kinds of tests used in the industry to measure the response charac-

teristics of asphalt concrete. One is the performance test which measures a mixture

response characteristic or parameter that is closely related to the occurrence of a

particular pavement distress. NCHRP 465 [45] details some of the performance test

methods and asphalt concrete mixture responses that are related to two types of pave-

ment distress - permanent deformation and fracture. The others are tests in which

some material property is sought to be measured. In the experiment that was carried

out,the main purpose was to corroborate the model with the experimental data.

The triaxial test in its present form owes much to Buisman [46] who used it for

testing sand and clay and to Stanton and Hveem [47] who used it for characterizing

asphalt pavement materials. If one were to confine a fluid in a cylinder and apply a
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vertical load, then the lateral pressure must equal the normal stress in the vertical

direction. On the other hand if the material is rigid, then there is no need for any

confining pressure to balance the vertical load (Endersby [36]). Hence the amount of

confinement pressure required to balance a given vertical load measures in some sense

the strength of the material. This is the central notion used in the triaxial test. The

hypothesis postulated by Haar and von Karman [48], that the intermediate principal

stress is either equal to the major or the minor principal stress, is intuitively used

in triaxial testing. In the triaxial test, the stresses acting on the specimen closely

approach the system of stresses existing in a flexible pavement when it is supporting

a load.

Table IV. Mix design factors for the mixes

Mix Limestone Granite

Binder Type PG 64-22 PG 64-22

Binder Content, % 4.85 4.86

Maximum Specific Gravity 2.47 2.471

Avg. Measure Air void, % 6.7 6.89

SD of Air Voids 0.25 0.30

Specimen Height, mm 157.5 157.5

Specimen Diameter, mm 101.6 101.6

In practice, the triaxial test is used to study the permanent deformation of pave-

ments. The rate at which permanent deformation accumulates increases rapidly at

higher temperatures. Hence any laboratory testing to study permanent deformation

of asphalt concrete must be conducted at temperatures simulating the highest tem-

peratures in the actual pavement service. Also, the permanent deformation of an

asphalt concrete pavement depends on the rate at which it is deformed. In the exper-
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iment conducted, the response of the asphalt mixture was studied at different axial

displacement rates.

Table V. Gradation of limestone and granite mixes

Mix Limestone Granite

Sieve Size,mm Percent Passing

12.5 98.8 98.8

9.5 79.5 79.5

4.75 46.2 46.2

2.36 31.6 31.6

1.18 24.5 24.5

0.6 17.8 17.8

0.3 11.2 11.2

0.15 6.3 6.3

0.075 1.5 1.5

Pan 0 0

In the experiments conducted in this study, a simple triaxial compression test

at a constant displacement rate is used to capture the response characteristics of

asphalt mixtures (see figure 12). Cylindrical test specimens of asphalt concrete of 4 in

(101.6 mm) diameter and 6.2 in (157.5 mm) height were compacted using a ServoPac

gyratory compactor (see table IV). Two different mixes with different aggregate types

(granite and limestone) were used to make the specimens. The gradations of the

different aggregates are shown in table V. The same gradation was used for both the

aggregate types. The target air void content was 7 percent. The specimens were

subjected to a compressive load in the axial direction at a given confinement pressure

such that the axial displacement rate is kept constant. The axial force required to
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maintain the given displacement rate is measured. The experiment was carried out at

four displacement rates (0.1 mm/min, 0.5 mm/min, 2.5 mm/min and 12.5 mm/min)

at three confining pressures (0 psi, 15 psi, 30 psi) at a temperature of 1300 F (see table

VI). Each experiment was repeated with at least two samples. A typical experimental

result is shown in figure 13.

Table VI. Table showing the different materials, confinement pressures and displace-

ment rates used

Material - Limestone

Confinement Pressure Disp. rates

0 psi 0.1 mm/min

15 psi 0.5 mm/min

30 psi 2.5 mm/min

12.5 mm/min

Material - Georgia Granite

Confinement Pressure Disp. rates

0.1 mm/min

15 psi 0.5 mm/min

30 psi 2.5 mm/min

12.5 mm/min
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Fig. 13. Typical experimental result

E. Corroboration of the model with the experimental data

For simplicity, we will assume that the deformation is homogeneous and is given by

r =
1√
Λ(t)

R, θ = Θ, z = Λ(t)Z (3.38)

in cylindrical polar co-ordinates.

The assumption that the deformation is homogeneous can be called into question

for the following reason: the deformation field is not valid towards the end of the

specimen because of the end effects. End restraint was long recognized as the cause

for strong inhomogeneous responses, such as barreling and localization of deformations

(Bishop and Henkel [49], Sowers [50], Roscoe et al. [51]). This is a question of concern

and every effort was taken during the experiment to minimize the end effects. Both

the ends of the specimen were covered with a double layer of elastic rubber membrane

with a layer of silicone grease between the rubber membranes. This will considerably

reduce the end effects and will ensure that only vertical forces are transmitted from

the ram to the specimen during testing (Rowe and Barden [52], Bishop and Green
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[53]).

Towards the end of the experiment the specimen starts barreling out which is

clearly an inhomogeneous deformation. But the time scale associated with the inho-

mogeneous deformation is very short compared to that of the rest of the experiment

and it is reasonable to assume that the entire deformation is homogeneous.

The deformation gradient is given by

FκR = diag




1
√

Λ
,

1
√

Λ
, Λ


 . (3.39)

Note that det(FκR)=1 for the assumed deformation field. The left Cauchy-Green

stretch tensor and the velocity gradient are given by

BκR = diag




1

Λ
,

1

Λ
, Λ2


 , L = D =

Λ̇

Λ
diag


−

1

2
, −

1

2
, 1


 . (3.40)

Let’s assume that Bκp(t) has the form:

Bκp(t) = diag
(
Bκp(t)rr, Bκp(t)θθ, Bκp(t)zz

)
. (3.41)

The constitutive equation is given by (4.26):

T = −pI + µ1(Iκp(t))Bκp(t) . (3.42)

We shall assume that Bκp(t) is a function of time only and Bκp(t)rr, Bκp(t)θθ, Bκp(t)zz

are not functions of r, θ or z. Eliminating p from (4.46), we obtain

Trr − Tθθ = µ1(Iκp(t))
(
Bκp(t)rr −Bκp(t)θθ

)
, (3.43)

Tzz − Trr = µ1(Iκp(t))
(
Bκp(t)zz − Bκp(t)rr

)
. (3.44)
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Since det(Bκp(t)) = 1, tr(B−1
κp(t)

) can be written as

tr(B−1
κp(t)

) =
1

Bκp(t)rr
+

1

Bκp(t)θθ
+

1

Bκp(t)zz

= Bκp(t)rrBκp(t)θθ +Bκp(t)rrBκp(t)zz +Bκp(t)θθBκp(t)zz. (3.45)

The evolution equation (4.43) becomes

−1

2

(
Ḃκp(t)rr +

Λ̇

Λ
Bκp(t)rr

)
=

µ1(Iκp(t))

η1(Bκp(t), tr(T))

(
Bκp(t)rr −

3

tr(B−1
κp(t)

)

)
, (3.46)

−1

2

(
Ḃκp(t)θθ +

Λ̇

Λ
Bκp(t)θθ

)
=

µ1(Iκp(t))

η1(Bκp(t), tr(T))

(
Bκp(t)θθ −

3

tr(B−1
κp(t)

)

)
, (3.47)

−1

2

(
Ḃκp(t)zz − 2

Λ̇

Λ
Bκp(t)zz

)
=

µ1(Iκp(t))

η1(Bκp(t), tr(T))

(
Bκp(t)zz −

3

tr(B−1
κp(t)

)

)
. (3.48)

We have one more additional equation from incompressibility:

det(Bκp(t)
) = Bκp(t)rrBκp(t)θθBκp(t)zz = 1. (3.49)

Hence we have six equations (3.43,4.50,4.52-4.55) and five unknowns (Tθθ, Tzz, Bκp(t)rr,

Bκp(t)θθ, Bκp(t)zz). It looks like the system is over-constrained. But it can be easily

shown that (3.48) is a linear combination of (4.52), (4.53) and (4.55). Thus, there

are as many equations as unknowns. For solving this problem, we will use a form for

Bκp(t) which is similar to BκR.

Bκp(t) = diag

(
B(t), B(t),

1

B(t)2

)
. (3.50)

It is easy to see that the above form for Bκp(t) will satisfy (4.55) and that equations

(4.52, 4.53, 3.48) will reduce to a single ordinary differential equation for B(t).

The physical and chemical properties of the aggregates influences the response

of the final asphalt concrete specimen (Stephens and Sinha [54] etc.,). Basic phys-

ical and mechanical properties (such as density, porosity, mechanical response) and
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physicochemical properties (such as water adsorption, adhesion, stripping) are func-

tions of the composition and structure of the minerals in the aggregate. Aggregate

mineralogy has a strong influence on adhesion and moisture damage of the asphalt

pavement. Aggregates with certain mineral types bind better with asphalt cement.

For example, carbonate aggregates (limestone) bonds better with asphalt cement than

siliceous aggregates like gravel. Most aggregates tend to be either basic or acidic in

nature. Siliceous aggregates such as sandstone, quartz and siliceous gravel become

negatively charged in the presence of water, while limestone and other calcareous

materials become positively charged in the presence of water. The nature of electric

charges on the aggregate surface when in contact with water has a strong influence on

the aggregate asphalt adhesion and its resistance to moisture damage. Another im-

portant property of the aggregates which will influence the properties of the asphalt

concrete is the aggregate shape (Campen and Smith [55], Wedding and Gaynor [56],

Herrin and Goetz [57]). Granite aggregates are much more angular and sharp cornered

than natural gravels containing rounded particles. The angular-shaped particles ex-

hibit greater interlock and internal friction, and hence result in greater strength and

resistance to deformation than asphalt concrete made of rounded particles. The sur-

face texture also influences the properties of asphalt mixture (Vallerga et al. [58]).

Smooth-textured aggregates like river gravel are easier to coat with asphalt film, but

the asphalt cement forms stronger bonds with rough-textured aggregates like granite.

From this discussion it is very clear that asphalt concrete made with one type of

aggregate stores and dissipates energy in a very different way from that made with

another type of aggregate because of the large difference in the way in which the ag-

gregates interact amongst themselves and with the asphalt mastic. Hence one would

expect different forms for the stored energy and rate of dissipation functions for as-

phalt concrete made with each of these different aggregates. The mechanical response
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of a material is determined by the way in which it stores and dissipates energy and

hence we would expect the response of specimens made with different aggregates to

be different.

Gradation is the most important property of the aggregate which influences the

properties of the asphalt concrete. Almost all the important properties of the asphalt

concrete are determined, to a large extent by the gradation of the aggregates (Hveem

[59], Krutz and Sebaaly [60], Chen and Liao [61], Kim et al. [62]). This is especially

true with the aggregate fines. For example, a reduction of aggregate fines of 3 %

produced a change in the fatigue life of the pavement of the order of more than

300 % (Harvey and Monismith [63]). In this experiment, we have used the same

gradation for both the limestone and granite mixes, so that we can compare their

mechanical responses. Binder content is another important parameter which will

affect the properties of asphalt concrete. Here, we have used a binder content of 4.85

% for limestone and 4.86 % for granite mixes.

If one sees the experimental data in figure 13, it is very clear that there is

a change in the material response after the stress reaches a peak value at t = τ .

The displacement rate is a constant throughout the experiment but the response

characteristics of the specimen changes after time τ . The experimental behavior is

similar to that of dense granular soil specimens, in which the stress rises to a peak

value and then drops to a constant value (Baladi and Wu [64], Holtz and Kovacs [65]).

This is in contrast to specimens made of initially loose granular soil. The increase in

strength for dense granular soils is due to the interlocking of soil particles with each

other. The same analogy can be extended to the triaxial testing of compacted asphalt

mixture specimens.The initial displacement of the specimen is contributed more by

the smaller sized aggregate particles moving in to the space initially occupied by the

asphalt mastic. More aggregate to aggregate contact is achieved at this stage and
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the whole aggregate skeleton readjusts itself to form a better interlock. At the peak

stress, the optimum aggregate interlock is achieved. Any further deformation causes

the aggregate interlock to break down and causes the larger aggregate particles to roll

and slide past one another. From this point onward, the viscous nature of the asphalt

mastic plays a more prominent role in the deformation resistance of the specimen.

Hence, it can be clearly seen that there is a distinct change in the way the internal

structure evolves during the experiment after the stress reaches the peak value. The

form for the stored energy function and the rate of dissipation function has to change

after the stress reaches the peak value (at t=τ), to capture this change in the evolution

of the internal structure.

To find the time τ at which the switch in the model takes place, the following

condition has been used:

B
∇

+ Bκp(t)L
T + LBκp(t) = 0. (3.51)

This amounts to requiring that Ḃκp(t) = 0. This is the stage corresponding to the

optimum interlock. Till this point the material deforms in such a way as to get

a better interlock between the aggregate particles. The stored energy and rate of

dissipation used for the model so far has captured this kind of interaction between

the aggregate particles and between the aggregate particles and the asphalt mastic,

in a global sense. Hence the fact that Ḃκp(t) = 0 tells us that this kind of deformation

is coming to an end and further deformation is caused by a different mechanism.

From this point onwards, the mechanics of deformation and deformation resistance of

the specimen changes, which will be reflected in the model by a new form for stored

energy and rate of dissipation. The material builds up resistance up to the point t = τ

through the development of aggregate interlock. After this point, the asphalt mastic

plays a more prominent role in the deformation resistance of the specimen. A similar
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behavior is exhibited by asphalt concrete during a compression test and tension test.

The aggregate matrix takes most of the load in the compression test due to aggregate

interlock, while the asphalt mastic takes most of the load in a tension test (see Murali

Krishnan and Rajagopal [22]).

At this stage, let us give specific forms for the functions µ1(Iκp(t)) and η1(Bκp(t)).

Limestone

For t ≤ τ :

µ1(Iκp(t)) = µ̄1

(
1 +

1

1 + exp(−a(Iκp(t) − 3− b))

)
, (3.52)

µ1

η1
= c

(
1 +

d

n
(Iκp(t) − 3)

)n−1(g(Iκp(t) − 3)f

tr(T)

)m
, (3.53)

where µ̄1, a, b are material constants related to the shear modulus of the material

and c, d, f, g, n, m are material constants related to the relaxation time of the

material. Also
µ1

η1
is related to the relaxation time of the material.

For t > τ :

µ1(Iκp(t)) = ((µ1)τ − β1)exp(α1(Iκp(t) − Iκp(t)τ
)) + β1, (3.54)

µ1

η1

=

(
µ1

η1

)

τ

, (3.55)

where α1 = α1(Iκp(t)τ
− 3), β1 = β1(Iκp(t)τ

− 3).

Georgia Granite

For t ≤ τ :

µ1(Iκp(t)) = µ̄1

(
1 +

1

1 + exp(−a(Iκp(t) − 3− b))

)
, (3.56)

µ1

η1

= c

(
1 +

d

n
(Iκp(t) − 3)

)n−1(g(Iκp(t) − 3)f

tr(T)− q

)m
, (3.57)

where µ̄1, a, b, c, d, f, g, n, m are material constants.
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For t > τ :

µ1(Iκp(t)) = α2

(
xβ2 − xβ2

τ

)
+ µ1τ , (3.58)

µ1

η1
=

(
µ1

η1

)

τ

, (3.59)

where x = Iκp(t) − 3, α2 = α2(Iκp(t)τ
− 3), β2 = β2(Iκp(t)τ

− 3).

Table VII. Material constants used in modeling

Aggregate material Limestone Granite

µ̄1 1.5x107(N/m2) 1.86x107(N/m2)

a 1x104 1x104

b 2x10−4 0

c 1.5x10−5 s−1 2x10−6 s−1

d 6x104 6x104

n 6 6

f 0.7047 0.57

g 2.352x108(N/m2) 1.12x108(N/m2)

m 4 35

q - 2.9x105(N/m2)

The term
µ1

η1

is related to the relaxation time of the material. This means that

the relaxation time of the asphalt keeps changing till t = τ according to (4.57) for

limestone and (4.60) for granite, but after that it becomes a constant equal to the

relaxation time at t = τ . Similarly the ‘shear modulus’, µ1 associated with the

instantaneous elastic response of asphalt concrete increases as given by (3.52) till

t = τ and then it starts decreasing as given by (4.58) for limestone and (3.58) for

granite. This is to be expected since till t = τ , the aggregate interlock builds up and
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afterwards it breaks down and more of the load is carried by the asphalt mastic.

Table VII shows the different material constants used for the model. Figures

14-21 shows the comparison of the predictions of the model with the experimental

results. The ‘*’ shows the experimental data points and the solid line depicts the

predictions of the model. As one can see, the model corroborates with the experi-

mental results reasonably well. In figure 16, the experimental data corresponding to

a confinement pressure of 15 psi in the time period from 25 to 45 seconds does not

show the same trend as the rest of the experiments. The model captures the trend

of the experiments reasonably well. Also the model is able to predict the peak stress

developed in the material for different confinement pressures. One would expect the

deformation resistance of the asphalt concrete specimen to increase with an increase

in confinement pressure. Also one would expect the granite specimens to have a

higher resistance to deformation as compared to the limestone specimens. These are

in conformity with the experimental results and the model successfully captures both

the change in material properties and the increase in resistance to deformation with

an increase in confinement pressure for both the granite and limestone specimens.

F. Conclusions

In this paper we have used a general thermodynamic framework to construct models

to describe the behavior of asphalt mixtures. The internal structure of asphalt con-

crete evolves as the material deforms. The framework used and the models developed

here take into account this evolution of the internal structure of asphalt concrete.

The response of the body is defined through a set of response functions from various

natural configurations that the body can take. The maximization of the rate of dis-

sipation is used to obtain the equations for the evolution of the underlying natural
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Fig. 14. Limestone, Disp rate = 2.5 mm/min (Incompressible)
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Fig. 16. Limestone, Disp rate = 12.5 mm/min (Incompressible)
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Fig. 18. Granite, Disp rate = 0.1 mm/min (Incompressible)
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configurations. Using appropriate choices for the Helmholtz potential, rate of dissi-

pation etc., we try to capture the complex internal processes and interactions in the

asphalt concrete.

We demonstrate the efficacy of the model by corroborating with the experimental

results of constant displacement rate tests on asphalt concrete specimens. The model

is general enough to capture the response of asphalt concrete at different confinement

pressures and displacement rates. By choosing different forms for the material pa-

rameters related to the shear modulus and relaxation time of the material, we could

model the experimental data for two different types of aggregates - limestone and

granite. The change in the form for the material parameters were needed to take

into account the different ways in which these aggregates interact with themselves

and with the asphalt mastic. In the experiment, for a constant displacement rate, the

stress reaches a peak value and then drops down gradually to a lower value. The inter-

action mechanism to provide deformation resistance changes after the stress reaches

the peak value. Here, we have used the criterion (4.56) to switch from one type of

response to another to reflect the change in the interaction mechanism. Using this

switching criterion, the model was able to successfully predict the peak stress devel-

oped in the material. It is important to recognize that the material parameters that

are used for the corroboration are the same for all the experiments, for a particular

kind of material, i.e., the same set of material parameters are able to describe a large

class of experiments.
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CHAPTER IV

A COMPRESSIBLE MODEL FOR ASPHALT MIXTURES

In this study we develop a compressible model for asphalt concrete. Asphalt concrete

is a compressible material. The density of an asphalt cocrete pavement changes due to

the repeated application of traffic loads. We develop a one constituent compressible

model for asphalt concrete by associating different natural configurations with distinct

internal structures of the body. Finally, the model predictions are corroborated with

the experimental results.

A. Introduction

Asphalt concrete is a mixture of asphalt and aggregates continuously graded from a

maximum size of 25 mm to a fine filler of about 0.075 mm in size. Since asphalt con-

crete is made of granular materials which are bound to together by a viscoelastic fluid,

it exhibits different behavior in the presence of different loading and environmental

conditions. Asphalt from different crude sources has completely different properties.

The method of separation of asphalt from the crude and the processing method has

an important influence on the mechanical response of asphalt. In addition to this,

asphalt is extremely sensitive to temperature. The interaction between the aggregate

particles is highly influenced by the size, shape, angularity and surface roughness

of the constituent particles. Since the behavior of asphalt concrete depends on the

non-linear interaction between the aggregate particles themselves and with asphalt,

it is an extremely difficult material to model.

The density of an asphalt concrete pavement changes during the life time of the

pavement. This change in density is primarily due to the compaction effects due to

moving traffic loads. The consolidation in asphalt concrete occurs via two mecha-
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nisms: 1 D densification and consolidation in minearal aggregate which is identified

as plastic flow in the mineral aggregates. When the reduction in air voids take place

without significant deformation of asphalt, it is termed as densification. Pavement

performance studies ([66]) have indicated that the consolidation mechanism perdom-

inates when the air voids are less than 3 %. In the reduced air voids space, there is a

build up of high pore pressure and some amount of asphalt is forced to flow into the

voids. This will ultimately result in the reduction of relative distance between the

aggregate particles. This flow of asphalt into the voids will result in over-lubrication,

which in turn affects the strength and shear properties of the asphalt mixture. On the

same hand, air voids in excess of 8 % will result in high air and water permeability

that will lead to durability problems.

From the previous discussion it is clear that density plays a crucial role in the

construction of asphalt mixtures. The voids in an asphalt mixture are directly related

to density. Thus density must be closely controlled to insure that the voids stay within

an acceptable range. There has been much work that has shown that the initial in-

place voids should be no more than approximately 8 percent and the percentage of

voids should never fall below approximately 3 percent during the life time of the

pavement.

Ford ([67]) showed in a study that asphalt mixtures should be designed and

constructed so that in-pace air voids stay above 2.5 percent. As long as the voids

are above 2.5 percent, he showed that the expected rut depth would be no greater

than 10/32 inch. Brown and Cross [68] showed that significant rutting was likely

to occur once the air voids reduces to 3 percent. Huber ([69]) in a study of rutting

in Canada reached a similar conclusion. Zube ([70]) showed that asphalt mixtures

were impermeable to water as long as the air voids content was below 8 percent.

The permeability increased rapidly as the air void content increased above 8 percent.
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Brown and Brownfield ([71]) and Santucci and other ([72]) reached similar conclusions

in other studies. A recent study of air voids and its change in the pavement was

conducted by Harmelink and Aschenbrener ([73]).

From the previous studies, it is apparent that a mixture that is properly designed

and compacted should contain enough air voids to prevent rutting due to plastic flow

but low enough air voids to prevent permeability of air and water. Since density of

asphalt mixture varies throughout its life the voids must be low enough initially to

prevent permeability of air and water and high enough after a few years of traffic to

prevent plastc flow.

Some authors have used a mixture theory approach to capture the initial air

voids and its change in the asphalt concrete pavement. Murali Krishnan and Laksh-

mana Rao ([74]) modeled asphalt concrete as a three constituent mixture consisting

of asphalt, aggregate matrix and air. Constitutive relations for each constituent is

assumed to depend only on the kinematical quantities of each constituent. A similar

approach was presented by Wang et al. ([75]) where they modeled asphalt concrete

as a two constituent mixture consisting of asphalt mixture and air voids. In this work

we use a compressible one constituent model for asphalt concrete. We do not take

into account air voids directly in the model. However the model captures the change

in density of the asphalt concrete mixture which is closely related to the change in

the air voids of the mixture.

B. Preliminaries

Consider a body B in a configuration κR(B). For ease of notation, we shall use κR

to mean κR(B). Let X denote a typical position of a material point in κR. Let κc(t)

denote the configuration occupied by the body B at time t. Motion is defined as the
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one-to-one mapping which assigns to each point X in κR a corresponding point x in

κc:

x = χκR(X, t). (4.1)

The deformation gradient FκR is defined through:

FκR =
∂χκR
∂X

. (4.2)

The left and right Cauchy-Green stretch tensors BκR and CκR are defined through:

BκR = FκRFT
κR
, CκR = FT

κR
FκR . (4.3)

Any acceptable process has to satisfy the appropriate balance laws. The appropriate

balance laws for the problem at hand are the conservation of mass, linear and angular

momentum and energy. The conservation of mass is given by

ρ̇ + ρ div(v) = 0, (4.4)

where ρ is the density and v is the velocity of the material. The conservation of linear

momentum is

ρ

[
∂v

∂t
+ (∇v)v

]
= divT + ρg, (4.5)

where g is the acceleration due to gravity and T is the Cauchy stress tensor. In

the absence of internal couples, conservation of angular momentum implies that the

stress tensor is symmetric. The conservation of energy gives:

ρε̇ + divq = T · L + ρr, (4.6)

where ε is the internal energy, q is the heat flux vector and r is the radiant heating.

The second law of thermodynamics is often used in continuum mechanics in the

form of the Clausius-Duhem inequality (see Truesdell and Noll [2]). In the present
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work we will introduce the second law in the form of an equality by introducing a

balance law for entropy. This approach is similar to that of Green and Naghdi [31]

and Rajagopal and Srinivasa [25]. The balance law for entropy then takes the form

ρζ̇ + div
(q

θ

)
= ρ

r

θ
+ ρΞ, Ξ ≥ 0, (4.7)

where ζ is the entropy, θ is the absolute temperature and Ξ is the rate of entropy

production. Combining the balance of energy and the balance of entropy gives the

reduced energy-dissipation equation:

T · L− ρψ̇ − ρζθ̇ − q · gradθ

θ
= ρθΞ = ξ ≥ 0, (4.8)

where ψ is the Helmholtz potential and is given by ψ = ε − θζ and ξ is the rate of

dissipation. It is usually assumed that the rate of dissipation can be split into two

parts, one pertaining to heat conduction and the other related to the rate at which

work is converted into thermal energy. Assuming that the rate of dissipation due to

heat conduction is given by

ξc = −q · gradθ

θ
≥ 0, (4.9)

we can rewrite (4.8) as:

T · L− ρψ̇ − ρζθ̇ = ξd ≥ 0. (4.10)

In this work, we use the reduced energy equation in the above form to place restric-

tions on the constitutive equations.

C. Modeling of Asphalt Concrete

Corresponding to each current configuration κc(t) we associate a natural configuration

κp(t). In figure 1, κR is a reference configuration, κt is the configuration currently
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occupied by the material and κp(t) is the natural configuration associated with the

material that is currently in the configuration κt. The natural configuration κp(t)

corresponds to the stress free configuration associated with the current configuration

κt occupied by the body at time t. For further discussion on natural configuration

the readers are referred to the papers by Rajagopal and Srinivasa [27, 24, 25].

In this work we shall assume just one relaxation mechanism which will effectively

capture the overall relaxation of the asphalt mixture. Since we are assuming only

one relaxation mechanism, we shall associate only one natural configuration (κp(t))

corresponding to each current configuration (κc(t)).

We assume that the asphalt mixture has an instantaneous elastic response from

the natural configuration κp(t). The gradient of the mapping from κp(t) to κt is defined

as Fκp(t) . The natural configuration κp(t) is not fixed as in the case of an elastic solid

but evolves as the material is deformed. This change in the natural configuration

is associated with the dissipative response of the material. We define G to be the

mapping between the tangent spaces of κR and the natural configuration κp(t),

G = FκR→κp(t) = F−1
κp(t)

FκR. (4.11)

We define:

Bκp(t) = Fκp(t)F
T
κp(t)

. (4.12)

We define the velocity gradient L in the conventional way and introduce a correspond-

ing velocity gradient Lκp(t) associated with the natural configuration (Rajagopal and

Srinivasa [27]),

L = ḞκRF−1
κR
, (4.13)

Lκp(t) = ĠG−1. (4.14)



72

Also,

Dκp(t) =
1

2
(Lκp(t) + LT

κp(t)
), (4.15)

D =
1

2
(L + LT ). (4.16)

We define the Oldroyd derivative of Bκp(t) as:

B
∇

:= Ḃκp(t) − LBκp(t) −Bκp(t)L
T = −2Fκp(t)Dκp(t)F

T
κp(t)

, (4.17)

where the inverted triangle denotes the upper convected Oldroyd derivative and the

dot is the material time derivative. Specifying Dκp(t) amounts to prescribing the

manner in which the underlying natural configurations evolve. We will assume that

the evolution of the natural configurations is isotropic:

tr(Dκp(t)) = 0. (4.18)

The internal energy and the entropy is assumed to depend on the temperature θ

and the invariants of Bκp(t) : Iκp(t) , IIκp(t) , IIIκp(t).

ε = ε(θ, Iκp(t) , IIκp(t), IIIκp(t)) (4.19)

ζ = ζ(θ, Iκp(t), IIκp(t), IIIκp(t)), (4.20)

where Iκp(t) = tr(Bκp(t)), IIκp(t) = tr(Bκp(t)
2), IIIκp(t) = detBκp(t)

. Hence the Helmholtz

potential has the form:

ψ = ψ(θ, Iκp(t), IIκp(t), IIIκp(t)). (4.21)

Assuming that the increase in confinement pressure will increase the mean normal

stress in the speimen, we assume the following form for the rate of dissipation function:

ξd = ξd(θ,Bκp(t),Dκp(t) , tr(T)). (4.22)
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Now we shall give specific forms for constitutive equations. We shall give the following

form for the stored energy and entropy for the model.

ε = Cθ + A+W (Iκp(t), IIκp(t) , IIIκp(t)) (4.23)

ζ = Cln(θ) + B. (4.24)

From (4.23) and (4.24) it follows that (since ψ = ε− θζ)

ψ̇ + ζθ̇ = Ẇ (Iκp(t), IIκp(t), IIIκp(t)). (4.25)

Substituting (4.25) into (4.10), we get:

T · L− ρ
[
∂W

∂Iκp(t)

I + 2
∂W

∂IIκp(t)
Bκp(t) +

∂W

∂IIIκp(t)
IIIκp(t)B

−T
κp(t)

]
· Ḃκp(t) = ξd (4.26)

Since we are assuming asphalt concrete to be isotropic, we can choose, without any

loss of generality, the natural configurations κp(t) to be such that

Fκp(t) = Vκp(t). (4.27)

Substituting for Ḃκp(t) from (4.17) and using (4.27) we get,

I · Ḃκp(t) = 2Bκp(t) · (D−Dκp(t)), (4.28)

Bκp(t) · Ḃκp(t) = 2B2
κp(t)
· (D−Dκp(t)), (4.29)

B−T
κp(t)
· Ḃκp(t) = 2I · (D−Dκp(t)). (4.30)

Using these in (4.26) gives

T ·D− 2ρ
[
W1Bκp(t) + 2W2B

2
κp(t)

+ det(Bκp(t))W3I
]
·
(
D−Dκp(t)

)
(4.31)
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where W1 =
∂W

∂Iκp(t)

, W2 =
∂W

∂IIκp(t)
, W3 =

∂W

∂IIIκp(t)
. We can rewrite (4.31) as:

[
T− 2ρ

(
W1Bκp(t) + 2W2B

2
κp(t)

+ det(Bκp(t))W3I
)]
·D = (4.32)

ξd(Bκp(t),Dκp(t) , tr(T))− 2ρ
(
W1Bκp(t) + 2W2B

2
κp(t)

+ det(Bκp(t))W3I
)
·Dκp(t)

Since we are looking for forms sufficient to satisfy the above equation, we stipulate

that

T = 2ρ
(
W1Bκp(t) + 2W2B

2
κp(t)

+ det(Bκp(t))W3I
)
. (4.33)

This will give,

ξd = T ·Dκp(t) . (4.34)

Equation (4.34) imposes a constraint in the evolution of natural configurations. We

will pick the following form for ξd:

ξd = η(Bκp(t), tr(T))Dκp(t)
·Bκp(t)

Dκp(t)
. (4.35)

The material parameter η is related to the ‘viscosity’ of the material. At this point,

we do not know how the natural configurations evolve. We assume that for a fixed

Bκp(t) and D, Dκp(t) should be such that it maximizes the rate of entropy production.

We maximize ξd subject to the constraint (4.34) and (4.18). This gives

f = ξd − λ1(ξd −T ·Dκp(t))− λ2tr(Dκp(t)), (4.36)

∂f

∂Dκp(t)

= (1− λ1)
∂ξd

∂Dκp(t)

+ λ1T− λ2I = 0. (4.37)

This gives

T =
1− λ1

−λ1

∂ξd
∂Dκp(t)

+
λ2

λ1

I = β
∂ξd

∂Dκp(t)

+ λ3I. (4.38)
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Now if ξd is given by (4.35), then

ξd =
1

2

∂ξd
∂Dκp(t)

·Dκp(t) . (4.39)

Therefore β = 1/2 and

T =
1

2

∂ξd
∂Dκp(t)

+ λ3I. (4.40)

Substituting (4.33) and (4.35) into (4.45), pre-multiplying by V−1
κp(t)

and postmulti-

plying by Vκp(t), we get,

Vκp(t)Dκp(t)Vκp(t) =
2ρ

η

(
W1Bκp(t) + 2W2B

2
κp(t)

+W3detBκp(t)I
)
− λI, (4.41)

where λ = λ1/η. Substituting (4.33) and (4.36) into (4.35), pre-multiplying by V−1
κp(t)

and postmultiplying by Vκp(t), we get,

Vκp(t)Dκp(t)Vκp(t) =
2ρ

η

(
W1Bκp(t) + 2W2B

2
κp(t)

+W3detBκp(t)I
)
− λI, (4.42)

where λ = β/η. Taking dot product of (4.42) with B−1
κp(t)

and noting that

tr(Vκp(t)Dκp(t)V
−1
κp(t)

) = tr(Dκp(t)) = 0,

λ =
2ρ

ηtr(B−1
κp(t)

)

(
3W1 + 2W2tr(Bκp(t)) + W3detBκp(t)tr(B

−1
κp(t)

)
)
. (4.43)

So (4.17) becomes

−1

2
B
∇

=
2ρ

η

(
W1Bκp(t) + 2W2B

2
κp(t)

+W3detBκp(t)I
)
− λI, (4.44)

where λ is given by (4.43). Substituting this back in (4.44), we get,

−1

2
B
∇

=
2ρ

η

[
W1

(
Bκp(t) −

3

tr(B−1
κp(t)

)
I

)
+ 2W2

(
B2
κp(t)
−

tr(Bκp(t))

tr(B−1
κp(t)

)
I

)]
. (4.45)

Hence the evolution equation is given by (4.45)1 and the stress is given by (4.33).

1The evolution equation does not depend on W3. This is probably because we



76

D. Corroboration of the Model with the Experimental Data

For simplicity, we will assume that the deformation is homogeneous and is given by

r = Λ1(t)R, θ = Θ, z = Λ2(t)Z (4.46)

in cylindrical polar co-ordinates. The deformation gradient is given by

FκR = diag

(
Λ1, Λ1, Λ2

)
. (4.47)

The left Cauchy-Green stretch tensor and the velocity gradient are given by

BκR = diag

(
Λ2

1, Λ2
1, Λ2

2

)
, L = D = diag

(
Λ̇1

Λ1

,
Λ̇1

Λ1

,
Λ̇2

Λ2

)
. (4.48)

We will assume that Bκp(t) is a function of time only and has the form: Let’s assume

that Bκp(t) has the form which is similar to BκR.

Bκp(t) = diag

(
B1(t), B1(t), B2(t)

)
. (4.49)

Then tr(B−1
κp(t)

) =
B1 + 2B2

B1B2
and the evolution equation (4.45) will reduce to

−1

2

(
Ḃ1 − 2

Λ̇1

Λ1

B1

)
=

2ρB1

η(B1 + 2B2)

[
W1(B1 − B2) + 2W2(B2

1 − B2
2)
]
, (4.50)

−1

2

(
Ḃ2 − 2

Λ̇2

Λ2
B2

)
=

−4ρB2

η(B1 + 2B2)

[
W1(B1 − B2) + 2W2(B2

1 − B2
2)
]
. (4.51)

If η 6= 0, we get

Ḃ1

B1
+

1

2

Ḃ2

B2
= 2

Λ̇1

Λ1
+

Λ̇2

Λ2
. (4.52)

Solving,

B1B
1/2
2 = KΛ2

1Λ2, (4.53)

assumed that evolution of natural configurations is isochoric.
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where K is a constant. K =
B1(0)B2(0)1/2

Λ1(0)2Λ2(0)
. Note from (4.46) and (3.43) that

IIIκp(t) = B2
1B2 and detBκR = Λ4

1Λ2
2. Therefore, IIIκp(t) = K2detBκR. Also,

ρ =
Kρ0

III
1/2
κp(t)

, (4.54)

∂ρ

∂IIIκp(t)
= −1

2

ρ

IIIκp(t)
. (4.55)

The constitutive equation (4.33) will reduce to:

Tzz − Trr = 2ρ
{
W1 (B2 − B1) + 2W2(B2

2 − B2
1)
}
. (4.56)

Now we will give a specific form for W .

Limestone

For t < τ :

We shall choose

W1 =
µ

2ρ
, (4.57)

W2 = 0, (4.58)

W3 =
µ

4ρIIIκp(t)
(Iκp(t) − 5). (4.59)

Here µ is a constant and is equal to 2.8e7 Pa. The ‘viscosity’ η is given by η =

η(tr(T), det(T)). Since W2 = 0, (4.51) reduces to

−1

2

(
Ḃ2 − 2

Λ̇2

Λ2

B2

)
=

−4ρB2

η(B1 + 2B2)
[W1(B1 − B2)] . (4.60)

Also (4.33) reduces to:

Trr = 2ρ(W1B1 +B2
1B2W3). (4.61)

Trr is a constant, and one can solve for B1 in (4.61) as a function of B2. So one can

substitute B1 back in (4.60) and solve the differential equation for B2. After that
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Fig. 22. Limestone, Disp rate = -0.1 mm/min (Compressible)

using (4.56) Tzz is calculated.

For t > τ :

W1 =
1

2ρ

[
c exp(a(Iκp(t) − Iκp(t)τ + b)) + d

]
, (4.62)

W2 = 0, (4.63)

W3 =
1

4ρIIIκp(t)

[ c
a
exp(a(Iκp(t) − Iκp(t)τ + b)) + dIκp(t) + e

]
. (4.64)

Here a, b, c are functions of Iκp(t)τ and IIIκp(t)τ .

The switching criterion is determined by

trD− α(Iκp(t) − 3− β)m = 0 (4.65)

where α = 2e11, β = β(tr(T), det(T)), m = 7.905. The model predictions are

compared with the experimental results in figures 22 through 25.
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Fig. 23. Limestone, Disp rate = -0.5 mm/min (Compressible)
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Fig. 24. Limestone, Disp rate = -2.5 mm/min (Compressible)
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CHAPTER V

CONCLUDING REMARKS AND DISCUSSION

A. Summary

The aim of this dissertation was to conduct constant displacement rate experiments

for asphalt concrete at various confinement pressures and to develop a continuum

model which will describe the experimental results. To this end a series of experi-

ments were carried out at different confinement pressures and displacement rates on

cylindrical samples of asphalt concrete. The experiments were repeated for two dif-

ferent aggregate samples. A general framework was used using the idea of multiple

natural configurations and the maximization of the rate of dissipation to generate

models for asphalt concrete. The frame-work is general enough that models capable

of describing the behavior of asphalt concrete for different confinement pressure and

displacement rates are easily generated. An incompressible model and a compressible

model were developed and were used to corroborate the experimental data.

Experiments were carried out at different confinement pressures and displace-

ment rates on cylindrical samples of asphalt concrete. Two different aggregates were

used to make the samples - limestone and granite. The aggregates were first sieved

and seperated to different size distributions. Then using a mix design methodology,

specific percentage by weight of different sized aggregates and asphalt are mixed us-

ing a mechanical mixer. The mix is then compacted to cylindrical samples of 4 inch

diameter and 6 inch height using a gyratory compactor. The specimens are finally

tested in a MTS machine at a constant displacement rate. To this end, the specimen

is first enclosed in a triaxial cell and the desired confinement pressure is achieved by

adjusting the pressure of air inside the triaxial cell. The specimen is loaded axially
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and the displacement of the ram is controlled using a computer so that a constant

displacment rate is obtained. The axial force required to keep this constant dis-

placement rate is measured as a function of time and recorded. The experiment is

conducted for three different confinement pressures namely 0 psi, 15 psi and 30 psi

and also at 4 different displacement rates - 0.1 mm/min, 0.5 mm/min, 2.5 mm/min,

12.5 mm/min. The experiments were carried out for samples made of two different

aggregates - limestone and granite.

A general framework has been developed to construct specific models to describe

the behavior of asphalt concrete. The framework is built on the idea of evolving

natural configurations and the maximization of the rate of dissipation. By specifying

different forms for the internal energy, entropy and rate of dissipation, different models

are constructed. The evolution of the natural configuration is determined by the

maximization of the rate of dissipation function and the constitutive equation is

obtained from the reduced energy-dissipation equation. Since asphalt concrete made

from different aggregates stores and dissipates energy in very different ways, different

forms were used for the stored energy and the rate of dissipation for asphalt concrete

made from the two different aggregates.

Using the above framework, first an incompressible model was developed. In

this model, asphalt concrete was assumed to be incompressible. The predictions of

the theory were tested by corroborating the model predictions with the experimental

data. A switching criteria was used to switch the model to capture the change in

material behavior after the stress reached a peak value. This is done in order to

capture the change in the way in which the internal structure of the material evolves

once the material reaches a peak value.

Asphalt concrete is a compressible material and a compressible model was gener-

ated using the above framework which will take this factor into account. The model
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predictions were corroborated with the experimental data for limestone and better

predictions were obtained using the compressible model. Similar to the incompress-

ible model, a switching criteria was used to switch the model to capture the change

in response of the material after the stress reached a peak value. Both the models

were able to caputre the peak stress developed in the material.

B. Recommendations for Future Work

In this work we have developed both a compressible and an incompressible model for

asphalt concrete. This work can be further improved and can be used to model other

experimental data. Some specific recommendations to improve the model developed

in this dissertation are as follows:

Asphalt concrete is composed of different sized aggregate particles and asphalt

and hence it exhibits anisotropic behavior. Using the framework developed it is

possible to model the anisotropic behavior of asphalt concrete. The anisotropy of

asphalt concrete evolves as the material deforms. This is due to the fact that the

relative orientation and the distance between the aggregate particles changes during

the deformation process. The anisotropy can be built into the framework by requiring

the stored energy and the rate of dissipation function to depend on the directions of

anisotropy also. One big obstacle in taking into account anisotropy in modeling

asphalt concrete is the lack of experimental data. Even if one knows the relative

orientation of the aggregate particles at the start of the experiment one does not have

enough experimental data to correlate this with the response of the material. Also we

should have enough experimental data to correlate the evolution of anisotropy and

its effect on the behavior of the asphalt concrete.

Asphalt concrete in pavements are subjected to traffic loads by moving vehicles.
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Hence the load on the pavement is not constant. On the contrary, it is more similar

to a cyclic loading. Experiments have been carried out by various researchers in

the laboratory which simulates the cyclic loading due to traffic. In a cyclic loading

experiment, the boundary conditions are different from that of the experiment done

here. It is a traction controlled experiment as opposed to the displacement controlled

experiment (axial) done in this work. Also there is a repeated loading and unloading of

the specimen and hence the boundary conditions are going to change with time. The

model developed in this work could be extended to model this kind of experimental

data.

Another pheneomenon which occurs in the pavement is healing. Healing refers

to the coalescence of microcracks so that it ‘heals’ itself. This has a significant impact

on the pavement performance. In fact the traffic in an airport runway is determined

by the healing period of the asphalt concrete. The framework developed is general

enough to take into account the effect of healing in asphalt concrete. But one needs to

know the specifics as to how healing affects the energy storage and rate of dissipation

in the material.

The ultimate success of a model is how well it can describe the material in real

life situation. Asphalt concrete is a very complex material it behaves very differently

under different loading, temperature and environmental conditions. For example, it

behaves quite differently in tension and in compression. The moisture, temperature,

its reaction with athmospheric air etc., will cause its behavior to change over time.

The response of asphalt concrete is highly dependent on the compaction process, the

shape, type and distribution of the aggregate materials and the type and amount of

asphalt used in making the pavement. To take all these into account in modeling a

material is extremely difficult. The specific models developed in this work using the

framework seems to be the right step in this direction. But it may probably require
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a lot more work before it can be put into real life applications.

In conclusion, constant displacement rate experiments were done on asphalt con-

crete specimens to study the behavior of asphalt concrete. We developed a general

framework to study asphalt concrete in a full thermodynamic setting. Specific incom-

pressible and compressible models were developed using the framework. The efficacy

of the models were illustrated by corroborating the model with the experimental

results.
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APPENDIX A

EXPERIMENTAL DATA
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Fig. 26. Limestone, Confinement Pressure = 0 psi, Displacement Rate = 0.1 mm/min
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Fig. 27. Limestone, Confinement Pressure = 0 psi, Displacement Rate = 0.5 mm/min
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Fig. 28. Limestone, Confinement Pressure = 0 psi, Displacement Rate = 2.5 mm/min
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Fig. 29. Limestone, Confinement Pressure = 0 psi, Displacement Rate = 12.5 mm/min
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Fig. 30. Limestone, Confinement Pressure = 15 psi, Displacement Rate = 0.1 mm/min
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Fig. 31. Limestone, Confinement Pressure = 15 psi, Displacement Rate = 0.5 mm/min
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Fig. 32. Limestone, Confinement Pressure = 15 psi, Displacement Rate = 2.5 mm/min
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Fig. 33. Limestone, Confinement Pressure = 15 psi, Displacement Rate = 12.5

mm/min
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Fig. 34. Limestone, Confinement Pressure = 30 psi, Displacement Rate = 0.1 mm/min
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Fig. 35. Limestone, Confinement Pressure = 30 psi, Displacement Rate = 0.5 mm/min
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Fig. 36. Limestone, Confinement Pressure = 30 psi, Displacement Rate = 2.5 mm/min
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Fig. 37. Limestone, Confinement Pressure = 30 psi, Displacement Rate = 12.5

mm/min
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Fig. 38. Granite, Confinement Pressure = 0 psi, Displacement Rate = 0.1 mm/min
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Fig. 39. Granite, Confinement Pressure = 0 psi, Displacement Rate = 0.5 mm/min
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Fig. 40. Granite, Confinement Pressure = 0 psi, Displacement Rate = 2.5 mm/min
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Fig. 41. Granite, Confinement Pressure = 0 psi, Displacement Rate = 12.5 mm/min
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Fig. 42. Granite, Confinement Pressure = 15 psi, Displacement Rate = 0.1 mm/min
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Fig. 43. Granite, Confinement Pressure = 15 psi, Displacement Rate = 0.5 mm/min
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Fig. 44. Granite, Confinement Pressure = 15 psi, Displacement Rate = 2.5 mm/min
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Fig. 45. Granite, Confinement Pressure = 15 psi, Displacement Rate = 12.5 mm/min
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Fig. 46. Granite, Confinement Pressure = 30 psi, Displacement Rate = 0.1 mm/min
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Fig. 47. Granite, Confinement Pressure = 30 psi, Displacement Rate = 0.5 mm/min
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Fig. 48. Granite, Confinement Pressure = 30 psi, Displacement Rate = 2.5 mm/min
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Fig. 49. Granite, Confinement Pressure = 30 psi, Displacement Rate = 12.5 mm/min



108

VITA

Pradeep Hariharakumar was born in Trivandrum, India on March 18, 1975. He

received his Bachelor of Technology degree in civil engineering from the Indian In-

stitute of Technology, Madras, India in May 1998 and his Master of Science in Me-

chanical Engineering from Texas A&M University in May 2001. The author may be

contacted at MGRA 62, MKK Nair Road, Pettah, Trivandrum 695024, Kerala, India

or by email at pradeep h@hotmail.com.

The typist for this thesis was Pradeep Hariharakumar.


