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ABSTRACT 

North Caspian Basin: 2D Elastic Modeling for Seismic Imaging 

of Salt and Subsalt.  (December 2004) 

Zhanar Alpysbaevna Bailey, 

Diploma, Kazakh National Technical University 

Chair of Advisory Committee: Dr. Luc T. Ikelle 

The North Caspian Basin (NCB) contains a significant number of major oil 

fields, some of which are yet to be put into production. The reason why some of these 

fields are not yet put into production is the exploration challenge that the NCB poses. In 

particular, the complex geological structure of this region makes it quite difficult to 

image its oil fields with conventional seismic techniques. This thesis sheds more light on 

difficulties associated with acquiring and processing seismic data in the NCB. The two 

central tools for investigation of these imaging challenges were the construction of a 

geological model of the NCB and the use of an accurate elastic wave-propagation 

technique to analyze the capability of seismic to illuminate the geological structures of 

the NCB. Using all available regional and local studies and my knowledge gained with 

oil companies, where I worked on subsalt and suprasalt 2D and 3D seismic data from the 

North Caspian Basin, I constructed a 2D elastic isotropic 10-by-6 km geological model 

of a typical oil field located on the shelf of the Caspian Sea in the southeastern part of 

the North Caspian Basin, which has the largest oil fields. We have propagated seismic 
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waves through this model. The technique we used to compute wave propagation is 

known as the Finite-Difference Modeling (FDM) technique. Generating 314 shot gathers 

with stationary multicomponent OBS receivers that were spread over 10 km took two 

weeks of CPU time using two parallel computers (8 CPU V880 Sun Microsystems and 

24 CPU Sun Enterprise). We have made the data available to the public. The dataset can 

be uploaded at http://casp.tamu.edu in the SEGY format. The key conclusions of the 

analysis of these data are as follows: 

- Combined usage of P- and S-waves allows us to illuminate subsalt reef, clastics 

and complex salt structures despite the 4-km overburden.  

-    Free-surface multiples and guided waves are one of the key processing challenges 

in NCB, despite relatively shallow (less than 15 m) shelf water. 
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CHAPTER I 

INTRODUCTION

The area of our study is the southeastern part of the North Caspian Basin (NCB). It is 

located in Kazakhstan (Figure 1). High-resolution satellite images of the Caspian Sea

and NCB are on Figures 2, 3, and 4.

NNoorrtthh CCaassppiiaann

BBaassiinn

Southeast

Figure 1. The location of the North Caspian Basin and its southeastern part. (modified

from UT Libraries, 2004) 

______________

This thesis follows the style and format of Geophysics. 
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Figure 2. Satellite image of the Caspian Sea region. (NASA, 2004)
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Figure 3. The North Caspian Basin from space. (NASA, 2004) 

Figure 4. The North Caspian Sea is frozen 6 months a year. (NASA, 2004)
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The area of the basin is about 500,000 square kilometers; the depth of sedimentary 

section is 20 km. 

The southeastern area was chosen because the largest oil fields of the Basin 

(Kashagan, Kashagan-SW, Tengiz, Kairan, Aktoty) are located there. Seismic 

exploration discovered over 100 potentially petroliferous structures on the shelf of the 

Caspian Sea in the North Caspian Basin.

US DOE Energy Information Agency estimates the total oil reserves of 

Kazakhstan at 110 billions of barrels. There is a 50% probability of doubling this 

number in future explorations. (US DOE EIA, 2002). The US-Kazakhstan Business 

Association states that Tengiz has 13.5 billion extractable barrels of oil, and Kashagan is 

three times larger than Tengiz (U.S. – Kazakhstan Business Association, 2004). The area 

of the Kashagan reservoir, for example, is 80 by 40 km; the area size of Tengiz reservoir 

is 30 by 20 km.  

 Our ability to see oil and gas in the subsurface, to estimate the volume of 

reserves, the degree of extraction difficulty, and the success of the venture depends on 

our ability to image subsurface geological structures. The North Caspian Basin’s 

geological structures are quite challenging for exploration: On the Caspian region scale 

we have complex and dynamic plate tectonics; on the NCB scale we have shelf and 

slope carbonates, paleoatoll and barrier reefs; over carbonates and reefs we have salt 

tectonics and prograding sediments of Volga river and Ural mountains; on the field scale 

we have subsalt reef and carbonate overpressured reservoirs, salt domes and diapirs 

(halite and anhydrite) complicated with overhangs and canopies, and clastic reservoirs 
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around and over salt structures. Hereafter the word “reef” here will be used 

interchangeably with the word “carbonate.” 

In this study we will seek answers to the following questions affecting our ability 

to seismically image NCB subsalt, suprasalt, and nearsalt reservoirs:  

- Can we see subsalt clastic and carbonate (reef) reservoirs through thick 

overburden?

- How do halites and anhydrites with their complex structure affect our ability to 

image target reflectors? 

- Can we image carbonates (reef) located under salt domes and diapirs? 

- Do shallow waters (3-15 m) of the Caspian Sea shelf affect our ability to image 

reservoirs? 

There are other problems affecting our ability to work in the North Caspian Basin: 

- Velocities are subject to anomalously high overpressure (87 MPa). 

- Salts in the NCB are highly mobile because of the thick overburden that affects 

long term seismic imaging and drilling. 

- Technogenic earthquakes are generated by oil extraction (shift the subsurface 

structure).

- Hydrogen sulfide and sulphur in oil (17%) present not only technological 

problems, but also very serious health/life concerns for people. 

- The sea level constantly fluctuates (+/- 1.5 m /day). 

- Climate (- 40° C in the winter, + 40° C in the summer) impacts acquisition. 
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- The rising Caspian Sea level generated by local tectonic forces (a long term 

consideration).

This study addresses problems that a seismic method is likely to encounter in the 

Caspian Basin. How do we address these problems? 

Seismic imaging and interpretation are ill-posed problems having an infinite 

number of solutions. In order for us to minimize the number of possible seismic imaging 

results and interpretations we solve a well-posed problem, i.e. a forward problem of 

seismic. The forward problem of seismic is not soluble analytically for the realistic 

geological model; therefore we will be solving the wave equation numerically.  

We will generate a 2D geological model of the typical NCB oil field and solve 

the elastic wave equation, thus simulating an elastic seismic survey. This will generate a 

dataset on which seismic imaging methods can be applied to better understand elastic

wave propagation in the complex salt-carbonate geological setting and better image a 

known geological model of a typical oil field from NCB. Therefore, the scope of this 

study is to create a geological model, generate data, and analyze the raw data. 

First, we construct a 2D elastic isotropic 10 by 6 km geological model of the area 

of interest: on the shelf of the Caspian Sea in the southeastern part of the North Caspian 

Basin, which has the largest oil fields. We used all available literature of Soviet and 

Western geoscientists. I have also used my internship experience with oil companies, 

where I worked on subsalt and suprasalt 2D and 3D seismic data from the North Caspian 

Basin, Kazakhstan. 

The constructed model is large enough to be representative of the typical geology 
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of NCB reservoirs and at the same time is practical in terms of computing time. The 

model is realistic and sufficiently detailed, but not overburdened with details, as the 

nature of our problem is more structural than stratigraphic. Rock properties of the model 

were chosen using well logs, Prestack Depth Migration velocities, existing rock physics 

empirical equations for Vp/Vs ratio for clastics and carbonates, and results of laboratory 

measurements on cores with the simulation of in situ PT conditions.  

To generate and record a wavefield from our exploration oriented geological 

model, we discretize in space and time and numerically solve the elastodynamic 

equations of wave motion for a set of initial and boundary conditions. The discretization 

technique that we used is known as the “staggered grid scheme” (Graves, 1996). This 

technique has the advantage of avoiding taking the spatial derivative of the medium. The 

staggered grid allows us to model a complex heterogeneous subsurface. In summary, we 

solve these elastodynamic equations using a 2D finite-difference algorithm with 4
th

 order 

approximation of the spatial derivative and 2
nd

 order approximation of the time 

derivative. 4
th

 order staggered grid finite-difference modeling allows us to model 

geology with any Poisson ratio and provides more stability and less grid dispersion than 

2
nd

 order FDM.

This scheme for FDM calculates a wavefield for a unit of space from the 

wavefield of a previous space unit and a previous time step. This formulation allows us 

to consider a heterogeneous geological model as a set of locally homogeneous layers 

with constant Vp, Vs, and density and solve N equations corresponding to N 

homogeneous areas. In addition, the elastic version allows us to generate pressure along 
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with horizontal and vertical components of particle velocity. In other words, we have a 

very effective technique for our task.

The acquisition technique is 3-component (pressure, Vx, and Vz) Ocean Bottom 

Seismic (3C OBS). Our resulting dataset is composed of 314 shots with each shot being 

registered at 601 dual-sensor receivers (paired hydrophone and geophone). Synthetic 

seismograms are 6 seconds long.  They are stored in SEGY format and will be available 

through the website of CASP (Consortium for Automated Seismic Data Processing) of 

Texas A&M University for anyone interested in testing their Prestack Depth Migration 

algorithms. 
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CHAPTER II 

CONSTRUCTING THE GEOLOGICAL MODEL  

GEOLOGICAL STRUCTURES 

The North Caspian Syneclise (a syneclise is a large intracratonic depression) is an 

agglomerate of several genetically different types of basins that have evolved at different 

times. To decipher the history of an area, one has to look at deep seismic, gravity, 

magnetic fields, heat flow, contemporary structural and stratigraphic features, and the 

history of an entire continent. I infer that the basin had several stages of development:  

First, extension: major rifting in Proterozoic and Paleozoic with volcanism, with 

and without exposure of an oceanic crust, caused by mantle uprising.  

Second, contracting: rift inversion, folding, thrusting, and transform faulting in 

the Paleozoic, Mesozoic, and Cenozoic caused by collisions of following plates: Eastern 

European, Turanian, Scythian, Ural-Tobolsk, and, indirectly, the Caucasian, South 

Caspian, Iranian, and Arabian.

Based on the above rifting history, the North Caspian Syneclise shall contain an 

intracratonic basin, several rift basins, and foreland basins on its Southern and Eastern 

previously rifted margins.  

The syneclise has completely rifted with exposure of the oceanic crust from the 

Eastern-European platform, but has not completely rifted from the Turanian and Scythian 

plates (Zholtaev, 1989, 1996). The Syneclise had an access to Tetis and Ural oceans that 

allowed the deposition of carbonate atolls and banks from Devonian to Permian times 
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(Zholtaev, 1989, 1996).   In the Permian Kungurian time, the access to oceans was denied 

by continued collisions. The Kungurian salt was deposited as a result of ocean water 

evaporation. Since the Permian time, the Syneclise experienced deposition of clastic 

sediments with the hiatus from the early to middle Jurassic. The thickness of the clastic 

sedimentary layer is about 4 km on the margins, and 20 km in the center of the Syneclise. 

Clastic sedimentation gave rise to syn- and postdepositional salt tectonics (Volozh et al. 

2003). Salt tectonics in its turn has influenced the sedimentation pattern. Tectonic 

processes and presalt structures also had a great input on distribution patterns and shapes 

of salt diapirs.

Hydrocarbons accumulated in the subsalt carbonates, suprasalt clastics, and 

nearsalt clastics. Nearsalt hydrocarbons are trapped under salt overhangs.  Subsalt oil 

deposits are considered major accumulations (tens of billions of barrels), while suprasalt 

and nearsalt hydrocarbons are considered minor (hundreds of millions of barrels).  

Because the term “Syneclise” is non-existent in Western literature, in this study 

we substituted “Syneclise” with an exploration and exploitation oriented word: “Basin”. 

A typical exploration scenario for oil in the NCB would include a deep carbonate 

reservoir and a massive mobile salt over the reservoir.

My bibliographical search showed there are very few papers published on the 

geological structure of Tengiz and none on Kashagan. Our carbonate reservoir is 

constructed after the supergiant Tengiz oil and gas subsalt field. Pavlov (Pavlov et al. 

1988) has studied the Tengiz oil field using data of a seismic survey, which covered 600 

square kilometers. Figure 5 shows the seismic section of the eastern slope of the Tengiz. 
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On Figure 6 is the seismic section of the western slope of the Tengiz. Both seismic 

sections are from one seismic line # 669. Tengiz reef structure constitutes an ancient atoll 

appearing in plan view as a horseshoe with a lagoon opening toward the southeast. 

(Pavlov et al. 1988) Regarding the origin of the reef it is not clear whether we should 

consider the atoll to sit on top of the volcanic seamount, to be built atop of an oceanic 

plateau, or as a shelf atoll. The paleoatoll covers 400 square km. The thickness of the 

atoll is about 3-4 km. The depth of the top reef horizon is about 4 km. It is necessary to 

drill at least an 8 km deep well in order to find the OWC (oil-water contact). It was found 

(Pavlov et al. 1988) that there are two major or relatively continuous reflectors seen on 

seismic: one is representing a base of salt and a top of middle Carboniferous carbonates 

of the reef, another reflector representing a top middle Devonian clastics and carbonates 

in the base of reef. The reef is built of Upper Devonian to Middle Carboniferous deposits. 

On top of the paleoatoll were deposited Lower Permian Upper Artinskian (P1a2) clastics. 

Thick Kungurian (P1kg) salt was deposited on top of Lower Permian Upper Artinskian 

(P1a2) clastics and subsequently deformed.  

Types of salt structures encountered in the region vary from little pillows on the 

edges of a basin to domes several kilometers thick in the center of the NCB. Volozh 

(Volozh et al. 1989) has found 1800 salt structures of different sizes, shapes, and 

maturities and classified them. Figure 7 shows the map by Volozh (Volozh et al. 1989), 

where the salt is zoned according to the classification he created. Zone VI (green belt) 

encompasses the major oil field of the NCB and is the zone of development of diapirs
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with overhangs and canopies.  A regional cross-section along the blue line is on Figure 

8. A relatively recent (Volozh et al. 2003) regional cross section developed by Volozh is 

on Figure 9. Generally classification of salt structures heavily depends on the imaging

powers of a seismic method. Because our area of exploration interest in the NCB is 

located inside the green zone, we are likely to encounter salt diapirs with canopies and 

overhangs when exploring in that green zone. 

One specific to a leased block seismic study is published by Barde et al. (2002). 

They uncovered peculiar salt structures (Figure 10) by building a velocity model in the 

process of prestack depth migration (PreSDM) with the help of well data in the eastern 

section of the North Caspian Basin, in the block located inside the green belt of salt 

structures with overhangs and canopies defined by Volozh. Barde et al. (2002) found 

that salt was intensely deformed with diapirs as tall as 5 km. They also acknowledge that 

it is difficult to map the presalt (i.e. subsalt) structures because of seismic imaging

problems.

The geological model (Figure 11) is a combination of regional (Volozh et al. 

1989, 2003) as well as local (Barde et al. 2002) studies of the NCB. Because the most

interesting exploration area in the NCB today is on the shelf of the Caspian Sea, we have 

chosen to include that scenario in our model. The model represents a 10 km portion of a 

30 km long 2D seismic depth converted section 669 (Pavlov et al. 1988) of the Eastern 

slope of the Tengiz paleoatoll (Figure 5), specifically the section from 14 to 23.5 km.

However, the depth of my model was extended to 6 km. The morphology of salt 
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Figure 10. Post Stack Depth Migration results from the NCB (mod. from Barde et al. 

2002)
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structures in the PreSDM velocity model by Barde et al. (2002) served as a guide for 

creating the salt dome and diapirs in my model.

Because the purpose is the investigation of seismic imaging problems for subsalt 

reservoirs and carbonates, my model is not overburdened with stratigraphic details 

ELASTIC PROPERTIES OF ROCKS 

There are three major types of rocks within our geological model of the 

southeastern area of the North Caspian Basin (Tengiz oil field in particular): carbonates 

of paleoatoll (CaCO3), salts (halite NaCl, anhydrite CaSO4), and clastics (silicates).

By elastic properties of rocks here mean density, velocity of compressional

waves, and velocity of shear waves, and, by extension, – all the elastic ratios, 

coefficients, and moduli.  The rock properties of the model are influenced by the 

anomalously high reservoir pressure (87MPa), high temperature gradient, high porosity 

and oil saturation in the reef carbonates, and by depth. Rock properties of the North 

Caspian Basin differ in suprasalt, salt, and subsalt. They are presented here accordingly

(Table 1). 

Rock elastic properties (Vp, Vs, density) of the southeastern area of the North 

Caspian Basin (Tengiz oil field in particular) were chosen using: 

- well logs (Volozh et al. 2003, Kononkov et al. 1978, Shebaldin et al. 1988, 

Volarovitch, 1988, Kolosova, 1982, Kunin et al. 1977),

- Prestack Depth Migration velocities and well logs (Barde et al. 2002),

- existing rock physics empirical equations for Vp/Vs ratio (Dvorkin et al. 1999, Li 

and Downton, 2003, Stoughton, 2001), 
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- laboratory measurements on cores with the simulation of in situ PT conditions 

(Fomin et al. 1992, Baiuk and Fomin, 1989, Crain, 2004). 

The shear wave values for suprasalt formations were calculated with the Poisson 

coefficient of 0.4, which made the ratio of compressional to shear wave equal to 2.44. 

That value of the Poisson ratio is the most probable based on the chart in Dvorkin’s 

paper (Dvorkin et al. 2004), where the increase in the Poisson ratio corresponds to an 

increase in pore pressure for a water saturated calcite with crack porosity. 

Subsalt rocks have anomalously high reservoir pressure (~87 MPa). Therefore, I 

have obtained their elastic properties with terrigenous and carbonate oil saturated core 

samples subjected to regular and irregular stresses and temperatures corresponding to 

those in situ (Fomin et al. 1992). Fomin found that irregular stress (from regional 

tectonic stress, salt tectonics) increases the permeability and crack porosity of weak, 

mainly organic, limestones of the Tengiz. Fomin stated that primary values of Vp and 

the degree of its change with the increasing pressures is defined by the micro cracks, but 

the Vp in situ reservoir conditions depends on porosity. Therefore, Vp is relatively low 

for the reservoir conditions of the Tengiz. Anomalously high reservoir pressure in the 

North Caspian Basin subsurface decreases velocities of our subsalt clastics and 

carbonates to about 30-40% (Fomin et al. 1992). 

I have assumed the carbonates to be one homogeneous formation and have 

assigned to it densities and compressional velocities averaged over many measurements 

on oil saturated core samples.  
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The shear velocities for carbonates were calculated from an empiric formula 

developed by Li and Downton specifically for carbonates (Li and Downton, 2003). The 

averaged Vp for a subsalt terrigenous P1a2 overpressured formation was obtained from 

works of Volozh and Kunin.

Notice that we have included error bars for velocities and densities in Table 1. 

This error bars are quite small, in most cases less than 5%. We know that seismic image 

starts getting affected by errors in velocities and densities when they are above 5%. 

More specifically, migration is unaffected by changes of less than 5% in velocity. AVO 

is only affected by changes in velocity of 10% or above. Therefore, the error bars in 

Table 1, which are generally less than 5%, can be ignored without affecting the 

conclusions that we will make in the last chapter about processing and imaging 

challenges in North Caspian Basin. Therefore, the values of velocities and densities in 

Table 1 will be used in a numerical modeling in Chapter III without the error bar.

I have constructed a realistic and sufficiently detailed 2D geological model with 

elastic rock properties based on the many regional and local studies of the Former USSR 

and Western researchers, taking into account the peculiarities of the Tengiz oil field rock 

properties derived from well logs, experiments on cores, prestack depth migration, and 

empirical rock physics equations. The distribution of elastic properties in the model are 

computed and presented in Figures 12-19. 

Detailed and realistic, at the same time our geological model is a generalized and 

simplified geological model of the North Caspian Basin. This allows us to better 

concentrate on the main imaging problem and to generalize results of our seismic 



22

modeling effort over the entire southeastern area of the North Caspian Basin. We could 

endlessly add geological features and details to the model, but this would make our 

synthetic seismograms too complex and difficult to interpret. Future modeling efforts 

shall include more stratigraphy and heterogeneity, because after this modeling it will be 

known how principle geological structures look on seismic. New modeling efforts 

should also include the effect of overpressure, oil and gas saturation, and anisotropy, and 

be 3D. 

In the next chapter, we describe the finite difference method of numerical 

modeling for wave propagation in the subsurface. We also describe the parameters of 

our numerical seismic survey. 

.
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Figure 12. Distribution of shear wave velocities in the geological model.

Figure 13. Distribution of compressional wave velocities in the geological model.
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Figure 14. Distribution of shear modulus in the geological model. 

Figure 15. Distribution of densities in the geological model.
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Figure 16. Distribution of  [  + 2 in the geological model.

Figure 17. Distribution of compressional wave impedance in the geological model.
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Figure 18. Distribution of shear wave impedance in the geological model.

Figure 19. Distribution of bulk modulus in the geological model.
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CHAPTER III 

FINITE-DIFFERENCE MODELING

EQUATIONS FOR WAVE PROPAGATION IN ELASTIC MEDIA 

We consider a heterogeneous geological model as a set of locally homogeneous

layers with constant Vp, Vs, and density and solve N equations corresponding to N 

homogeneous areas. Incorporating elasticity allows us to generate and record horizontal 

and vertical components of a wavefield along with pressure.

1. 2D homogeneous formulation for equations of momentum conservation 

(Ikelle and Amundsen, 2004):

  , (1)

(2)

Here    is particle  velocity,

  is stress, and

  is body force.

2.  Relations of stress and strain for the isotropic elastic media:

     (3)

      (4) 

                          (5) 

Here   is stress force, for the wave motion to satisfy first-order coupled 

differential equations (1) – (5).
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3. Initial conditions such that the stress, particle velocities, and their time

derivatives are equal to zero before firing of the source of wave propagation: 

                                                    (6)

4. Boundary conditions are for air-water free surface planar boundary at

depth z = 0: 

  or                                                   (7) 

                                      (8)

DISCRETIZATION OF EQUATIONS OF WAVE PROPAGATION ON A 

STAGGERED GRID

To solve our wave equations for elastic isotropic media numerically we discretize 

(Graves, 1996) equations along with their boundary conditions and in time and space: 

                                    (9) 

The discretization changes the format of functions in the equations (1) – (5), for 

example:
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(10)

The picture below (Figure 20) is an example of a staggered grid technique (discussed

further), where we see that some values are gridded at the point of the reference grid 

defined by (9), but other values are gridded at half a grid point from the reference grid 

points.

Figure 20. Illustration of the staggered grid technique (Ikelle and Amundsen, 2004). 

The explicit scheme for FDM calculates the wavefield for a unit of space from

the wavefield of a previous space unit and a previous time step. The staggered grid 
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method allows to model complex heterogeneous geological models. Equations (1) – (5) 

were discretized (Ikelle and Amundsen, 2004) using the staggered grid technique:

                               (11) 

                                (12) 

          (13)

           (14)

                                                   (15) 

where  ,
(16)

(17)

are effective media parameters for the reciprocal of density;

                                (18) 

is the effective media parameter for the rigidity;
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  and   are operators denoting the first-order spatial derivative for x and z 

respectively.

Forth-order order approximation of spatial derivatives allows us to model geology with 

any Poisson ratio and provides more stability and less grid dispersion than 2
nd

 order 

FDM. This is the formulation for the forth-order finite-difference approximation for the 

operator  : 

  .          (19) 

The forth order finite-difference approximation requires a minimum sampling of five 

grid points per wavelength.

STABILITY CONDITION

Stability ensures that the numerical solution is not departing too far from the analytical

solution as time progresses. For the stability of our forth-order locally homogeneous 

FDM with the maximum velocity of , extremely fine time sampling is necessary 

and the sampling rate must obey the following constraint: 

(20)

GRID DISPERSION 

Approximation of spatial derivatives creates the grid dispersion, which is the variation of 

velocity with frequency, when high frequencies are delayed relative to low frequencies, 
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producing tailing of the signal. The larger the grid, the more the dispersion. Therefore, in 

our case it is necessary to have at least five grid points per wavelength.

BOUNDARY CONDITIONS

In addition to (7) we add the conditions

                                     (21) 

                                              (22) 

                                              (23)

These conditions are necessary for the vertical spatial derivative to be possible on a 

staggered grid. Two grid points are added above the free surface and antisymmetry for 

the stress components at the free surface is assumed. The rest of the medium is 

considered unbounded and surrounded by a strip of grids, which “absorbs” the waves. 

For that condition we multiply stress and particle velocity fields by the factor

, (24)

where   and   is the strip width in the number of grid points.
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This FDM scheme is implemented in its multishooting version in a Fortran code 

by Dr. Luc T. Ikelle, director of CASP (Consortium for Automated Seismic Processing) 

at Texas A&M University.

DISCRETIZATION OF THE GEOLOGICAL MODEL  

- 10 by 6 km geological model in meters was created, 

- discretization with 5 m grid size was decided, thus calculation of the wavefield 

are carried out on the nodes 5 by 5 meters, 

- 2000 by 1200 pixels model was drawn in Adobe Photoshop in 24-bit colormap, 

- run gmod2.m in Matlab to create input.modelM, 

- compile and run gmod.f on input.modelM to create map.model  

- plot map.model in Matlab  

- save as .tiff 

PARAMETERS OF SEISMIC ACQUISITION  

Our geological model has only 15 m of water depth, therefore it was decided to 

have (3C OBS acquisition with double sensors (hydrophones and geophones), that is, 

one sensor is for pressure in the water, another – for horizontal and vertical components 

of particle velocity in the ground. A double sensor survey is beneficial as it collects 

multicomponent data (P and S wave arrival times and amplitudes). Recordings from both 

hydrophones and geophones are also used for removal of water reverberations (guided 

waves) and receiver ghosts by summation of data from two sensors (Ikelle, 1999a). It 
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allows for PS migration, which will help to better image salt and significantly 

overpressured carbonates in the subsalt, and attenuation of free surface multiples through 

combination of streamer and OBS data. Stationary horizontal line of receivers is 

positioned from 500 m to 9500 m. Spacing of receivers is 15 m. Shot positions are from 

500 m to 9890 m. Spacing of shots is 30 m. For all modeling parameters see Table 2. 

Table 2. Modeling parameters. 

Width of the model 10000 m 

Depth of the model  6000 m 

dx (grid size) 5 m 

dt (FDM sampling rate) 0.2 ms 

Shot spacing 30 m 

Source wavelet 25 Hz Ricker 

Receiver spacing 15 m 

Water depth 15 m 

Shot depth 10 m 

Hydrophone depth 10 m 

Geophone depth 20 m 

Number of shots  314

First and last shot positions 500 m and 9890 m 

Number of dual-sensor receivers 601

Shooting technique Multishooting (Ikelle, 2003) 

Listening time 6 sec 

Sampling rate on record 4 ms 

Maximum velocity in the model 6000 m/s 

Run time 2 weeks 

Computing resources 38 CPUs, 700 MHz. One shot per CPU 
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For the purpose of interpreting events correctly and identifying our imaging 

challenges, in addition to our three-component dataset with free surface boundary, we 

generated several versions of three component snapshots and shot gathers without free 

surface boundary (applying absorbing boundary conditions), and with and without 

converted waves, with and without carbonates and clastics, and their combinations. 

This Finite-Difference Modeling scheme is implemented in its multishooting 

version in a Fortran code by Dr. Luc T. Ikelle – Director of Consortium for Automated 

Seismic Processing (CASP) at Texas A&M University. 

On the next page (Figure 21) is one snapshot of wave propagation in the realistic 

subsurface, generated by the CASP FDM algorithm. 
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CHAPTER IV 

ANALYSIS OF RAW DATA  

DATASET 

Our resulting dataset is composed of 314 shots. 601 dual sensors, i.e. a geophone 

and a hydrophone, record each shot. Then the hydrophone produces pressure data; 

geophone produces two traces: the vertical and horizontal component of particle 

velocity. The acquisition technique therefore is 3-component Ocean Bottom Seismic (3C 

OBS). The listening time is 6 seconds. 

The synthetic dataset is stored in SEGY format and will be available on the 

website of CASP consortium (http://casp.tamu.edu) for anyone who would like to test 

their Prestack Migration algorithms. 

DEFINITION OF KEY REFLECTORS 

Hydrocarbons in the North Caspian Basin are accumulated in subsalt paleoatoll 

carbonates and clastics, suprasalt clastics, and nearsalt clastics (Figure 22). Nearsalt 

hydrocarbons are trapped under salt overhangs. Subsalt oil deposits in carbonates are 

considered major accumulations (tens of billions of barrels), while suprasalt and nearsalt 

hydrocarbons are considered minor (hundreds of millions of barrels). Therefore subsalt 

paleoatoll carbonates are considered the main exploration targets. Accordingly, in this 

work we are focusing in the quality of imaging of subsalt carbonates and clastics 

overlaying carbonates. The age of carbonates is Middle Carboniferous to Upper
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Devonian (D3-C2). The age of clastics on top of carbonates is Lower Permian Upper 

Artinskian (P1a
2
). Further we call them target reflectors D3-C2 and P1a

2
 (Figure 23). 

QUALITY OF IMAGING OF SUBSALT TARGETS 

The effect of the overburden 

 The overburden can affect our ability to illuminate the target horizons. There is 

about 4 km thick overburden over our target reflectors D3-C2 and P1a2. Two questions 

can be posed: Do seismic waves have enough energy to reach the 4km deep exploration 

target? And do they have enough energy to get the information about the exploration 

target back to the surface? 

Let us answer the first question first. Do seismic waves have enough energy to 

reach the 4km deep exploration target? One way of answering this question is to look at 

snapshots of wave propagation in the subsurface. Let us look at 5 snapshots made at 

different shot positions (Figures 23-27). They demonstrate that seismic waves indeed 

have enough energy at the depth of 4km and they do reach target horizons everywhere 

except under anhydrites in areas where anhydrites are under a halite diapir. The energy 

of seismic waves is decreasing dramatically when the wavefront goes through anhydrites 

to the reservoir rocks, which means that anhydrites are seriously affecting the quality of 

our target reflectors. We see that wavelength is substantially increasing in the halite 

(Figures 24-28). In the same figures we see the dramatic increase of wavelength in 

anhydrites, which causes it to not notice the top of carbonates.
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 The second question is: Do seismic waves have enough energy to get back to the 

surface? Let us look at shot gathers (shots 001, 081, 121, 161, 222, 241, 281, and 301). 

Reflections from tops of P1a
2
 and C2-D3 are indicated on shot gathers (Figures 29-36) 

Reflected energy is relatively low, therefore we applied automatic gain control and 

exponential amplitude gain. Our target reflectors P1a
2
 and C2-D3 are not seen well on the 

shot gathers from the right half of our model (shots from 150 through 314). There are 

two causes: deposits of anhydrites complicated with halite diapir on top of anhydrites 

and the interference with numerous events originated at the walls of halite diapirs 

(reflections, refractions, diffractions, converted waves, and their multiples). 

 It is also important to know that in the areas of development of salt diapirs and 

domes complicated with overhangs, we have not only diminished energy but also 

significant distortion of wavefronts. Snapshots (Figures 36-38) show that the 

morphology of salt diapirs and domes changes the shape and orientation of wavefronts 

reflected from top anhydrites and top Lower Permian clastics located between walls of 

two halite diapirs, distorting wavefronts beyond recognition. Figure 36 shows the shape 

of a wavefront at the point when it reached the target reflector and Figures 37 and 38 

show the shape of the same event when it passed all the salt bodies on its way back. 

Interference of upcoming C2-D3 and P1a
2
 reflections from carbonates with both PP and 

PS diffractions and refractions from neighboring salt diapirs and domes is also distorting 

the image of subsalt clastics and carbonate deposits. The conclusion here is that in the 

subsalt we can predict the existence of a reflector, but cannot predict its shape. In other 

words we are likely to have a distorted image of a subsalt reflector. 
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Guided waves 

 Strong guided waves are produced mostly by the water layer. They result from a 

very shallow source in the water that allows rays to reach the critical angle very quickly. 

Figure 39 shows the extent of guided waves in the shallow water layer and shallow 

clastic layers. Figure 40 shows the same shot gather after shallow water guided waves 

were removed. In Figure 40 we do not apply exponential amplitude gain or AGC 

because the guided waves in our case are very intense. Our target reflectors are weak 

because guided waves trap substantial amounts of energy. 

Near offset is critical for imaging our structures. But far offset is also significant, 

because it also carries information about the subsurface. Far offset becomes vital when 

we have a salt dome or a diapir in the near offset. That necessitates the removal of 

guided waves.

AVO analysis also requires information from large offsets, again necessitating 

the removal of guided waves. When we remove guided waves and, subsequently, the 

multiples our target reflectors are defined better and have more energy. Compare figures, 

which have guided waves with figures where guided waves were removed.  
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Multiple waves

 Free surface multiples from the surface of the water are also an obstacle on our 

way to clearly image subsalt exploration targets. In the Figures 41-46 we illustrate the 

degree of influence of free surface peg-leg multiples on our data. Snapshots (Figures 47-

48) demonstrate how free surface peg leg multiples interfere with target reflection from 

top P1a2 clastics. There are white areas on these shot gathers where the P-wave is not 

giving us any information about the morphology of the salt. The next section will 

consider the role of converted waves in the salt delineation. It is very important to 

remove multiples in order to be able to image subsalt target reflectors. The method of 

hydrophone and vertical geophone data summation to remove the water layer 

reverberations and receiver ghosts is also developed by Dr. Ikelle (Ikelle, 1999b). 

Turning waves 

The problem of near-diapir reflectors and the delineation of salt walls themselves 

can be resolved by exploding the seismic source far from salt diapirs (Figure 49). 

Let us consider the case of positioning the explosion of the source away from top 

salt (wide aperture survey). P-waves would be able to approach diapir stems at angles 

less than critical. These waves would reflect off diapir stems as P-waves, hit the 

horizontal reflector near salt, reflect off that horizontal reflector, and record on a 

geophone or hydrophone. Thus the ray “returns” to the surface with information about 

the salt stem and about reflectors pinching out at the salt stem. The method of “turning 

waves” is developed by Dr. Ikelle (Ikelle, 2004). This is the way to image salt stems and  
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affiliated reservoirs with P-waves. A wide aperture is very important for imaging North 

Caspian salts because of the substantial depths. 

Multicomponent waves 

 Our experiment is for elastic wave propagation in area with complex salt 

structures, namely, halite domes and diapirs. In addition to complexity of structures, we 

also have very high velocity contrasts. This situation is very prone to generation of S-

waves, which are mainly a result of conversion from P-waves. (S-wave in our 2D case 

means SV-wave.) The conversion takes place when an incident P-wave falls onto a 

reflector at an angle greater than the critical angle of P-waves, and when the velocity 

contrast between two formations is high. Let us consider our situation. First, we have an 

abundance of steep salt dome and diapir slopes. That conditions the emergence of S-

waves, because even in cases when an incident wave falls vertically onto steep slopes of 

salt, the angle between salt surface and an incident wave is well beyond critical angle of 

P-waves. Of course, the complexity of salt structures is going to contribute to the chaos 

of ray paths. Second, the velocity contrast range from 2160m/s (top halites/K2 clastics) 

to 3200m/s (anhydrites/P1a2 clastics). It is also a good condition for having P-waves 

converted into transmitted and reflected S-waves.  

 The degree to which P-wave energy turns into S-wave energy is evident from the 

shot gathers where there is a white cloud instead of a picture of a salt mass by P-waves. 

On the same gathers we see S-waves freely traveling through salt. Figures 50-53 

illustrate an absence of P-waves and a presence of PS-type converted waves in salt.  
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 Upon a general look at our shot gathers, we see that converted waves (PS, PSSP, 

PSPP, PPSP, etc.) are numerous and dominate our data (Figure 54). As we found by 

running different experiments, principally salts generate converted waves in our model. 

Figures 55-60 show the reflected P and S waves from the top of salts. The steeper slopes 

of salt flanks and the more vertical diapir stems are the more abundant are S-waves on 

shot gathers.

 There is also evidence that converted waves (PSSP, etc.) easily can be mistaken 

for primary waves (Figure 61) and considered “bright spots” by interpreters. 

Snapshots confirm the role of shear waves in delineating the salt bodies. Again, as we 

see on snapshot (Figure 62), converted waves delineate slopes and sides of salt diapirs 

very well, while P-waves alone are vague (Figure 63).  In addition, shear waves have 

much better resolution because of their short wavelength.  

While PS converted waves are better for steep slopes and stems of salt diapirs, it 

is impossible to image subsalt clastics and carbonates with them, because when S-waves 

go back up to the surface they go through two or three more salt bodies which converts 

them back to P-waves and dissipates them. On the snapshot in the previous section 

(Figures 36-38) we see that only the P-wave from top subsalt clastics travels back to the 

surface.

Looking at shot gathers, we conclude that our assumptions that hydrophone 

records always only P-wave, vertical geophone records mostly P-wave are wrong. Our 

hydrophone data has S-waves (Figures 28-35, 39-46, etc.) and vertical geophone data has 

S-waves too. (Figure 54). 
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S-waves on hydrophone data are converted waves of PSSP, PSPP, PPSP-type 

reflected from steep salt flanks. The first and last P-wave conversions take place as the S-

wave approaches very shallow hydrophone in the water. 

 S-waves on the vertical geophone appear because converted PS reflection from 

the very steep slope of salt is approaching the geophone when the wavefront of the PS 

wave is still almost vertical. We can see that happening on the snapshot (Figure 64). 

Therefore we can conclude that the vertical component of particle velocity is important in 

imaging steep salt flanks, because it contains mostly the vertical component of rotational 

movement of particles, i.e. the S-wave component.  

 Therefore, here we can recommend for processing flow: 

1. Identify and separate S-wave events (PSSP, PSPP, PPSP, etc) on hydrophone 

gathers, separate them from P-waves, and carry out PS-NMO and PS-prestack 

depth migration on S-waves to image steep salt flanks.  

2. Identify and separate S-waves from vertical geophone data, move out, and 

migrate it as an S-wave reflected from very steep salt flank. 

The concept and mathematical description of decomposition of a seismic wavefield into P 

and S waves developed in the book “An Introduction to Petroleum Seismology” (Ikelle 

and Amundsen, 2004). 
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CHAPTER V 

CONCLUSIONS  

Using 2D elastic finite-difference modeling we tried to find answers to the 

following questions affecting our ability to seismically image NCB subsalt, suprasalt, 

and nearsalt reservoirs: 

- Can we see subsalt clastic and carbonate (reef) reservoirs through thick 

overburden? Can we image carbonates (reef) that are located under salt domes 

and diapirs, which blanket them from seismic energy?  

- How do halites and anhydrites with their complex structure affect our ability to 

image target reflectors? 

- Do the shallow waters (3-15 m) of the Caspian Sea shelf affect our ability to 

image reservoirs? 

For the subsalt carbonate reservoir, we found that we can see its top everywhere, 

except when there is a thick (about 1000 m) anhydrite deposit and a tall halite diapir 

over the anhydrites, the energy of the seismic wave depletes before reaching subsalt 

carbonates. Anhydrites so dramatically increase wavelength that we cannot image top 

carbonates under anhydrites, we can only image top P1a2 clastics overlying carbonates. 

But that is close enough to the top carbonates. P and S reflections, refractions etc., 

produced by salt diapirs on the right side of our model, greatly interfere with reflection 

from top P1a2 clastics on top of the carbonate reservoir, whereas clastics and carbonates 

are clearly visible under the salt dome. Thus salt domes have less deteriorating impact on 

subsalt imaging than salt diapirs.  
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So we can conclude that seismic waves have enough energy to bring us the 

information about subsurface targets through the thick overburden in the NCB. 

Halites and anhydrites present the biggest imaging challenge in the exploration 

for oil in the North Caspian Basin. Halite and anhydrite salts of the NCB mean complex 

structures, steep slopes, high velocities, and high velocity contrast with surrounding 

clastics and underlying reefs and carbonates. They create unpredictable seismic raypaths, 

and converted, diffracted, refracted, and reflected waves. They canalize and disperse 

seismic waves. All this impacts NMO, velocity analysis, and migration. 

We found that the S-wave is a very important agent in delineating salt domes and 

diapirs.

Let us first consider the case of exploding the source directly over a salt diapir or 

dome. In this case the P-wave falls vertically onto a steeply dipping salt surface. Thus, 

the dip of the salt slope is the defining parameter in the rate of conversion of the incident 

P-waves into reflected S-waves, rather than the critical angle of the P-waves. (Of course, 

the impedance contrast is contributing to the partitioning of energy at the interfaces. ) 

Thus, we can image only salt surfaces with dips more than the critical angle of the P-

waves and less than the critical angle for the S-waves, i.e. in the window between two 

critical angles. In this case the S-wave will be recorded with the horizontal as well as the 

vertical component of particle velocity. 

In the same case of a source exploding directly over a salt diapir, salt slopes with 

dips beyond the critical angle for S-waves (diapir stems, for example) would be possible 

to image too.  In this case, we would use the fact that salt acts as a refracting lens for an 
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S-wave, which transmits from salt into surrounding clastics. That wave has the 

wavefront replicating the surface of a diapir stem. It propagates in the horizontal 

direction. But the velocity gradient eventually helps it to approach geophones. This way 

this S-wave will be recorded mostly on the vertical component of the geophone. For 

fully recording all the vertical wavefronts we would need a very long recording line. 

After we have all records, the only way to image steep salt structures would be 

by, first, extracting S wave from all records – pressure, horizontal and vertical 

components of particle velocity, and, second, carrying out NMO and prestack depth 

migration for S-waves. The method for separating P and S-waves is developed by Dr. 

Ikelle (Ikelle and Amundsen, 2004). 

Now let us consider the case of exploding the source away from top salt (wide 

aperture survey). P-waves would be able to approach diapir stems at angles less than 

critical. These waves would reflect off diapir stems as P-waves, hit the horizontal 

reflector near salt, reflect off that horizontal reflector, and record on a geophone or 

hydrophone. Thus the ray “returns” to the surface with information about the salt stem 

and about reflectors pinching out at the salt stem. The method of “turning waves” is 

developed by Dr. Ikelle (Ikelle, 2004). This is the way to image salt stems and affiliated 

reservoirs with P-waves. Wide aperture is very important for imaging North Caspian 

salts because of the substantial depths. 

While the S-wave is very important for imaging steep salt, it was found that the 

P-wave is the best for imaging subsalt carbonates. Therefore, we would say, that the S-
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wave can help us to better locate suprasalt and nearsalt reservoirs and to safely drill well, 

while the P-wave can help us in imaging subsalt reservoirs.  

The shallow waters (3-15 m) of the Caspian Sea shelf cause free-surface peg-leg 

multiples, guided waves, and require special acquisition techniques. As we have shown 

in the results chapter, it is very important to remove free-surface peg-leg multiples and 

guided waves in order to be able to image subsalt target reflectors. The method of 

hydrophone and vertical geophone data summation to remove water layer reverberations 

and receiver ghosts is also developed by Dr. Ikelle (Ikelle, 1999b). 

Imaging algorithms need all three components: pressure, vertical and horizontal 

components of particle velocities. This demonstrates us the importance of using the 

Ocean Bottom Seismic when exploring North Caspian Basin offshore. 

Our resulting dataset is composed of 314 shots. Each shot is recorded by 601 

dual sensors, i.e. a geophone and a hydrophone. The hydrophone produces pressure data, 

the geophone produces two traces: vertical and horizontal component of media 

displacement velocity. The acquisition technique therefore is 3-component Ocean 

Bottom Seismic (3C OBS). Recording time is 6 seconds. 

The synthetic dataset is converted into SEGY format and will be available on the 

website of CASP consortium (CASP Project, 2004) for anyone who would like to test 

their Prestack Migration algorithms. 

This work demonstrated to us the tremendous value of 2D elastic finite-

difference modeling of the propagation of seismic waves.  
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Future elastic modeling efforts shall use a 3D, finely gridded, large, oil and gas 

saturated, overpressured, anisotropic, fractured model for the subsalt reef reservoir.
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