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ABSTRACT

A Mathematical Model of the Productivity

Index of a Well. (May 2004)

Dinara Khalmanova, B.S., Karaganda State University, Kazakhstan;

M.S., Texas A&M University

Chair of Advisory Committee:  Dr. Jay R. Walton

Motivated by the reservoir engineering concept of the productivity index of a

producing oil well in an isolated reservoir, we analyze a time dependent functional,

diffusive capacity, on the solutions to initial boundary value problems for a parabolic

equation. Sufficient conditions providing for time independent diffusive capacity are

given for different boundary conditions. The dependence of the constant diffusive

capacity on the type of the boundary condition (Dirichlet, Neumann or third-type

boundary condition) is investigated using a known variational principle and confirmed

numerically for various geometrical settings. An important comparison between two

principal constant values of a diffusive capacity is made, leading to the establishment

of criteria when the so-called pseudo-steady-state and boundary-dominated produc-

tivity indices of a well significantly differ from each other. The third type boundary

condition is shown to model the thin skin effect for the constant wellbore pressure

production regime for a damaged well. The questions of stabilization and uniqueness

of the time independent values of the diffusive capacity are addressed. The derived

formulas are used in numerical study of evaluating the productivity index of a well

in a general three-dimensional reservoir for a variety of well configurations.
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NOMENCLATURE

A - symmetric positive definite matrix of smooth coefficients

CA - shape factor

CΩ - geometric characteristic of domain Ω, defined in terms of φ0

h - thickness of the reservoir

H1,2 - Sobolev space

J - diffusive capacity (productivity index)

L - - elliptic operator, Lu = ∇ · A∇u

mesn - n-dimensional Lebesgue measure

q - dimensionless rate of flow from the well

RD - dimensionless outer radius

s - skin factor

V - volume of the reservoir, V = mesnΩ

W - surface area of the wellbore,W = mesn−1Γw

α - as a superscript, denotes dependence on α

Γw - wellbore

Γe - exterior boundary of the reservoir, ∂Ω = Γw ∪ Γe

φk, λk - solutions of the related Sturm-Liouville problem for the operator L

∇ - gradient operator on Ω

~n - outward normal on ∂Ω

∂u
∂~ν

- co-normal derivative of u on ∂Ω, ∂u
∂~ν

= (A(x)∇u) · ~n

ūw - average of function u on Γw

ūΩ - average of function u on Ω
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CHAPTER I

INTRODUCTION

Once the production of a hydrocarbon-bearing reservoir has started, reservoir engi-

neers must answer three important questions. First, what is the volume of hydro-

carbons present in the reservoir? Second, at what rate can the available fluid be

recovered? Third, how much of the fluid can be recovered? The answers to these

questions change as the reservoir develops and greatly depend on the production

schemes [29, 6]. The resevoir engineer creates a picture of the reservoir/well system

from the available data. Among such are the production history data, i. e. the rate of

flow from the well q and the pressure on the wellbore pw. Using the history data on

the rate of flow from the well, one can readily obtain the cumulative production rate

from the well. Shutting the well down and analysing the “build-up” pressure curves

during the shut-in period by the methods of well test analysis [8, 29], the average

pressure in the reservoir, p̄, can be estimated. The productivity index of a well is a

characteristic that relates these three parameters. It is defined as the ratio of the rate

of flow from the well to the difference between the wellbore pressure and the average

reservoir pressure [29].

The productivity index is often used as a measure of the capacity of a well [13]

[29]. It expresses an intuitive feeling that, once the well production is “stabilized”,

the ratio of production rate to some pressure difference between the reservoir and the

well must depend on the geometry of the reservoir/well system only [29]. Indeed, it

has been long ago observed by petroleum engineers that in a bounded reservoir the

productivity index of a single well stabilizes in a long time asymptote [32].

The journal model is SIAM Journal on Applied Mathematics.
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After the productivity index of a well has reached its stable value, the definition

of the productivity index can be recast into the equation for determining the speed

with which the hydrocrabon can be recovered from the reservoir:

q = J(p̄ − pw). (1.1)

Here, J is the stabilized value of the productivity index. Alternatively, the Fetkovich

[12] backpressure equation has been used:

q = C(J)(p̄2 − p2
w)n, (1.2)

where C(J) is related to the productivity index parameter and n is an empirically

determined constant.

A hydrocarbon - bearing reservoir with a single well can be produced in two

substantially different regimes.

1) The pressure on the well is maintained at a constant level while the rate of

flow from the well is decreasing along with the average reservoir pressure.

2) The rate of flow from the well is held constant while the wellbore pressure and

the average reservoir pressure decrease.

If the productivity index of the well produced with constant wellbore pressure is

constant, then the regime of recovery is called a boundary-dominated state [17]. The

regime of recovery with the constant rate of flow from the well, characterized by a

constant productivity index, is called a pseudo-steady-state regime [29].

From the mathematical prospective, the productivity index of a well can be de-

fined as a functional on the solutions to an initial boundary value problem. This

functional will be called the diffusive capacity. A constant productivity index corre-

sponds to a time independent diffusive capacity on the transient solution to the initial

boundary value problem.
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The two regimes of recovery - with constant wellbore pressure and constant rate

of flow from the well - are modeled by Dirichlet and Neumann boundary conditions,

respectively.

When estimating the productivity index of a well, one has to take into consid-

eration the presence of the so-called “thin-skin” zone around the well. The thin-skin

concept reflects the damage occuring during drilling and completion of the well. Be-

cause of fluid invasion, the permeability of the “small” region around the well is lower

than the reservoir permeability, which causes the measured pressure responses to dif-

fer from the predicted ones [33, 18]. The existence of the infinitesimally thin skin

zone around the well is modeled by a third type boundary condition.

In this work we will study the properties of a constant diffusive capacity. In

particular, the following questions will be addressed:

• What are the conditions providing for the constant diffusive capacity?

• How do the constant values of the diffusive capacity depend on the geometry of

the boundary?

• How large can a difference between the pseudo-steady-state and boundary-

dominated state productivity indices be?

• What is the relation between the diffusive capacity for different types of bound-

ary conditions?

• How does a transitive diffusive capacity stabilize?

The derived formulas for pseudo-steady-state and boundary-dominated state pro-

ductivity indices hold for an arbitrary reservoir/well geometry. A part of this disser-

tation is a numerical study addressing the problem of evaluation of the productivity
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indices in a variety of three dimensional reservoir shapes with wells of diverse config-

urations, i.e., for fully or partially penetrating, and vertical or deviated wells.

A. Layout of Dissertation

Following this introduction we will formulate the initial boundary value problems

governing the pressure of a fluid in a bounded reservoir with a single well and define

the diffusive capacity. The Literature Review will outline the existing methods of

evaluation of the productivity index of a well. In Time Independent Diffusive Ca-

pacity we give sufficient conditions for a constant diffusive capacity for each of the

initial boundary value problems formulated below. In addition, analytical formu-

las for the constant values of the diffusive capacities will be derived. Based on the

remarks given in the introduction, we will examine the correlation between three prin-

cipal values of the diffusive capacity. Transient Diffusive Capacity will address the

questions pertaining to the stabilization of the productivity indices in two principal

regimes of production and provide several important examples on stabilization of the

boundary-dominated productivity index. In Productivity Index in a Two-dimensional

Reservoir the obtained formulas for the constant diffusive capacities will be applied

to various shapes of a two-dimensional reservoir; it is a numerical study that will

reveal several important factors influencing the magnitude of the difference between

two principal constant values of productivity index. Model of the Skin Effect sec-

tion is an investigation of the relation between the third and second initial boundary

value problems. The Productivity Index in a Three-dimensional Reservoir section is

a numerical study of the productivity indices in an isotropic homogenous bounded

three-dimensional reservoir with a cylindrical well of arbitrary angle of deviation and

length of penetration. A brief section, Remarks on Numerical Calculations, will com-
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ment on the computing software and code used to generate the numerical results given

in the previous sections. The last section will give a brief summary of the advantages

of the new method of evaluation of the productivity index of a well and important

properties of the diffusive capacity that were revealed in this work.
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CHAPTER II

STATEMENT OF THE PROBLEM

Let a point in R
n be denoted by x = (x1, ..., xn), n = 2, 3. Let Ω be an open domain

in R
n which is bounded by the two disjoint piecewise smooth surfaces Γw and Γe. Let

u(x, t), t ∈ R, be a solution of the equation

∂u

∂t
= Lu, (2.1)

where L = ∇ · (A(x)∇), A is a symmetric positive definite matrix with smooth

components and ∇ = ( ∂
∂x1

, ..., ∂
∂xn

) is the usual gradient operator.

Let u(x, t) be subject to homogeneous Neumann boundary condition on Γe:

∂u

∂~ν
= (A(x)∇u) · ~n = 0, (2.2)

where ~n is the outward normal to Γe. On the remaining part of the boundary, Γw,

three types of boundary conditions will be considered:

a) constant total flux
∫

Γw

∂u
∂~ν

dS = −q, q being a real positive constant;

b) constant Dirichlet condition u|Γw = uw2, uw2 - real positive constant;

c) mixed boundary condition
(

(u − uw3)|Γw + α ∂u
∂~ν

)

|Γw = 0, where α and uw3 are

real constants.

This leads to three initial boundary value problems:

Problem I:

Lu = ∂u
∂t

, x ∈ Ω, t > 0

∂u
∂~ν
|Γe = 0,
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∫

Γw

∂u
∂~ν

dS = −q,

u(x, 0) = f1(x).

Problem II:

Lu = ∂u
∂t

, x ∈ Ω, t > 0

∂u
∂~ν
|Γe = 0,

u|Γw = uw2,

u(x, 0) = f2(x).

Problem III:

Lu = ∂u
∂t

, x ∈ Ω, t > 0

∂u
∂~ν
|Γe = 0,

(α∂u
∂~ν

+ (u − uw3))|Γw = 0,

u(x, 0) = f3(x).

For simplicity, we assume that the components of the coefficient matrix A and the

domain boundary are smooth, so solutions of the problems I, II and III are understood

in a classical sense. In problem II, uw2 > 0 is a given constant; in problem III, uw3 > 0

is the average of u on Γw and α is a given constant.

Several remarks regarding the sign of the solutions of problems I, II and III are

in order. Physically u(x, t) is interpreted as the fluid pressure in the reservoir, hence,

we will restrict our attention only to positive solutions of problems I, II and III.

Note that problem I is not well posed: if a solution exists, then there is an infinite

number of solutions. Moreover, a solution to problem I is not necessarily positive on

Ω for all t > 0, even if the initial function f1(x) is positive on Ω. It will be shown that
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for positive q, there exists a solution to problem I which is positive on Ω for t ∈ (0, T )

for some positive T .

The maximum principle for a parabolic equation implies that the solution of

problem II is unique and positive if the initial condition f2 is positive on Ω [10]. The

uniqueness, existence and regularity of the solutions of problem III with respect to the

sign of the coefficient α in the boundary condition on Γw are discussed, for example,

in [14].

A. Definition of Diffusive Capacity

Let us introduce the following notation. If v is a function defined on Ω, then let v̄w

and v̄Ω denote the average of v on Γw and Ω, respectively, defined by:

v̄w =
1

W

∫

Γw

udS,

and

v̄Ω =
1

V

∫

Ω

udx,

where V = mesnΩ, W = mesn−1Γw.

Definition 1. Let u(x, t) be a classical solution [14] of the parabolic equation Lu = ∂u
∂t

in Ω × (0,∞) with boundary condition ∂u
∂~ν
|Γe = 0 and either a), b) or c) on Γw. Let

T > 0 be such that u(x, t) > 0 for all x ∈ Ω and t ∈ (0, T ). The Diffusive Capacity

of Γw with respect to Γe (or simply Diffusive Capacity) for the solution u(x, t) is the

ratio:

J(u, t) =

∫

Γw

∂u
∂~ν

dS

ūw − ūΩ
, (2.3)

where t ∈ (0, T ).

In our intended application, Ω represents a hydrocarbon reservoir with a flow-

ing fluid (oil) with the outer boundary Γe and a well with boundary Γw. The outer
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boundary of the reservoir is assumed impermeable to the flowing fluid. It is assumed

that the fluid is slightly compressible and its flow in the reservoir is governed by

Darcy’s Law relating the gradient of pressure in the reservoir to the filtration veloc-

ity [27, 29]. Then u(x, t) corresponds to the pressure in the reservoir and the three

types of boundary conditions specified on the well Γw correspond to different recovery

regimes. Boundary condition (a) models the recovery regime with constant produc-

tion rate, boundary condition (b) models the recovery regime with constant wellbore

pressure, and (c) models the constant well bore pressure regime of production from a

well with nonzero skin [29]. The initial conditions f1, f2 and f3 take on a meaning of

the pressure distribution in the reservoir Ω, hence, we will require that fi ≥ 0 on Ω,

i = 1, 2, 3. The IBVP III will be discussed in greater detail in the section Model of

Skin Effect. The diffusive capacity J(u, t) takes on the meaning of the productivity

index of the well.
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CHAPTER III

LITERATURE REVIEW

The evaluation of the productivity index of a well is based on the analysis of a well

test. A well test is a record of variations of the wellbore pressure with time, when

the well rate is controlled in some specific manner. One of the popular well tests is a

shut-in test, where the well is kept closed (zero rate), allowing the wellbore pressure

to increase. The variation of the wellbore pressure in this case is called a build-

up curve [29]. After the well tests are completed, the build-up curves are analyzed

and interpreted to yield the estimates of the important reservoir characteristics, for

example, permeability, average reservoir pressure, productivity index, etc [8, 29, 9].

Here the most relevant methods and techniques of the well test analysis for evaluation

of the productivity index will be discussed[30].

In 1949, van Everdingen and Hurst presented solutions for the problem of single-

phase fluid influx into a cylindrical reservoir of uniform thickness h, permeability k

and porosity φ. In their work [33], the fluid is assumed to have a small constant

compressibility c, viscosity µ and the flow is governed by Darcy’s law. Ignoring

gravity effects and using axisymmetry in cylindrical geometry, the pressure p(r, t) in

the reservoir satisfies the diffusivity equation

∂2p

∂r2
+

1

r

∂p

∂r
=

φµc

k

∂p

∂t
. (3.1)

They nondimensionalize the problem by means of the following transformation, which

then became customary to reservoir engineering:

pD(rD, tD) =
2πkh(pi − p)

qµ
, (3.2)

rD =
r

rw
, (3.3)
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tD =
kt

φµcr2
w

, (3.4)

where rw is the wellbore radius, q is the rate of flow from the well and pi is the uniform

initial pressure distribution in the reservoir. van Everdingen and Hurst considered the

case of a constant production rate q and applied the Laplace transform to compute

the dimensionless pressure drop for a unit value of rD.

When infinite systems are considered, the wellbore radius is negligibly small and

the boundary condition on the wellbore becomes [29]:

lim
r→rw

(r
∂p

∂r
) =

q

2πkh
. (3.5)

The solution to this problem was provided by Theis in 1935 [31] and is usually referred

to by his name:

pD(rD, tD) = −1

2
Ei(− r2

D

4tD
), (3.6)

where −Ei(−x) =
∫ ∞

x
e−s

s
ds for x > 0. When the argument of the exponential

integral Ei is small enough, i. e. when r2
D/4tD < 0.01, it can be closely approximated

by

pD(rD, tD) ≈ −1

2
(ln

r2
D

4tD
+ 0.5772). (3.7)

Matthews, Brons and Hasebroek in [24] applied the method of superposition of

the solutions (3.6) and (3.7) to derive the solution to the problem of flow in a bounded

reservoir of appropriate geometric shape. This method is usually referred to as the

method of images, which can be summarized as follows.

Assume that two wells are produced with the same rate. Then on the line located

on equal distance from both wells, there is no flux - normal derivative of pressure is

equal to zero. Thus, this line corresponds to a sealing fault or no-flow boundary.

This idea can be easily extended to a square drainage area with a well located in the

center of the square. The image pattern for such a reservoir is represented on Fig.1.
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Each of the wells represented by solid circles is produced with the same rate as the

well located in the center of the squqre drainage area with boundaries represented

by thick lines on Fig. 1. For this square drainage area, the flux of pressure on the

boundaries is zero.

Fig. 1. Image Pattern for a Square Drainage Area with No-flow Boundaries [29].

Following this example, the method of images can be applied to other shapes of a

bounded drainage area. A bounded drainage area of a polygonal shape with a single

well with impermeable boundaries is translated infinitely many times in all directions

to cover the entire 2-D plane. These translated wells resulting from such construction

are called image wells. The real well in the original bounded drainage area is not

necessarily located in the center of the drainage area. The pressure pD(xD, yD, tD)

inside the original bounded drainage area is equivalent to superposition of infinitely
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many solutions to the problem with a single well in an infinite reservoir, each of which

is determined by (3.6) or (3.7). The superposition in [24] has been written as:

pD(xD, yD, tDA) =

∞
∑

i=1

pD(aiD, tDA), (3.8)

where aiD = ai/
√

A, ai - distance from the ith image well to the point (xD, yD),

xD and yD are any convenient dimensionless coordinates, A - drainage area of the

bounded system and

tDA =
kt

φµcA
. (3.9)

The dimensionless time tDA, introduced in [24], is useful in determining the

average pressure in the reservoir p̄ from the material balance equation (neglecting

wellbore storage):

kh

µ

pi − p̄

q
= tDA. (3.10)

Another useful feature of this particular nondimensionalization of time is that it can

be defined for any 2-D drainage area, not only a circular one. In their work, Matthews,

Brons and Hazebroek presented results for a variety of drainage shapes to which the

method of images can be applied.

In 1965, Dietz has presented a modified method of evaluating the average reser-

voir pressure for a single well produced with constant rate from a bounded reservoir[7].

He assumed that the system has reached its pseudo-steady-state, when the rate of

change of pressure is uniformly constant throughout the reservoir. In pseudo-steady-

state, the dimensionless wellbore pressure is given by [29],[17]

pwD(tDA) ≈ 2πtDA +
1

2
ln

(

4A

eγCAr2
w

)

+ s, (3.11)

where s is a skin factor. The concept of the skin factor and methods of its assessment

are discussed below. In Eq.(3.11), CA is called the shape factor. It depends on the
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geometry of the drainage area. In his work [7] Dietz computed the shape factors CA

for a variety of drainage shapes using the results of Matthews, Brons and Hasebroek.

Eq.(3.11) and the material balance equation (3.10) can be combined to obtain a

formula for approximate dimensionless pseudo-steady-state productivity index of a

well:

PID ≈ 1
1
2
ln 4A

eγCAr2
w

+ s
. (3.12)

In contrast to the constant rate production scheme, not much attention has been

paid to a boundary-dominated productivity index. In fact, it is a belief in the reservoir

engineering community that the boundary-dominated state productivity index and

pseudo-steady-state productivity index do not differ significantly for most drainage

area shapes.

In 1998, Wattenbarger and Helmy considered the constant wellbore pressure pro-

duction case [17]. They applied a method of superposition to generate a solution to

the corresponding boundary value problem in a bounded reservoir and used an impor-

tant correlation between the transforms of the cumulative production and the variable

rate of production in Laplace space to derive shape factors in (3.12) for the boundary-

dominated productivity index. They showed that productivity indices computed with

the new shape factors can differ by as much as 10% from the productivity index with

Dietz’s shape factors even for simple drainage shapes. In the numerical study on the

productivity indices in two dimensional drainage areas given in section Productivity

Index in a Two-dimensional Reservoir the results presented in [7] and [17] will be

compared to the results obtained with the formulas presented in this dissertation.

The concept of skin effect was introduced by van Everdingen [34] and Hurst [18]

in 1953. They suggested that the difference between the measured and predicted

pressure on the wellbore, observed by many authors before them, is due to the dam-



15

aged zone around the wellbore. Almost every field operation - drilling, completion,

production - causes damage to the zone adjacent to the wellbore. As a result, the

permeability in this so-called skin zone is lower than in the formation causing an ad-

ditional pressure drop in the skin zone during flow toward the well [21]. Disregarding

the skin effect leads to overestimation of the productivity index of a well.

The concept introduced by van Everdingen and Hurst corresponds to the so-

called thin skin, when the difference between the radius of the skin zone rs and the

wellbore radius rw is negligibly small (see Fig.2). van Everdingen, in [34], denoted

the dimensionless pressure drop ∆pD within the skin zone by s - skin factor. The

thin skin s appears in the approximate formula for the producitivity index (3.12).

Positive skin corresponds to a damaged well.

wr

sr

Well Cross−section

Fig. 2. Schematic Representation of a Thin Skin Zone.

One of the unappealing features of the thin-skin concept is the assumption that
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the thickness of the skin zone is negligibly small. Hawkins [16] assumed that the skin

zone has a finite thickness, i. e. |rs − rw| is not infinitesimal and derived the following

formula, often referred to by his name:

s =

(

k

ks

− 1

)

ln
rs

rw

, (3.13)

where ks is the permeability of the skin zone and it is assumed that the flow through

the skin zone is at steady-state.

In [16] it was also shown that under the assumption of the finite thickness of

the skin zone and steady-state flow in it, s cannot be less than −6, negative skin

s corresponding to a stimulated well. Later in 1969, Hurst et al. showed that if

the wellbore radius is assumed to be greater than the skin zone radius, the same

equations as for positive skin can be applied to describe the pressure on the wellbore

for a stimulated well with negative skin[19]. It should be noted that despite the fact

that extensive research on the skin effect has been carried out for the constant rate

production regime, little attention has been paid to the constant pressure production

regime.

The majority of solutions for evaluating the productivity index in three-di-

mensional reservoirs, i. e. for directionally drilled wells, follow the same principle

as the two-dimensional methods. In that they are based on a semi-analytical solution

for a particular case, from which one finds a convenient approximate formula which is

then applied to similar reservoir/well configurations. The semi-analytical solution is

often based on the superposition of analytical solutions for a transient problem in an

unbounded reservoir. The solution in a bounded reservoir is then expressed in terms

of an infinite time dependent series, similarly to the technique used by Matthews,

Brons and Hazebroek in [24]. Then a comprehensive computing procedure is ap-

plied to determine the stabilized values of the time dependent series in the obtained
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solution [22, 28, 35].

In most cases the methods for computing the productivity index of a deviated or

horizontal well in a three dimensional reservoir are aimed at obtaining an appropriate

value of a shape factor CA and skin factor s in the Eq. (3.12). The effects associated

with the deviation of the well from a fully penetrated vertical one are included in the

skin s. A vertical well is called fully penetrated if its penetration length is equal to the

thickness of the reservoir. A vertical fully penetrated well corresponds to s = 0. The

effects of the geometry of the external boundaries of the reservoir are included in the

shape factor CA [22]. Here we will discuss several representative works on evaluation

of the productivity index in a three dimensional reservoir.

Goode and Kuchuk [15] have considered a horizontal well in a rectangular reser-

voir bounded from above and below. They restricted the thickness of the reservoir to

be small in comparison to the distance of the well to any of the vertical boundaries

of the reservoir. Then the problem can be viewed as a two dimensional with the hor-

izontal well treated as a two dimensional plane source. The two dimensional problem

is solved by using the Laplace transform and the value of the producitivity index is

evaluated numerically. The neglected effects of the vertical flow are included in the

geometric skin, sg. The authors provided results for a range of well length values

[15]. The boundary condition on the well is an “infinite conductivity” condition, i.e.,

the pressure is uniformly distributed over the wellbore surface. Other authors used

similar technique of reducing the three dimensional problem to a two dimensional one

treating a well as a vertical fracture with uniform flux rather than uniform pressure

distribution over the length of wellbore (see [22], for example).

Cinco et al. considered a directionally drilled well in a cylindrical reservoir

bounded from above and below [4, 3]. They used the solution for a problem with

a point source well in an infinite three dimensional reservoir and integrated it along
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the well under the assumption that the flux is uniform along the wellbore surface.

The obtained result can be superimposed by the method of images to yield the desired

solution in cylindrical coordinate system. The authors presented results for various

penetration lengths and angles of deviation[3].

A similar technique can be applied to reservoirs with shapes other than cylindrical

as was done in [22]. Larsen has presented results for two basic drainage shapes -

cylindrical and rectangular and for various deviation angles and penetration lengths.

As seen from this review, the existing methods and techniques of evaluation of

the productivity index impose serious restrictions on the geometry of the reservoir.

In particular, the vertical dimension of the reservoir has to be small in comparison

to its lateral dimensions to allow one to neglect the flow in the vertical direction or

include its effect in the geometrical skin, sg. Another restriction is due to the use

of the method of images, which requires the drainage area shape to be convex and

suitable for covering the whole plane when translated infinitely many times.

One should also note that very little attention has been paid to methods for eval-

uating a boundary-dominated productivity index. For instance, all papers mentioned

above are concerned only with evaluating the pseudo-steady-state productivity index

in three-dimensional reservoir. In practice, the boundary-value productivity index

values are taken to be equal to the pseudo-steady-state productivity index, despite

the fact that Wattenbarger and Helmy have shown that the difference between these

two values of productivity index can be up to 10% even for horizontal flow in simple

drainage shapes [17].
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CHAPTER IV

TIME INDEPENDENT DIFFUSIVE CAPACITY

In this chapter we show that for each of the initial boundary value problems (I, II

and III) there exist initial distributions f1(x), f2(x) and f3(x), respectively, such that

the diffusive capacity with respect to the corresponding problem is constant [20].

In addition, the class of solutions to the initial boundary value problem I will be

described on which the diffusive capacity takes a unique constant value. In the last

section the time independent values of the diffusive capacity for problems I, II and

III are compared to each other.

A. Initial Boundary Value Problem I.

Remark. If u(x, t) is a solution of problem I and J(u, t) = J(u) is constant for all

t > 0, then there exist real constants C and B such that

ūw =
1

W

∫

Γw

udS = C + Bt. (4.1)

This can be seen from the following argument. From the definition of the diffusive

capacity (2.3) it follows that ūw = − q
J(u)

+ ūΩ. Hence, ∂ūw

∂t
= ∂ūΩ

∂t
. The divergence

theorem implies that

∂ūΩ

∂t
=

1

V

∫

Ω

Ludx =
1

V

∫

Γw

∂u

∂~ν
dS. (4.2)

Consequently, ∂ūw

∂t
= − q

V
, from which (4.1) easily follows.

Let u1(x) be the solution to the auxiliary steady-state problem:

Lu1 = − 1

V
(4.3)
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u1|Γw = 0 (4.4)

∂u1

∂~ν
|Γe = 0. (4.5)

Let the initial condition in problem (I) be f1(x) = qu1(x). Then there exists a solution

u(x, t) such that the diffusive capacity is constant and is equal to:

J(u) =
V

∫

Ω
u1(x)dx

. (4.6)

To show that this is true, let u(x, t) = qu1(x) − q
V
t. By virtue of the divergence

theorem,
∫

Γw

∂u

∂~ν
dS = −q.

Consequently, u is a solution of the initial boundary value problem I with the initial

distribution f1(x) = qu1(x).

The diffusive capacity J(u, t) on u(x, t) is constant and is equal to

JI := J(u, t) =
V

∫

Ω
u1(x)dx

. (4.7)

Function u is positive on Ω only for t ∈ (0, T ), where

T =
minx∈Ω u1(x)

V
. (4.8)

Solutions of problem I represent the pressure distribution in the reservoir at time t,

hence, we are interested in the positive on Ω solutions only. Therefore, the diffusive

capacity (as a model of a pseudo-steady-state productivity index) J(u, t) = JI is

defined only for t ∈ (0, T ), where T is given by (4.8).

Note that at each time t, u(x, t) is constant on Γw. Consider a class of solutions

to problem I that have a similar property, i. e., let class of solutions to problem I

Υ = { u | ∃C and B - constants, such that u(x, t) = C + Bt for x ∈ Γw and for t >

0 }. Let solution u of problem I with the initial condition f1 = qu1 on Ω be such that
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u ∈ Υ . We will show that J(u, t) = J(u) is equal to JI .

To this end, we need to show the uniqueness of the solution of problem I in class

Υ . Assume that u ∈ Υ and w ∈ Υ are solutions of problem I. Let C1, B1, C2 and B2

are such that for t > 0,

u(x, t)|Γw = C1 + B1t

and

v(x, t)|Γw = C2 + B2t.

Then the difference g(x, t) = u(x, t) − v(x, t) is the solution of the following initial

boundary value problem:

Lg =
∂g

∂t
, x ∈ Ω, t > 0, (4.9)

∂g

∂~ν
|Γe = 0, (4.10)

g|Γw = (C1 − C2) + (B1 − B2)t, (4.11)

g(x, 0) = 0. (4.12)

Trivial initial condition (4.12) immediately implies C1 = C2.

Consider function h = ∂g
∂t

. It is a solution of the following problem:

Lh =
∂h

∂t
, x ∈ Ω, t > 0, (4.13)

∂h

∂~ν
|Γe = 0, (4.14)

h|Γw = B1 − B2, (4.15)

h(x, 0) = 0. (4.16)

In addition, from the boundary condition on Γw of problem I and the divergence
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theorem it follows that for t > 0

∫

Ω

hdx =
∂

∂t

∫

Ω

gdx =

∫

Ω

Lgdx =

∫

Γw

∂g

∂~ν

=

∫

Γw

∂g

∂~ν
−

∫

Γw

∂g

∂~ν
= 0. (4.17)

Without loss of generality, assume that B1 > B2. From the maximum principle for

parabolic equation and the trivial initial condition (4.16) it follows that h(x, t) ≥ 0

∀x ∈ Ω and t > 0. As a solution of the parabolic equation (4.13) with the constant

Dirichlet condition (4.15) on one part of the boundary ∂Ω and trivial Neumann

condition (4.14) on the remaining part of ∂Ω, h will converge to a constant B1 − B2

on Ω as t → ∞. Together with condition (4.17) this implies that

(B1 − B2)V = lim
t→∞

∫

Ω

h(x, t)dx = 0. (4.18)

Thus, u = v. Consequently, we have proved the following

Proposition 1. If both conditions (i) and (ii) are satisfied:

(i) solution u(x, t) of problem I is in class Υ = { u | ∃C and B - constants, such

that u(x, t) = C + Bt for x ∈ Γw and for t > 0 };

(ii) the initial condition in problem I is given by f1(x) = qu1(x), where u1 is a

solution of problem (4.3)-(4.5),

then the diffusive capacity on the solution u of problem I is constant and is given by

J(u, t) = JI =
V

∫

Ω
u1dx

.

From the proof preceeding Proposition 1 it also follows that problem I has a

unique solution in class Υ . The condition imposed on u in proposition 1 corresponds

to the infinite conductivity condition on the wellbore, i. e., the conductivity of the

wellbore is assumed to be so great with respect to the velocity filtration of fluid
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into the wellbore, that the pressure of the incoming fluid in the wellbore equalizes

instantly. From proposition 1 it follows that if the wellbore is assumed to have an

infinite conductivity and the initial distribution is qu1 then the productivity index for

a well produced with constant rate is constant and is given by JI .

B. Initial Boundary Value Problem II.

Let

∂u2

∂t
= Lu2, (4.19)

∂u2

∂~ν
|Γe = 0, (4.20)

u2|Γw = 0, (4.21)

u2(x, 0) = f2(x) − uw2. (4.22)

Obviously, u(x, t) = u2(x, t) + uw2 solves problem II. Then the diffusive capacity for

problem II can be expressed in terms of u2(x, t), namely

J(u, t) := J(u2, t) =

∫

Γw

∂u2

∂~ν
dS

− 1
V

∫

Ω
u2(x, t)dx

(4.23)

Consider the related Sturm-Liouville problem for the elliptic operator L and the

first eigenpair of the latter, i.e, let λ0 and φ0(x) be the first eigenvalue and first

eigenfunction, respectively, of the problem

Lφ0 = −λ0φ0, (4.24)

φ0|Γw = 0 (4.25)

∂φ0

∂~ν
|Γe = 0. (4.26)

Let u2(x, t) be a solution of the initial boundary value problem (4.19)- (4.22) with the

initial distribution u2(x, 0) equal to φ0(x). Then u2(x, t) = φ0(x)e−λ0t is a solution of
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the initial boundary value problem (4.19)-(4.22). The diffusive capacity is constant

and is equal to

JII := J(u2, t) =
λ0

∫

Ω
φ0(x)dxe−λ0t

1
V

∫

Ω
φ0(x)dxeλ0t

= λ0V. (4.27)

This leads to

Proposition 2. If the initial condition of problem II is given by f2(x) = φ0(x)+uw2,

where φ0 is the eigenfunction of problem (4.24)-(4.26) corresponding to the minimal

eigenvalue λ0, then the diffusive capacity on the solution u of problem II is constant

and is given by

J(u, t) = JII = λ0V.

In fact, the diffusive capacity is constant provided that the initial distribution u2(x, 0)

is equal to any eigenfunction φi(x), i = 1, 2.... However, only the eigenfunction

corresponding to the minimal eigenvalue does not change sign on Ω, therefore, in

terms of the pressure distribution in the hydrocarbon reservoir, φ0(x) is the only

physically realistic initial distribution.

C. Initial Boundary Value Problem III.

Let u3(x, t) = u(x, t) − uw3 where u3 solves (III). Then u3(x, t) is a solution of the

reduced problem

Lu3 =
∂u3

∂t
, (4.28)

∂u3

∂~ν
|Γe = 0, (4.29)

(α
∂u3

∂~ν
+ u3)|Γw = 0, , (4.30)

u3(x, 0) = f3(x) − uw3, (4.31)

Diffusive capacity J(u, t) corresponding to problem (III) is expressed in terms of
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J(u3, t) in the following way

J(u, t) = J(u3, t) =

∫

Γw

∂u3

∂~ν
dS

− 1
V

∫

Ω
udx

, (4.32)

where and ū3|Γw = 0 is the average of u3 on Γw.

Physically, the Neumann boundary condition on Γw in problem III corresponds

to production from a well with a thin-skin zone with constant wellbore pressure

(constant ū3|Γw) [29]. A sufficient condition for the diffusive capacity to be constant

is similar to that for the second initial boundary value problem.

In particular, consider the related Sturm-Liouville problem. Let λα
k and φα

k (x)

be an eigenpair of the problem

Lφα
k = −λα

kφα
k , (4.33)

∂φα
k

∂~ν
|Γe = 0. (4.34)

φα
k + α

∂φα
k

∂~ν
|Γw = 0 (4.35)

Here, the superscript α is intended to emphasize that the solution and, hence, the

diffusive capacity, of problem III depend on the value of parameter α. This depen-

dence will be analyzed in subsequent sections. Let u3(x, t) be a solution of the initial

boundary value problem (4.28)- (4.31) with the initial distribution u3(x, 0) = φα
k (x).

Then u3(x, t) = φα
k (x)e−λα

k t solves (4.28)-(4.31) and the diffusive capacity is time

independent.

When parameter α in problem III is positive, then the minimal eigenvalue λα
0 is

positive and the corresponding eigenfunction φα
0 (x) does not change sign on Ω.

In chapter Model of the Skin Effect we will show that the boundary condition

on Γw of problem III models skin effect for a damaged well produced with a constant

wellbore pressure. As it is mentioned in Literature Review, the production from a
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stimulated well is modeled by a negative skin factor s, therefore, we will analyze the

behavior of the diffusive capacity on the solutions of problem III for negative values of

parameter α. The latter case will be discussed in more detail in chapter Model of the

Skin Effect. For the purposes of this chapter, it is sufficient to note that when α < 0,

the minimal eigenvalue and hence the constant diffusive capacity may be negative.

Negative productivity index is an indication of injection into the well, therefore, to

avoid the contradiction, our attention will be restricted to positive eigenvalues only.

The analysis of the first eigenfunction will be given in chapter Model of the Skin

Effect.

Regardless of the sign of α, let λα
0 be the first nonnegative eigenvalue. If the

initial distribution in (4.28)-(4.31) is equal to the corresponding eigenfunction, the

constant diffusive capacity is given by

JIII(α) := J(u3, t) = λα
0 V, (4.36)

Therefore, we have shown the following

Proposition 3. If the initial condition of problem III is given by f3(x) = φα
0 (x)+uw3,

where φα
0 is the eigenfunction of problem (4.33)-(4.35) corresponding to the minimal

positive eigenvalue λα
0 , then the diffusive capacity on the solution u of problem III is

constant and is given by

J(u, t) = JIII(α) = λα
0V.

D. Comparison of the Constant Diffusive Capacities for Problems I, II and III

The steady-state auxilary problem (4.3)-(4.5) that was introduced before has a conve-

nient variational formulation, which facilitates deriving an important relation between

the time independent diffusive capacities of Γw with respect to Γe in Ω.
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Assume that the initial distributions in problems I, II and III are such that the

diffusive capacities for the problem I, II and III (JI , JII and JIII(α), respectively) -

are time independent and their values are given by (4.7), (4.27) and (4.36).

Let H1,2(Ω) be the usual Sobolev space [1]. Denote by
◦

H
1,2

(Ω, Γw) the closure

in H1,2(Ω) norm of smooth functions that vanish on Γw, and by
◦

H
1,2

(Ω, Γw, α) the

closure in H1,2(Ω) norm of smooth functions such that (u + α ∂u
∂~ν

)|Γw = 0 [1].

The following are well known variational principles yielding the first eigenvalues

λ0 and λα
0 of the problems (4.24)-(4.26) and (4.33)-(4.35), respectively (see [26, 5]):

λ0 = inf
u∈

◦

H1(Ω,Γe)

∫

Ω
A∇u · ∇udx
∫

Ω
u2dx

, (4.37)

λα
0 = inf

u∈
◦

H1
2
(Ω,Γwα)

∫

Ω
A∇u · ∇udx + 1

α

∫

Γw
u2dS

∫

Ω
u2dx

. (4.38)

These two principles imply that for any positive α1 and α2 such that (see [5]) α1 > α2,

λα1

0 < λα2

0 . Moreover, λα
0 ↗ λ0 as α ↘ 0. This leads to

Proposition 4. If the initial conditions in problems II and III are such that JII and

JIII(α) are time independent and α ↘ 0, then JIII(α) ↗ JII.

Another important comparison can be made between the time independent ca-

pacities for problems I and II.

Theorem 1. If the initial conditions in problems I and II are such that the diffusive

capacities JI and JII are time independent, then

JII ≤ JI ≤ CΩJII, (4.39)

where CΩ = maxΩ φ0

φ̄0

.

Proof. Let u1 ∈
◦

H1
2 (Ω, Γw) be a solution of the problem (4.3)-(4.5). We need to show
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that

1
∫

Ω
u1(x)dx

≥ λ0.

From (4.37) it follows that

λ0 ≤
∫

Ω
(∇u1) · (A∇u1)dx

∫

Ω
u2

1dx
. (4.40)

Using the identity:

∇ · (A∇u1) = (∇u1) · (A∇u1) − u1∇ · (A∇u1),

applying the divergence theorem to the numerator and making use of (4.3)- (4.5), we

obtain:

λ0 ≤
1

V

∫

Ω
u1dx

∫

Ω
u2

1dx
. (4.41)

The last inequality can be rewritten as

λ0 ≤
1

V

(∫

Ω
u1dx

)2

∫

Ω
u2

1dx

1
∫

Ω
u1dx

(4.42)

The first part of (4.39) now follows from Hölder’s inequality.

Let u1(x) be a solution of (4.3)-(4.5) and φ0 - of (4.24)-(4.26). After multiplica-

tion of both sides of (4.3) by φ0, using symmetry of A in the identity

(∇ · (A∇u1))φ0 = ∇ · (φ0A∇u1) −∇ · (u1A∇φ0) + ∇ · (A∇φ0)u1, (4.43)

followed by integration over Ω, from the divergence theorem one concludes that

λ0 max
Ω

φ0

∫

Ω

u1dV ≥ λ0

∫

Ω

u1φ0dV =
1

V

∫

Ω

φ0dV = φ̄0. (4.44)

The latter can be recast as the second part of (4.39), using the positivity of u1 and

φ0.
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CHAPTER V

TRANSIENT DIFFUSIVE CAPACITY

In chapter Time Independent Diffusive Capacity it was shown that the productivity

index of a well in a reservoir is constant for all t > 0 provided that the pressure

distribution at t = 0 satisfies certain conditions. The productivity index is known to

stabilize in a long time asymptote regardless of the initial pressure distribution. In this

chapter we will consider a transient diffusive capacity and investigate questions related

to its stabilization. Thus, we will analyze problem I and problem II with arbitrary

initial conditions. The only restriction that is imposed on the initial conditions f1

and f2 of problems I and II, respectively, is motivated by physical considerations: we

require f1 and f2 be positive smooth functions on Ω.

A. IBVP I - Constant Production Rate Regime.

In Literature Review it was mentioned that the constant rate regime is usually mod-

eled with one of two assumptions: at each time t > 0 either the pressure or the

pressure flux is assumed to be constant on the wellbore. Proposition 1 of the previ-

ous chapter shows that the condition of the constant wellbore pressure at each time

t > 0 (infinite conductivity condition) is equivalent to the conditions of the pseudo

steady-state, i. e., the productivity index of a well is time independent. In this section

we will show that the class Υ of solutions of problem I, defined in chapter Time Inde-

pendent Diffusive Capacity, is stable with respect to small perturbations of boundary

conditions. Recall that Υ is the class of solutions u of problem I such that at each

time t > 0 u is constant on Γw. Then the stability of Υ is established by the following

two propositions.
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Proposition 5. Let u(x, t) be a solution of problem I such that u(x, t) = Bt+h(x, t)

for x ∈ Γw, where function h(x, t) - a smooth bounded function. ∀ε > 0 ∃δ > 0, a

constant C > 0 and a solution of problem I ũ ∈ Υ such that if ∀t > 0, |h(x, t)−C| ≤ δ

∀x ∈ Γw then |J(u, t) − J(ũ, t)| ≤ ε ∀t > 0.

Proof. Function h is bounded on Γw. Let C = 1
2
(maxΓw u + minΓw u) and let M =

maxΓw |h(x, t) − C|. Let ũ be a solution of problem I such that ũ|Γw = C + Bt and

ũ(x, 0) = u(x, 0). Then function v(x, t) = u(x, t)− ũ(x, t) is a solution of the following

problem:

Lv =
∂v

∂t
, x ∈ Ω, t > 0, (5.1)

∂v

∂~ν
|Γe = 0, (5.2)

v|Γw = h(x, t) − C, (5.3)

v(x, 0) = 0. (5.4)

The maximum principle for parabolic equation (5.1) implies that |v(x, t)| ≤ M

for all x ∈ Ω and t ≥ 0. In addition, by proposition 1, the diffusive capacity on ũ is

uniquely defined.

Since
∫

Γw

∂u
∂ν

dS =
∫

Γw

∂u
∂ν

dS = −q for t ≥ t0,

∣

∣

∣

∣

1

J(ũ, t)
− 1

J(u, t)

∣

∣

∣

∣

≤ 1

q

∣

∣

∣

∣

1

W

∫

Γw

(u − ũ)dS +
1

V

∫

Ω

(u − ũ)dx

∣

∣

∣

∣

.

Hence,
∣

∣

∣

1
J(ũ,t)

− 1
J(u,t)

∣

∣

∣
≤ 1

q
M

(

1
W

+ 1
V

)

.

In the introductory chapter it was mentioned that two principal regimes of pro-

duction (constant rate of flow or constant wellbore pressure production) are ideal-

izations of the real conditions. Certainly, the rate of flow from the well is not time

independent, however, it is reasonable to assume that it is sufficiently close to a con-

stant. Assume that this is the case. In addition, assume that at each time t > 0 the
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wellbore pressure distribution is almost constant. That is, let v(x, t) be a solution of

the following initial boundary value problem:

Lv = ∂v
∂t

, x ∈ Ω, t > 0 (5.5)

∂v
∂~ν
|Γe = 0, (5.6)

∫

Γw

∂v
∂~ν

dS = −q + δ(x, t), (5.7)

v(x, 0) = v0(x). (5.8)

Let δ(x, t) be a bounded smooth function and δ > 0 be such that δ(x, t) < δ ∀x ∈ Γw

and ∀t > 0. In addition, assume that δ1 > 0 and real constants C and B are such

that

v(x, t)|Γw = C + Bt + h(x, t), where |h(x, t)| ≤ δ1 ∀x ∈ Ω, ∀t > 0. (5.9)

Along with problem(5.5)-(5.8), consider function ũ which solves problem I with the

initial condition v0,i. e.

Lṽ = ∂ṽ
∂t

, x ∈ Ω, t > 0 (5.10)

∂ṽ
∂~ν
|Γe = 0, (5.11)

∫

Γw

∂ṽ
∂~ν

dS = −q, (5.12)

ṽ(x, 0) = v0(x). (5.13)

Dirichlet-to-Neumann map for the parabolic equation (5.5) is bounded, function v

is subject to condition (5.9), hence, there exists function h̃(x, t) defined on Γw and

δ2 > 0 such that the solution of the problem (5.10)-(5.13) satisfies the condition:

ṽ(x, t)|Γw = C + Bt + h̃(x, t), where |h̃(x, t)| ≤ δ2 ∀x ∈ Γw, ∀t > 0.

Let ε > 0, then, by proposition 5, we can choose δ and δ1 so that if g is a solution of
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of problem I with f1 = v0 on Ω such that g(x, t) = C + Bt ∀x ∈ Γw and ∀t > 0 then

|J(ṽ, t)−J(g, t)| < ε/2. In addition, from the boundary condition (5.7) and condition

(5.9) it follows that δ and δ1 can be chosen so that |J(ṽ, t) − J(v, t))| ≤ ε/2. Thus,

we have proved the following.

Proposition 6. ∀ε > 0 ∃δ > 0 and δ1 > 0 such that if v is a solution of problem

(5.5)-(5.8), the condition (5.9) holds and g is a solution of of problem I with f1 = v0

on Ω such that g(x, t) = C + Bt ∀x ∈ Γw and ∀t > 0 then |J(v, t) − J(g, t)| ≤ ε

∀t > 0.

One should note that JI is shown to be the unique value of the pseudo-steady-

state productivity index of a well only under the assumption of the inifinite con-

ductivity of the well. The extent to which such assumption is realistic for various

reservoir/well configurations will be discussed in more detail in chapter Productivity

Index in a Three-dimensional Reservoir. Below we will investigate the question of the

uniqueness of the value of the pseudo-steady-state productivity index. Recall that the

pseudo-steady-state productivity index is a constant value of the diffusive capacity

on the solutions to problem I. Therefore, we should consider other classes of solutions

of the problem I. Then it is not hard to show the following

Remark. JI is not necessarily a unique constant value of the diffusive capacity on the

solutions to problem I.

Consider solutions to problem I with a constant flux on Γw, i. e. let u(x, t) be a

solution of the following problem

Lu =
∂u

∂t
, x ∈ Ω, t > 0, (5.14)

∂u

∂~ν
|Γe = 0, (5.15)

∂u

∂~ν
|Γw = − q

W
, (5.16)
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u(x, 0) = f1(x). (5.17)

The solution to (5.14)-(5.17) is given (up to an additive constant) by u(x, t) = qv −
q
V

t + h(x, t), where v(x) is a solution of the steady state problem

Lv = − 1

V
, x ∈ Ω, (5.18)

∂u

∂~ν
|Γe = 0, (5.19)

∂u

∂~ν
|Γw = − 1

W
, (5.20)

and h(x, t) is a solution of the corresponding problem with homogeneous boundary

conditions:

Lh =
∂h

∂t
, x ∈ Ω, t > 0, (5.21)

∂h

∂~ν
|Γe = 0, (5.22)

∂h

∂~ν
|Γw = 0, (5.23)

h(x, 0) = f1(x) − qv(x). (5.24)

The solution to (5.21)-(5.24) is given by h(x, t) =
∑∞

n=0 cnφn(x)e−λnt, where φn(x)

and λn are solutions of the related Sturm-Liouville problem and cn are the coefficients

of the Fourier expansion of h(x, 0) in terms of φn. The diffusive capacity J(u, t) is

given by

J(u, t) =
−q

v̄w − v̄Ω + h̄w − h̄Ω

, (5.25)

Note that v̄w and v̄Ω are constant, while h̄w and h̄Ω are functions of time. Clearly,

the difference h̄w − h̄Ω =
∑∞

n=0 cn(φ̄nw − φ̄nΩ)e−λnt converges to a constant as t → ∞,

therefore, J(u, t) converges to a constant value Ĵ as t → ∞. However, Ĵ is not

necessarily equal to JI .
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B. IBVP II - Constant Wellbore Pressure Regime.

For simplicity, consider the following problem for a parabolic equation. Let u(x, t) be

a solution of:

Lu =
∂u

∂t
, x ∈ Ω, t ≥ 0, (5.26)

∂u

∂~ν
|Γe = 0, (5.27)

u|Γw = 0, (5.28)

u(x, 0) = u0(x), (5.29)

where u0(x) > 0. Then the diffusive capacity is simply

J(u, t) = V

∫

Γw

∂u
∂~ν

dS
∫

Ω
udx

, (5.30)

Effectively, problem I was “shifted down” by uw2 - the Dirichlet boundary condition

on Γw. Therefore, the positivity of u0 is equivalent to the requirement that the value

of pressure set on the wellbore is less than the pressure everywhere else in the reservoir

- a perfectly reasonable assumption for real production conditions.

Along with (5.26)-(5.29), consider related Sturm-Liouville problem for the oper-

ator L,

Lφk = −λkφk, x ∈ Ω, t ≥ 0, (5.31)

∂φk

∂~ν
|Γe = 0. (5.32)

φk|Γw = 0. (5.33)

Let {φk(x)}∞k=0 be an orthonormal family of solutions of (5.31)- (5.33) with respect

to the usual inner product in L2(Ω).

Denote dk =
∫

Ω
φk(x)dx and ck =

∫

Ω
u0(x)φk(x)dx. Then the diffusive capacity
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can be written as

J(u, t) = V

∑∞
k=0 ckλkdke

−λkt

∑∞
k=0 ckdke−λkt

.

The last expression can be rewritten as

J(u, t) = V
c0d0λ0e

−λ0t
(

1 +
∑∞

k=1
ck

c0

dk

d0

λk

λ0
e−(λk−λ0)t

)

c0d0e−λ0t
(

1 +
∑∞

k=1
ck

c0

dk

d0
e−(λk−λ0)t

) .

At last, the latter can be recast into

J(u, t) = V λ0



1 +

∑∞
k=1

ck

c0

dk

d0

(

λk

λ0
− 1

)

e−(λk−λ0)t

1 +
∑∞

k=1
ck

c0

dk

d0
e−(λk−λ0)t



 . (5.34)

Since λ0 < λ1 < λ3 < ..., as t → ∞, J(u, t) → λ0V . This proves the following

Proposition 7. If u is a solution of initial boundary value problem II, then the

diffusive capacity J(u, t) converges to constant value JII as t → ∞ for any initial

condition f2.

In terms of the productivity index, proposition 7 can be rephrased in the following

way: if a well is produced with a constant wellbore pressure, the productivity index

stabilizes to constant value JII as t → ∞ regardless of the initial pressure distribution.

Note that since the initial condition u0(x) is positive on Ω, c0 > 0 and d0 > 0.

From the maximum principle for parabolic equation (5.26) it follows that u(x, t) ≥ 0

for all t > 0. Consequently, the denominator in (5.34), equal to
∫

Ω
u(x, t)dx/c0d0e

−λ0t,

is positive for all t > 0. Therefore, from (5.34) follows

Remark. If in (5.34) ckdk > 0 ∀k, then J(u, t) ↘ λ0V .

The last observation allows one to analyze several physically important examples

of the transient productivity index in terms of the diffusive capacity on the solutions

of the initial boundary value problem for a parabolic equation.
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Example 1. Suppose that a well is produced with constant rate and the productivity

index is constant and the well has infinite conductivity. Then the pressure in the

reservoir u(x, t) is determined (up to an additive constant) by u(x, t) = qu1(x) − q
V

t

(see proposition 1), where u1(x) is a solution of the auxiliary steady-state problem

Lu1(x) = − 1

V
, x ∈ Ω

∂u1

∂~ν
|Γe = 0,

u1|Γw = 0.

Suppose that at some time t0 > 0, the production regime was changed to a

constant wellbore pressure production. Then the pressure in the reservoir u(x, t) for

t > t0 is defined by u(x, t) = v(x, t − t0) − q
V

t0, where v(x, t) is a solution of the

problem

Lv(x) = −∂v

∂t
, x ∈ Ω, t > 0

∂v

∂~ν
|Γe = 0,

v|Γw = 0,

v(x, 0) = qu1(x).

The diffusive capacity J(u, t) = J(v, t). Function v(x, t) is defined by

v(x, t) =
∞

∑

n=0

ckφk(x)e−λkt,

where ck = q
∫

Ω
u1(x)φkdx. Using integration by parts, we obtain

∫

Ω

Lu1φk =

∫

Ω

u1Lφk.

Hence,

1

V

∫

Ω

φk = λk

∫

Ω

u1φk.
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Thus, for any k = 1, 2..., dkck > 0 and (5.34) implies that J(u, t) ↘ JII. In other

words, when the regime of production changes from pseudo-steady-state i. e. con-

stant flow rate, to constant wellbore pressure the productivity index monotonically

decreases to the boundary-dominated PI.

Example 2. For the purposes of analysis it is frequently assumed that at t = 0

the pressure in the reservoir is distributed uniformly, i. e., u0(x) = ui, where ui is

a positive constant. Then ck = uidk and the productivity index is monotonically

decreasing to the boundary-dominated PI.

Finally, consider an example of the initial pressure distribution yielding the pro-

ductivity index which is less than the boundary dominated PI.

Example 3. Let u0(x) = 100φ0(x) − 3φ1(x). Then the diffusive capacity J(u, t) <

λ0V .

An example of such initial distribution for an ideal cylindrical reservoir with

vertical fully penetrated well in given in Fig.3, where the radial profile of u0(r) is

given. The dimensionless radius of the reservoir is equal to RD = 1000. Physically this

example may be interpreted as follows: assume that the reservoir has been depleted by

a set of wells. Suppose that the old wells are shut down and a new well is drilled and

produced. Then the productivity index of the new well will monotonically increase

to the boundary-dominated productivity index value.
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Fig. 3. Radial Profile of an Initial Distribution Yielding Small Diffusive Capacity.
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CHAPTER VI

MODEL OF THE SKIN EFFECT

Stabilized production with constant rate is characterized by the pseudo-steady-state

productivity index. When the well is damaged, the value of the productivity index

is less than what is predicted by the model. As described in Literature Review, such

effect is called thin-skin effect. In order to take into account the skin effect, the

pseudo-steady-state productivity index is corrected according to the equation:

PIPSS,skin =
1

1
PIPSS

+ s
, (6.1)

where s is the so-called skin factor or simply skin. As mentioned in Literature Review

the skin effect can be modeled by a third type boundary condition specified on the

well boundary [29], [16]. The well boundary condition in dimensionless form is then

the following:

(pD(rD, t) − pDw(t))|rD→rDw
= sqD. (6.2)

Here, pD(rD, t) is the pressure in the reservoir with a circular well of radius rDw,

pDw(t) is the flowing bottom hole pressure and qD is the constant volumetric flow

rate from the well. From here and below, we will omit the subscript “D”, although

it is implied that all variables and functions are non-dimensionalized appropriately.

The skin factor concept was originally introduced to describe the behavior of

damaged wells. Others have extended the idea to stimulated wells which have a

higher productivity index than the pseudo-steady-state productivity index of an ideal

well. In [19] it was shown that a negative skin s corresponds to a stimulated well.

All existing results on modeling the skin effect pertain to the constant rate pro-

duction regime. In this section it will be shown that for the constant wellbore pressure

production regime, the skin effect can be modeled by a third-type boundary condition
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specified on the well boundary.

A. Diffusive Capacity for IBVP III in an Annulus

Let u(r, t) be a solution of the problem

∂

∂r

(

r
∂u

∂r

)

=
∂u

∂t
, 1 < r < RD, , t > 0, (6.3)

∂u

∂r
|r=RD

= 0, (6.4)

(u + α
∂u

∂r
)|r=1 = 0, (6.5)

u(r, 0) = u0(r). (6.6)

Problem (6.3)-(6.6) models the axisymmetric flow of oil in an ideal isolated cir-

cular reservoir with a perfect circular well situated in the center. Here, u(r, t) is the

dimensionless pressure in the reservoir, the dimensionless formation permeability is 1

and the dimensionless outer radius is equal to RD. The dimensionless wellbore radius

is equal to 1. Constant wellbore pressure production is assumed. The thin skin zone

adjacent to the well has a permeability below than that of the formation.

We will call a production regime for a well with a thin skin zone characterized by

a constant productivity index a generalized boundary-dominated state. When α = 0

(no damaged zone around the well), it is a boundary-dominated regime.

Along with problem (6.3)-(6.6), consider a related Sturm-Liouville problem:

∂

∂r

(

r
∂φα

k

∂r

)

= −λα
k∂φα

k , 1 < r < RD, , t > 0, (6.7)

∂φα
k

∂r
|r=RD

= 0, (6.8)

(φα
k + α

∂φα
k

∂r
)|r=1 = 0, (6.9)

Let λα
0 be the minimal nonnegative eigenvalue of the problem (6.7)-(6.9). If the
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initial condition u0(r) = φα
0 - corresponding to λα

0 eigenfunction, then by propositions

3 and 4 of chapter Time Independent Diffusive Capacity, the generalized boundary-

dominated productivity index is determined by JIII(α) = λα
0V and JIII(0) = JII .

In analogy to (6.1), we will defined the skin factor s by

s = s(α) :=
1

JIII(α)
− 1

JII
=

1

JIII(α)
− 1

JIII(0)
, (6.10)

Positive skin defined by (6.10) is an evidence of the damaged well. By analogy, the

generalized boundary-dominated index of a stimulated well should be greater than

the boundary-dominated index, yielding negative skin s.

When α < 0, λα
0 is the first positive eigenvalue. The eigenpair solves known

equations involving Bessel functions of the first and the second kind [26]. Using

known facts from the theory of Bessel functions, it is not hard to show the following.

Proposition 8. As α → ∞, λα
0 → 0. As α → −∞, λα

0 → λ
(N)
0 - where λ

(N)
0 is the

minimal nontrivial eigenvalue of the following problem:

∂

∂r

(

r
∂u

∂r

)

=
∂u

∂t
, 1 < r < RD, , t > 0, (6.11)

∂u

∂r
|r=RD

= 0, (6.12)

∂u

∂r
= 0, (6.13)

u(r, 0) = u0(r). (6.14)

This implies, in particular, that s(α), defined by Eq.(6.10), is bounded from

below, since λ
(N)
0 is bounded from above. The relation between s and α for RD = 1000

and RD = 1000 is shown in Figs. 4 and 5 for a range of values of α. The behavior of

the constant diffusive capacity JIII(α) with respect to changes in α is demonstrated

in Figs. 6 and 7. Figs. 4 and 5 illustrate that when α > 0, skin s = α, i.e., the
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positive skin can be successfully modeled by the third type boundary condition, in

perfect agreement with the constant rate case. In order to analyze the case of α < 0,

additional considerations are necessary.

Eigenfunctions φα
0 corresponding to the minimal positive eigenvalue λα

0 of the

problem (6.7)-(6.9) for two sample positive and negative values of α are pictured in

Figs. 8 and 9. As seen in Fig. 8, for negative α the corresponding eigenfunction

φα
0 changes sign on the interval 1 < r < RD. Recall that the initial condition of the

problem (6.3)- (6.6) u0 is equal to φα
0 . Consequently, the sufficient condition for the

generalized boundary-dominated state is such that the initial pressure distribution

in the reservoir is not everywhere positive. Thus, a negative value of the skin factor

s creates a physical contradiction, therefore problem (6.3)-(6.6) with α < 0 can not

serve as an appropriate model for a stimulated well.
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Fig. 4. Graph of s(α) for RD = 1000.
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CHAPTER VII

PRODUCTIVITY INDEX IN A TWO-DIMENSIONAL RESERVOIR

In this chapter we present a numerical investigation of the diffusive capacity/produc-

tivity index in two-dimensional domains. The formulas for pseudo-steady state and

boundary dominated productivity indices derived in the chapter Time Independent

Diffusive Capacity will be compared to the values obtained by Dietz’ equation (3.12)

for domains in which equation (3.12) can be applied. Then, using the new method we

will evaluate the diffusive capacity in domains with more complex geometry, revealing

some geometric characteristics of the domain that lead to the nonnegligible difference

between JI and JII. The impact of anisotropy of the permeability will be analyzed

too. We will restrict our attention to pseudo-steady-state and boundary-dominated

productivity indices only, that is we will consider only initial boundary value problems

I and II.

If the thickness of the reservoir is uniform, then for a fully penetrated vertical well

the three-dimensional problem reduces to a two-dimensional one. Since the radius of

wellbore is small compared to the dimensions of the reservoir, we can assume that the

pressure is uniformly distributed on the wellbore. Therefore, for a two-dimensional

problem, the pseudo-steady-state productivity index is equal to JI given by equation

(4.7).

Under the assumption that the reservoir is ideal and the well is perfectly circular,

vertical and fully penetrated, the initial boundary value problems I and II can be

formulated in terms of dimensionless variables as follows. Let Ω ∈ R
2 is the horizontal

cross-section of such a reservoir. Let {r, θ} is a polar coordinate system specified on

Ω along with the cartesian coordinate system {x, y}. The origins of both coordinate

systems are located at the center of the well, which is represented by a circle with
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equation r = 1. Let RD be the radius of the circle of the same area as Ω. Then

the dimensionless area V of Ω is equal to (R2
D − 1)/2. As before, let Γe denote

the exterior boundary of Ω. The auxiliary steady-state problem (4.3)-(4.5) and the

Sturm-Liouville problem (4.24)-(4.26) can be written as:

∂2u1

∂x2
+

∂2u1

∂y2
= − 1

V
(7.1)

u1|r=1 = 0 (7.2)

∂u1

∂~n
|Γe = 0. (7.3)

and

∂2φ0

∂x2
+

∂2φ0

∂y2
= −λ0φ0, (7.4)

φ0|r=1 = 0 (7.5)

∂φ0

∂~n
|Γe = 0, (7.6)

respectively. By propositions 1 and 2, the values of the pseudo-steady state and

boundary dominated productivity indices are given by the following equations, re-

spectively:

JI =
V

∫

Ω
u1dx

(7.7)

and

JII = λ0V. (7.8)

For all two-dimensional domains considered in this section, problems (7.1)-(7.3)

and (7.4)-(7.6) were solved in PDE toolbox of MATLAB software package. The

chapter Remarks on Numerical Calculations provides a sample code and some con-

siderations on the precision of algorithms related to the finite element approximation

used in this software.
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A. Comparison to Existing Results

Tables 1 and 2 provide the numerical results for a variety of the two dimensional

drainage area shapes. The notations used in the table are the following: JI is the

constant diffusive capacity of the initial boundary value problem I (pseudo-steady-

state producitivity index) computed by Eq. (7.7). Value JI is compared to the value

of the pseudo-steady-state productivity index JPSS computed by Eq.(3.12) with the

shape factors CA taken from [7] for every considered shape. The constant diffusive

capacity JII , given by Eq.(7.8), is compared to the productivity index JBD computed

by Eq. (3.12) with the boundary-dominated shape factors CA provided in [17]. Note

that shape factors for some of the drainage area shapes considered in [7] are not

provided in [17]. The results are presented for two values of the dimensionless radius

RD of the drainage area, RD = 1000 and RD = 10000 , since it is conventionally

considered that for a single vertical well, the drainage area that it can deplete is most

likely to fall within the range specified by these values of the dimensionless radius.

As illustrated by the tables, Eqs.(7.7) and (7.8) closely agree to the corresponding

existing formulas. The largest difference between the corresponding values is the one

between JI and JII in the drainage areas where the well is located far from the center

of symmetry of the domain.

As noted before, one of the disadvantages of Eq.(3.12) is that it cannot be applied

to the drainage area shapes that do not satisfy the requirements of the method of

images. On the other hand, the method of deriving Eq.3.12 allowed the authors to

compute the time of the onset of the pseudo-steady-state [24]. In the derivation of Eqs.

(7.7) and (7.8), it is assumed that the productivity index is constant starting from

t = 0, thus excluding the possibility to estimate the time required for stabilization

of the productivity index. However, Eq.(7.7) and (7.8) are valid for all drainage area
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shapes and can be applied to a general reservoir without the usual assumptions of the

homogeneity and isotropy of the media. In the next sections we exploit these useful

features of the new formulas for productivity index to analyze its behavior in more

complex geometries and for anisotropic media.

Table 1.: Productivity Indices for Typical Drainage Area

Shapes. Part 1.

RD = 1000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

0.1620 0.1626 0.38 n/a 0.03

0.1619 0.1625 0.41 n/a 0.09

�
�
�
�

�
�
�
�

u

60˚
0.1593 0.1606 0.58 n/a 0.26

0.1598 0.1609 0.50 n/a 0.15

0.1566 0.1578 0.76 n/a 0.07
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Table 1.: (continued)

RD = 1000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

@
@

@@
u

1
1/3

0.1069 0.1107 3.51 n/a 0.08

0.1615 0.1622 0.41 0.08 0.08

0.1496 0.1516 1.27 0.09 0.02

0.1376 0.1403 1.97 0.09 0.14

0.1351 0.1374 1.69 0.08 0.18

u

2

1

0.1567 0.1578 0.68 0.12 0.08

u

2

1

0.1482 0.1495 0.91 0.14 0.06

u

2

1

0.1351 0.1403 3.73 0.34 0.04
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Table 1.: (continued)

RD = 1000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

u

2

1

0.1283 0.1331 3.59 0.32 0.06

u

2

1

0.1355 0.1369 1.00 0.13 0.06

u

2

1

0.1065 0.1227 13.22 8.64 0.03

u

2

1

0.0990 0.1114 11.16 6.84 0.02

r

4
1

0.1394 0.1421 1.90 0.31 0.07

r

4
1

0.1329 0.1354 1.84 0.29 0.06

r

4
1

0.1047 0.1161 9.88 1.06 0.04
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Table 1.: (continued)

RD = 1000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

r

4
1

0.1013 0.1116 9.22 0.85 0.06

q

5
1

0.1307 0.1342 2.63 0.44 0.06

Table 2.: Productivity Indices for Typical Drainage Area

Shapes. Part 2.

RD = 10000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

0.1180 0.1183 0.20 n/a 0.05

0.1180 0.1183 0.20 n/a 0.05

�
�
�
�

�
�
�
�

u

60˚
0.1167 0.1173 0.31 n/a 0.17



53

Table 2.: (continued)

RD = 10000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

0.1170 0.1173 0.27 n/a 0.10

0.1153 0.1158 0.40 n/a 0.03

@
@

@@
u

1
1/3

0.0863 0.0883 2.25 n/a 0.07

0.1179 0.1181 0.21 0.16 0.04

0.1116 0.1124 0.69 0.34 0.00

0.1049 0.1061 1.12 0.47 0.09

0.1034 0.1044 0.96 0.40 0.12

u

2

1

0.1153 0.1157 0.37 0.30 0.04
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Table 2.: (continued)

RD = 10000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

u

2

1

0.1107 0.1112 0.50 0.43 0.03

u

2

1

0.1038 0.1061 2.11 2.03 0.02

u

2

1

0.0998 0.1019 2.09 2.03 0.03

u

2

1

0.1040 0.1041 0.58 0.52 0.03

u

2

1

0.0862 0.0957 9.94 9.87 0.01

u

2

1

0.0811 0.0887 8.51 8.44 0.00

r

4
1

0.1059 0.1071 1.08 1.01 0.03
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Table 2.: (continued)

RD = 10000

Shape JI JII |JI−JII

JII
|, |JI−JPSS

JI
|, |JII−JBD

JII
|,

percent percent percent

r

4
1

0.1021 0.1032 1.07 1.00 0.03

r

4
1

0.0859 0.0917 6.26 6.19 0.02

r

4
1

0.0836 0.0888 5.92 5.87 0.03

q

5
1

0.1010 0.1025 1.53 1.47 0.03

B. Productivity Index in Non-symmetric Domains

It is a belief in the reservoir engineering community that the two characteristics of

a well capacity cannot differ significantly. Tables 1 and 2 confirm that in simple

polygonal domains with the well located in the center of symmetry, JI and JII don’t

differ from each other by more than 10%. However, upon inspection of Tables 1

and 2 we can indentify certain geometrical characteristics of the drainage area that

can have an effect on the difference between JI and JII (pseudo-steady-state and

boundary-dominated productivity indices). Two such geometrical characteristics are

the symmetry of the domain about the well and the shape of the exterior boundary.
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We consider a rectangular drainage area corresponding to RD = 1000 with aspect

ratio of sides a/b. The well is located at ( 7
8
a, 1

2
b) inside the rectangle. Table 3

illustrates that the difference between JI and JII becomes significantly large for k >=

10.

Table 3.: The Effect of the Location of the Well Relative

to the Center of Gravity on the Difference Between BD

and PSS PI’s.

a/b JI JII |JI−JII

JII
|,

percent

2 0.1227 0.1065 4.69

10 0.0539 0.4370 23.34

50 0.0137 0.0100 37.00

100 0.0071 0.0050 39.22u

a

b

500 0.0014 0.0010 40.58

1000 0.0007 0.0005 41.02

C. Productivity Index in Domains Violating Isoperimetric Inequality

Theorem 1 of chapter Time Independent Diffusive Capacity gives the means to in-

vestigate deeper the effects on the difference between JI and JII of the shape of the

exterior boundary of the domain. The difference between JI and JII is expected to

be greater when the constant CΩ on the right hand side of the inequality (4.39) is

much greater than 1. The constant CΩ is, in its turn, determined by the minimal
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eigenvalue λ0 and the behavior of the corresponding eigenfunction φ0 of the elliptic

problem (7.4)- (7.6).

The first eigenpair of the problem is directly related to the geometry of the

domain, namely, to the symmetry and curvature of the exterior boundary and the

shape of the well boundary. To illustrate the effect of the curvature and the symmetry

of the exterior boundary, consider domains which violate the isoperimetric inequality.

Let Ω be a domain in an n-dimensional space, Σ an (n−1)- dimensional hypersur-

face, dividing Ω into the two parts A and Ω \A. Ω is said to satisfy the isoperimetric

inequality, if there exists constant αp such that for any hypersurface Σ the following

holds:

mesn−1(Σ) ≥ αp min{mesn(A), mesn(Ω \ A)}n−1

n . (7.9)

If the domain does not satisfy the isoperimetric inequality (7.9), then the Friedrich’s

inequality does not hold on the domain [25]. Therefore, the first eigenvalue of the

problem (7.4)-(7.6) can be negligibly small, making the difference between JI and JII

significant.

It is not hard to show that for 0 < ε < 1, both domains pictured in Figs. 10

and 11 violate the isoperimetric inequality. For either shape, the domain parameters

b and ε change so that the ratio of the area of the domain to the radius of the well

is held constant and corresponds to R = 1000. The circular well is located in the

center of gravity. The results of the numerical investigation for domains violating the

isoperimetric inequality (7.9) are collected in Table 4. The symmetrical domain is

presented in order to illustrate the importance of symmetry: the difference between

JI and JII for a symmetrical domain is significantly less than for a nonsymmetrical

domain with the same curvature of the exterior boundary.
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Fig. 10. Domain with a Violated Isoperimetric Inequality.
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Fig. 11. Symmetrical Domain with a Violated Isoperimetric Inequality.
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Table 4.: The Effect of Isoperimetric Inequality and

Symmetry of the Domain on the Difference Between JI

and JII.

Shape ε JI JII |JI−JII

JII
|,

percent

0.0 0.1227 0.1065 4.69

0.4 0.0539 0.4370 23.34

0.6 0.0137 0.0100 37.00

see Fig.10 0.8 0.0071 0.005 39.22

0.8 0.0990 0.1222 19.00

see Fig.11 0.95 0.0056 0.0311 82.00

D. Orthotropic Media

It is generally agreed that porous media exhibits directinal properties. In such mate-

rial, if the tensor of permeability is self-conjugate, then the directions of the maximum

permeability and minimal permeability are perpendicular to each other [29]. Such ma-

terial is called orthotropic [29]. Assume that the porous media is homogeneous and

orthotropic. If x- and y-axes are collinear with the directions of the maximal and

minimal (or vice versa) permeabilities, then the coefficient matrix A in (4.24)-(4.26)

is diagonal. Let k = ky/kx, where kx and ky are the components of A corresponding

to x and y directions respectively. Then the boundary value problem (7.1)- (7.3) and

the Sturm-Liouville problem (7.4)-(7.6) must be rewritten accordingly:
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∂2u1

∂x2
+ k

∂2u1

∂y2
= − 1

V
(7.10)

u1|r=1 = 0 (7.11)

∂u1

∂~ν
|Γe = 0. (7.12)

and

∂2φ0

∂x2
+ k

∂2φ0

∂y2
= −λ0φ0, (7.13)

φ0|r=1 = 0 (7.14)

∂φ0

∂~ν
|Γe = 0. (7.15)

The profound effect of anisotropy of the medium on the difference between JI and

JII is illustrated in Table 5. For regular drainage shapes, the effect of the anisotropy

becomes evident for ky/kx = 50. The domains violating the isoperimetric inequality

are included to illustrate an interesting interplay between the two effects, one - caused

by the anistropy of medium and another one - caused by the shape of the exterior

boundary.
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Table 5.: The Effect of Anisotropy on the Difference

Between JI and JII.

Shape RD = 10000

k JII JI |JI−JII

JII
|, maxΩ φ0 φ̄0 CDC

percent

1 0.1620 0.1626 0.39 0.0117 0.0114 1.0301

10 0.4870 0.4934 1.29 0.0129 0.0116 1.1137

20 0.6532 0.6683 2.26 0.0138 0.0119 1.1581

50 0.9210 0.9650 4.56 0.0156 0.0125 1.2427

100 1.1531 1.2441 7.32 0.0178 0.0133 1.3343

1 0.1170 0.1173 0.27 0.0119 0.0127 1.0671

10 0.3527 0.3564 1.05 0.0123 0.0147 1.1921

20 0.4782 0.4873 1.88 0.0127 0.0160 1.2665

50 0.6947 0.7234 3.98 0.0135 0.0191 1.4145

100 0.9019 0.9680 6.83 0.0145 0.0230 1.5844

1/10 0.0350 0.0354 1.13 0.0124 0.0159 1.2849

1/20 0.0235 0.0240 2.10 0.0128 0.0182 1.4232

1/50 0.0134 0.0140 4.66 0.0138 0.0238 1.7252

1/100 0.0084 0.0092 8.38 0.0148 0.0316 2.1340

1 0.1153 0.1158 0.37 0.0122 0.0130 1.0636

10 0.3049 0.3119 2.25 0.0137 0.0161 1.1799

20 0.3854 0.4000 3.67 0.0146 0.0180 1.2352
r

2
1

50 0.4986 0.5324 6.34 0.0161 0.0212 1.3198

100 0.5848 0.6420 8.91 0.0174 0.0242 1.3905
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Table 5.: (continued)

Shape RD = 10000

k JII JI |JI−JII

JII
|, maxΩ φ0 φ̄0 CDC

percent

1 0.0971 0.0999 2.81 0.0100 0.0157 1.5707

10 0.3680 0.3701 0.56 0.0096 0.0113 1.1773

20 0.5327 0.5354 0.50 0.0095 0.0107 1.1302

50 0.8653 0.8717 0.73 0.0094 0.0114 1.2109

100 1.2604 1.2771 1.31 0.0094 0.0125 1.3267

1/10 0.0178 0.0206 13.75 0.0100 0.0286 2.8675

1/20 0.0097 0.0120 18.96 0.0094 0.0329 3.4851

-

6

�
�
�
�
�
�

q

0 xa

y

k

y = k

�
1 − � x

a � 0.8 �

1/50 0.0041 0.0056 25.58 0.0085 0.0364 4.2922

1/100 0.0021 0.0030 29.85 0.0078 0.0377 4.8229

1 0.0918 0.0958 4.23 0.0100 0.0189 1.9016

10 0.3624 0.3651 0.75 0.0096 0.0121 1.2607

20 0.5270 0.5302 0.61 0.0095 0.0112 1.1864

50 0.8584 0.8652 0.78 0.0094 0.0115 1.2175

100 1.2508 1.2677 1.33 0.0094 0.0126 1.3393

1/10 0.0152 0.0189 19.26 0.0089 0.0351 3.9515

1/20 0.0081 0.0108 25.07 0.0081 0.0382 4.7386

-

6

�
�
�
�
�
�

q

0 xa

y

k

y = k

�
1 − � x

a � 0.8 �

1/50 0.0034 0.0049 31.55 0.0071 0.0402 5.6254

1/100 0.0017 0.0027 35.39 0.0066 0.0408 6.1571
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CHAPTER VIII

PRODUCTIVITY INDEX IN A THREE-DIMENSIONAL RESERVOIR

As described in Literature Review, the existing methods of evaluating the productiv-

ity index, have two major drawbacks. First, the evaluation of a productivity index

requires solving a transient problem in a period of time long enough for the pressure

to reach a pseudo-steady-state. When the well is not fully penetrated or directionally

drilled (deviated or horizontal), the time period necessary for the pressure to stabi-

lize may become excessively long, creating difficulties for computational procedures.

Since the essence of reservoir engineering is the ability to adjust the parameters of the

reservoir/well model in real time, it is a serious obstacle. To address the problem of

the excessively long computations, some simplifying assumptions are made. Most of

the methods are based on the assumption that the thickness of the reservoir is small

enough to make the flow in the vertical direction negligible or so insignificant that its

impact on the distribution of pressure can be included in a skin factor[22, 15]. Note

that the skin factor in this setting is different from the thin skin factor described in

the section Model of the Skin Effect.

With the restriction on the reservoir thickness, the problem reduces to a two-

dimensional one. Then the techniques for two-dimensional reservoirs can be applied.

The majority of such techniques utilizes the method of images, creating the second

drawback - restrictions on the geometry of the domain.

With this in mind, a number of numerical experiments were conducted for var-

ious well configurations in three dimensional domains. The purpose of this part of

the dissertation is to illustrate the behavior of the productivity indices in a general

homogeneous three dimensional reservoir/well system. Eqs. (4.7) and (4.27) are con-

venient to use in such settings, since they only require solution of steady-state three
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dimensional problems. Note that the use of Eq. (4.7) implies that we assume that

in constant rate of production regime the pressure is uniformly distributed on the

wellbore at each t > 0. One can argue that this assumption is physically realistic

for horizontal wells of any length, if we assume that the wellbore has infinite con-

ductivity so that the pressure of the fluid entering the wellbore instantly equalizes at

every point of the wellbore. For vertical or slanted wells, the assumption of uniform

pressure distribution on the wellbore at each t > 0 implies that we neglect the gravity

effects. Certainly, for long vertical or slanted wells, such assumption is not physically

realistic.

All the computations described in this section have been implemented in the

software package FEMLAB. The section Remarks on Numerical Calculations provides

some information and concerns related to the use of the software.

Fig. 12. Schematic Representation of Domain D1.
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Fig. 13. Schematic Representation of Domain D2.

Two domains modeling three dimensional reservoirs that were considered for

the numerical study are depicted in Figs.12, 13 and 14. Domain D1 is a cylindrical

reservoir of uniform thickness h and the dimensionless radius RD. Analogously to the

two-dimensional definition, RD is defined as the ratio of the radius of the horizontal

cross-section (in this case, circle) to the well radius. The value of RD is set to 1000

for all settings.

Domain D2 was chosen for illustration as a geometrical shape that is not appro-

priate for the method of images. Similarly to D1, domain D2 is of uniform thickness

h. Fig. 14 shows the horizontal cross-section of domain D2. The length of side c

of the straight angle part extracted from the circle is chosen so that the area of the

extraction constitutes 1/5 of the area of the circle. For consistency of comparisons

made below, the radius of the circle of the cross-section is chosen so that the remain-

ing area is equal to the area of the cross-section of domain D1, i. e. the dimensional



66

Fig. 14. Schematic Representation of Horizontal Projection of Domain D2.

radius associated with the horizontal cross-section of D2 is RD = 1000.

Several well configurations were considered for both reservoir models. For domain

D2, the direction of any considered well was such that its projection on the top of

the reservoir corresponded to the schematic configuration shown in Fig.14. A well is

modeled by a circular cylinder with the dimensionless radius rw = 1. Then for both

domains D1 and D2, the cross-section by the plane containing the well is a rectangle.

Figs. 15, 16, 17, 18 and 19 show such cross-sections for every well configuration,

considered in computational experiments. In configurations (A), (B), (D) and (E),

the center of symmetry of the well coincides with the center of symmetry of the cross-

section. In configuration (C), the well is drilled from the middle of the top side of

the reservoir cross-section.
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Fig. 15. Schematic Representation of the Vertical Cross-section for Well Configuration

(A). See p. 66

�
�

�
�

�
�

�
�

�
�

��

θ

6

?

h

Fig. 16. Schematic Representation of the Vertical Cross-section for Well Configuration

(B). See p. 66
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Fig. 17. Schematic Representation of the Vertical Cross-section for Well Configuration

(C). See p. 66
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Fig. 18. Schematic Representation of the Vertical Cross-section for Well Configuration

(D). See p. 66
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Fig. 19. Schematic Representation of the Vertical Cross-section for Well Configuration

(E). See p. 66
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A. Directionally Drilled Wells. Effect of Vertical Flow.

Tables 6 and 7 as well as Fig.20 illustrate the behavior of the pseudo steady state

and boundary dominated indices for a directionally drilled fully penetrated well. The

well passes through the center of symmetry of the reservoir cross-section for both

domains. As expected, both JI (pseudo-steady-state) and JII (boundary-dominated)

productivity indices increase with the length of penetration.

Table 8 and Fig.21 show how JI and JII change with direction of the well of

the fixed length passing through the center of symmetry of the domain. Productivity

indices for well configuration (C) for domains D2 and D1 are given in Tables 9 and

10, respectively. In all cases, the penetration length of the well is equal to h so that

for θ = 0, the vertical well fully penetrates the reservoir. The graphs of JI and JII

as functions of the angle θ of the well direction, shown in Figs.22 and 23, reveal that

the optimal direction of a well of the fixed penetration length is not the vertical one.

It is a clear indication of the effect of the vertical flow of fluid from the bottom of the

reservoir toward the slanted well. Clearly, this effect is impossible to quantify by a

reduced two dimensional problem for a fully penetrated vertical well.

Table 6.: Productivity Indices for Domain D1, Well Con-

figuration (B).

θ 0 15 30 45 60 75

JI 0.1629 0.1662 0.1785 0.2019 0.2578 0.4015

JII 0.1624 0.1656 0.1775 0.2006 0.2555 0.3930

JI−JII

JII
, 0.37 0.15 0.24 0.33 0.6 2.2

percent
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Table 7.: Productivity Indices for Domain D2, Well Con-

figuration (B).

θ 0 15 30 45 60 75

JI 0.1597 0.1603 0.1720 0.1947 0.2414 0.3650

JII 0.1587 0.1596 0.1710 0.1931 0.2384 0.3556

JI−JII

JII
, 0.60 0.49 0.60 0.84 1.26 2.65

percent
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Fig. 20. Productivity Indices for Domains D1 and D2 for Well Configuration (B).
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Table 8.: Productivity Indices for Domain D1, Well Con-

figuration (A).

θ 0 15 30 45 60 75

JI 0.1629 0.1841 0.1875 0.1800 0.1784 0.1780

JII 0.1624 0.1831 0.1866 0.1796 0.1781 0.1772

JI−JII

JII
, 0.37 0.55 0.52 0.22 0.17 0.46

percent

0 10 20 30 40 50 60 70 80
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Fig. 21. Productivity Indices for Domain D1, Well Configuration (A).
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Table 9.: Productivity Indices for Domains D2, Well Con-

figuration (C).

θ 0 15 30 45 60 75

JI 0.1597 0.1714 0.1673 0.1634 0.1586 0.1529

JII 0.1587 0.1704 0.1662 0.1623 0.1576 0.1520

JI−JII

JII
, 0.60 0.64 0.64 0.67 0.61 0.59

percent
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Fig. 22. Productivity Indices for Domain D2, Well Configuration (C).
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Fig. 23. Productivity Indices for Domain D1, Well Configuration (C).
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Table 10.: Productivity Indices for Domain D1, Well

Configuration (C).

θ 0 8 15 30 45 60 75

JI 0.1629 0.1705 0.1765 0.1718 0.1691 0.1680 0.1662

h = 100 JII 0.1623 0.1696 0.1758 0.1710 0.1683 0.1672 0.1655

JI−JII

JII
, 0.36 0.50 0.37 0.50 0.48 0.46 0.47

percent

JI 0.1629 0.1665 0.1697 0.1611 0.1426 0.1315 0.1199

h = 200 JII 0.1623 0.1658 0.1689 0.1605 0.1422 0.1312 0.1196

JI−JII

JII
, 0.36 0.41 0.43 0.38 0.30 0.27 0.28

percent

B. Horizontal Well

Due to large size of the reservoir, the pseudo-steady-state and boundary-dominated

indices do not differ significantly from each other for the considered three dimensional

domains and well configurations, as shown in the previous section. Therefore, the

numerical study for horizontal wells was restricted to the cylindrical domain D1.

Methods presented in [22, 15] rely heavily on the assumption that the vertical

dimension of the reservoir is small compared to the penetration length of the well.

Moreover, as noted in [22], the precision of the evaluation of the productivity index

for horizontal wells decreases drastically as the distance from the well to vertical

boundaries of the reservoir becomes comparable to the distance to the top and/or

the bottom of the reservoir, if the reduction to the two-dimensional problem is used.

This section presents computational results for such settings when the assumption of



75

the small reservoir thickness and the well being clearly inside the drainage area are

relaxed.

Consider a horizontal well of length L modeled by configuration (D), i. e. the

well is located at equal distances from the top and the bottom of the reservoir. The

thickness of the reservoir is fixed at h = 100 for all penetration lengths. As seen from

Table 11 and Fig.24, the difference between the pseudo-steady-state and boundary-

dominated productivity indices is significant for long horizontal wells.

An interesting question is when the effects of the flow in the vertical direction

from the top and the bottom of the reservoir become too significant to approximate

by a geometrical skin factor sg. For that purpose the productivity indices JI and JII

were computed for the well configuration (D) with penetration length L = 1500 for

various values of the reservoir thickness h. The results are presented in Table 12.

Table 11.: Productivity Indices for Domain D1, Well

Configuration (D), Various Values of L.

L 500 700 900 1100 1300 1500

JI 0.5190 0.6750 0.8521 1.0399 1.2299 1.4147

JII 0.5038 0.6475 0.8069 0.9707 1.1281 1.2677

JI−JII

JII
, 3.02 4.25 5.60 7.13 9.03 11.59

percent
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Fig. 24. Productivity Indices for Domain D1, Well Configuration (D).

Table 12.: Productivity Indices for Domain D1, Well

Configuration (D), Various Values of h.

h 100 200 300 400 500

JI 1.4147 1.0286 0.7887 0.6303 0.5156

JII 1.2677 0.9703 0.7625 0.6171 0.4973

JI−JII

JII
, 11.59 6.01 3.44 2.14 3.68

percent

The last setting considered is a horizontal well with configuration (E), located at

distance d below the plane of symmetry of domain D1. The graphs of the computed
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Fig. 25. Pseudo-steady-state Productivity Index for Various Values of d, Well Config-

uration (E), h = 500, L = 500.

pseudo steady state productivity index JI as a function of distance d from the center

of the reservoir for various penetration lengths L are shown in Figs.25-31.

For all practical purposes, one can conclude that the optimal location of a hor-

izontal well in a cylindrical reservoir D1 is in the horizontal plane of symmetry of

the reservoir. Note that for long wells, however, the pseudo steady state productivity

index slightly increases for small values of d. This may be an indication of interesting

feature of the diffusive capacity as a geometrical characteristic defined through the

first eigenvalue λ0. The latter is sensitive to the location of the well relative to the

planes and lines of symmetry of the domain, as it is comprehensively illustrated in

the section Productivity Index in a Two-dimensional Reservoir. In three dimensional

domains, there are more such planes and lines of symmetry and, therefore, there may

be several well configurations yielding maximal productivity index.
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Fig. 26. Pseudo-steady-state Productivity Index for Various Values of d, Well Config-

uration (E), h = 500, L = 700.
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Fig. 27. Pseudo-steady-state Productivity Index for Various Values of d, Well Config-

uration (E), h = 500, L = 900.
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Fig. 28. Pseudo-steady-state Productivity Index for Various Values of d, Well Config-

uration (E), h = 500, L = 1100.
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Fig. 29. Pseudo-steady-state Productivity Index for Various Values of d, Well Config-

uration (E), h = 500, L = 1300.
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Fig. 30. Pseudo-steady-state Productivity Index for Various Values of d, Well Config-

uration (E), h = 500, L = 1500.
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CHAPTER IX

REMARKS ON NUMERICAL CALCULATIONS

A. Computations in Two-dimensional Domains

The corresponding boundary value and eigenvalue problems were solved by the finite

element method, implemented in the MatLab Partial Differential Equations Toolbox.

The following is the command line Matlab code used for evaluation of the diffusive

capacities JI and JII in a domain shown in Fig.10 for orthotropic media with ky/kx =

k (see section Orthotropic Media).

% The following function computes the BD and PSS PI’s for the problem

% with the orthotropic media, where:

% A (the coefficient matrix) =[c11, 0]

% [0, c22] and c22:c11=kk:1;

% INPUT Parameters: kk

% OUTPUT Parameters: see below

function [JJ] = PI(kk);

n=6;

% JJ - the output array is defined as follows:

% [k,m,n]=size(JJ), where m is 4 and n is the size or the array of

% r’s (the dimensionless radius);

% k is 2 - analyzing two shapes (for two different curvature
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% exponents alpha)

% JJ(1) - first row is reserved for boundary dominated PI of the

% shape

% JJ(2) - second row is reserved for PSS PI of the shape

% JJ(3) - third row is the relative difference

% JJ(4) - first eigenvalues of the elliptic problem

JJ=zeros(2,4,n);

%initialize r’s

%rr- dimensionless radius of the circle with the same area

rr=zeros(1,n);

rr(1)=10.;

rr(2)=50.;

rr(3)=100.;

rr(4)=500;

rr(5)=1000;

rr(6)=10000;

for i=6:6

% initialize alpha - the exponent of "curvature"

alph(1)=0.2;

alph(2)=0.4;
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alph(3)=0.6;

alph(4)=0.8;

alph(5)=1;

%r=radius of the ascribed circle

r=2*rr(i)/sqrt(3)*sqrt(pi/sqrt(3));

ya = 0.;

xb = 0.;

yb = 0.;

xc = 0.;

for ia=3:4

% set up the parameters of the geometry

if ia==3 % alpha= 0.6

xa = 12533.14137;

yc=66843.42064;

k=66843.42064;

xW = 3856.351191;

yW = 18230.02381;

end;

if ia==4 % alpha= 0.8
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xa = 12533.14137;

yc=56399.13616;

k=56399.13616;

xW = 4028.509725;

yW = 17353.58036;

end;

%STEP 1. Specifying curvilinear outer triangle geometry

%side 1 - straight

k1=(yb-ya)/(xb-xa);

b1=yb-xb*k1;

nth=40;

th=linspace(xa,xb-(xb-xa)/nth,nth);

xt=th;

yt=k1*th+b1;

p1=[xt; yt];

%side 2 - straight

th=linspace(yb,yc-(yc-yb)/nth,nth);

yt=th;

xt=0.*yt;

p2=[xt; yt];
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%side 3 - curvilinear

th=linspace(xc,xa-(xa-xc)/nth,nth);

xt=th;

xnth=size(xt,2);

yt=zeros(1,xnth);

for it=1:xnth

yt(it)=k*(1.-(xt(it)/xa)^alph(ia));

end;

p3=[xt; yt];

p1=[p1 p2 p3]’;

p1n=size(p1,1);

dl1=[2*ones(1,p1n); p1(:,1)’

p1(2:p1n,1)’ p1(1,1)’

p1(:,2)’

p1(2:p1n,2)’ p1(1,2)’

zeros(1,p1n);

ones(1,p1n);

zeros(1,p1n) ;

zeros(1,p1n) ;

zeros(1,p1n)];

% inner circle

gd1=zeros(4,1);

gd1(1,1)=1;
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gd1(2,1)=xW;

gd1(3,1)=yW;

gd1(4,1)=1;

dl4=decsg(gd1);

dl4n=size(dl4,2);

% create the Geometry matrix

for it=1:dl4n

dl4(6,it)=0;

dl4(7,it)=1;

end; %for it

dl=[dl1,dl4];

%STEP 2. Specify boundary conditions

% create boundary conditions matrix

[dlm dln]=size(dl);

dl1n=size(dl1,2);

b1=zeros(10,dln);

for ll=1:dln

% if the edge is on the inner circle of the well then- Dirichlet

% condition
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if ll>dl1n

b1(1,ll)=1;

b1(2,ll)=1;

b1(3,ll)=1;

b1(4,ll)=1;

b1(5,ll)=1;

b1(6,ll)=1;

b1(7,ll)=’0’;

b1(8,ll)=’0’;

b1(9,ll)=’1’;

b1(10,ll)=’0’;

end;

% if the piece is on the outer boundary then- Neumann

% condition

if ll<=dl1n

b1(1,ll)=1;

b1(2,ll)=0;

b1(3,ll)=1;

b1(4,ll)=1;

b1(5,ll)=’0’;

b1(6,ll)=’0’;

b1(7,ll)=’0’;

b1(8,ll)=’0’;
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b1(9,ll)=’1’;

b1(10,ll)=’0’;

end;

end; %for ll

% create mesh

[p,e,t]=initmesh(dl);

[p,e,t]=refinemesh(dl,p,e,t);

[p,e,t]=refinemesh(dl,p,e,t);

p=jigglemesh(p,e,t);

% initialize the coefficient matrix

cc=zeros(2,1);

cc(1,1)=1;

cc(2,1)=kk;

% Solve the Poisson’s problem

u=assempde(b1,p,e,t,cc,0,-2./(rr(i)^2-1.));

%compute J_I

[ar,a1,a2,a3]=pdetrg(p,t);

ut=pdeintrp(p,t,u);
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[m,nn]=size(ut);

vol=0.;

ss=0.;

for ii=1:nn

vol=vol+ar(ii);

ss=ss+ut(ii)*ar(ii);

end;% ii

uhat=ss/vol;

[m,n1]=size(e);

k=0;

s=0;

for ii=1:n1

if (((p(1,e(1,ii))-xW)^2+(p(2,e(1,ii))-yW)^2)<1.01)

k=k+1;

s=s+u(e(1,ii));

end;

end;% ii

uhat1=s/k

JJ(ia-2,2,i)=1/(uhat1-uhat);

% Compute the eigenvalues of the elliptic problem:

% a) determine the range of search of the eigenvalues
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% (empirically found)

if i==5

max=0.00001

end; %if

if i==6

max=1.e-07

end; %if

% b) compute the eigenvalues and eigenfunction

[v,l]=pdeeig(b1,p,e,t,cc,0,1,[0 max]);

% save the lambda

JJ(ia-2,4,i)=l(1);

% compute and save the BD PI

JJ(ia-2,1,i)=l(1)*(rr(i)^2-1)/2;

JJ(ia-2,3,i)=abs((JJ(ia-2,1,i)-JJ(ia-2,2,i))/JJ(ia-2,2,i));

end; %for ia

end; %for i
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For various values of kk, function PI is called from the main procedure, which

saves the output results into a file.

res=zeros(2,9,4,6);

kk=zeros(1,9);

kk(1)=1;

kk(2)=10;

kk(3)=20;

kk(4)=50;

kk(5)=100;

kk(6)=1./10;

kk(7)=1./20;

kk(8)=1./50;

kk(9)=1./100;

savefile=(’CurvTri_Anistropy10000.mat’);

for ia=1:2

for ii=1:9

res1= PI(kk(ii));

for k=1:4

for ll=1:6

res(ia,ii,k,ll)=res1(ia,k,ll)

end; %ll

end; %kk
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end; %ii

end; %ia

save(savefile,’res’);

The use of Matlab PDE toolbox restricts the freedom to manage the parameters

of the numerical computations, in particular, the parameters of the discretization

of a domain. Since the shape of a domain is crucial to the difference of the two

productivity indices, it is important to establish the precision of the computational

results.

To examine the computational results, consider a particlar case - domain depicted

on the Fig.10 of chapter Productivity Index in a Two-dimensional Reservoir. Here,

the curvilinear edge of the domain is described by the equation y = b
(

1 −
(

x
a

)0.2
)

.

The area of the domain is π1.0E6. Of all considered two-dimensional domains, this

shape has the most complex geometry for finite element discretization.

The quality of each finite element in the initial triangulation produced by PDE

Toolbox is measured by the formula

q =
4
√

3a

(h2
1 + h2

2 + h2
3)

1/2
, (9.1)

where a is the area and h1, h2 and h3 the side lengths of the triangle. If q > 0.6

the triangle is of acceptable quality (aspect ratio) [23]. For the triangulation of the

domain being analyzed, less than 8% of the triangles are of the bad quality (q < 0.6)

and the average value of q for the ”bad” triangles is 0.36.

Table 13 provides the evidence that the computations of the JPSS for this partic-

ular domain are stable. JPSS is computed for 5 consecutively refined grids. Each time
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the grid refinement is achieved by dividing each triangular element into four similar

ones. Note that the quality of the triangulization does not change with refinement.

Table 13.: Effect of Grid Refinement on Computations

of JPSS.

Order of refinement JPSS

0 0.0864

1 0.0860

2 0.0859

3 0.0859

4 0.0859

Table 14 lists the values of JBD and λ0 computed for the same as in Table 13 5

consequently refined grids.

Table 14.: Effect of Grid Refinement on Computations

of JBD and λ0.

Order of refinement λ0 JBD

0 0.6607E-07 0.0330

1 0.6604E-07 0.0330

2 0.6603E-07 0.0330

3 0.6603E-07 0.0330

4 0.6603E-07 0.0330

The obtained results enable us to estimate the order of the error of computations.

The method is based on the following observation [2]. Let λ is the true first eigenvalue
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of the problem (here the subcript 0 is omitted for convinience) and λh is the numerical

approximation of the first eigenvalue on the grid of diameter h. Suppose, the error of

computations is of order α, i. e.

|λ − λh| ≤ Chα, (9.2)

where C is a constant. For the next regular grid refinement, the diameter of the grid

reduces by factor 2. Using the approximations of the first eigenvalue from several

consequtively refined grids and the equation (9.2), the following formula can be used

for estimation of the order of approximation α:

|λh − λh/2|
|λh/2 − λh/4|

≤ 2α. (9.3)

Let λi be the first eigenvalue computed on the grid refined i times. The difference λ3−

λ4 is negligibly small, therefore, the last two approximations are excluded, however,

the approximations of orders 0 to 3 give the results summarized in Table 15.

Table 15.: Order of Approximation of λ0.

|λ0−λ1|
|λ1−λ2|

4.01

|λ1−λ2|
|λ2−λ3|

4.01

Thus, α = 2, implying

|λ − λh| ≤ Ch2, (9.4)

B. Computations in Three-dimensional Domains

All numerical experiments presented in the section Productivity Index in a Three-

dimensional Reservoir were implemented in the software package FEMLAB, which

utilizes finite element and finite volume methods for solving boundary value problems,
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both steady state and transient, in one, two and three dimensions. Boundary value

problem (4.3)-(4.5) and the eigenvalue problem (4.24)-(4.26) were solved by using the

Graphical User Interface (GUI) of FEMLAB, therefore no code was created.

The FEMLAB GUI is very convenient for setting the parameters of the compu-

tations, such as the desired tolerance level of iterative methods used for solving the

systems of linear algebraic equations, the type of preconditioner used, the tolerance

level for the iterative method used for appromixating the first eigenvalue, etc. How-

ever, difficulties were encountered when solving boundary value problems in three

dimensional domains. These problems are mostly due to geometrical features of the

problem increasing the complexity of the discretization.

The finite volume discretization algorithm, automatically implemented in FEM-

LAB, is designed to create a mesh consisting of similar tetrahedrons, each of which is

intended to have an acceptable quality [11]. For a three dimensional finite element,

a measure of quality is computed similarly to a two dimensional one. When a three

dimensional solid domain is discretized, a small aspect ratio of horizontal and vertical

dimensions of the domain leads to a very fine mesh. There are several solutions to this

problem, one of which is scaling the coefficients of the equation in the boundary value

problem. For the purpose of practical application, the domains considered for nu-

merical study, had two parameters that could not be changed - the radius of the well

rw = 1 and the diameter of the outer boundary 2RD = 2000. The well is represented

by a perfectly circular cylinder. Scaling the coefficients of the equation corresponds

to distortion of the cylindrical well boundary (the cross-section of the well cylinder

is an ellipse rather than a circle), leading to erroneous results and conclusions. The

automatically generated mesh was very fine. Due to limited machine resources, it

made impossible the analysis of the approximation precision by the mesh refinement

method used for the two-dimensional calculations. Therefore, to ensure the precision
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of the numerical approximation, in each of the cases considered in the section Pro-

ductivity Index in a Three-dimensional Reservoir, the corresponding problems were

solved on two meshes with different parameters, none of which was a refinement of

the other. The values of JI and JII computed on two different meshes differed by less

than 1.0E-03, i. e. less than by 1%.
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CHAPTER X

CONCLUSIONS AND FUTURE DIRECTIONS

The traditional methods of evaluating the productivity index of a well focus on direct

solution of the transient problems of fluid flow in porous media. This dissertation

presents methods, based on modeling the productivity index by diffusive capacity,

that allow one to reduce the evaluation of the productivity index of a well to solution

of a stationary problem.

For problem I that models the production regime with a constant production

rate, due to non-uniqueness of the solution additional restrictions must be put on

the pressure distribution. Two classes of solutions to problem I were considered - a

class of solutions corresponding to the pressure distribution which is constant on the

wellbore at each moment of time and a class of solutions corresponding to the pressure

distribution which has a constant flux on the wellbore. The first class corresponds to

the assumption of infinite conductivity of the wellbore. This class is shown to be a

stable class of solutions of problem I. For each class, the diffusive capacity is shown to

stabilize to a constant value in a long time asymptote. However, the stabilized values

of the diffusive capacity are, in general, different for these two classes. This leads to

a problem of determining all classes of solutions to problem I, on which the diffusive

capacity stabilizes to a constant value and determining this constant value through

the solution of a related steady state problem. Such formulation naturally extends to

a problem of determining the class of solutions to problem I on which the diffusive

capacity attains the maximum value. For instance, long vertical and slanted wells

can be modeled by considering gravity effects on the well bore pressure. Such kind of

model leads to restricting the solutions of problem I to a certain class of functions.

In the presented numerical results, only such solutions to problem I were consid-
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ered that are uniformly distributed on the wellbore. Then the pseudo-steady-state

productivity index has a unique constant value defined through a solution of a re-

lated steady state problem with a homogeneous Dirichlet condition on the wellbore

boundary.

For each of the initial boundary value problems II and III, modeling constant

pressure production regime for an ideal well and a well with the skin zone, respectively,

the diffusive capacity is proven to be equivalent to the diffusive capacity defined on

the solutions of the corresponding Sturm-Liouville problems. In the constant wellbore

pressure production regime, the productivity index of a well with zero skin is shown

to stabilize to a unique constant value regardless of the initial pressure distribution.

For initial boundary value problem II, the diffusive capacity is determined by geo-

metrical characteristics of the reservoir/well system as reflected in the first eigenvalue

λ0 of the corresponding elliptic operator and the Lebesgue measure of the domain.

Using this representation, a well-known variational principle for the first eigenvalue λ0

implies that the boundary dominated index can be estimated from above and below

by the pseudo steady state index through an inequality of the type JII ≤ JI ≤ CΩJII .

The constant CΩ is fully determined by λ0 and the normalized eigenfunction φ0 cor-

responding to λ0.

The last observation gives a means to determine when the two characteristics of

the well capacity are not equivalent to each other even for practical purposes. The nu-

merical study presented in this dissertation illustrates how an isoperimetric inequality

may be used to quantify when the geometry of the reservoir/well system leads to a

significant difference between the pseudo-steady-state and boundary-dominated in-

dices. The magnitude of this difference reflects the symmetry of the reservoir/well

system, since the first eigenvalue λ0 is sensitive to the location of the well relative to

the lines and center of symmetry of the domain.
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The analytical representation of the productivity indices through the solutions of

the auxiliary stationary problems, in principle, allows one to include the anisotropy

of the porous media in the reservoir. The effect on the behavior of the productivity

indices of a type of such anisotropy, orthotropy, was analyzed for two dimensional

reservoir/well systems.

The third type boundary condition proves to be an appropriate model of the

thin skin effect for damaged wells produced with the constant well bore pressure in a

cylindrical reservoir. At the same time, the physical considerations dictate that the

third type boundary condition cannot serve as a model of a stimulated well.

One of the advantages of the presented method of evaluation of well productivity

is the fact that the boundary value problems to be solved are stationary, which greatly

reduces the required computing resources. Using this attractive feature, a numerical

study was performed for a general homogeneous three-dimensional reservoir for a

variety of well configurations. Several effects were revealed in this study, which pertain

to the three-dimensional nature of the fluid flow in the reservoir. For instance, such

an effect is the flow in the vertical direction toward a deviated well, which shows that

the optimal direction of a deviated well of a fixed length is not always vertical. In a

three-dimensional domain, there may be a number of planes and lines of symmetry.

Therefore, the problem of optimal location and direction of the well with respect

to those becomes more complex than for a two-dimensional domain. One of the

numerical experiments described in the last part of the dissertation, showed that the

location of the horizontal well yielding the greatest well productivity is not necessarily

in the plane of symmetry of the domain. An interesting problem is to investigate the

conditions for the optimal (from the point of view of productivity) placement and

direction of the well in a three-dimensional reservoir.
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