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ABSTRACT

V-Uniform Ergodicity of Threshold Autoregressive Nonlinear Time Series. (December

2003)

Thomas R. Boucher, B.S., University of Massachusetts-Lowell;

M.S., University of Massachusetts-Lowell

Chair of Advisory Committee: Dr. Daren B.H. Cline

We investigate conditions for the ergodicity of threshold autoregressive time series by em-

bedding the time series in a general state Markov chain and apply a Foster-Lyapunov drift

condition to demonstrate ergodicity of the Markov chain. We are particularly interested in

demonstratingV-uniform ergodicity where the test functionV(·) is a function of a norm on

the state-space.

In this dissertation we provide conditions under which the general state space chain

may be approximated by a simpler system, whether deterministic or stochastic, and provide

conditions on the simpler system which implyV-uniform ergodicity of the general state

space Markov chain and thus the threshold autoregressive time series embedded in it. We

also examine conditions under which the general state space chain may be classified as

transient. Finally, in some cases we provide conditions under which central limit theorems

will exist for theV-uniformly ergodic general state space chain.
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CHAPTER I

INTRODUCTION

The increasing importance of nonlinear time series models is due to the fact these models

are capable of describing many of the phenomena found in time series data that cannot

be adequately described by classical linear ARMA models. There are numerous examples

of these phenomena. Limit cycles describe instances where the series eventually cycles

through a set of values. Jump phenomena occur when the time series suddenly ’jumps’

from one fairly stable regime to another. Time-irreversibility refers to cases where the rate

of increase of the time series differs from the rate of decrease. Time-varying volatility

refers to instances where the volatility of the series, as evidenced by changes in the values

of the series, changes over time. Amplitude-dependent volatility describes cases where the

changes in volatility are related to the current amplitude of the time series. TAR(p) models

were introduced by Tong and Lim (1980) to handle limit cycles in particular, but they were

also shown to model jump phenomena and time-irreversiblity.

1.1 The TAR(p) Model with Delay d

Threshold autoregressive models are piecewise linear over the domain of the process; which

linear piece applies depends upon the prior values of the time series. Let{yt}t≥0 denote the

time series. As introduced by Tong and Lim (1980), the TAR(p) model of orderp, delayd

and thresholdsr0, . . . , r l with −∞ = r0 < r1 < .. . < r l = +∞ can be written as

The format and style follow that ofJournal of the American Statistical Association.
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yt = φ(i)
1 yt−1 + · · ·+φ(i)

p yt−p +ξt , r i−1 < yt−d ≤ r i , (1.1)

whereφ(i)
1 , . . . ,φ(i)

p , i = 1, . . . , l , are constants and{ξt}t≥0 are mean zero iid random vari-

ables.

The threshold autoregressive model can also be written in the more general form of

the larger class of autoregressive nonlinear models:

yt = f (yt−1, . . . ,yt−p;ξt), p≥ d

with f (·) being an arbitrary nonlinear function. These models encompass both parametric

and nonparametric models and provide us with an extraordinarily flexible family of mod-

els. Threshold autoregressive models are particularly important in light of the fact many

nonlinear functionsf (·) can be well approximated by linear functions over finite intervals.

Each threshold autoregressive model can be embedded in a Markov chain onRp. For

specifics, if we writeXt = (yt ,yt−1, . . . ,yt−p+1)
′
the TAR(p) model introduced in (1.1) can

be expressed as the following:

Xt = AiXt−1 +νt , Xt−1 ∈ Ri (1.2)

where the spaceRp is divided into l regionsRi , i = 1, . . . , l , the Ri depending upon the

thresholdsr i and the delay parameterd. TheAi are called the companion matrices and are

given by:

Ai =




φ(i)
1 φ(i)

2 . . . φ(i)
p−1 φ(i)

p

1 0 . . . 0 0

0 1 0 . . . 0
... 0

... 0 0

0
... . . . 1 0



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andνt = ξt(1,0, . . . ,0)
′
. Since the distribution ofXt givenX0, . . . ,Xt−1 depends uponXt−1

only,Xt is a Markov chain. The transition measure ofXt is singular w.r.t. Lebesgue measure

if p > 1 or d > 1.

Stability of the nonlinear time series model is then defined as the ergodicity of the as-

sociated Markov chain. This question of stability has important ramifications for statistical

inference. The existence of a stationary distribution with finite moments is crucial for prov-

ing consistency and asymptotic distributions of the parameter estimates. Standard proofs

of the consistency, asymptotic normality and optimality of parameter estimates in the lin-

ear ARMA case (such as in Brockwell and Davis (1987)) require causality of the model.

Generalizations of these ergodic parameter spaces for linear ARMA models to nonlinear

models are often inadequate even for the simplest forms of nonlinearity in the model. In

some cases these generalizations are too broad, in others they are far too restrictive; some

TAR(p) models admit an unbounded ergodic parameter space (Petruccelli and Woolford

(1984), Chen and Tsay (1991), Kunitomo (2001)). In order for statistical inference involv-

ing these models to be valid, it is necessary to first know the model under consideration is

stationary, i.e., ergodic, making the investigation into the ergodic parameter spaces of these

models of paramount importance.

1.2 Literature Review

Stability of the TAR(p) model is established for some very simple cases. Chan et al. (1985)

derived necessary and sufficient ergodicity conditions for a class of multiple threshold mod-

els with delay 1. Petruccelli and Woolford (1984) did the same for a special case of a sin-

gle threshold model. Guo and Petruccelli (1991) refined the results of Chan et al (1985),

adding classification of the model as null recurrent or transient. Lim (1992) and separately

Chen and Tsay (1991) have established necessary and sufficient conditions for geometric

ergodicity of a simple case of TAR(1) models with arbitrary delay. Kunitomo (2001) has
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established results for some special cases of TAR(2) models, but even these very simple

models are not completely characterized. This existing work reveals the valid parameter

space is quite different from the product parameter space one may expect and which is

often given as a sufficient condition for ergodicity, a conclusion further confirmed by the

present research.

Different approaches to the stability of nonlinear time series may be taken. Authors

such as Lim (1992) and Tong (1990) have taken a dynamical systems approach toward sta-

bility of nonlinear time series, linking ergodicity of the processyt = f (yt−1, . . . ,yt−p)+ εt

to the dynamic stability of the deterministic skeletonyt = f (yt−1, . . . ,yt−p). This approach

has yielded useful results where the deterministic skeleton satisfies certain regularity con-

ditions (see Chan (1990)), such as Lipschitz continuity and exponential stability of the

deterministic skeleton. Many useful models, however, do not satisfy the regularity condi-

tions placed on the skeleton and researchers such as Cline and Pu ((1999a), (1999b), (2001)

and (2002)) have noted the conditions for stability of the chain are not always the same as

those for the stability of the skeleton.

An alternative method, followed by authors such as Tjøstheim (1990), Meyn and

Tweedie (1993) and Cline and Pu (2001), is the previously detailed approach of embed-

ding the time series in a Markov chain and examining stability of the time series through

the ergodicity of the Markov chain. Tjøstheim (1990) also introduces thek-step method

whereby ergodicity of the one-step chain{Xt} is equated to the ergodicity of thek-step

chain{Xtk}, wherek is a finite positive integer. This is one of the approaches we use and

will be explained further in the next section.

Regarding statistical inference, limit theorems for the parameter estimates depend on

the existence of moments of the stationary distribution. Early work, such as that of Petruc-

celli and Woolford (1984) and Chan et al (1985), provided conditions on the parameter

values and moment conditions on the error distribution that for particular models resulted
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in the existence of moments for the stationary distribution. From this they established limit

theorems for strong consistency and asymptotic normality of the parameter estimates. More

recent results in the case ofV-uniform ergodic Markov chains (Meyn and Tweedie (1993),

Cline and Pu (2001)) link the moments of the stationary distribution to the order of the test

function used to satisfy the drift condition forV-uniform ergodicity. Limit theorems for

the parameter estimates can then be established if the test function implies the appropriate

moments of the stationary distribution exist.

1.3 Definitions/Theory

Embedding a nonlinear autoregressive process of orderp, yt = f (yt−1, . . . ,yt−p,εt) in the

Markov chainXt = (yt ,yt−1, . . . ,yt−p)′ allows us to recast the problem of stability of the

nonlinear time series in terms of the stability of the sequence of distributions{Pn(x, ·)}n≥0,

then-step transition probabilities of the chain generated by the transition kernelP(x, ·) from

the initial distributionµ of the Markov chain.

This stability of the sequence of distributions{Pn(x, ·)}n≥0 can be characterized as

follows: let E denote the space,σ(E) denote a countably generatedσ-field containingE

and consider an ergodic Markov chain on state-space(E,σ(E)) with transition probability

P(x, ·) and invariant probability distributionπ, that isπ satisfies

π(A) =
Z

E
π(dx)P(x,A), ∀A∈ σ(E).

If X0 is distributed according toπ, then{Xt}t≥0 is a stationary Markov chain, following

from the invariance ofπ. Stability of the Markov chain is equivalent to the existence of

a stationary (invariant) distributionπ for the chain such that the sequence of distributions

{Pn(x, ·)} converges to this stationary distributionπ.

There are certain conditions a Markov chain must satisfy in order for the stationary

distributionπ to exist and be unique. The reader can consult Nummelin (1984) or Meyn
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and Tweedie (1993) for the following definitions.

Let Px(·) denote the transition distribution ofXt given thatX0 = x. A Markov chain

{Xt} is said to beψ− irreducibleif there exists aσ-finite measureψ on the space such that

∀x∈ E and wheneverψ(A) > 0, we havePx(τA < ∞) > 0, whereτA is the time of the first

visit to the setA. A Markov chain that isψ-irreducible for some probability measureψ is

calledirreducibleand we denote byσ+(A) the collection of all setsA with ψ(A) > 0.

A d− cycle for a general state chain is a cycle of regions(Eo, . . . ,Ed−1) such that

∀x∈ Ei ,P(x,Ei+1) = 1 for i = 0. . .d−1(mod d) and the setN = (∪d
i=1Ei)C is ψ-null. A

ψ-irreducible Markov chain is calledaperiodicwhend = 1.

A ψ-irreducible chain is said to beHarris recurrent if ∀A∈ σ+(E), ∀x∈ A we have

Px(Xt ∈ A i.o.) = 1. ψ-irreducible, aperiodic recurrent chains admit an invariant measure,

but this measure could be infinite. If there exists apetite(Meyn and Tweedie, pg. 121) set

C such that

sup
x∈C

Ex(τC) < ∞

then the chain is calledpositiveHarris recurrent. When combined with aperiodicity and ir-

reducibility, our assumptions on the error terms ensure that compact sets are petite and thus

we can apply drift conditions to demonstrate positive Harris recurrence. The significance

of positive Harris recurrence is that it implies the invariant measure is finite and can then

be suitably normalized to become a probability measure.

An ergodicchain is one that is positive Harris recurrent,ψ-irreducible and aperiodic.

Consequently, the chain has a unique invariant probability distribution and the time series

is thus stationary when the initial distribution is the invariant distribution. Verifying sta-

tionarity of the time series then becomes a question of verifying each of the conditions

listed above for ergodicity of the Markov chain in which the time series is embedded. In

the case of additive errors,ψ-irreducibility and aperiodicity are an easy consequence of the
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error distribution having a continuous density that is everywhere positive, the irreducibility

measureψ thus being Lebesgue measure (Meyn and Tweedie (1993), Cline and Pu (1998)).

The question of establishing ergodicity is then reduced to establishing positive Harris re-

currence.

Ergodicity implies then-step transition probabilitiesPn(x, ·) converge to the invariant

probability measure

lim
n→∞

‖ Pn(x, ·)−π ‖= 0,

where‖ · ‖ is the total variation norm, i.e.,

‖ Pn(x, ·)−π ‖= sup
B∈σ(E)

|Pn(x,B)−π(B)|.

Nummelin (1984) informs us that this convergence iso(1/n). It is advantageous to know

if the convergence ofPn(x, ·) to π occurs more quickly since we can then either assume the

process has already reached stability, meaning the governing distribution is the stationary

one, or at the very least from the stationary distribution we know the long-term or ergodic

behavior of the chain. There are different types of ergodicity named according to the rate

and manner in which the convergence ofPn(x, ·) to π occurs.

If the convergence occurs at a geometric rate, we have the concept of geometric er-

godicity:

‖ Pn(x, ·)−π ‖≤ Rr−n, r > 1, R< ∞, n≥ 1.

However, this convergence is not uniform; the constants depend on the initial value x.

To get uniform convergence, we need to consider a stronger form of ergodicity named

V-uniform ergodicity.

Following Meyn and Tweedie (1993) define theV-norm for a positive functionV ≥ 1

and any measureP as

‖ P ‖V= sup
f :| f |≤V

|P( f )|.
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For two Markov transition functionsP1 andP2, define theV-norm distance between

P1 andP2 as

| ‖P1−P2|‖V := sup
{x}

‖ P1(x, ·)−P2(x, ·) ‖V

V(x)
.

Considerπ as the transition functionπ(A) = π(x,A); thenV-uniform convergence is

defined as geometric convergence ofPn(x, ·) to π when the distance betweenPn(x, ·) and

π is measured by theV-norm distance: there existr > 1, R< ∞ such that for all positive

intergersn:

|‖Pn−π|‖V ≤ Rr−n.

Note that sinceV-uniform convergence is defined in terms of theV-norm which involves a

supremum over allx, the convergence is in fact uniform inx and thus the name.

Establishing the various types of ergodicity for a Markov chain is often done with the

use of Foster-Lyapounov drift conditions, one of which is provided by Meyn and Tweedie

(1993): for our purposes an irreducible, aperiodic Markov chain{Xt} is geometrically

ergodic if for some extended real-valued, locally bounded test functionV : E → [1,+∞),

there existK < ∞, ρ < 1 and a compact setC such that

E(V(Xt)|Xt−1 = x)≤ ρV(x)+K1C(x).

A useful equivalent condition requires (Cline and Pu (1999b), Cline and Pu (2001)):

limsup
‖x‖→∞

E(V(Xt+1)|Xt = x)
V(x)

< 1 (1.3)

and there existsM < ∞ such that

sup
‖x‖≤M

E(V(Xt+1)|Xt = x) < ∞. (1.4)

In fact, both these conditions establish the stronger form of ergodicity,V-uniform ergodic-

ity, whereV(·) is the test function used to satisfy the drift condition.



9

Cline and Pu (2001) list several approaches to using test functionsV to satisfy drift

conditions. We make use of thedirectional method, involving the use of a test function of

the formV(x) = 1+ λ(x) ‖ x ‖r wherer > 0 andλ is bounded and bounded away from 0.

The functionλ(·) is typically chosen to depend on the direction ofx. This approach has

worked well with threshold models of order 1 and we apply it with success in Chapter III

to threshold models of higher order. The advantage of this method can be seen when the

TAR(p) model has a cycle, under appropriate conditions on the skeleton. By choosing the

functionλ(x) to be constant in each region and by choosing the appropriate constants, one

can ensure the expected ratio of test functions (1.3) to be less than 1 as the chain travels

from region to region (Cline and Pu (1999b)).

The choice of test functionV(·) has important implications for statistical inference.

Meyn and Tweedie (1993) relate the existence of moments of the stationary distribution

to the order of the test function used in demonstratingV-uniform ergodicity: for aV-

uniformly ergodic chain{Xt} and any functiong(x) such thatg2 ≤V, Meyn and Tweedie

prove consistency and central limit theorems for the partial sums

Sn(g) =
n

∑
i=1

g(Xi).

Spieksma and Tweedie (1994) provide a set of conditions for a countable state-space

Markov chain that allow the test functionV(x) to be ’boosted’ to an exponential test func-

tionV1(x) = esV(x), wheres> 0. Cline and Pu (2001) generalize this result by deriving con-

ditions for a general state-space chain to have an exponential test function of the form either

V1(x) = esV(x) orV1(x) = eV(x)s
. For test functionV(x) such that‖ x‖≤V(x)≤M +K ‖ x‖

for finite constantsK andM, the existence of an exponential test function thus implies the

existence of all moments of the stationary distribution (Cline and Pu (2001)). With this in

hand, consistency and limit theorems for the parameter estimates can then be established.

Our project is to give conditions for ergodicity of threshold autoregressive models by
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embedding the time series in a general state space Markov chain and applying the Markov

theory detailed in this introduction. We identify two special cases we define as cyclic and

finite state chain approximated and use Foster-Lyapunov drift criteria to demonstrateV-

uniform ergodicity. We also provide sufficient conditions for transience of cyclic models

in some special cases and conditions under which central limit theorems will hold in the

cyclic case.
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CHAPTER II

STABILITY AND INFERENCE FOR CYCLIC THRESHOLD AUTOREGRESSIVE

MODELS

2.1 Introduction

We approach the question of stability of the nonlinear time series by deriving conditions

under which the Markov chain in which the series is embedded could be classified as either

V-uniform ergodic or transient.

Suppose the threshold autoregressive model of orderp described in (1.1) is embedded

in a Markov chain{Xt} as in (1.2). The spaceRp is divided into regionsR1, . . . ,Rl each

regionRi with companion matrixAi , i = 1, . . . , l . We define the deterministic skeletonxt of

the Markov chainXt to be the deterministic process

xt = Aixt−1, xt−1 ∈ Ri , i = 1, . . . , l (2.1)

i.e., the deterministic skeleton is the process with the additive errors removed.

Define ak-cycle for the deterministic skeleton for a collection{i1, . . . , ik} of lengthk

from {1, . . . , l} to be a collection ofk regionsRi1, . . . ,Rik with corresponding companion

matricesAi1, . . . ,Aik such thatx∈ Ri j impliesAi j x∈ Ri j+1(modk). Similarly, the multi-cyclic

case has a finite number of cyclesC1, . . . ,Cm each of lengthki , i = 1, . . . ,m. Since there are

a finite number of cycles of finite length we can with some modifications reduce this to a

k-step process withk = Πm
i=1ki .

Consider the case of a singlek-cycle. Settingxt = x ∈ Ri and lookingk transitions

ahead, we havext = x ∈ Ri implies xt+k = Πk
i=1Ai j x∈ Ri . This observation tells us the

skeleton will shrink if it shrinks each trip through the cycle; thus, rather than look at the

one-step transitions of the process{Xt} we can consider thek-step transitions of the chain.
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This is the heuristic behind thek-step strategy for demonstrating geometric ergodicity put

forth by Tjøstheim (1990).

There is a clear benefit from considering the cyclic behavior of the chain. Consider

that for any two matricesA andB, for an arbitrary norm‖ · ‖ and whereρ(A) denotes the

largest eigenvalue ofA in modulus

ρ(AB) = lim
n→∞

‖ (AB)n ‖1/n≤ lim
n→∞

‖ An ‖1/n× lim
n→∞

‖ Bn ‖1/n= ρ(A)×ρ(B). (2.2)

Generalizing conditions for ergodicity from the linear AR(p) case to a threshold autore-

gressive model with companion matricesA andB would lead to the conditionρ(A) < 1

andρ(B) < 1, implying ρ(A)× ρ(B) < 1. The conditionρ(A) < 1,ρ(B) < 1 impliesV-

uniform ergodicity for all cyclic models with companion matricesA andB, but as (2.2)

shows this condition is stronger than what is necessary and leads us to miss valid models.

Models whose deterministic skeleton has ak-cycle Ri1, . . . ,Rik with companion matrices

Ai1, . . . ,Aik require under certain conditions only thatρ(‖ Πk
i=1Ai j ‖) < 1, rather than the

stronger conditionρ(‖ Ai j ‖< 1) for j = 1, . . . ,k. We can argue analagously in the case of

multiple cycles of finite length. The gain here can be tremendous; as mentioned in Chapter

I certain threshold autoregressive models have been shown to have unbounded parameter

spaces (Petruccelli and Woolford (1984), Kunitomo (2001)). Considering only the relevant

cycles allows us to recover the full parameter space.

Define for a Markov chain{Xt} and a constantk< ∞ thek-step chain to be the Markov

chain{Xtk}. Using a drift criterion, Tjøstheim demonstrated geometric ergodicity of the

k-step chain{Xtk} and drew upon Nummelin (Thm. 6.14, (1984)) who equated geomet-

ric ergodicity of{Xtk} with that of {Xt}. Meyn and Tweedie subsequently strengthened

Tjøstheim’s result by showing Tjøstheim’s drift criterion impliedV-uniform ergodicity of

{Xtk} and thusV-uniform ergodicity of{Xt}. We summarize all of this in an original lemma

which restates the equivalency ofV-uniform ergodicity of{Xt} and{Xtk} in terms only of
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theV-norm.

We use the following drift criteria to establishV-uniform ergodicity for thek-step

chain:

limsup
‖x‖→∞

E(V(Xn+k)|X0 = x)
V(x)

< 1 (2.3)

and for allM < ∞

sup
‖x‖≤M

E(V(Xn+k)|X0 = x) < ∞, (2.4)

where the test functionV(·) ≥ 1 is such thatV(·) is measurable, locally bounded and

V(x)→ ∞ as‖ x ‖→ ∞.

Analogously, transience of{Xt} is demonstrated through its equivalence to the tran-

sience of thek-step chain{Xtk}. Tweedie (1976, Theorem 11.3) provides the following

criteria for the transience of{Xt}: for setsB andBc of positive measure, if there exists a

non-negative functiong(x) with

E(g(X1)|X0 = x)≤ g(x), x∈ Bc (2.5a)

g(x) < inf
y∈B

g(y), x∈ Bc (2.5b)

or a bounded non-negative functiong(x) with

E(g(X1)|X0 = x)≥ g(x), x∈ Bc (2.6a)

g(x) > sup
y∈B

g(y), x∈ Bc (2.6b)

and if {Xt} is ψ-irreducible, then{Xt} is transient. We apply these criteria to derive con-

ditions under which{Xtk} is transient and then apply Tjøstheim (1990, Lemma 3.1) to

conclude transience of{Xt}.
Inference for the threshold autoregressive model depends upon the existence of mo-

ments of the stationary distribution and upon the existence of central limit theorems for

partial sums∑n
i=1g(Xi). Results from Meyn and Tweedie (1993) link the existence of mo-

ments and central limit theorems to the order of the test functionV used in establishing
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V-uniform ergodicity. Cline and Pu (2001) provide conditions under which the test func-

tionV can be ’boosted’ to an exponential test functionV
′
(x) = e(V(x))s

such that the process

is V
′
-uniformly ergodic. This is discussed in more detail in Section 4.

Our results are applicable to threshold autoregressive models where the stochastic pro-

cess behaves asymptotically like the deterministic skeleton and whose determinstic skele-

ton for‖ x ‖ large exhibits finite cyclic behavior, i.e., has a finite number of cycles of finite

length. We assume throughout that the cycles do not fall on any of the thresholds so that

for largex there is negligible probability of the process leaving one cycle for another.

We first establish conditions under which these processes areV-uniformly ergodic,

then turn our attention to transience and finally to the question of the existence of moments

of the stationary distribution. Theorems establishing ergodicity are in Section 3, those

for transience are in Section 4 and conditions for the test functionV(·) to be ’boosted’ to

an exponential are in Section 5. First we provide some results to be used throughout the

chapter.

2.2 Preliminary Results

This first result provides us with the norm we will use. It is due to Ciarlet (1982) and can

be found in An and Huang (1996). The statement of the lemma is Ciarlet’s; the sketch of

the proof is ours.

(Ciarlet) Lemma 1.If a matrixG hasρ(G) < 1, then there exists a matrix norm‖ · ‖m

induced by a vector norm‖ · ‖v and a constantλ < 1 such that

‖Gx‖x≤‖G ‖m‖ x ‖x≤ λ ‖ x ‖v, ∀x. (2.7)

Proof. Let ρ(G) denote the eigenvalue of largest modulus for an arbitrary matrixG. It is

a well-known fact (Martelli (1992), Lemma 4.2.1, for example) thatρ(G) < 1 implies the

existence of a vector norm‖ · ‖v such that the matrix operator norm‖ · ‖m induced by‖ · ‖v
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has‖G ‖m< 1. Also,‖G ‖m< 1 implies the existence of a constantλ < 1 with λ≥‖G ‖m.

Combining these facts with a norm inequality we have

‖Gx‖x≤‖G ‖m‖ x ‖x≤ λ ‖ x ‖v, ∀x

which is the result.

We will use this vector norm‖ · ‖v and the matrix norm‖ · ‖m induced by‖ · ‖v

throughout the rest of this chapter.

The following lemma establishes theV-uniform ergodicity of the one-step chain{Xt}
from that of thek-step chain{Xtk}. As mentioned previously, Meyn and Tweedie (1993)

define for a functionV ≥ 1 theV-norm distance between two transition kernelsP1 andP2

as

|‖P1−P2|‖V := sup
x

sup
|g|≤V

|P1g−P2g|
V(x)

. (2.8)

where for a kernelP we define

Pg :=
Z

g(y)P(x,dy). (2.9)

Let P = P(X1 ∈ A|X0 = x) denote the transition kernel of{Xt}. Then from (2.8) and (2.9)

|‖P|‖V = sup
x

sup
|g|≤V

|Pg|
V(x)

= sup
x

sup
|g|≤V

|E(g(X1)|X0 = x)|
V(x)

≤ sup
x

sup
|g|≤V

E(|g(X1)||X0 = x)
V(x)

≤ sup
x

E(V(X1)|X0 = x)
V(x)

.

(2.10)

So if we can show

sup
x

E(V(X1)|X0 = x)
V(x)

< ∞, (2.11)

whereV is the test function used to showV-uniform ergodicity for thek-step chain then

we have|‖P|‖V < ∞, whereP is the transition kernel of{Xt}.
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Lemma 2.Suppose for a positive integerk < ∞ thek-step{Xtk} chain isV-uniformly

ergodic and that for the one-step chain{Xt} with transition kernelP we have|‖P|‖V < ∞.

Then the one-step chain{Xt} is V-uniformly ergodic as well.

Proof. Since|‖P|‖V < ∞, there existsM < ∞ such that|‖P|‖V ≤M. Suppose w.l.o.g. that

M ≥ 1. Since{Xtk} is V-uniformly ergodic it is geometrically ergodic and by Tjøstheim

(1990, Lemma 3.1) so isXt , meaning{Xtk} and{Xt} each have invariant distributionsπk

andπ, respectively. By Meyn and Tweedie (1993, Theorem 10.4.5),πk is also invariant

for {Xt}; π is clearly invariant for{Xtk}. Since the invariant distributions are unique up to

constant multiples we have thatπ(A) = πk(A) for all setsA with π(A) > 0 andπk(A) > 0.

Denote this common invariant distribution byπ.

Note that for the one-step chain{Xt} with transition kernelP thek-step chain{Xtk}
has transition kernelPk. By Meyn and Tweedie (1993, Theorem 16.0.1) thek-step chain

is V-uniformly ergodic if and only if we have for someR < ∞, r > 1, and for alln that

|‖(Pk)n−π|‖V ≤ Rr−n. Now write

|‖Pkn−π|‖V = |‖(Pk)n−π|‖V ≤ Rr−n = Rr−
nk
k = R(r1/k)−nk = Rr−nk

∗ , (2.12)

wherer∗ = r1/k > 1 sincer > 1.

The invariance ofπ for P impliesP jπ = π for all integersj. Now consider that since

|‖ · |‖V is an operator norm (Meyn and Tweedie (1993), Lemma 16.1.1) we have by norm

inequalities for any kernelsP,P1,P2 and any integersj,k

|‖P j |‖V ≤ (|‖P|‖V) j and |‖Pj
1Pk

2|‖V ≤ (|‖P1|‖V)j(|‖P2|‖V)k. (2.13)

Considerπ to be the kernelπ(x,A) := π(A) for all setsA. Then for any integersn and
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1≤ j < k, k fixed, using (2.12), (2.13) and the invariance ofπ

|‖Pkn+ j −π|‖V = |‖P jPkn−P jπ|‖V

≤ |‖P j |‖V|‖Pkn−π|‖V

≤ (|‖P|‖V) j |‖Pkn−π|‖V ≤M jRr−kn
∗ ≤ R

′
r−(kn+ j)
∗

(2.14)

whereR
′
= RMkrk∗. Then for alln

′
= nk+ j for somen, 1≤ j < k, we have from (2.14)

|‖Pn′−π|‖V ≤ R
′
r−n

′
∗ , r∗ > 1,R′ < ∞

which by Meyn and Tweedie (1993, Theorem 16.0.1) is true if and only if{Xt} is V-

uniformly ergodic.

Denote the test functions used to satisfy the drift condition forV-uniform ergodicity

of {Xt} and of{Xtk} by V1(·) andVk(·), respectively. Meyn and Tweedie (1993) pointed

out the equivalence of the drift condition andV-uniform ergodicity; since{Xt} and{Xtk}
are bothV-uniformly ergodic for the same functionV as a result of Lemma 2, this implies

the test functionsV1(·) andVk(·) are of the same order.

Two definitions are needed before proceeding on to the next lemma. Define ad-path

to be a sequence ofd + 1 regionsR0, . . . ,Rd with companion matricesA0, . . . ,Ad that the

skeleton of the process moves through, i.e.,

x∈ Ri ⇒ Aix∈ Ri+1, i = 0, . . . ,d.

For the vector norm‖ · ‖v and a positive functionf (·), let the ball of radiusf (‖ x‖v) around

Aix be denoted by

Bf (‖x‖v)(Aix) = {y :‖ y−Aix ‖v< f (‖ x ‖v)}.

The next lemma assures us that by picking the initialx large enough in thed-path

and with appropriate conditions on the skeleton the process will remain arbitrarily large
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and in thed-path in certain important regions for a finite time. The condition that the

process stay in and large through the path is an important one; requiring the process to

remain large ensures the error perturbations are negligible and thus the process behaves

like the deterministic skeleton. We will make use of this lemma several times in proving

the theorems.

Lemma 3.Suppose ad-path R0, . . . ,Rd exists with companion matricesA0, . . . ,Ad.

Suppose there exists a collection of positive, strictly increasing functionsfi(·) so that for

M < ∞ with ‖ x ‖v> M, x∈ Ri impliesBfi(‖x‖v)(Aix) ⊂ Ri+1 for i = 0, . . . ,d−1. Suppose

E|ξt |r < ∞ for somer > 0. Assume all‖Ai ‖m are finite and bounded away from zero. Then

for anyδ′ > 0, M < ∞ there existsM1 < ∞ so that for allX0 = x∈ R0 with ‖ x ‖v> M and

‖ ∏d
i=0Aix ‖v> M1, the process stays larger thanM in magnitude and stays in thed-path

from time 1 to timed with probability greater than1−dδ′.

Proof. Get the functionsfi(·). Chooseδ′ > 0 andM < ∞. By the assumptionE|ξt |r < ∞

there existsM2 < ∞ so thatP(|ξt |> mini{ fi(M2)}) < δ′/2. Let M∗ = max(M,M2).

Let Ck = ∑k+1
s=1(maxi ‖ Ai ‖m)k−s. Let D = maxk∈{0,...,d−1}(‖ ∏d

i=k+1Ai ‖m). Given

δ′ > 0 and sinceCk,D are finite, the assumption on the errors implies there existsM1 < ∞

so that

P

(
|ξ1|> M1/D−M∗

(k+1)Ck

)
<

δ′

2(k+1)
, k = 0, . . . ,d−1. (2.15)

Suppose thatX0 = x ∈ R0. Since each‖ Ai ‖m< ∞ we have that‖ ∏d
i=k+1Ai ‖m< ∞ for

k = 0, . . . ,d−1. Then note that by a norm inequality

‖ (
d

∏
i=0

Ai)x ‖v ≤ ‖
d

∏
i=k+1

Ai ‖m× ‖ (
k

∏
i=0

Ai)x ‖v, k = 0, . . . ,d−1. (2.16)

Then if‖∏d
i=0Aix ‖v> M1, from (2.16)

‖ (
k

∏
i=0

Ai)x ‖v>
M1

D
, k = 0, . . . ,d−1. (2.17)
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Let X0 = x and write where the process stays in thed-path up until timek+1

Xk+1 = (
k

∏
i=0

Ai)x+
k+1

∑
s=1

(
k+1

∏
i=s+1

Ai)νs, k = 0, . . . ,d−1. (2.18)

Let Ik = (Xk−1 ∈Rk−1)∩ (‖ Xk−1 ‖v> M∗). Using (2.15)-(2.18), norm inequalities, Boole’s

inequality, subadditivity and the fact the errors are independent and identically distributed

we have forM∗ and fork = 0, . . . ,d−1

sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
(‖ Xk+1 ‖v≤M∗)Ik+1

∣∣∣∣X0 = x

)

≤ sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
‖ (

k

∏
i=0

Ai)x ‖v−
k+1

∑
s=1

k+1

∏
i=s+1

‖ Ai ‖m |ξs| ≤M∗
)

≤ sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(k+1

∑
s=1

(max
i
‖ Ai ‖m)k−s|ξs| ≥‖ (

k

∏
i=0

Ai)x ‖v−M∗
)

≤ P

(k+1

∑
s=1

(max
i
‖ Ai ‖m)k−s|ξs| ≥ M1

D
−M∗

)

≤ P

(
Ck

k+1

∑
s=1
|ξs|> M1

D
−M∗

)

≤ P

(
max

s∈{1,...,k+1}
|ξs|> M1/D−M∗

(k+1)Ck

)

≤ P

(
∪k+1

s=1|ξs|> M1/D−M∗

(k+1)Ck

)

≤ (k+1)P
(
|ξt |> M1/D−M∗

(k+1)Ck

)
<

δ′

2
.

(2.19)

By subadditivity from (2.19)

sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
∪d−1

k=0(‖ Xk+1 ‖v≤M∗)Ik

∣∣∣∣X0 = x

)
<

dδ′

2
. (2.20)

As for the probability the process leaves thed-path, from the assumptions if we have

Xk−1 = xk−1 ∈ Rk−1 with ‖ xk−1 ‖v> M∗ ≥M, thenBfk−1(‖xk−1‖v)(Ak−1xk−1)⊂ Rk. Since
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M∗ ≥M2 and fk−1(·) is strictly increasing this implies fork = 1, . . . ,d

sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
(Xk 6∈ Rk)Ik

∣∣∣∣X0 = x

)
≤ inf

xk−1∈Rk−1
‖xk−1‖v>M∗

P(|ξt |> fk−1(‖ xk−1 ‖v))

≤ P(|ξt |> fk−1(M∗))

<
δ′

2
.

(2.21)

By subadditivity from (2.21)

sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
∪d

k=1[(‖ Xk ‖v≤M∗)Ik]
∣∣∣∣X0 = x

)
<

dδ′

2
.

(2.22)

Then from (2.20), (2.22) and using subadditivity the probability the process stays in the

d-path and remains larger thanM∗ ≥M is given by

inf
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
∩d

k=1[(Xk ∈ Rk)∩ (‖ Xk ‖v> M∗)]Ik

∣∣∣∣X0 = x

)

≥ 1 − sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
∪d

k=1[(Xk 6∈ Rk)]Ik

∣∣∣∣X0 = x

)

− sup
x∈R0
‖x‖v>M

‖(∏d
i=0Ai)x‖v>M1

P

(
∪d

k=1[(‖ Xk ‖v≤M∗)]Ik

∣∣∣∣X0 = x

)

> 1−dδ
′
.

(2.23)

2.3 V-Uniform Ergodicity

Our first result on theV-uniform ergodicity of cyclic threshold autoregressive models is

a revision of Tjøstheim (1990) Theorem 4.5. The original statement of the theorem was

roughly this:
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Tjosthiem: Theorem 1.Assume there is ak-cycle of indicesi1→ i2→ . . .→ ik → i1

such thatx ∈ Ri j ⇒ Ai j x ∈ Ri j+1 for ‖ x ‖ large. Moreover, assume thatρ(∏k
s=1Ais) < 1

so that there exists an integerh such that‖ (∏k
s=1Ais)

h ‖< 1 for a matrix norm‖ · ‖. If

∀ j,v≤ j ≤ k+v,1≤ v≤ k we have

P{(
j

∏
s=v

Aisx+
j−v+1

∑
u=1

(
j

∏
s=u+v

Ais)εt+u /∈ Rj+1)}

\
(

j−1

∏
s=v

Aisx+
j−v

∑
u=1

(
j−1

∏
s=u+v

Ais)εt+u ∈ Ri j )}= O(‖ x ‖−ε)

(2.24)

for someε > 0 as‖ x ‖→ ∞ and if there existsn such that for someu, 1≤ u≤ n

P(Xt+u ∈
[

Ris|Xt = x /∈
[

Ris) = 1−O(‖ x ‖−δ) (2.25)

for someδ > 0 as‖ x ‖→ ∞, then{Xt} is geometrically ergodic.

Proof. see Tjøstheim (1990, Theorem 4.5)

The condition that the process remains in a cycle once it reaches one for‖ x ‖ large is

(2.24). We are guaranteed by (2.25) that we reach a cycle in a finite time for‖ x ‖v large.

Taken together these two conditions specify the process behaves arbitrarily close to the

skeleton processxt for ‖ x ‖v large. This implies certain conditions on the error distribution

and the skeleton itself. We attempt to express these conditions more explicitly in terms of

the error distribution and the behavior of the skeleton in order that they may be more easily

verified.

As stated, our result will handle cases where the dynamical skeleton has a single lim-

iting cycle of finite length. The skeleton must be such that points in the cycle are mapped

onto rays in the interior of the next region in the cycle. They cannot fall on the thresholds.

This allows us to bound the transition probabilities between regions withinε of either zero

or one by picking‖ x ‖ to be arbitrarily large, since the larger‖ x ‖v is the further the points
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are mapped from the thresholds and the smaller the probability the errors can cause the

process to change regions. Thus we can focus on the regions in the cycle when determining

the condition for ergodicity.

For a vector norm‖ · ‖v and a positive functionf (·) recall that we denoted the ball of

radius f (‖ x ‖v) aroundAix by

Bf (‖x‖v)(Aix) = {y :‖ y−Aix ‖v< f (‖ x ‖v)}.

To guarantee points in the cycle are mapped away from the thresholds, we suppose in

(2.26) below that for someM < ∞ there exists a collection of positive, strictly increasing

functions fi j (·) so that

∀x∈ Ri j , j = 1, . . . ,k with ‖ x ‖> M, Bf ij (‖x‖v)(A i j x)⊂ Ri j+1(mod k),

i.e., points in the cycle must be mapped bounded away from the thresholds, with this bound

increasing as‖ x ‖v→ ∞.

Points not already in the cycle must be assured of reaching one in a finite time. We

assume forx 6∈ ∪k
j=1Ri j that under the action of the deterministic skeletonx follows ad-path

R0, . . . ,Rd−1 beforex enters the cycle. We allow thed-path to vary from onex to another,

but we require the length of the pathd = d(x)≤ n for some finite, uniformn.

We need points not in the cycle to either be mapped away from the thresholds so that

the probability the errors disrupt the progress toward the cycle is negligible for large‖ x ‖v

or we need these points to lie in regions the process hits with arbitrarily small probability

and then be mapped with near certainty to one of the former regions. To accomplish this

we assume in (2.27) below we can partition off the problematic subregions of eachRi and

make the probability the process hits these subregions arbitrarily small by requiring‖ x ‖v

large enough. We call these subregionsR
′
i .

Formally, we suppose for eachi /∈ {i1, . . . , ik} there exists a positive, strictly increasing
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functiongi(·) such thatx∈ Ri with ‖ x ‖v> M implies either

Bgi(‖x‖)(Aix)⊂ Ri+1, i = 0, . . . ,d,

or thatx∈ R
′
i ⊂ Ri , where∪R

′
i is such that for arbitraryδ′ > 0 there existsM

′ ≥M so that

sup
x

‖x‖>M
′
P(X1 ∈ ∪R

′
i |X0 = x) < δ

′
.

In the case where one or more of the companion matrices is not full rank, the process

may not remain large on certain subregions no matter the value of‖ x ‖v with which we

begin. Where these are subregions of regions in the cycle this does not cause a problem

since these subregions are taken care of when we show the test function satisfies the drift

condition forV-uniform ergodicity in (1.3). The subregions of regions not in the cycle do

cause a problem for us and we need to be able to write them off; that is, we handle cases

where the skeleton maps points away from these regions and these regions can be made

arbitrarily small so that for‖ x ‖v large the probability the process enters them is arbitrarily

small as well.

Since we need the process to remain large to continue in its progress towards the

cycle, we suppose that for arbitraryM4 < ∞ there existsM
′′
< ∞ so that the set of points

{x :‖ x ‖v> M
′′
,‖ (∏d(x)

i=1 Ai)x ‖v≤M4} is contained in the union of the subregionsR
′
i . This

will hold, for example, in cases where we can cut off tiny slices near the thresholds and

have the process remain large on the remainder of the space. These tiny offending regions

are ’transient’ in a sense.

Theorem 1.Suppose there exists ak-cycle of regionsRi1 → Ri2 → . . . → Rik → Ri1

with companion matricesAi1, . . . ,Aik so that for an arbitrary norm‖ · ‖ there existsM < ∞

with ‖ x ‖> M implying x∈Ri j ⇒ Ai j x∈Ri j+1(mod k). Suppose for someM < ∞ there exists

a collection of positive, strictly increasing functionsfi j (·) so that

∀x∈ Ri j , j = 1, . . . ,k with ‖ x ‖> M, Bf ij (‖x‖v)(A i j x)⊂ Ri j+1(mod k), (2.26)
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Suppose there exists a uniformn< ∞ so that for eachx /∈∪k
j=1Ri j with ‖ x‖> M there

exists an integerd = d(x)≤ n where under the action of the skeletonx follows the determin-

istic d-pathR0→ . . .→ Rd with d ∈ {i1, . . . , ik}, i.e.,x∈ Ri ⇒ Aix∈ Ri+1, i = 0, . . . ,d−1,

before entering the cycle.

Assume for eachi /∈ {i1, . . . , ik} there exists a positive, strictly increasing functiongi(·)
sox∈ Ri with ‖ x ‖> M implies either that

Bgi(‖x‖)(Aix)⊂ Ri+1, i = 0, . . . ,d (2.27)

or thatx∈ R
′
i ⊂ Ri where for arbitraryδ′ > 0 there existsM

′ ≥M such that

sup
x

‖x‖>M
′
P(X1 ∈ ∪R

′
i |X0 = x) < δ

′
. (2.28)

Suppose forM4 < ∞ there existsM
′′
< ∞ so that{x :‖ x ‖v> M

′′
,‖ (∏d(x)

i=1 Ai)x ‖v≤M4} is

contained in∪l
i=1R

′
i . If ξt has a continuous density everywhere positive,E|ξt |2 < ∞ and

ρ(∏k
j=1Ai j ) < 1, then{Xt} is V-uniformly ergodic.

Proof. If ξt has a continuous density everywhere positive then we are assured{Xt} is aperi-

odic andψ-irreducible with the irreducibility measure being Lebesgue measure. It remains

to construct a test functionV
′
(·) and show{Xt} satisfies the conditions forV

′
-uniform

ergodicity in (2.3) and (2.4).

From the assumptionρ(∏k
j=1Ai j ) < 1, by Lemma 1 there exists a matrix norm‖ · ‖m

induced by a vector norm‖ · ‖v and a constantλ < 1 so that

‖ (
k

∏
j=1

Ai j )x ‖v≤‖
k

∏
j=1

Ai j ‖m‖ x ‖v≤ λ ‖ x ‖v . (2.29)

Let {σk} denote the collection of all out of cycle sequences from{1, . . . , l} of length

k. Note thatk < ∞ implies card({σk}) < ∞ andE|ξt |< ∞, ‖ Ai ‖m< ∞, i = 1, . . . , l , implies
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we can define constantsC1,C2 < ∞ such that

C1 >‖ (
k

∏
i=1

Ai j ) ‖m + ∑
{σk}

k

∏
i=1
‖ Aσk(i) ‖m, (2.30a)

C2 >
( k

∑
u=1

k

∏
i=u+1

‖ Ai j ‖m + ∑
{σk}

k

∑
u=1

k

∏
i=u+1

‖ Aσk(i) ‖m
)
E|ξt |. (2.30b)

Getn < ∞ from the assumptions. GetM < ∞ according to the assumptions.

DefineV(x) =‖ x ‖v andV1(x) = E(V(Xn)|X0 = x). Note that since theξt are uncor-

related and using a norm inequality

(
E

(
(V(Xn))2

∣∣X0 = x
))1/2

≤ (
E

(
(max

i
‖ Ai ‖m)n ‖ x ‖v +

n

∑
i=1

(max
i
‖ Ai ‖m)n−i |ξt |

)2)1/2

≤ (max
i
‖ Ai ‖m)n ‖ x ‖v +

( n

∑
i=1

(max
i
‖ Ai ‖m)2(n−i))1/2(E|ξt |2)1/2

+ 2 ‖ x ‖1/2
v (E|ξt |)1/2( n

∑
i=1

(max
i
‖ Ai ‖m)2n−i)1/2

.

(2.31)

Since‖ Ai ‖m< ∞, E|ξt |2 < ∞, then by (2.31) for large‖ x ‖v there existK1,K2 < ∞ so that

(
E

(
(V(Xn))2

∣∣X0 = x
))1/2≤ K1E(V(Xn)|X0 = x)+K2. (2.32)

Likewise, sinceC1,C2 < ∞ there existK3,K4 < ∞ so that

(
E((C1V(Xn)+C2)2|X0 = x)

)1/2≤ K3E(V(Xn)|X0 = x)+K4. (2.33)

Pick δ′ > 0 so thatλ+[C1k+(2n+1)K3]δ
′
< 1.

To satisfy the drift condition (2.3) we are going to look at

limsup
‖x‖v→∞

E(V1(Xk+1)|X0 = x)
V1(x)

= limsup
‖x‖v→∞

E(E[E(V(Xn+k+1)|Xn+1)|X1]|X0 = x)
E(V(Xn)|X0 = x)

. (2.34)

We will proceed by boundingE(V(Xn+k)|Xn) = E(V(Xn+k+1)|Xn+1), splitting it into cases

whereXn is in a cycle or not. After this, conditioning onX1 allows us to deal with the cases

X1 ∈ ∪l
i=1R

′
i andX1 6∈ ∪l

i=1R
′
i .
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We want to bound the probability the process remains in the cycle and remains large if

it begins atXn = xn in the cycle with‖ xn ‖v sufficiently large. By (2.26) for allxn∈∪k
j=1Ri j

with ‖ xn ‖v> M there exists a positive, strictly increasing functionfi j (·) such that we have

Bfi j (‖xn‖v)(Ai j xn)⊂ Ri j+1. Suppose w.l.o.g. thatxn ∈ Ri1 with ‖ xn ‖v> M. Then by this and

the assumption on the errors, the conditions for Lemma 3 are satisfied implying there exist

M1 < ∞ andM∗ ≥M so that

inf
xn∈Ri1
‖xn‖v>M

‖(∏k
j=1Ai j )xn‖v>M1

P

(
∩n+k

j=n+1[(Xj ∈ Ri j )∩ (‖ Xj ‖v> M∗)]
∣∣∣∣Xn = xn

)
> 1−kδ

′
,

(2.35)

which provides a bound on the probability the process stays in the cycle and remains large

if it begins in the cycle atXn = xn ∈ {x :‖ (∏k
j=1Ai j )x ‖v> M1}. By (2.29) and (2.30b)

sup
xn∈Ri1
‖xn‖v>M

‖(∏k
j=1Ai j )xn‖v>M1

E(V(Xn+k)I{∩n+k
j=n+1[(Xj ∈ Ri j )∩ (‖ Xj ‖v> M∗)]}|Xn = xn)

< λV(xn)+C2.

(2.36)

Note that by assumption forM1 < ∞ there existsM
′′
< ∞ so that the set of points

{xn :‖ xn ‖v> M
′′
,‖ (∏k

j=1Ai j )xn ‖v≤M1} is contained in∪l
i=1R

′
i . By (2.30a), (2.30b) and

(2.35)

sup
xn∈Ri1

‖xn‖v>max(M,M
′′
)

xn 6∈∪l
i=1R

′
i

E(V(Xn+k)I{∪n+k
j=n+1[(Xj 6∈ Ri j )∪ (‖ Xj ‖v≤M∗)]}|Xn = xn)

< (C1V(xn)+C2)kδ
′
.

(2.37)

Then by (2.36) and (2.37) we can say forXn = xn in a cycle and sufficiently large:

sup
xn∈Ri1

‖xn‖v>max(M,M
′′
)

xn 6∈∪l
i=1R

′
i

E(V(Xn+k)|Xn = xn)≤ λV(xn)+C2 +(C1V(xn)+C2)kδ
′
. (2.38)
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To boundE(V(Xn+k)|Xn) whenXn is either not in a cycle or‖Xn ‖v is not large enough,

we need to consider what happens beginning atX0 = x. We want to bound the probability

pointsX0 = x with ‖ x ‖v large and not in the cycle get to the cycle by a finite timen and

remain large while doing so.

Now ∀x such thatx 6∈ ∪k
j=1Ri j , x 6∈ ∪l

i=1R
′
i with ‖ x ‖v> M, by assumption there exists

a uniformn < ∞ andd = d(x) ≤ n such thatx follows thed-pathR0 → . . . → Rd with

d ∈ {i1, . . . , ik}. Suppose w.l.o.g. thatX0 = x∈ R0 with ‖ x ‖v> M.

By (2.27) suppose there exists a positive, strictly increasing functiong0(·) such that

Bg0(‖x‖)(A0x)⊂ R1. By this and the assumption on the errors, the conditions for Lemma 3

are satisfied, implying there existsM2 < ∞ so that forM∗ = max(M,M
′′
)

inf
x∈R0
‖x‖v>M

‖(∏n
j=0A j )x‖v>M2

P

(
∩n

j=1[(Xj ∈ Rj)∩ (‖ Xj ‖v> M∗)]
∣∣∣∣X0 = x

)
> 1−nδ

′
,

(2.39)

which provides a bound on the probabilityx 6∈ ∪k
j=1Ri j , x 6∈ ∪l

i=1R
′
i reaches a cycle by a

finite time n and the process remains large while doing so. Then by (2.39) and Cauchy-

Schwarz

sup
x∈R0
‖x‖v>M

‖(∏n
j=0A j )x‖v>M2

E
(
V(Xn+k)I{(Xn 6∈ ∪k

j=1Ri j )∪ (‖ Xn ‖v≤max(M,M
′′
))}

∣∣∣X0 = x
)

≤ sup
x∈R0
‖x‖v>M

‖(∏n
j=0A j )x‖v>M2

(
E

(
(C1V(Xn)+C2)2

∣∣X0 = x
)
)1/2nδ

′
.

(2.40)

By (2.28) and subadditivity there existsM
′
< ∞ so that

sup
x

‖x‖v>M
′
P(Xn ∈ ∪l

i=1R
′
i |X0 = x) < nδ

′
, (2.41)
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implying by (2.30a), (2.30b), (2.41) and Cauchy-Schwarz

sup
x

‖x‖v>M
′
E

(
V(Xn+k)I{Xn ∈ ∪l

i=1R
′
i}

∣∣X0 = x
)

< sup
x

‖x‖v>M
′

(
E

(
(C1V(Xn)+C2)2

∣∣X0 = x
))1/2

nδ
′
.

(2.42)

By (2.38), (2.40) and (2.42)

sup
x∈R0

‖x‖v>max(M,M
′
)

‖(∏n
j=0A j )x‖v>M2

E
(
E(V(Xn+k)|Xn)

∣∣X0 = x
)

≤ sup
x∈R0

‖x‖v>max(M,M
′
)

‖(∏n
j=0A j )x‖v>M2

E
(
λV(Xn)+C2 +(C1V(Xn)+C2)kδ

′∣∣X0 = x)

+ sup
x∈R0

‖x‖v>max(M,M
′
)

‖(∏n
j=0A j )x‖v>M2

(
E

(
(C1V(xn)+C2)2

∣∣X0 = x
))1/2

2nδ
′
.

(2.43)

Note that by assumption forM2 < ∞ there existsM
′′′′

< ∞ so that the set of points

{x :‖ x ‖v> M
′′′′

,‖ (∏n
j=0A j)x ‖v≤M2} is contained in∪l

i=1R
′
i . Thus pointsx 6∈ ∪l

i=1R
′
i with

‖ x ‖v large enough remain large. One final complication remains: what ifx∈ ∪l
i=1R

′
i? By

(2.28) there existsM
′′
< ∞ so that

sup
x

‖x‖v>M
′′
P(X1 ∈ ∪l

i=1R
′
i |X0 = x) < δ

′
, (2.44)

implying by (2.30a), (2.30b), (2.44) and Cauchy-Schwarz

sup
x∈R0

‖x‖v>max(M,M
′′
,M

′′′′
)

E
(
E(V(Xn+k+1)|Xn+1)I{X1 ∈ ∪l

i=1R
′
i}

∣∣X0 = x
)

≤ sup
x∈R0

‖x‖v>max(M,M
′′
,M

′′′′
)

(
E((C1V(Xn)+C2)2|X0 = x)

)1/2δ
′

(2.45)
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and note that by (2.43) and the Markov property

sup
x∈R0

‖x‖v>max(M,M
′′
,M

′′′′
)

E
(
E(V(Xn+k+1)|Xn+1)I{X1 6∈ ∪l

i=1R
′
i}

∣∣X0 = x
)

≤ sup
x1∈R0

‖x1‖v>max(M,M
′
)

‖(∏n
j=0A j )x1‖v>M2

E
(
E(V(Xn+k+1)|Xn+1)

∣∣X1 = x1
)

≤ sup
x∈R0

‖x‖v>max(M,M
′
)

‖(∏n
j=0A j )x‖v>M2

E
(
λV(Xn)+C2 +(C1V(Xn)+C2)kδ

′∣∣X0 = x)

+ sup
x∈R0

‖x‖v>max(M,M
′
)

‖(∏n
j=0A j )x‖v>M2

(
E

(
(C1V(xn)+C2)2

∣∣X0 = x
))1/2

2nδ
′
.

(2.46)

Note thatE(V(Xn)|X0 = x)→ ∞ as‖ x ‖v does. Then by (2.33), (2.45), (2.46), the choice

of δ′ and sinceR0 is arbitrary we have

limsup
‖x‖→∞

E(V1(Xk+1)|X0 = x)
V1(x)

= lim
M→∞

sup
i

sup
x∈Ri

‖x‖v>M

E
(
E[(E(V(Xn+k+1)|Xn+1)|X1]

∣∣X0 = x
)

E(V(Xn)|X0 = x)

≤ lim
M→∞

sup
i

sup
x∈Ri

‖x‖v>M

E(λV(Xn)+C2 +(C1V(Xn)+C2)kδ′|X0 = x)
E(V(Xn)|X0 = x)

+ lim
M→∞

sup
i

sup
x∈Ri

‖x‖v>M

(2n+1)δ′ [K3E(V(Xn)|X0 = x)+K4]
E(V(Xn)|X0 = x)

= λ+[C1k+(2n+1)K3]δ
′
< 1.

(2.47)

Also, sinceE|ξ1|< ∞ and‖ Ai ‖m< ∞ for eachi we have for allN < ∞

sup
‖x‖v≤N

E(V1(Xk+1)|X0 = x)≤ sup
‖x‖v≤N

( max
j=1,...,l

‖ A j ‖m)n+k+1 ‖ x ‖v

+
k

∑
s=1

( max
j=1,...,l

‖ A j ‖m)n+k+1−sE|ξt |< ∞,

(2.48)
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so that by (2.47) and (2.48), (2.3) and (2.4) are satisfied byV1(x) = E(V(Xn)|X0 = x).

LetV
′
(x) = 1+V1(x) = 1+E(V(Xn)|X0 = x) be our test function and we haveV

′ ≥ 1,

locally bounded and measurable withV
′
(x)→ ∞ as‖ x ‖v→ ∞. SinceV1(·) satisfies (2.3)

and (2.4), so doesV
′
(·) and we have{Xtk} is V

′
-uniformly ergodic. Since

sup
x

E(V
′
(X1)|X0 = x)
V ′(x)

= sup
x

E
(
1+E(V(Xn+1)|X1)

∣∣X0 = x
)

1+E(V(Xn)|X0 = x)

= sup
x

1+E(V(Xn+1)|X0 = x)
1+E(V(Xn)|X0 = x)

≤ sup
i

sup
x

1+ ‖ Ai ‖m E(V(Xn)|X0 = x)+E|ξt |
1+E(V(Xn)|X0 = x)

< ∞

(2.49)

we have|‖P|‖V ′ < ∞ and so by Lemma 2 the process{Xt} is V
′
-uniformly ergodic as

well.

The next result handles the case where the dynamic skeleton has a finite number of

cycles. Since the length and number of cycles are both finite there exists an integerk < ∞

equal to the product of the lengths of the cycles so that we can restrict our attention to the

k-step chain{Xtk}. Once again we assume the spaceRp can be partitioned into a finite

number of regionsR1, . . . ,Rl . Since we are dealing with multiple cycles, we denote the

cycles byC1, . . . ,Cm, the length ofCi by ki , the regions in cycleCi by R(i)
1 , . . . ,R(i)

ki
and

the companion matrices in cycleCi by A(i)
1 , . . . ,A(i)

ki
, i = 1, . . . ,m. The assumptions on the

skeleton are the logical extensions of the assumptions on the skeleton contained in Theorem

1.

Theorem 2.Suppose there existm cyclesC1, . . . ,Cm with m < ∞, each cycleCi of

finite lengthki . Assumemaxi{ki} < ∞ and each cycleCi consists of regionsR(i)
1 , . . . ,R(i)

ki

with companion matricesA(i)
1 , . . . ,A(i)

ki
such thatx∈ R(i)

j ⇒ A(i)
j x∈ R(i)

j+1(mod k). In addition

suppose for an arbitrary norm‖ · ‖ there exists someM < ∞ and a collection of positive,
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strictly increasing functionsf (i)
j (·) so that

∀x∈ R(i)
j , j = 1, . . . ,ki , i = 1, . . . ,m with ‖ x ‖> M, B

f(i)j (‖x‖)(A
(i)
j x)⊂ R(i)

j+1(mod k).

(2.50)

Suppose there exists a uniformn < ∞ such that for eachx /∈ ∪i, jR
(i)
j with ‖ x ‖> M there

exists an integerd = d(x)≤ n implying xd ∈ ∪i, jR
(i)
j . Supposex follows the deterministic

d-pathR0→ . . .→Rd−1 before entering∪i, jR
(i)
j , with R0, . . . ,Rd−1 /∈∪i, jR

(i)
j , i.e.,x∈Rj ⇒

A jx∈ Rj+1, j = 0, . . . ,d−1.

Assume for eachRi /∈ ∪m
i=1Ci either thatx∈Ri with ‖ x ‖> M implies the existence of

a positive, strictly increasing functiongi(·) such that

Bgi(‖x‖)(Aix)⊂ Ri+1, i = 0, . . . ,d (2.51)

or that for arbitraryδ′ > 0 there existsM
′ ≥M such that

sup
x

‖x‖>M
′
P(X1 ∈ Ri |X0 = x) < δ

′
. (2.52)

Denote these latter regions byR
′
i and suppose that for arbitraryM4 < ∞ there existsM

′′
< ∞

so that{x :‖ x ‖> M
′′
,‖ (∏d(x)

i=1 Ai)x ‖≤M4} is contained in∪R
′
i .

If ξt has a continuous density everywhere positive,E|ξt |2 < ∞ andρ(∏ki
i=1A(i)

j ) < 1,

i = 1, . . . ,m, then{Xt} is V-uniformly ergodic.

Proof. The proof is much the same as that for the single cycle case, with some exten-

sions. From the assumptionρ(∏ki
j=1A(i)

j ) < 1 for i = 1, . . . ,mwe can get positive constants

λ1, . . . ,λm from Ciarlet’s Lemma (2.7) such thatρ(∏ki
j=1A(i)

j ) < λi < 1, i = 1, . . . ,m. Note

k := ∏m
1 ki < ∞ and that since there are a finite number of theλi there existsλ such that

1 > λ > maxi{λi}. By Ciarlet’s Lemma (2.7) for each cycleCi , i = 1, . . . ,m there exist

vector norms‖ · ‖i and matrix norms‖ · ‖mi so thatx∈ ∪m
i=1∪ki

j=1 R(i)
j implies

‖ ( ki

∏
j=1

A(i)
j

)
x ‖i≤‖

ki

∏
j=1

A(i)
j ‖mi‖ x ‖i≤ λ ‖ x ‖i . (2.53)
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For x 6∈ ∪m
i=1∪ki

j=1 R(i)
j , the Euclidean norm will serve as the vector norm and the operator

norm induced by this will serve as the matrix norm. We will denote both of these by‖ · ‖.
DefineV(x) = ∑m

i=1 ‖ x ‖i I{x ∈ Ci}+ ‖ x ‖ I{x 6∈ ∪m
i=1Ci} and define the function

V1(x) = E(V(Xn)|X0 = x). To satisfy the drift condition (2.3) we are going to look at

limsup
‖x‖→∞

E(V1(Xk+1)|X0 = x)
V1(x)

= limsup
‖x‖→∞

E(E[E(V(Xn+k+1)|Xn+1)|X1]|X0 = x)
E(V(Xn)|X0 = x)

. (2.54)

For an integerj < ∞ let {σ j} be the collection of all out of cycle indices from{1, . . . , l} of

length j. Note card({σ j}) < ∞ for eachj.

Since‖ A(i)
j ‖mi ,‖ Ai ‖< ∞ and{σ j} is a finite set for eachj we can choose constants

D1,D2 < ∞ so that

D1 > max
i

(
‖

k

∏
j=1

A(i)
j ‖mi + ∑

{σk}
‖

k

∏
i=1

Aσk(i) ‖mi

)
(2.55a)

D2 > max
i

(
‖

k

∑
u=1

(
k

∏
s=u+1

A(i)
s ) ‖mi + ‖

k

∑
u=1

(
k

∏
s=u+1

Aσk(s)) ‖mi

)
. (2.55b)

By arguments similar to (2.31) - (2.33) and since‖ A(i)
j ‖mi ,‖ Ai ‖< ∞, E|ξt |2 < ∞ and

D1,D2 < ∞ we have there existK5,K6 < ∞ so that

(
E((D1V(Xn)+D2)2|X0 = x)

)1/2≤ K5E(V(Xn)|X0 = x)+K6. (2.56)

Pick δ′ > 0 so thatλ+[D1k+(2n+1)K5]δ
′
< 1. By arguments similar to those leading to

(2.35) we have there existM∗,M1 < ∞ so that

inf
i

inf
x∈R(i)

1
‖x‖i>M

‖(∏k
j=1A(i)

j )x‖mi >M1

P

(
∩n+k

j=n+1[(Xj ∈ R(i)
j )∩ (‖ Xj ‖i> M∗)]I j

∣∣∣∣Xn = x

)
> 1−kδ

′
. (2.57)

The argument for (2.57) must be repeated for eachi = 1, . . . ,m, yielding aM(i)
1 which

works for that cycle. SettingM1 = max(M(i)
1 ) gives the result. By the assumptions and
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arguments similar to those leading to (2.38) and by (2.57) we can say forXn = xn in a cycle

and sufficiently large:

sup
xn∈Ci

‖xn‖i>max(M,M
′′
)

xn 6∈∪l
i=1R

′
i

E(V(Xn+k)|Xn = xn)≤ λV(xn)+D2 +(D1V(xn)+D2)kδ
′
. (2.58)

By arguments similar to those leading to (2.45) and (2.46) we have

sup
x∈R0

‖x‖>max(M,M
′′
,M

′′′′
)

E
(
E(V(Xn+k+1)|Xn+1)I{X1 ∈ ∪l

i=1R
′
i}

∣∣X0 = x
)

≤ sup
x∈R0

‖x‖>max(M,M
′′
,M

′′′′
)

(
E((C1V(Xn)+C2)2|X0 = x)

)1/2δ
′

(2.59)

and

sup
x∈R0

‖x‖>max(M,M
′′
,M

′′′′
)

E
(
E(V(Xn+k+1)|Xn+1)I{X1 6∈ ∪l

i=1R
′
i}

∣∣X0 = x
)

≤ sup
x1∈R0

‖x1‖>max(M,M
′
)

‖(∏n
j=0A j )x1‖v>M2

E
(
E(V(Xn+k+1)|Xn+1)

∣∣X1 = x1
)

≤ sup
x∈R0

‖x‖>max(M,M
′
)

‖(∏n
j=0A j )x‖v>M2

E
(
λV(Xn)+C2 +(C1V(Xn)+C2)kδ

′∣∣X0 = x)

+ sup
x∈R0

‖x‖>max(M,M
′
)

‖(∏n
j=0A j )x‖v>M2

(
E

(
(C1V(xn)+C2)2

∣∣X0 = x
))1/2

2nδ
′
.

(2.60)
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Then by (2.58), (2.59), (2.60) and the choice ofδ′ we have

limsup
‖x‖→∞

E(V1(Xk+1)|X0 = x)
V1(x)

= lim
M→∞

sup
x

V(x)>M

E
(
E[(E(V(Xn+k+1)|Xn+1)|X1]

∣∣X0 = x
)

E(V(Xn)|X0 = x)

≤ lim
M→∞

sup
x

V(x)>M

E(λV(Xn)+D2 +(D1V(Xn)+D2)kδ′|X0 = x)
E(V(Xn)|X0 = x)

+ lim
M→∞

sup
x

V(x)>M

(2n+1)δ′[K5E(V(Xn)|X0 = x)+K6]
E(V(Xn)|X0 = x)

= λ+[D1k+(2n+1)K5]δ
′
< 1.

(2.61)

Let D = (max(‖ Ai ‖,maxi(‖ Ai ‖mi)))
k with D < ∞ since each of the‖ Ai ‖mi , ‖ Ai ‖

are finite and there are a finite number of them. Then sinceE|ξt |< ∞

sup
x

V(x)≤M

E(V1(Xk+1)|X0 = x)≤ sup
x

V(x)≤M

Dmax(‖ x ‖i ,‖ x ‖)+
k

∑
s=1

Dk−sE|ξs|< ∞. (2.62)

Let the test function beV
′
(x) = 1+V1(x) = 1+E(V(Xn)|X0 = x). Following from (2.61)

and (2.62) we have thatV
′
(·) satisfies (2.3), (2.4); alsoV

′ ≥ 1 is locally bounded and

measurable withV
′
(x)→ ∞ as‖ x ‖→ ∞. Thus{Xtk} is V

′
-uniformly ergodic.

Note also that sinceE|ξt |< ∞

sup
x

E(V
′
(X1)|X0 = x)
V ′(x)

= sup
x

E
(
1+E(V(Xn+1)|X1)

∣∣X0 = x
)

1+E(V(Xn)|X0 = x)

= sup
x

1+E(V(Xn+1)|X0 = x)
1+E(V(Xn)|X0 = x)

≤ sup
i

sup
x

1+max(‖ Ai ‖mi ,‖ Ai ‖)E(V(Xn)|X0 = x)+E|ξt |
1+E(V(Xn)|X0 = x)

< ∞

(2.63)

we have|‖P|‖V ′ < ∞ and so by Lemma 2 the process{Xt} is V
′
-uniformly ergodic as

well.
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2.4 Transience

We have been able to identify some conditions under which cyclic and multi-cyclic models

are transient. No doubt these conditions are stronger than what is necessary, but they are

sufficient and do provide a beginning to the task of completely characterizing the parameter

spaces of cyclic and multi-cyclic models.

We begin with a theorem describing conditions under which an AR(p) process is tran-

sient. Transience of cyclic and multi-cyclic processes follow as corollaries of this theorem

under appropriate conditions on the skeleton that distill the asymptotic behavior of the pro-

cess down to that of thek-cycle.

The theorem requiresmini |λi(A)|> 1, whereA is the companion matrix of the Markov

chain{Xt} in which the AR(p) process is embedded andλi(A) are the eigenvalues ofA. We

are aware of the well-known condition for non-stationarity of an AR(p) process which is

equivalent to the weakerρ(A) > 1 condition for transience of{Xt} (see Tjøstheim (1990),

Theorem 4.4(ii)). However, the cyclic models demand a strict inequality in the drift condi-

tions (2.5) and (2.6) for transience of the cycle; that is, we require either

E(g(X1)|X0 = x) < g(x), x∈ Bc (2.64)

or

E(g(X1)|X0 = x) > g(x), x∈ Bc. (2.65)

This requires that we assume the stronger conditionmini |λi(A)|> 1.

The strict inequality is necessary to account for the extra terms corresponding to the

process either leaving a cycle, not reaching a cycle by a certain time or not staying large

enough for the assumptions on the skeleton to hold. The details of this are worked out in

Corollary 1.

The theorem has a stronger error condition,Ee|ξt | < ∞ than that used in establishing

V-uniform ergodicity. This stronger error condition is necessitated by the exponential,
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strictly decreasing,g(x) we use which gives a strict inequality in the drift condition (2.65).

It is thus appropriate for application to cyclic and multi-cyclic models. The corollaries

establishing transience of these models follow from this theorem.

Theorem 3.For a linear Markov chainXt = AXt−1 + νt with νt = ξt(1,0, . . . ,0)
′
sup-

pose the companion matrixA is full rank. Let λi , i = 1, . . . , rank(A), denote the distinct

eigenvalues ofA. Assumemini |λi |> 1. SupposeEe|ξt | < ∞ and that the error distribution

has a density which is continuous and everywhere positive. Then the chainXt is transient.

Proof. SinceA is full rank, A−1 exists. The eigenvalues ofA−1 are the reciprocals of the

eigenvalues ofA, somini |λi | > 1 implies ρ(A−1) = maxi
1
|λi | = 1

mini |λi | < 1. Let y = Ax;

thenx = A−1y. Sinceρ(A−1) < 1, by Lemma 1 there existλ < 1 and norms‖ · ‖v, ‖ · ‖m

so that

‖ A−1y ‖v≤‖ A−1 ‖m‖ y ‖v≤ λ ‖ y ‖v . (2.66)

Then sincex = A−1y = A−1Ax

‖ x ‖v=‖ A−1Ax‖v≤‖ A−1 ‖m‖ Ax‖v≤ λ ‖ Ax‖v, (2.67)

implying ‖ Ax‖v≥ 1
λ ‖ x ‖v. Write λ′ = 1

λ > 1 and then from (2.67) we have that

‖ Ax‖v≥ λ′ ‖ x ‖v>‖ x ‖.
SinceEe|ξt | < ∞ we can choose1<C < ∞ with Ee|ξt | ≤C. Chooser > 1

1−λ′
log(1/C)

and note that

Ee−‖Ax+νt‖v

e−‖x‖v
≤ e−‖Ax‖mEe|ξt |

e−‖x‖v
≤Ce(1−λ′)‖x‖v < Ce(1−λ′)r < 1, ‖ x ‖v> r. (2.68)

Let B = {x :‖ x ‖v≤ r}, Bc = {x :‖ x ‖v> r}. Let g(x) = e−‖x‖v. Then by (2.68)

E(g(X1)|X0 = x)
g(x)

=
Ee−‖Ax+νt‖v

e−‖x‖v
< 1, x∈ Bc (2.69)
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and so by this and the factg(x) is a strictly decreasing function we have

E(g(X1)|X0 = x)
g(x)

< 1, x∈ Bc (2.70a)

g(x) < inf
y∈B

g(y), x∈ Bc. (2.70b)

Thusg(x) satisfies Tweedie (1976, Theorem 11.3(i)). Sinceξt has an error distribution

which is continuous and everywhere positive,{Xt} is ψ-irreducible, withψ being Lebesgue

measure. By Tweedie (1976, Theorem 11.3(iii)) then,{Xt} is transient.

With this theorem established and under similiar assumptions on the product(s) of

matrices involved in the cycle(s), the transience of cyclic and multi-cyclic models are easy

corollaries. For ease of exposition we consider first the case of a single cycle:

Corollary 1.Under the same assumptions on the skeleton as in Theorem 1, but with

the additional assumptionsmini |λi(∏k
j=1Ai j )| > 1, (∏k

j=1Ai j ) is full rank and supposing

Ee|ξt | < ∞, {Xt} is transient.

Proof. The strategy is to show thek-step chain{Xtk} is transient by demonstrating an

appropriate functiong(x) and setsB, Bc exist that satisify Tweedie’s criteria for transience:

E(g(Xn+k)|X0 = x)
g(x)

≤ 1, x∈ Bc (2.71a)

g(x) < inf
y∈B

g(y), x∈ Bc. (2.71b)

Once this is established, by Tjøstheim (1990, Lemma 3.1) we have{Xt} is transient if{Xtk}
is.

Let

IC = I(Xn ∈ ∪k
j=1Ri j ) (2.72a)

IL = I(‖ Xp ‖v> M, p = n, . . . ,n+k) (2.72b)

ID = I(Xn+ j ∈ Ri j , j = 1, . . . ,k). (2.72c)
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Let g(x) = e−‖x‖v as in Theorem 3. By Theorem 3 and the assumptions there existsγ < 1

so that we haveE(g(Xn+k)ICILID|X0=x)
g(x) ≤ γ < 1. By Lemma 3, Theorem 1 and(∏k

i=1Ai j ) full

rank for an arbitaryδ′ there existM1,M2 so that‖ x ‖v> M1 implies‖ (∏k
i=1Ai j ) ‖v> M2,

implying in turn E(Ic
c + Ic

L + Ic
D|X0 = x) < (2n+ 1+ k)δ′ . Now we pickδ′ > 0 so that

γ+K(2n+1+k)δ′ < 1. Let

B = {x :‖ x ‖v≤M1}, Bc = {x :‖ x ‖v> M1}. (2.73)

SinceEe|ξt | < ∞ and the‖ Ai ‖m are finite and bounded away from zero there existsK < ∞

so that for‖ x ‖v> M1 (
E[(g(Xn+k))2|X0 = x]

)1/2

g(x)
≤ K. (2.74)

Then note from (2.72), (2.73), (2.74), the choice ofδ′ and Cauchy-Schwarz we have

E(g(Xn+k)|X0 = x)
g(x)

≤ γ+
E(g(Xn+k)(Ic

C + Ic
L + Ic

D)|X0 = x)
g(x)

≤ γ+K(2n+1+k)δ
′
< 1, x∈ Bc

(2.75)

and

g(x) < inf
y∈B

g(y), x∈ Bc (2.76)

so that Tweedie (1976, Theorem 11.3(i),(iii)) is satisfied; thus{Xtk} is transient and by

Tjøstheim (1990, Lemma 3.1) so is{Xt}.

The case of a finite number of cycles of finite length is similar, the modifications being

obvious.

Corollary 2.Under the same assumptions on the skeleton as in Theorem 2, other than

supposingmini |λi(∏ki
j=1A(i)

j )| > 1, (∏ki
j=1A(i)

j ) is full rank for eachi and supposing that

Ee|ξt | < ∞, {Xt} is transient.

Proof. Similiar to Corollary 1.
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At this point, contrasting the conditions forV-uniform ergodicity with those for tran-

sience, there is clearly much of the parameter space between the two. There are several

reasons for this.V-uniform ergodicity is the strongest form of ergodicity; weaker cond-

tions corresponding to weaker forms of ergodicity may occupy some of this space. Left

out of our treatment is discussion of null recurrence; conditions for null recurrence may fill

even more of this void. Lastly, as stated we do not doubt that our conditions for transience

are stronger than is necessary. For example, Cline and Pu (2000) showed that transience

occurs if a companion matrixA hasρ(A) > 1 and the AR coefficients are all positive or are

alternating in sign with the first one negative.

We conjecture that in the cyclic case

ρ(
k

∏
j=1

Ai j ) > 1

and in the multi-cyclic case that

max
i

ρ(
ki

∏
j=1

A(
j i)) > 1

are sufficient conditions for transience. If true, we expect these weaker conditions for

transience will fill in the remainder of the parameter space. This will be a problem for

future research.

2.5 Existence of Moments

It is known (see for example Tjøstheim (1990) Lemma 6.1) that under certain conditions

existence of moments for the error distribution is equivalent to the existence of moments

of the stationary distribution of{Xt}. Thus under certain conditionsE|ξt |n < ∞ implies

E|Xt |n < ∞ for n fixed. Here we pursue conditions under which all moments of the station-

ary distribution and central limit theorems can be shown at once to exist.

In the first section we derived conditions under which the process{Xt} isV-uniformly

ergodic, withV(·) being a function of a norm on the state space. Cline and Pu (2001)
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provide tools for deriving conditions under which the test functionV(·) can be boosted to

an exponential test functionV1(s,x) = e(V(x))s
for s> 0. Meyn and Tweedie (1993) link the

order of the test functionV(·) to the existence of moments of the stationary distribution.

The implications for statistical inference are obvious and enormous: if the test function can

be boosted to an exponential function of the norm all moments of the stationary distribution

exist at once.

Cline and Pu (2001, Theorem 4) assume{Xt} is an aperiodic,ψ-irreducibleT-chain

in Rp andV :Rp→ [1,∞) is locally bounded withV(x)→∞ as‖ x ‖→∞. If we can find a

random variableW(x) satisfying the following:

V(X1)≤W(x), whenever X0 = x, ∀x, (2.77a)

limsup
‖x‖→∞

E(log(W(x)/V(x))) < 0, (2.77b)

and if

| log(W(x)/V(x))|+e(W(x))r−(V(x))r
(2.78)

is uniformly integrable for somer > 0 then there existss> 0 with V1(x) = e(V(x))s
such that

{Xt} is V1-uniformly ergodic.

Meyn and Tweedie (1993, Theorem 17.0.1) demonstrate if{Xt} is aV-uniform ergodic

Markov chain then for any functiong(·) with |g| ≤ V andg2 ≤ V then we have laws of

large numbers and central limit theorems for1
n ∑n

i=1g(Xi). Thus, the choice of the test

function implies both the ergodicity and the limit laws. If the conditions of Cline and Pu

(2001, Theorem 4) are satisfied and the exponential boosting of our norm-like test function

V(·) is valid, the existence of all moments of the stationary distribution follows from the

fact that any polynomial function is eventually bounded by any exponential (i.e., given any

exponentialV(·) that satisfies the drift condition, we can find finite constantsK,C so that

g(x)2≤ KV(x)+C andKV(x)+C will also satisfy the drift condition) .
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The assumption that{Xt} is a T-chain is easily verified for threshold autoregressive

models. Since the deterministic skeleton is bounded on compact sets, if we assume the

errorsξt have a continuous density that is everywhere positive we have that compact sets

are petite. By Meyn and Tweedie (1993, Theorem 6.2.5) the fact that compact sets are

petitie implies{Xt} is aT-chain.

In view of these results, establishing the existence of moments for the stationary dis-

tribution is simply a matter of finding a random variableW(x) that satisifies (2.77) and

(2.78). For cyclic and multi-cyclic threshold autoregressive models it suffices to choose

V(x) to be the test function used in satisfying the drift condition forV-uniform ergodic-

ity. W(x) can then be gotten by piecing together the appropriate function from the steps

involved in demonstrating the drift condition forV-uniform ergodicity.

We demonstrate the same conditions on the skeleton and thus the same parameter

space as forV-uniform ergodicity guarantee exponential boosting is valid. Of course, to

enable exponential boosting we need to exponentially boost our condition on the error

distribution.

This first theorem will handle the single cycle case covered in Theorem 1.

Theorem 4.Suppose the assumptions of Theorem 1 on the deterministic skeleton of

{Xt} hold, that for somer > 0 that Ee(|ξt |)r
< ∞ and ξt has a density which is contin-

uous and everywhere positive. Then for a vector norm‖ · ‖v there exist0 < s < 1 and

V
′′
(x) = e(V

′
(x))s

= e(E(V(Xn)|X0=x)+1)s
such that{Xt} is V

′′
-uniformly ergodic.

Proof. The strategy is to show that exponential boosting is valid for thek-step chain{Xtk}
and then to apply Lemma 2 to extend this boosting to the one-step chain{Xt}.
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GetV1(x) = E(V(Xn)|X0 = x)+1 from Theorem 1. Let

ICc = I{(Xn 6∈ ∪k
i=1Ri j )∪ (‖ Xn ‖v≤M)}, (2.79a)

Iσ = I{∪k
i=1(Xn+i 6∈ ∪k

j=1Ri j )} (2.79b)

I1 = I{(∪k
j=1(‖ Xn+ j ‖v≤M))∪ (∪k

j=1(Xn+ j ∈ ∪l
i=1R

′
i))} (2.79c)

I2 = I{(∪n
j=1(‖ Xj ‖v≤M))∪ (∪n

j=1(Xj ∈ ∪l
i=1R

′
i))}. (2.79d)

Define similar to Theorem 1

C1 >‖ (
k

∏
i=1

Ai j ) ‖m + ∑
{σk}

k

∏
i=1
‖ Aσk(i) ‖m, (2.80a)

C2 >
( k

∑
u=1

k

∏
i=u+1

‖ Ai j ‖m + ∑
{σk}

k

∑
u=1

k

∏
i=u+1

‖ Aσk(i) ‖m
)
. (2.80b)

Then define for a suitableD < ∞

W(x) = λE(V(Xn)|X0 = x)+C2|ξt |+1+C1DI(‖ x ‖v≤M)

+(C1 +C2)(Iσ + I1)+(C3 +C4)(I2 + ICc)
(2.81)

and clearlyV1(Xn+k)≤W(x) wheneverXn = x.

Also, sincelog(·) is a monotone continuous function and by Jensen’s inequality we

have by (2.47)

limsup
‖x‖v→∞

E

(
log

(
W(x)
V1(x)

))
≤ log

(
limsup
‖x‖v→∞

E

(
W(x)
V1(x)

))
< 0. (2.82)

SinceEe(|ξt |)r
< ∞ impliesE|ξt |< ∞ we have

sup
x

E(W(x)/V1(x))≤ λ+C2E|ξt |+1+C1D+2C1 +2C2 < ∞. (2.83)

Note also that sinceλ < 1

W(x)
V1(x)

>
λE(V(Xn)|X0 = x)+1
E(V(Xn)|X0 = x)+1

= λ+
1−λ

E(V(Xn)|X0 = x)+1
> λ > 0, (2.84)
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implying ∣∣∣ log
(W(x)

V1(x)

)∣∣∣ <
∣∣ log(λ)

∣∣ < ∞ (2.85)

whenW(x)
V1(x)

< 1. Then by (2.83), (2.84) and (2.85)

E
∣∣∣ log

(W(x)
V1(x)

)∣∣∣

= E
(

log
(W(x)

V1(x)

)
× I

(W(x)
V1(x)

≥ 1
)
− log

(W(x)
V1(x)

)
× I

(W(x)
V1(x)

< 1
))

< E
(

log
(W(x)

V1(x)

)
× I

(W(x)
V1(x)

≥ 1
)
− log(λ)

)

< log
(

E
(W(x)

V1(x)

))
− log(λ) < ∞.

(2.86)

Suppose w.l.o.g thatr < 1. Then sinceλ < 1and for a constantC5 =C5(M,C1,C2) < ∞

this implies by the assumption onξt

sup
x

Ee(W(x))r−(V1(x))r ≤ sup
x

Ee(λE(V(Xn)|X0=x)+1)r−(E(V(Xn)|X0=x)+1)r
eC5|ξt |r ≤ EeC5|ξt |r < ∞,

(2.87)

implying thate(W(x))r−(V1(x))r
is uniformly integrable. Then by properties of the supremum

so is the sum| log(W(x)/V1(x))|+e(W(x))r−(V1(x))r
.

The conditions of Cline and Pu (2.77) are satisfied and thek-step chain{Xtk} is thus

V
′′
-uniformly ergodic withV

′′
(x) = e(E(V(Xn)|X0=x)+1)s

for somes> 0. Suppose thats< r

then becauseEe|ξt | < ∞ and the‖ Ai ‖m are bounded we have that

E
( ‖ Xn+1 ‖v

∣∣X0 = x
)≤ sup

i
‖ Ai ‖m E

( ‖ Xn ‖v
∣∣X0 = x

)
+E|ξt |

and so we can find appropriateN1,N2 < ∞ so that

sup
x

E(V
′′
(X1)|X0 = x)
V ′′(x)

< N1eN2

implying |‖P|‖V ′′ < ∞ by (2.11) and by Lemma 2{Xt} is V
′′
-uniformly ergodic with test

functionV
′′
(x) = e(E(V(Xn)|X0=x)+1)s

for somes with 0 < s< 1.
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Next we move on to the multi-cyclic case discussed in Theorem 2.

Theorem 5.Suppose the assumptions of Theorem 2 on the deterministic skeleton of

{Xt} hold, that for somer > 0 thatEe(|ξt |)r
< ∞ andξt has a density which is continuous

and everywhere positive. Then there exists> 0, s< 1 andV
′′
(x) = e(V

′
(x))s

such that{Xt}
is V

′′
-uniformly ergodic.

Proof. Similar to Theorem 4, with obvious modifications made for the assumptions in

Theorem 2.

Taken together, Theorems 4 and 5 imply that the assumptions made on the determin-

istic skeletons in Theorems 1 and 2 are adequate for exponential boosting when combined

with an exponential condition on the error distribution. Under these conditions all mo-

ments of the stationary distribution exist and we have laws of large numbers for partial

sums∑n
i=1g(Xi), whereg is any polynomial function.
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CHAPTER III

ERGODICITY OF THRESHOLD AUTOREGRESSIVE MODELS THROUGH

APPROXIMATION WITH A FINITE STATE MARKOV CHAIN

3.1 Introduction

3.1.1 Background

Consider the TAR(p) model{yt}t≥0 described in (1.1) embedded in a general state Markov

chain{Xt} according to (1.2) with the domain divided intol regionsR1, . . . ,Rl , each region

having companion matrixA j , j ∈ {1, . . . , l}. Under certain assumptions on the general state

Markov chain{Xt} we will approximate the transitions of{Xt} from regionRi to region

Rj by the transitions of a finite state Markov chain on the states{1, . . . , l}. We denote the

finite state Markov chain by{Jt}. We will then derive ergodic conditions for{Xt} through

analysis of the simpler chain{Jt} and incorporate the finite state chain into a test function

for the general state space chain.

We are going to consider the spaceRp to be equipped with the Euclidean norm. Let

‖ · ‖ denote the Euclidean norm,‖ x ‖ be the Euclidean norm ofx∈ Rp and for a matrixA

let ‖A‖ be the operator norm ofA induced by the Euclidean norm. We assume all matrices

have a finite operator norm.

We use the drift criteria forV-uniform ergodicity described in Chapter 1: for a locally

bounded, measurable functionV ≥ 1 with V → ∞ as‖ x ‖→ ∞ we require

limsup
‖x‖→∞

E(V(X1)|X0 = x)
V(x)

< 1 (3.1)

and for allM < ∞

sup
‖x‖≤M

E(V(X1)|X0 = x) < ∞. (3.2)
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In constructing the test function we use the directional method mentioned in Chapter

I and detailed by Cline and Pu (2001). Our test function is of the formV(s,x) = 1+λ(x) ‖
x‖s wheres> 0 andλ(x) is piecewise constant, bounded and bounded away from zero, the

values ofλ(x) depending upon the direction ofx. The challenge in defining a test function

is then to define the piecewise constants that comprise the functionλ(x).

3.1.2 Modelling{Xt} with a finite state Markov chain

In the asymptotically deterministic case discussed in Chapter II it is possible to set up a

trivial chain {Jt} which tracks{Xt} step by step beginning atX0 = x with a probability

arbitrarily close to 1 when‖ x ‖ is large. We call this case asymptotically deterministic

because for alli, j the probability of the transition fromX0 = x ∈ Ri to X1 ∈ Rj can be

bounded arbitrarily close to 0 or 1 by picking‖ x ‖ large enough. We can then determine

conditions for stability of{Xt} from conditions for stability of the implicit deterministic

system{Jt}.
In the present chapter we explore more general cases where{Xt} is not asymptotically

deterministic and the step by step ’shadowing’ of{Xt} by {Jt} fails. Specifically, regardless

of the magnitude of‖ x ‖ there can be more than one region to whichX1 can travel, each

with a probability not going to zero. We are forced to approximate the transitions of{Xt}
from region to region not with a determinstic system as we did in Chapter II, but rather

with a simpler stochastic system, a finite state Markov chain.

The Markov chain{Jt} is chosen so that for an arbitraryε > 0 the transition probabil-

ities of{Jt} from statei to statej are withinε of the ’transition’ probabilities of{Xt} from

regionRi to regionRj when{Xt} is large. By this we mean{Jt} is such that for an arbitrary

ε > 0 there exists anM < ∞ so that

sup
i, j

sup
x∈Ri
‖x‖>M

∣∣∣∣P(X1 ∈ Rj |X0 = x)−P(J1 = j|J0 = i)
∣∣∣∣< ε. (3.3)
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The class of chains{Xt} handled by this method is thus the class of chains amenable to this

approximation.

We consider two cases. The first is where theε-approximation holds for all states

1, . . . , l and regionsR1, . . . ,Rl . We label this case (A1). In the second theε-approximation

holds for all recurrent states1, . . . , l and ’recurrent’ regionsR1, . . . ,Rl . This case is labelled

(A2). The case (A2) is more general and contains (A1), but exposition is helped by con-

sidering the simpler situation first and examining the issues here before moving on to the

more complicated second case. Alternatively, in proving (A2) it is necessary to go through

(A1) first, so (A1) can be thought of as a set of preliminary results to be used in proving

(A2).

We demonstrate that under our assumptions the expectations of certain bounded, mea-

surable functions of{Jt} and of{Xt} will be very close. In constructing our test function

V(s,x) = 1+λ(x) ‖ x ‖s we choose two particular bounded, measurable functions and we

use the fact their expectations will be close in determining the values of the piecewise

constant functionλ(x) used in the test functionV(s,x).

It is tempting to define a processYt = ∑l
i=1 i I (Xt ∈ Ri) that keeps track of the ’states’

of {Xt} and, noting thatlog(‖ Ai ‖) describes the log-change of{Xt} when it moves from

region i, to attempt to ascertain conditions for the ergodicity of{Xt} through appropriate

conditions on the functionh(y) = ∑l
i=1 log(‖ Ai ‖)I(y = i). However, this approach fails

since{Yt} is not quite a finite state chain, the obvious problem being that the transition

probabilitiesP(Y1 = j|Y0 = i) of {Yt} are not constant because they depend upon where

X0 is in the regionRi . We are forced to use something slightly different. For a piece-

wise constant functionh( j) = log(‖ A j ‖ +δ) with j = 1, . . . , l we consider the function

h
′
(Xt) = ∑l

j=1h( j)I(Xt ∈ Rj). Note the difference in emphasis here: we have defined the

functionh
′
(·) in terms of the process{Xt} rather than{Yt}. Since{Xt} is a Markov chain

andh
′
(·) a bounded measurable function the Markov property holds. We use this fact to
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show the expectations ofh
′
(Xt) andh(Jt) will be close due to theε-approximation when

considered over a sufficiently long but finite time. We then demonstrate that if the appro-

priate condition onh(Jt)

Eπ
(
h(Jt)

)
=

l

∑
j=1

π jh( j) < 0,

holds for every stationary distributionπ of {Jt} then{Xt} will be V-uniformly ergodic.

3.1.3 Previous results

We make use of two results from Cline and Pu (2002) pertaining to the behavior of the long

term average of the functionh( j) = log(‖ A j ‖+δ), where j = 1, . . . , l are the states of the

Markov chain{Jt}, and of certain functions ofh(·) which will be defined below. These are

included in the proof of their Theorem 4.1; we have taken the liberty of separating them out

and writing them as lemmas. These two lemmas give the necessary condition on{Jt} and

help us to define the piecewise constant terms we will use in constructing the test function

V(s,x) = 1+λ(x) ‖ x ‖s that demonstrates theV-uniform ergodicity of{Xt}.
Lemma 1.Let {Jt} be a finite-state chain on{1, . . . , l}. Decompose the state space

S= {1, . . . , l} = (
Sk

i=1Si)
S

T, where eachSi is irreducible and recurrent andT is the set

of all transient states. Letπ(i) be the stationary distribution forSi , whereπ(i)
j > 0 for j ∈ Si

andπ(i)
j = 0 for j 6∈ Si . Then under the assumption

Πl
j=1 ‖ A j ‖π(i)

j < 1, ∀i ∈ {1, . . . ,k}

we can defineh( j) = log(‖ A j ‖+δ), j ∈ {1, . . . , l}, whereδ is chosen such that

π(i)h = ∑ j π(i)
j h( j) < 0, i = 1, . . . ,k and there exists a finiten such that

1
n

n

∑
t=1

E(h(Jt)|J0 = i) < 0, ∀i ∈ {1, . . . , l}. (3.4)

Proof. See Cline and Pu (2002) Theorem 4.1.
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Lemma 2.Following Lemma 2, define for eachi

h̃(i) =
n−1

∑
t=0

n− t
n

E(h(Jt)|J0 = i) (3.5)

and fors> 0 let H1(s, i) = esh̃(i). Then there existss1 such that fors< s1

sup
i

E

(
H1(s,J1)(‖ Ai ‖+δ)s

H1(s, i)

∣∣∣∣J0 = i

)
< 1. (3.6)

Proof. See Cline and Pu (2002) Theorem 4.1.

3.2 Results

This first original lemma assures us that by pickingX0 = x large enough and restricting our

attention to certain subregions of the space, the process will remain large for a finite time

with high probability if it remains in these subregions. It will be necessary for the process

to remain large in order that our conditions may hold.

This lemma serves a purpose similar to that of Lemma 3 in Chapter II but the lemma is

different and contrasting the two lemmas points up the difference in the classes of models

considered in Chapter II versus those considered here. In Chapter II the simpler stochastic

system used to approximate the transitions of{Xt} from region to region was in fact deter-

ministic; thus the requirement in Lemma 3 Chapter II that{Xt} be mapped to a particular

region. Here there is no such requirement because the simpler stochastic system used to

approximate the transitions of{Xt} from region to region is stochastic; there can be more

than one region{Xt} can be mapped to, each with a positive probability regardless of the

magnitude of‖ x‖. This explains the requirement below that{Xt} be mapped to a particular

collectionof regions, not a particular region.

The lemma is trivially satisfied if the companion matrices are all of full rank but un-

fortunately this is not always the case.
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Lemma 3.Assume there existsr > 0 for which E|ξt |r < ∞. For all Ri, i = 1, . . . , l

define for an arbitraryδ3 > 0, M < ∞

Ri(δ3) = {x∈ Ri :‖ x ‖> M,‖ Aix ‖> δ3 ‖ x ‖}, i = 1, . . . , l . (3.7)

Then given a finiten < ∞ if t ≤ n, there existsD = D(t,δ3) < ∞ such that

inf
i

inf
x∈Ri(δ3)
‖x‖>DM

P
(
∩t

i=1{(‖ Xi ‖> M)∩ (∩i−1
j=0(Xj ∈ ∪l

i=1Ri(δ3)))}
∣∣∣X0 = x

)
> 1−nδ3. (3.8)

Proof. For an arbitraryδ3 > 0 suppose for somei ∈ {1, . . . , l} thatX0 = x∈Ri(δ3). By the

assumptionE|ξt |r < ∞ we can pick1 < C < ∞ so that

P
(|ξt |> (δ3C−1)M

)
< δ3. (3.9)

Consider that for‖ x ‖> CM by (3.7) and (3.9)

sup
i

sup
x∈Ri(δ3)
‖x‖>CM

P(‖ X1 ‖≤M|X0 = x)≤ sup
i

sup
x∈Ri(δ3)
‖x‖>CM

P(‖ Aix ‖ −|ξt | ≤M)

= sup
i

sup
x∈Ri(δ3)
‖x‖>CM

P(|ξt | ≥‖ Aix ‖ −M)

≤ sup
i

sup
x∈Ri(δ3)
‖x‖>CM

P(|ξt | ≥ δ3 ‖ x ‖ −M)

≤ P(|ξt | ≥ (δ3C−1)M)

< δ3.

(3.10)

Likewise,X0 = x∈ Ri(δ3) with ‖ x ‖> C2M implies using (3.9)

sup
i

sup
x∈Ri(δ3)
‖x‖>C2M

P(‖ X1 ‖≤CM|X0 = x)≤ P(|ξt | ≥ (δ3C−1)CM)

≤ P(|ξt | ≥ (δ3C−1)M)

< δ3

(3.11)



51

and by (3.10)X1 = x1 ∈ ∪l
i=1Ri(δ3) with ‖ x1 ‖> CM implies

sup
i

sup
x∈Ri(δ3)
‖x‖>C2M

P
(
(‖ X2 ‖≤M)∩ (X1 ∈ ∪l

i=1Ri(δ3))∩ (‖ X1 ‖> CM)|X0 = x
)

< δ3. (3.12)

Let I1(t) = ∩t−1
k=0(Xk ∈ ∪l

i=1Ri(δ3)) andI2(t) = ∩t−1
k=0(‖ Xk ‖> Ct− jM). By induction then

for j ∈ {1, . . . , t}

sup
i

sup
x∈Ri(δ3)
‖x‖>CtM

P
(
(‖ Xj ‖≤Ct− jM)∩ I1( j)∩ I2( j)

∣∣∣X0 = x
)

≤ P(|ξt | ≥ (δ3C−1)Ct− jM)

≤ P(|ξt | ≥ (δ3C−1)M)

< δ3.

(3.13)

Let D = Ct . Then we have from (3.13), using DeMorgan’s laws and Boole’s inequality

inf
i

inf
x∈Ri(δ3)
‖x‖>DM

P
(
∩t

i=1{(‖ Xi ‖> M)∩ I1(i)∩ I2(i)}
∣∣∣X0 = x

)

≥ 1−
t

∑
j=1

sup
i

sup
x∈Ri(δ3)
‖x‖>CtM

P
(
(‖ Xj ‖≤Ct− jM)∩ I1( j)∩ I2( j)

∣∣∣X0 = x
)

> 1− tδ3.

(3.14)

SinceC > 1 andt ≤ n the result (3.8) follows.

3.2.1 Case 1: uniformε-bounds.

We assume the probabilities governing the transitions of{Xt} from region to region can

be approximated for all regions to within an arbitraryε > 0 by taking‖ x ‖ large enough.

Since the number of regions is finite theε used is uniform over the entire space.

Assumption 1.(A1) Suppose there exists a finite state Markov chain{Jt} on the states

{1, . . . , l} so that for arbitraryε > 0 there existsM < ∞ with

sup
i, j

sup
x∈Ri
‖x‖>M

∣∣∣∣P(X1 ∈ Rj |X0 = x)−P(J1 = j|J0 = i)
∣∣∣∣ < ε. (3.15)
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Also, suppose{Jt} is such that

Πl
i=1(‖ Ai ‖)πi < 1, (3.16)

for every stationary distributionπ of {Jt}.
Based on (A1) and Lemmas 1-3 we can now introduce the functions that will define

our piecewise constant functionλ(x) and we can demonstrate that for largex the expecta-

tions of these functions will be arbitrarily close.

Constructing the test functionV(s,x) is complicated by the fact that rather than a

deterministic system, the approximating ’skeleton’ is a stochastic system with transition

probabilities arbitrarily close to the ’transition’ probabilities of{Xt}. This requires that we

must rely on expectations of the processes over the entire collection of states. We cannot

rely on the pathwise behavior of the processes as we did in Chapter II.

Lemma 4.Suppose the conditions given in (A1) and Lemmas 1-3 hold for somer > 0.

Defineh
′
(x) = ∑l

j=1h( j)I(x∈ Rj). For a fixedn < ∞ let

h̃
′
(x) =

n

∑
t=0

n− t
n

E(h
′
(Xt)|X0 = x,), (3.17a)

h̃( j) =
n

∑
t=0

n− t
n

E(h(Jt)|J0 = i). (3.17b)

Then for arbitraryδ′ > 0 there existsD,M,n < ∞ andδ3 > 0 so that

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

∣∣∣∣E(h̃(J1)− h̃(i)|J0 = i)−E(h̃
′
(X1)− h̃

′
(x)|X0 = x)

∣∣∣∣ < δ
′
. (3.18)

Proof. Let N = maxj |h( j)|= maxj | log(‖A j ‖+δ)|. Get{Jt} according to (A1) andn< ∞

from Lemma 1 (3.4). Givenδ′ > 0 pick ε > 0 so that(n+1)Nl2ε < δ′ . GetM < ∞ from

(A1). Pickδ3 > 0 so thatlN((n+1)lε+nδ3) < δ′. With δ3 > 0 andr from the assumptions

get D = D(n,δ3) > 1 from Lemma 3 (3.8). Since we have definedD = D(n, ·), then by

Lemma 3 (3.8) holds∀t ≤ n.
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DefineIt =∩t
i=1{(‖Xi ‖> M)∩(∩i−1

j=0(Xj ∈∪l
i=1Ri(δ3)))}; then following from (3.15)

we have for eachi, j andt ≤ n

sup
x∈Ri(δ3)
‖x‖>DM

P
(
(Xt ∈ Rj)∩ It−1|X0 = x

)
< P(Jt = j|J0 = i)+(n+1)lε (3.19)

and

inf
x∈Ri(δ3)
‖x‖>DM

P
(
(Xt ∈ Rj)∩ It−1|X0 = x

)
> P(Jt = j|J0 = k)− (n+1)lε. (3.20)

Lemma 3 (3.8) combined with (3.19) and (3.20) implies fort ≤ n and for all j

inf
i

inf
x∈Ri(δ3)
‖x‖>DM

P
(
Xt ∈ Rj |X0 = x

)
> P(Jt = j|J0 = i)− (n+1)lε−nδ3, (3.21a)

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

P
(
Xt ∈ Rj |X0 = x

)
< P(Jt = j|J0 = i)+(n+1)lε+nδ3. (3.21b)

Recall from (3.17) we have defined for alli, for all x∈ Ri

h̃
′
(x) =

n

∑
t=0

n− t
n

E(h
′
(Xt)|X0 = x), h̃( j) =

n

∑
t=0

n− t
n

E(h(Jt)|J0 = i).

Notice that since bothh(·) andh
′
(·) are bounded, measurable functions the Markov prop-

erty applies and we have for alli, for all x∈ Ri

E(h̃
′
(X1)− h̃

′
(x)|X0 = x) =

1
n

n

∑
t=1

E(h
′
(Xt)|X0 = x)−h

′
(x) (3.22a)

E(h̃(J1)− h̃(i)|J0 = i) =
1
n

n

∑
t=1

E(h(Jt)|J0 = i)−h(i) (3.22b)

Consider for alli, for all x∈ Ri

1
n

n

∑
t=1

E(h
′
(Xt)|X0 = x) =

1
n

n

∑
t=1

l

∑
j=1

h( j)P(Xt ∈ Rj |X0 = x) (3.23a)

1
n

n

∑
t=1

E(h(Jt)|J0 = i) =
1
n

n

∑
t=1

l

∑
j=1

h( j)P(Jt = j|J0 = i) (3.23b)
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Recall thatN = maxj |h( j)|. We have for alli from (3.21), (3.22) and (3.23) and since

x∈ Ri impliesh
′
(x) = h(i)

1
n

n

∑
t=1

E(h(Jt)|J0 = i)−h(i)− (n+1)l2Nε− lNnδ3

≤ 1
n

n

∑
t=1

l

∑
j=1

h( j)(P(Jt = j|J0 = i)− (n+1)lε−nδ3)−h(i)

< inf
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=1

l

∑
j=1

h
′
( j)P(Xt ∈ Rj |X0 = x)−h

′
(x)

≤ sup
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=1

l

∑
j=1

h
′
( j)P(Xt ∈ Rj |X0 = x)−h

′
(x)

<
1
n

n

∑
t=1

l

∑
j=1

h( j)(P(Jt = j|J0 = i)+(n+1)lε+nδ3)−h(i)

≤ 1
n

n

∑
t=1

E(h(Jt)|J0 = i)−h(i)+(n+1)l2Nε+ lNnδ3.

(3.24)

So from (3.22), (3.23), (3.24) and recalling the choices ofε andδ3 we have the conclusion

(3.18)

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

∣∣∣∣E(h̃(J1)− h̃(i)|J0 = i)−E(h̃
′
(X1)− h̃

′
(x)|X0 = x)

∣∣∣∣ < δ
′
.

Now that we have shown the functionsh̃
′
(Xt) and h̃(Jt) are close in expectation, all

that remains is to use this result to build a test function for{Xt} demonstratingV-uniform

ergodicity.

Theorem 1.Suppose the assumptions in (A1) and Lemmas 1-4 hold. Suppose as well

that for arbitraryδ4 > 0 there existsM
′
< ∞ so that theRi(δ3) for i = 1, . . . , l as defined in

Lemma 3 exist with

sup
i

sup
x∈Ri

‖x‖>M
′

P(X1 6∈ ∪l
i=1Ri(δ3)|X0 = x) < δ4. (3.25)
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Then there exists ans > 0 such that{Xt} is V-uniformly ergodic with the test function

V(s,x) = 1+λ(x) ‖ x ‖s, whereλ(x) is piecewise constant, bounded and bounded away

from zero.

Proof. Get{Jt} from (A1). Getn from Lemma 2 such that (3.4) is true. Recall from (3.6)

that there exists1 < 1 andβ < 1 such that∀s< s1

sup
i

E

(
H1(s,J1)(‖ Ai ‖+δ)s

H1(s, i)

∣∣∣∣J0 = i

)
≤ β < 1. (3.26)

Sincemaxi(‖ Ai ‖+δ)s→ 1 ass→ 0, then for an arbitraryδ1 > 0 there existss2 > 0 such

that∀s< s2 we have

max
i

(‖ Ai ‖+δ)s < 1+δ1. (3.27)

Chooseδ1 > 0 and thenδ2 so that

δ2 <
1−β

2(1+δ1)
, (3.28)

then pickδ′ > 0 so that

δ
′
<

1−β
(1+δ1)

−2δ2. (3.29)

Finally, pick ε > 0 so that(n+ 1)l2Nε < δ′ andδ3 > 0 so thatlN((n+ 1)lε + nδ3) < δ′ .

For ε > 0 getM from (A1).

Let H
′
1(s,x) = esh̃

′
(x). Note that if we letN = maxj |h( j)|, then for allx

h̃
′
(x) =

n

∑
t=0

n− t
n

E(h
′
(Xt)|X0 = x)≤ nN (3.30)

so that1≤ esh̃
′
(x) ≤ esnN and so we have from (3.30) that for someK < ∞

sup
i

sup
x∈Ri
‖x‖>M

E

(
H
′
1(s,X1)(‖ Ai ‖+δ)s

H
′
1(s,x)

∣∣∣∣X0 = x

)
≤ K (3.31)

Given K from (3.26)-(3.31) we can findδ4 > 0 so thatβ +(1+ δ1)(δ
′
+ 2δ2)+ Kδ4 < 1

andM
′
< ∞ so that (3.25) is satisfied.
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Givenδ′ from (3.29) there existsD = D(n,δ3) < ∞ from (3.8) such that we have from

(A1) and Lemma 4 (3.18)

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

∣∣∣∣E(h̃(J1)− h̃(i)|J0 = i)−E(h̃
′
(X1)− h̃

′
(x)|X0 = x)

∣∣∣∣ < δ
′
.

(3.32)

Note that fory > 0, fixed

ys−1
s

→ log(y), as s→ 0. (3.33)

This limit is not uniform iny, but since the number of statesl is finite, we can make the

limit uniform when working with{Jt}, i.e., for arbitraryδ2 > 0 there existss3 such that

∀s< s3, for all i

E(es(h̃(J1)−h̃(i))|J0 = i) > 1+sE(h̃(J1)− h̃(i)|J0 = i)−δ2. (3.34)

By (3.30) we have thatE(es(h̃
′
(X1)−h̃

′
(x))|X0 = x) is bounded and thus

sup
x∈Ri(δ3)
‖x‖>DM

E(es(h̃
′
(X1)−h̃

′
(x))|X0 = x) < ∞. (3.35)

Also, (3.30) implies that

E(h̃
′
(X1)− h̃

′
(x)|X0 = x)≤ 2nN. (3.36)

Taken together, (3.35) and (3.36) tell us that

E
(
(h̃

′
(X1)− h̃

′
(x))2es(h̃

′
(X1)−h̃

′
(x))∣∣X0 = x

)
(3.37)

is bounded as well. Using a Taylor series expansion around zero we have

E(es(h̃
′
(X1)−h̃

′
(x))|X0 = x)

< 1+sE(h̃
′
(X1)− h̃

′
(x)|X0 = x)+

s2

2!
E

(
(h̃

′
(X1)− h̃

′
(x))2es∗(h̃′(X1)−h̃

′
(x))∣∣X0 = x

)

(3.38)
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for somes∗ ∈ [0,s]. Thus, givenδ2 > 0 as in (3.28) and (3.34) by (3.38) we can picks4

small enough so that∀s< s4 we have

sup
x∈Ri(δ3)
‖x‖>DM

E(es(h̃
′
(X1)−h̃

′
(x))|X0 = x)≤ 1+ sup

x∈Ri(δ3)
‖x‖>DM

sE(h̃
′
(X1)− h̃

′
(x)|X0 = x)+δ2. (3.39)

Pick s5 = min{s1,s2,s3,s4}, then from (3.32), (3.34) and (3.39) for alls< s5, for all i

sup
x∈Ri(δ3)
‖x‖>DM

E(es(h̃
′
(X1)−h̃

′
(x))|X0 = x)−E(es(h̃(J1)−h̃(i))|J0 = i)

< sup
x∈Ri(δ3)
‖x‖>DM

s(E(h̃
′
(X1)− h̃

′
(x)|X0 = x)−E(h̃(J1)− h̃(i)|J0 = i))+2δ2

< sδ
′
+2δ2.

(3.40)

Recalling thatH
′
1(s,x) = esh̃

′
(x), from (3.40) for alls< s5, for all i

sup
x∈Ri(δ3)
‖x‖>DM

E

(
H
′
1(s,X1)

H
′
1(s,x)

∣∣∣∣X0 = x

)
−E

(
H1(s,J1)
H1(s, i)

∣∣∣∣J0 = i

)
< sδ

′
+2δ2. (3.41)

Equivalently, using (3.26), (3.27), supposings< s5 ≤ 1 and recalling the choices ofδ1,δ2

andδ′ we have for alli

sup
x∈Ri(δ3)
‖x‖>DM

E

(
H
′
1(s,X1)(‖ Ai ‖+δ)s

H
′
1(s,x)

∣∣∣∣X0 = x

)

< E

(
H1(s,J1)(‖ Ai ‖+δ)s

H1(s, i)

∣∣∣∣J0 = i

)
+(1+δ1)(sδ

′
+2δ2)

< β+(1+δ1)(sδ
′
+2δ2)

< β+(1+δ1)(δ
′
+2δ2) < 1

(3.42)

and we have from (3.31), (3.42) and the definition ofδ4,M
′
in (3.25) that

limsup
‖x‖→∞

E

(
H
′
1(s,X1)(‖ Ai ‖+δ)s

H
′
1(s,x)

∣∣∣∣X0 = x

)

≤ sup
i

lim
M→∞

sup
x∈Ri

‖x‖>DM

E

(
H
′
1(s,X1)(‖ Ai ‖+δ)s

H
′
1(s,x)

∣∣∣∣X0 = x

)

< β+(1+δ1)(δ
′
+2δ2)+Kδ4 < 1.

(3.43)
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DefineH2(s,x) =‖ x ‖s, with s< min(r,s5,1). Note that under the assumptionE|ξt |r < ∞

we have

limsup
‖x‖→∞

E

(
H2(s,X1)

(‖ Ai ‖+δ)sH2(s,x)

∣∣∣∣X0 = x

)

= sup
i

lim
M→∞

sup
x∈Ri
‖x‖>M

E

(
H2(s,X1)

(‖ Ai ‖+δ)sH2(s,x)

∣∣∣∣X0 = x

)

≤ sup
i

lim
M→∞

sup
x∈Ri
‖x‖>M

‖ Ai ‖s‖ x ‖s

(‖ Ai ‖+δ)s ‖ x ‖s +sup
i

lim
M→∞

sup
x∈Ri
‖x‖>M

E|ξ|s
(‖ Ai ‖+δ)s ‖ x ‖s

< 1.

(3.44)

DefineV(s,x) = (H
′
1(s,x)H2(s,x))1/2; then we have∀s< min(r,s5,1), using (3.43),

(3.44) and Cauchy-Schwarz

limsup
‖x‖→∞

E

(
V(s,X1)
V(s,x)

∣∣∣∣X0 = x

)
< 1. (3.45)

Also, sinceesh̃
′
(x) is bounded forM < ∞ we have

sup
‖x‖≤M

E(V(s,X1)|X0 = x) = sup
‖x‖≤M

E((H
′
1(s,X1)H2(s,X1))1/2|X0 = x)

= sup
‖x‖≤M

E((esh̃
′
(X1))1/2(‖ X1 ‖s)1/2|X0 = x)

≤ sup
i

sup
‖x‖≤M

E((esh̃
′
(X1))1/2(‖ Ai ‖s‖ x ‖s +|ξt |s)1/2|X0 = x)

< ∞.

(3.46)

Let V1(s,x) = 1+V(s,x); thenV1 ≥ 1, V1 is locally bounded and measurable and from

(3.45), (3.46) we have

limsup
‖x‖→∞

E

(
V1(s,X1)
V1(s,x)

∣∣∣∣X0 = x

)
< 1, (3.47a)

sup
‖x‖≤M

E(V1(s,X1)|X0 = x) < ∞, (3.47b)

so we have by (3.1) and (3.2) that{Xt} is V1-uniformly ergodic.
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3.2.2 Case 2: regions whereε-bounds do not hold correspond to transient states of{Jt}.

Placingε-bounds on the probabilities of{Xt} transitioning from region to region will often

not be possible for all regions. Our test function relies on specific bounded, measurable

functions of{Xt} and{Jt} that we require to be close in expectation. This will not be

true if the probabilities are not close for all recurrent regions. Assuming the regions/states

where the approximation does not hold are transient removes this problem.

Since{Jt} is a finite state chain the collection of transient states of{Jt} is finite and

therefore uniformly transient, implying{Jt} leaves these states in a finite time with a proba-

bility arbitrarily close to 1. This observation tells us that we need only wait a finite time and

then we are back in Case 1. The following results are here essentially to deal with the com-

plications created by having to wait a finite time for the processes to reach states/regions

whereε-approximation is possible. First we modify (A1) to include the assumption the

regions where theε-approximation does not hold are ’transient’.

Assumption 2.(A2) Suppose there exists a finite state Markov chain{Jt} on{1, . . . , l}
with G consisting of the recurrent andT consisting of the transient states for{Jt}. Suppose

further there existst∗ < ∞ so that for arbitraryε > 0 there existsM < ∞ with

sup
j

sup
i∈G

sup
x∈Ri
‖x‖>M

∣∣∣∣P(X1 ∈ Rj |X0 = x)−P(J1 = j|J0 = i)
∣∣∣∣ < ε (3.48)

and

sup
i∈T

sup
x∈Ri
‖x‖>M

P(Xt∗ ∈ ∪k∈TRk|X0 = x) < ε. (3.49)

Suppose also that

Πl
i=1 ‖ Ai ‖πi< 1, (3.50)

for every stationary distributionπ of {Jt}.
Assumption (A2) and Lemma 3 lead to the next result, which demonstrates that un-

der the modified set of assumptions both{Xt} and{Jt} leave the regions/states where the
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ε-approximation does not hold in a finite time with a probability arbitrarily close to 1,

provided‖ x ‖ is large enough. As a consequence the Markov property guarantees the ex-

pectations of bounded, measurable functions of each chain will be similiar if we look at

them for a suitably long but finite time. This is necessary because we define our piecewise

constant functionλ(x) from the expectations of specific bounded, measurable functions of

each process.

Lemma 5.For δ3 > 0, M < ∞ let It = ∩t
i=1{(‖ Xi ‖> M)∩ (∩i−1

j=0(Xj ∈ ∪l
i=1Ri(δ3)))}.

If |ξt |r < ∞ for somer > 0 then under (A2) for arbitraryε > 0, with M < ∞, t∗ < ∞ from

(A2) and1 < D < ∞ from Lemma 3 there existst
′
< ∞ so that both of the following hold:

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

P
(
(Xt ′ ∈ ∪k∈TRk)∩ It ′−1|X0 = x

)
< t∗ε (3.51a)

sup
i

sup
j∈T

P(Jt ′ = j|J0 = i) < ε (3.51b)

Proof. SinceT consists of the transient states of{Jt} and{Jt} is a finite state chain, we

have thatT is uniformly transient, meaning for arbitraryε > 0 there exists at∗∗ < ∞ so that

sup
j∈T

sup
i∈T

P(Jt∗∗ = j|J0 = i) < ε. (3.52)

Since{Jt} is a finite state chain we can decompose the states{1, . . . , l} into (
Sk

i=1Si)
S

T,

whereG =
Sk

i=1Si with eachSi irreducible and recurrent. This implies that

sup
j∈T

sup
i∈G

P(J1 = j|J0 = i) = 0 (3.53)

since ifsupj∈T supi∈GP(J1 = j|J0 = i) > 0, then one of theSi communicates withT, making

eitherSi transient orT recurrent which is a contradiction. From this and (3.48) in (A2)

sup
i∈G

sup
x∈Ri(δ3)
‖x‖>M

P(X1 ∈ ∪k∈TRk|X0 = x) < ε. (3.54)
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From (3.49) in (A2) there existst∗ < ∞ so that forε > 0 there existsM < ∞ with

sup
i∈T

sup
x∈Ri
‖x‖>M

P(Xt∗ ∈ ∪k∈TRk|X0 = x) < ε. (3.55)

If t∗ = t∗∗ then sett
′
= t∗ = t∗∗ . If t∗∗ < t∗ we can sett

′
= t∗ since immediately by (3.52),

(3.53), (3.54) and (3.55) we will have

sup
i

sup
x∈Ri(δ3)
‖x‖>M

P((Xt ′ ∈ ∪k∈TRk)∩ It ′−1|X0 = x) < t∗ε (3.56a)

sup
i

sup
j∈T

P(Jt ′ = j|J0 = i) < ε. (3.56b)

If t∗∗ > t∗ we can sett
′
= t∗∗ as shown by the following. Consider that by the time homo-

geneous Markov property

P(Xt∗∗ ∈ ∪k∈TRk|Xt∗∗−t∗ = x) = P(Xt∗ ∈ ∪k∈TRk|X0 = x). (3.57)

Then we have from (3.56a), (3.57) by iterating the expectation

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

P((Xt∗∗ ∈ ∪k∈TRk)∩ It∗∗−1|X0 = x)

= sup
i

sup
x∈Ri(δ3)
‖x‖>DM

E
(

P((Xt∗∗ ∈ ∪k∈TRk)∩ It∗∗−1|Xt∗∗−t∗)
∣∣∣X0 = x

)

≤ sup
i

sup
x∈Ri(δ3)
‖x‖>DM

E
(

sup
i

sup
xt∗∗−t∗∈Ri(δ3)
‖xt∗∗−t∗‖>M

P((Xt∗∗ ∈ ∪k∈TRk)∩ It∗∗−1|Xt∗∗−t∗ = xt∗∗−t∗)
∣∣∣X0 = x

)

< t∗ε.

(3.58)

Of course, ift
′
= t∗∗ immediately from (3.52) and (3.53) we have

sup
i

sup
j∈T

P(Jt ′ = j|J0 = i) < ε. (3.59)

Putting the cases together we can sett
′
= max(t∗, t∗∗) and the result follows from (3.56),

(3.58) and (3.59).
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Lemma 6 is Lemma 4 rewritten to account for the complications induced by the ’tran-

sient’ regions whose transition probabilities cannot be approximated. Lemma 6 makes use

of Lemma 5 as well in its proof.

We make use of the sameh̃
′
(Xt) andh̃(Jt) and demonstrate that despite the presence of

transient states for{Jt} whose transition probabilities cannot approximate the probabilities

of {Xt} transitioning from the corresponding regions, Lemma 5 impliesh̃
′
(Xt) andh̃(Jt) are

guaranteed to be close in expectation on the ’important’ regions of the space described in

Lemma 3 when averaged over a sufficiently long time and the process{Xt} is large. Once

we have this, we will use these functionsh̃
′
(·), h̃(·) to define the piecewise constants in our

test function.

Lemma 6.Suppose the conditions given in (A2) and in Lemmas 1-3 and 5 hold for

arbitraryε > 0 and somer > 0. Defineh
′
(x) = ∑l

j=1h( j)I(x∈ Rj). For a fixedn < ∞ let

h̃
′
(x) =

n

∑
t=0

n− t
n

E(h
′
(Xt)|X0 = x,), (3.60a)

h̃( j) =
n

∑
t=0

n− t
n

E(h(Jt)|J0 = i). (3.60b)

Then for arbitraryδ′ > 0 there existD,n < ∞ so that

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

∣∣∣∣E(h̃(J1)− h̃(i)|J0 = i)−E(h̃
′
(X1)− h̃

′
(x)|X0 = x)

∣∣∣∣ < δ
′
. (3.61)

Proof. Let N = maxj |h( j)|. Get{Jt} andt∗ from (A2). Givenδ′ > 0 pick ε1 > 0 so that

Nt∗ε1 < δ′. Givenε1 > 0 getM1 < ∞ from (A2) andt
′
from Lemma 5. Getn1 from Lemma

1 and pickn≥ n1 so thatNt∗ε1 + 2N(t
′−1)
n < δ′ . Pick ε > 0 so that(n+1)l2Nε +Nt∗ε1 +

2N(t
′−1)
n < δ′ and getM ≥M1 from (A2). Pickδ3 > 0 so that

lN((n+1)lε+nδ3)+Nt∗ε1 +Nt
′
δ3 +

2N(t
′−1)
n

< δ
′
. (3.62)

GetD = D(n,δ3) from Lemma 3.
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From (3.22) we have for alli, for all x∈ Ri

E(h̃
′
(X1)− h̃

′
(x)|X0 = x) =

1
n

n

∑
t=1

E(h
′
(Xt)|X0 = x)−h

′
(x), (3.63a)

E(h̃(J1)− h̃(i)|J0 = i) =
1
n

n

∑
t=1

E(h(Jt)|J0 = i)−h(i). (3.63b)

Note that for alli, for all x∈ Ri

1
n

t
′−1

∑
t=1

E
(
h
′
(Xt)

∣∣X0 = x
)≤ N(t

′−1)
n

, (3.64a)

1
n

t
′−1

∑
t=1

E
(
h(Jt)

∣∣J0 = i
)≤ N(t

′−1)
n

. (3.64b)

DefineIt = ∩t
i=1{(‖ Xi ‖> M)∩ [∩i−1

j=0(Xj ∈ ∪l
i=1Ri(δ3))]}. Under (A2) and givenε1 > 0,

δ3 > 0 we have from Lemma 5

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=t ′

E
(
h
′
(Xt)I{(Xt ′ ∈ ∪k∈TRk)∩ It ′−1}

∣∣X0 = x
)

≤ sup
i

sup
x∈Ri(δ3)
‖x‖>DM

N×E
(
I{(Xt ′ ∈ ∪k∈TRk)∩ It ′−1}

∣∣X0 = x
)

< Nt∗ε1.

(3.65)

Applying the Markov property and from Lemma 4 (3.21) by an argument similar to that

leading to (3.24) ifXt ′ ∈ ∪k∈GRk we have for alli

sup
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=t ′

E
(
h
′
(Xt)I{(Xt ′ ∈ ∪k∈GRk)∩ It ′−1}

∣∣X0 = x
)

≤ sup
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=t ′

E
(
E(h

′
(Xt)|Xt ′ )I{(Xt ′ ∈ ∪k∈GRk)∩ It ′−1}

∣∣X0 = x
)

<
1
n

n

∑
t=t ′

E
(

h(Jt)I{Jt ′ ∈G}
∣∣∣J0 = i

)
+ lN((n+1)lε+nδ3)

≤ 1
n

n

∑
t=t ′

E
(
h(Jt)

∣∣J0 = i
)
+ lN((n+1)lε+nδ3).

(3.66)
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By Lemma 3 (3.8) withn = t
′

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=t ′

E
(
h
′
(Xt)I{Ic

t ′−1
}
∣∣X0 = x

)≤ Nt
′
δ3. (3.67)

Then from (3.64a), (3.64b), (3.65), (3.66), and (3.67) we have for alli

sup
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=1

E(h
′
(Xt)|X0 = x)

<
1
n

n

∑
t=1

E
(
h(Jt)

∣∣J0 = i
)
+ lN((n+1)lε+nδ3)+Nt∗ε1 +

2N(t
′−1)
n

+Nt
′
δ3.

(3.68)

By similar arguments we have for alli

inf
x∈Ri(δ3)
‖x‖>DM

1
n

n

∑
t=1

E(h
′
(Xt)|X0 = x)

>
1
n

n

∑
t=1

E
(
h(Jt)

∣∣J0 = i
)− lN((n+1)lε+nδ3)−Nt∗ε1− 2N(t

′−1)
n

−Nt
′
δ3

(3.69)

or from (3.62), (3.63), (3.68) and (3.69) we have the conclusion

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

∣∣∣∣
1
n

n

∑
t=1

E(h
′
(Xt)|X0 = x)− 1

n

n

∑
t=1

E(h(Jt)|J0 = i)
∣∣∣∣

< lN((n+1)lε+nδ3)+Nt∗ε1 +Nt
′
δ3 +

2N(t
′−1)
n

< δ
′
.

(3.70)

Theorem 2 handles the case of (A2). The proof was complicated by the fact we must

wait a finite time for the processes{Xt} and {Jt} to get to the recurrent regions/states,

requiring that we wait longer but still a finite time for the expectations ofh̃(Jt) andh̃
′
(Xt)

to be sufficiently close with arbitrarily high probability. These issues were handled in

Lemmas 5 and 6.

Theorem 2.Suppose the assumptions in (A2), Lemmas 1-3, 5 and 6 hold. Suppose

as well that for arbitraryδ3,δ4 > 0 we can findM < ∞ such thatRi(δ3) for i = 1, . . . , l as
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defined in Lemma 4 exist with

sup
i

sup
x∈Ri
‖x‖>M

P(X1 ∈ ∪l
i=1Ri(δ3)|X0 = x) < δ4. (3.71)

Then under (A2) there exists ans > 0 such that{Xt} is V-uniformly ergodic with test

functionV(s,x) = 1+λ(x) ‖ x ‖s, whereλ(x) is piecewise constant.

Proof. The complication created by the existence of a finite number of transient regions

whereε-approximation of the ’transition’ probabilities was not feasible was handled in

Lemmas 5 and 6, so that we have regardless

sup
i

sup
x∈Ri(δ3)
‖x‖>DM

∣∣∣∣E(h̃(J1)− h̃(i)|J0 = i)−E(h̃
′
(X1)− h̃

′
(x)|X0 = x)

∣∣∣∣ < δ
′

(3.72)

The remainder of the proof is the same as that for Theorem 1.

In this chapter, we have demonstrated that under certain conditions on the general

state space chain{Xt} we can approximate its movements by those of a finite state chain

{Jt} and derive a condition forV-uniform ergodicity of{Xt} through analysis of the more

tractable chain{Jt}.
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CHAPTER IV

EXAMPLES

4.1 Multi-Cyclic

4.1.1 Implications and method

The heuristic behind the work in Chapter II onV-uniform ergodicity of{Xt} is the follow-

ing:

1. Comparatively, the errorsξt become smaller in magnitude and less significant as

‖ x ‖v increases.

2. Under certain conditions on the skeleton the eventual behavior of the process when

the process is large mirrors that of the deterministic skeleton due to the observation

in (1) above.

3. Thus, conditions for ergodicity of{Xt} in this situation can be derived from the

conditions for stability of the skeleton.

4. In particular, if the skeleton contains cycle(s) then the condition for ergodicity of

{Xt} is that the product(s) of companion matrices corresponding to regions in the

cycle(s) have eigenvalue of maximum modulus smaller than 1.

In Chapter II we summarized this in a set of assumptions and verified in Theorems

1 and 2 the conditions do in fact establishV-uniform ergodicity of{Xt}. The results of

Chapter II provide us with an algorithm for addressing the question of ergodicity of a

threshold autoregressive time series:

1. Verify the assumptions onξt .
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2. Embed the time series{yt} of orderp in a general state space Markov chain{Xt} on

Rp.

3. Identify the skeleton of{Xt}. Label regions inRp according to the companion matrix

that applies in each.

4. Analyze the dynamics of the skeleton of{Xt}. Determine which regions are mapped

to which. If necessary, subdivide the regions further so that entire regions are mapped

to entire regions when‖ x ‖ is large. Suppose the regions areR1, . . . ,Rl .

5. Identify regions that comprise the cycle(s) for the skeleton of{Xt} and verify that

those not in the cycle(s) are mapped to the cycle(s) along ad-pathR0→R1→Rd for

some finited.

6. We want pointsx in the cycle(s) to be mapped bounded away from the thresholds to

the interior of the next region in the cycle(s) as in (2.50). Where necessary to make

this so, cut out tiny cones from the regions and label themR
′
i , the i referring to the

region in question. Verify these regionsR
′
i are ’transient’ as in (2.52).

7. We want points not in the cycle to either be mapped into the interior of the next region

in the d-path as in (2.51) or to be transient as in (2.52). Cut out small cones from

these regions not in the cycle in order to make (2.51) true. Call these small cones

R
′
i as well, thei referring to the region in question, and verify these regionsR

′
i are

transient as in (2.52).

8. Do so keeping in mind that for pointsx, we require for an arbitraryM4 < ∞ we

can pick‖ x ‖> M
′′

large enough so thatS= {x :‖ x ‖> M
′′
,‖ (πp(x)

i=1 Ai)x ‖≤M4} is

contained in∪l
i=1R

′
i . The setSwill be an issue where one or more of the matrices in

the cycle(s) is not of full rank. Be certainS is included in∪l
i=1R

′
i .
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9. Then by the appropriate theorem, the condition forV-uniform ergodicity of{Xt} is

that the eigenvalue(s) of maximum modulus of the product(s) of companion matrices

that comprise the cycle(s) be less than 1.

4.1.2 Example

As an example of the multi-cyclic methods consider the TAR(2;1;1) model

yt =





a1yt−1 +a2yt−2 +ξt , yt−1≥ d,yt−2≥ 0

b1yt−1 +ξt , yt−1 < d

c1yt−1 +ξt , yt−1≥ d,yt−2 < 0

(4.1)

Supposeξt ∼ N(0,σ2). Then sinceσ2 < ∞ we haveE|ξt |2 < ∞. We will analyze the case

a1 > 0, a2 > 0, b1 < 0, c1 < 0, d > 0. Embedyt in a Markov chain by writing:

Xt = (yt ,yt−1)
′
, νt = (ξt ,0)

′
(4.2)

and define the companion matrices by

A =




a1 a2

1 0


 , B =




b1 0

1 0


 , C =




c1 0

1 0


 . (4.3)

Then

Xt = AXt−1I(yt−1≥ d,yt−2≥ 0)+BXt−1I(yt−1 < d)+CXt−1I(yt−1≥ d,yt−2 < 0)+νt

(4.4)

is the general state Markov chain onR2, which we will think of as the(yt−1,yt−2)-plane.

From (4.4) the skeleton of{Xt} is thus

Xt = AXt−1I(yt−1≥ d,yt−2≥ 0)+BXt−1I(yt−1 < d)+CXt−1I(yt−1≥ d,yt−2 < 0) (4.5)
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Define the following regions:

R1 = {(yt−1,yt−2) : yt−1≥ d, yt−2≥ 0} (4.6a)

R2 = {(yt−1,yt−2) : yt−1 < d} (4.6b)

R3 = {(yt−1,yt−2) : yt−1≥ d, yt−2 < 0} (4.6c)

A depiction of the partition ofR2 into these regions and the companion matrix that

applies in each can be seen in Figure 1.

Let Ri →Rj denotext−1∈Ri ⇒ xt ∈Rj is dictated by the skeleton (4.5). The dynamics

for the skeleton are:

R1→ R1, R2→ R2, R2→ R3, R3→ R2.

The regionR2 feeds into two different regions. This is a problem since our results re-

quire each region have a unique successor region. Consider this further. Note that points

(yt−1,yt−2)
′ ∈ R2∪R3 with small |yt−1| remain small:

1. Supposex = (yt−1,yt−2)
′

such thatyt−1 < 0; then sinceBx = yt−1(b1,1)
′

we have

thatBx remains inR2 if yt−1≥ d/b1.

2. Supposex = (yt−1,yt−2)
′
such that0 < yt−1 < d; then by (1) above,Bx remains in

theR2→ R2 cycle if yt−1≤ d/b2
1.

3. Supposex = (yt−1,yt−2)
′

such thatyt−1 ≥ d; then sinceCx = yt−1(c1,1)
′

we have

thatCx maps to theR2→ R2 cycle if yt−1≤ d/(c1b1).

There are several cases here depending upon the values ofb1,c1. The caseb1c1 > 1, b1 < 1

is depicted in Figure 2.

Now for someM4 < ∞, the requirement‖ BCx‖≤M4 implies‖ c1yt−1(b1,1)
′ ‖≤M4

or |yt−1| ≤ M4/(c2
1(b

2
1 + 1)). Referring to the observations in (1)-(3) above, by pick-

ing M4 large enough we can cover the entire region involved in theR2 → R2 cycle by
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•

y(t−2)

y(t−1)

y(t−1) = d

R1: AR2: B

R3:C

Figure 1. Regions for the TAR(2;1;1) example and their companion matrices.
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y(t−1)

y
(t

−
2

)

y(t−2)

y(t−1)

y(t−1) = dy(t−1) = d/b_1

R1

R2

R3

−(b_1, 1)’

(c_1, 1)’

Figure 2. Middle regions for the TAR(2;1;1) example and their dynamics.
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{x = (yt−1,yt−2)
′
:‖ BCx‖≤M4}, which defines a strip around theyt−2-axis. Define

R2(M4) = {(yt−1,yt−2)
′ ∈ R2 : |yt−1| ≤M4/(c2

1(b
2
1 +1))}, (4.7a)

R3(M4) = {(yt−1,yt−2)
′ ∈ R3 : |yt−1| ≤M4/(c2

1(b
2
1 +1))}. (4.7b)

We are going to see that we can ignore these regionsR2(M4) andR3(M4). The impor-

tant cycles will beR1 → R1 andR2 → R3 → R2. Since we have two cycles we will apply

Theorem 2 in Chapter II.

We want to define regionsR
′
1, R

′
2 and R

′
3 so that conditions (2.50) and (2.52) are

satisfied. Slicing out cones near theyt−2-axis will ensure that points outside of these cones

will be mapped bounded away from the thresholds into the interior of the next region in

the cycle according to (2.50). The form of the companion matricesB andC dictate that

|yt−1| → ∞ as‖ x ‖ does; we need this to be true for points outside of these cones. We will

update our regionsR1,R2 andR3 to exclude the conesR
′
1, R

′
2 andR

′
3.

For δ > 0 we define the regionsR
′
1, R

′
2 andR

′
3 as:

R
′
1 = {(yt−1,yt−2)

′
: yt−2≥ yt−1/δ+d, yt−1≥ d} (4.8a)

R
′
2 = {(yt−1,yt−2)

′
: yt−2≥ yt−1/δ, 0 < yt−1 < d} (4.8b)

∪{(yt−1,yt−2)
′
: yt−2≤−yt−1/δ, 0 < yt−1 < d} (4.8c)

∪{(yt−1,yt−2)
′
: yt−2≤ yt−1/δ, yt−1≤ 0} (4.8d)

∪{(yt−1,yt−2)
′
: yt−2≥−yt−1/δ, yt−1≤ 0} (4.8e)

R
′
3 = {(yt−1,yt−2)

′
: yt−2≤−yt−1/δ+d, yt−1≥ d} (4.8f)

A depiction of these regions is in Figure 3.

Now for an arbitraryδ′ > 0 we can clearly pickδ > 0 small enough andM
′
< ∞ so

that

sup
x

‖x‖>M
′
P(X1 ∈ R

′
1∪R

′
2∪R

′
3|X0 = x) < δ

′
(4.9)
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•

y(t−1)

y
(t

−
2

)

y(t−2)

y(t−1)

y(t−1) = d

R_1’R_2’

R_2’ R_3’

−(b_1, 1)’

(c_1, 1)’

Figure 3. New partition of regions for the TAR(2;1;1) example.
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and we have that (2.52) will be satisfied.

We need to verify for someM < ∞, that for allx = (yt−1,yt−2)
′ ∈ R1 with ‖ x ‖> M

there exists a positive, strictly increasing functionf1(·) so thatBf1(‖x‖)(Ax) ⊂ R1. The

matrix A mapsR1 into itself. The worst cases occur along the boundaries ofR1, where

(yt−1,yt−2)
′
is such that eitheryt−2 = yt−1/δ or yt−2 = 0. Since

A




yt−1

yt−2


 = yt−1




a1 +a2/δ

1


 , A




yt−1

0


 = yt−1




a1

1


 (4.10)

then points(yt−1,yt−2)
′
such that eitheryt−2 = yt−1/δ or yt−2 = 0 are mapped to the interior

of R1 along the raysyt−1(a1 + a2/δ,1)
′

andyt−1(a1,1)
′

respectively. The distance from

these rays to the boundary ofR1 increases as‖ x ‖ does, implying there exists a positive,

strictly increasing functionf1(·) such thatBf1(‖x‖)(Ax)⊂R1 and thisf1(·) will work for all

(yt−1,yt−2)
′ ∈ R1 regardless of the value ofM.

Next we need to verify for someM < ∞, for all x = (yt−1,yt−2)
′ ∈ R2 with ‖ x ‖> M

there exists a positive, strictly increasing functionf2(·) so thatBf2(‖x‖)(Bx) ⊂ R3. Since

for all x = (yt−1,yt−2)
′ ∈ R2 we haveBx = yt−1(b1,1)

′
the worst case for(yt−1,yt−2)

′

with ‖ (yt−1,yt−2)
′ ‖= M occurs at the infimum of|yt−1| in R2 which occurs along the rays

yt−2 = yt−1/δ andyt−2 =−yt−1/δ. The distance fromyt−1(b1,1)
′
to the raysyt−2 = yt−1/δ

andyt−2 =−yt−1/δ increases as|yt−1| and thus‖ x‖ does, implying there exists a positive,

strictly increasing functionf2(·) that satisfies our requirement. Whicheverf2(·) works

along these rays will work for all(yt−1,yt−2)
′ ∈ R2.

Finally, we need to verify for someM < ∞ that for all x = (yt−1,yt−2)
′ ∈ R3 with

‖ x ‖> M there exists a positive, strictly increasing functionf3(·) so thatBf3(‖x‖)(Cx)⊂R2.

The argument is similar to that forR2. For allx= (yt−1,y
′
t−2∈R3 we haveCx= yt−1(c1,1)

′
,

so the worst case for(yt−1,yt−2)
′
with ‖ (yt−1,yt−2)

′
) ‖= M occurs at the infimum of|yt−1|

in R3 which occurs along the rayyt−2 = −yt−1/δ. Whichever f3(·) works along this ray
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will work for all (yt−1,yt−2)
′ ∈ R3.

•

y(t−1)

y
(t

−
2

)

R_1’R_2’

R_2’ R_3’

−(b_1, 1)’

(c_1, 1)’
||x|| = M

R_2(M_4)

R_2(M_4)
R_3(M_4)

Figure 4. Regions for the TAR(2;1;1) example with large‖ x ‖.

As for R
′
1,R

′
2,R

′
3, these regions are not in the cycle and such uniform bounds do not

exist. By the definition of these regions in (4.9) we have

sup
x

‖x‖>M

P(X1 ∈ R
′
1∪R

′
2∪R

′
3|X0 = x) < δ

′
(4.11)

and for large enough‖ x ‖ the region{x = (yt−1,yt−2)
′
:‖ BCx‖≤ M4} is contained in

R
′
1∪R

′
2∪R

′
3. A depiction of this is in Figure 4.

We have satisfied all the assumptions behind Theorem 2:
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1. ξt ∼ N(0,σ2) which has a continuous density everywhere positive and sinceσ2 < ∞

we haveE|ξt |2 < ∞ .

2. The regionsR1,R2,R3 comprising the cycles have the requisite bounds as in (2.50).

3. The regionsR
′
1,R

′
2,R

′
3 not in the cycle do not have a bound but do satisfy (2.52) and

do contain the sets{x = (yt−1,yt−2)
′
:‖ x ‖v> M

′′
,‖ BCx‖v≤M4} and

{x = (yt−1,yt−2)
′
:‖ x ‖v> M

′′
,‖ Ax ‖v≤ M4} (which is the empty set forM

′′
large

enough: sinceA is full rank, the set ofx = (yt−1,yt−2)
′

such that‖ Ax ‖≤ M4 is a

bounded set).

4. All (yt−1,yt−2)
′
are mapped by the skeleton toR1∪R2∪R3 in a finite time.

Then by Theorem 2 in Chapter II, for the model (4.1) in the case wherea1 > 0, a2 > 0,

b1 < 0 andc1 < 0 if

ρ(A) < 1⇔ a1 +a2 < 1, ρ(BC) < 1⇔ b1c1 < 1

then{Xt} is V-uniformly ergodic.

Note the ergodic parameter space is unbounded, contrary to what we would expect

through analogy with the case of a linear time series:

ρ(A) < 1⇔ a1 +a2 < 1, ρ(B) < 1⇔−1 < b1 < 0, ρ(C) < 1⇔−1 < c1 < 0,

illustrating the point made in Chapter II.

4.2 Finite State Chain Approximation

4.2.1 Implications and method

The heuristic behind the work in Chapter III onV-uniform ergodicity of{Xt} is the follow-

ing:
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1. ∑l
i=1 log(‖ Ai ‖)I(Xt−1 ∈ Ri) describes the log-change in the process as the process

moves fromXt−1 to Xt . The expected log-change in the process as it moves from

Xt−1 to Xt is given by

EXt−2

( l

∑
i=1

log(‖ Ai ‖)I(Xt−1 ∈ Ri)
)

. (4.12)

2. Under the assumptions in either (A1) or (A2), when‖ x ‖ is large the expected log-

change (4.12) considered overR1, . . . ,Rl from Xt−1 to Xt when Xt−2 = x ∈ Ri , is

close toEJt−1(log(‖ AJt ‖)). By ergodicity of{Jt}, EJt−1(log(‖ AJt ‖)) will converge

to Eπ(log(‖ AJt ‖)), whereπ is the stationary distribution of{Jt} andEπ(·) denotes

the expectation with respect toπ.

3. Thus, averaging (4.12) over a sufficiently long but finite time will make it arbitrarily

close toEπ(log(‖ AJt ‖)). The condition

Eπ(log(‖ AJt ‖)) =
l

∑
i=1

πi log(‖ Ai ‖) < 0

for all stationary distributionsπ of Jt will guaranteeV-uniform ergodicity of{Xt}.

This is the basic idea; complications were introduced according to whether theε-

approximation held for all states/regions or only for certain regions, and according to the

amount of time it took for the ergodicity described in (2) to take effect. The details of all

this was worked out in the lemmas and theorems of Chapter III.

The results of Chapter III provide us with an algorithm for addressing the question of

ergodicity of a threshold autoregressive nonlinear time series:

1. Verify the assumptionE|ξt |r < ∞.

2. Embed the time series{yt} of orderp in a general state Markov chain{Xt} onRp.
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3. Identify the skeleton. Analyze its dynamics and determine distinct regions so that

entire regions are mapped to entire regions. Suppose these regions areR1, . . . ,Rl .

4. Consider the errors. Cut tiny cones out near the region boundaries and findM < ∞

such that‖ x‖> M implies we can eitherε-bound the transition probabilities between

regionsP(Xt ∈ Rj |Xt−1 = x∈ Ri) as specified in (A1) and (A2) or that the regionsRi

where the transition probabilities cannot be bounded byε are transient.

5. Construct the finite state chainJt and verify the appropriate assumptions on it.

6. Find the stationary distributionsπ of Jt and derive the condition for ergodicity.

4.2.2 Example

As an example of the application of the finite state chain approximation methods consider

the TAR(2;1) model

yt =





a1yt−1 +a2yt−2 +ξt , yt−2≥ 1
b1

yt−1

b1yt−1 +ξt , yt−1 < 1
b1

yt−1

(4.13)

Assumeξt ∼ N(0,σ2). Sinceσ2 < ∞ we haveE|ξt |2 < ∞ and the assumption onξt is

satisfied.

There are several cases to consider. We are going to supposeb1 < 0, b2 = 0, a1,a2 > 0,

a1b1 +a2 > 0 andb2
1 > a1b1 +a2.

Embedyt in a Markov chain by writing:

Xt =




yt

yt−1


 , νt =




ξt

0


 , A =




a1 a2

1 0


 , B =




b1 0

1 0


 . (4.14)
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Then

Xt = AXt−1I(yt−2≥ (1/b1)yt−1)+BXt−1I(yt−2 < (1/b1)yt−1)+νt (4.15)

is the general state Markov chain onR2. Note the thresholdyt−2 = 1
b1

yt−1 is the eigenvector

of theB matrix.

Let RA = {(yt−1,yt−2) : yt−2 ≥ (1/b1)yt−1}, RB = {(yt−1,yt−2) : yt−2 < (1/b1)yt−1}.
The first task is to analyze the skeleton of the process, which from (4.15) is

xt = Axt−1I(xt−1 ∈ RA)+Bxt−1I(xt−1 ∈ RB). (4.16)

This defines a deterministic system inR2. Our task is to determine distinct regions dictated

by the dynamics of the skeleton. A couple of things to note here:

1. b2
1 > a1b1+a2 implies b1−a1

a2
< 1

b1
, so the rayyt−2 = b1−a1

a2
yt−1 lies above the thresh-

old yt−2 = 1
b1

yt−1 whenyt−1 < 0.

2. For(yt−1,yt−2) such thatyt−2 = 1
b1

yt−1 with yt−1 < 0

A




yt−1

yt−2


 =




a1yt−1 +a2yt−2

yt−1


 =




a1yt−1 + a2
b1

yt−1

yt−1


 = yt−1




a1 + a2
b1

1


 .

(4.17)

Sinceyt−1 < 0 anda1b1 + a2 > 0 imply a1 + a2/b1 < 0, we have that (4.17) lies to

the right of theyt−2-axis.

With the help of these observations we can define the following 5 regions:

R1 = {(yt−1,yt−2) : yt−1≥ 0, yt−2≥ (1/b1)yt−1} (4.18a)

R2 = {(yt−1,yt−2) : yt−1≥ 0, yt−2 < (1/b1)yt−1} (4.18b)

R3 = {(yt−1,yt−2) : yt−1 < 0, yt−2 < (1/b1)yt−1} (4.18c)

R4 = {(yt−1,yt−2) : yt−1 < 0, (1/b1)yt−1≤ yt−2≤ ((b1−a1)/(a2))yt−1} (4.18d)

R5 = {(yt−1,yt−2) : yt−1 < 0, ((b1−a1)/(a2))yt−1 < yt−2} (4.18e)
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A depiction of the partition ofR2 into these regions can be seen in Figure 5. For brevity we

denote the rayyt−2 = ((b1−a1)/a2)yt−1 with yt−1 < 0 by L1 and the rayyt−1 = (1/b1)yt−1

with yt−1≥ 0 by L2.

•

y(t−2)

y(t−1)

L2

L1

R1: A

R2: B

R3: B

R4: A R5: A

Figure 5. Regions for the TAR(2;1) example and their companion matrices.

Let Ri → Rj denotext−1 ∈ Ri ⇒ xt ∈ Rj is dictated by (4.16) and denote byT the

threshold, i.e., the set of all(yt−1,yt−2) such thatyt−2 = (1/b1)yt−1. We have includedT

in R1∪R4 but it is useful to consider it separately for a moment. The dynamics for the

skeleton are:

R1→ R1, R2→ T, R3→ T, R4→ R2, R5→ R1.
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When we add the errorsξt back in, several issues arise:

1. All x∈ R2∪R3 are mapped byB to the thresholdyt−2 = 1
b1

yt−1. When we add the

errors back in, then regardless of the magnitude of‖ x ‖ the errors give{Xt} an equal

chance of being bumped off the threshold in either direction.

2. The rayyt−2 = b1−a1
a2

yt−1 is mapped to the threshold byA. When the errors are taken

into account, these points have an equal chance of being bumped off the threshold in

either direction.

3. All x∈ R2∪R3 either on or near theyt−2-axis are mapped byB near the origin and

their transition probabilites vary depending upon how close they are to theyt−2-axis,

but do not depend on‖ x ‖ per se, only on|yt−1|.

(1) and (2) imply it is necessary to model{Xt} with a stochastic system rather than an

asymptotically deterministic one. We will get to this in a moment but first let us address

concern (3). Because no points are mapped near theyt−2-axis by eitherA or B, we can cut

out narrow cones around theyt−2-axis, call themR
′
2 andR

′
3, and in effect throw them away,

meaning we can constructR
′
2 andR

′
3 so that for an arbitraryε > 0:

sup
i

sup
x∈Ri
‖x‖>M

P(X1 ∈ R
′
2|X0 = x) < ε (4.19a)

sup
i

sup
x∈Ri
‖x‖>M

P(X1 ∈ R
′
3|X0 = x) < ε. (4.19b)

This satisfies condition (3.71) of Theorem 2 in Chapter III. To see that we can do this,

consider that the worst case, that is, the points mapped closest toR2∪R3, occurs for points

that lie along the rayyt−2 = 1
b1

yt−1. We’ve already seen in (4.17) that these points are

mapped toyt−1(a1 + a2
b1

,1)
′
by A. For an arbitraryδ > 0 define the boundaries ofR

′
2 to be

the rays(0,yt−2) and(−δyt−2,yt−2) for yt−2 < 0. Likewise, define the boundaries ofR
′
3 to

be the rays(0,yt−2) and(δyt−2,yt−2) for yt−2 < 0.



82

For any(yt−1,yt−2)
′
such thatyt−2 = 1

b1
yt−1 andyt−1 < 0 we have from (4.17)

A




yt−1

yt−2


 = yt−1




a1 + a2
b1

1


 :=




y
′
t−1

y
′
t−2


 (4.20)

where we denote the updated(yt−1,yt−2)
′
by (y

′
t−1,yt−2)

′
. Note thaty

′
t−2 = yt−1. Consider

these mapped points(y
′
t−1,yt−2)

′
versus the boundaries ofR

′
2 andR

′
3, (−δy

′
t−2,yt−2)

′
and

(δy
′
t−2,yt−2)

′
, respectively. Sinceνt = (ξt ,0)

′
, the errors perturb the process horizontally;

thus, to consider whetherXt ∈ R2∪R3 we need to consider the horizontal distance from

y
′
t−1 to the interval(−δy

′
t−2,δyt−2)

′
.

Sinceyt−1 = y
′
t−2 andy

′
t−1 = yt−1(a1+a2/b1) we have thatXt ∈R

′
2∪R

′
3 if ξt is in the

interval (|yt−1|(a1 + a2/b1− δ), |yt−1|(a1 + a2/b1 + δ)). Now for (yt−1,yt−2)
′
on the ray

yt−2 = 1
b1

yt−1 and for anyM < ∞

‖ (yt−1,yt−2)
′ ‖> M ⇔ . . .⇔ |yt−1|> M

√
b2

1

1+b2
1

. (4.21)

Thus for an arbitraryε > 0 if we pick M1 large enough so that

P

(
ξt ≥M1

√
b2

1

b2
1 +1

(
a1 +

a2

b1
−δ

))
< ε (4.22)

and set‖ (yt−1,yt−2)
′ ‖> M1 then by (4.21) and (4.22) we have

P(ξt ∈ (|yt−1|(a1 +a2/b1−δ), |yt−1|(a1 +a2/b1 +δ)))

≤ P

(
ξt ≥M1

√
b2

1

b2
1 +1

(
a1 +

a2

b1
−δ

))
< ε.

(4.23)

For thisM1 we have

sup
i

sup
x∈Ri

‖x‖>M1

P(X1 ∈ R
′
2|X0 = x) < ε (4.24a)

sup
i

sup
x∈Ri

‖x‖>M1

P(X1 ∈ R
′
3|X0 = x) < ε. (4.24b)
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OnceR
′
2 andR

′
3 are established, we need to cut out a coneR

′
5 from R5 so that for some

M2 < ∞

inf
x∈R5
‖x‖>M2

P(X1 ∈ R1|X0 = x) > 1− ε (4.25)

and a coneR
′
4 from R4 so that for someM3 < ∞

sup
x∈R4
‖x‖>M3

P(X1 6∈ R2|X0 = x) < ε/2. (4.26)

For large enoughM1,M2 we can make these conesR
′
4 andR

′
5 very small. This serves two

purposes: we can then bound all transition probabilities fromR4 andR5 to within ε, and

even though we cannot uniformly bound the transition probabilities inR
′
4 andR

′
5, these

regions will be transient and satisfy the assumptions made in (A2).

Can we set up the conesR
′
4 andR

′
5 so that the desired conditions in (4.25) and (4.26)

hold? Consider the case ofR5. For an arbitraryδ > 0 cut the coneR
′
5 out ofR5 by defining

the boundaries ofR
′
5 to be the raysyt−2 = b1−a1

a2
yt−1 andyt−2 = (b1−a1

a2
+δ)yt−1. Note that

A




yt−1

b1−a1
a2

yt−1


 =




a1yt−1 +(b1−a1)yt−1

yt−1


 = yt−1




b1

1


 , (4.27)

which lies on the threshold. So then we have from (4.27)

A




yt−1

(b1−a1
a2

+δ)yt−1


 = A




yt−1

b1−a1
a2

yt−1


+A




0

δyt−1




= yt−1




b1

1


+




a2δyt−1

0


 .

(4.28)

Thus ifξt ≤−a2δ|yt−1| then(yt−1,yt−2)
′
such thatyt−2 = ((b1−a1)/a2+δ)yt−1 is mapped

to R2. By the assumptionξt ∼ N(0,σ2), P(ξt ≤ −a2δ|yt−1|) = P(ξt ≥ a2δ|yt−1|) < ε

for |yt−1| large. By picking|yt−1| large along the rayyt−1 = (b1−a1
a2

+δ)yt−1 and setting
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M2 =‖ (yt−1,yt−2)
′ ‖we haveM2 < ∞ large enough so that the probability of being mapped

to R2 is less thanε and we have

inf
x∈R5
‖x‖>M2

P(X1 ∈ R1|X0 = x) > 1− ε. (4.29)

A similar argument for the case ofR4 will reveal that we can cutR
′
4 out of R4 by defining

for the sameδ > 0 the boundaries to beyt−2 = b1−a1
a2

yt−1 andyt−2 = (b1−a1
a2

−δ)yt−1 so that

for M3 < ∞ large enough

sup
x∈R4
‖x‖>M3

P(X1 6∈ R2|X0 = x) < ε/2. (4.30)

Note here that the assumptiona1b1+a2 > 0 implies the thresholdyt−2 = 1
b1

yt−1 is mapped

by A to the right ofR
′
2, so by a similar argument there will exist aM4 < ∞ so that

sup
x∈R4
‖x‖>M4

P(X1 ∈ R
′
2∪R

′
3∪R3|X0 = x) < ε/2. (4.31)

The depiction of the spaceR2 with the new partition is in Figure 6.

Let M = max(M1,M2,M3,M4) and let us stop here to summarize what we have estab-

lished thus far for the regionsR1,R2,R3,R4,R5

inf
x∈R1
‖x‖>M

P(X1 ∈ R1|X0 = x) > 1− ε, sup
x∈R1
‖x‖>M

P(X1 ∈ R3∪R4∪R
′
4∪R5∪R

′
5|X0 = x) < ε

(4.32)

inf
x∈R2
‖x‖>M

P(X1 ∈ R3|X0 = x) = sup
x∈R2
‖x‖>M

P(X1 ∈ R3|X0 = x) = 1/2 (4.33a)

inf
x∈R2
‖x‖>M

P(X1 ∈ R4|X0 = x) > 1/2− ε (4.33b)

sup
x∈R2
‖x‖>M

P(X1 ∈ R
′
4∪R5∪R

′
5∪R1) < ε (4.33c)
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Figure 6. New partition of regions for the TAR(2;1) example.
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inf
x∈R3
‖x‖>M

P(X1 ∈ R1|X0 = x) = sup
x∈R3
‖x‖>M

P(X1 ∈ R1|X0 = x) = 1/2 (4.34a)

1/2− ε < inf
x∈R3
‖x‖>M

P(X1 ∈ R2|X0 = x)≤ sup
x∈R3
‖x‖>M

P(X1 ∈ R2|X0 = x) < 1/2 (4.34b)

sup
x∈R3
‖x‖>M

P(X1 ∈ R
′
2∪R

′
3∪R3|X0 = x) < ε (4.34c)

inf
x∈R4
‖x‖>M

P(X1 ∈ R2|X0 = x) > 1− ε, sup
x∈R4
‖x‖>M

P(X1 ∈ R1∪R
′
2∪R

′
3∪R3|X0 = x) < ε (4.35)

inf
x∈R5
‖x‖>M

P(X1 ∈ R1|X0 = x) > 1− ε, sup
x∈R5
‖x‖>M

P(X1 ∈ R2∪R
′
2∪R

′
3∪R3|X0 = x) < ε (4.36)

Now to handle the small conesR
′
2, R

′
3, R

′
4 andR

′
5. Points inR

′
2 can go toR1, R3, R4,

R
′
4, R5, R

′
5 with probabilites depending on wherex is in R

′
2. We cannotε-approximate these

probabilities because of this, but it will not matter sinceR
′
2 was designed to be transient.

Denote these probabilities byαi(x) with ∑6
i=1αi(x) = 1:

αi(x) = P(X1 ∈ Ri |X0 = x∈ R
′
2), i = 1, . . . ,5. (4.37)

R
′
3 can go toR1, R2, R

′
2, R

′
3, R3 with probabilities varying depending on wherex is in R

′
3.

We cannotε-approximate these probabilities because of this; however by the definition of

R
′
2 andR

′
3 we can bound these probabilities byε for ‖ x ‖> M:

sup
x∈R

′
3

‖x‖>M

P(X1 ∈ R2′ |X0) < ε (4.38a)

sup
x∈R

′
3

‖x‖>M

P(X1 ∈ R3′ |X0) < ε. (4.38b)
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Denote the remaining probabilites byβi(x) with ∑3
i=1βi(x) = 1−2ε:

βi(x) = P(X1 ∈ Ri |X0 = x∈ R
′
3), 1 = 1,2,3. (4.39)

R
′
4 can go toR1,R2,R

′
2,R

′
3,R3 with probabilities depending on wherex is in R

′
4, but we can

find aM5 < ∞ so that

sup
x∈R

′
4

‖x‖>M5

P(X1 ∈ R
′
2∪R

′
3∪R3|X0 = x) < ε. (4.40)

As for the other probabilities since they depend on wherex is in R
′
4 we can only say

1/2− ε < inf
x∈R

′
4

‖x‖>M

P(X1 ∈ R2|X0 = x)≤ sup
x∈R

′
4

‖x‖>M

P(X1 ∈ R2|X0 = x) < 1− ε (4.41a)

ε < inf
x∈R

′
4

‖x‖>M

P(X1 ∈ R1|X0 = x)≤ sup
x∈R

′
4

‖x‖>M

P(X1 ∈ R1|X0 = x) < 1/2. (4.41b)

Denote these probabilities byγ(x) and1− γ(x):

P(X1 ∈ R2|X0 = x∈ R
′
4) = γ(x), P(X1 ∈ R1|X0 = x∈ R

′
4) = 1− γ(x). (4.42)

Finally, R
′
5 can go toR1,R2,R

′
2,R

′
3,R3 with probabilities varying depending on wherex is

in R
′
5, but we can find aM6 < ∞ so that

sup
x∈R

′
5

‖x‖>M6

P(X1 ∈ R
′
2∪R

′
3∪R3|X0 = x) < ε. (4.43)

As for the other probabilities, we can only say

ε < inf
x∈R

′
5

‖x‖>M6

P(X1 ∈ R2|X0 = x)≤ sup
x∈R

′
5

‖x‖>M6

P(X1 ∈ R2|X0 = x) < 1/2− ε (4.44a)

1/2 < inf
x∈R

′
5

‖x‖>M6

P(X1 ∈ R1|X0 = x)≤ sup
x∈R

′
5

‖x‖>M6

P(X1 ∈ R1|X0 = x) < 1− ε (4.44b)
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since these probabilities depend on wherex is in R
′
5. Denote these probabilities byη(x)

and1−η(x):

P(X1 ∈ R2|X0 = x∈ R
′
5) = η(x), P(X1 ∈ R1|X0 = x∈ R

′
5) = 1−η(x). (4.45)

It is convenient to summarize these transition probabilities in tabular form:

1 2 2
′

3 3
′

4 4
′

5 5
′

1 1− ε 0 0 ε/5 0 ε/5 ε/5 ε/5 ε/5

2 ε/4 0 0 1/2 0 1/2− ε ε/4 ε/4 ε/4

2
′ α1 0 0 α2 0 α3 α4 α5 α6

3 1/2 1/2− ε ε/3 ε/3 ε/3 0 0 0 0

3
′ β1 β2 ε β3 ε 0 0 0 0

4 ε/4 1− ε ε/4 ε/4 ε/4 0 0 0 0

4
′ γ 1− γ− ε ε/3 ε/3 ε/3 0 0 0 0

5 1− ε ε/4 ε/4 ε/4 ε/4 0 0 0 0

5
′ η 1−η− ε ε/3 ε/3 ε/3 0 0 0 0

(4.46)

Then we can form the transition probability matrix for{Jt} by lettingε→ 0:

1 2 2
′

3 3
′

4 4
′

5 5
′

1 1 0 0 0 0 0 0 0 0

2 0 0 0 1/2 0 1/2 0 0 0

2
′ α1 0 0 α2 0 α3 α4 α5 α6

3 1/2 1/2 0 0 0 0 0 0 0

3
′ β1 β2 0 β3 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0

4
′ γ 1− γ 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0

5
′ η 1−η 0 0 0 0 0 0 0

(4.47)
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Since states2
′
and3

′
are immediately mapped to other states and never return, it follows

the states2
′
and3

′
are transient for{Jt}. Since only2

′
maps to4

′
and5

′
, it follows 4

′
and

5
′
are transient for{Jt} as well. DefineG= {1,2,3,4,5} andT = {2′,3′ ,4′ ,5′}. The states

in T are transient for{Jt}.
Turning our attention to{Xt}, we verify the assumptions in (A2). Theε-approximation

in (1.5) is satisified by the regions/states corresponding toG. We need to verify (1.6): there

existst∗ < ∞ so that

sup
i∈T

sup
x∈R1
‖x‖>M

P(Xt∗ ∈ ∪k∈TRk|X0 = x) < ε. (4.48)

A glance at (4.46) reveals regionsR
′
2 andR

′
3 satisfy this condition immediately.R

′
2 maps

to R
′
4 andR

′
5. The only other regions which map toR

′
4 or R

′
5 areR1 andR2 and these do

so with arbitrarily small probabilities. Clearly then we can find at∗ < ∞ so that (4.48) is

satisified.

Thus, we can apply Theorem 2 in Chapter II and under the condition on{Jt}

Πl
i=1(‖ Ai ‖)πi < 1, (4.49)

whereπ is any stationary distribution of{Jt}, we will have that{Xt} isV-uniformly ergodic,

with V(·) specified by Theorem 2.

Examination of the transition matrix of{Jt} reveals that{1} is the only closed state

and every other state maps into{1}. Since{Jt} is a finite state chain, this means that{1}
is the only recurrent state and so the stationary distributionπ with haveπ1 = 1 and zeroes

everywhere else. The condition forV-uniform ergodicity of{Xt} in the caseb1 < 0, b2 = 0,

a1,a2 > 0, a1b1 +a2 > 0, b2
1 > a1b1 +a2 is then‖ A ‖< 1, that is,a1 +a2 < 1.

Note that we only requireb1 to be such thatb1 < 0, a1b1+a2 > 0 andb2
1 > a1b1+a2.

In particular, we do not require|b1| < 1 which would be the condition generalizing from

the linear case.
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CHAPTER V

FUTURE RESEARCH

We propose to use countable state chains to approximate general state space chains in the

case where recurrent regions do not allowε-approximation of their transition probabilities.

The task here would be to verify the countable chain is ergodic, to find the stationary

distribution of the countable state space chain and to use that stationary distribution to

identify an ergodicity condition for{Xt}.
For details, consider that in cases where regions that do not allowε-approximation

by a finite state chain are recurrent the finite state chain approximation is useless since

the stationary distributions of finite state Markov chains (or any Markov chain, for that

matter) will be different according to the differing transition probabilities for these recurrent

regions. Thus the condition for ergodicity of{Xt}
l

∑
j=1

π j log(‖ A j ‖) < 0, (5.1)

whereπ is the stationary distribution of{Jt}, will have no relevance in the case where the

regions that do not allowε-approximation are recurrent sinceπ does not accurately describe

the long term behavior of the transitions of{Xt} from region to region. In order to glean

conditions for ergodicity of{Xt} from the stationary distribution of{Jt} it is thus necessary

to somehowε-approximate the ’transition’ probabilities for these ’recurrent’ regions of the

state space of{Xt}.

5.1 Countable State Markov Chains

We propose toε-approximate the transition probabilities with a countable state Markov

chain rather than a finite state Markov chain. In certain situations the recurrent regions
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whose transition probabilites cannot beε-approximated by a finite partition of the region

will admit suchε-approximation under a countable partition. In these situations it is con-

jectured the condition on{Jt} given in (5.1) can be suitably generalized to

∑
j≥0

π j log(‖ A j ‖) < 0 (5.2)

and that this condition can be used to demonstrateV-uniform ergodicity of{Xt}. There are

several issues that arise.

Because we were dealing with a finite state chain{Jt} in Chapter III, the number of

transient states was thereby finite and thus uniformly transient, i.e., as it was expressed in

(3.52) for arbitraryε > 0 there exists at∗∗ < ∞ so that

sup
j∈T

sup
i∈T

P(Jt∗∗ = j|J0 = i) < ε. (5.3)

This uniform transience condition on the states where theε-approximation does not hold

was crucial in proving Lemma 1 and Lemma 5 in Chapter III and was therefore critical in

proving the results onV-uniform ergodicity of{Xt} found in Chapter III.

When{Jt} is a countable state chain the number of transient states need not be finite

and therefore the transient states are not necessarily uniformly transient. This presents a

problem. In order to be able to extend the results in Chapter III to the case of a countable

state{Jt}, it is necessary that we get away in a finite time with a probability arbitrarily close

to 1 from the states where theε-approximation does not hold. We thus require these states

of {Jt} be uniformly transient (which is trivially satisfied if they are finite in number).

We require more of{Jt}. The proof in Cline and Pu (2002) of Lemma 1 in Chapter III

that there exists a finiten so that

1
n

n

∑
t=1

E
(
h(Jt)

∣∣J0 = i) < 0, ∀i (5.4)

required not only that the transient states be uniformly transient, but also that the irreducible

pieces of{Jt} (or {Jt} itself in the case of irreducibility) be uniformly ergodic. Where{Jt}
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is a finite state chain this again follows automatically from the fact the number of recurrent

states is finite. In the case where{Jt} is a countable state space chain this does not follow

and must be assumed. We therefore require that{Jt} be uniformly ergodic. This is a logical

assumption when one considers the convergence due to the ergodicity must take place over

the entire space in a finite time with a probability arbitrarily close to 1.

Let us summarize these assumptions on{Jt}
Assumption 1.(A3) Suppose there exists a uniformly ergodic countable state Markov

chain{Jt} with G consisting of the recurrent,T consisting of the transient states for{Jt}
and that the transient statesT are uniformly transient. Suppose further for arbitraryε > 0

there existsM < ∞ such that

sup
j

sup
i∈G

sup
x∈Ri
‖x‖>M

∣∣∣∣P(X1 ∈ Rj |X0 = x)−P(J1 = j|J0 = i)
∣∣∣∣ < ε (5.5)

and there existst∗ = t∗(M) < ∞ such that

sup
i∈T

sup
x∈Ri
‖x‖>M

P(Xt∗ ∈ ∪k∈TRk|X0 = x) < ε. (5.6)

Suppose also that

Πi≥1(‖ Ai ‖)πi < 1, (5.7)

whereπ is any stationary distribution of{Jt}.
Under these assumptions we conjecture the condition (5.7) will imply theV-uniform

ergodicity of{Xt} through arguments similar to those in Chapter III. The challenge be-

comes verifying that{Jt} satisfies the assumptions made of it and finding the stationary

distribution of{Jt}.
There is still much to do here. Classifying an arbitrary countable state Markov chain

as ergodic or not, and if ergodic whether it is uniformly ergodic or not, and if so finding the

stationary distribution requires further work. We can suppose that{Jt} is irreducible and
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aperiodic; if{Jt} is not irreducible, we must decompose the state space into irreducible

pieces and find the stationary distribution for each. If{Jt} is periodic with periodd we

can look at thed-step chain{Jt} which will be aperiodic. Perhaps{Jt} will have a special

structure we can exploit. These suggestions may help simplify the task of determining

whether{Jt} is uniformly ergodic.

The proposed approach raises new questions which need to be answered. Looking

at the glass as half full rather than half empty, the general state space Markov chain{Xt}
has been reduced to a simpler, countable state Markov chain{Jt} which will be easier to

analyze and simulate. This indicates promise for future research.
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CHAPTER VI

CONCLUSIONS

We derived conditions for the ergodicity of threshold autoregressive time series by embed-

ding the time series in a general state Markov chain and applied a Foster-Lyapunov drift

condition to demonstrate ergodicity of the Markov chain. In particular we were interested

in demonstratingV-uniform ergodicity where the test functionV(·) depends upon a norm.

In this dissertation we provided conditions under which the general state space chain

may be approximated by a simpler system and provided conditions on the simpler system

which imply V-uniform ergodicity of the general state space Markov chain and thus the

threshold autoregressive time series embedded in it. We also examined conditions under

which the general state space chain and thus the nonlinear time series embedded in it may

be classified as transient. Finally, we provided conditions under which central limit the-

orems will exist for the general state space chain and by implication for the associated

threshold autoregressive time series.
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