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ABSTRACT

V-Uniform Ergodicity of Threshold Autoregressive Nonlinear Time Series. (December
2003)
Thomas R. Boucher, B.S., University of Massachusetts-Lowell;
M.S., University of Massachusetts-Lowell

Chair of Advisory Committee: Dr. Daren B.H. Cline

We investigate conditions for the ergodicity of threshold autoregressive time series by em-
bedding the time series in a general state Markov chain and apply a Foster-Lyapunov drift
condition to demonstrate ergodicity of the Markov chain. We are particularly interested in
demonstratiny -uniform ergodicity where the test functi®f(-) is a function of a norm on

the state-space.

In this dissertation we provide conditions under which the general state space chain
may be approximated by a simpler system, whether deterministic or stochastic, and provide
conditions on the simpler system which impisuniform ergodicity of the general state
space Markov chain and thus the threshold autoregressive time series embedded in it. We
also examine conditions under which the general state space chain may be classified as
transient. Finally, in some cases we provide conditions under which central limit theorems

will exist for theV-uniformly ergodic general state space chain.
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CHAPTER |

INTRODUCTION

The increasing importance of nonlinear time series models is due to the fact these models
are capable of describing many of the phenomena found in time series data that cannot
be adequately described by classical linear ARMA models. There are numerous examples
of these phenomena. Limit cycles describe instances where the series eventually cycles
through a set of values. Jump phenomena occur when the time series suddenly 'jumps’
from one fairly stable regime to another. Time-irreversibility refers to cases where the rate
of increase of the time series differs from the rate of decrease. Time-varying volatility
refers to instances where the volatility of the series, as evidenced by changes in the values
of the series, changes over time. Amplitude-dependent volatility describes cases where the
changes in volatility are related to the current amplitude of the time series.p)AR{dels

were introduced by Tong and Lim (1980) to handle limit cycles in particular, but they were

also shown to model jump phenomena and time-irreversiblity.

1.1 The TAR(p) Model with Delay d

Threshold autoregressive models are piecewise linear over the domain of the process; which
linear piece applies depends upon the prior values of the time seriey kelp denote the
time series. As introduced by Tong and Lim (1980), the TBR(odel of ordem, delayd

and thresholdsy, ..., r with —co =rg <rqy < ... < = 400 can be written as

The format and style follow that @fournal of the American Statistical Association



(i)

ytz(Pli 9

Vi1t o+ O Ve pt & fii1<Vig <Ti, (1.1)

where(p(li),...,(pg), i=1,...,1, are constants an{£; }+>o are mean zero iid random vari-
ables.
The threshold autoregressive model can also be written in the more general form of

the larger class of autoregressive nonlinear models:

yt:f()’t—lw-wYt—p;Et); pZd

with f(-) being an arbitrary nonlinear function. These models encompass both parametric
and nonparametric models and provide us with an extraordinarily flexible family of mod-
els. Threshold autoregressive models are particularly important in light of the fact many
nonlinear functiond (-) can be well approximated by linear functions over finite intervals.
Each threshold autoregressive model can be embedded in a Markov cliah Bar
specifics, if we writeX; = (Wt, Yt—1, - - - ,ytpr)' the TAR(p) model introduced in (1.1) can

be expressed as the following:

X =AX_1+V, X-1€R (1.2)

where the spac®&P is divided intol regionsR;,i = 1,...,l, the R, depending upon the

thresholds; and the delay parametdr TheA; are called the companion matrices and are

given by:
o & e o
1 0 0 0
A= O 1 O 0
0 0 0
0 1 0



andv; = &(1,0,...,0)". Since the distribution ok givenXo, ...,%_1 depends upoM_1
only, X; is a Markov chain. The transition measureXpfs singular w.r.t. Lebesgue measure
if p>1ord>1

Stability of the nonlinear time series model is then defined as the ergodicity of the as-
sociated Markov chain. This question of stability has important ramifications for statistical
inference. The existence of a stationary distribution with finite moments is crucial for prov-
ing consistency and asymptotic distributions of the parameter estimates. Standard proofs
of the consistency, asymptotic normality and optimality of parameter estimates in the lin-
ear ARMA case (such as in Brockwell and Davis (1987)) require causality of the model.
Generalizations of these ergodic parameter spaces for linear ARMA models to nonlinear
models are often inadequate even for the simplest forms of nonlinearity in the model. In
some cases these generalizations are too broad, in others they are far too restrictive; some
TAR(p) models admit an unbounded ergodic parameter space (Petruccelli and Woolford
(1984), Chen and Tsay (1991), Kunitomo (2001)). In order for statistical inference involv-
ing these models to be valid, it is necessary to first know the model under consideration is
stationary, i.e., ergodic, making the investigation into the ergodic parameter spaces of these

models of paramount importance.

1.2 Literature Review

Stability of the TAR{) model is established for some very simple cases. Chan et al. (1985)
derived necessary and sufficient ergodicity conditions for a class of multiple threshold mod-
els with delay 1. Petruccelli and Woolford (1984) did the same for a special case of a sin-
gle threshold model. Guo and Petruccelli (1991) refined the results of Chan et al (1985),
adding classification of the model as null recurrent or transient. Lim (1992) and separately
Chen and Tsay (1991) have established necessary and sufficient conditions for geometric

ergodicity of a simple case of TAR(1) models with arbitrary delay. Kunitomo (2001) has



established results for some special cases of TAR(2) models, but even these very simple
models are not completely characterized. This existing work reveals the valid parameter
space is quite different from the product parameter space one may expect and which is
often given as a sufficient condition for ergodicity, a conclusion further confirmed by the
present research.

Different approaches to the stability of nonlinear time series may be taken. Authors
such as Lim (1992) and Tong (1990) have taken a dynamical systems approach toward sta-
bility of nonlinear time series, linking ergodicity of the process= f(yi—1,...,Yt—p) + &
to the dynamic stability of the deterministic skeletgr= f(yt_1,...,¥t—p). This approach
has yielded useful results where the deterministic skeleton satisfies certain regularity con-
ditions (see Chan (1990)), such as Lipschitz continuity and exponential stability of the
deterministic skeleton. Many useful models, however, do not satisfy the regularity condi-
tions placed on the skeleton and researchers such as Cline and Pu ((1999a), (1999b), (2001)
and (2002)) have noted the conditions for stability of the chain are not always the same as
those for the stability of the skeleton.

An alternative method, followed by authors such as Tjgstheim (1990), Meyn and
Tweedie (1993) and Cline and Pu (2001), is the previously detailed approach of embed-
ding the time series in a Markov chain and examining stability of the time series through
the ergodicity of the Markov chain. Tjgstheim (1990) also introduceskistep method
whereby ergodicity of the one-step chdiX;} is equated to the ergodicity of tHestep
chain{ X}, wherek is a finite positive integer. This is one of the approaches we use and
will be explained further in the next section.

Regarding statistical inference, limit theorems for the parameter estimates depend on
the existence of moments of the stationary distribution. Early work, such as that of Petruc-
celli and Woolford (1984) and Chan et al (1985), provided conditions on the parameter

values and moment conditions on the error distribution that for particular models resulted



in the existence of moments for the stationary distribution. From this they established limit
theorems for strong consistency and asymptotic normality of the parameter estimates. More
recent results in the case\¢funiform ergodic Markov chains (Meyn and Tweedie (1993),
Cline and Pu (2001)) link the moments of the stationary distribution to the order of the test
function used to satisfy the drift condition fet-uniform ergodicity. Limit theorems for

the parameter estimates can then be established if the test function implies the appropriate

moments of the stationary distribution exist.

1.3 Definitions/Theory

Embedding a nonlinear autoregressive process of qudgr= f(yt—1,...,¥%t—p,&) in the
Markov chainX = (¥, Yt-1,-..,Yt—p)’ allows us to recast the problem of stability of the
nonlinear time series in terms of the stability of the sequence of distributlKs, -) } n>o,
then-step transition probabilities of the chain generated by the transition kefxe) from
the initial distributionu of the Markov chain.

This stability of the sequence of distributiofB"(x,-)}n>0 can be characterized as
follows: let E denote the space;(E) denote a countably generateefield containinge
and consider an ergodic Markov chain on state-sf&ce(E)) with transition probability

P(x,-) and invariant probability distributior, that isTt satisfies
m(A) = / M(dXP(x,A), VA€ o(E).
E

If Xo is distributed according ta, then{X; };>o is a stationary Markov chain, following
from the invariance oft Stability of the Markov chain is equivalent to the existence of
a stationary (invariant) distributiorn for the chain such that the sequence of distributions
{P"(x,-)} converges to this stationary distribution

There are certain conditions a Markov chain must satisfy in order for the stationary

distributionTtto exist and be unique. The reader can consult Nummelin (1984) or Meyn



and Tweedie (1993) for the following definitions.

Let P(-) denote the transition distribution of given thatXp, = x. A Markov chain
{%} is said to bep —irreducibleif there exists a-finite measurep on the space such that
Vx € E and wheneve)(A) > 0, we haveP(ta < ©) > 0, wheret, is the time of the first
visit to the setA. A Markov chain that igp-irreducible for some probability measufeis
calledirreducibleand we denote by (A) the collection of all set& with Y(A) > 0.

A d —cyclefor a general state chain is a cycle of regidas(..,Eq_1) such that
¥x € Ej,P(x,Ei+1) = 1fori =0...d — 1(mod d) and the seN = (U, E)C is y-null. A
Y-irreducible Markov chain is calledperiodicwhend = 1.

A y-irreducible chain is said to bidarris recurrentif VA € o™ (E), Vx € A we have
P«(% € Ai.o.) = 1. Y-irreducible, aperiodic recurrent chains admit an invariant measure,
but this measure could be infinite. If there existsatite(Meyn and Tweedie, pg. 121) set
C such that

SUPEX(Tc) <
xeC

then the chain is calledositiveHarris recurrent. When combined with aperiodicity and ir-
reducibility, our assumptions on the error terms ensure that compact sets are petite and thus
we can apply drift conditions to demonstrate positive Harris recurrence. The significance
of positive Harris recurrence is that it implies the invariant measure is finite and can then
be suitably normalized to become a probability measure.

An ergodicchain is one that is positive Harris recurrefitirreducible and aperiodic.
Consequently, the chain has a unique invariant probability distribution and the time series
is thus stationary when the initial distribution is the invariant distribution. Verifying sta-
tionarity of the time series then becomes a question of verifying each of the conditions
listed above for ergodicity of the Markov chain in which the time series is embedded. In

the case of additive errorg-irreducibility and aperiodicity are an easy consequence of the



error distribution having a continuous density that is everywhere positive, the irreducibility
measurap thus being Lebesgue measure (Meyn and Tweedie (1993), Cline and Pu (1998)).
The question of establishing ergodicity is then reduced to establishing positive Harris re-
currence.

Ergodicity implies then-step transition probabilitieB"(x, -) converge to the invariant
probability measure

lim || P"(x,) —1t[|=0,
where|| - || is the total variation norm, i.e.,
I P(x,-) —t[|= sup [P"(x,B) —m(B)|.
Beo(E)

Nummelin (1984) informs us that this convergence(it/n). It is advantageous to know
if the convergence d®"(x, -) to Ttoccurs more quickly since we can then either assume the
process has already reached stability, meaning the governing distribution is the stationary
one, or at the very least from the stationary distribution we know the long-term or ergodic
behavior of the chain. There are different types of ergodicity named according to the rate
and manner in which the convergencePfx, -) to toccurs.

If the convergence occurs at a geometric rate, we have the concept of geometric er-
godicity:

| P, )—m|<Rr™" r>1 R<o n>1

However, this convergence is not uniform; the constants depend on the initial value x.
To get uniform convergence, we need to consider a stronger form of ergodicity named
V-uniform ergodicity.

Following Meyn and Tweedie (1993) define tienorm for a positive functioV > 1

and any measure as

IPllv="sup |P(f)].
fif|<Vv



For two Markov transition functionB; andP,, define théV-norm distance between

P, andP; as

I PL(x ) = Pa(x.) lv
PL—P =su .
[Py = Pallly 1= sup™=2 5

Considermt as the transition functior(A) = 1i(x,A); thenV-uniform convergence is
defined as geometric convergenceP3fx,-) to mwhen the distance betwe&(x,-) and
Tt is measured by the-norm distance: there exist> 1, R < « such that for all positive
intergersn:

[IIP? =gl < Rr™.

Note that sinc& -uniform convergence is defined in terms of thenorm which involves a
supremum over alt, the convergence is in fact uniformxand thus the name.

Establishing the various types of ergodicity for a Markov chain is often done with the
use of Foster-Lyapounov drift conditions, one of which is provided by Meyn and Tweedie
(1993): for our purposes an irreducible, aperiodic Markov cHai} is geometrically
ergodic if for some extended real-valued, locally bounded test fun®tioR — [1, +),

there exisK < o, p < 1 and a compact s€ such that
E(V (%) X1 = X) < pV(X) + K1c(x).

A useful equivalent condition requires (Cline and Pu (1999b), Cline and Pu (2001)):

E(V (%)% =X

limsup <1 (1.3)
e V(%)
and there existd < o such that
sup E(V(X1)[% = X) < o, (1.4)

[X[<M
In fact, both these conditions establish the stronger form of ergoditityyiform ergodic-

ity, whereV (-) is the test function used to satisfy the drift condition.



Cline and Pu (2001) list several approaches to using test functidossatisfy drift
conditions. We make use of tligrectional methogdinvolving the use of a test function of
the formV (x) = 1+ A(x) || x ||" wherer > 0 andA is bounded and bounded away from 0.

The functionA(-) is typically chosen to depend on the directionxofThis approach has
worked well with threshold models of order 1 and we apply it with success in Chapter Il

to threshold models of higher order. The advantage of this method can be seen when the
TAR(p) model has a cycle, under appropriate conditions on the skeleton. By choosing the
functionA(X) to be constant in each region and by choosing the appropriate constants, one
can ensure the expected ratio of test functions (1.3) to be less than 1 as the chain travels
from region to region (Cline and Pu (1999b)).

The choice of test functiol () has important implications for statistical inference.
Meyn and Tweedie (1993) relate the existence of moments of the stationary distribution
to the order of the test function used in demonstratifigniform ergodicity: for aVv-
uniformly ergodic chain{ X} and any functiorg(x) such thag? <V, Meyn and Tweedie

prove consistency and central limit theorems for the partial sums

Si(g) = égom.

Spieksma and Tweedie (1994) provide a set of conditions for a countable state-space
Markov chain that allow the test functidf(x) to be 'boosted’ to an exponential test func-
tionVy(X) = eV wheres> 0. Cline and Pu (2001) generalize this result by deriving con-
ditions for a general state-space chain to have an exponential test function of the form either
Vi(x) = &Y™ orvy(x) = eV ¥°. For test functio®V (x) such thaf| x | < V(x) <M +K || x ||
for finite constant& andM, the existence of an exponential test function thus implies the
existence of all moments of the stationary distribution (Cline and Pu (2001)). With this in
hand, consistency and limit theorems for the parameter estimates can then be established.

Our project is to give conditions for ergodicity of threshold autoregressive models by
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embedding the time series in a general state space Markov chain and applying the Markov
theory detailed in this introduction. We identify two special cases we define as cyclic and
finite state chain approximated and use Foster-Lyapunov drift criteria to demonstrate
uniform ergodicity. We also provide sufficient conditions for transience of cyclic models

in some special cases and conditions under which central limit theorems will hold in the

cyclic case.
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CHAPTER I

STABILITY AND INFERENCE FOR CYCLIC THRESHOLD AUTOREGRESSIVE
MODELS

2.1 Introduction

We approach the question of stability of the nonlinear time series by deriving conditions
under which the Markov chain in which the series is embedded could be classified as either
V-uniform ergodic or transient.

Suppose the threshold autoregressive model of grdiescribed in (1.1) is embedded
in a Markov chain{X} as in (1.2). The spacRP is divided into regionsy,...,R each
regionR; with companion matrid;, i = 1,...,1. We define the deterministic skeletgnof

the Markov chainX; to be the deterministic process
X =AX-1, %1€R, i=1..l (2.1)

I.e., the deterministic skeleton is the process with the additive errors removed.
Define ak-cycle for the deterministic skeleton for a collectifn, ..., ix} of lengthk
from {1,...,1} to be a collection ok regionsR;,,...,R;, with corresponding companion

matricesAy, ..., A, such tha € R;; implies A x € R, Similarly, the multi-cyclic

+1(modk) *
case has a finite number of cycles ...,Cy each of lengthk;, i = 1,...,m. Since there are
a finite number of cycles of finite length we can with some modifications reduce this to a
k-step process witk = M1 k.

Consider the case of a singkecycle. Settingt = X € R; and lookingk transitions
ahead, we havey = x € R implies X,k = I'I}‘ZlAijxe R;. This observation tells us the
skeleton will shrink if it shrinks each trip through the cycle; thus, rather than look at the

one-step transitions of the procgs§} we can consider thle-step transitions of the chain.
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This is the heuristic behind tHestep strategy for demonstrating geometric ergodicity put
forth by Tjgstheim (1990).

There is a clear benefit from considering the cyclic behavior of the chain. Consider
that for any two matriceé andB, for an arbitrary nornj| - | and wherep(A) denotes the

largest eigenvalue @& in modulus
p(AB) = lim || (AB)" /"< lim || A" ||*/" x lim || B" |*"=p(A) x p(B).  (2.2)

Generalizing conditions for ergodicity from the linear AfR(case to a threshold autore-
gressive model with companion matricdsand B would lead to the conditiop(A) < 1
andp(B) < 1, implying p(A) x p(B) < 1. The conditionp(A) < 1,p(B) < 1 impliesV-
uniform ergodicity for all cyclic models with companion matricksand B, but as (2.2)
shows this condition is stronger than what is necessary and leads us to miss valid models.
Models whose deterministic skeleton hak-eycle R,,...,R;, with companion matrices

A, ..., A, require under certain conditions only thz(| I'I!‘:1Aij |) < 1, rather than the
stronger conditiom(|| A;; [|< 1) for j =1,...,k. We can argue analagously in the case of
multiple cycles of finite length. The gain here can be tremendous; as mentioned in Chapter
| certain threshold autoregressive models have been shown to have unbounded parameter
spaces (Petruccelli and Woolford (1984), Kunitomo (2001)). Considering only the relevant
cycles allows us to recover the full parameter space.

Define for a Markov chaifX; } and a constark < « thek-step chain to be the Markov
chain{X}. Using a drift criterion, Tjgstheim demonstrated geometric ergodicity of the
k-step chain{X} and drew upon Nummelin (Thm. 6.14, (1984)) who equated geomet-
ric ergodicity of { X} with that of {X}. Meyn and Tweedie subsequently strengthened
Tjgstheim’s result by showing Tjgstheim’s drift criterion impligeuniform ergodicity of
{Xk} and thud/-uniform ergodicity of{ X; }. We summarize all of this in an original lemma

which restates the equivalency\dfuniform ergodicity of{X; } and{X} in terms only of
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theV-norm.

We use the following drift criteria to establidf-uniform ergodicity for thek-step

chain:
msupE(Y X0k Xo =%
limsu <1 2.3
|\x\|ﬂoop V(X) (2:3)
and for allM < «
sup E(V(Xntk)|Xo = X) < oo, (2.4)
[[x|<M

where the test functioW (-) > 1 is such thatV(-) is measurable, locally bounded and
V(X) — o as|| X ||— oo,

Analogously, transience dfX;} is demonstrated through its equivalence to the tran-
sience of thek-step chain{X}. Tweedie (1976, Theorem 11.3) provides the following
criteria for the transience dfX; }: for setsB andB°® of positive measure, if there exists a

non-negative functiog(x) with

E(g(X1)[Xo=x) <g(x), xeB° (2.5a)
g(x) <info(y), xe B (2.5b)

or a bounded non-negative functigfx) with

E(g(X1)[Xo=x%) > g(x), x€B° (2.6a)
g(x) > supg(y), xeB° (2.6b)
yeB

and if {X} is Y-irreducible, then(X;} is transient. We apply these criteria to derive con-
ditions under which{ X} is transient and then apply Tjgstheim (1990, Lemma 3.1) to
conclude transience ¢fx; }.

Inference for the threshold autoregressive model depends upon the existence of mo-
ments of the stationary distribution and upon the existence of central limit theorems for
partial sumsy ! ; g(X;). Results from Meyn and Tweedie (1993) link the existence of mo-

ments and central limit theorems to the order of the test fundtiarsed in establishing
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V-uniform ergodicity. Cline and Pu (2001) provide conditions under which the test func-
tionV can be 'boosted’ to an exponential test functiotx) = e ¥)° such that the process
is V'-uniformly ergodic. This is discussed in more detail in Section 4.

Our results are applicable to threshold autoregressive models where the stochastic pro-
cess behaves asymptotically like the deterministic skeleton and whose determinstic skele-
ton for || x || large exhibits finite cyclic behavior, i.e., has a finite number of cycles of finite
length. We assume throughout that the cycles do not fall on any of the thresholds so that
for largex there is negligible probability of the process leaving one cycle for another.

We first establish conditions under which these processe¥ -am@formly ergodic,
then turn our attention to transience and finally to the question of the existence of moments
of the stationary distribution. Theorems establishing ergodicity are in Section 3, those
for transience are in Section 4 and conditions for the test funstionto be 'boosted’ to
an exponential are in Section 5. First we provide some results to be used throughout the

chapter.

2.2 Preliminary Results

This first result provides us with the norm we will use. It is due to Ciarlet (1982) and can
be found in An and Huang (1996). The statement of the lemma is Ciarlet’s; the sketch of
the proof is ours.

(Ciarlet) Lemma 1If a matrix G hasp(G) < 1, then there exists a matrix norjn ||m

induced by a vector norifi- ||y and a constark < 1 such that
[ GX|Ix<Il G [[ml X lx< A 1 X [[v, WX (2.7)

Proof. Let p(G) denote the eigenvalue of largest modulus for an arbitrary m@irik is
a well-known fact (Martelli (1992), Lemma 4.2.1, for example) théB) < 1 implies the

existence of a vector norip- ||y such that the matrix operator notm ||, induced by| - ||y
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has|| G ||m< 1. Also, | G ||m< 1implies the existence of a constant 1 with A >|| G ||mn.

Combining these facts with a norm inequality we have
| GXIx<I| G [[mll X [Ix< A [ X v, VX
which is the result. O

We will use this vector norm| - ||y and the matrix normj| - ||, induced by|| - ||y
throughout the rest of this chapter.

The following lemma establishes teuniform ergodicity of the one-step chafix; }
from that of thek-step chain{X}. As mentioned previously, Meyn and Tweedie (1993)

define for a functiory > 1 theV-norm distance between two transition kernélsand P,

as
|PLg— P2g|
PL—Py||lv :=supsup ————. (2.8)
1Py~ Pl = supsup =505
where for a kernelP we define
Pg:.= /g P(x,dy). (2.9)

Let P = P(X; € A|Xo = X) denote the transition kernel ¢X; }. Then from (2.8) and (2.9)

P9

PlIl\ =
[Pl = SUPSUD )
:Supsup| (90X )(\X) X)|

S elde=r (240
Sl AT
<s

So if we can show

s)L(JpE(V()SZ’X))(o: X < 00, (2.11)

whereV is the test function used to shoyuniform ergodicity for thek-step chain then

we have|||P|||v < «, whereP is the transition kernel ofX;}.
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Lemma 2Suppose for a positive integkr « the k-step{ X} chain isV-uniformly
ergodic and that for the one-step chéi} with transition kerneP we have|||P|||v < .

Then the one-step chaix } is V-uniformly ergodic as well.

Proof. Since|||P|||v < o, there existM < « such that||P||v < M. Suppose w.l.0.g. that
M > 1. Since{X} is V-uniformly ergodic it is geometrically ergodic and by Tjgstheim
(1990, Lemma 3.1) so %, meaning{ X} and{X;} each have invariant distributiong
andTt, respectively. By Meyn and Tweedie (1993, Theorem 10.41%)s also invariant
for {X}; mis clearly invariant fof Xk }. Since the invariant distributions are unique up to
constant multiples we have thatA) = 1 (A) for all setsA with 1(A) > 0 andTg(A) > O.
Denote this common invariant distribution by

Note that for the one-step cha{X;} with transition kerneP the k-step chain{ Xy}
has transition kerngP¢. By Meyn and Tweedie (1993, Theorem 16.0.1) kkstep chain
is V-uniformly ergodic if and only if we have for sonfe < «, r > 1, and for alln that

|| (P)" = 1[|y < Rr—". Now write
P~ 1y = (P9 — iy < R = R — REYO R (2.12)

wherer, = r¥/K > 1 sincer > 1.
The invariance oftfor P implies Pitt= mtfor all integersj. Now consider that since
[l - ||lv is an operator norm (Meyn and Tweedie (1993), Lemma 16.1.1) we have by norm

inequalities for any kerneR Py, P, and any integers, k
1P lIv < (IPIIv)! - and [[IPPS]lIv < ([Pl [Iv)! ([1[P2lIv)*. (2.13)

Considerrt to be the kerneti(x,A) := 1i(A) for all setsA. Then for any integera and
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1 < j <k, kfixed, using (2.12), (2.13) and the invarianceof

1P — iy = [|PTP*" — Py
< IIP[[[v]IIP*" v (2.14)

< (|IPIIV)IP* = 1|y < MIRrk < Ry (k)

whereR = RMKrK. Then for alln' = nk+ j for somen, 1 < j < k, we have from (2.14)
IP" —milv <Rr™, r>1R <w

which by Meyn and Tweedie (1993, Theorem 16.0.1) is true if and onkXi} is V-

uniformly ergodic. O

Denote the test functions used to satisfy the drift conditiorMfamiform ergodicity
of {X} and of {X} by Vi(:) andVk(-), respectively. Meyn and Tweedie (1993) pointed
out the equivalence of the drift condition aWduniform ergodicity; sincg X} and{X}
are bothv-uniformly ergodic for the same function as a result of Lemma 2, this implies
the test function¥;(-) andVk(-) are of the same order.

Two definitions are needed before proceeding on to the next lemma. Defipath
to be a sequence df+ 1 regionsRy, ..., Ry with companion matricedy,...,Aq that the

skeleton of the process moves through, i.e.,
XeR =AxeR1, 1=0,...,d

For the vector nornfj - ||y and a positive functiofi(-), let the ball of radiug (|| x ||y) around

Aix be denoted by
Br (xj) (AX) = {y [ y = Aix [lv< £ (1| X [[v) }-

The next lemma assures us that by picking the inititdrge enough in thel-path

and with appropriate conditions on the skeleton the process will remain arbitrarily large
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and in thed-path in certain important regions for a finite time. The condition that the
process stay in and large through the path is an important one; requiring the process to
remain large ensures the error perturbations are negligible and thus the process behaves
like the deterministic skeleton. We will make use of this lemma several times in proving
the theorems.

Lemma 3Suppose a-pathRy,...,Rq exists with companion matrice&,...,Aq.
Suppose there exists a collection of positive, strictly increasing funcfignsso that for
M < e with || x [|y> M, x € R, implies By, () (AiX) C Rq1 fori=0,...,d — 1. Suppose
E|&t|" < o for somer > 0. Assume all| A; ||m are finite and bounded away from zero. Then
for anyd > 0, M < o there existsVl; < o so that for allXg = x € Ry with || x ||[y> M and
I |‘|id:0Aix llv> M1, the process stays larger thighin magnitude and stays in tlepath

from time 1 to timed with probability greater that — ds.

Proof. Get the functionsf;(-). Choosed > 0 andM < o. By the assumptiof|&;|" < oo
there existdl; < « so thatP(|&| > min{fi(M2)}) < & /2. LetM* = maxM,M).

Let G = yKHE(ma || A [lm)S. Let D = maxeo. g 13(|| M2 A llm). Given
5 > 0 and since, D are finite, the assumption on the errors implies there ekdsgts oo

so that

M1/D —M" 5
(k+ 1)Cy ) S 2(k+1)’

Suppose thakp = X € Ry. Since each| A ||m< « we have that] |‘|id:k+1Ai ||m< oo for

P(|El|> k=0,....d—1 (2.15)

k=0,...,d—1. Then note that by a norm inequality
d d k
I (iELAﬂX v <1 i:ulﬁq [lm x| (LLA-)X lv, k=0,....,d-1 (2.16)
Then if | oA [|lv> My, from (2.16)

k
M
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Let Xp = x and write where the process stays in thpath up until timek+ 1

k+1 k+1

X1 = |‘LA x+; A)vs, k=0,...,d—1 (2.18)
=s+1

Letly = (Xk—1 € Re—1) N (]| Xk—1 [lv> M*). Using (2.15)-(2.18), norm inequalities, Boole’s

we have foM* and fork=0,...,d—1

sup P <<|| Xeo1 IS Mot

inequality, subadditivity and the fact the errors are independent and identically distributed
XeRy
[IX[lv>M

Xo = X>
1N A)X[[v>My

k+1 k+1
< s (u MAxiv-3 T, Al <)

XeRy
[[X[lv>M

(ML A)X]lv>My

k+1

k
< su P max|| A |lm k=s &s| > Aj)X V_M*)
”;‘GZSM (gl( ax|| A lm)™(Es| =]l (il:L )x ||

(M A)X]lv>My

k+1 - My (2.19)
< i - > = _M*
< P[5, (maxt Al el = )
k+1 M1
< P &l > = —M*
(o35 )
My/D — M*
< P max > —
- <se{1,‘..,k+1}|zs| (k4 1)Cx )
_ Mi/D-M*
< k+1 1
M1/D — M* >
< (k+1)P > < =
By subadditivity from (2.19)
d-1 * dé/
Sup Pl U ol X1 [VSMT)I[Xo =X | < TR (2.20)
T

(M A)X]lv>My

As for the probability the process leaves theath, from the assumptions if we have

Xk—1=X-1 € Re1 With || X1 [[y>M* > M, thenBs,_, (x_4|\) (Ak-1%-1) C R. Since
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M* > M, and fy_1(+) is strictly increasing this implies fde=1,...,d

sp P (04 RIXo=x) < inf (&I > feall s 1)
XeRp Xk—1€Rk—
([X][y>M X llv>M*
4 oANX]y>M
(M=o A)Xllv>M21 (2.21)
< P([&| > fk1(M7))
.3
>
By subadditivity from (2.21)
sup P (Uﬂ—l[(H X [lv< MH)Ii] | Xo = X) < d—g.
HxHeRoM N B 2 (2.22)
X|lv>

1M A)X]lv>My

Then from (2.20), (2.22) and using subadditivity the probability the process stays in the

% =)

d-path and remains larger thah* > M is given by

inf P MR_a[(X € RN ([ X flv> M)k

XERy
IX[lv>M
(ML A)Xllv>M1
> 1 - sup P(uﬂzl[<xk¢Rk>]lkxo=x)
Y
(Mo Ay >My (2.23)
~ sup P(uﬁ_1[<||xknvswmkxo:x)
XeRy
IX[v>M
1N A)X[[v>Mq
> 1-dd.
O

2.3 V-Uniform Ergodicity

Our first result on th&/-uniform ergodicity of cyclic threshold autoregressive models is
a revision of Tjgstheim (1990) Theorem 4.5. The original statement of the theorem was

roughly this:
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Tjosthiem: Theorem JAssume there is &-cycle of indices;1 — i — ... =ik — i1

such thax € R, = Ajx € R, for || x|| large. Moreover, assume that[1%_, A,) < 1

j+1
so that there exists an integersuch that| (15, A,)" ||< 1 for a matrix norm|| - ||. If

Vi,v<j<k+v,1<v<kwe have

i j—vHl
P{(Q AiX+ Zl (_|_|+ Ag)etru ¢ Rj11)}
j—1 ji-v j-1
ﬂ(Ll Aix+ Y (] Adeu € R} =0(x[7%)

u=1 Ss=u+v

(2.24)

for somee > 0 as|| x || — o and if there exists such that for soma, 1 <u<n

P(Xu € JReX =x¢ JR,) = 1-0(] x||™°) (2.25)
for somed > 0 as|| x || — o, then{X;} is geometrically ergodic.
Proof. see Tjgstheim (1990, Theorem 4.5) l

The condition that the process remains in a cycle once it reaches ojh& fdarge is
(2.24). We are guaranteed by (2.25) that we reach a cycle in a finite timiexffy large.

Taken together these two conditions specify the process behaves arbitrarily close to the
skeleton process for || x ||y large. This implies certain conditions on the error distribution
and the skeleton itself. We attempt to express these conditions more explicitly in terms of
the error distribution and the behavior of the skeleton in order that they may be more easily
verified.

As stated, our result will handle cases where the dynamical skeleton has a single lim-
iting cycle of finite length. The skeleton must be such that points in the cycle are mapped
onto rays in the interior of the next region in the cycle. They cannot fall on the thresholds.
This allows us to bound the transition probabilities between regions watbfreither zero

or one by picking| x || to be arbitrarily large, since the larggx ||y is the further the points
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are mapped from the thresholds and the smaller the probability the errors can cause the
process to change regions. Thus we can focus on the regions in the cycle when determining
the condition for ergodicity.

For a vector norn - ||y and a positive functiori(-) recall that we denoted the ball of

radiusf (|| X ||v) aroundA;x by

Br (Ix) (AX) = {y 1y = Aixllv< T (Il X [|v) }-

To guarantee points in the cycle are mapped away from the thresholds, we suppose in
(2.26) below that for som#l < o there exists a collection of positive, strictly increasing

functionsf; (-) so that

VXeR,j=1,....k with [| X [[> M, Bfij(HxHV)(Ain) CRi,

mod k)’

I.e., points in the cycle must be mapped bounded away from the thresholds, with this bound
increasing ag X |ly— oo.

Points not already in the cycle must be assured of reaching one in a finite time. We
assume fok ¢ U‘j;lRij that under the action of the deterministic skeletdollows ad-path
Ro,...,Rq_1 beforex enters the cycle. We allow tteepath to vary from one& to another,
but we require the length of the padh= d(x) < n for some finite, uniform.

We need points not in the cycle to either be mapped away from the thresholds so that
the probability the errors disrupt the progress toward the cycle is negligible for|lactie
or we need these points to lie in regions the process hits with arbitrarily small probability
and then be mapped with near certainty to one of the former regions. To accomplish this
we assume in (2.27) below we can partition off the problematic subregions oRgacial
make the probability the process hits these subregions arbitrarily small by requiihg
large enough. We call these subregiﬁi,fls

Formally, we suppose for eact {i1,...,ix} there exists a positive, strictly increasing
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functiong;(-) such thai € R, with || x |[,> M implies either
Bgi(x|) (AX) CRiy1,1=0,...,d,
or thatx € R C R, whereUR is such that for arbitrary > 0 there existd' > M so that

sup P(Xy e UR;]XO =X) < 5.
Y.

In the case where one or more of the companion matrices is not full rank, the process
may not remain large on certain subregions no matter the valljexdf, with which we
begin. Where these are subregions of regions in the cycle this does not cause a problem
since these subregions are taken care of when we show the test function satisfies the drift
condition forV-uniform ergodicity in (1.3). The subregions of regions not in the cycle do
cause a problem for us and we need to be able to write them off; that is, we handle cases
where the skeleton maps points away from these regions and these regions can be made
arbitrarily small so that fof| x ||y large the probability the process enters them is arbitrarily
small as well.

Since we need the process to remain large to continue in its progress towards the
cycle, we suppose that for arbitrakj, < o there existdV” < o so that the set of points
0l x v M7 (2% ADX [lv< Ma} is contained in the union of the subregid®s This
will hold, for example, in cases where we can cut off tiny slices near the thresholds and
have the process remain large on the remainder of the space. These tiny offending regions
are ‘transient’ in a sense.

Theorem 1Suppose there existskacycle of regionsR;, - R, — ... = R, = R
with companion matrices;,, ..., A, so that for an arbitrary norr- || there existdM < o
with [| x ||> M implyingx € R, = A x€ R,

L 1modi - SUppOse for somkl < o there exists

a collection of positive, strictly increasing functiofis(-) so that

VX e Rij,j =1...,k with || x||> M, Bfij(HX”V)(Ain) C Rin( (2.26)

mod k)’
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Suppose there exists a uniformc c so that for each ¢ U'Jf:lRij with || x |[> M there
exists an integed = d(x) < nwhere under the action of the skeletofollows the determin-
istic d-pathRy — ... — Ry with d € {iq,...,ik}, i.e,X€E R = AXxeR41,i=0,...,d -1,
before entering the cycle.

Assume for each¢ {i1,...,ix} there exists a positive, strictly increasing functgn)

sox € R with || x [[> M implies either that
Bgi(me(AiX) CR1,1=0,...,d (2.27)
or thatx R: C R where for arbitraryS’ > O there existaVl’ > M such that

sup P(Xp € UR|Xo=X) < 8. (2.28)
X
I >M’
Suppose foM, < o there exist” < o so that{x:[| x [y>M", | (% A)x V< Mg} is
contained inu!le;. If & has a continuous density everywhere positE&;|?> < « and

P(M¥_1A;) < 1, then{X} is V-uniformly ergodic.

Proof. If & has a continuous density everywhere positive then we are assxijeid aperi-
odic andy-irreducible with the irreducibility measure being Lebesgue measure. It remains
to construct a test functiod' (-) and show{X} satisfies the conditions for'-uniform
ergodicity in (2.3) and (2.4).

From the assumptiop(ﬂ'j‘zlAij) < 1, by Lemma 1 there exists a matrix nofm ||m

induced by a vector norm- ||y and a constari < 1 so that

k k
Ax < Al XIS A I x|y - (2.29)
I (JI:L x|l HJ]:L i Il x (v A [l x|

Let {ok} denote the collection of all out of cycle sequences fidm .., 1} of length

k. Note thak < o implies card{oy}) < « andE|&;| < o, || A [|m< o, i=1,...,I, implies
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we can define constan®3,C, < o such that

K

Cy >|| (HAJ)Hrﬁ{ }ﬂllek ) lIm, (2.30a)

Co> z M 0A I+ S S ] Aaoln)ERL  (230)
=1li=u+1 {ox}u=1li=u+1

Getn < o from the assumptions. G&t < « according to the assumptions.
DefineV (x) =|| x ||y andVi(x) = E(V (Xn)|Xo = X). Note that since thé& are uncor-

related and using a norm inequality
(E((V(%)?X0 =x)) 2

< (E(max| A )" |-+ 3 (max] A 8)%)

C - 2(n—i)1/2 2,1/2 (2.31)
< (max]| A flm)" | XHv+(Zl(miaXHAi lm)2 ") 74 (E & 2) Y

+ zux||1/2<E|zt|>1/2(;(maqu )2 1) 2.

Since|| Aj ||m< o, E|Et]2 < oo, then by (2.31) for largéd x ||y there exisKj, Kz < o so that
(E((V(%0))2[X0 = %))/ < KiE(V (¥a) Yo =X) + K. (2.32)

Likewise, sinceCy,Cy < o there exisKsz, K4 < o so that
(E((CLV (Xn) +C2)2%0 = X)) 72 < KsE(V (Xn) X0 = X) + Ka. (2.33)

Pickd > 0o thath + [Ctk+ (2n+ 1)K3]d < 1.

To satisfy the drift condition (2.3) we are going to look at

BV X=X E(E[EN (Xaksn) Y1) Xl [Xo = X)
i sup Vi) = limsup £V (%) o = X |

We will proceed by bounding (V (Xn.k)|Xn) = E(V (Xnikr1)|Xnt1), Splitting it into cases

(2.34)

whereX, is in a cycle or not. After this, conditioning oty allows us to deal with the cases

X1 € Ul_,R andX; ¢ U_,R.
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We want to bound the probability the process remains in the cycle and remains large if
it begins afX, = x, in the cycle with|| x, ||y sufficiently large. By (2.26) for ak, € U'J-(:lRij
with || X [[v> M there exists a positive, strictly increasing functif-) such that we have
Bfij(HXnHV) (A Xn) C Ri,,,- Suppose w.l.0.g. tha, € R, with || Xn |lv> M. Then by this and
the assumption on the errors, the conditions for Lemma 3 are satisfied implying there exist

M1 < c0o andM* > M so that

o, F (”’ffﬁﬂ(x; €RDN(IX > M)]|[X = xn) S 1k,
1
[Xn[lv>M
I(M_a A Xallv>Ma
(2.35)

which provides a bound on the probability the process stays in the cycle and remains large

if it begins in the cycle ak, = X, € {X:|| (|‘|‘j<:1A.-j)x lv>M1}. By (2.29) and (2.30b)

sup  E(V (X {10 € RN (X v MO} X = %)

*n€R,

[Xa[lv>M
(M0 A X lv>Ma (2.36)

< AV (Xn) +Co.

Note that by assumption fdfl; < o there existdM” < « so that the set of points
{2l % v> M7, (M2 A )% [Iv< M1} s contained inul_;R. By (2.30a), (2.30b) and
(2.35)

sup  E(V (X HUTLR 1[G € R) U (11X [[vs M)} X = %)

xneR.-l
[Xallv>max(M,m") (2.37)
XH¢U=:1Ri/

< (CV (%) +C)kd .
Then by (2.36) and (2.37) we can say ¥y= x, in a cycle and sufficiently large:
sup E(V (Xn k) %0 = X1) <AV (¥n) +Co+ (C1V (%) +C2)kd . (2.38)
*n€Riy

[pllv>max.m")
Xn#Ul_1 Ry
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To boundE (V (Xn1k)|Xn) whenX, is either notin a cycle df X, ||v is not large enough,
we need to consider what happens beginningat x. We want to bound the probability
pointsXp = x with || x ||y large and not in the cycle get to the cycle by a finite timand
remain large while doing so.

Now x such thatk & UX_R;;, x ¢ Ul_; R with || X |[,> M, by assumption there exists
a uniformn < 0 andd = d(x) < n such thatx follows thed-pathRy — ... — Ry with
d e {i1,...,ix}. Suppose w.l.0.g. thafy = x € Ry with || x [|[y> M.

By (2.27) suppose there exists a positive, strictly increasing funggon such that
Byo(|jx) (AoX) C Ri. By this and the assumption on the errors, the conditions for Lemma 3
are satisfied, implying there exidt% < o so that forM* = maxM,M")

XeRp
[x[lv>M

(M=o AiXIlv>M2

nt P (1l € RN v M)

Xo = x) >1— n6’,
(2.39)

which provides a bound on the probability? U‘j;lR;j, X & U!:lR; reaches a cycle by a
finite time n and the process remains large while doing so. Then by (2.39) and Cauchy-

Schwarz

sup B (VOG0 # ULRy) U (1 % v maxM,M )3 o = x)
[1X[[v>M

(M=o Aj)Xllv>M2

< sup (E((C1V (%) +C2)%| %o = x))¥/?n5 .
Xe
[X[y>M
(M=o Aj)Xllv>M2

(2.40)

By (2.28) and subadditivity there exidth <  so that

sup P(X € U_R|Xo=x%) < nd, (2.41)

/!
[X]lv>M
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implying by (2.30a), (2.30b), (2.41) and Cauchy-Schwarz

sup E(V (X! {¥n € U_1R }[Xo = X)

IXl>M"
< sup (E((C1V (Xa) +C2)2[%o = X)) 03
IX[lv>M’

By (2.38), (2.40) and (2.42)

(2.42)

sup  E(E(V(Xk)| %) [Xo =X)
XeERy

[X[ly>max(M,M")

(M=o Aj)Xllv>M2

< sup E (AV (Xq) +C + (CoV (Xn) +C2)k3 |Xo = X)
xeRy
x[[v>maxM,M")
(M=o ApXIv>M2

(2.43)

+  osup (E((CV (%) +C2)? %o = X)) ?2n3 .
XERy

X[y >maxM,M")

(M=o Aj)Xllv>M2

Note that by assumption fdrl, < o there existM” < « so that the set of points

mnm

x> M7 [ (MY—oA))X Ilv< M2} is contained inJl_; R. Thus pointsc¢ Ul _; R} with
|| x ||v large enough remain large. One final complication remains: what it[J}ZlR;? By

(2.28) there exist®” < w so that

sup P(Xp e U_jR[Xo=x) <8, (2.44)
HXIIVX>M”
implying by (2.30a), (2.30b), (2.44) and Cauchy-Schwarz
sup E(E(V O M)l O € ULiR o =
[xlv>max MM M) (2.45)
= s (E(GVOW + oo =x)"78

mnm

Ix[lv>maxm,m” M™")
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and note that by (2.43) and the Markov property

sup E(E(V (X k1) Xns 1) {Xa € U R} %o = %)
Xe
Hx||v>max(M,M”,MW)

< sup E(E(V (Xnikr1) Xnr1) [ Xa = x1)
X1€Rg )
X [[v>max(M,M )
||(|_|?:0Aj)xl||v>M2

< sup  E(AV(Xn) +Co+ (C1V (Xn) +C2)kd [Xo = X)
XeRy

IX|ly>maxM,M")

(Mo AXllv>M2

(2.46)

+ o sup (E((C1V (xn) +C2)2[X0 = x)) " *2nd.
Xe
[y >max M)
||(|_|?:0AJ)XHV>M2
Note thatE (V (Xn)|Xo = X) — o« as|| x ||y does. Then by (2.33), (2.45), (2.46), the choice

of & and sinceRy is arbitrary we have

E(V1(Xt1)[ X0 = %)

limsup

x| o0 Vi(x)
— i E<E[(E(V(Xn+k+1)|xn+1)|xl]|X0 = X)
B J‘Tﬁ?ﬁ fl'euFfM E(V (%) [Xo = X)

E(AV (%) +Ca + (CaV (%) +C2)kd [Xo = X)

< I|m sup su 2.47
M P S EWV (Xo) X0 = %) (247
[IX[lv>M
. (2n+1)3 [KsE(V (Xn) X0 = X) + Kd]
+ lim sup su
M—oo P xeRp E(V (%)X =Xx)
[[X|lv>M
= A+[Cik+ (2n+1)K3]d < 1.
Also, sinceE|§1| < o and|| A ||m< o for eachi we have for alN < o
sup E(Vi(Xcr1)[Xo =) < sup ( max || Aj )™ x I
[Ix[lv<N XN I=Les
(2.48)

k
2, max 1A [[m) ™ H0E[E | < oo,

.....
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so that by (2.47) and (2.48), (2.3) and (2.4) are satisfiedify) = E(V (X,)|Xo = X).
LetV'(x) = 1+ Vi (X) = 1+E(V(X)|Xo = X) be our test function and we have > 1,
locally bounded and measurable With’x) — w as|| x ||y— . SinceVy(-) satisfies (2.3)

and (2.4), so doeg (-) and we have X} is V' -uniformly ergodic. Since

EV' (X)Xo=% _ E(1+EV(Xn1)[X1)|%o =X)
STV P T RV ) Yo = X)
1+E(V(Xn+1)|X0:X) (249)

1+ E(V (%) X0 = X)
Lt | A lln EQV (%) X0 = X) +E[&] _
= SUpsLp 1+ E(V (%) X0 = X) t

we havel||P|[|,,, < o« and so by Lemma 2 the proce§k} is V'-uniformly ergodic as

well. ]

The next result handles the case where the dynamic skeleton has a finite number of
cycles. Since the length and number of cycles are both finite there exists an nteger
equal to the product of the lengths of the cycles so that we can restrict our attention to the
k-step chain{X}. Once again we assume the sp&®can be partitioned into a finite
number of regiondy,...,R. Since we are dealing with multiple cycles, we denote the
cycles byC,,...,Cy, the length ofC; by k;, the regions in cycl&€; by R1 . RK and
the companion matrices in cyd#& by Al ), . ,Aé), i=1,...,m The assumptions on the
skeleton are the logical extensions of the assumptions on the skeleton contained in Theorem
1.

Theorem 2Suppose there exish cyclesCy,...,Cyn with m < o, each cycleC; of
finite lengthk;. Assumemax{ki} < « and each cycl€; consists of regionﬁag), - RE)

with companion matricea.” - AK such thak R() = A( Jxe RV In addition

j+1(modk)*

suppose for an arbitrary norfpn- || there exists som®l < c and a collection of positive,
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strictly increasing functionsﬁj(i)(-) so that

wxeRY, j=1,... .k, i=1...,mwith||x|> M, (A"x) R

i
j+1(mod K

(2.50)

B,
()

Suppose there exists a unifomm< « such that for each ¢ ULJ-R?)
(0
j

d-pathRy — ... — Ry_1 before enteringJiijgi), with Ry, ...,Ry_1 ¢ Ui7jR§i), e, XeRj =

with || X ||> M there
exists an integed = d(x) < nimplying X4 € U; jR.’. Suppose follows the deterministic
Ajxe Rj41,]=0,...,d-1.

Assume for eacR; ¢ U ,C; either thaix € R, with || x [|> M implies the existence of

a positive, strictly increasing functiam(-) such that

B@(HXH)(A'X) C Rit1, i=0,....d (2.51)
or that for arbitraryS > Othere existaVl’ > M such that

sup P(X1 e R[Xo=x) <. (2.52)
X
I >M’
Denote these latter regions El'yand suppose that for arbitralj, < o« there existdl” < oo
so that{x:[| x > M", || ([1°* Aj)x ||< M4} is contained irUR.
If & has a continuous density everywhere positiEj&;|? < oo andp(ﬂ:“'zlAgi)) <1,

i=1,...,m, then{X} is V-uniformly ergodic.

Proof. The proof is much the same as that for the single cycle case, with some exten-

sions. From the assumptiqnﬁﬂ'leAgi)) < 1fori=1,...,mwe can get positive constants

A1,...,Am from Ciarlet’'s Lemma (2.7) such thﬁ(ﬂ'j“zlAEi)) <A<l i=1,...,m Note
k:= 7k < « and that since there are a finite number of Xh¢here exists\ such that
1> A > max{Ai}. By Ciarlet's Lemma (2.7) for each cyc@, i = 1,...,m there exist

: i kO impli
vector norms| - [|; and matrix normg - [|m so thatx € U, U R’ implies

ki ki
(1A i<l I_W) Il X i< A ) % i (2.53)
=1 J=
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Forx¢ um, U‘le Rgi), the Euclidean norm will serve as the vector norm and the operator
norm induced by this will serve as the matrix norm. We will denote both of thege By
DefineV(x) = 3, || x|li I{x e Gi}+ || x || I{x ¢ U™ ,Ci} and define the function

Vi(X) = E(V(Xn)|Xo = X). To satisfy the drift condition (2.3) we are going to look at

E(V1(Xr1)[Xo =X)

E(E[E(V (Xn+icra) [Xn+1)[Xa][Xo = ).

limsu =limsu 254
”X"*‘”p Vi Hx”%p E(V(Xn)[Xo = X) (2:59)
For an integelj < « let {o;} be the collection of all out of cycle indices frofd, ...,I} of

lengthj. Note card{oj}) < oo for eachj.
Since|| A ||m, | A ||< 0 and{agj} is a finite set for eaclwe can choose constants
D1,D2 < o s0 that

Dy > max(u [A I+ 5 | rlekm In (2.552)
{oi}

02> max(1 5 ([] A I+ 3] Ao ). (2550)

1 s=u+l1 =1 s=u+1

By arguments similar to (2.31) - (2.33) and sirﬁ:é\gi) s || A [|< o, E|&]? < o0 and

D1,D» < o we have there exi$ts, Kg < o so that
(E((D2V (Xn) +D2)%%0 = X)) "' < KsE(V (%n)|Xo = X) +Ks. (2.56)

Pickd > 0so thatA + [D1k+ (2n+ 1)Ks]d < 1. By arguments similar to those leading to

(2.35) we have there exist*, M1 < o so that

inf im;) P (mT+,‘§+1[(xJ € R' )X [[i> MH)J1 | X = x) >1-k3. (2.57)
XeRY
HXII >IVI

H(I_lj 1A )XHmI >My

The argument for (2.57) must be repeated for eaghl,...,m, yielding aMg) which

works for that cycle. Settinil; = max(Mf)) gives the result. By the assumptions and
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arguments similar to those leading to (2.38) and by (2.57) we can s¥y feix, in a cycle

and sufficiently large:

sug E(V (Xnk)[Xn = Xn) <AV (%) +Da+ (D1V (%) +D2)kd.  (2.58)
Xnelj
X li >maxM,M")

Xﬂ¢U=:1Ri/

By arguments similar to those leading to (2.45) and (2.46) we have

sup E(E(V Xakr1)[Xne2) X0 € U1 R X0 = X)
Xe
|| >maxM,M” .M"")

< SlIJQE) (E((C1V (%) +C2)%Xo = X))
Xe
Hx\|>max(M7M”7M"")

(2.59)
125

and

sup E(E(V (Xnikr1) Xor ) {Xa & U1 R} X0 = X)
Xe
x| >maxm,Mm” .M"")

< sup E(E(V (Xniks1) [ Xns1)| X1 = x1)
X1€Rg
[[x1|>maxM,M")
1Mo Aj)Xallv>M2
, (2.60)
< sup E(AV (Xn) +C2+ (C1V (%) +C2)kd | Xo = X)
XeRy
x[|>max(M,M")
(M0 ADXlv>M2

+ sup  (E((CV(xn) +C2)%[ X0 =X))
XeRy
x| >maxM,M")
(Mo ApXllv>M2

Y 22n6/.
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Then by (2.58), (2.59), (2.60) and the choicedofve have

; E(V1(Xk11) X0 = X)

|I”r)mil:op Vi(x)
T E(E[(E(V Xnsks1)[Xng1) [ Xe] | Xo = X)
TSP £V (%) X =X

V(x)>M
. E(AV (Xn) + D2+ (D1V (%) 4+ D2)kd |[Xo = X)
= P BV Do =X)

V(x)>M
(2n+1)8 [KsE(V (Xn)[Xo = X) + Ke]
E(V(Xn)[ X0 = X)

(2.61)

+ lim sup
M—oo X

V(x)>M

=  A+[Dik+(2n+1)Kg]d < 1.

Let D = (max(|| A ||,max (]| A |lm)))< with D < o since each of thé Aj ||m, || A ||

are finite and there are a finite number of them. Then ditiggd < «

k
sup E(V1(Xer1)Xo=x) < sup Dmax(|| x[li, [ x|)+ 3 DK SE[&s| <. (2.62)
V(X)<M V(X <M =1

Let the test function b¥'(x) = 14 V4 (x) = 1+ E(V(Xy)|Xo = X). Following from (2.61)
and (2.62) we have thal/(-) satisfies (2.3), (2.4); alsg’ > 1is locally bounded and
measurable witN'(x) — o as|| x ||— . Thus{Xy} is V'-uniformly ergodic.

Note also that sincE|&;| < o

E(V' (X)X =X) E(1+E(V(Xr1)|X1)[Xo = X)

STV ST I EV (X)X = X)

_ qupLEEV )Xo =%
X 1HEV )Xo =X)
L+ max(|| A flms | A IDEQV (%) Yo =) + Efel _
L+ E(V (%) Yo =

< supsup
i X

(2.63)

we havel||P|[|,,, < o and so by Lemma 2 the proce§k} is V'-uniformly ergodic as

well. ]
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2.4 Transience

We have been able to identify some conditions under which cyclic and multi-cyclic models
are transient. No doubt these conditions are stronger than what is necessary, but they are
sufficient and do provide a beginning to the task of completely characterizing the parameter
spaces of cyclic and multi-cyclic models.

We begin with a theorem describing conditions under which anphBfocess is tran-
sient. Transience of cyclic and multi-cyclic processes follow as corollaries of this theorem
under appropriate conditions on the skeleton that distill the asymptotic behavior of the pro-
cess down to that of thecycle.

The theorem requiresin; |Ai(A)| > 1, whereAis the companion matrix of the Markov
chain{X} in which the AR() process is embedded akdA) are the eigenvalues 8f We
are aware of the well-known condition for non-stationarity of an pR{rocess which is
equivalent to the weake(A) > 1 condition for transience ofX;} (see Tjgstheim (1990),
Theorem 4.4(ii)). However, the cyclic models demand a strict inequality in the drift condi-

tions (2.5) and (2.6) for transience of the cycle; that is, we require either
E(g(X1)|Xo=x%) < g(x), xeB° (2.64)

or
E(g(X1)[Xo =X%) >g(x), xe€B" (2.65)
This requires that we assume the stronger condition |Ai(A)| > 1.

The strict inequality is necessary to account for the extra terms corresponding to the
process either leaving a cycle, not reaching a cycle by a certain time or not staying large
enough for the assumptions on the skeleton to hold. The details of this are worked out in
Corollary 1.

The theorem has a stronger error conditiBet! < o than that used in establishing

V-uniform ergodicity. This stronger error condition is necessitated by the exponential,
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strictly decreasingg(x) we use which gives a strict inequality in the drift condition (2.65).
It is thus appropriate for application to cyclic and multi-cyclic models. The corollaries
establishing transience of these models follow from this theorem.

Theorem 3For a linear Markov chaix; = AX_1 + vt with vy = &(1,0,... ,0)/ sup-
pose the companion matrix is full rank. LetA;, i=1,...,rank(A), denote the distinct
eigenvalues oA. Assumemin; |Aj| > 1. Supposé& €l < 0 and that the error distribution

has a density which is continuous and everywhere positive. Then theXhaitransient.

Proof. SinceA is full rank, A1 exists. The eigenvalues #f ! are the reciprocals of the

eigenvalues of\, somin; |Aj| > 1 implies p(A~1) = max ﬁ <1 Lety=Ax

min \)\ |

thenx = A~1y. Sincep(A~!) < 1, by Lemma 1 there exist < 1 and norms| -

v [~ {lm

so that
IAY V<A Imll Y VSN Y v - (2.66)
Then sincex = A~ 1y = A~1Ax
I [lv=Il A7 AX [l <[l A~ [[ml] AX[lv< A || AX ly, (2.67)

implying || Ax||v> | X [lv. Write A = )\ > 1and then from (2.67) we have that
I AX = A" X [lv> ] .
SinceE €% < » we can choosé < C < » with Ee%! < C. Choose > 1 log(1/C)

and note that

Ee AVl o= [AXImE dét <

i S o, sce M M ccd <, x| (268)

Let B= {x:|| x|v<r}, BS = {x:| x|ly>r}. Letg(x) = e IXlv. Then by (2.68)

E(g(X1)|Xo =x) _ Ee vl
g(X) e_HX”v

<1, xcB° (2.69)
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and so by this and the fagfx) is a strictly decreasing function we have

E(g(X1)[Xo = X)
g(x)

g(x) < infg(y), xeBC. (2.70b)
yeB

<1, xeB° (2.70a)

Thusg(x) satisfies Tweedie (1976, Theorem 11.3(i)). Sigecdras an error distribution
which is continuous and everywhere positiy¥; } is -irreducible, withy being Lebesgue

measure. By Tweedie (1976, Theorem 11.3(iii)) thq} is transient. O

With this theorem established and under similiar assumptions on the product(s) of
matrices involved in the cycle(s), the transience of cyclic and multi-cyclic models are easy
corollaries. For ease of exposition we consider first the case of a single cycle:

Corollary 1.Under the same assumptions on the skeleton as in Theorem 1, but with
the additional assumptiomsin; |)\i(|‘|'j‘:1Aij)] > 1, (|‘|'J-‘:1A.-J.) is full rank and supposing

Ed¥l < o0, {X is transient.

Proof. The strategy is to show thiestep chain{X} is transient by demonstrating an

appropriate functiog(x) and set8, B® exist that satisify Tweedie’s criteria for transience:

EO0WX0=X) ;g (2.71a)
9(x) o
g(x) < j/ngg(y), x € BS. (2.71b)

Once this is established, by Tjgstheim (1990, Lemma 3.1) we {d§yds transient if{ X }
is.
Let
lc =1(X € 4R (2.72a)
lL=1(]| Xp [v>M,p=n,...,n+K) (2.72b)

Ip=1j €Ryyi=1,...,K). (2.72¢)
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Let g(x) = e [Xlv as in Theorem 3. By Theorem 3 and the assumptions there gxisfis

so that we havg(g(xf‘“)éfx';")‘xo:x) <y< 1 ByLemma 3, Theorem 1 angf_; A,) full

rank for an arbitand there existM1, M, so that|| x ||y> Mz implies|| (I'I!‘ZlAi,-) llv> Mo,
implying in turn E(IS+ 1€+ 15X = X) < (2n+1+k)3. Now we pickd > 0 so that
y+K@2n+1+Kk)3 < 1. Let

B={x:[|x|v< M1}, B°={x:|x|v>Mz}. (2.73)

SinceEd¥! < o0 and the|| A/ ||m are finite and bounded away from zero there exsts oo

so that for|| X [|y> My
(EN(@0% 1)) %0 = X)) /2
a(x)

Then note from (2.72), (2.73), (2.74), the choicedoéind Cauchy-Schwarz we have
E(9(Xn1k)[X0 = X) <vy+ E(9(Xnk) (IE+IE+15) X0 =X)
9(x) B 9(x) (2.75)
<y+K@2n+1+4Kk3 <1, xeBC

<K. (2.74)

and

g9(x) < ;gtsg(yx x € B° (2.76)

so that Tweedie (1976, Theorem 11.3(i),(iii)) is satisfied; th¥g} is transient and by
Tjgstheim (1990, Lemma 3.1) so{X:}. ]

The case of a finite number of cycles of finite length is similar, the modifications being
obvious.

Corollary 2.Under the same assumptions on the skeleton as in Theorem 2, other than
supposingmin; |)\i(|‘|lj“:1A§i))| > 1, (ﬂlleAgi)) is full rank for eachi and supposing that
E€él < w, {X]} is transient.

Proof. Similiar to Corollary 1. l
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At this point, contrasting the conditions fa@runiform ergodicity with those for tran-
sience, there is clearly much of the parameter space between the two. There are several
reasons for thisV-uniform ergodicity is the strongest form of ergodicity; weaker cond-
tions corresponding to weaker forms of ergodicity may occupy some of this space. Left
out of our treatment is discussion of null recurrence; conditions for null recurrence may fill
even more of this void. Lastly, as stated we do not doubt that our conditions for transience
are stronger than is necessary. For example, Cline and Pu (2000) showed that transience
occurs if a companion matrik hasp(A) > 1 and the AR coefficients are all positive or are
alternating in sign with the first one negative.

We conjecture that in the cyclic case

k
pP([1A) >1
A
and in the multi-cyclic case that

ki
m.axp(rLAgi)) >1
|
J:
are sufficient conditions for transience. If true, we expect these weaker conditions for

transience will fill in the remainder of the parameter space. This will be a problem for

future research.

2.5 Existence of Moments

It is known (see for example Tjgstheim (1990) Lemma 6.1) that under certain conditions
existence of moments for the error distribution is equivalent to the existence of moments
of the stationary distribution ofX;}. Thus under certain conditiors|&;|" < e implies
E|X|" < o for nfixed. Here we pursue conditions under which all moments of the station-
ary distribution and central limit theorems can be shown at once to exist.

In the first section we derived conditions under which the pro¢¥gsis V-uniformly

ergodic, withV(-) being a function of a norm on the state space. Cline and Pu (2001)
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provide tools for deriving conditions under which the test funcid@n) can be boosted to
an exponential test function (s,x) = eV ¥)° for s > 0. Meyn and Tweedie (1993) link the
order of the test functiol (-) to the existence of moments of the stationary distribution.
The implications for statistical inference are obvious and enormous: if the test function can
be boosted to an exponential function of the norm all moments of the stationary distribution
exist at once.

Cline and Pu (2001, Theorem 4) assufd@} is an aperiodicip-irreducibleT-chain
in RP andV : RP — [1, ) is locally bounded witlV (x) — o as|| X | — . If we can find a

random variabl&V(x) satisfying the following:

V(X1) <W(x), whenever X% = X, VX, (2.77a)
limsupE(log(W(x)/V(x))) <0, (2.77b)
(X o0
and if
[log(W(x)/V (x))] + W0 =V GO (2.78)

is uniformly integrable for some> 0 then there exists > 0 with V;(x) = eV*)® such that
{X} is Vi-uniformly ergodic.

Meyn and Tweedie (1993, Theorem 17.0.1) demonstrdg ffis aV-uniform ergodic
Markov chain then for any functiog(-) with |g| <V andg? <V then we have laws of
large numbers and central limit theorems ﬁpz{‘:lg(m. Thus, the choice of the test
function implies both the ergodicity and the limit laws. If the conditions of Cline and Pu
(2001, Theorem 4) are satisfied and the exponential boosting of our norm-like test function
V(-) is valid, the existence of all moments of the stationary distribution follows from the
fact that any polynomial function is eventually bounded by any exponential (i.e., given any
exponentiaV (-) that satisfies the drift condition, we can find finite constaS so that

9(x)? < KV(x) +C andKV (x) +C will also satisfy the drift condition) .
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The assumption th&tX;} is aT-chain is easily verified for threshold autoregressive
models. Since the deterministic skeleton is bounded on compact sets, if we assume the
errorsé; have a continuous density that is everywhere positive we have that compact sets
are petite. By Meyn and Tweedie (1993, Theorem 6.2.5) the fact that compact sets are
petitie implies{X; } is aT-chain.

In view of these results, establishing the existence of moments for the stationary dis-
tribution is simply a matter of finding a random variabM§x) that satisifies (2.77) and
(2.78). For cyclic and multi-cyclic threshold autoregressive models it suffices to choose
V(x) to be the test function used in satisfying the drift condition\feuniform ergodic-
ity. W(x) can then be gotten by piecing together the appropriate function from the steps
involved in demonstrating the drift condition fgruniform ergodicity.

We demonstrate the same conditions on the skeleton and thus the same parameter
space as fo¥-uniform ergodicity guarantee exponential boosting is valid. Of course, to
enable exponential boosting we need to exponentially boost our condition on the error
distribution.

This first theorem will handle the single cycle case covered in Theorem 1.

Theorem 4Suppose the assumptions of Theorem 1 on the deterministic skeleton of
{X} hold, that for some > 0 that E€/&)" < 0 and & has a density which is contin-
uous and everywhere positive. Then for a vector ngrnj|y there exist0 < s < 1 and

!/

V' (x) = eV )° = gEV(X)X0=x)+1)* sch that{ X } is V" -uniformly ergodic.

Proof. The strategy is to show that exponential boosting is valid fokthep chain X}

and then to apply Lemma 2 to extend this boosting to the one-step £Xgin
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GetVi(x) = E(V(Xy)|Xo = X) + 1 from Theorem 1. Let

lce = 1{(% & UFLaR) U (]| Xa [lv< M)}, (2.79a)
lo = H{UK 3 (Xt ¢ 4R} (2.79b)
1= {1 Xt s M) U(US_1 (Xarj € ULL4R))} (2.79¢)
Iz = 1{(UT_q (1| X} v M) U Uy (X] € UL R)) . (2.79d)

Define similar to Theorem 1

k
Ci>| (_l_lAij Im+ > I_l | Agyi) llm, (2.80a)
{oi}
&= (3 1 IA, Int > S 11 1 Ao ). (2.80b)
u=1li=u+1 {ox} u=li=u+1

Then define for a suitabl® < «

W(X) = AE(V (Xq)|Xo = X) +Cal&| + 1+ C1DI (|| X [[y< M)
(2.81)

+(C1+C2)(lo+11) + (Ca+Ca) (I2+ Ico)

and clearly (Xn1k) <W(x) wheneverX, = x.
Also, sincelog(-) is a monotone continuous function and by Jensen’s inequality we

have by (2.47)

||=)I’(IH1VS_1)J£E (Iog (ng ) ) <log (||iLT|1vsiJ£E @ig’z ) ) <0. (2.82)

SinceE€/&)" < oo impliesE|&;| < o we have

SUpE(W(x)/V1(X)) <A+CoE|&t| +1+CiD +2C1 +2C; < 0. (2.83)
X

Note also that sinck < 1

W) AE(V(X)[Xo=X)+1 12
Vi)~ BV Mo=x 1 TENVOMo=x 10T (@89
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implying
’Iog <y—83>‘ < |log(\)| < o (2.85)
wheng. 28 < 1. Then by (2.83), (2.84) and (2.85)

e[ 1oa (G50
= (100 (Gy00) * (00 2 1) 09 (G0) <1 (G0 <)
< E(Iog(\\//\i &) (yl(x) 1) —log(»))
< |og(E<yl—E2))—|og(A)<oo.

Suppose w.l.0.g that< 1. Then sincé\ < 1 and for a constar@is = C5(M,C1,Cp) <

this implies by the assumption @gp

SupEEY 0" 400 < supE 04D (EV DR ST < B <
(2.87)
implying thateW®)'=M()" js uniformly integrable. Then by properties of the supremum
so is the sumlog(W(x) /V1(x))| +eW0) =)',
The conditions of Cline and Pu (2.77) are satisfied andkibeep chain{ X} is thus
V" -uniformly ergodic withv” (x) = e(E(V(X)IX%=X)+1)* for somes > 0. Suppose that < r

then becausEe®! < « and the|| A ||m are bounded we have that

E( ] Xot1 v [Xo=x) SSliJIOH A ImE( ] Xa llv [%o =x) +E&]

and so we can find appropridig, N, < o so that

qupEY (X)X =x

- < Npe'\2
x V(X) !

implying |||P|||,» < o by (2.11) and by Lemma 2X} is V" -uniformly ergodic with test

functionV” (x) = eEV(X)%=X)+1)* for somes with 0 < s < 1. 0
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Next we move on to the multi-cyclic case discussed in Theorem 2.

Theorem 5Suppose the assumptions of Theorem 2 on the deterministic skeleton of
{X} hold, that for some > 0 thatE€/&))" < « and&; has a density which is continuous
and everywhere positive. Then there esist 0, s< 1 andV" (x) = eV ®)° such that{X}

is V" -uniformly ergodic.

Proof. Similar to Theorem 4, with obvious modifications made for the assumptions in

Theorem 2. ]

Taken together, Theorems 4 and 5 imply that the assumptions made on the determin-
istic skeletons in Theorems 1 and 2 are adequate for exponential boosting when combined
with an exponential condition on the error distribution. Under these conditions all mo-
ments of the stationary distribution exist and we have laws of large numbers for partial

sumsS ' ; g(X), whereg is any polynomial function.
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CHAPTER IlI

ERGODICITY OF THRESHOLD AUTOREGRESSIVE MODELS THROUGH
APPROXIMATION WITH A FINITE STATE MARKOV CHAIN

3.1 Introduction

3.1.1 Background

Consider the TARg) model{y; }+>o described in (1.1) embedded in a general state Markov
chain{X;} according to (1.2) with the domain divided iriteegionsRy, ..., R/, each region
having companion matrig;, j € {1,...,1}. Under certain assumptions on the general state
Markov chain{X;} we will approximate the transitions df;} from regionR; to region
R; by the transitions of a finite state Markov chain on the st@fes..,l}. We denote the
finite state Markov chain byJ }. We will then derive ergodic conditions f@; } through
analysis of the simpler chaift; } and incorporate the finite state chain into a test function
for the general state space chain.

We are going to consider the spake to be equipped with the Euclidean norm. Let
|| - || denote the Euclidean norrx || be the Euclidean norm ofe RP and for a matrixA
let | A|| be the operator norm & induced by the Euclidean norm. We assume all matrices
have a finite operator norm.

We use the drift criteria fov -uniform ergodicity described in Chapter 1: for a locally

bounded, measurable functign> 1 with V — o as|| x || — c we require

E(V (X)X =%)

limsup <1 (3.1)
X[ —co V(x)
and for allM < o
sup E(V(X1)|Xo = X) < co. (3.2)

X[ <M
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In constructing the test function we use the directional method mentioned in Chapter
| and detailed by Cline and Pu (2001). Our test function is of the fé(gjx) = 1+ A(X) ||
X || wheres > 0 andA(x) is piecewise constant, bounded and bounded away from zero, the
values ofA(x) depending upon the direction gf The challenge in defining a test function

is then to define the piecewise constants that comprise the fungtion
3.1.2 Modelling{X;} with a finite state Markov chain

In the asymptotically deterministic case discussed in Chapter Il it is possible to set up a
trivial chain {J} which tracks{X;} step by step beginning & = x with a probability
arbitrarily close to 1 wher x || is large. We call this case asymptotically deterministic
because for all, j the probability of the transition fronXg = x € R to X; € Rj can be
bounded arbitrarily close to O or 1 by pickinjgx || large enough. We can then determine
conditions for stability of{X; } from conditions for stability of the implicit deterministic
system{J }.

In the present chapter we explore more general cases WKgres not asymptotically
deterministic and the step by step 'shadowing{¥f} by {J;} fails. Specifically, regardless
of the magnitude of| x || there can be more than one region to whighcan travel, each
with a probability not going to zero. We are forced to approximate the transitiofy; ¢f
from region to region not with a determinstic system as we did in Chapter II, but rather
with a simpler stochastic system, a finite state Markov chain.

The Markov chain{J;} is chosen so that for an arbitragy> 0 the transition probabil-
ities of {J } from statei to statej are withine of the 'transition’ probabilities ofX; } from
regionR; to regionR; when{X} is large. By this we meafi} } is such that for an arbitrary
€ > Othere exists aM < o« so that

sup sup |P(Xy1 € Rj[Xo=X) —P(J1=jldo=1i)|<E. (3.3)

i,j XeR
[IX]|>M
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The class of chaingX; } handled by this method is thus the class of chains amenabile to this
approximation.

We consider two cases. The first is where thapproximation holds for all states
1,....l and region®y,...,R. We label this case (Al). In the second thapproximation
holds for all recurrent statds. .., | and recurrent’ regionRs,...,R. This case is labelled
(A2). The case (A2) is more general and contains (A1), but exposition is helped by con-
sidering the simpler situation first and examining the issues here before moving on to the
more complicated second case. Alternatively, in proving (A2) it is necessary to go through
(A1) first, so (A1) can be thought of as a set of preliminary results to be used in proving
(A2).

We demonstrate that under our assumptions the expectations of certain bounded, mea-
surable functions ofJ;} and of {X;} will be very close. In constructing our test function
V(s,x) = 1+A(x) || x||® we choose two particular bounded, measurable functions and we
use the fact their expectations will be close in determining the values of the piecewise
constant functiof (x) used in the test functiovi (s, x).

It is tempting to define a proce¥s= 2!:1i I (% € R) that keeps track of the 'states’
of {X} and, noting thatog(|| A ||) describes the log-change £X;} when it moves from
regioni, to attempt to ascertain conditions for the ergodicity{ f} through appropriate
conditions on the functioh(y) = S!_;log(|| Ai |)I (y = i). However, this approach fails
since{Y;} is not quite a finite state chain, the obvious problem being that the transition
probabilitiesP(Y; = j|Yo = i) of {Y;} are not constant because they depend upon where
Xp is in the regionR,. We are forced to use something slightly different. For a piece-
wise constant functio(j) = log(]| A; || +96) with j =1,...,] we consider the function
h (%)= z'jzlh(j)l (% € Rj). Note the difference in emphasis here: we have defined the
functionh'(-) in terms of the procesgX} rather than{Y;}. Since{X} is a Markov chain

and h/(-) a bounded measurable function the Markov property holds. We use this fact to
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show the expectations df(X;) andh(J) will be close due to the-approximation when
considered over a sufficiently long but finite time. We then demonstrate that if the appro-

priate condition orh(J)
|
h(%)) = mh(j) <0
=1

holds for every stationary distributiamof {J} then{X;} will be V-uniformly ergodic.
3.1.3 Previous results

We make use of two results from Cline and Pu (2002) pertaining to the behavior of the long
term average of the functidm(j) = log(|| A;j || +0), wherej = 1,...,| are the states of the
Markov chain{J}, and of certain functions df(-) which will be defined below. These are
included in the proof of their Theorem 4.1; we have taken the liberty of separating them out
and writing them as lemmas. These two lemmas give the necessary conditjdr} @md
help us to define the piecewise constant terms we will use in constructing the test function
V(s,X) =1+ A(x) || x||° that demonstrates thé-uniform ergodicity of{X; }.

Lemma 1Let {J}} be a finite-state chain ofil,...,|}. Decompose the state space
S={1,....1} = (Ui‘zls) UT, where eacl§ is irreducible and recurrent afdis the set

of all transient states. Let!) be the stationary distribution f&, Wherengi)

andn}i)

>0forje§

=0for j ¢ §. Then under the assumption
(i) ,
n_ AN <1, Vie{l,... k}

we can defindn(j) =log(|| Aj || +9), j € {1,...,1}, whered is chosen such that
nh= L J ( ) <0,i=1,...,kand there exists a finitesuch that

ZE 3)|d=i)<0, Vie{l... |} (3.4)

Proof. See Cline and Pu (2002) Theorem 4.1. l
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Lemma 2Following Lemma 2, define for each

Ry = i:”—_t (h(3)l30 = 1) (3.5)
& N
and fors> 0 let Hy(s,i) = &) Then there exists; such that fos < s;
sminE(Hl(S’ Jﬂﬂ'gﬁ“)” naJl P i) <1 (3.6)
Proof. See Cline and Pu (2002) Theorem 4.1. O]

3.2 Results

This first original lemma assures us that by pickiag= x large enough and restricting our
attention to certain subregions of the space, the process will remain large for a finite time
with high probability if it remains in these subregions. It will be necessary for the process
to remain large in order that our conditions may hold.

This lemma serves a purpose similar to that of Lemma 3 in Chapter Il but the lemma is
different and contrasting the two lemmas points up the difference in the classes of models
considered in Chapter Il versus those considered here. In Chapter Il the simpler stochastic
system used to approximate the transition§$Xqff from region to region was in fact deter-
ministic; thus the requirement in Lemma 3 Chapter Il thdt} be mapped to a particular
region. Here there is no such requirement because the simpler stochastic system used to
approximate the transitions ¢¥X;} from region to region is stochastic; there can be more
than one regiofX;} can be mapped to, each with a positive probability regardless of the
magnitude of| x ||. This explains the requirement below th3§ } be mapped to a particular
collectionof regions, not a particular region.

The lemma is trivially satisfied if the companion matrices are all of full rank but un-

fortunately this is not always the case.
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Lemma 3Assume there exists > 0 for which E|&;|" < . ForallR,i=1,....1

define for an arbitrargs > 0, M < «
R(83) = {x € R:[| X [> M, || Ax[> 83 || x|}, i=1,....L. (3.7)
Then given a finiten < « if t < n, there exist®d = D(t,d3) < c such that

; ; t g i—1/v. | . _ .
inf ﬁ'FQ(féS) P (ﬂi:1{<|| Xi > M) N (=X € u.:ﬁ(és)))}\xo = x) >1-nds. (3.8)
X||>DM

Proof. For an arbitrarydz > 0 suppose for somiec {1,...,1} thatXp = x € Ri(83). By the

assumptiork |&;|" < o we can pickl < C < o so that
P(J&] > (33C—1)M) < 3a. (3.9)
Consider that fof| x ||> CM by (3.7) and (3.9)

sup sup P([| X1 [[<M[Xo=x) <sup sup P(|| Ax| —[&| <M)

i x€Ri(83) I XeRi(&3)
[Ix|| >CM IX[|>CM

=sup sup P(|&| >[| Aix| —M)

i xR (33)
[Ix||>CM
(3.10)
<sup sup P(|&| =8z x| —M)
I xR (03)
IX[[>CM
< P(&]| > (8C— M)
< 3.
Likewise, Xo = x € R(83) with || x ||> C2M implies using (3.9)
sup sup P(]| Xy [|< CM[Xo = x) < P([&] = (33C - 1)CM)
i xeRi(33)
[X|[>C?M
(3.11)

< P([&] = (3:C—-1)M)

<63
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and by (3.10); = x; € Ul_;Ri(83) with || x; || > CM implies

sup SU(D) P((J| X2 [|< M) N (X1 € U_1R (83)) N (]| X1 [|> CM)|Xo = X) < 3. (3.12)
I xeRi(d3
[IX]|>C?M

Let 11(t) = N5 (% € UL_;R(83)) andlz(t) = Nt _5(|| X« [|> C'~IM). By induction then

for je{1,...,t}
sup sup P (1% < CIM) N1a(j) Nla())| %o =)
i xeR(33)
[[x]|>C'™M
< P(&|> (83C—1)CIMm) (3.13)
< P(|&| > (3:C—1)M)
< 03

Let D = Ct. Then we have from (3.13), using DeMorgan’s laws and Boole’s inequality

inf inf P(m}:1{<|y>qy|>M>m1(i)m2(i)}]x0:x)

I x€R(d3)
|Ix||>DM
t .
> 1- Y sup sup P((I1% |<CTIM)NL()Nl(i)Xo=x)  (314)
j=1 1 xcRi(33)
x| >CM
> 1-—t03.
SinceC > 1 andt < nthe result (3.8) follows. l

3.2.1 Case 1: uniform-bounds.

We assume the probabilities governing the transition§X@} from region to region can

be approximated for all regions to within an arbitrary 0 by taking|| x || large enough.

Since the number of regions is finite thesed is uniform over the entire space.
Assumption 1(A1) Suppose there exists a finite state Markov cHdjfh on the states

{1,...,1} so that for arbitrarye > 0 there existdVl < c with

sup sup [P(X1 € Rj|[Xo=X) —P(J1=j|ldo=1)| <E&. (3.15)
i,j xeR
[X[|>M
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Also, supposéJ; } is such that
M_a (A D™ <1, (3.16)

for every stationary distributiom of {J }.

Based on (Al) and Lemmas 1-3 we can now introduce the functions that will define
our piecewise constant functiorix) and we can demonstrate that for lasgthe expecta-
tions of these functions will be arbitrarily close.

Constructing the test functiovi(s,x) is complicated by the fact that rather than a
deterministic system, the approximating 'skeleton’ is a stochastic system with transition
probabilities arbitrarily close to the 'transition’ probabilities{of }. This requires that we
must rely on expectations of the processes over the entire collection of states. We cannot
rely on the pathwise behavior of the processes as we did in Chapter I

Lemma 4 Suppose the conditions given in (A1) and Lemmas 1-3 hold for some.
Defineh (x) = 5',_; h(j)I (x € R). For a fixedn < o let

n

~/ n—t /
h(x)=Y —E(h (X)X =X,), (3.17a)
(X) t;) —E(h ()] )
A= el =) (3.17)
g O: . .
t;) n
Then for arbitraryS' > O there exist®,M,n < 0 andds > 0 so that
sup sup |E(h(J) —h(i)]do=i)—E[R (X)) —h (X)|Xo=x)| <3. (3.18)
i xeR(33)
[[X||>DM

Proof. LetN = max; |h(j)| = max;|log(|| Aj || +9)|. Get{J} according to (Al) and < o
from Lemma 1 (3.4). Give® > 0 pick € > 0 s0 that(n+ 1)NI% < §. GetM < « from
(A1). Pickds > 0so thalN((n+1)le+nd3) < 8. With 83 > 0 andr from the assumptions
getD = D(n,d3) > 1 from Lemma 3 (3.8). Since we have definBd= D(n,-), then by
Lemma 3 (3.8) holdst < n.
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Definel; =nNi_ {(]| Xi ||>M)N (ﬂij;lo(xj € U_,Ri(83)))}; then following from (3.15)
we have for each j andt <n
sup P((% eRj)Nl-1|Xo=x) <Pk =jldo=1i)+(n+1)le (3.19)

xeR;(83)
|Ix||>DM

and

eiF?(fé | P((% €R)NI-1Xo=x) >P(J = jldo=k) — (n+ D)le. (3.20)
XeRi(03
Ix|>DM

Lemma 3 (3.8) combined with (3.19) and (3.20) impliestfetr n and for all j

inf inf P(XeRjXo=x%)>P(%=jldo=1i)—(n+1)le—nds, (3.21a)
I xeRi(33)
Ix||>DM

sup sup P (X €Rj[Xo=x) <P(%=jldo=i)+(n+1)le+nds. (3.21b)
i xeR(33)
|Ix||>DM

Recall from (3.17) we have defined for alfor all x e R,

Z)—E X)|Xo=x), h ZO—E J)|do =1).

Notice that since both(-) andh'(-) are bounded, measurable functions the Markov prop-

erty applies and we have for aJlfor all x € R
E(R (X0) — ' (x)[Xo =) ZlE X)|Xo = x) —h'(x) (3.22a)
E(h(3) —h(i)|d =) ZlE J)|do =) —h(i) (3.22b)

Consider for ali, forallx e R,

% i (' (X)X =x) = %tijlzlh(j)P(xt eRjXo=%) (3.23a)
n n |
%t_ E(h(&)Jo=1i) = %t_ jzlh(j)P(Jt = jldo=1) (3.23b)
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Recall thatN = max; |h(j)|. We have for alli from (3.21), (3.22) and (3.23) and since
x € R impliesh'(x) = h(i)

ZlE J)|[do=1i)—h(i) — (n+1)1°Ne — INn33
< d=jldo=1i)—(n+21)le—nd3)—h(i)
Z 2, 1Jo 3
1N I
< Xeg\fé3 ﬁ 2 Z P(X € Rj|Xo = X) —h (X)
HXH>DM
L (3.24)
< sup - €R =X X
< Xeagsnzz P(X € Rj[Xo =)~ (¥
HXH>DM
< le h(j = j|do=1i)+(n+1)le+ndz) —h(i)
1 n

< ﬁt;E(h(Jt)Uo =i)—h(i) + (N4 1)1°Ne + INnSs.

So from (3.22), (3.23), (3.24) and recalling the choices ahdds; we have the conclusion

(3.18)
sup sup E(h(31) —h()do =1) —E(R (%) R (0Xo=x)| <&
I XeRi(03
|Ix||>DM

]

Now that we have shown the functiohgX;) andh(%) are close in expectation, all
that remains is to use this result to build a test function{sqg demonstratingy/-uniform
ergodicity.

Theorem 1Suppose the assumptions in (A1) and Lemmas 1-4 hold. Suppose as well
that for arbitraryd, > O there existdM' < o so that theR (83) fori=1,...,1 as defined in
Lemma 3 exist with

sup sup P(Xp ¢ Ul_1R(83)|Xo = X) < 8. (3.25)

i XER;
x>’
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Then there exists as> 0 such that{X;} is V-uniformly ergodic with the test function
V(s,x) =1+ A(X) || x||5, whereA(x) is piecewise constant, bounded and bounded away

from zero.

Proof. Get{J}} from (Al). Getn from Lemma 2 such that (3.4) is true. Recall from (3.6)

that there exis$; < 1 andp < 1suchthat's< g

(HﬂahXHAH+ﬁf
H]_(S,i)

SupE
i

Jmﬂ>§B<L (3.26)

Sincemax (]| A || +8)° — 1 ass— 0, then for an arbitrary; > 0 there exists, > 0 such
thatVs < s, we have

miax(H A || +0)° < 1+ 6;. (3.27)

Choos&d; > 0 and then, so that

1-B
Sp< P 3.28
2= 201+ &) (3.28)
then pickd > 0 so that
. 1-B
0 < — 20;. 3.29
1+3) 7 (3.29)

Finally, pick e > 0 so that(n+ 1)I2Ne < & andd; > 0 so thatlN((n+ 1)le+nds) < 3.
Fore > 0 getM from (Al).

~/

Let H,(s,x) = € . Note that if we leN = max; |h(j)|, then for allx

~/ N n—t

MﬂzZ;—-WMM%ZanN (3.30)
t=

n

so thatl < e () < "N and so we have from (3.30) that for soiie< o

(HﬂaMﬂHAH+®S
H,(s,X)

sup sup E
i XeR
X[ >M

MZOSK (3.31)

GivenK from (3.26)-(3.31) we can find; > 0 so thatB+ (1+81)(3 +25;) + Kds < 1

andM’ < « so that (3.25) is satisfied.
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Givend from (3.29) there exist® = D(n,d3) < o from (3.8) such that we have from

(Al) and Lemma 4 (3.18)

sup sup. E(R(3) —h(i)[do =) —E(A (X)) —A ()Xo =x)| < 3. (3.32)
1] =DM

Note that fory > 0O, fixed

yST_l—Aog(y), as s—0. (3.33)

This limit is not uniform iny, but since the number of statess finite, we can make the
limit uniform when working with{J}, i.e., for arbitraryd, > 0 there existss such that

Vs< sz, foralli
E (M=) 30 = i) > 1+ sE(R(3) — (i) do = i) — 5. (3.34)

By (3.30) we have tha (€5 (1)~ ()|, = x) is bounded and thus

sup E(e 00-F ()3 — %) < o, (3.35)
xeR;(33)
[X|>DM
Also, (3.30) implies that
E(h (X1) —h (X)|Xo = X) < 2nN. (3.36)

Taken together, (3.35) and (3.36) tell us that
E((F (%) — 1 (x))2e50 0= 09) | x = x) (3.37)

is bounded as well. Using a Taylor series expansion around zero we have

~/

E (&5 00-R ()¢ — )

< 1—|—SE(F‘|/(X1) B F]/(X)|X0 _ X) n ;E((ﬁ/(xl) _ F]’ (X))Zes*(ﬁ’(xl)—ﬁl(x)) |XO = X)

(3.38)
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for somes® € [0,5). Thus, givend; > 0 as in (3.28) and (3.34) by (3.38) we can p&k
small enough so thats < s, we have
sup E(e00-F 0y —x) <14 sup sE(R (X)) —F (X)X =X)+8. (3.39)

XeR;(83) XeR;(83)
|Ix||>DM |Ix||>DM

Pick ss = min{s;, s, S3, %4}, then from (3.32), (3.34) and (3.39) for alk ss, for all i

XER;(83)
[[x/[>DM

< sup S(E(h(X1)—h (X)X =x) —E(h(Jr) —h(i)[lo=1i))+25,  (3.40)
xeR;(83)
[x|[>DM

< 55/ + 205.
Recalling thaH; (s,x) = e (9, from (3.40) for alls < s, for all i

g (o) -<(i

xeRi(83) Hi(sa X)

[[x[|>DM
Equivalently, using (3.26), (3.27), supposisg. S5 < 1 and recalling the choices @f,5;
andd we have for ali
% =)

sup E(Hi(S,Xl)(H A || +06)°
%:Q+a+@x£+%g (3.42)

XeR (83) H; (s, X)
X[ >DM

Hi(s,d) (|| A || +90)°
< E( Ha(s)1)

< B (1+31)(SD +25)

< BH(1+8)(3+28) <1
and we have from (3.31), (3.42) and the definitiosgfM’ in (3.25) that

|imsupE<H1(S’X1)/(” A| || _|_6)S XO _ X)
H;(s,X)
< suplim sup E(Hl(s’xl)(HAi | +9)°

!
i M= yeRr H,(s,%)
|Ix||>DM

(X[ o0

Xo = x) (3.43)

< B+ (1488 +25) +Kds < 1.
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DefineHa(s,x) =|| x ||5, with s < min(r,ss,1). Note that under the assumpti&;|" < o

we have
i H2(57X1) )
lim supE —x
HxH%p ((II A || +8)Hz(s,x) Xo
= i HZ(S,X]_) o
= supjim, sup E((M‘ T e Xo-x)
e (3.44)
| A X I e

< suplim sup +suplim sup
i Moo xer ([ A H)S[[XS i M=o xer ([[ A ][ +0)° [ x|
x| >M X[|>M

< 1

DefineV (s,x) = (Hy (s, X)Ha(s,x))2; then we havers < min(r,ss, 1), using (3.43),
(3.44) and Cauchy-Schwarz

V(S7 Xl)
V(s,X)

limsup E(

X[ =00

Xo = X> <l (3.45)

Also, sincees ™ is bounded foM < o we have

sup E(V(s,X1)[Xo =X) = sup E((Hy(s,X1)Ha(s,X1))¥?|Xo = X)
x| <M x| <M

= sup E((eT V) M2(] xq [[92/2]% = x)

X[ <M

<sup sup E((e% OV A ] x [°+[& %)Y 2% =X

i x<m
< 00,
(3.46)

Let Vi(s,x) = 1+V(s,X); thenVy > 1, Vi is locally bounded and measurable and from

(3.45), (3.46) we have

. V]_(S, Xl) _
I:miljop E( Vi(s.%) Xo= x) <1, (3.47a)
sup E(Vi(s X1)[Xo = X) < oo, (3.47b)
x[|<m

so we have by (3.1) and (3.2) thigX; } is V1-uniformly ergodic. O
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3.2.2 Case 2: regions whegebounds do not hold correspond to transient stateSJpf.

Placinge-bounds on the probabilities ¢¥; } transitioning from region to region will often

not be possible for all regions. Our test function relies on specific bounded, measurable
functions of {X} and {J}} that we require to be close in expectation. This will not be
true if the probabilities are not close for all recurrent regions. Assuming the regions/states
where the approximation does not hold are transient removes this problem.

Since{J} is a finite state chain the collection of transient state$§Jgf is finite and
therefore uniformly transient, implyingl; } leaves these states in a finite time with a proba-
bility arbitrarily close to 1. This observation tells us that we need only wait a finite time and
then we are back in Case 1. The following results are here essentially to deal with the com-
plications created by having to wait a finite time for the processes to reach states/regions
wheree-approximation is possible. First we modify (Al) to include the assumption the
regions where the-approximation does not hold are 'transient’.

Assumption 2(A2) Suppose there exists a finite state Markov cHdifion{1,...,1}
with G consisting of the recurrent ant consisting of the transient states fak }. Suppose

further there exists* < « so that for arbitrarye > 0 there existdVl < o with

supsup sup |[P(X1 € Rj[Xo=Xx)—P(J1=jldo=i)| <e€ (3.48)
j ieG xeR
X[ >M
and
sup sup P(X+ € UkeT R« X0 =X) < €. (3.49)
ieT IIXHEI;;\/I
X

Suppose also that

M_y || AM<1, (3.50)

for every stationary distributiom of {J; }.
Assumption (A2) and Lemma 3 lead to the next result, which demonstrates that un-

der the modified set of assumptions b¢i} and{J;} leave the regions/states where the
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g-approximation does not hold in a finite time with a probability arbitrarily close to 1,
provided|| x || is large enough. As a consequence the Markov property guarantees the ex-
pectations of bounded, measurable functions of each chain will be similiar if we look at
them for a suitably long but finite time. This is necessary because we define our piecewise
constant function (x) from the expectations of specific bounded, measurable functions of
each process.

Lemma 5Ford; > 0,M < wletl =nt_ {(|| X [|> M)N (ﬂij;lo(xj c U_;R(83)))}.
If |&t|" < o for somer > 0 then under (A2) for arbitrarg > 0, with M < oo, t* < co from

(A2) and1 < D < o from Lemma 3 there exists < o so that both of the following hold:

sup sup P((Xs € UkeTR) NIy 4[Xo=X) <t’e (3.51a)
i xeRi(33)
|Ix||>DM
supsupP(Jy = j|do=1i) <€ (3.51b)
i jeT

Proof. SinceT consists of the transient states{@} and{J} is a finite state chain, we

have thafl is uniformly transient, meaning for arbitragy> O there exists &* < co so that
supSsupP(Jp+« = jldo=1) < &. (3.52)
JET €T

Since{}} is a finite state chain we can decompose the sftes. |} into (U<, S)UT,

whereG = U!‘le with each§ irreducible and recurrent. This implies that
supsupP(J = jldo=1i)=0 (3.53)
J€T icG

since ifsup 1 SUReg P(J1 = j[do=1) > 0, then one of th& communicates witff, making

either§ transient ofT recurrent which is a contradiction. From this and (3.48) in (A2)

sup sup P(X1 € UkeTRk|X0 =X) < €. (3.54)

i€G xeR (33)
[[x[[>M
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From (3.49) in (A2) there exists$ < o so that fore > 0 there exist$Vl < oo with

sup sup P(X+ € UkeT R« X0 =X) < €. (3.55)
ieT ||;((ﬁ§|M

If t* = t** then set’ =t* =t** . If t** < t* we can set = t* since immediately by (3.52),

(3.53), (3.54) and (3.55) we will have

sup sup P((X/ € UkeTR) Ny X0 =x) <t'e (3.56a)
i xeRi(33)
[[x[|>M
supsupP(Jy = j|Jo=1i) <& (3.56b)
i jeT

If t** > t* we can set =t** as shown by the following. Consider that by the time homo-

geneous Markov property

P(Xe+ € UkeT RefXers -t = X) = P(X+ € UkeTRi[ X0 = X). (3.57)
Then we have from (3.56a), (3.57) by iterating the expectation

sup sup P((X € UkeTRe) Nl _1|Xo = X)

I xeRi(33)
|Ix||>DM
= sup sup E (P((Xt** € UkeTRi) Nl 1| Xere 1) | Xo = X)
I xeR (&)
[[x|>DM
< sup sup E(sup sup P((Xe+ € UkeTR) Nlpes 1 Xt = Xprs _t+)|Xo = X)
i xeR(33) I Xper g+ €R (33)
[[x|>DM [[Xpes g | >M
< t'e
(3.58)
Of course, ift = t** immediately from (3.52) and (3.53) we have
supsupP(Jy = jldo =1i) <&. (3.59)

i jeT
Putting the cases together we cantset max(t*,t**) and the result follows from (3.56),

(3.58) and (3.59). l
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Lemma 6 is Lemma 4 rewritten to account for the complications induced by the 'tran-
sient’ regions whose transition probabilities cannot be approximated. Lemma 6 makes use
of Lemma 5 as well in its proof.

We make use of the sarfigX;) andh(J) and demonstrate that despite the presence of
transient states fafJ;} whose transition probabilities cannot approximate the probabilities
of {X; } transitioning from the corresponding regions, Lemma 5 impiie% ) andh() are
guaranteed to be close in expectation on the 'important’ regions of the space described in
Lemma 3 when averaged over a sufficiently long time and the prdeg$ss large. Once
we have this, we will use these functioms:), h(-) to define the piecewise constants in our
test function.

Lemma 6Suppose the conditions given in (A2) and in Lemmas 1-3 and 5 hold for
arbitrarye > 0 and some > 0. Defineh (x) = ZJ _1h(j)1(xe Ry). For afixedn < o« let

n

h(x) = ZOTE( (X)X =x.), (3.60a)
Z}—E J)|[do=1). (3.60Db)
Then for arbitraryS' > O there exisD,n < o so that
sup sup |E(h(J)—h(i)|Jo=i)—E[R (X)) —h (X)X =x)|<3. (3.61)
i xeRi(33)
|Ix||>DM

Proof. Let N = max; |h(j)|. Get{J}} andt* from (A2). Givend > 0 pick €1 > 0 so that
Nt*e1 < 5. Giveng; > 0 getM1 < o from (A2) andt’ from Lemma 5. Geb; from Lemma

1 and pickn > n; so thatNt*e; + =——= ( Y <& Picke >0so that(n+ 1)I°Ne + Nt*gg +

&{) < & and getM > M from (A2). Pickd; > 0 so that

Nt —1)

IN((n+1)le +nd3) + Nt*e1 + Nt 3 + <3. (3.62)

GetD = D(n,d3) from Lemma 3.
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From (3.22) we have for al| for all x € R,
E(h (%) —h ()X =x) = ZE X)[%o = x) —h (x), (3.63a)

E(h(J1) —h(i)|do =1) ZE J)|do =) —h(i). (3.63b)

Note that for alli, for all x € R,

-1 r

S B o =x < MY, (3.642)
t=

LS E (i3 =) < MY (3.64b)
n & n

Definely = N{_ {(|| X [|> M) N [ﬂJ O(XJ € U_;R(83))]}. Under (A2) and givers; > 0,

03 > 0 we have from Lemma 5

sup sup = ZE (X)H{ (X € UkeTR) Ny 4 }HXo =X)

i X€R|(63) t=t’
|Ix||>DM
< sup sup NxE(I{(Xs € UetR) Nly_;}Xo=X) (3.65)
I xeR(33)
||x]|>DM
< Nt*Sl.

Applying the Markov property and from Lemma 4 (3.21) by an argument similar to that
leading to (3.24) iX, € UxecRk we have for ali
sup —ZE X)X € UkeaRi) Ny} %o =)

xR (33) N t=t’
[Ix||>DM

IA

sup 13 (B0 {0 € BRIty 1) o =x)
xeR (33) N t=t’
IX] =DM (3.66)

< ‘ZE< I{J/EG}‘JO—>+IN((n+1)Is+n63)

IN

% ()]0 = 1) +IN((n+ Dle +nds).

M- I

t
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By Lemma 3 (3.8) witm =t

sup sup - Z E(h )I{Itc,_1}|Xo =X) < Nt 8. (3.67)
i xeR(3) NS
|Ix||>DM

Then from (3.64a), (3.64b), (3.65), (3.66), and (3.67) we have far all

sup — % E(h(X)[Xo=x)

XER; 53 ZL

\|x||>DM (3.68)
/ 1)

2N(t — /
< ZLE J)|[do=1) +IN((n+1)Is+n63)+Nt*£1+(T+Nt63.

By similar arguments we have for all

inf E(h
xeR;(83) N ; )
HX||>D'VI (3.69)

2N(t' —1 :
ZE |J0—I —IN((n+1)le+nd3) — Nt*e; — (t ) — Nt &3
or from (3.62), (3.63), (3.68) and (3.69) we have the conclusion
sup sup E(h ]Xo_x—— E(h \Jo:|’
i XER(33) Z‘\ Z\
\><I|>D'\/I (3.70)

!

Nt —1)

< IN((n+1)Is+n63)+Nt*81+Nt'63+ <9.

]

Theorem 2 handles the case of (A2). The proof was complicated by the fact we must
wait a finite time for the process€s¢} and {J;} to get to the recurrent regions/states,
requiring that we wait longer but still a finite time for the expectationg(df) andh (%)
to be sufficiently close with arbitrarily high probability. These issues were handled in
Lemmas 5 and 6.

Theorem 2Suppose the assumptions in (A2), Lemmas 1-3, 5 and 6 hold. Suppose

as well that for arbitrarysz, 4 > 0 we can findM < o such thaiR(d3) fori=1,...,l as
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defined in Lemma 4 exist with

sup suRp P(X; € U_;Ri(83)[X0 = X) < 4. (3.71)
| XeR
[IX][>M

Then under (A2) there exists ar> 0 such that{X} is V-uniformly ergodic with test

functionV (s,x) = 1+ A(X) || x ||°, whereA(x) is piecewise constant.

Proof. The complication created by the existence of a finite number of transient regions
where g-approximation of the 'transition’ probabilities was not feasible was handled in

Lemmas 5 and 6, so that we have regardless

sup sup |E(h(I)—h(i)|[do=i)—E([R (X)) —h (X)X =x)| <8 (3.72)
I xeR(33)
|Ix||>DM
The remainder of the proof is the same as that for Theorem 1. O

In this chapter, we have demonstrated that under certain conditions on the general
state space chaifiX;} we can approximate its movements by those of a finite state chain
{J} and derive a condition fo¥ -uniform ergodicity of{ X} through analysis of the more

tractable chaiq J; }.
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CHAPTER IV

EXAMPLES

4.1 Multi-Cyclic

4.1.1 Implications and method

The heuristic behind the work in Chapter 1l ¥auniform ergodicity of{ X} is the follow-
ing:

1. Comparatively, the errorg become smaller in magnitude and less significant as

|| X ||v increases.

2. Under certain conditions on the skeleton the eventual behavior of the process when
the process is large mirrors that of the deterministic skeleton due to the observation

in (1) above.

3. Thus, conditions for ergodicity ofX;} in this situation can be derived from the

conditions for stability of the skeleton.

4. In particular, if the skeleton contains cycle(s) then the condition for ergodicity of
{X} is that the product(s) of companion matrices corresponding to regions in the

cycle(s) have eigenvalue of maximum modulus smaller than 1.

In Chapter Il we summarized this in a set of assumptions and verified in Theorems
1 and 2 the conditions do in fact establigbuniform ergodicity of{X;}. The results of
Chapter 1l provide us with an algorithm for addressing the question of ergodicity of a

threshold autoregressive time series:

1. Verify the assumptions ofj.
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. Embed the time seri€s; } of orderp in a general state space Markov chéi} on

RP.

. Identify the skeleton ofX; }. Label regions ifRP according to the companion matrix

that applies in each.

. Analyze the dynamics of the skeleton{o§ }. Determine which regions are mapped
to which. If necessary, subdivide the regions further so that entire regions are mapped

to entire regions whefix || is large. Suppose the regions &¢...,R.

. Identify regions that comprise the cycle(s) for the skeletofXe} and verify that
those not in the cycle(s) are mapped to the cycle(s) alahgahRy — Ry — Ry for

some finited.

. We want pointx in the cycle(s) to be mapped bounded away from the thresholds to
the interior of the next region in the cycle(s) as in (2.50). Where necessary to make
this so, cut out tiny cones from the regions and label t}ﬁémhei referring to the

region in question. Verify these regioFa:sare ‘transient’ as in (2.52).

. We want points not in the cycle to either be mapped into the interior of the next region
in the d-path as in (2.51) or to be transient as in (2.52). Cut out small cones from

these regions not in the cycle in order to make (2.51) true. Call these small cones
R; as well, thel referring to the region in question, and verify these regiB’nare

transient as in (2.52).

. Do so keeping in mind that for points we require for an arbitraris < o we
can pick|| x | > M" large enough so th&= {x:|| x | > M",|| (" A)x || < Mg} is

contained inUl_,R. The seSwill be an issue where one or more of the matrices in

the cycle(s) is not of full rank. Be certafis included inu}le;.
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9. Then by the appropriate theorem, the conditionMeuniform ergodicity of{X;} is
that the eigenvalue(s) of maximum modulus of the product(s) of companion matrices

that comprise the cycle(s) be less than 1.
4.1.2 Example

As an example of the multi-cyclic methods consider the TAR(2;1;1) model

ayi-1tagy-—2+&, Y-1>dy-2>0
Yo = b1yt-1+&t, Yi-1<d (4.1)
CiYi-1+&t, Yio1>d,Yi-2<0
Supposé; ~ N(0,062). Then sincas? < « we haveE|&;|? < . We will analyze the case

a3 >0,a2>0,b1 <0,c1 <0,d > 0. Embedy; in a Markov chain by writing:

% = (. %-1), Ve=(&,0) (4.2)
and define the companion matrices by

a; a by O cp O
A= P, B=| Cc=| " . (4.3)
1 0 10 10

Then

Xt =AX—1l (V-1 > d,yt—2 > 0) +BX_1l (yt—1 < d) +CX_1l (Yt—1 > d,¥t—2 < 0) + V¢
(4.4)

is the general state Markov chain &3, which we will think of as the(y;_1,Y;_2)-plane.

From (4.4) the skeleton dfX; } is thus

X =A% 1l (V-1 >d,yt 2> 0)+BX_1l(yr_1 <d)+CX_1l(yt_1>d,yt 2 <0) (4.5)
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Define the following regions:

Ri={(Vt-1,%t-2) : Yt-1>d, }r—2 >0} (4.6a)
Ro={(Vt—1,%t—2) : t—1 < d} (4.6b)
Re={(Vt-1,%t2):¥t-1>d, v 2<0} (4.6c)

A depiction of the partition oR? into these regions and the companion matrix that
applies in each can be seen in Figure 1.

LetR — Rj denotex_; € R = X € R; is dictated by the skeleton (4.5). The dynamics
for the skeleton are:

Ri— R, RR— Ry, R — R3, Rs — Ro.

The regionR, feeds into two different regions. This is a problem since our results re-
quire each region have a unique successor region. Consider this further. Note that points

(yt_l,yt_z)/ € RoUR3 with small|y;—1| remain small:

1. Suppose = (yi_1,¥t_2) such thaty_1 < 0; then sinceBx = y;_1(by,1)’ we have

thatBxremains inRy if yi_1 > d/b;.

2. Suppos = (Yt—l,yth)/ such thad < y;_1 < d; then by (1) aboveBx remains in
theR, — Ry cycle ifyi_1 < d/b2.

3. Suppos = (yt_l,yt_z)' such thaty;_; > d; then sinceCx = yt_l(cl,l)' we have

thatCxmaps to thR, — Ry cycle ifyy_1 < d/(cibg).

There are several cases here depending upon the valbgsnfThe casdic; > 1, by <1
is depicted in Figure 2.
Now for someM, < oo, the requiremenit BCx||< My implies|| c1yt—1(bs, 1)' II< Mg
or [yi_1] < Ma/(c3(b2 4 1)). Referring to the observations in (1)-(3) above, by pick-

ing My large enough we can cover the entire region involved inRhe- Ry cycle by
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y(t-1)=d

R3:C

Figure 1. Regions for the TAR(2;1;1) example and their companion matrices.
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-(b_1,1)

=) =db 1 y-1)=d

Figure 2. Middle regions for the TAR(2;1;1) example and their dynamics.
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{x= (yt_l,yt_z)' :|| BCx||< Mg}, which defines a strip around tlge »-axis. Define

Ra(Ma) = {(yi-1.¥1—2) € Ro: |yt—1| < Ma/(c3(b2 + 1))}, (4.72)

Ra(Ma) = {(t-1.Y1-2) € Re:|yt—1| < Ma/(c3(bZ +1))}. (4.7b)

We are going to see that we can ignore these redR(igl,) andR3(M4). The impor-
tant cycles will beR; — R; andR; — Rz — R». Since we have two cycles we will apply
Theorem 2 in Chapter II.

We want to define region®;, R, andR; so that conditions (2.50) and (2.52) are
satisfied. Slicing out cones near the,-axis will ensure that points outside of these cones
will be mapped bounded away from the thresholds into the interior of the next region in
the cycle according to (2.50). The form of the companion matrigesdC dictate that
IVi—1| — o as|| x || does; we need this to be true for points outside of these cones. We will
update our regionBy, R, andR; to exclude the coneR), R, andR;.

For3 > 0 we define the regiong|, R, andR; as:

Ri= {10 2) % 2>W% 1/0+d, i 1>d} (4.8)
Ro={(-1,%-2) : Y2 > Yt-1/8, 0< Y1 < d} (4.8b)
U{(-1.¥1-2) Y2 < —¥-1/8, 0< yr_1 < d} (4.8c)
U{(V—1,%-2) © Y2 < ¥-1/8, yi—1 < O} (4.8d)
U{(V-1,%t-2) : Y2 > —Y-1/3, yi-1 < 0} (4.8e)
Ry= {(-1.%2) © Y2 < —Yo1/5+d, y_1>d} (4.8)

A depiction of these regions is in Figure 3.
Now for an arbitraryd > 0 we can clearly pickd > 0 small enough anl’ < o so
that
sup P(X € RiUR,URsXo =) < 8 (4.9)

x| >M’
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R2

R 1

R 3

-(b_1,1)

Figure 3. New patrtition of regions for the TAR(2;1;1) example.
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and we have that (2.52) will be satisfied.

We need to verify for somil < oo, that for allx = (y;_1,¥t_2) € Ry with || x ||> M
there exists a positive, strictly increasing functiéri-) so thatBy, x|)(AX) C Ri. The
matrix A mapsR; into itself. The worst cases occur along the boundarieR,pfwhere

(yt,l,yt,z)' is such that eithey;_» = yt_1/d 0ory;_2 = 0. Since

P IR VY i DY I PV e (4.10)
Yi-2 1 0 1
then pointgy;_1, yt_g)' such that eithey;_> =vy;_1/d ory;_» = 0 are mapped to the interior
of Ry along the rays;_1(a; +a/5,1) andy;_1(a1,1) respectively. The distance from
these rays to the boundary Bf increases ap x | does, implying there exists a positive,
strictly increasing functiorfy(-) such thaBy, () (AX) C Ry and thisfy(-) will work for all
(yt_l,yt_z)' € Ry regardless of the value ™.

Next we need to verify for somil < oo, for all x = (y;_1,¥t_2) € Ro with || x||> M
there exists a positive, strictly increasing functifut-) so thatBy, ) (BX) C Rs. Since
for all X = (yi_1,Yt—2) € R> we haveBx = y;_1(b1,1)’ the worst case fofy;_1,¥_2)
with || (yi—1,¥t—2) ||=M occurs at the infimum df;_1| in R> which occurs along the rays
Vi—2 =Yi—1/0andy;_2 = —y;_1/0. The distance frong_1(bs, 1)' totheraysy_>=yi—1/0
andy;_» = —y;_1/0increases a¥;_1| and thug| x || does, implying there exists a positive,
strictly increasing functionf(-) that satisfies our requirement. Whicheviet-) works
along these rays will work for a(lyt_l,yt_z)’ € Ry.

Finally, we need to verify for som# < o that for all x = (yt_l,yt_z)' € Rz with
| x[|[> M there exists a positive, strictly increasing functiaf) so thaBy, (| (Cx) C Re.
The argument is similar to that f&. For allx = (yt_l,yéf2 € Rz we haveCx=y;_1(Cy, 1)’,
so the worst case fal_1,Y_2) with || (y—1,¥%_2) ) ||= M occurs at the infimum df_1|

in Rz which occurs along the ray_> = —y;—1/. Whicheverfz(-) works along this ray
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will work for all (yt_1,¥t—2) € Ra.

R2M4)\ R2 | ;| R

> | 3 — ( — )

Figure 4. Regions for the TAR(2;1;1) example with lajige]|.

As for R}, R,,R;, these regions are not in the cycle and such uniform bounds do not
exist. By the definition of these regions in (4.9) we have
sup P(X; € RiUR, URGXo =X) < & (4.11)
[1X[[>M
and for large enough x || the region{x = (yi_1,¥i_2) :|| BCx||< Ma4} is contained in
R, UR,UR;. A depiction of this is in Figure 4.

We have satisfied all the assumptions behind Theorem 2:
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1. & ~ N(0,0?) which has a continuous density everywhere positive and sificeco

we haveE|& |2 < o .
2. The region$R;, Ry, R3 comprising the cycles have the requisite bounds as in (2.50).

3. The regionsR;, R,, R; not in the cycle do not have a bound but do satisfy (2.52) and
do contain the sets = (y;_1,t_2) :|| x [[y>M", || BCx|y< M4} and
{x= (y—1,%t—2) :|| X [v> M",|| Ax|jyv< Ma} (which is the empty set foM" large
enough: since is full rank, the set ok = (y_1,yt_2) such that| Ax||< My is a

bounded set).
4. All (yt_l,yt_z)' are mapped by the skeletonRe U Ry UR3 in a finite time.

Then by Theorem 2 in Chapter Il, for the model (4.1) in the case wdaere0, ap > 0,

b1 <0andc; < Oif
pA<leat+a<l pBCO)<lebeo<l

then{X} is V-uniformly ergodic.
Note the ergodic parameter space is unbounded, contrary to what we would expect

through analogy with the case of a linear time series:
pA)<lesa+ap<l pB)<le-1<b <0 pC)<le-1<ce<O,

illustrating the point made in Chapter .

4.2 Finite State Chain Approximation

4.2.1 Implications and method

The heuristic behind the work in Chapter Il ®auniform ergodicity of{X;} is the follow-

ing:
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1. 51_4log(]| A |D1(X%_1 € R) describes the log-change in the process as the process

moves fromX;_1 to X. The expected log-change in the process as it moves from

X110 X; is given by

Ex. » (iglogm A DI (X1 € a)). (4.12)

2. Under the assumptions in either (A1) or (A2), whex || is large the expected log-
change (4.12) considered ovBi,...,R from X_1 to X; whenX_> =X € R, is
close toE;,_, (log(|| Ay ||)). By ergodicity of{J}, E3_,(log(|| A ||)) will converge
to Ex(log(|| Az ||)), wherettis the stationary distribution of); } andEx(-) denotes

the expectation with respect to

3. Thus, averaging (4.12) over a sufficiently long but finite time will make it arbitrarily

close toEx(log(|| Ay, ||)). The condition

|
En(log(|| Ax 1)) = _erulog(\l Aill) <0
1=
for all stationary distributionst of J; will guaranteeV-uniform ergodicity of{X;}.

This is the basic idea; complications were introduced according to whether the
approximation held for all states/regions or only for certain regions, and according to the
amount of time it took for the ergodicity described in (2) to take effect. The details of all
this was worked out in the lemmas and theorems of Chapter I,

The results of Chapter Il provide us with an algorithm for addressing the question of

ergodicity of a threshold autoregressive nonlinear time series:
1. Verify the assumptioi|;|" < .

2. Embed the time serids;} of orderp in a general state Markov cha{X; } onRRP.
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3. ldentify the skeleton. Analyze its dynamics and determine distinct regions so that

entire regions are mapped to entire regions. Suppose these regidts.areR.

4. Consider the errors. Cut tiny cones out near the region boundaries ard fine
such that| x ||> M implies we can eitheg-bound the transition probabilities between
regionsP(X € Rj|X—1=x € R) as specified in (A1) and (A2) or that the regidRs

where the transition probabilities cannot be bounded &se transient.
5. Construct the finite state chalnand verify the appropriate assumptions on it.
6. Find the stationary distributiorrsof J; and derive the condition for ergodicity.

4.2.2 Example

As an example of the application of the finite state chain approximation methods consider

the TAR(2;1) model

aVi—1+aYi—2+&, Y-2> b_llytfl
(4.13)

Yt

biyt—1+ &, Vie1 < b_llyt—l

Assume§; ~ N(0,0%). Sincea? < « we haveE|&|? < « and the assumption of is
satisfied.

There are several cases to consider. We are going to suppesg b, =0, a1, a» > 0,
ayby +ap > 0 andb? > ajb; + a.

Embedy; in a Markov chain by writing:

a; a: by O
x—| Vi = & A= T oB=| C (414)

Yi-1 0 1 O 1 0
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Then

Xe = AX_1l (i—2 > (1/b1)yt—1) + BX—1l (yi—2 < (1/b1)yt—1) + vt (4.15)

is the general state Markov chain BA. Note the thresholg_» = b—llyt,l is the eigenvector
of the B matrix.
LetRa = {(Vt—1,%t-2) : Yt—2 > (1/b1)yi—1}, Re = {(Vt—1,%t—2) : Yt—2 < (1/b1)yr—1}.

The first task is to analyze the skeleton of the process, which from (4.15) is

% = A%_1l (%-1 € Ra) +Bx_1l (%1 € Rg). (4.16)

This defines a deterministic systermRA. Our task is to determine distinct regions dictated
by the dynamics of the skeleton. A couple of things to note here:

bi—a
a

1. b% >aibi+ap implies'ola;;all < b—ll, so theray;—» = yi—1 lies above the thresh-

oldy_» = b—llytfl wheny;_1 < 0.
2. For(yt—1,Yt—2) suchthaty » = bil)/tfl withy; 1 <0

Yi-1 a1yt—1+ayt-2 aYe—1+ g_iylfl a;+ g_i
A - = =W-1

Yi—2 Yi—1 Yi-1 1

Sincey;_1 < 0 andajb; +ax > 0imply a; + az/b; < 0, we have that (4.17) lies to

the right of they;_»-axis.

With the help of these observations we can define the following 5 regions:

Ri={(Vt-1,%t-2) : ¥t-1 > 0, Yt—2 > (1/b1)yr-1} (4.18a)
Ro={(Yt-1,%t-2) : ¥t-1 > 0, Y12 < (1/b1)yr-1} (4.18b)
Rs={(Yt-1,¥t-2) 1 ¥t-1 <0, Y12 < (1/b1)yr-1} (4.18c)

Ra={(Vi—1,Yt-2) 1 Yt-1 <0, (1/b1)yi—1 <yr—2 < ((b1—a1)/(a2))%—1}  (4.18d)

Rs = {(Jt-1,%t-2) 1 Yt-1 <0, ((b1—a1)/(a2))yt-1 < %2} (4.18e)
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A depiction of the partition oR? into these regions can be seen in Figure 5. For brevity we
denote theray;_» = ((by—a1)/a2)yt—1 With y;_1 < 0byL; and theray: 1 = (1/b1)yi—1
with y;_1 > 0 by Lo.

L2

Figure 5. Regions for the TAR(2;1) example and their companion matrices.

Let R — Rj denotex;._1 € R = X € R; is dictated by (4.16) and denote Bythe
threshold, i.e., the set of all{t_1,y:—2) such thaty;_» = (1/b1)y;—1. We have included
in Ry URy but it is useful to consider it separately for a moment. The dynamics for the
skeleton are:

Ri—R,R—T, RR—T, Ry — R, Rs— Ry.
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When we add the erros back in, several issues arise:

1. All x € Ry UR3 are mapped by to the thresholds_» = b—llyt,l. When we add the
errors back in, then regardless of the magnitudgxff the errors give X; } an equal

chance of being bumped off the threshold in either direction.

bi—a
az

2. Theray; 2= Vi1 IS mapped to the threshold By When the errors are taken
into account, these points have an equal chance of being bumped off the threshold in

either direction.

3. All x € Ry URg either on or near thg _»-axis are mapped bB near the origin and
their transition probabilites vary depending upon how close they are tg th@xis,

but do not depend o x || per se, only ony;_1].

(1) and (2) imply it is necessary to modef; } with a stochastic system rather than an
asymptotically deterministic one. We will get to this in a moment but first let us address
concern (3). Because no points are mapped neak theaxis by eithetA or B, we can cut
out narrow cones around tlye »-axis, call therrR'2 andR'3, and in effect throw them away,

meaning we can construs}, andR; so that for an arbitrarg > O:

sup sup P(X; € Ry[Xo=x) <& (4.19a)
i xeR
[[X[/>M

sup sup P(X; € R'3\Xo =X) <E. (4.19b)
i XeR
[x][>M

This satisfies condition (3.71) of Theorem 2 in Chapter Ill. To see that we can do this,
consider that the worst case, that is, the points mapped clogestitBs, occurs for points

that lie along the ray;_»> = b—llyt,l. We've already seen in (4.17) that these points are
mapped to,_1(a1 + ﬁ—i, 1)/ by A. For an arbitraryd > 0 define the boundaries 6#2 to be

the rays(0,y;—2) and(—dy;_2,¥i—2) for yi_» < 0. Likewise, define the boundariesl@i to

be the rayg0,y;_2) and(dy;_2,Yi—2) for yi_» < 0.
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For any(yt_l,yt_z)' such that;_» = b—llyt_l andy;_1 < Owe have from (4.17)

NRE! v, a1+ p2 _ | Y%

Wt-2 1 yt_z

(4.20)

where we denote the updatedl 1,y: 2) by (y;_1,¥t_2) . Note thaty, ,=y;_1. Consider

these mapped pointy; ;,¥_2) versus the boundaries B, andR;, (—dy; ,,¥_2) and

(8y,_,,Yi_2) , respectively. Since; = (&,0)’, the errors perturb the process horizontally;

thus, to consider whethe¢ € R, U R3 we need to consider the horizontal distance from

!

y,_, to the interval(—3y,_,,dy; 2)

Sincey: 1 =Y, ,andy, ; =_1(a1+az/b1) we have thak € R,UR; if & is in the

interval (|yi_1|(a1+a2/b1 — d), |yi_1|(a1+ a2/b1+d)). Now for (yt_1,¥t_2) on the ray

Yi—2 = g1 and for anyM < eo

bi

LYi2) [PMe . ey > M .
| (Ve—1,¥—2) || Ve—1] 1+b§

Thus for an arbitrarg > 0 if we pick M1 large enough so that

b2 a
P& >M 1 (ag+=-8])]<¢
(Et_ 1 b%+1( 1+b1 ))

and sef| (yi_1,¥i_2) ||> M1 then by (4.21) and (4.22) we have

P (& € (Iyi-1/(a1 +az2/b1 — 8), [Vi—1/(aa +az/b1 +9)))

b2 ap
< > My s =< .
< P(Et_Ml b§+1<al+b1 6)><s

For thisM;1 we have

sup sup P(X; € R/2|Xo =X)<E&
i XeR|
[[X[|>M1

sup sup P(X; € Rg|Xo=X) <.
i XeR;
[[X[>M2

(4.21)

(4.22)

(4.23)

(4.243)

(4.24b)
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OnceR, andR; are established, we need to cut out a cBgdrom Rs so that for some
Mo < o0

inf P(X1 €R1[Xo=x)>1—¢ (4.25)
XeRs

[[X[|>M2

and a coneR'4 from R4 so that for somélz < o«

sup P(X1 € Ro|Xo=Xx) < €/2. (4.26)
Il
For large enougiM, M> we can make these conB’g andRﬁ5 very small. This serves two
purposes: we can then bound all transition probabilities fRynand Rs to within €, and
even though we cannot uniformly bound the transition probabilitielé;firand R/5 these
regions will be transient and satisfy the assumptions made in (A2).
Can we set up the conéé, andR’5 so that the desired conditions in (4.25) and (4.26)

hold? Consider the case BE. For an arbitraryd > 0 cut the coneR’5 out of Rs by defining

the boundaries d?:s to be the rayy; > = bl_alyt,l andy;_» = (bla;zal +90)yi—1. Note that

a

Yi-1 aryi—1+ (b1 —a1)yi-1 b1
A = = yt—l P (427)

bi—ay

m Y1 Yi-1 1

which lies on the threshold. So then we have from (4.27)

A Vi1 A Yi-1 LA 0

(B2 4 By 1 Bofly g OYt-1

(4.28)
b1 adyt—1
+

1 0

=W-1

Thus if& < —apdlyt 1| then(yt—1,yt 2) suchtha o= ((br—a1)/a2+ &)y 1is mapped
to Rp. By the assumptiord; ~ N(0,02), P(& < —aud|y;_1|) = P(& > axdly;_1|) < €

for |y;_1| large. By picking|y;_1| large along the ray;_1 = (b1;2a1 +90)y;—1 and setting
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Mo =|| (yt_l,yt_z)' || we haveM, < o large enough so that the probability of being mapped
to Ry is less thare and we have
inf P(X; eRy[Xo=x)>1—¢. (4.29)
XERsg
[[X[|>Mg

A similar argument for the case & will reveal that we can CLIR'4 out of R4 by defining

for the sameé > 0the boundaries to bg_, = bla‘zalyt_l andy;_p = (b1;2a1 — d)y;_1 S0 that

for M3 < o large enough

sup P(X; € Ro|Xp=Xx) < €/2. (4.30)
xXeRy
[1x][>Ms

Note here that the assumptiafb; +a> > 0 implies the thresholg;_» = b—llyt_l is mapped

by Ato the right ofR'z, so by a similar argument there will existy < o so that
sup P(Xy € RyURyURs|Xo=X) < £/2. (4.31)

XERy
[[X][>Ma

The depiction of the spad®? with the new partition is in Figure 6.
Let M = max M1, M2, M3,M4) and let us stop here to summarize what we have estab-

lished thus far for the regior?;, Ry, R3, R4, Rg

inf P(Xg eRy|Xop=x)>1—¢€, sup P(X;¢€ R3UR4UR'4UR5UR'5|Xo:x) <€

XeR
IX[>M Ty
(4.32)
inf P(X1 € R3g|Xo=x) = sup P(Xy € R3g|Xg=x)=1/2 (4.33a)
XeRy XERy
[[X[[>M [X]|>M
iné P(X1 € Ry Xo=X%) >1/2—¢ (4.33b)
Xe
x| >M
sup P(X; € R/4U RsU R/5U Ri) <e (4.33c)

XeERy
[[X[>M
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R3 R?’ L2

Figure 6. New partition of regions for the TAR(2;1) example.
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inf P(X1 € Ri|Xo=X) = sup P(X; € Ri|Xo=x)=1/2 (4.34a)
XER3 XER3
[IX|>M [[X[|>M

1/2—e< inF\t P(X1 € Ro|Xo=X) < sup P(X1 € Ro|Xo=x) <1/2 (4.34b)
XeR3

XeR3

[IX[>M [[X[|>M
sup P(X; € RyUR,URs|Xo =X) < € (4.34c)
R
||)>§ﬁ>?\/l

Jnf P(X4 €RXo=x)>1-¢  sup P(X &Ry R,URsURs[Xo=X) <& (4.35)
X[ =M ok

Jnf P(X4 €RiXo=x)>1-¢  sup P(X € RpU R,URsURs[Xo=X) <& (4.36)
R
x> XM

Now to handle the small coné®,, R;, R, andR;. Points inR, can go toRy, Rs, Ry,
R,. Rs, R with probabilites depending on whexds in R,. We cannot-approximate these
probabilities because of this, but it will not matter sin%'pwas designed to be transient.

Denote these probabilities lay(x) with $° ; aij(x) = 1:
ai(X) =P(X ERXo=X€ER,), i=1,...,5. (4.37)

R, can go toRy, Ry, R,, R;, Rs with probabilities varying depending on whexés in R;.
We cannotk-approximate these probabilities because of this; however by the definition of

R’2 andR'3 we can bound these probabilities bjor || x ||> M:

sup P(X1 € Ry|Xp) < ¢ (4.38a)
XeRy
[X[[>M

sup P(X1 € Ry|Xp) <&. (4.38b)
xeR;

[X[[>M
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Denote the remaining probabilites By(x) with 52 ; Bi(x) = 1 — 2e:
Bi(X) =P(X € R[Xo=X€Ry), 1=1,2,3. (4.39)

R, can go toRy, Ry, Ry, Ry, Rs with probabilities depending on whexes in R;, but we can
find aMs < o so that
sup P(Xy € R,UR;URs|Xo=X) < €. (4.40)
xeR;

[1X[[>Ms

As for the other probabilities since they depend on wixasan R;l we can only say

1/2—e< inf P(X1 € RpXo=xX) < sup P(X1 € Rp[Xo=X) <1—¢ (4.41a)

X€R, XeR,
[[X][>M 1X[|>M
e< inf P(X1€ Ry[Xo=X) < sup P(X1 € Ry[Xo=X) <1/2. (4.41b)
XeR, xeR,
[IX[|>M [[X||>M

Denote these probabilities lyyx) and1 — y(x):
P(X1 € RolXo = X € Ry) = Y(X), P(X1 € RyXo =X € R;) = 1—y(x). (4.42)

Finally, Rﬁs can go toRy, Ry, R’z, R’s, Rs with probabilities varying depending on whexés

in R, but we can find Mg <  so that

sup P(X1 € RyUR;UR3|Xo = X) < €. (4.43)
xR,

[IX]|>Mg

As for the other probabilities, we can only say

e< inf P(Xt€R[Xo=x) < sup P(X1€Rp[Xo=x) <1/2—¢ (4.443)
xeRs XeR,
[IX[>Me [[X[|>Meg

1/2< inf P(X1€Ri[Xo=X) < sup P(X1 €Ri[Xo=X) <1l-—¢ (4.44b)

X€Rg XeR,
[[X/[>Ms I[X/|>Msg
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since these probabilities depend on wheiis in R/5 Denote these probabilities lny(x)

and1l—n(x):

P(X1 € Ro|Xo = X € Rg) = N(X), P(X1 € Ra|Xo =X € R) = 1—N(X). (4.45)

It is convenient to summarize these transition probabilities in tabular form:

1
2
S
3
g
4
y
5
g

Then we can form the transition probability matrix fak } by lettinge —

1
1—

€

e/4

ai

1/2

B1

£/4

Y
1—

n

€

W, w N N e

o b b

a1

2
0
0

0

2 3

0 ¢/5
0 12
0 o

1/2—¢ ¢€/3 ¢€/3

B2

e PBs

1-¢ ¢€/4 €/4

1-y—¢ €¢/3 ¢€/3

e/4

e/4 €/4

1-n—¢ €¢/3 ¢€/3

/

3

4

0 €/5

0 as
€/3 0
3 0
e/4 0
€/3 0
e/4 0
€/3 0

1 2 2 3 3 4
1 0O 0 O 0 O
0 0 0 Y2 0 12
o1 0 O a 0O a3
/2 1/2 0 0 0 O
B B O B3 O O
0 1 0 0 0 O
y 1-y 0O 0 O O
1 0 O 0 O O
n 1-n 0 0 O O

/

4

0

/

4

5 5

e/5 €/5 €¢/5
0 1/2—¢ €/4 €/4 €/4

Og

O O o o o o

Os O

(4.46)

O O o o o o

0
0
0
0
0
0

o

5 5
0 0 O

0

0

04 O5 Og

0

OoOoo

(4.47)

©O o ©O o ©
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Since state€ and3 are immediately mapped to other states and never return, it follows
the state€ and3 are transient fofJ;}. Since only2’ maps to4 and5, it follows 4 and
5 are transient fofJ } as well. DefineG = {1,2,3,4,5} andT = {2,3,4,5}. The states
in T are transient fofJ; }.

Turning our attention tgX; }, we verify the assumptions in (A2). Tleeapproximation
in (1.5) is satisified by the regions/states correspondirgg td/e need to verify (1.6): there
existst™ < o so that

sup sup P(X+ € UkeTRi|[Xo =X) < €. (4.48)

ieT xeRy
[[X][>M

A glance at (4.46) reveals regioRs andR; satisfy this condition immediate\R, maps

to R, andR;. The only other regions which map R) or R; areR; andR; and these do
so with arbitrarily small probabilities. Clearly then we can fintt ac « so that (4.48) is
satisified.

Thus, we can apply Theorem 2 in Chapter Il and under the conditidid:dn
M (A D™ <1, (4.49)

wherertis any stationary distribution df} }, we will have thaf X; } isV-uniformly ergodic,
with V (-) specified by Theorem 2.

Examination of the transition matrix df}} reveals thaf 1} is the only closed state
and every other state maps intb}. Since{J;} is a finite state chain, this means t{ag
is the only recurrent state and so the stationary distributiauiith havery = 1 and zeroes
everywhere else. The condition fdruniform ergodicity of{ X; } in the casdy; < 0, b, =0,
ai,ap > 0,a1b; +ap > 0, b% > ajby +azisthen|| A< 1, thatis,ag +az < 1.

Note that we only requirb; to be such thab; < 0, a;b; +a; >0 andb% > a1by + ao.
In particular, we do not requirfp;| < 1 which would be the condition generalizing from

the linear case.



90

CHAPTER V

FUTURE RESEARCH

We propose to use countable state chains to approximate general state space chains in the
case where recurrent regions do not albapproximation of their transition probabilities.
The task here would be to verify the countable chain is ergodic, to find the stationary
distribution of the countable state space chain and to use that stationary distribution to
identify an ergodicity condition fofX; }.

For details, consider that in cases where regions that do not atepproximation
by a finite state chain are recurrent the finite state chain approximation is useless since
the stationary distributions of finite state Markov chains (or any Markov chain, for that
matter) will be different according to the differing transition probabilities for these recurrent

regions. Thus the condition for ergodicity fX; }
|
> mlog(f| Aj[l) <0, (5.1)
=1

wherertis the stationary distribution dfJ; }, will have no relevance in the case where the
regions that do not allowapproximation are recurrent sinmeloes not accurately describe
the long term behavior of the transitions f; } from region to region. In order to glean
conditions for ergodicity of X; } from the stationary distribution df3 } it is thus necessary

to somehowve-approximate the 'transition’ probabilities for these 'recurrent’ regions of the

state space ofX; }.

5.1 Countable State Markov Chains

We propose te-approximate the transition probabilities with a countable state Markov

chain rather than a finite state Markov chain. In certain situations the recurrent regions
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whose transition probabilites cannot approximated by a finite partition of the region
will admit suche-approximation under a countable partition. In these situations it is con-

jectured the condition ofiJ } given in (5.1) can be suitably generalized to

3 mlog(|| A |) <0 (5.2)
=

and that this condition can be used to demonsWatmiform ergodicity of{ X }. There are
several issues that arise.

Because we were dealing with a finite state chgk} in Chapter Ill, the number of
transient states was thereby finite and thus uniformly transient, i.e., as it was expressed in

(3.52) for arbitrarye > 0 there exists &* < o so that

sSupsupP(Jy = j|ldo=1) < €. (5.3)
JET ieT

This uniform transience condition on the states wheresthpproximation does not hold
was crucial in proving Lemma 1 and Lemma 5 in Chapter Il and was therefore critical in
proving the results ok -uniform ergodicity of{X; } found in Chapter III.

When{J} is a countable state chain the number of transient states need not be finite
and therefore the transient states are not necessarily uniformly transient. This presents a
problem. In order to be able to extend the results in Chapter Il to the case of a countable
state{J; }, itis necessary that we get away in a finite time with a probability arbitrarily close
to 1 from the states where tlseapproximation does not hold. We thus require these states
of {&} be uniformly transient (which is trivially satisfied if they are finite in number).

We require more of % }. The proof in Cline and Pu (2002) of Lemma 1 in Chapter IlI

that there exists a finite so that

%t:iE(h(J[)\Jo =i)<0, Vi (5.4)

required not only that the transient states be uniformly transient, but also that the irreducible

pieces of &} (or {J} itself in the case of irreducibility) be uniformly ergodic. Whei&}
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is a finite state chain this again follows automatically from the fact the number of recurrent
states is finite. In the case whef&} is a countable state space chain this does not follow
and must be assumed. We therefore requirefthatbe uniformly ergodic. This is a logical
assumption when one considers the convergence due to the ergodicity must take place over
the entire space in a finite time with a probability arbitrarily close to 1.
Let us summarize these assumptions &}
Assumption 1(A3) Suppose there exists a uniformly ergodic countable state Markov
chain {J} with G consisting of the recurrent consisting of the transient states s }
and that the transient statdsare uniformly transient. Suppose further for arbitraay- O
there existdVl < « such that
supsup sup |P(X1 € Rj[Xo=X) —P(J1=j|do=1)| <& (5.5)
] ieG xeR
[1X[[>M

and there exists® =t*(M) < o such that

sup sup P(X € UkeTRi[X0 =X) < &. (5.6)
ieT xeR
[[XI>M
Suppose also that
Miza (| A D™ <1, (5.7)

wherertis any stationary distribution ofJ }.

Under these assumptions we conjecture the condition (5.7) will imply/ theiform
ergodicity of {X} through arguments similar to those in Chapter Ill. The challenge be-
comes verifying tha{ J;} satisfies the assumptions made of it and finding the stationary
distribution of{J}.

There is still much to do here. Classifying an arbitrary countable state Markov chain
as ergodic or not, and if ergodic whether it is uniformly ergodic or not, and if so finding the

stationary distribution requires further work. We can suppose{thatis irreducible and
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aperiodic; if{}} is not irreducible, we must decompose the state space into irreducible
pieces and find the stationary distribution for each{Jf} is periodic with periodd we
can look at thel-step chain{J; } which will be aperiodic. Perhagsk} will have a special
structure we can exploit. These suggestions may help simplify the task of determining
whether{J} is uniformly ergodic.

The proposed approach raises new questions which need to be answered. Looking
at the glass as half full rather than half empty, the general state space Marko\{ ¥hain
has been reduced to a simpler, countable state Markov ¢lgirwhich will be easier to

analyze and simulate. This indicates promise for future research.
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CHAPTER VI

CONCLUSIONS

We derived conditions for the ergodicity of threshold autoregressive time series by embed-
ding the time series in a general state Markov chain and applied a Foster-Lyapunov drift
condition to demonstrate ergodicity of the Markov chain. In particular we were interested
in demonstrating -uniform ergodicity where the test functiaf(-) depends upon a norm.

In this dissertation we provided conditions under which the general state space chain
may be approximated by a simpler system and provided conditions on the simpler system
which imply V-uniform ergodicity of the general state space Markov chain and thus the
threshold autoregressive time series embedded in it. We also examined conditions under
which the general state space chain and thus the nonlinear time series embedded in it may
be classified as transient. Finally, we provided conditions under which central limit the-
orems will exist for the general state space chain and by implication for the associated

threshold autoregressive time series.
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