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ABSTRACT 

 
Leader Election in Distributed Networks Using Agent Based Self-stabilizing Technique. 

 
(August 2003) 

 
Raghav Tandon, B.E., Netaji Subhas Institute of Technology, New Delhi, India 

 
Chair of Advisory Committee: Dr. Hoh In 

 

There are many variants of leader election algorithm in distributed networks. In this 

research, an agent based approach to leader election in distributed networks is investigated. 

Agents have shown to be useful in several ways. In the theoretical perspective, agents 

sometime help in reducing the message complexity of the system and sometimes help in 

lowering time complexity. In a more practical sense, agents perform operations independent 

of the processors, thereby lending a more flexible algorithm supporting different types of 

networks. 
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CHAPTER I  

INTRODUCTION  

In distributed networks, processors communicate with each other using shared 

memory or by exchanging messages with each other. For processors to perform any 

distributed task effectively the processors require coordination. In a pure distributed 

network, there is no central controlling processor that arbitrates decisions. Without a central 

authority or coordinator, any processor has to communicate with all processors in the 

network to make decision. Often during the decision process, not all processors make the 

same decision. Communication between processors takes time and further more, making 

the decision takes time. Coordination among processors becomes difficult when 

consistency is needed among all processors. Centralized controlling processor(s) can be 

selected among the group of available processors to reduce the complexity of decision-

making. By having a centralized authority, decisions can be made in a more serialized 

fashion, which are simpler to execute. All decisions for processing a distributed task are 

decided by the controlling processor(s). Centralized control along with effective 

coordination can also be helpful in reducing the message complexity in the network by 

preventing flooding of messages by processors in the distributed network. At the same time, 

centralized control may have the disadvantage of higher time complexity as it weighs more 

on a serialized execution. 

 

                                                 
This thesis follows the style and format of IEEE/ACM Transaction on Networking. 
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Leader election is a technique that can be used to break the symmetry of a distributed 

network by determining a central controlling processor (leader) in the distributed network. 

A processor is elected as the leader among the group of processors in the distributed 

network. This processor acts as the centralized controller of this decentralized distributed 

network. Such a decentralized network can support highly centralized protocols. Some 

applications of leader election include finding a spanning tree with the elected leader as root, 

breaking a deadlock and reconstructing a lost token in a token ring network. 

The purpose of leader election [1] is to choose a processor that will coordinate activities 

of the system. In any leader election algorithm, a leader is usually decided based on some 

criterion such as choosing the processor with the largest identifier as the leader. At the time 

when the leader is decided, the processors reach the terminated states. The terminated 

states, in a leader election algorithm, are partitioned into elected states and non-elected 

states. When a processor enters a non-elected state (or an elected state), the processors 

always remain in the non-elected state (or an elected state). Any leader election algorithm 

must be satisfied by the safety and liveness condition for an execution to be admissible. 

o The liveness condition states that every processor will eventually enter an elected 

state or a non-elected state.  

o The safety condition for leader election requires that only a single processor can 

enter the elected state. This processor becomes the leader of the distributed 

network. 

Several leader election algorithms have been proposed over the years [2-17]. Of these 

proposals, some algorithms are found to be efficient but applicable to certain network 

topologies, timing constraints and sometimes, the size of the network (known as non-



 

3
 

 
 

uniform algorithms). Such leader election algorithms proposed until now require 

processors to be directly involved in leader election. Information is exchanged between 

processors by transmitting messages to each other. The processors exchange messages with 

each other and try to reach an agreement. Once an agreement is reached, a processor will be 

elected as leader and all other processors will acknowledge the presence of the leader. 

Distributed systems are continuously evolving and new architectures are being introduced 

every day. In this research, the following problems are examined to incorporate a more 

flexible leader election algorithm:  

o Is it possible to have a single algorithm that can efficiently and correctly resolve a 

leader in any network topology? 

o Can the leader election algorithm be isolated and executed without the processors 

intervention in decision-making? 

Self-stabilizing mobile agents [18] have properties that help resolve the above issues. In 

this research, self-stabilizing mobile agents are used to execute the leader election among 

processors in a distributed network. Agents based self-stabilization [18] is a technique where 

agents are used to bring the system to the stable condition. Self-stabilization is a property 

that allows a system to recover to a stable state from an illegal/unstable state. Leader 

election in terms of self-stabilization methodology can be interpreted as a system that is 

unstable when it has no leader and attains stability when a processor is elected as leader 

among the processors in the distributed network and all processors are informed of the 

newly elected leader. Agent based self-stabilization is based on mobile agents which are 

active in nature unlike messages which are passive entities. Mobile Agents are messages that 

contain self-executable software code that can be executed on a processor. Agents can 
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perform execution based on certain rules and can make decision independent of the 

processor. Contrary to message passing technique, where processors decide for every 

incoming message, agent-based approach has several benefits. 

o Agents are autonomous. Agents can independently decide which processor to 

migrate to next.  

o When agents hop from one processor to another, agent can carry information like 

messages and leave information (trace, status etc.) at each processor they visit.  

o Agents can sometime minimize number of message (hops) in the network. 

o Having multiple agents can sometime help in solving a problem faster. 

In this research, possible approaches for implementing agent based leader elections 

algorithm in distributed networks is investigated. A modular technique for leader election is 

investigated as part of the related work and the concept of agent-based self-stabilization is 

also introduced. Other works related to migration techniques are also explored in the 

related work [19], [20]. In this study, a solution for leader election using a single agent model 

is first proposed to give an understanding of the proposal. Then the leader election solution 

is proposed using multiple agents. The correctness of each solution is examined and an 

analysis of message and time complexity is deduced. An example of synchronous bi-

directional ring is used to examine the working of leader election. Further, a case study is 

conducted to see the effect of a dynamic network on leader election. In the last section, the 

conclusions are drawn and possible future work on leader election using self-stabilizing 

agents is discussed. 
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CHAPTER II 

RELATED WORK 

2.1 A Modular Technique for Designing Leader Finding Algorithms [21] 

In this thesis, a modular technique to solve the leader election problem is proposed for 

distributed, asynchronous networks. The problem of efficient leader finding is reduced to 

the problem of efficient serial traversal of the corresponding network. This technique solves 

the problem in two stages: 

1) The first stage involves the traversal of the entire network, 

2) The second stage involves the leader finding algorithm, which uses the algorithm of 

stage 1 as a distributed subroutine. 

The modular technique uses message-passing model where tokens are the entities used 

to communicate information among the processors. Initially all the nodes are inactive and 

the phase of each node is set to –1. When a node N becomes active and starts the 

algorithm, the nodes phase changes to 0 and token is created of the form (0, N) where 0 

represents the phase of N. A token (p, a) can be in one of three modes: 

1) Annexing mode. A token in the annexing mode attempts to annex all the nodes in 

the network to its domain. For the traversal of the network, the token uses a 

traversal algorithm, and the token annexes the nodes it passes during the traversal. 

2) Chasing mode. A token in this mode is chasing another token (p, b) in the annexing 

mode, in an attempt to reach it and to create a higher phase.  

3) Candidate mode. A token in the candidate mode is waiting for a token in the 

chasing or annexing token with the same phase. 
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Token may be created by one or more processors and not necessarily all the processors. 

When token are created they are initialized in the annexing mode. A token moves into 

chasing mode when it finds that a node is annexed by a token with a higher identity value. 

The annexing tokens with higher phases shall combine with the chasing tokens to form new 

phases and continue to annex the network. This process continues until a token has covered 

the entire network and only a single token exists in the network. The single token having 

traversed the entire network has identified the leader. The message complexity for this 

approach is bounded by [(f(n) + n)(log2k + 1) (or (f(m) + n)(log2k + 1)], where n is the 

number of nodes in the network, m the number of edges in the network, k is the number of 

nodes that start the algorithm, and f (n) [f(m)] is the message complexity of traversing the 

nodes [edges] of the network. This approach has a time complexity comparable to the 

message complexity. Having a lower time complexity as compared to the message 

complexity is left as an open problem. 

 

2.2 Agent Based Self-Stabilization 

Dijkstra first introduced the concept of self-stabilization in distributed networks [22]. In 

the paper, a system is defined as self-stabilizing when “regardless of its initial state it is 

guaranteed to arrive at a legitimate state in a finite number of steps.” The self-stabilization 

algorithm can be extended to the leader election problem. Initially the system has no leader. 

For having a leader in the system, the local state of one processor should be changed to the 

elected state. The local state of all the other processors should be the non-elected stated. 

This will be defined as a legitimate state for leader election. One solution that extends self-

stabilization for leader election in anonymous ring is described in the paper [23]. 
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2.2.1 Mobile Agent Based Systems 

Most techniques approach the problem of leader election using message passing 

techniques. Processors communicate with each other using messages and try to resolve a 

leader. This approach requires processors to directly participate in the leader election 

process. Mobile agent is a self-executable software code that is transmitted as a message 

between processors. Mobile agents are autonomous entities and can hop from one 

processor to another. Agents provide an independent processing from normal system 

functions except for certain task such as agent creation. Contrary to message passing 

technique, where processors decide for every incoming messages, in agent-based approach, 

agent themselves decide which processor they wish to migrate to next. Agent can carry 

information like messages and leave information at each processor they visit. The 

information variables carried by them are termed as briefcase variables [18]. Agent can 

perform changes in local variable of a process. Agents perform atomic operations that are 

executed at the processor locally. This property is explained in the paper [18].  

 

2.2.2 Multiple Agent Model 

By having multiple agents, each agent can perform the task in parallel and help in 

converging to desired result faster. Having multiple agents sometime can also be a problem. 

Agents may be required to meet to exchange information with each other either during or at 

the end of the task to decide on a result. As the number of agents grows, coordination 

between agents may become more complicated. Multiple agents in a system are possible 

when one or more processors create agents. Multiple agents are also possible with agent 
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replication. Agent replication is a property that allows agents to create copies of them 

selves.  

 

2.2.3 Self-Stabilization [24] 

Agent based self-stabilization is an approach for stabilizing system by using agents. As 

agents can behave autonomously, processors are not involved in the stabilization process. 

Agents can traverse the entire network and monitor processors that have illegitimate state 

and correct the state of the processor. Since agents act as autonomous, entities they need to 

decide on their route so that coordination can be achieved between the different agents to 

achieve the desired task. Some migration techniques are described in the next section. 

 

2.3 Migration Techniques 

Agent Migration is essentially a neighbor selection or routing problem. Agents acting as 

autonomous entities need to decide on the path to take and the nodes to cover. In case of 

multiple agents, the agents may need to decide on how to maximize the search. Agent may 

be explicitly required to meet each other and decide on rendezvous points. Having decided 

on a meeting place, the agents should know how to choose a path to get there. In a system, 

it is possible that each agent will employ same or different migration technique based on the 

purpose they serve. There are several approaches for neighbor selection. Most of these 

techniques are borrowed from token-based schemes. 

 



 

9
 

 
 

2.3.1 Random Walks [25], [26], [27], [28] 

Random walk is an approach where a decision for migration is governed by the 

probability of neighbor selection. If d is the degree of a vertex v in a graph, then the 

probability of choosing any neighbor of vertex v is given by 1/d. It is interesting to note a 

Markov Chain can represent the random walk by simply extending to the fact that the 

probability of choosing a vertex from v that is not its neighbor is zero. A simple random 

walk means that either of two directions in a bi-directional system is given a probability of 

half. Random walks are useful when the agent has no information of where the other agents 

are. Random walks also ensure that eventually the agent shall cover the entire network as 

long as the network is a connected graph. With random walk, the agents are guaranteed to 

meet but the time that it will take may be very larger or sometimes very small. The hitting 

time, as it is known, has an upper bound of Ω (n3). Random walks can also be applied to 

unidirectional networks such as unidirectional rings. In such a case, the agent decides 

whether to move or stay at a particular vertex in time. 

 

2.3.2 Biased Random Walks [20] 

In order to favor a certain decision, a bias is introduced in the randomness. Neighbor 

selection is defined by two components – random choice, biased choice. If the probability 

of making a bias choice is p, then the probability of making a random choice is 1-p. The 

introduction of the bias is for reasons such as restricting the direction of movement to a 

certain area of the network to maximize the expected benefits over the long-term behavior 

of the walk. Biased Random Walks can be implemented for systems that allow only 

unidirectional movements. Here again, the same two components of random choice and 
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bias choice are used in deciding whether to stop or to move to neighbor. Such a bias may 

be useful for making faster rendezvous among agents. For examples, in a unidirectional 

circular ring, bias may be introduced that makes agents with larger identifiers to move 

slowly and agents with smaller identifiers to move faster.   
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CHAPTER III 

LEADER ELECTION USING SELF-STABILIZING AGENTS 

In distributed networks, leader election is needed to elect a leader or a central controller 

among the processors of the network. This study focuses on the use of self-stabilizing 

mobile agents for the election of a leader. Processors do not directly participate in the 

process of leader election. Processors are only involved in the initiation of the leader 

election process. At the point of initiation of the leader election algorithm, processors create 

agents. Once agents are created, the agents work together to find the processor with the 

largest identifier. Using agent based architecture the following solution in proposed. In the 

first subsection, the definitions and assumptions of the model are stated. In the next 

subsection, the model is proposed for a single agent system. In the last subsection, the 

model using multiple agents is proposed and the advantage of having multiple agents is 

examined. 

 

3.1 Definitions and Assumptions 

In the model, distributed networks are considered as a generally connected undirected 

graph G with n vertices. Each processor in the network is represented as a vertex of graph 

G. A connection between two processors is represented as an edge between two vertices 

that connect the two processors. The graph being undirected implies that the edges (links) 

of the graph are bi-directional. The processor where an agent is created is designated as the 

‘home processor’ of the agent. In the distributed network, initially processors have no 

knowledge of the processors that are its neighbors [21]. In this model, processors can 
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assume any one of two states – uncovered and covered. A processor is in uncovered 

state, when the processor has knowledge of zero or more but not all its neighbors. In the 

covered state, the processor has knowledge of the identities of all neighboring processors.  

When a processor initiates leader election, an agent is created that runs the algorithms 

for finding leader in the network. In the synchronous network, the agents are created 

simultaneously. However, in the asynchronous case, it is possible that only a single agent is 

created as processors initiate the leader election at different times. In an asynchronous 

network, each processor initiates the leader election task independently. The processors do 

not have knowledge of when other processors initiate the leader election task as there is no 

central controlling authority and the time is not synchronized among the processors.  

The following proposal looks into two models, single agent based model and multiple 

agent based model.  The purpose of a single agent model is to introduce the notion of agent 

traversal in the distributed network. The multi-agent model is modified to provide a more 

efficient approach to solve the leader election. Agents are assumed reliable and tolerant to 

any failures in the network. The time taken for agents to perform local computations is 

assumed negligible. Each hop by an agent is assumed equivalent to the transfer of message 

between the two processors. The size of the message that is transferred with every agent 

hop is assumed negligible. 

 

3.2 Leader Election with Single Agent 

In a single agent model, a single agent in the network alone will perform leader election. 

This task of leader election is split into two simpler tasks. The first task of the agent is to 

locate the processor with the largest identifier for leader election. The second task of the 
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agent is to announce the processor as leader to the rest of the processors. The agent 

needs to cover the entire network while storing the identifiers of each processor. The agent 

is said to have covered the entire network, when the state of each processor is changed 

from uncover to covered and the agent returns to its home processor. At this stage, all the 

processors have the identity of all neighboring processors.  

 

3.2.1 Network Traversal Algorithm 

The first algorithm is the network traversal algorithm. The goal of the algorithm is to 

ensure that the agent covers the entire network and the agent terminates the algorithm only 

when all processors are in covered state and the agent returns to the home processor. The 

algorithm is designed to make the agent traverse the network in a mix of breadth and depth 

first search. At each processor, the agent will first identify all the neighbor of the current 

processor. This step is performed in a breadth first search fashion. An unidentified 

neighbor is chosen and visited by the agent to obtain it identity. During the visit to the 

neighbor, the agent leaves the identifier of the current processor for which it is performing 

the neighbor identification. Once all the neighbors of the processor are identified, the 

processor's state is changed from uncovered to covered. There after the agent chooses one 

of the neighbors that has an uncovered state and migrates to that processor. Upon reaching 

the new processor, the agent runs the same procedure as above. When no neighbor of a 

current processor is in the uncovered state, the agent will migrate back towards the home 

processor. This fashion of choosing neighbors to traverse the entire network is similar to 

the depth first search. The procedure of neighbor identification and choosing a random 

neighbor after identification that is similar to the breath first search is illustrated in figure 1.  
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Fig. 1. Neighbor Identification.  

 
 
 
The dark arrow in figure 1 indicates the migration of the agent to another processor as 

step 13, once all the neighbors of the current processor have been identified. The procedure 

of network traversal that is similar to the depth first search is illustrated in figure 2. In figure 

2, the dotted lines represent migration of agent to the source node that is directed towards 

the home processor. Neighbors are chosen randomly based on a probability.  

 
 
 
 
 
 

 

 

 

 
Fig. 2. Network Traversal. 
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Each uncovered neighbor is chosen with equal probability. If d is the number of 

uncovered neighbors, then the probability that a neighbor is chosen is given by 1/d. At any 

processor, if the agent finds no neighbor in uncovered state then it shall proceed back 

towards its home agent. The neighbor selected in this case is the Source_Node, i.e. the 

neighbor from where the agent first migrated to the current processor. 

The agent shall store some information to allow it to traverse the entire network and 

ensure network covering. These variables are as follows: 

o List of [Processor ID, Processor Status] 

This is a list of the identifiers of processors visited and their corresponding state recorded at 

the last visit 

o Parent_Processor 

This is the processor identifier of the processor that created the agent. 

o Current_Uncovered_Processor 

This is the identifier of the processor for which the agent is current busy identifying its 

neighbors 

o Previous_Processor_ID 

This variable is used to store the identifier of the previous processor from which the agent 

just visited. 

o Covered_Previous = False 

This variable is used to ensure that the agent comes back to the processor having the 

identifier Current_Uncovered_Processor if it not covered. 
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 The agent at each processor will record the following variables so that it can keep track of 

the state of the processor and trace back to the home processor once it has covered the 

entire network. 

o Processor_ID  

This identifier is fixed even before an agent visits the processor. 

o Source_Node = null 

This variable helps to keep track of the path that leads back to the home processor. 

o List of ProessorID[Neighbor ID] 

This is a list of processor identifiers for each corresponding neighbor of the processor.  

o Leader_ID 

This identifier is the value of the identifier of the processor, which is elected leader. The 

algorithm for network covering that the agent executes when it visits a processor is shown 

in figure 3. 

 

3.2.1.1 Correctness of network traversal algorithm 

Lemma 1: The network-covering algorithm ensures that the agent covers the entire network 

before initiating the leader announcement algorithm. 

Network covering means changing the state of each processor in the network from 

uncovered to the covered state. This algorithm will ensure network covering as the 

algorithm ensure that the agent performs a depth first search of the entire network while 

changing the state of each processor from uncovered to covered state. 
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Fig. 3. Network Covering Algorithm. 
 
 
 
It is known fact that a depth first search will cover the entire network. Hence this 

algorithm will cover the entire network. 

 

 

 
1. Update ProcessorID[NeighborID] = Agent.Previous_Processor_ID   
2. Agent.Previous_Processor_ID = Processor_ID 
3. IF Processor_ID != Agent.Current_Uncovered_Processor AND Agent.Covered_Previous = 

False THEN 
a. IF processor does not exist in the agent list THEN 

i. Add [Processor ID, Uncovered] to the agent list 
ii. Source_Node = Agent.Current_Uncovered_Processor 

b. END IF 
c. IF Current Processor is now covered THEN  

i. Update [Processor ID, Covered]      
d. END IF 
e. Go back to Agent.Current_Uncovered_Processor 

4. ELSE  
a. IF Processor_ID != Agent.Current_Uncovered_Processor AND 

Agent.Covered_Previous = True THEN 
i. Agent.Current_Uncovered_Processor = Processor_ID 
ii. Agent.Covered_Previous = False 

b. END IF 
c. IF Current Processor is now covered THEN 

i. Update [Processor ID, Covered] 
ii. Agent.Covered_Previous = True 
iii. IF all neighbors are covered THEN 

1. IF Processor is home processor THEN 
a. Initiate the ‘NETWORK ANNOUNCEMENT 

ALGORITHM’ 
2. ELSE 

a. Go back to Source_Node 
3. END IF 

iv. ELSE 
1. Choose a neighbor having uncovered state randomly and migrate 

v. END IF 
d. ELSE 

i. Choose an unidentified neighbor randomly and migrate 
e. END IF 

5. END IF 
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Lemma 2. The algorithm is deadlock free. 

As per the algorithm, an agent shall visit a processor at most d + 1 times, d is the 

number of neighbors of the processor.  This will happen when either the processor or its 

neighbors are being discovered. So the agent shall not visit a processor after that. Thus, an 

agent will never get trapped in a cycle and loop for ever. However, it may visit the processor 

while the agent traces back to the home processor. Since the Source_Node constructs a 

spanning tree, rooted at the home processor, the agent shall always be able to reach the 

home processor. 

 

3.2.1.2 Analysis of network traversal algorithm 

o Time Complexity (Τ): Time taken by the agent is no more than 3*m + n - 1 where m is 

the number of edges in the network. In the worst-case m = n2. 

Termination time of the algorithm is considered in terms of the number of hops taken 

before the agent call the leader announcement algorithm.  This then becomes applicable to 

both asynchronous and synchronous networks. It is assumed that the time taken to execute 

the above algorithm is negligible compared to the hop time. The hop time may vary with 

each hop in an asynchronous network but is a constant time in synchronous system. To 

identify a processor's neighbor, the agent shall first visit the neighbor and inform the 

neighbor of the processor id and then come back and inform the processor of the 

neighbor's processor identifier. This requires the agent to cross an edge both ways. Once 

the agent changes the processor's state to covered it shall choose a neighboring processor 

with uncovered state. So the processor will cross the edge once more. This way, the agent 

shall traverse each edge 3 times. When an agent finds that has all neighbors of the current 
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processor are covered, then the agent chooses the Source_Node. The Source_Node 

variable is basically a spanning tree of the network with the home processor of the agents 

serving as root of the spanning tree. Since a spanning tree has no more than n-1 edges, 

hence the number of edges the agent will traverse shall be n -1. Hence, the time take for the 

agent to traverse the network is 3*m+n-1 which is equivalent to O(m+n). 

 Τ ∈  O(m+n) …(1)

 

o Message Complexity (Ψ) 

The number of messages is equivalent to the number of hops taken by the client. The 

maximum number of hops that an agent takes in order to cover the network is 3*m+n-1. 

 Ψ∈  O(m+n) …(2)

 

3.2.2 Leader Announcement Algorithm 

Once the agent has covered the network entirely, then each processor is in the covered 

state. This means that each processor has knowledge of the processors that are its 

neighbors. The agent now need to announce the leader to each processor and thus initiates 

the leader announcement algorithm. At the point of initiation of the leader announcement 

algorithm, the agent resets the processor state to uncover for all processor in the briefcase. 

The agent computes the leader based on the largest processor identifier seen in the list of 

processor identifiers. When the agent visits a processor it performs the execution shown in 

figure 4. 
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Fig. 4. Leader Announcement Algorithm. 
 
 
 

3.2.2.1 Correctness of leader announcement algorithm 

Lemma 1. The leader announcement algorithm ensures that all processors know the elected 

leader. 

Here the agent performs a modified depth first search. The agent visits a processor’s 

neighbor only if it is not covered. The agent shall trace back to home only when all the 

neighbors of a processor are covered. This is similar to the depth first search except that the 

agent visits fewer edges, as the neighbors are already known. As the DFS algorithm is 

known to be deadlock free, the agent shall successfully announce the leader to the entire 

network. 

 

Lemma 2. The algorithm is deadlock free 

This algorithm is a modification of depth first search algorithm that works even for 

cycles, and is known to be deadlock free. 

 
1. Source_Node = Agent.Previous_Processor_ID 
2. Change the state of processor to covered in the briefcase 
3. Inform the processor if it is the leader or not. 
4. Let d = number of neighbors of processor that have state uncovered in briefcase 
5. IF d = 0 THEN 

a. IF processor is the home processor THEN 
i. Terminate 

b. ELSE 
i. Go back to Source Neighbor 

c. END IF 
6. ELSE  

a. Agent.Previous_Processor_ID = Processor_ID 
b. Choose a neighbor that has uncovered state in the briefcase with a probability of 1/d

7. END IF 
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3.2.2.2 Analysis of leader announcement algorithm 

o Time Complexity: Time taken by the agent is no more than 2*n. 

The time complexity of the algorithm is the number of units needed for the agent to 

announce the leader of the network. Here, it is assumed that the time taken to execute the 

above algorithm is negligible compared to the hop time. The maximum time taken by the 

agent is 2*n as the agent hops only to processors that it never visited. 

 Τ ∈  O(n) …(3)

 

o Message Complexity: The number of messages is equivalent to the number of hops 

taken by the client which is 2*n. 

Over all, the two algorithm together have a time complexity in worst case of 3*(m + n) 

and the same message complexity. 

 Ψ∈  O(m+n) …(4)

 

3.3 Leader Election with Multiple Agents 

A purely distributed system has no central coordinator. A processor would need to 

communicate with all the processors to carry out a task. When processors in the network 

realize there is no leader in the network then the processors will initiate the leader election. 

As initiation takes place at multiple processors, one or more agents (one on each processor) 

are created that will search for the leader. The algorithms proposed for the previous single 

agent model can work with slight modification but the algorithm will not be always efficient. 

In order to have a better performance (with respect to time) by using many agents, agents 
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need to work in parallel with more knowledge of what other agents are doing. The task 

for leader election is split into two simpler tasks – neighbor identification and leader 

announcement. 

 

3.3.1 Neighbor Identification Algorithm 

Unlike a single agent model where network traversal was the first subtask, the multi-

agent model requires only processors to be familiar with their neighbors. The task of each 

agent is only to identify the neighbors of its home processors. While the agents migrate to 

other processors, the agents will check if that processor has spawned an agent for leader 

election. If the processor has not yet created an agent, the agent will spawn a new agent 

with this processor designated as its home processor. The new agent will then identify the 

neighbors of the current processor and the parent agent will migrate back to its home 

processor. The algorithm is shown below in figure 5.  

 

3.3.1.1 Correctness of neighbor identification algorithm 

Lemma 1. The algorithm is deadlock free. 

In this algorithm, the agent in any step of execution is not waiting on any variable. The 

read operation is for the processor’s identifier, which is a read-only variable. The other read 

operation is on the variable Agent_Create that is set by the processor or another agent. The 

agent performs a write on the Leader_ID only to reset in the case that no agent has been 

created on the processors. As the agent does not wait for any value and continues to 

identify the neighbors of its home processor, the agent will finish the algorithm without any 

deadlock. 
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Fig. 5. Neighbor Identification Algorithm for Multiple Agents. 

 
 
 

Lemma 2. The neighbor identification algorithm ensures that each processor has knowledge 

of every neighbor’s identity. 

To prove the correctness of the algorithm, it is sufficient to show that every agent identifies 

1. IF Processor_ID != Agent.Parent_Processor THEN
1.1. ProcessorID[NeighborID] = Agent.Parent_Processor 
1.2. Agent.Previous_Processor_ID = Processor_ID 
1.3. IF Agent_Create = False THEN 

1.3.1. Agent_Create = True  
1.3.2. Spawn (Agent_Child) 
1.3.3. Agent_Child.Parent_Processor = Processor_ID 
1.3.4. IF Processor_ID < Agent.Parent_Processor THEN 

1.3.4.1. Agent_Child.SelfDestruct = TRUE 
1.3.5. END IF 

1.4. END IF 
1.5. IF Leader_ID < Agent.Parent_Processor THEN 

1.5.1. Agent_Child.SelfDestruct = TRUE 
1.6. ELSE 

1.6.1. Agent.Leader_ID = Processor_ID 
1.7. END IF 
1.8. Migrate to Home Processor 

2. ELSE 
2.1. ProcessorID[NeighborID] = Agent.Previous_Processor_ID 
2.2. IF for all identified neighbors there exists one neighbor with processor id > 

Agent.Parent_Processor THEN 
2.2.1. Agent.SelfDestruct = True 

2.3. END IF 
2.4. IF there are still some unidentified neighbors THEN 

2.4.1. Migrate to neighbor 
2.5. ELSE IF Agent.SelfDestruct = True THEN 

2.5.1. Leader_ID = Agent.Leader_ID 
2.5.2. Agent_Create = False 
2.5.3. Exit and Cleanup 

2.6. ELSE 
2.6.1. Leader_ID = Processor_ID  
2.6.2. Initialized List and add neighbor to the list and set state as uncovered 
2.6.3. Add parent processor to list and mark its state as covered 
2.6.4. Start Leader Announcement Algorithm 

2.7. END IF 
3. END IF 
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all the neighbors of its home processor and an agent is created at every processor.  

 
o In this algorithm, the main role of an agent is to ensure that the neighbors of its home 

processors are identified. The agent migrates to a neighbor (Step 2.2.1) and returns to 

the parent with the neighbor’s identifier (Step 1.8). The only operation that the agent 

performs at the home processors is updating the previous processors identifier (Step 

2.1) and migrating to another neighbor (Step 2.2.1). The only operation that the agent 

performs at neighboring processors is reading their identifier (Step 1.2) and updating 

their neighbor identifier of the processor with its home processors identifier (Step 1.1). 

Further as there is no deadlock, the agent will be able to identify all the neighbors of its 

home processor. 

o It is not sufficient to allow a processor to create an agent.  In the case of asynchronous 

systems, each processor may not initiate an agent. To ensure that an agent is created at 

every processor, when an agent visits a processor other than its home processor, it will 

spawn an agent when no agent was created at the processor prior to its visit (Step 1.3.1). 

As an agent visits all its neighbors to ensure that an agent is created, agents created in 

the neighboring processors will ensure that their home processor’s neighboring 

processors have agents and so on. This propagation will spread to the entire network as 

long as the network is connected and no processors can be isolated. Since this is already 

an assumption, the algorithm will ensure that agents are created at every processor in 

the network. 

 

From the above two points, it can be concluded that all the neighbors of every processor 



 

25
 

 
 

will be identified by the algorithm. 

3.3.1.2 Analysis of neighbor identification algorithm 

o Time complexity: Time taken by the agent is no more than O(n) in synchronous case. 

Synchronous Case: 

In the synchronous case, the agents are created at each processor simultaneously. A 

processor in a network can have no more than n-1 neighbors. The task of the agent is to 

identify the neighbors of its home processor.  This requires n-1 hops to the neighbors and 

n-1 hops back to the home processors leading to a value of 2*(n-1) which is of the order 

O(n).  

Asynchronous Case: 

In the asynchronous case, there is no concept of time. Like the synchronous case, an agent 

will terminate the algorithm after 2*(n-1) hops. 

 Τ ∈  O(n) …(5)

 

o Message Complexity 

The number of messages is equivalent to the number of hops taken by the agent which 

is approximately 2*(n-1) per agent in the worst case. All agents will traverse each edge of 

their home processor twice. Further, two agents can cross over simultaneously. Hence the 

number of hops that agents will make is 4*m in the worst case. So the number of message 

exchanged is in the order O(m). 

 Ψ∈  O(m) …(6)
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3.3.2 Leader Announcement 

As part of the next subtask, agents will traverse the network to check if their processor 

has the largest identifier. At the end of this search there will be only one agent that should 

exist. The agent of the leader will have traversed the entire network and created a spanning 

tree rooted at the leader processor. 

Initially, the agent on creation will initialize a list for storing the processor id and state of 

each processor with value as uncovered. These processor identifiers are obtained as the 

agent traverses the network and adds the list of the processors that are the neighbors of a 

processor. When the agent is starts the leader announcement algorithm, it adds the home 

processor and its neighbors to this list. The agents start the leader announcement algorithm 

from the home processors. The agents assume that their home processor has the largest 

identifier. At the home processors the agent chooses a neighbor that it has not yet covered. 

The agent hops to a neighbor and updates its state to visited. At the new processors, the 

agent adds all the neighbors that are not in its list. 

Here again the agent chooses a neighbor that is not yet visited and hops to that 

neighbor. If an agent finds that all neighbors are already visited, then the agent will migrate 

back to the processors where it came from. The variable Source_Node specifies the source 

processor (directed towards that home processor). 

At every processor that the agent visits, the agent sets the Leader_ID to its home 

processors identifier. However, if the Leader_ID variable is already set to a larger identifier, 

the agent will terminate as there exist an agent whose home processor has a larger identifier. 

The algorithm is shown below in figure 6. 
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Fig. 6. Leader Announcement Algorithm. 

1. IF Agent.Parent_Processor = Processor_ID THEN
1.1. Source_Node = HOME 
1.2. IF all neighbors are visited THEN 

1.2.1. Terminate 
1.3. ELSE 

1.3.1. Agent.Previous_Processor_ID = Processor_ID 
1.3.2. Migrate to a neighbor which the agent has not yet visited 

1.4. END IF 
2. ELSE 

2.1. IF for all neighbors, neighbor does not exist in the list THEN 
2.1.1. Add neighbor to the list and set state as unvisited 

2.2. END IF 
2.3. IF Processor_ID > Agent.Parent_Processor THEN 

2.3.1. IF Agent_Create = False THEN 
2.3.1.1. Spawn (Agent_Child) 
2.3.1.2. Agent_Child.Parent_Processor = Processor_ID 
2.3.1.3. Leader_ID = Processor_ID 

2.3.2. ENDIF 
2.3.3. Exit and Cleanup 

2.4. ENDIF 
2.5. IF for all neighbors, there are still some unidentified neighbors THEN 

2.5.1. IF Agent_Create = False THEN 
2.5.1.1. Spawn (Agent_Child) 
2.5.1.2. Agent_Child.Parent_Processor = Processor_ID 
2.5.1.3. Leader_ID = Processor_ID 

2.5.2. ENDIF 
2.5.3. Wait until neighbors are identified 
2.5.4. Agent_Create = False 

2.6. END IF 
2.7. IF Leader_ID > Agent.Parent_Processor THEN 

2.7.1. Exit and Cleanup 
2.8. ELSE IF Leader_ID < Agent.Parent_Processor THEN 

2.8.1. Leader_ID = Agent.Parent_Processor 
2.8.2. Agent_Create = False 
2.8.3. For all neighbors 

2.8.3.1. IF neighbor does not exist in the list THEN 
2.8.3.1.1. Add the neighbor to the list 

2.8.3.2. END IF 
2.8.4. Source_Node = Agent.Previous_Processor_ID 
2.8.5. Agent.Previous_Processor_ID = Processor_ID 

2.9. END IF 
2.10. IF there is a neighbor that is unvisited THEN 

2.10.1. Migrate to a neighbor whose state is unvisited (by choosing neighbor randomly) 
2.11. ELSE  

2.11.1. Migrate to Source_Node 
2.12. END IF 

3. END IF 
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3.3.2.1 Correctness of leader announcement algorithm 

Lemma 1: The algorithm is deadlock free 

The algorithm that the agent executes, allows the agent to cover the entire network as long 

as its home processors has the largest identifier.  There are several ways in which deadlock 

can occur 

1) Leader_ID was not reset and is set to a very large identifier of a processor that does not 

exist 

 The Leader_ID is reset at that point when leader election commences at each 

processor or the agent cleans up at the end of the neighbor identification algorithm. 

Further, processors are assumed to be non faulty. Hence, for a processor, the Leader_ID 

variable can only be assigned a value of a processor’s identifier that exists. 

2) Waiting for a processor to finish Neighbor Identification Algorithm 

 In the case of neighbor identification algorithm, there arises no deadlock. So an 

agent that is commences the neighbor identification algorithm is bound to terminate the 

algorithm. An agent waiting for the algorithm to terminate will wait only for a finite number 

of steps. 

3) No cycles 

 When an agent migrates to a processors two cases arise. First, the agent covers not 

all but some neighbors of the processor. In this case, the agent will choose from one of the 

unvisited neighbors and migrate there. So the agent will never revisit a processor in this 

case. Second, all neighbors have been covered by the agent. In this case, the agent will 
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migrate back to the source processors. Here an agent will revisit a processor as long as its 

neighbors are not covered. But at every visit it will follow a different path, as it will choose 

from a one of the uncovered neighbors. Since the path will be different every time the agent 

returns to the source processor, there can be no cycle. So there is no way that the agent can 

be stuck in a cycle. 

 

Lemma 2. At the end of the leader announcement algorithm, there will be only one agent in 

the network and all processors will be informed of the leader. 

At the beginning of leader announcement algorithm, the agent will try to choose 

uncovered neighbors of every processor it migrates to in order to cover the network. As 

there are no cycles in the network, the agent will choose a new path for traversal in an 

attempt to cover all processors. On every processor that the agent migrates, it will update 

the variable Leader_ID equal to its home processor identifier, as long as the current 

Leader_ID value is smaller. However, if the value is larger, the agent terminates. As it is 

assumed that all processors have distinct identifiers, all agents except one will terminate 

when each agent attempts to visit all the processors of the network. 

 

3.3.2.2 Analysis of leader announcement algorithm 

o Time complexity 

Synchronous Case: 

The worst-case scenario occurs when an agent start the leader announcement algorithm 

while all processors have not finished the neighbor identification algorithm. The agent will 

have to wait at each processor until the neighbor identification algorithm is terminated. The 
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maximum time any agent will take to complete the neighbor identification algorithm is 

2*(n-1). Since in synchronous system, agents are created simultaneously, the maximum 

waiting time will be at most n-1 which is the number of edges a processor can have. So the 

time that an agent can take to terminate leader announcement is the sum of waiting time for 

neighbor identification algorithm and the time to walk on a spanning tree which is 2*(n-1) + 

2*(n-1) which is equivalent to O(n). 

The total time for a leader election will then be O(n) 

Asynchronous Case: 

In the asynchronous case, time taken for an agent to hop each link may vary. Further, 

the processors are not synchronized meaning that agents may be created at anytime not 

necessarily together. The number of hops that the agent will take for leader announcement 

algorithm will be 2*(n-1). It is possible that agents are not created at all processors. When 

an agent visits a processor it will replicate an agent if an agent is not created and the 

neighbors of the processor have not been identified. In the worst case, replication will occur 

at every processor but one where the agent was created and the replicated agent shall 

perform neighbor identification before the former agent can proceed. So the time taken by 

the agent to come back will be a function of the degree of all vertices of the graph. Let δ be 

the maximum degree of any vertex in the graph. At each processor, the agent will wait for 

the neighbor identification to terminate which is equivalent to the degree of the vertex 

(processor). Since there are n-1 such processors, the equivalent time will be 2*(n-1)*δ. The 

agent having traversed all the processors may find the last processor with the largest 

identifier. In that case, the agent created at the last processor will start leader announcement 
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and take another 2*(n-1). The overall time will be 4*(n-1) + 2*(n-1)* δ which is 

equivalent to O(n*δ). 

 Τ ∈  O(n*δ) …(7)

 

o Message complexity 

The number of messages is equivalent to the total number of hops that all the agents 

make. Each agent can make at most 2*(n-1) hops. Since there are n agents, the total number 

of hops is 2*n*(n-1). This means a message complexity of O(n2). 

 Ψ∈  O(n2) …(8)

 

After the termination of the network-covering algorithm only a single agent exists in the 

network. Hence only a single agent runs the leader announcement algorithm. The result for 

leader announcement algorithm remains the same. 

 

3.4 Example: Synchronous Bi-directional Rings 

A synchronous bi-directional ring can be represented by an undirected connected graph 

G with n vertices where every vertex on the graph is connected to exactly two vertices as 

shown in figure 7.  At the time of leader election initiation each processor shall create an 

agent and the neighbor identification algorithm will commence. Each agent will identify one 

of its neighbors and then the other incase it has not been identified. At the end of round 

two, there will be a maximum of n/3 agents. The reason being that an agent does 2 

comparisons, so only one agent can be a winner among the 3 agents. Then these agents will 

commence the leader announcement algorithm.  
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Fig. 7. Leader Election in Synchronous Bi-directional Ring. 
 

 
 

For the leader announcement algorithm, the agents will choose a random direction 

(either clock wise or anticlockwise) and will migrate to processors in the same direction until 

it encounters a processor with a larger identifier then its home processor. Since all 

processors have unique identifiers, there will be only one agent at the end of n+2 rounds. 

The number of messages exchanged at the end of the leader election will be 2*n + n + 

n*(n-1)/2 which is the order O(n2). The first n comes as each agent makes a hop to its 

neighbor and back. The second term is a hop for only those processors that did not have 

one of their neighbors identified. This can be maximum half the total number of 

processors. The third term comes as each agent makes 1 less hop than the previous agent. 

Starting from n-1 hops down to 1 the sum of n consecutive number is of the order O(n2). 

The time taken by the algorithm is 4 + n which is in the order of O(n). 
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CHAPTER IV 

CASE STUDY: EFFECT OF NETWORK DYNAMICS ON LEADER ELECTION 

The algorithm proposed for leader election works with fixed networks with the 

assumption that processors never fail while the leader election is taking place. In this 

subsection, the various cases related to network dynamics are considered.  There are several 

scenarios possible. What will happen in such scenarios? The answer is considered in the 

following cases. 

 

4.1. Processor Join 

In a network, it is possible that a processor may join the network at different stages of 

leader election. 

 

4.1.1. Before Leader Election 

This case is elementary, as leader election process will commence in this processor as the 

processor will call the leader election algorithm or an agent will migrate to the processor and 

upon finding that no agent was created, create an agent using replication. 

 

4.1.2. During Neighbor Identification  

While the neighbor identification algorithm is running, if a processor joins the network, 

then once again, the processor will call the leader election algorithm or an agent will migrate 

to the processor and create an agent, which will start the neighbor identification algorithm.  
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4.1.3. During Leader Announcement 

While agents are running the leader announcement algorithm in the network, there are 

two possibilities.  

Case 1: There is a possibility that the agents have not visited at least one processor that is 

the neighbor of the new processors.  

In this case, the agent will migrate to the new processor as well. When an agent migrates 

to the new processors, it will find that the agent is not created and will replicate an agent, 

which will start the neighbor identification algorithm. The agent will wait for the processor’s 

agent to finish the neighbor identification algorithm only if the agent’s home processor 

identifier is larger than the new processors identifier. In the other case, when the agent’s 

home processor identifier is smaller than the new processor’s identifier, the agent will 

terminate and the processor’s agent will finish the neighbor identification algorithm and 

then commence the leader announcement algorithm. 

Case 2: The agents have already visited the all the processors that are the neighbors of the 

new processors.  

This case is treated similar to termination of leader election algorithm that is discussed 

as the next case.  

 

4.1.4. After Leader Election Algorithm Terminates 

When the leader election algorithm terminates and a processor joins the network, it will 

depend on the processor when it initiates the leader election algorithm. Once the processor 

initiates the leader election, an agent will be created that will execute the neighbor 
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identification algorithm. If the identifier of processor is smaller than the leader 

processor’s identifier, then the agent will terminate after the termination of the neighbor 

identification algorithm. Before the termination of the algorithm, the agent will set the 

leader identifier for the processor and the processor and its neighbors will have knowledge 

of each other. If the identifier of the processor is larger than the leader processor’s 

identifier, then the agent will initiate the leader announcement algorithm after the neighbor 

identification algorithm and set the leader identifier for all the processors equal to the new 

processor identifier. 

 

4.2. Processor Leaves 

There is a possibility that processors terminate due to reasons such as crashes or 

communication link failure may cause a processor to get disconnected from the network. 

For the leader election, processors with identifier smaller than leader are not important. 

Only when a processor with the largest identifier disconnects from the network, is there a 

need to find another leader. The processor can disconnect during several stages of the 

leader election process. When the processor disconnects the processor’s agent may cause 

another agent of the processor with the next largest identifier to terminate. If the exists an 

agent that has not yet covered this processor (with the next largest identifier), then it will 

create the agent again and this agent will run the leader announcement algorithm and 

terminate the leader election algorithm successfully. If however there is no agent that will 

visit this processor with the next largest identifier, then the leader election algorithm with 

terminate abnormally without a leader elected. In this case, after a certain timeout the 

processors will detect that there is no leader and restart the leader election algorithm. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 
A solution for leader election problem in distributed network was presented. The 

algorithms for leader election was built on agent based self-stabilization framework. The 

solution is generalized of any type of topology of the network. The termination time in case 

of synchronous networks is found to be of the order O(n). In asynchronous networks, the 

number of hops before termination of leader election is bounded by O(m+n). The message 

complexity for both synchronous and asynchronous networks was found to be 

approximately O(n2). An advantage of this technique for solving leader election is that an 

agent records the processor identifiers for each neighbor of all processors. So in case of 

subsequent runs of leader election algorithms, these can be reused and save the time for 

network covering. From the example, it was observed, that when the leader announcement 

was included in the network covering algorithm then the leader announcement message and 

time complexity is eliminated.  

In the paper [21], the time complexity obtained was very high and comparable to the 

message complexity of the algorithm. In this study, a much small order of time complexity 

is obtained though the algorithm is limited to use in only bi-directional networks. Further, 

in the study, the effect of implementing leader election when processors leave or join the 

network was examined. Several cases were drawn to see the effectiveness of the algorithm. 

As part of the future work, the study of leader election for the case of network partitioning 

and network merging needs to be examined.  
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