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ABSTRACT

Functional Data Analysis: Classification and Regression. (August 2004)

Ho-Jin Lee, B.E. Sung Kyun Kwan University, Korea;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Tailen Hsing

Functional data refer to data which consist of observed functions or curves eval-

uated at a finite subset of some interval. In this dissertation, we discuss statistical

analysis, especially classification and regression when data are available in function

forms. Due to the nature of functional data, one considers function spaces in pre-

senting such type of data, and each functional observation is viewed as a realization

generated by a random mechanism in the spaces. The classification procedure in

this dissertation is based on dimension reduction techniques of the spaces. One com-

monly used method is Functional Principal Component Analysis (Functional PCA) in

which eigen decomposition of the covariance function is employed to find the highest

variability along which the data have in the function space. The reduced space of

functions spanned by a few eigenfunctions are thought of as a space where most of the

features of the functional data are contained. We also propose a functional regression

model for scalar responses. Infinite dimensionality of the spaces for a predictor causes

many problems, and one such problem is that there are infinitely many solutions. The

space of the parameter function is restricted to Sobolev-Hilbert spaces and the loss

function, so called, ε-insensitive loss function is utilized. As a robust technique of

function estimation, we present a way to find a function that has at most ε deviation

from the observed values and at the same time is as smooth as possible.
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CHAPTER I

INTRODUCTION

Data arising in a wide range of fields are often obtained in a form of func-

tions. That is, one or more observations are taken on each of a number of indi-

viduals in a sample. Advancement of scientific technology requires development of

statistical analysis, with the aim of making inferences about population from which

functional data are drawn. While the analysis of functional data (FD) and that

of multivariate data share many common principles, the infinite-dimensional nature

of functional data presents many new challenges that are absent in the traditional

multivariate analysis. The book by Ramsay and Silverman (1997) gives a clear ac-

count of the basic considerations of functional data analysis (FDA). A software de-

veloped for both the Matlab and S-PLUS by Ramsay and Silverman is available from

http://www.psych.mcgill.ca/faculty/ramsay/fda.html.

Functional data refer to data which consist of observed functions or curves eval-

uated at a finite subset of some interval. In a conceptual sense, however it is thought

of as being defined continuously. Due to the nature of functional data, modeling such

type of data requires to consider function spaces such as Hilbert spaces, and each

functional observation is viewed as a realization generated by a random mechanism

in the spaces. What distinguishes FDA from other conventional statistics is the atom

of data. The numbers are regarded as the atoms in real random variables, and vectors

of numbers as the atoms in random vectors. In FDA, however, data come in a form

The format and style follow that of Journal of the American Statistical Association.
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of functions or curves as their atoms. It should be emphasized that the individual

datum in FDA is a whole function defined on some interval, rather than focusing on

the observed value at a particular point in the interval.

Functional Data Analysis has a wide range of flexibility in the sense that the

time points are not required to be equally spaced in subjects and furthermore they

can vary from one subject to another. Functional data do not necessarily assume

that an observation evaluated at one time point in the interval is independent that of

another point within the same functional datum. It can be assumed to be indepen-

dent from one functional datum to another, but not necessarily to be independent of

observed values at distinct time points within the same functional datum. In some

cases, functional data are functions of time, but it may not always be true. For exam-

ple, functional data on a higher dimensional space might be functions of quantities

other than time. Ramsey and Silverman (2002) may be consulted for more accounts

of case studies in FDA. For thorough mathematical aspects of functional analysis, see

Conway (1985), Lebedev et al.(2002) and Rynne et al. (2001).

1.1 Basis Function Approach

Consider the situation where we observe unsupervised sample curves, which is

partially observed on the subset of an interval. Let {X(t), t ∈ T} be a second

order stochastic process defined on T , e.g., X ∈ L2[0, 1]. The stochastic process is

a collection {X(t), t ∈ T} defined on a common probability space (Ω,F , P ). Let

PX be the corresponding probability distribution of X. In order to clarify the use of

the index set in stochastic processes, one needs to write X(t) as a function X(ω, t)

of two variables ω and t. For fixed t ∈ T , the function X(·, t) is a measurable map

from Ω into R. For fixed ω ∈ Ω, the function X(ω, ·) becomes a sample path of the
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stochastic process. Denoted by µ(t),

µ(t) := EX(ω, t) =

∫
x(ω, t)dPX(x), (1.1)

for fixed t. It may be reasonable to assume that the probability distribution PX be

a mixture distribution in which each of component distributions in PX represents

the underlying distributional substructure. The difficulty in implementing the idea is

that information of the structure of PX is rarely available.

An alternative in FDA setting to avoid the difficulty is to consider function spaces

where sample paths reside in. With fixed ω, a sample path X(ω, t) is an equivalent

class of functions in the function space L2. Since functions in the space L2 can be

expressed in terms of basis functions generating the space and furthermore the space

is a separable Hilbert space, each function in the space can be written as a countable

linear combination of the basis functions. Let {φk} be a set of basis functions of L2,

then we see that for each X(ω, t) with fixed ω, there is a unique c′ = (c1, c2, . . .) ∈ l2

such that

X(t) =
∞∑

k=1

ckφk(t). (1.2)

It should be emphasized that the stochastic process is decomposed into two parts ck

and φk(t) and the random mechanism only involves in the coefficients ck = ck(ω).

Once the representation by basis functions is adopted, three types of inquires

need to be answered for computational issues.

• How many basis functions are selected to describe the sample paths.

• Which basis functions are appropriate.

• How the coefficients c are determined based on partially observed functions.
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The choice of the number of basis functions clearly involves the decision of smoothness

as well as dimension reduction of the process. Ramsey and Silverman (1997) suggest

that 20-30 basis functions are in general enough to extract the prominent features.

Choosing a basis is a more controversial issue since no basis is universally good.

However there are advisable guidelines on specific occasions. For example, if the

paths are uniformly smooth with limited features and especially if the curves appear

to be periodic, then the Fourier basis seems to be a good choice. On the other hand,

splines or wavelets may be a better choice if there are a number of local features

which may be relevant for the statistical analysis.

Admitting a bit of abuse of notations, we may write

X(t) =
K∑

k=1

ckφk(t). (1.3)

In reality, X(t) is only observed on a finite set of time interval, and suppose that

we have a set of data xi(tij), i = 1, 2, . . . , n, j = 1, 2, . . . , Ji, where the time points

tij’s can be irregularly spaced. For simplicity, we assume that the time points are the

same for all the sample curves, which is denoted by t1, . . . , tJ .

The least squares approach is the standard method to determine the approxi-

mating basis expansion by minimizing the sum of squares, for i = 1, . . . , n,

J∑
j=1

[
xi(tj) −

K∑
k=1

ci,kφk(tj)
]2

= (xi − Φci)
′(xi − Φci)

= ‖xi − Φci‖2
RJ , (1.4)

where x′
i = (xi(t1), . . . , xi(tJ)), c′i = (ci,1, . . . , ci,K) and Φ = {φk(tj)}J,K

j,k=1. The solu-

tion vector to the minimization problem (1.4) is, for i = 1, . . . , n,

ci = (Φ′Φ)−1Φ′xi, (1.5)
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if Φ has full rank.

The computation in ci requires to obtain the inverse matrix, which can be chal-

lenging with higher dimension. However expensive computation can be lessened if

Φ′Φ is a “band matrix” with nonzero elements only close to the diagonal. A special

case of band matrices is a diagonal matrix. One such example is when the tj are

equally spaced and the Fourier basis is used then Φ′Φ is a diagonal matrix.

1.2 Using the Data to Represent Curves

Suppose that X(t) is a second order stochastic process on [0, 1] with zero mean

function and a covariance function v(s, t) = EX(s)X(t). In the previous Section 1.1,

we are interested in the estimation of all of X(t) by forcing the data to be adapted

into the space spanned by basis functions. As discussed before, the choice of basis

functions is a debatable problem, and one alternative approach is to take the data

itself as the basis.

To implement this idea, we use a linear combination

X(t) =
J∑

j=1

cjX(tj) (1.6)

and determine the cj’s by minimizing

L(c) = E
[
X(t) −

J∑
j=1

cjX(tj)
]2

= v(t, t) − 2
J∑

j=1

cjv(t, tj) +
J∑

j=1

J∑
k=1

cjckv(tj, tk). (1.7)

Differentiating with respect to cl and equating it to zero, we obtain

v(t, tl) =
J∑

j=1

cjv(tl, tj) =
(
v(tl, t1), · · · , v(tl, tJ)

)
⎡
⎢⎢⎢⎢⎣

ci

...

cJ

⎤
⎥⎥⎥⎥⎦ . (1.8)
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It is easily seen that ⎡
⎢⎢⎢⎢⎣

ĉi

...

ĉJ

⎤
⎥⎥⎥⎥⎦ = Σ−

⎡
⎢⎢⎢⎢⎣

v(t, t1)

...

v(t, tJ)

⎤
⎥⎥⎥⎥⎦ , (1.9)

where Σ = {v(ti, tj)}J
i,j=1 and Σ− is a Monroe-Penrose generalized inverse of Σ.

To give clear exposition of X(tj), we again employ two variables tj and w. Ob-

serve that X(tj) is a real value evaluated at t = tj and X(tj) is viewed as X(tj, w),

and hence X(tj) is a random variable. It is now clear that each cj is a function of t,

(1 ≤ j ≤ J).

When the data is used to represent curves, a disadvantage to the approach can

be found if the number of time points is relatively larger than the number of curves in

a sample (n << J). From (1.6), one needs to estimate the functions cj, (1 ≤ j ≤ J)

to get a single approximation of X(t). One of the desirable qualities of estimation is

parsimony. Specifically, we need estimation procedures to be as efficient as possible

without heavy computation. Comparing with the basis function approach in which

we need to estimate K real values for ck’s in (1.3), the method using the data to

construct curves can not be an efficient way. In addition to that, it may not be easy

to interpret the functions cj in (1.8).

1.3 Treating Functional Data as Multivariate Vectors

One of the simplest ways to handle functional data is to treat them as multivari-

ate vectors. That is, the space where each datum resides is not a space of functions,

but a finite dimensional RJ . One should note that this method does not consider any

dependencies of different values over subsequent time-points within the same func-

tional datum, so called horizontal dependencies. Employing the method implies that

permuting time points arbitrarily, which is equivalent to exchanging the order of the
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indexes in a multivariate vector, should not change the result of statistical analysis.

Accounting for the inherent nature of the data and using the dependencies along the

time-axis should lead to higher quality results.
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CHAPTER II

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is an effective technique for understanding

the structure of data. Analogous to the classical multivariate PCA, the essential goal

of functional PCA is to obtain a few orthogonal functions that most efficiently describe

the variations in the data.

Let {X(t), t ∈ T} be a zero-mean stochastic process where T is some index set

which is taken to be a bounded or unbounded interval here. Assume that the sample

paths belong to the usual L2 space of measurable functions on T with inner product

〈f1, f2〉 =

∫
T

f1(x)f2(x)dx.

Let v be the covariance function of the {X(t)}, i.e. v(s, t) = EX(s)X(t). The

covariance operator V is defined to be

V f → 〈v(x, ·), f(x)〉 =

∫
T

v(x, ·)f(x)dx, f ∈ L2.

Since the operator V is a Hilbert-Schmidt operator (Rynn and Youngson, 2001), V

admits an eigenvalue decomposition, namely V has a sequence of eigenvalues and

eigenfunctions ρi, ξi, i = 1, 2, . . . , satisfying

V ξi = ρiξi and 〈ξi, ξj〉 = δi,j for all i, j.

In practice, we do not know the true function v but rather have a sample

xi(t), 1 ≤ i ≤ n, where for each i, xi(t) is observed on a discrete set of points

Ti = {ti,1, . . . , ti,Ji} for some finite Ji. In principle, v can be estimated from the

data and the ρi, ξi can then be computed from the estimated covariance operator.
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There are a number of ways to do this. Here we adopt the basis function approach in

Ramsay and Silverman (1997). First, let {φ1, . . . , φK} be the first K basis functions

in a basis, where K is picked to be large enough, say, between 20 and 30, so that

these functions will be able to described most of features of the data. The basis are

selected based on the nature of the data; for example if the data are smooth and

periodic then a Fourier basis might be ideal and for data that have a lot of local

features then B-splines might work better. Approximate each xi by

x̃i(t) =
K∑

k=1

ci,kφk(t)

where the coefficients ci,k are obtained by minimizing the least squares criterion func-

tion:
Ji∑

j=1

[
xi(ti,j) −

K∑
k=1

ci,kφk(t)

]2

.

The centered version of x̃i is then

x̂i(t) =
K∑

k=1

ĉi,kφk(t),

where

ĉi,k = ci,k − 1

n

n∑
i=1

ci,k.

Then the sample covariance functions is

v̂(s, t) =
1

n

n∑
i=1

x̂i(s)x̂i(t) (2.1)

=
1

n

n∑
i=1

K∑
k=1

K∑
l=1

ĉi,kĉi,lφk(s)φl(t). (2.2)

Hence the estimated covariance operator is

V̂ f =
1

n

n∑
i=1

K∑
k=1

K∑
l=1

ĉi,kĉi,l〈φk, f〉φl, (2.3)
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and if f =
∑K

m=1 amφm, then

V̂ f =
1

n

n∑
i=1

K∑
k=1

K∑
l=1

K∑
m=1

ĉi,kĉi,lam〈φk, φm〉φl, (2.4)

which can be conveniently expressed as

V̂ f = φ′CΦa, (2.5)

where

C =

[
1

n

n∑
i=1

ĉi,kĉi,l

]K

k,l=1

, Φ =
[
〈φk, φm〉

]K

k,m=1
, φ = (φ1, . . . , φK)′, a = (a1, . . . , aK)′.

Hence the eigenvalue problem in the functions space

V̂ f = λf

can be expressed as

φ′CΦa = λφ′a. (2.6)

and can be solved as an eigenvalue problem in the finite dimensional space:

CΦa = λa. (2.7)

Thus, the jth principle component eigenvector aj of CΦ leads to an estimate ξ̂j =

φ′aj of the jth principal component eigenfunction of V .

Following the above procedure, the jth principle component score of x̂i is defines

to be

αi,j = 〈x̂i, ξ̂j〉, (2.8)

and we can write

x̂i = x̂i,p + ri,p, (2.9)
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where

x̂i,p =

p∑
j=1

αi,j ξ̂j and ri,p = x̂i − x̂i,p. (2.10)

Denoting the principal component score vectors by αp
i := (αi,1, . . . , αi,p)

′, 1 ≤
i ≤ n, a larger p will allow x̂i,p(t) to approximate x̂i and hence xi better, but it could

also result in over-fitting in the classification.
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CHAPTER III

SUPPORT VECTOR MACHINE

The Support Vector Machine (SVM) is a recently developed classification tech-

nique by Vapnik (1995). The main idea behind the technique is embodied in the

Structural Risk Minimization (SRM) principle in which it aims at minimizing an up-

per bound on the generalization error of a model via a nested sequence of function

classes. The SRM principle is proposed to overcome the problem that while the em-

pirical risk converges to the expected risk by the law of large numbers, this does not

necessarily imply that the minimizer of the empirical risk converges to that of the

expected risk in the limit of sample sizes. The structure of the function class in the

SRM principle finds a decision function having a small training error and the function

comes from an element of the structure that has low capacity or VC dimension.

Kernels used in the SVM generalize the concept of linear decision boundaries for

classification, producing nonlinear boundaries by building a linear boundary in an en-

larged feature space H. Transforming of the data into the larger feature space achieves

linear separation easier, and the linearly separating boundary in H is translated into

a nonlinear boundary in the original space. SVM is an extremely powerful general

methodology which has a wide range of applications, including pattern recognition

(Burges, 1998), gene classification (Brown et al., 1999) and spam filtering (Drucker

et al., 1999). For complete details of SVM, see Vapnik (1995, 1998), Burges (1998),

Cristianini and Shawe-Taylor (2000) and Gunn (1998).
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3.1 Support Vector Machine For Classification

In this chapter we describe SVM for classification to determine a rule from the

observed data (xi, yi), 1 ≤ i ≤ n, to classify any new observation for which the class

label is not observed. The classification problem here is confined to the case where

yi ∈ {−1, +1} for simplicity. For the most part, xi is only required to be in a dot

product space. However, to conform with the literature at large, we assume that

xi ∈ Rp for some positive integer p.

For an overview we briefly investigate the main ideas here. Suppose that we

have a linearly separable data set {(xi, yi) ∈ Rp×{−1, +1}}n
i=1 for which the positive

examples (yi = 1) can be perfectly separated from the negative examples (yi = −1)

by a hyperplane in Rp. Then there exists f(x) = w · x + b, w ∈ Rp and b ∈ R,

satisfying that for i = 1, . . . , n,

f(xi) ≥ 1 if yi = 1 and f(xi) ≤ −1 if yi = −1.

Combining these two conditions,

yif(xi) ≥ 1 for i = 1, . . . , n. (3.1)

There are many possible linear hyperplanes that satisfy (3.1) but SVM selects

the one that maximizes margin (maximizes the distance from the hyperplane to the

nearest positive and negative data points). Consider the points for which the equality

holds in (3.1), and these points lie on either w · x + b = 1 or w · x + b = −1 with

normal vector w and perpendicular distances from the hyperplanes |1 − b|/‖w‖ and

| − 1 − b|/‖w‖, respectively. Thus, the margin is simply given by 2/‖w‖. Note that

the hyperplane maximizing 2/‖w‖ is obtained by minimizing

1

2
‖w‖2, (3.2)
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subject to (3.1). Note that changing b will move it in the normal direction provided

(3.1) holds, thus the margin remains unchanged but the hyperplane is no longer

optimal.

The solution of the primal optimization problem (3.2) subject to the constraint

(3.1) can be written in terms of the Lagrange functional

L(w, b, λ) =
1

2
‖w‖2 −

n∑
i=1

λi((w · xi + b)yi − 1), (3.3)

where λi ≥ 0 are the Lagrange multipliers. The Lagrangian has to be minimized

with respect to w and b, and maximized with respect to λi. We now introduce the

duality of the primal problem, which is easier to solve. The dual problem is found by

differentiating with respect to w and b and imposing stationarity, then the duality is

given by

max
λ

W (λ) = max
λ

n∑
i=1

λi − 1

2

n∑
i=1

n∑
j=1

λiλjyiyj(xi · xj), (3.4)

subject to

n∑
i=1

λiyi = 0 and λi ≥ 0, i = 1, . . . , n. (3.5)

Denoted λ∗
i by the solution to the dual problem (3.4), we find the solution to the

primal problem (3.3) is

w∗ =
n∑

i=1

λ∗
i xiyi (3.6)

b∗ = −1

2
w∗ · (xr + xs) (3.7)

where xr and xs are any support vector from each class satisfying,

λ∗
r, λ∗

s > 0 and yr = 1, ys = −1. (3.8)



15

Finally, our decision rule is defined to be

ψ(x) = sgn(f(x)). (3.9)

The arguments above require that the training data are linearly separable but it

may not be realistic. We can relax this condition by introducing an additional cost

function or soft margin associated with misclassification error. To enable the optimal

separating hyperplane method to be generalized, non-negative variables νi need to be

incorporated into the problem for linearly separable case. For a given value of C,

min
w,b,ν

1

2
‖w‖2 + C

n∑
i=1

νi, (3.10)

subject to

yi(w · xi + b) ≥ 1 − νi, i = 1, . . . , n. (3.11)

The Lagrangian for the optimization problem of (3.10) under the constraints of (3.11)

is given by

L(w, b, ν, λ, µ) =
1

2
‖w‖2 + C

n∑
i=1

νi −
n∑

i=1

λi((xi · w + b)yi − 1) −
n∑

i=1

µiνi, (3.12)

where λi ≥ 0 and µi ≥ 0 are the Lagrange multipliers. The corresponding duality is

obtained from the similar argument,

max
λ

W (λ) = max
λ

n∑
i=1

λi − 1

2

n∑
i=1

n∑
j=1

λiλjyiyj(xi · xj), (3.13)

subject to

n∑
i=1

λiyi = 0 and 0 ≤ λi ≤ C, i = 1, . . . , n. (3.14)

The solution to the optimization is identical to the separable case except for a

modification of the bound C of the Lagrange multipliers. The objective functional

W (λ) can be written in a more compact form as follows:

λ · 1n − 1

2
λtKλ, (3.15)
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where 1n = (1, . . . , 1)t and K is an n × n positive-definite matrix whose entries are

Kij = yiyjxi · xj. Note that the dual optimization problem (3.13) is in the form

of dot product xi · xj. From the fact the problem is completely described by the

inner products of the training data we can extend the concept of inner product to the

so-called kernel method by mapping the data into high dimensional feature spaces.

3.2 Nonlinear Support Vector Machines

In cases where a linear decision function is not appropriate we map the data x into

a high dimensional feature space H. It can be thought of as a generalization of inner

products by choosing a nonlinear mapping φ : Rp → H. Then the SVM constructs

an optimal separating hyperplane in this higher dimensional space based on the data

through a dot product defined on H, i.e. on functions of the form φ(xi) · φ(xj). If

there were a kernel function k such that k(xi,xj) = φ(xi) · φ(xj), the use of kernels

makes it possible to map the data implicitly into a feature space, and we would never

need to know what φ is used.

Using the kernel k(xi,xj) = φ(xi)·φ(xj), the optimization problem (3.3) becomes

max
λ

W (λ) = max
λ

n∑
i=1

λi − 1

2

n∑
i=1

n∑
j=1

λiλjyiyjφ(xi) · φ(xj)

= max
λ

n∑
i=1

λi − 1

2

n∑
i=1

n∑
j=1

λiλjyiyjk(xi,xj),

(3.16)

subject to

n∑
i=1

λiyi = 0 and λi ≥ 0, i = 1, . . . , n. (3.17)

Solving the equation (3.16) under the constraints (3.17) determines the Lagrange

multipliers, and the solution is given by

f(x) =
∑
ns

λiyik(si,x) + b, (3.18)
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where the si are support vectors and the summation is defined over the set of support

vectors. A list of various kernels is given in Table 1.

Table 1: Kernel functions.

Kernel Function Regularization Network

(x · y) Linear
(x · y)d Polynomial of degree d
exp(−γ‖x − y‖2) Gaussian Radial Basis Function
tanh(x · y − θ) Multi Layer Perceptron
B2n+1(x − y) B-spline

(‖x − y‖2 + c2)1/2 Multiquadric

(‖x − y‖2 + c2)−1/2 Inverse Multiquadric
sin(d + 1/2)(x − y)

sin((x − y)/2)
Fourier
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CHAPTER IV

CLASSIFICATION

4.1 Introduction

Classification of multivariate data has long been an important problem in statis-

tics. For example, linear discriminant analysis goes as far back as Fisher (1936).

In this chapter, we consider a classification problem in FDA. Consider the situation

where we observe a sample from each of two different populations of curves, where

the identity of each observed curve is known. The goal is to use the sample infor-

mation to construct a classifier to classify any future curve for which the identity is

unknown. For example we might be interested in classifying normal brain waves from

those that belong to jet pilots under large g-force and about to pass out; the classifier

can be used in any future mission in judging the state of alertness of the pilot, or

we might be interested in classifying curves that describe harmless seismic activities

from those that describe activities which will lead to major earthquakes. In Section

4.5 we will consider a data set in which X records the amount of eggs per day laid by

fruit flies over a time period and we wish to classify if the flies are long or short-lived.

Mathematically, we consider data in which each observation is pair of values (X, Y )

where X is a curve which is wholly or partially observed and Y is its class label which

assumes a finite number of values. The objective is to obtain a rule from a sample to

classify a new observation X by estimating the corresponding value of Y .

FDA is of growing interest in the scientific literature. The books by Ramsay and

Silverman (1997, 2002) are an excellent source for methodological aspects of FDA,

and in particular chapter 6 addresses the principal components approach. Focusing

on classification of functional data, Hall et al. (2001) proposes a nonparametric pro-
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cedure for signal discrimination in which dimension reduction is obtained using the

Karhunen-Loève expansion of covariance function, and then a new observation is as-

signed to the signal type with the highest posterior probability calculated from use of

kernel methods. Müller and Stadtmüller (unpublished manuscript) study FD classifi-

cation problem based on a parametric approach. They also use the Karhunen-Loève

expansion with the aim to reduce the dimension, and then apply the machinery of

the generalized linear model with logit link function. Alter et al. (2000) adopt the

Generalized Singular Value Decomposition to classify dynamic genes for genome-scale

expression arrays data with repeated measurements. James and Hastie (2001) employ

the functional clustering model, producing low-dimensional representations of sample

curves via parameterization of cluster means. The technique they use is particularly

useful when curve data are observed at a sparse set of time points.

We only consider the situation where the curves are dense. When the curves are

only irregularly sampled, the challenges will be different (James and Hastie, 2001).

The classification approach to be addressed in this chapter is composed of two pro-

cedures: Functional Principal Component Analysis (functional PCA) and Support

Vector Machine (SVM). Dimension reduction of a function space is achieved by us-

ing functional PCA, which extracts the modes of variation of curves, and then the

SVM is applied to the principal component scores from functional PCA to classify

functional data. The SVM based on the idea of Vapnik’s theory (Vapnik, 1995) is

related to regularization theory, which induces a general decision function for classi-

fication of multidimensional space. For details of regularization theory, see chapter

4 in Schölkopf and Smola (2002). The SVM has seen increasing attention from the

statistics community. For an overview, see Vapnik (1995), Burges (1998) and Cris-

tianini and Shawe-Taylor (2000). Refer to Smola et al. (1998) for the connection

between regularization networks and SVM.
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4.2 Application of Functional Data to Support Vector Machine

We have described the functional PCA for the purpose of feature extraction of

data and SVM for classification of vector-valued input data. Assume that X(t) is

a second order stochastic process such that square integral is finite and Y is a real

valued random variable. For a binary case, we would have Y ∈ {−1, 1}. Without loss

of generality, we can always assume that EX(t) = 0.

Remember that a stochastic process is a collection {X(t), t ∈ T} defined on a

common probability space (Ω,F , P ) and PX is the corresponding distribution func-

tion. In order to clarify the use of the index sets in stochastic processes, we again

write X(t) as a function of two variables X(ω, t). Let us assume that X(t) is centered,

i.e., for fixed t,

EX(t) = EX(ω, t) =

∫
x(ω, t)dPX(x) = 0. (4.1)

Suppose that the process is written as

X(t) = X(ω, t) =
∞∑

j=1

αjξj(t) =
∞∑

j=1

αj(ω)ξj(t), (4.2)

where ξj(t) form orthonormal basis of the function space L2 and random variables

αj = αj(ω) are the coefficients of the projection to eigenfunctions ξj(t). Note that

for fixed j,

〈ξj(·), X(·)〉 =

∫
T

ξj(t)X(ω, t)dt

=

∫
T

ξj(t)
∞∑

k=1

αk(ω)ξk(t)dt

= αj(ω)

Thus,

E[αj(ω)] =

∫ ∫
T

ξj(t)x(t)dtdPX(x) =

∫
T

ξj(t)

∫
x(ω, t)dPX(x)dt = 0,
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by the assumption of the centered X(t). Now consider

Var(αi(ω)) =

∫ ( ∫
T

ξi(t)x(t)dt
)( ∫

T

ξi(s)x(s)ds
)
dPX(x)

=

∫
T

∫
T

ξi(s)
( ∫

x(s)x(t)dPX(x)
)
ξi(t)dsdt

=

∫
T

∫
T

ξi(s)v(s, t)ξi(t)dsdt

= ρ2
i .

It can be seen that∫
T

EX2(t)dt =

∫
T

∫
x2(t)dPX(x)dt

=

∫
T

∫ ( ∞∑
i=1

αi(ω)ξi(t)
)( ∞∑

j=1

αj(ω)ξj(t)
)
dPX(x)dt

=
∞∑
i=1

∞∑
j=1

∫
αi(ω)αj(ω)

∫
T

ξi(t)ξj(t)dtdPX(x)

=
∞∑
i=1

∫
α2

i (ω)dPX(x)

=
∞∑
i=1

Var(αi(ω))

=
∞∑
i=1

ρ2
i < ∞.

Since the predictor variable forms a curve, it is necessary to reduce its dimension-

ality by using functional PCA on X(t). With a choice of p = pn increasing as n → ∞
the predictor X(t) can be split into two components for which the first component

comprises the first p terms in the expansion of X(t) in (4.2) and the second one keeps

the remaining of the expansion. A subjective decision for the choice of p can be made

from a scree plot which shows percentages of variation of the predictor X(t). For
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fixed t, let

Ap(t) = Ap(ω, t) =

p∑
j=1

αj(ω)ξj(t), (4.3)

Bp(t) = Bp(ω, t) =
∞∑

j=p+1

αj(ω)ξj(t). (4.4)

Then we find that

E(X(t) − E(X(t)|Ap(t)))
2 = E(Bp(t) − E(Bp(t)|Ap(t)))

2

= EB2
p(t) − 2E(E2(Bp(t)|Ap(t))) + E(E2(Bp(t)|Ap(t)))

= EB2
p(t) − E(E2(Bp(t)|Ap(t))).

Thus the approximation error of X(t) truncated at the pth term is bounded

above. If p = pn goes to infinity as n → ∞, the approximation error tends to be zero.

However, the larger value p might add a lot of noise to the approximation, which

leads to over-fitting in classification procedures.

We note that for X(t), the αj’s are uniquely determined with respect to the set

of ξi(t)’s. For a given value of p, the p-truncated process, denoted by Xp(t) can be

expressed as

Xp(t) =

p∑
j=1

αjξj(t). (4.5)

Our aim is classification of functional data, each of which is expressed in terms of

a p dimensional vector αp = α = (α1, α2, . . . , αp)
′, called principal component scores.

Considering the α’s to be input examples in SVM instead of using the functional

data, we are able to assign the functional data to their class labels through principal

component scores α obtained from functional PCA of X(t). For a linearly separable

case with binary label (Y ∈ {−1, 1}), SVM allows us to reconstruction of a linear

function which generalizes relation of between α and its class label. The various
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methods in SVM literature introduced in the previous section such as non-linear cases

and kernel methods are also applied to classify functional data. All the simulations

and real data analysis in the dissertation are done via SVMlight by Joachims (1998)

4.3 Performance Measures

Natural concerns arising in any statistical classification procedures are how well

a classification rule performs given the training examples available and how one esti-

mates the generalization error of the rule. In this section we discuss the training error

as an estimator of the generalization error, and other performance measures such as

the recall and the precision will be introduced in the line of cross-validation.

Suppose the training examples are generated from a unknown distribution P (α, y),

where α has been defined in section 4.2. The generalization error of a classification

rule ψ based on data Dn = {(α1, y1), . . . , (αn, yn)} is defined to be

Err(ψ) = P [ψ(α) 	= y|Dn] =

∫
L(ψ(α), y)dP (α, y), (4.6)

where L is the 0-1 loss function. A natural estimate of the error rate is the training

error, which is defined to be

Êrr(ψ) =
1

n

n∑
i=1

L(ψ(αi), yi). (4.7)

When we seek for a ψ such that it minimizes the training error Er̂r(ψ), noticing

that it is measured on the same data set implies that it is expected to have an under-

estimate of the generalization error Err(ψ). A common alternative for estimating the

generalization error rate is cross-validation or leave-one-out (loo) estimate. From the

training example Dn = {(α1, y1), . . . , (αn, yn)} the first example (α1, y1) is removed.

The resulting sample D
(−1)
n is used for training, leading to a classification rule ψ(−1).

This classification rule is tested on the held-out example (α1, y1). This process is
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repeated until all training examples are completed. The number of misclassification

divided by n is the loo estimate of the generalization error.

Êrrloo(ψ) = err(ψ) =
1

n

n∑
i=1

L(ψ(−i)(αi), yi). (4.8)

Various measures of performance other than the training error based on loo

estimator have been developed by Joachims (2000). In the chapter, the recall and the

precision of a decision rule ψ are defined.

The recall Rec(ψ) of a decision rule ψ is defined to be the probability that an

example α with label y = 1 is classified correctly i.e. ψ(α) = 1:

Rec((ψ)) = P (ψ(α) = 1|y = 1)

=
P (ψ(α) = 1, y = 1)

P (ψ(α) = 1, y = 1) + P (ψ(α) = −1, y = 1)
.

(4.9)

Similarly, the precision Pre(ψ) of a decision rule ψ is defined to be the probability

that an example α classified as ψ(α) = 1 is indeed with the same label, i.e., y = 1:

Pre((ψ)) = P (y = 1|ψ(α) = 1)

=
P (ψ(α) = 1, y = 1)

P (ψ(α) = 1, y = 1) + P (ψ(α) = 1, y = −1)
.

(4.10)

For technical details of the estimators of the three measures, see Joachims (1998,

2000) .

4.4 Simulation Studies

In this section we compare the performances of SVM to other traditional classi-

fication procedures through numerical examples. We generate two sets of functional

data: non-Gaussian and Gaussian stochastic processes. For the non-Gaussian stochas-

tic process we set two true curves with each of 500 simulated sample curves observed

on 25 time points in [0, 1]. The two true functions are taken such as

Π1 =
√

2
(
0.9 sin(πt) + 1.1 sin(2πt) + 0.8 cos(3πt) + 0.80 cos(4πt)

)
Π2 =

√
2
(
1.0 sin(πt) + 1.5 sin(2πt) + 0.7 cos(3πt) + 0.75 cos(4πt)

)
.
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Each sinusoidal function is multiplied by a random number from uniform distribu-

tions to generate a total of 1000 sample curves. See Figure 1. Note that the shapes

and patterns of all the curves are similar, indicating that it does not seem possible to

detect one class from the other. In order to apply the functioanl PCA and then SVM

for classification, we need to estimate the eigenfunctions from the estimated sample

covariance function. See Figure 2. Solving the eigenequation from Chapter II leads to

the principal component functions. Figure 3 shows the first four PC functions from

the non-Gaussian processes. All PC functions are clearly periodic and sinusoidal.

The first PC function finds that at time point 0.3 the processes have the greatest

variability. The second PC function represents the contrast between the first and the

second half. The third PC function measures uniformity over the time interval and

the fourth PC function concerns sinusoidal decreasing variability. They are orthonor-

mal to each other from the definition of PC functions.

The functional data of size 1000 are projected onto the space spanned by the set

of PC functions in order to get the coefficients α. Various kernel functions are cho-

sen to compare their performances via leave-one-out cross validation error rates. For

comparison with traditional statistical classification procedures using the PC scores

α, two alternatives are included in the simulation study: Fisher linear discriminant

analysis (Fisher LDA) as parameteric approach and kernel discriminant analysis as

nonparameteric approach. To illustrate the parametric method, suppose that each

class has a multivariate normal distribution. The Fisher LDA develops a discrimi-

nant function or classification criterion using Bayes decision rule. The classification

criterion is based on the pooled covariance matrix of α’s. With the identical prior

probability of all classes, each observation is classified into a class in which it has the

largest posterior probability of the observation. While the parametric approaches are

to assume particular distrubutional forms such as multivariate normal, nonparametric
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discriminant methods are based on nonparametric estimates of class-specific probabil-

ity densities. The kernel method can be used to estimate a nonparametric density in

each class and to produce a classification criterion. The kernel method uses uniform,

normal, Epanechnikov, biweight, or triweight kernels in the density estimation with

the bandwidth r. Large values of r lead to very smooth density estimates and amall

values of r lead to rough estimates. Once the densities are estimated, the posterior

probabilities of class membership at each observation are evaluated. An observation

is classified into a class in which its posterior probability has the largest value.
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Figure 1: Non-Gaussian stochastic processes.
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Figure 2: Sample covariance and correlation functions for non-Gaussian stochastic
processes.
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Figure 3: The first four principal component functions of non-Gaussian stochastic
processes.
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Table 2 summarizes the performances of the SVM, the Fisher LDA and the

nonparametric approach using Epanechnikov kernel with the bandwidth r being 0.6

with repect to leave-one-out cross validation error rates with 40 runs. The SVM

outperforms the other methods. The SVM using the quadratic polynomial kernel

with p = 4 yields better result than other SVM kernel functions. The table shows

that only 8 out of 1000 curves have been missclassified through the SVM classification

procedures.

For the sumulation study of stationary Gaussian processes, 40 sets of stationary

Gaussian stochastic processes of size 100 are generated for each class over 30 time

points. In the experiment of the Gaussian processes, covariance function is of the

form

v(s, t) = σ2r(s, t), (4.11)

where σ2 is the constant variance, producing the processes to homoschedastic and the

correlation function is of the form

r(s, t) = exp(−θuδ) (4.12)

for δ = 2, θ = 1, and σ2 = 1. See Trosset (1999).

Table 2: Averages of leave-one-out cross validation error rates for non-Gaussian func-
tional data.

p = 2 p = 3 p = 4

LDA 0.0186 0.0147 0.0490
NonPara (h = 0.6) 0.0148 0.0209 0.1989

SVM Linear 0.0159 0.0097 0.0095
SVM Polynomial 2 0.0140 0.0099 0.0084
SVM Polynomial 3 0.0140 0.0095 0.0091
SVM RBF (γ = 0.3) 0.0141 0.0093 0.0091
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A run out of 40 is shown in Figure 4. The corresponding covariance and corre-

lation functions are in Figure 5. The first four PC functions in Figure 6 show how

the covariance function is decomposed into the orthonormal functions. The first PC

function captures the overall mean function of the sample processes, noting that PC

functions are constant up to their sign. The second and third PC functions explain

variability of the processes in the first and third quarter on the time interval. The

forth PC function measures uniformity over the interval. Table 3 provides summary

of the performances and the results show that the cross validation error rates depend

on the choices of p. The Fisher LDA yields better performance when p = 3; non-

parametric classification with normal kernel and SVM work better when p = 4 and

p = 2, respectively. It should also be noted that larger value of p does not gurantee

better performances. All nine classification procedures including the Fisher LDA and

nonparametric method result in the smallest error rates when p is small. In general,

using superfluous variables in classification analysis adds noise to the analysis, and

indeed, it is not always true that more variables are better in classification analysis.
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Figure 6: The first four principal component functions of Gaussian stochastic pro-
cesses.
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4.5 Example: Medfly Fecundity Data

Clear understanding the relationship between reproduction and longevity is a

long research interest in ecology and evolution. One suspects that an increment in

reproduction might cause a decrement in longevity on organisms. The concept of

a “cost of reproduction” explains that a high degree of reproduction prevents an

organism from being prolonged lifespan, and reduces its ability to survive due to the

fact that resources are dissipated.

Mediterranean fruit flies (Ceratits capitata) or medflies in short have been studied

by many researchers (Carey et al., 1998, and Müller et al., 2001). The experiment

conducted by Carey at al. consists of one thousand of medflies as experimental units

and resulting data is collected by counting the daily eggs laid by each individual fly

over a certain period of time (30 days) as well as its lifespan. Out of one thousand

534 flies are selected, which lived past 34 days. A fly was assigned to the value of

Y = 1 indicating as long-lived if the remaining lifetime past 30 days was 14 days or

longer. Otherwise, Y = −1 was assigned to a short-lived fly. Of the 534 medflies,

256 were classified as long-lived and 278 were classified as short-lived. Applying the

basis expansion techniques to the raw data of daily egg counts, the data can then be

represented by (Xi(t), Yi) for i = 1, . . . , 534, where Xi(t) are the stochastic processes

of reproductory trajectories on t ∈ [1, 30] and Yi ∈ {−1, 1} are class labels.

Various basis functions such as the polygonal, the B-spline and the Fourier basis

can be applied to the raw data to get the predictor representations. We plot the

reproductory trajectories with polygonal basis for all medflies without distinction

between short-lived and long-lived (Figure 7) and the corresponding covariance and

correlation functions (Figure 8). We apply the functional PCA to the medflies data

expanded by the polygonal, the B-spline and the Fourier basis, respectively to get
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Figure 7: Plot of medflies data expanded by polygonal basis.

the principal component functions ξ(t)’s and the principal component scores α’s for

each Xj(t), j = 1, . . . , 534. The first four eigenfunctions are selected and shown

in Figure 9. From these plots we find that the first principal functions are overall

positive and indicate that the number of eggs laid by individual medflies has the

greatest variability at the fifth day. The second PC functions represent the contrast

the number of eggs between the first 10 days and the rest days and it is a measure

of a day-shift effect of the number of eggs over the two exclusive sets of days. Note

that the second PC functions for the polygonal and the B-spline basis have positive

weights between about 1-10 days. However the function for the Fourier basis shows
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Figure 8: Sample covariance and correlation functions of medflies data expanded by
polygonal basis.

negative weights between the same days. The third PC functions measures uniformity

of the number of eggs over the 30 days. The forth PC functions compare between the

number of eggs in the first and third quarters with the second and forth quarters over

the 30 days. For choices of p to determine the dimension in SVM, we find that there

are knees at p = 6 for the polygonal basis, p = 7 for the B-spline basis, and p = 6

for the Fourier basis in the scree plots (Figure 10). Consequently, we note that six to

seven principal components are enough to explain the variation in the medflies data.
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Figure 9: The first four estimated principal component functions of the medflies data
expanded by polygonal basis (the first row), B-spline basis (the second row), and
Fourier basis (the third row).
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A properly chosen value of p determines the dimension of the input space in the

SVM. With the set of training examples composed of the principal component scores

and their class labels, the SVM selects a classifier that separates the examples, max-

imizing the margin. The classifier generalizes our decision rule for classification and

makes it possible to predict the class membership when a new input example is given.

For the estimates of the generalization error and measures of efficiency such as the

training error, the recall and the precision are obtained under three different types of

kernel functions used in the SVM (Tables 4-6). We find that the SVM performs better

under the three models when p = 6 for the polygonal basis, p = 10 for the B-spline

basis, and p = 6 for the Fourier basis. It is consistent with the results from the scree

plots that determine the number of eigenfunctions for dimension reduction except

B-spline basis. Notably, the Model 3 (Gaussian radial basis) shows 100 percentages

in the recall whereas relatively lower percentages in the precision for all p compared

to other Models. The Model 1 (linear kernel) works better than the other two models

in consideration of the leave-one-out estimates of the generalization error.

There are many approaches developed in multivariate statistical analysis for clas-

sification. We compare the performance of classification in SVM with those of two

other mothods: Fisher linear discriminant analysis (Fisher LDA) as a parametric ap-

proach and kernel method as a nonparametric aproach. In Figure 11, we graph the

leave-one-out error estimates of the generalization errors for the three classification

methods over the various values of p. The results of the nonparametric method are

obtained from a choice of kernel being Epanechnikov and a bandwidth being 4 based

on cross validation criteria. Note that each of the classification methods does not

show monotonicity in the error estimates as p increases. The error estimates are

influenced by the decision of the truncation p in the functional PCA of X(t).
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However, the SVM classification shows the superiority in a missclassification error

sense to other two methods. We find that SVM performs better than the others at

p = 6 for the polygonal basis, p = 10 for the B-spline basis and p = 6 for the Fourier

basis. To investigate the classification performances over the various combination of K

and p, the configuration of combination are set to be K = 45 and p = 15, 25, 35, 45,

K = 75 and p = 15, 35, 55, 75 and K = 105 and p = 15, 35, 55, 75, 105. Figures

12 and 13 provides the leave-one-out error rates over the combinations under the

Fisher LDA, nonparametric discriminant analysis with the Epanechnikov kernel and

the SVMs with polynomial kernels. The SVM with the linear kernel has been shown

to perform well both the B-spline and the Fourier basis. It is seen that larger values of

p and K do not warrant a small error rate, and specifically, the SVM with polynomial

d = 3 in the B-spline basis provides the error rates such as 41.57% at (K, p) = (45, 15),

44.01% at (75, 15), 44.94% at (45, 35) and 45.69% at (75, 35).

The way of treating functional data as multivariate vector has been discussed

in Section 1.3, in which, as its weakness, we found that the horizontal dependencies

within the same functional data are neglected. Instead of using the basis expansion

approach, if the medfly data are considered to be vectors of size 30 by viewing the

data as multivariate vectors we discover that lack of incoporation of the dependencies

results in a higher leave-one-out error rate: the SVM shows 47.94% error rate.

We also provide the results of two methods; methods using PCA and without

using PCA. See Table 7. We find that the SVM using PCA show slightly better

performances than the SVM without PCA. It can be thought to support the idea

why we need to use PCA. Projection onto orthonormal eigenfunctions, capturing the

prominent directions, makes the process of classification easier.
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Table 7: Performances of SVM classifications with PCA and without PCA. Type of
kernel used is linear.

PCA Not PCA

Polygonal err 35.02 34.27
(p = 6) Rec 81.65 75.54

Pre 62.53 64.62

B spline err 33.15 35.02
(p = 10) Rec 76.26 76.26

Pre 65.63 63.66

Fourier err 36.14 36.70
(p = 6) Rec 81.65 75.18

Pre 61.52 62.20
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4.6 Summary

The main goal of this chapter was to provide a method for classification of func-

tional data. Since functional data is considered to be realizations of an infinite di-

mensional space, it is a difficult task to classify them. However, the functional PCA

presented in Chapter II allows us to reduce the dimensionality by projecting the

functional data onto the set of orthonormal basis functions. The set of principal

component functions extracts the main sources of variability that the data contains.

Orthogonality of the set of the basis functions induces the uniqueness of principal

component scores for each Xj(t), and then each principal component score in the

lower dimensional space is used for classification, instead of the data in a functional

form.

Support Vector Machine seeks for an optimal separating hyperplane to identify

the decision boundary for classification in a feature space. Applying SVM, one builds

up a generalized classifier capable of detecting the classes of new members. Appli-

cation to medflies data reveals that among the models that we examined, SVM that

uses a linear kernel results in the best performance. Determination of the values of p

from scree plots is shown to be appropriate. Finally measures of efficiency such as the

training error, the recall and the precision under different SVM models have been

presented for comparisons with application to the medflies data.
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CHAPTER V

FUNCTIONAL ROBUST REGRESSION

5.1 Theoretical Foundation

Consider the functional linear model

Y = 〈β, X〉L2[0,1] + e. (5.1)

In reality, xi, (i = 1, . . . , n), a realization of the stochastic precess X(t), t ∈ [0, 1], can

only be observed at a set of discrete points. However, in order to clarify reasoning

here, it is assumed that the discrete raw data is functionalized over a set of fine grid

time points {0 ≤ t1, t2, . . . , tN ≤ 1}. With appropriate choices of basis functions ψ’s

and the number of them being used p, we have

xi =

p∑
l=1

ci,lψl, i = 1, . . . , n. (5.2)

The Fourier basis is a good choice if the observed curves are uniformly smooth with

limited features, and especially if the curves appear to be periodic waves. On the other

hand, splines or wavelets may be a better choice if there are lots of local features which

may be relevant for the statistical analysis.

Under the model, the goal is to estimate the parameter function β(t), t ∈ [0, 1]

with the following criterion:

min
β∈Bm

1

n

n∑
i=1

|yi − 〈β, xi〉|ε + λ‖β‖2
Bm

, (5.3)

where

|x|ε =

⎧⎪⎨
⎪⎩

0 if |x| < ε

|x| − ε otherwise
(5.4)
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and Bm is the Sobolev-Hilbert space defined by

Bm = {β : β, β′, β(2), . . . , β(m−1) are absolutely continuous and β(m) ∈ L2[0, 1]}.

One refers to Vapnik (1995) and Smola and Schölkopf (1998) for the complete details

of the ε-insensitive loss function and the Support Vector regression. For each β ∈ Bm

we have by Taylor’s expansion with remainder

β(t) =
m−1∑
i=0

β(i)(0)

i!
ti +

∫ 1

0

(t − u)m−1
+

(m − 1)!
β(m)(u)du, (5.5)

where u+ = u1[0,1](u).

Define

φi(t) =
ti−1

(i − 1)!
, i = 1, 2, . . . , (5.6)

and

H0 = span{φ1, . . . , φm}. (5.7)

For any f, g ∈ H0, define the inner product

〈f, g〉 =
m−1∑
i=0

f (i)(0)g(i)(0). (5.8)

It is easy to see that the φi form an orthonormal basis for H0.

Consider the space

H1 = {β : β(i)(0) = 0, 0 ≤ i ≤ m − 1, β, β′ . . . β(m−1) are absolutely continuous

and β(m) ∈ L2[0, 1]}.

Note that any function in H1 satisfies

β(t) =

∫ 1

0

(t − u)m−1
+

(m − 1)!
β(m)(u)du. (5.9)
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The inner product on H1 is defined to be

〈f, g〉 =

∫ 1

0

f (m)g(m)(u)du. (5.10)

Furthermore, it can be seen that the spaces H0 and H1 are the reproducing kernel

Hilbert spaces (r.k.h.s.) with reproducing kernels

R0(s, t) =
m∑

i=1

φi(s)φi(t) (5.11)

R1(s, t) =

∫ 1

0

(s − u)m−1
+ (t − u)m−1

+

[(m − 1)!]2
du. (5.12)

Thus, Bm can be written as the direct sum of two reproducing kernel Hilbert spaces,

and hence each element in the space has a unique representation of the form: for all

β ∈ Bm,

β = β0 + β1,

where β0 ∈ H0 and β1 ∈ H1. Furthermore we have R = R0 + R1. See Wahba (1990)

for details of r.k.h.s.

It is easily seen that

β = βλ =
m∑

j=1

ajφj(·) +
N∑

k=1

bkR1(tk, ·). (5.13)

Consequently, the norm is defined to be, with a = (a1, . . . , am)′, b = (b1, . . . , bN)′,

‖β‖2
Bm

= 〈β, β〉Bm

= 〈
m∑

j=1

ajφj(·) +
N∑

k=1

bkR1(tk, ·),
m∑

j′=1

aj′φj′(·) +
N∑

k′=1

bk′R1(tk′ , ·)〉Bm

=
m∑

j=1

m∑
j′=1

ajaj′〈φj, φj′〉 +
N∑

k=1

N∑
k′=1

bkbk′R1(tk, tk′)

= a′R̃0a︸ ︷︷ ︸
:=‖β‖2

0

+ b′R̃1b︸ ︷︷ ︸
:=‖β‖2

1

, (5.14)
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where R̃0 =
[
〈φj, φj′〉

]m

j,j′=1
and R̃1 =

[
R1(tk, tk′)

]N

k,k′=1
. We can give more flexibility

to the second term in (5.3): since the squared norm of β is decomposed into two

components, we can have, instead of λ‖β‖2
Wm

,

λ0‖β‖2
0 + λ1‖β‖2

1, (5.15)

where λ0 and λ1 ≥ 0. For special cases, either λ0 or λ1 or both could be zero, then

further simplification of the models is made. However the simplification may cause

the problem of estimation to be of ill-posed. Depending upon research interest, we

may impose restrictions on λ’s such as 0 ≤ λ0 < λ1: the bigger value of λ1 is, the

more contribution β1 makes to the estimation of β. The simplest situation is the case

of λ = λ0 = λ1.

Now

〈β, xi〉 = 〈
m∑

j=1

ajφj +
N∑

k=1

bkR1(tk, ·),
p∑

l=1

ci,lψl〉

=
m∑

j=1

p∑
l=1

ajci,l〈φj, ψl〉 +
N∑

k=1

p∑
l=1

bkci,l〈R1(tk, ·), ψl〉

= a′Σ0ci + b′Σ1ci, (5.16)

where

Σ0 =
[
〈φj, ψl〉

]
m×p

, Σ1 =
[
〈R1(tj, ·), ψl〉

]
N×p

and ci = (ci,1, . . . , ci,p)
′.

As a result, it follows from (5.14), (5.15) and (5.16) that the minimization problem

in (5.3) can be written as

min
1

n

n∑
i=1

|yi − a′Σ0ci − b′Σ1ci|ε + (λ0a
′R̃0a + λ1b

′R̃1b). (5.17)

Introducing slack variables γi, γ∗
i , we have the following equivalent problem:

min
1

n

n∑
i=1

(γi + γ∗
i ) + (λ0a

′R̃0a + λ1b
′R̃1b), (5.18)
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subject to

yi − a′Σ0ci − b′Σ1ci ≤ ε + γi, i = 1, . . . , n,

a′Σ0ci + b′Σ1ci − yi ≤ ε + γ∗
i , i = 1, . . . , n, (5.19)

γi, γ∗
i ≥ 0, i = 1, . . . , n.

Thus we have the Lagrangian functional:

L(a, b, γ,γ∗; u, u∗,w,w∗) =
1

n

n∑
i=1

(γi + γ∗
i ) + λ0a

′R̃0a + λ1b
′R̃1b

−
n∑

i=1

αi

(
a′Σ0ci + b′Σ1ci − yi + ε + γi

)

−
n∑

i=1

α∗
i

(
yi − a′Σ0ci − b′Σ1ci + ε + γ∗

i

)

−
n∑

i=1

βiγi −
n∑

i=1

β∗
i γ

∗
i .

Let C be a p × n matrix by
[
c1, c2, . . . , cn

]
. Then we may express L as

L =
1

n
(γ + γ∗)′1 + λ0a

′R̃0a + λ1b
′R̃1b + (u − u∗)′y − ε(u + u∗)′1

−(a′Σ0 + b′Σ1)C(u − u∗) − (u + w)′γ − (u∗ + w∗)′γ∗.

Differentiation of L with respect to a, b,γ and γ∗ produces, assuming all inverse

matrices are well defined,

a =
1

2λ0

R̃−1
0 Σ0C(u − u∗). (5.20)

b =
1

2λ1

R̃−1
1 Σ1C(u − u∗). (5.21)

n(u + w) = 1. (5.22)

n(u∗ + w∗) = 1. (5.23)
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From (5.22) and (5.23), it follows that in L
1

n
(γ + γ∗)′1 − (u + w)′γ − (u∗ + w∗)′γ∗ = 0.

It can then be seen from (5.20) and (5.21) that

λ0a
′R̃0a + λ1b

′R̃1b − (a′Σ0 + b′Σ1)C(u − u∗)

= −1

2
(u − u∗)′K(u − u∗), (5.24)

where K =
1

2
C ′(Σ′

0R̃
−1
0 Σ0/λ0 +Σ′

1R̃
−1
1 Σ1/λ1)C. Substituting the results above into

L reduces the dual problem to minimization of W with respect to u and u∗ where

W(u,u∗) =
1

2
(u − u∗)′K(u − u∗) − (u − u∗)′y + ε(u + u∗)′1. (5.25)

The minimization is carried out subject to having

0 ≤ u, u∗ ≤ 1

n
1. (5.26)

From the optimizers û and û∗, we can estimate a in (5.20) and b in (5.21), hence

β in (5.13). That is, we have

â =
1

2λ0

R̃−1
0 Σ0C(û − û∗) and b̂ =

1

2λ1

R̃−1
1 Σ1C(û − û∗), (5.27)

which produces

β̂ =
m∑

j=1

âjφj +
N∑

k=1

b̂kR1(tk, ·). (5.28)

ŷ = â′Σ0C + b̂
′
Σ1C = (û − û∗)′K. (5.29)

It must be pointed out that the parameters λ0, λ1 and ε are assumed to be known

so far. However, in practical issues, it may not be true. Since the function β in (5.3)

depends on the parameters, investigation of the analytical search for the parameters

from the training data is so.
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5.2 SMO Algorithm for the Minimization Problem

The Sequential Minimal Optimization (SMO) algorithm, introduced by Platt

(1999), searches the optimizers through the feasible region and minimizes the dual

problem (5.25). In this Section, we describe a modified SMO algorithm in which the

bias term is not needed. See Vogt (2002). Let K = [kij]
n
i,j=1. The objective dual

functional is given by

W =
1

2
(u − u∗)′K(u − u∗) − (u − u∗)′y + ε(u + u∗)′1

=
1

2

n∑
i=1

n∑
i=1

(αi − α∗
i )(αj − α∗

j )kij −
n∑

i=1

yi(αi − α∗
i ) + ε

n∑
i=1

(αi + α∗
i )(5.30)

subject to

0 ≤ αi, α∗
i ≤ n−1 for i = 1, . . . , n. (5.31)

Without loss of generality, we can assume that α1 and α∗
1 are the variables to

be optimized, and then go to the next α’s. The choice of an index i is based on the

reasoning of Platt. The objective functional W can be expressed in terms of α1 and

α∗
1.

W =
1

2
k11 +

( n∑
j=2

(αj − α∗
j )k1j − y1

)
(α1 − α∗

1) + ε(α1 − α∗
1) + const. (5.32)

Let αi = αold
i and α∗

i = α∗old
i for i = 2, . . . , n and Ei = ŷi − yi, where ŷi =

n∑
j=1

(αold
j −

α∗old
j )kij. Then it can be easily seen that

W =
1

2
k11α

2
1 +

(
E1 − (αold

1 − α∗old
1 )k11 + ε

)
α1

+
1

2
k11α

∗2
1 −

(
E1 − (αold

1 − α∗old
1 )k11 − ε

)
α∗

1 + const. (5.33)

Taking derivatives with respect to α1 and α∗
1 and equating them to zero imply that

α1 = αold
1 − α∗old

1 − E1 + ε

k11

(5.34)

α∗
1 = −α1 − 2ε

k11

. (5.35)
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Note that W contains no cross product term, and the solutions of the constrained

problem are found by clipping α1 and α∗
1 to the interval [0, n−1]:

αnew
1 = min{max{α1, 0}, n−1} (5.36)

α∗new
1 = min{max{α∗

1, 0}, n−1}. (5.37)

In order for a point to be the optimal, the Karush-Kuhn-Tucker (KKT) conditions

are fulfilled. The KKT conditions for the optimization are particularly simple: For

i = 1 . . . , n, the optimal solution αi should satisfy one of the three conditions:

αi = 0 ∧ ε + Ei ≥ 0

0 < αi < n−1 ∧ ε + Ei = 0

αi = n−1 ∧ ε + Ei ≤ 0.

Similarly, for α∗
i ,

α∗
i = 0 ∧ ε − Ei ≥ 0

0 < α∗
i < n−1 ∧ ε − Ei = 0

α∗
i = n−1 ∧ ε − Ei ≤ 0.

5.3 Simulation Study

In this section, we compare the performance of our functional regression method

on two datasets with SMO algorithm. We generate stationary Gaussian processes as

a predictor X(t), t ∈ [0, 1] using (4.11) and (4.12) and choose three true functions β,

linear, quadratic and sinusoidal functions, respectively. A standard Gaussian noise

adds to the dependent variable Y . With the choices of m = 2 or 3, the Sobolev-Hilbert

space is decomposed to two orthogonal spaces, leading to express the parameter func-

tion as a direct sum in (5.13). They amount to present the function as a composite
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of a linear and a nonlinear but smooth enough function if m is chosen to be 2 and as

a quadratic and a higher order funtion if m = 3.

When the true function is linear, our estimate is close to the true function and

the estimates of the dependent variable are so. In the case where the true function

is quadratic and m is chosen as 3, we find that the values of the dependent variable

is well estimated. Figure 14 compares the values of the estimated dependent variable

with the observed values. The parameter estimate in the case of the sinusoidal func-

tion with m = 3 is shown in Figure 15, which provides the performance as reliable

as those of the linear and quadratic functions. The value m and the regularization

parameters λ0 and λ1 play crucial roles in the estimation of the function. The parame-

ters λ’s control the trade-off between goodness-of-fit and smoothness of the estimated

β function. It is clear that if the parameter function β is a cubic function, it would be

desirable to choose m to be 4, accommodating all the cubic functions. Consequently,

the space H0 consisting of all the cubic functions presents a primary structure of the

function β, and the corresponding λ0 will be larger to give more weights. However

consider the case where the function β is a higher order polynomial function or even

not an analytic function, then determination of the value m would be challenging or

impossible. Once m is chosen, which is equivalent to decomposition of the space H
into two orthogonal spaces, each of the spaces are weighted by the same regularizers.

The process of function estimation is sensitive to the regularizers, and even worse

when the value m is not appropriately chosen.
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Figure 14: Simulation data. The estimated values (red dotted lines) and data values
(black solid lines) are shown. Upper: the β function is linear with m = 2. Bottom:
the β function is quadratic with m = 3.
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5.4 Example: Lipoprotein Density Profiles Data

It is well known that abundance cholesterol in bloodstream causes a buildup of

plague in artery walls, resulting in higher risks for the development of atherosclerosis

and coronary heart disease. Establishing serum cholesterol as a useful indicator for

an individual’s predisposition for coronary heart disease motivates its routine mea-

surement. The precision and accuracy has been improved in cholesterol measurement

through technical advances of instrumentation, however, serum cholesterol concen-

tration is still subject to some variation, and hence is unreliable.

The degree of heterogeneity of serum lipoprotein particles is an important fac-

tor in investigating the assessment of cardiovascular risk. No conclusive agreement

has yet been made on the lipoprotein profile for accessing risk of cardiovascular dis-

ease accurately. However, much attention has been focused recently as possibility of

heart disease on the relation of lipoprotein subclasses: Very Low Density Lipoprotein

(VLDL), Low Density Lipoprotein (LDL) and High Density Lipoprotein (HDL). It

is known that all the major lipoproteins show differing sub-distributions in serum.

Excess cholesterol in the bloodstream in the form of LDL subclass can increase the

plague buildup on artery walls. The higher the level of LDL, the greater a patient’s

risk of cardiovascular disease. Studies of structure in the lipoprotein density distri-

bution provide a guide for assessment of cardiovascular disease risk.

The data in Figure 16 is a functional data in which the lipoprotein profile func-

tions for each of 24 individuals patients are obtained. Each profile is defined over an

interval which corresponds to the density (weight/volumn) scale of lipoprotein parti-

cles, and the value of profile function at a point in the density scale is the value of

abundance of lipoprotein particles evaluated at the point. The three picks in each pro-

file in the plot, from left to right, correspond to VLDL, LDL and HDL, respectively.
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Figure 16: Lipoprotein density profiles data.

The response variable Y is taken as the total cholestrol level of 24 patients. Figure 17

shows the estimator of the regression weight fuction β described in Section 5.1 and

the estimated values of the total cholestrol level via the model for each patients. The

regularization paramters λ0 and λ1 are obtained through the grid searches, minimiz-

ing the ε insensitive loss function. From the estimated function, we find that VLDL

and LDL have larger weights in predicting the total cholestrol level, supporting that

the LDL subclass in the bloodstream can increase the risk of cardiovascular disease.
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5.5 Discussion

As in the classical least squares estimator, functional linear regression is a stan-

dard method because of rather easy computation. Unfortunately, the standard func-

tional regression analysis is quite sensitive when higher dimensional data are analyzed.

An example of robust regression analysis is SVM regression in which the regression

problem is solved by introduction of the ε-insensitive loss function. The ε-insensitive

loss function ignores errors that are within the ε distance, and the points outside

the ε tube only contribute to the cost function, leading to the sparse representation

of the dual variables. Using a small number of data points warrants a significant

advantage in practical computation. The parameter function β is restricted to be in

the Sobolev-Hilbert space, which insures the smoothness of the function. The norm,

in an L2 sense, on the space plays a role of balancing the bias and variance trade-off.

Lipoprotein profiles data has been used to show how this idea is applied. The

parameter function β is restricted to be an element in the Sobolev-Hilbert space,

which imposes on the smoothness of the function. In that regards, selection of the

value m is closely related to the level of smoothness, and hence it is crucial. Further

study on the determination of the regularization parameters λ0, λ1 and ε are still

needed, suggesting that cross validation criterion is useful.



65

CHAPTER VI

CONCLUSION

Most challenging aspects in studying functional data analysis emerge from that

data are not observed completely and making inference about population from which

data are drawn requires to consider the infinite dimensional function spaces. These

may lead to that the process of estimation is not reliable, even impossible. One way

to avoid the problems is to represent the discrete data in terms of basis expansions.

We discussed about other possible alternatives in Chapter I.

Our classification analysis of functional data has employed the Support Vector

Machine in which the input vectors consist of the projection coefficients of the func-

tional data onto the space by a few orthonormal functions. Application to medflies

data suggested that among the models that we examined, SVM with the linear kernel

results in the best performance in the sense of the cross validation error rate. A

variety of statistical methods, including SVM as well as a parametric method and

nonparametric methods were used in the simulation studies.

We proposed the functional robust regression model for scalar responses. Under

the regularization framework, the spaces of the parameter function was restricted to

the Sobolev-Hilbert spaces, which insure that our estimate is a smooth function, and ε-

insensitive loss functions were utilized. It has been well known that the regularization

parameters make significant effects for estimation procedures. As discussed in the

simulation study, the determination of the value m is another important parameter,

which judges the primary structures of the Sobolev-Hilbert spaces.
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