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ABSTRACT

Bayesian Wavelet Approaches for Parameter Estimation and Change Point

Detection in Long Memory Processes. (August 2004)

Kyungduk Ko, B.A., Yonsei University;

M.A., Yonsei University

Chair of Advisory Committee: Dr. Marina Vannucci

The main goal of this research is to estimate the model parameters and to detect

multiple change points in the long memory parameter of Gaussian ARFIMA(p, d, q)

processes. Our approach is Bayesian and inference is done on wavelet domain. Long

memory processes have been widely used in many scientific fields such as economics,

finance and computer science. Wavelets have a strong connection with these processes.

The ability of wavelets to simultaneously localize a process in time and scale domain

results in representing many dense variance-covariance matrices of the process in a

sparse form. A wavelet-based Bayesian estimation procedure for the parameters of

Gaussian ARFIMA(p, d, q) process is proposed. This entails calculating the exact

variance-covariance matrix of given ARFIMA(p, d, q) process and transforming them

into wavelet domains using two dimensional discrete wavelet transform (DWT2).

Metropolis algorithm is used for sampling the model parameters from the posterior

distributions. Simulations with different values of the parameters and of the sample

size are performed. A real data application to the U.S. GNP data is also reported.

Detection and estimation of multiple change points in the long memory parameter

is also investigated. The reversible jump MCMC is used for posterior inference.

Performances are evaluated on simulated data and on the Nile River dataset.
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CHAPTER I

INTRODUCTION

Long memory processes have been widely used in many fields, such as economics,

finance and telecommunications to model characteristic phenomena. Most remarkable

characteristics of long memory process compared to short memory is that dependen-

cies between distant observations are not negligible. Common models for long mem-

ory behavior are the fractional Brownian motion (fBm) and fractional Gaussian noise

(fGn). Commonly used long memory processes in time series are the ARFIMA(p, d, q),

first introduced by Granger and Joyeaux (1980) and Hosking (1984). For these mod-

els the value of the spectral density function goes to infinity as the frequency goes to

zero and classical time series methods for estimation and testing cannot be applied.

Also, the structure of the variance-covariance matrix makes inferential methods com-

putationally expensive and causes inaccurate estimates.

In early stage of the parameter estimation of Gaussian ARFIMA(p, d, q) mod-

els, approximate maximum likelihood methods were used by Li and McLeod (1986)

and Fox and Taqqu (1986), but these methods showed inaccuracy for finite samples.

Sowell (1992a) calculated the exact form of the variance-covariance function to com-

pute the likelihood function under the assumption that the roots of an autoregressive

polynomial are simple, that is, the roots do not have repeated roots. This exact like-

lihood method achieved accuracy, but is computationally exhaustive. Beran (1994)

investigated asymptotic sampling theory properties of exact and approximate max-

The format and style follow that of Journal of the American Statistical Association.
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imum likelihood methods. As for Bayesian approaches, Pai and Ravishanker (1996;

1998) adopt the Metropolis algorithm to estimate the model parameters and Koop et

al. (1997) used importance sampling with the exact form of the variance-covariance

matrix of Sowell (1992a).

While estimation of model parameters has been widely investigated, little work

has been done in designing methods for change point analysis of the long memory

parameter in ARFIMA(p, d, q) models. Change points in a given series result from

unexpected changes in the physical mechanism or environmental condition that gen-

erate data. Routine estimation techniques for model parameters may be inaccurate

when change points are not properly located. Beran and Terrin (1996) proposed a

test for detecting a single change in ARFIMA(p, d, q) model. Whicher, Guttorp and

Percival (2000) used Iterative Cumulative Sums of Squares (ICSS) algorithm to test

and locate multiple change points in variances of fractional difference process. They

took discrete wavelet transform (DWT) of Gaussian I(d) processes to use ICSS which

needs independently and identically distributed normal random variables for data.

However, their method can only estimate the number of multiple change points and

locate them without estimating the values of long memory parameter dt correspond-

ing to the detected change points. Ray and Tsay (2002) studied multiple change

points analysis of the mean level and the long memory parameter. They considered

ARFIMA(0, d, 0) models only and used a time-dependent Kalman filter approach

with a truncated MA approximation to evaluate the likelihood. Their method allows

accurate estimation only if the change points occur at the ends of pre-specified data

blocks. Moreover, they used a griddy Gibbs sampler algorithm to estimate the long

memory parameter, a procedure that can lead to inaccurate estimates. Also, they

used Bayes factor to assess proper number of change points. An alternative Bayesian

method for multiple change point analysis was proposed by Liu and Kao (1999).
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They adopted griddy Gibbs sampler algorithm but allowed the number of change

points to be unknown and used the reversible jump MCMC of Green (1995). These

authors considered the special case of ARFIMA(1, d, 0) models with conditionally

heteroscedastic innovations.

Wavelets have been known as a powerful tool for the analysis and synthesis of

data from long memory processes. The ability of the wavelets to simultaneously lo-

calize a process in time and scale domain results in representing many dense matrices

in a sparse form. When transforming measurements from a long memory process,

wavelet coefficients are approximately uncorrelated, in contrast with the dense long

memory covariance structure of the data, see Tewfik and Kim (1992). This prop-

erty of wavelet transform enables us to simplify dense covariance structure of data

following ARFIMA(p, d, q) model into sparse form which we may regard as approxi-

mately uncorrelated and thus may use relatively simple likelihood function. McCoy

and Walden (1996) used this wavelet property to estimate ARFIMA(0, d, 0) or I(d)

models with approximate wavelet coefficients-based maximum likelihood iterative pro-

cedure. Jensen (1999) proposed wavelet-based ordinary least squares estimate of the

long memory parameter in I(d) process and compared his results to those by Geweke

and Porter-Hudak (1983) and McCoy and Walden (1996). Also, Jensen (2000) pro-

posed an alternative maximum likelihood estimator of ARFIMA(0, d, 0) models using

compactly supported wavelets.

We here propose an estimation procedure of the model parameters in Gaussian

ARFIMA(p, d, q) models and a change point analysis of the long memory parameter

in Gaussian ARFIMA(p, d, q) models with unknown multiple change points. In order

to handle the dense covariance matrix of ARFIMA(p, d, q) models, we transform the

original data into wavelet coefficients using discrete wavelet transform (DWT). A

Metropolis algorithm is implemented in the wavelet domain for Bayesian estimation
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of the model parameters. For the change point analysis, the reversible jump Markov

chain Monte Carlo proposed by Green (1995) is adopted to estimate the unknown

number of multiple change points and their locations together with the estimation

of other model parameters. For both methods we use Vannucci and Corradi’s (1999)

algorithm to transform the variance-covariance matrix in the time domain into the

corresponding matrix in the wavelet domain.

In Chapter II we introduce the concept and class of long memory process and

estimation procedures of long memory processes on literature. Basics of wavelets and

relationship between long memory process and wavelet transforms are described in

Chapter III. As a preliminary step for change point analysis, we develop a Bayesian

estimation method of the parameters of ARFIMA(p, d, q) models on wavelet domain

in Chapter IV. In Chapter V we propose a wavelet-based Bayesian change point

analysis of the long memory parameter of ARFIMA(p, d, q) processes.
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CHAPTER II

LONG MEMORY PROCESSES

2.1 Introduction

Standard time series analysis is concerned with series having the property that

two observations separated by a long time interval are completely or nearly inde-

pendent. However, there are many cases were we should not ignore the dependence

between distant observations,even if it is small. It is said that a series having charac-

teristic has ”long memory (or long range dependence)”. We can find this phenomenon

in many fields such as economics, finance, hydrology and engineering. If we apply

standard statistics to data having long memory the results may misguide us to wrong

decisions. The reason is that variance of the sample mean of such series is not equal

to σ2/n and thus routine estimation, such as interval estimation and testing about

population mean, cannot be used.

In general, we can classify the memory type of a given time series in three ways:

no memory, short memory and long memory. No memory series has no pattern over

time and knowing the past of the series provides no information about its behavior in

the future except for mean and variance. A white noise is a typical case of no memory.

On the contrary, time series possessing short memory has exponentially decaying

autocorrelation function. ARMA(p, q) processes are short memory processes. Long

memory process can be non-stationary but typically it is predictable. In this case

we need to identify some transformations to reduce the process to short memory

type-process and then model the process by a whitening filter to have no memory

residuals.
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Figure 1: Yearly minimum water levels of the Nile River from A.D. 622 - A.D. 1281

2.2 Features and definition of long memory processes

The qualitative behavior of a long memory process, for which the first two mo-

ments exist, can be described as follows. First, the path of series look like stationary.

Second, there is no lasting cycle or trend through the whole series although we could

find cycles or local trends on short time periods of the path. A typical example show-

ing these features is the Nile River data (A.D. 622-A.D. 1281). If we have a closer look

at a short time period of Figure 1 then we could find cycles or trends but we cannot

find those patterns in the whole series. On the other hand, quantitative properties of

a long memory process are (i) the variance of the sample mean of this process decays

to zero at a slower rate than n−1 and (ii) the sample correlations decay hyperbolically

to zero. These are main differences between short and long memory processes.

There are some mathematical definitions of a long memory process with station-

arity in terms of autocovariance and spectral density.

Definition 2.2.1 Suppose that Xt is a process with autocovariance function γ(τ) ∼

C(τ)τ 2d−1 as τ → ∞, C(τ) 6= 0. Then we call Xt a process with long memory.
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Moreover, if 0 < d < 0.5 then the process is stationary.

Here C(τ) does not depend on d and is a slowly varying function as |τ | → ∞ (Beran

and Terrin, 1996). The d is called long memory(or long range) parameter. From

the definition 2.2.1, we know that the correlations are not summable. Some authors

give further distinction according to the range of d, that is, if d < 0 and hence
∑∞

τ=−∞ |γ(τ)| <∞ then the process is “intermediate” and the process is “long mem-

ory” if 0 < d < 0.5 and hence
∑∞

τ=−∞ |γ(τ)| = ∞. The following definition describes

the property of long memory in terms of the spectral density.

Definition 2.2.2 Suppose that a process Xt has the spectral density such that f(λ) ∼

k(λ)λ−2d as λ → 0. Then we call Xt a stationary process with long memory if

0 < d < 0.5.

From the definition 2.2.2 the spectral density of a process with long memory has a

pole at zero.

The hydrologist Hurst (1951) proposed the so-called “Hurst” (or self-similar)

parameter, H, which has a simple relationship with the long memory parameter,

that is H = d + 1
2
. He noticed that the rescaled adjusted range, R/S statistic, has

asymptotically a log linear relationship with the sample size and a slope H larger

than 1
2
.

2.3 Class of stationary process with long memory

A stationary process with long memory can be classified in two ways, continuous

and discrete time. In the continuous time domain, we have three processes with long

memory: self-similar process, fractional Brownian motion (fBm) and fractional Gaus-

sian noise (fGn). A typical discrete long memory process is the fractional ARIMA.

Self-similar and ARFIMA(0, d, 0) processes are the basic processes of continuous and

discrete long memory processes, respectively.
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2.3.1 Continuous long memory process

Fractional Brownian motion and fractional Gaussian noise belong to continuous

long memory process. They can be formulated from self-similar process.

Definition 2.3.1 A stochastic process, Xt with continuous time parameter such that

c−HXct =d Xt is called self-similar with self-similarity parameter H.

Here “=d” means “equal in distribution”. A real-valued process {Xt, t ∈ T} has

stationary increments if {Xt+h − Xh, t ∈ T} =d {Xt − X0, t ∈ T} for all h ∈ T .

Then a Gaussian self-similar process {BH(t)} with stationary increments is called

fractional Brownian motion when its self-similarity parameter, H is in (0, 1). When

var(BH(1)) = σ2, the autocovariance function is

γ(s, t) = cov(BH(s), BH(t)) = .5σ2[t2H − (t− s)2H + s2H ], s < t.

Thus fBm has stationary increments but is not stationary process. Let’s define a

increment process of BH(·) as Yt = BH(t+1)−BH(t) which is a stationary sequence.

We call Yt fractional Gaussian noise. The covariance function of the increment process

is

γ(τ) = cov(Yt, Yt+τ) = .5σ2
0[(τ + 1)2H − 2τ 2H + (τ − 1)2H ], (2.1)

where EY 2
t = EBH(1)2 = σ2

0. Also we know that fGn is a stationary process because

(2.1) does not depend on t. The correlation function of Yt is calculated by

ρ(τ) = γ(τ)/γ(0) = .5[(τ + 1)2H − 2τ 2H + (τ − 1)2H ]

As τ → ∞, using Taylor’s expansion,

ρ(τ) ∼ H(2H − 1)τ 2H−2. (2.2)

Thus fGn is long memory process. The correlations are not summable for 0.5 < H <

1 (0 < d < 0.5) in which Yt has long memory, summable for 0 < H < 0.5 (−0.5 <

d < 0) and Yt’s are uncorrelated for H = 0.5 (d = 0).
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2.3.2 Discrete long memory process

The simplest of ARFIMA(p, d, q) models is ARFIMA(0, d, 0) model which is also

called integrated process I(d). A process {Xt}t∈Z is called ARFIMA(0, d, 0) model if

it has relationship (1−B)dXt = εt for any real d > −0.5, where εt is zero mean white

noise with innovation variance σ2. Fractional difference operator ∆d = (1−B)d where

B is backshift operator can be defined as power series in B for d 6= 0. By binomial

expansion, for any real number d,

(1 − B)d ≡
∞∑

j=0

πjB
j =

∞∑

j=0

(
d

j

)
(−1)jBj, (2.3)

where
(

d
j

)
= d!/j!(d− j)! = Γ(d+ 1)/Γ(j + 1)Γ(d− j + 1). This comes from the fact

that gamma function is defined for all real numbers and the binomial coefficient can

be extended to all real number d. Since πj = (−1)j
(

d
j

)
can be approximated as

(−1)j

(
d

j

)
= (−1)j Γ(d+ 1)

Γ(j + 1)Γ(d− j + 1)

= (−1)j (−1)j(−d)(−d+ 1) · · · (−d− 1 + j)

Γ(j + 1)

= (−1)j (−1)jΓ(−d+ j)

Γ(j + 1)Γ(−d)

=
Γ(−d + j)

Γ(j + 1)Γ(−d)
∼ j−d−1/Γ(−d) as j → ∞,

the I(d) process can be expressed as an AR(∞) of the form

(1 −B)dXt = εt ⇒
∞∑

j=0

j−d−1/Γ(−d)BjXt = εt as j → ∞ (2.4)

under the condition such that
∑∞

j=1 π
2 < ∞ in (2.4). Since π2

j ∼ j−2d−2/Γ2(−d), for

the convergence of the summation, d should satisfy

−2d− 2 < −1 ⇒ −2d < 1

⇒ d > −0.5.
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Thus I(d) process or ARFIMA(0, d, 0) model is invertible if d > −0.5. For the condi-

tion such that {Xt}t∈Z is stationary process, assume that ∆dXt = εt be inverted into

Xt = ∆−dεt. Since ∆−d = (1 −B)−d ≡∑∞
j=0 ψjB

j =
∑∞

j=0

(
−d
j

)
(−1)jBj and

(−1)j

(−d
j

)
= (−1)j Γ(−d+ 1)

Γ(j + 1)Γ(−d− j + 1)

= (−1)j (−1)j(d)(d+ 1) · · · (d+ j − 1)

Γ(j + 1)

= (−1)j (−1)jΓ(d+ j)

Γ(j + 1)Γ(d)

=
Γ(d+ j)

Γ(j + 1)Γ(d)

∼ jd−1/Γ(d) as j → ∞,

the inverted process can be expressed as an MA(∞) of the form

(1 −B)dXt = εt ⇒ Xt = ∆−dεt

⇒ Xt =
∞∑

j=0

ψjεt−j, (2.5)

under the condition such that
∑∞

j=1 ψ
2
j <∞ in (2.5). Since ψ2

j ∼ j2d−2/Γ2(d), for the

convergence of the summation, we also need a condition for d such that

2d− 2 < −1 ⇒ 2d < 1

⇒ d < 0.5.

So ARFIMA(0, d, 0) model is stationary if d < 0.5. Therefore, ARFIMA(0, d, 0)

model is invertible and stationary if d ∈ (−0.5, 0.5). In the case of d ∈ (−0.5, 0.5),

{Xt}t∈Z has the spectral measure dZX(λ) = |B(λ)|dZε(λ) = (1 − e−iλ)−ddZε(λ) and
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the spectral density

fX(λ) = B(λ)2dZε(λ)

= |1 − e−iλ|−2d σ
2

2π

= |2sin(λ/2)|−2d σ
2

2π

∼ σ2

2π
|λ|−2d, λ→ 0, (2.6)

where σ2 is the white noise variance. Thus from definition (2.2.2) ARFIMA(0, d, 0)

process has long memory.

A time series, {xt}t∈Z, is said to be fractionally differenced autoregressive moving

average model if the series is identified as an ARMA(p,q) model after applying the

fractional difference operator (2.3). The general fractionally differenced ARMA(p, q)

model can be written as

Φ(B)(1 − B)dXt = Θ(B)εt, (2.7)

where

Φ(B) = 1 + φ1B + φ2B
2 + · · ·+ φpB

p

and

Θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q

are polynomials in the backshift operator B and εt is a white noise process with zero

mean and variance σ2. We denote the above as ARFIMA(p, d, q) model. The model

(2.7) can be rewritten by

Φ(B)Xt = Θ(B)Ut and Ut = (1 − B)−dεt. (2.8)

Thus we can regard ARFIMA(p, d, q) process as ARMA(p, q) process driven by I(d)

process, Ut = (1−B)−dεt. Since ARMA(p, q) model is typical short memory process
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in time series and I(d) process has long memory, the long term behavior is determined

by d and the short term behavior is determined by φ and θ in ARFIMA(p, d, q) mod-

els. That is, d and (φ, θ) describe the high-lag and low-lag correlation structures of

ARFIMA(p, d, q) models. Thus the long-term behavior of ARFIMA(p, d, q) models

may be similar to the one of ARIMA(0, d, 0) because the influence of the φ’s and

θ’s is negligible for distant observations. From this fact, the ARIMA(p, d, q) process

has long memory if d ∈ (−0.5, 0.5) and in addition, is weak stationary and invert-

ible if and only if the roots of Φ(z) and Θ(z) are outside the unit circle. Geweke and

Poter-Hudak (1983) used two-step procedures with the two models in (2.8) to estimate

the model parameters of ARFIMA(p, d, q) models. Hosking (1984) proposed the algo-

rithm for simulating an ARFIMA(p, d, q) process with the same notion, which is (i) to

generate Ut from ARFIMA(0, d, 0) and (ii) to generate Xt using Ut from ARMA(p, q)

process.

Since the spectral measure of {Xt}t∈Z in (2.7) is dZX(λ) = θ(e−iλ)φ(e−iλ)−1(1 −

e−iλ)−ddZε(λ) where θ(λ) = Θ(e−iλ) and φ(λ) = Φ(e−iλ) are transfer functions related

to AR and MA terms, its spectral density and asymptotic autocovariance function

are

f(λ) =
σ2

2π

|θ(e−iλ)|2
|φ(e−iλ)|2 |1 − e−iλ|−2d

∼ σ2

2π

|θ(1)|2
|φ(1)|2 |λ|

−2d , as λ→ 0 (2.9)

and

γ(τ) ∼ Cτ 2d−1 as τ → ∞, (2.10)

where C 6= 0 and does not depend on τ . On the other hand, under the additional

assumption that the roots of Φ(z) are simple, Sowell (1992a) showed that the auto-
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covariance function of this process is

γ(τ) = σ2

q∑

l=−q

p∑

j=1

ψ(l)ζjC(d, p− τ + l, ρj) (2.11)

where

ψ(l) =

min[q,q−l]∑

τ=max[0,l]

θτθτ−l,

ζj = [ρj

p∏

i=1

(1 − ρiρj)
∏

m6=j

(ρj − ρm)]−1,

and

C(d, h, ρ) =
Γ(1 − 2d)Γ(d+ h)

Γ(1 − d+ h)Γ(1 − d)Γ(d)

×[ρ2pF (d+ h, 1; 1 − d+ h; ρ) + F (d− h, 1; 1 − d− h; ρ) − 1].

Here F (a, 1; c; ρ) is the hypergeometric function and has the recursive relationship

F (a, 1; c; ρ) =
c− 1

ρ(a− 1)
[F (a− 1, 1; c− 1; ρ) − 1].

For ARFIMA(0, d, q) model i.e. p = 0, the autocovariance function has the form

γ(τ) = σ2

q∑

l=−q

ψ(l)
Γ(1 − 2d)Γ(d+ l − τ)

Γ(1 − d+ l − τ)Γ(1 − d)Γ(d)
. (2.12)

Moreover, for p=0 and q=0 in ARFIMA(p, d, q) model, it becomes

γ(τ) = σ2 Γ(1 − 2d)Γ(d+ τ)

Γ(1 − d+ τ)Γ(1 − d)Γ(d)
.

These processes are stationary if d < 0.5 and possess invertibility or AR(∞) repre-

sentation if d > −0.5. Also, they have long memory for 0 < d < 0.5, short memory

for d = 0 and intermediate for −0.5 < d < 0. Sowell (1992a) use the Levinson algo-

rithm to reduce the order of calculating the likelihood function by decomposing the

covariance.
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2.4 Heuristic estimation of long memory parameter

Given a series we need to know if it has long memory. For this purpose we can

use some heuristic methods based on the properties and definitions of long memory

mentioned in previous section. The most basic checking method for long memory is

to investigate whether the ACF plot decays hyperbolically to zero. Other heuristic

methods are based on plots of basic statistics in log scale and least square fits of them.

2.4.1 the R/S statistic versus k

Let Xi denote a value of given process at time i and define Yj =
∑j

i=1Xi. The

modified range R(t, k) and its scaling factor S(t, k) are defined as follows.

R(t, k) = max0≤i≤k[Yt + i− Yt −
i

k
(Yt+k − Yt)]− min0≤i≤k[Yt + i− Yt −

i

k
(Yt+k − Yt)]

and

S(t, k) = [k−1
t+k∑

i=t+1

(Xi − X̄t,k)
2]1/2

In the plot of log[R(t, k)/S(t, k)] versus logk, the points are scattered around a straight

line of slope 0.5 for i.i.d. series and are scattered around a straight line of slope

greater than 0.5 for long memory processes. That is, in the least square line of

logE(R/S) ≈ c+Hlogk, if H ≈ 0.5 then the process is i.i.d. and if H > 0.5 then the

process has long memory.

2.4.2 Sample variance versus its sample size

The variance of the sample mean of long memory process decays to zero at a

slower rate than n−1. So plotting sample variance versus sample size in log scale and

fitting a least square line can be used for the estimation of long memory parameter.

If the slope of the line is far from -1 then we conclude this process has long memory.
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Actually the slope -1 is a theoretical value for summable correlations. Also if corre-

lations are summable the periodogram ordinates near the origin should be scattered

randomly around a constant.

2.4.3 Correlogram

From definition 2.2.1 we might draw a plot of ρ(τ) = γ(τ)/γ(0) versus τ in log

scale and fit a least square line. If the slope is between -1 and 0 we conclude that the

series exhibits long range dependence.

2.5 Semi-parametric estimation: Geweke and Porter-Hudak’s estimate

Definition 2.2.2 needs to be carefully understood in that the spectral density is

proportional to λ−2d only in a neighborhood of zero. Geweke and Porter-Hudak (1983)

used this notion to get a least square estimate of long memory parameter d at low

frequencies in the case of integrated models I(d). They used the periodogram I(λ)

and the Fourier frequencies λi,n as the sample estimates of the spectral density and

frequencies, respectively in the equation taking logarithm of the asymptotic relation

of f(λ). This leads to

logI(λi,n) ≈ logk − 2dlogλi,n + logεi (2.13)

If the least square estimate of the slope in the equation (2.13) is β̂ then the estimate

of long memory parameter is

d̂ = − β̂
2

GPH estimator has been widely used with desirable precision in estimation of long

memory parameter by virtue of its simplicity and computational speed. For fractional

ARFIMA(p, d, q) models Geweke and Porter-Hudak also proposed two-step estimation

procedures where the d is estimated under the model I(d), the data is transformed
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into Yt = (1−B)d̂ and standard ARMA models are applied to the transformed Ut in

order to estimate AR and MA parameters and identify the orders.

2.6 Parametric estimation of long memory parameter

Suppose that an ARFIMA(p, d, q) model is fitted to a Gaussian process {Xt}

with size n. Then the likelihood function is

L(Ψ) = (2π)−n/2|Σ(Ψ)|−1/2exp

{
−1

2
X ′Σ(Ψ)−1X

}
, (2.14)

where Ψ = (σ2
ε , d, φ1, . . . , φp, θ1, . . . , θq), σ

2
ε is the innovation variance in (2.7) and

Σ(Ψ) is the n× n covariance matrix of X. The MLE, Ψ̂, is the value of maximizing

L(Ψ) or minimizing l(Ψ) = −2logL(Ψ). If we define the (p+q+2)-dimensional vector

l′(Ψ) =
∂

∂Ψ
l′(Ψ), (2.15)

then the MLE, Ψ̂E under mild regularity condition is the solution of the system of

(p+ q + 2)-equations

l′(Ψ̂) = 0. (2.16)

Yajima (1985) proves the limit theorem of Ψ̂ in the case of ARFIMA(0, d, 0) process

and Dahlhaus (1989) shows the result for ARFIMA(p, d, q) model. If the dimension

of Ψ is large or the data size n is big enough then the calculation of the exact MLE is

computationally intensive because the likelihood function (2.14) is the implicit func-

tion of Ψ through the covariance matrix Σ(Ψ) and thus (2.16) should be evaluated

for many trial values of Ψ. The other problem is to get the inverse of the covariance

matrix, Σ(Ψ)−1. Note that a large number of data is needed to estimate the long

memory parameter with desirable precision because it describes the long-term per-

sistence between distant observations. The inversion of a large size of the covariance

may be numerically unstable.
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An alternative method to avoid those problems is to use an approximation to the

likelihood function. All n×n symmetric Toeplitz matrices have complex orthonormal

eigenvectors and the corresponding eigenvalues which can be well approximated by

Vj =
√
n−1{exp(−iλjt)}t=1,...,n−1 and Γj = {2πfΨ(λj)}, j = 1, . . . , n− 1,

where Vj is jth column vector of complex eigenvector matrix V , Γj is jth diagonal

element of the diagonal matrix Γ and fΨ(λ) is the spectral density of the process.

Thus

Σ(Ψ) ≈ V ΓV c, (2.17)

where V c is the conjugate transpose of V . Thus

l(Ψ) = nlog(2π) + log|Σ(Ψ)| +X ′Σ(Ψ)−1X

≈ nlog(2π) + log|V ΓV c| +X ′V Γ−1V cX ′ (2.18)

= nlog(2π) +

n−1∑

j=1

[log(2πfΨ(λj)) + n|J(λj)|2/(2πfΨ(λj))]

= 2nlog(2π) +

n−1∑

j=1

[logfΨ(λj) + I(λj)/fΨ(λj)], (2.19)

where I(λj) is the periodogram of Xt and J(λj) = n−1
∑n−1

t=0 Xtexp(−iλjt) which

is the discrete Fourier transform of Xt. Note that X ′V =
√
n(J(λ0), . . . , J(λn−1))

because

X ′Vj =
√
n−1

n−1∑

t=0

Xtexp(−iλjt)

=
√
nJ(λj).

The estimate, ψ̂W which minimize (2.18) is called Whittle’s approximate MLE. Fox

and Taqqu (1986) prove the limit theorem of ψ̂W for a Gaussian ARFIMA process.
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CHAPTER III

WAVELETS

3.1 Introduction

Wavelets are relatively new mathematical tools for time series analysis and image

analysis. Wavelet means “small wave”. On the contrary, examples of “big waves”

are sine and cosine function usually used for Fourier analysis. Wavelets are the

building blocks of wavelet transformations in the same way as the functions einx =

cos(nx) + isin(nx) are the building blocks of the Fourier transformation.

Wavelet methods are used in statistics for smoothing of noisy data, nonparamet-

ric density and function estimation, and stochastic process representation. A popular

application in nonparametric statistics is wavelet shrinkage, which can be described

as 3 step procedure: (i) the original series is transformed into a set of wavelet coeffi-

cients, (ii) a shrinkage of those coefficients is applied, and (iii) the resulting wavelet

coefficients are transformed back to the original data domain. Nowadays the appli-

cation of wavelets in statistics is rapidly growing and expanding to other areas like

economics, finance and so on.

Wavelet theory is similar to Fourier analysis but it has a critical advantage.

Wavelet transforms well localize original series in both time and frequency (scale)

domains, while Fourier transforms do so only in the frequency domain. Thus one

loses time information through Fourier transform but not via wavelet transform.

3.2 Prerequisites

Here some useful mathematical definitions related to wavelet theory are de-

scribed. In wavelet theory we deal with functions in L2(R) and `2(R).
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Definition 3.2.1 The space of all square integrable functions is called L2(R). That

is, f(x) ∈ L2(R) if
∫
|f(x)|2 <∞.

The inner product of two functions and norm of a function in L2(R) are defined as

< f, g >=
∫
fg and ‖f‖ =

√∫
f 2, respectively.

Definition 3.2.2 The space of all square summable sequences is called `2(R). That

is, x1, . . . , xn ∈ `2(R) if
∑n

i=1 x
2
i <∞.

The inner product of two sequences and norm of a sequence on `2(R) are defined as

< x,y >=
∑n

i=1 xiyi and ‖x‖ =
√∑n

i=1 xi
2, respectively. The following definition

plays an important role in wavelet decomposition and synthesis.

Definition 3.2.3 Suppose that V is an inner product space and W a finite dimen-

sional subspace of V . For v ∈ V , the orthogonal projection of v onto W is the unique

vector v0 ∈ W such that

‖v − v0‖ = minw∈W‖v − w‖.

Here the orthogonal complement of W in V , W⊥ is defined as W⊥ = {v ∈ V | <

v,w >= 0} for all w ∈ W . We can represent V as the orthogonal sum of W and W ⊥,

V = W ⊕W⊥.

3.3 Basics of a wavelet decomposition

There are two basic functions in wavelet analysis, the scaling function φ(x) and

the (mother) wavelet function ψ(x). Sometimes φ(x) is called “father wavelet”. The

building blocks to approximate a given function are constructed by the translations

and dilations of the scaling function. Note that the translation φ(x−k) has the same

shape as φ(x) except translated by k units and the dilation φ(2jx) has the same shape

as φ(x) but its width is as 2−j times as the one of φ(x). The simplest scale function
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is the Haar scaling function defined as

φ(x) =






1 if 0 ≤ x < 1

0 otherwise
(3.1)

Let Vj be the space of all functions of the form
∑

k∈Z
akφ(2jx − k), j > 0, ak ∈ R

and k is a finite set of integers. In other words, Vj is defined to be the space spanned

by the set

{. . . , φ(2jx+ 2), φ(2jx+ 1), φ(2jx), φ(2jx+ 1), φ(2jx+ 2), . . .}.

Thus Vj is the space of piecewise constant functions with finite support whose dis-

continuities are in the set {. . . ,−2/2j,−1/2j, 0, 1/2j, 2/2j, . . .}. Any function in V0

is contained in V1 and likewise V1 ⊂ V2. The following hierarchical relation is estab-

lished.

. . . V0 ⊂ V1 ⊂ . . . ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 . . . (3.2)

Vj contains all relevant informations up to a resolution scale 2−j. The larger gets j, the

finer is resolution. We know from the containment that information is not lost as the

resolution gets finer. The collection of functions φj,k(x) = {2j/2φ(2jx − k); j, k ∈ Z}

is an orthonormal basis of Vj.

The mother wavelet function ψ(x) enters into wavelet decomposition of an origi-

nal function f to catch “spikes” which belong to Vj and do not belong to Vj−1. So Vj is

decomposed as an orthogonal sum of Vj−1 and its orthogonal complement Wj−1, which

is denoted by Vj = Vj−1 ⊕Wj−1 where < vj−1, wj−1 >= 0, vj−1 ∈ Vj and wj−1 ∈

Wj−1. The orthogonal complement of Vj, Wj−1 is generated by the translations and

dilations of ψ(x) as if Vj is done by the translations and dilations of φ(x). As in the

case of φj,k(x), the collection of functions ψj,k(x) = {2j/2ψ(2jx − k); j, k ∈ Z} is an

orthonormal basis of Wj. The two properties are needed to construct mother wavelet
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function ψj,k(x), which are (i)
∫∞

−∞
ψj,k(x)dx = 0 and (ii)

∫∞

−∞
ψj,k(x)

2dx = 1, ∀j, k ∈

Z. The simplest mother wavelet function is the Harr wavelet which is defined by

ψ(x) =





1 if 0 ≤ x < 1/2

−1 if 1/2 ≤ x < 1

0 otherwise

(3.3)

Note that the Haar wavelet function (3.3) can be denoted by a linear combination of

the Haar scaling functions (3.1) as ψ(x) = φ(2x) − φ(2x− 1).

The main idea of wavelet decomposition is to orthogonally project a given func-

tion f ∈ L2 onto the space of scaling functions at a resolution j, say Vj, which is

f ' fVj
=
∑

k∈Z
cj,kφj,k(x). Then fVj

is again decomposed into the space of the next

coarser scale Vj−1 through the relation (3.2). This is the main stem of multiresolution

analysis (MRA) by Mallat (1989).

3.4 Multiresolution analysis

A multiresolution analysis (Mallat, 1989) is a framework for creating general φ

and ψ. MRA is a decomposition of a function in L2 into scaling basis φj,k(x) and

wavelet basis ψj,k(x). It is an embedded grid of approximation by (3.2). Approxima-

tion of f ∈ L2 at a resolution j is an orthogonal projection fj of f on Vj, which means

that ‖f − fj‖ is minimized (Definition 3.2.3).

Definition 3.4.1 A sequence {Vj}j∈Z of subspaces of functions in L2 is called a mul-

tiresolution analysis with scaling function φ if the following properties holds.

(1) Vj ⊂ Vj+1, ∀j ∈ Z

(2) ∪j∈ZVj = L2 and ∩j∈ZVj = φ

(3) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1, ∀j ∈ Z

(4) f(x) ∈ V0 if and only if f(x+ k) ∈ V0, ∀k ∈ Z

(5) There exists a φ(x) ∈ V0 such that {φ(x−k); k ∈ Z} is an orthonormal basis
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for V0.

The {Vj}j∈Z’s are also called approximation spaces. The only condition for choosing

a φ is that the set of its translations, {φ(x − k); k ∈ Z} is a basis. Generally the

most useful property of scaling functions is to have compact support which means

that a function has identically zero outside of a finite interval and continuity because

a scaling function having these two properties has faster computing time and better

performance for decomposition or reconstruction.

Suppose that {Vj}j∈Z is a multiresolution analysis with scaling function φ. Then

φj,k(x) = {2j/2φ(2jx − k); k ∈ Z} is an orthonormal basis for Vj. Also the following

two central equations in multiresolution analysis hold.

• (Two-scale equation) There exists {hk}k∈Z such that φ(x) =
∑

k∈Z
hk2

1/2φ(2x

−k) =
∑

k∈Z
hkφ1,k, where hk =< φ(x), φ1,k >∈ `2(R). {hk} is called low-pass

filter(or scaling filter).

• (Wavelet equation) There exists {gk}k∈Z such that ψ(x) =
∑

k∈Z
gk2

1/2φ(2x−

k) =
∑

k∈Z
gkφ1,k, where gk =< ψ(x), φ1,k >∈ `2(R). {gk} is called high-pass

filter(or wavelet filter).

The above two equations are forms of convolution with filter coefficients {hk} and

{gk}, respectively. The inner products are performed according to the Definition 3.2.1

or 3.2.2 depending on the attribute of x. From the two central equations, it can be

shown that ψj,k(x) = {2j/2ψ(2jx − k); k ∈ Z} is orthonormal basis for Wj which is
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the orthogonal complement of Vj in Vj+1. By successive orthogonal decompositions,

Vj+1 = Wj ⊕ Vj

= Wj ⊕Wj−1 ⊕ Vj−1

= . . .

= Wj ⊕Wj−1 ⊕ · · · ⊕W1 ⊕W0 ⊕ V0 (3.4)

If {Vj}j∈Z is a multiresolution analysis with scaling function φ and Wj is the orthog-

onal complement of Vj in Vj+1, then

L2(R) = · · · ⊕W−2 ⊕W−1 ⊕W0 ⊕W1 ⊕W2 ⊕ · · · . (3.5)

Therefore f ∈ L2(R) can be denoted by a unique sum of wk ∈ Wk, k ∈ (−∞,∞) and

so ψj,k(x) is an orthonormal basis for L2(R).

3.5 Discrete wavelet transform

For decomposition f ∈ L2 is orthogonally projected on Vj, that is, f ≈ fj ∈ Vj.

First decomposition is started with fj into a coarser approximation part, fj−1 ∈ Vj−1

and wavelet(detail) part wj−1 ∈ Wj−1. From the equation (3.4), fj = fj−1 + wj−1.

Then the decomposition is repeated with fj−1 and so on. Reconstruction algorithm

is the reverse of decomposition.

There are two kinds of wavelet decomposition, continuous wavelet transform

(CWT) and discrete wavelet transform (DWT). CWT is designed to decompose series

defined over the entire real axis and DWT is used to transform series over a range

of integers. Discrete wavelet transform is the basic tool for time series analysis and

has an analogous feature to the discrete Fourier transform in spectral analysis. DWT

has a property to effectively decorrelate highly correlated time series under certain

condition and with this reason it is often used for time series analysis. Pyramid
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algorithm (or Cascade algorithm) by Mallat (1989) is mainly used for discrete wavelet

transform.

• (Pyramid algorithm) Given approximation coefficients at level j, wavelet

and approximation coefficients of all coarser levels can be computed by iterative

equations,

cj,k =
∑

l∈Z

hl−2kcj+1,l

dj,k =
∑

l∈Z

gl−2kcj+1,l (3.6)

Filter coefficients {gm} and {hm} is called high-pass filter and low-pass filter,

respectively. The relation between high-pass filter and low-pass filter is

gm = (−1)mh1−m. (3.7)

The equations (3.6) is simply a rephrase of the two-scale equation and wavelet

equation.

The pyramid algorithm transforms original series X with length N = 2J into the

N/2’s wavelet coefficients W1 = {dJ−1,k; k = 1, . . . , N/2} and N/2’s scaling coef-

ficients V1 = {cJ−1,k; k = 1, . . . , N/2}. Then V1 is decomposed into W2 and V2

in the same ways as before. Repeated this way, J ’s wavelet coefficient vectors

W1,W2, . . . ,WJ and one scaling coefficient vector VJ are generated. Both Vj and

Wj, j = 1, . . . , J have the coefficients of N/2j. Note that W1 is the vector of wavelet

coefficients with the highest resolution(or scale) and WJ is the one with the lowest

resolution(or scale). On the other hand, the subscripts of cj and dj preserve the order

of resolution in the equation (3.4).

Each stage can be described in terms of filtering, that is, the elements of Vj

are filtered through the filter coefficients {hm} and {gm} into Vj+1 and Wj+1. This
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algorithm uses downsampling(or decimation) method on each stage which is denoted

by hl−2k and gl−2k instead of hl−k and gl−k in equations (3.6). Downsampling is a

mapping from `(Z) to `(2Z) which means that every other coefficients in Vj are used

for filtering to generate Vj+1 and Wj+1. It retains only the values of even indices

in sequences. Also it uses circular convolution for filtering of finite sequences. This

circular convolution causes the coefficients affected by boundary condition.

3.5.1 Wavelet families and filters

There are several wavelet families such as Haar’s, Daubechies’s, Shannon’s and

so on. Two important families are as follows.

• (Haar’s wavelets) This is the simplest wavelet family. It’s scaling function is

(3.1). This can be rewritten in the form of

φ(x) = φ(2x) + φ(2x− 1)

=
1√
2

√
2φ(2x) +

1√
2

√
2φ(2x− 1). (3.8)

From the two-scale equation, the scaling filters for the Haar’s family are h0 =

h1 =
1√
2
. Since Haar’s wavelet function is

ψ(x) = φ(2x) − φ(2x− 1)

=
1√
2

√
2φ(2x) − 1√

2

√
2φ(2x− 1), (3.9)

the wavelet filters are g0 = − 1√
2

and g1 =
1√
2

from the wavelet equation or the

equation (3.7). The Haar wavelets has compact support and are well localized

in the time domain but discontinuous and so not effective in approximating

smooth functions. The Haar wavelets satisfies three characteristics of wavelet

basis functions which are compact support, orthogonality and symmetry.
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• (Daubechies’ wavelets) Daubechies (1992) constructed the hierarchy of the

compactly supported and orthogonal wavelets with a desired degree of smooth-

ness (regularity). This smoothness can be set by the number of vanishing mo-

ments which is defined that ψ(x) hasN (≥ 2) vanishing moments if< ψ(x), xn >

= 0, ∀n = 0, 1, . . . , N − 1. The simplest of Daubechies’ wavelets is the Haar

wavelet which has zero vanishing moments. It is the only discontinuous wavelet

of Daubechies’ ones. As the number of vanishing moments increases, the smooth-

ness also does. There exists 2N ’s nonzero, real scaling filters when the number

of vanishing moments is N . Two kinds of Daubechies’ wavelets are the least

asymmetric wavelets (symmlets) and the minimum phase wavelets.

3.5.2 Weakness of DWT

There exist some practical issues to be considered before using discrete wavelet

transforms. Two major things are choice of width of the wavelet filter and handling

boundary conditions.

• (Width of the wavelet filters) Width of wavelet filters is defined as the

number of nonzero wavelet filters. For example, the width of Haar’s wavelet fil-

ters is 2 and the one of Daubechies’s least asymmetric wavelets with vanishing

moments of 3 is 6. Large width of wavelet filters can be (1) increasing coef-

ficients affected by boundary conditions and computation time, (2) decreasing

the degree of localization of the coefficients. So it is desirable to use the smallest

width giving reasonable results.

• (Boundary condition) This is resulted from the circular filtering of the algo-

rithm. Suppose that the width of given wavelet filters is L. Then the number of

coefficients affected by boundary condition in Nj dimensional vector Wj can be
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calculated by min{(L−2)(1−1/2j)}, Nj}. These are placed near the beginning

or end of the coefficients in each resolution. It is wise to proceed in statistical

inferences after eliminating those affected by boundary conditions.

3.6 Variances and covariances of wavelet coefficients

For the matrix notation of the DWT suppose that a data vector X = (X1, X2, . . . ,

XN where N = 2J is a realization of a random process {Xt : t = 1, 2, . . .} with the

autocovariance function γ(t) = ΣX(i, j) where |i − j| = t. Also let’s {Wn : n =

0, 1, . . . , N − 1} consist of the DWT coefficients of original data vector X. Then we

write W = WX where W is a column vector of length N = 2J whose nth element

is the nth DWT coefficients Wn and W is a N × N orthogonal real-valued matrix

defining the discrete wavelet transform. The covariance matrix of the random process

X can be easily calculated from ΣX as

ΣW = WΣXW ′, (3.10)

where ΣW is the variance-covariance matrix of the wavelet coefficients W and vice

versa. The covariance matrix, ΣW of a wavelet transform has the form of Toeplitz

matrices at different scales, while the covariance matrix is of Toeplitz form on time

domain.

Vannucci and Corradi (1999) proposed an efficient algorithm to calculate ΣW

which uses the recursive filters in (3.6). This algorithm has a link to the two-

dimensional discrete wavelet transform (DWT2). The DWT2 is first applied to ΣX .

Then the diagonal blocks of the resulting matrix give the variance-covariance matri-

ces of wavelet coefficients that belong to the same scale which is called “within-scale”

variance-covariance matrices. Next applying the one-dimensional DWT to the rows

of the non diagonal blocks of the resulting matrix leads us to the “across-scale”
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variance-covariance matrices which belong to different scales.

For example, Figure 2 shows the covariance matrix of a series with n = 256

from Gaussian ARFIMA(0, 0.3, 0) process using the Matlab function imagesc that

displays matrices as images. The highest gray-scale values of the images correspond

to the largest entries of the matrices. In the plot we can see that almost all entries

of the covariance matrix of ARFIMA(0, 0.3, 0) process are away from zero, which

means that the covariance matrix is dense. On the other hand, Figures 3 and 4

correspond to the covariance matrices of wavelet coefficients of the ARFIMA process

with Daubechies’ 6 and 8 vanishing moments, respectively. We know that there is

essentially no correlation among coefficients at the same scale but some correlation

between scales, as shown by the extra-diagonal gray lines, but it decreases when using

wavelets with higher numbers of vanishing moments.
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Figure 2: The covariance matrix of an ARFIMA(0, 0.3, 0) process with n = 256
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Figure 3: The covariance matrix of the wavelet coefficients of the series from Figure 2
using Vannucci-Corradi algorithm with Daubechies’ 6 vanishing moments

3.7 DWT and long memory processes

In recent years discrete wavelet transforms of long memory processes have been

popular because of their decorrelation properties and the simplification of the cor-

responding likelihood on wavelet domain. Tewfik and Kim (1992) showed that the

correlations between discrete wavelet coefficients from the models of fractional Brow-

nian motion (fBm) decrease across scales and time and thus induce sparse forms of

covariance matrices compared to the dense ones on original data domain. Moreover

they indicated that wavelets with a larger number of vanishing moments result in

greater decorrelation of the wavelet coefficients though they suffer from the boundary

condition. Wang (1996) consider the fractional Gaussian noise model,

Y (dx) = f(x)dx+ ε2−2HBH(dx),
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Figure 4: The covariance matrix of the wavelet coefficients of the series from Figure 2
using Vannucci-Corradi algorithm with Daubechies’ 8 vanishing moments

where f is an unknown function, ε is the noise level which is small, and BH(dx) is

a fractional Gaussian noise which is the derivative of a standard fractional Brownian

motion as an approximation of the nonparametric regression model with long range

dependence,

yi = f(xi) + εi, i = 1, . . . , n,

where xi = i/n ∈ [0, 1]. Under the setting that empirical wavelet coefficients of the

data Y are yλ =
∫

Ψλ(x)Y (dx) and wavelet estimates of f are defined as f̂(tj) =
∑

λ δtj (yλ)Ψ(λ), he established asymptotic results for minimax-wavelet threshold risk

RW (ε;F) = inftj supf∈FE‖ ˆf(tj) − f‖2

and proposed wavelet shrinkage estimates with resolution level-dependent threshold

tuned to achieve minimax rates.
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McCoy and Walden (1996) showed the decorrelation properties of discrete wavelet

transforms in the fractionally differenced Gaussian white noise processes (fdGn).

They claim that there is no correlation within scales but there exist some correla-

tion between scales. To get estimates of d and σ2
ε , they set the off-diagonal ele-

ments of ΣW in (3.10) to zero in order to get approximate covariance matrix, Σ̃W =

diag(Sj0+1, Sj0, Sj0−1, . . . , Sj0−1, . . . , S1, . . . , S1) where Sj = var{dj,k} and Sj0+1 =

var{cj0,1} for j = 1, . . . , j0; k = 1, . . . , 2j0−j from the original one of the wavelet

coefficients. Then, for zero mean Gaussian data, the wavelet coefficients and scaling

coefficient will follow

dj,k ∼ N [0, Sj(d, σ
2
ε)]

cj0,1 ∼ N [0, Sj0+1(d, σ
2
ε)],

where j = 1, . . . , j0; k = 1, . . . , 2j0−j. They form the approximate log-likelihood with

constants ignored as

l(d, σ2
ε) = −N log(σ2

ε) − log[Sj0+1] −
j0∑

j=1

j0−j∑

k=1

log[Sj(d)]

− 1

σ2
ε

[
c2j0,1

Sj0+1(d)
+

j0∑

j=1

j0−j∑

k=1

d2
j,k

Sj(d)

]
. (3.11)

Then the approximate MLE of σ̂2
ε which depends on d is

σ̂2
ε =

1

N

[
c2j0,1

Sj0+1(d)
+

j0∑

j=1

j0−j∑

k=1

d2
j,k

Sj(d)

]
.

The concentrated log-likelihood (Haslett and Raftery, 1989) is formed by replacing

σ2
ε of (3.11) by σ̂2

ε and is numerically maximized with respect to d.

In the case of ARFIMA(p, d, q) models, the inference procedures are not easy

due to the dense covariance matrices generated by the covariance function (2.11) and

thus the handling of the likelihood with this kind of dense covariance matrix has
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a problem of inversion. Since large size of data is needed to properly estimate the

long memory parameter describing a long term persistent phenomenon of data over

time, the inversion of the dense covariance matrix is crucial. Jensen (2000) showed

the decorrelation properties of the DWT in ARFIMA(p, d, q) and gave an alterna-

tive(approximate) maximum likelihood estimates of the model parameters based on

DWT in ARFIMA(0, d, 0) and ARFIMA(0, d, 1) models. He first showed that the nor-

malized wavelet coefficients associated with a ARFIMA(p, d, q) process is self-similar

for any time scale and also stationary time sequence and stationary scale sequence.

In the paper, the approximate covariance matrix of wavelet coefficients is defined by

Σ<X,Ψ> = E < X,Ψ >< X,Ψ >′ using the approximate covariance function of the

Definition 2.2.1. The approximate covariance matrix is a sparse matrix whose ele-

ments decay exponentially as one moves away from the diagonal elements of within

and between scale covariance matrices. This decay creates finger-like bands. Also the

banded approximate covariance matrix, ΣB
<X,Ψ> is defined as its finger-like diagonal

elements are set to zero according to the condition B. For example, Σ1
<X,Ψ> consists

of main diagonal elements of Σ<X,Ψ>. Then approximate likelihood function is formed

by

LN (d| < X,Ψ >) = (2π)−N/2|Σ<x,Ψ>(d)|−0.5

exp[−0.5 < x,Ψ >′ Σ−1
<x,Ψ>(d) < x,Ψ >].

The banded likelihood function LB
N is equal to LN except with Σ<X,Ψ> replaced by

ΣB
<X,Ψ>. Then LN (d| < X,Ψ >) and LB

N (d| < X,Ψ >) are numerically maximized.

Whitcher et al. (2000) applied iterated cumulative sums of squares (ICSS) algo-

rithm to the detection and location of multiple variance change points in a stationary

Gaussian fractionally differenced (FD) process via discrete wavelet transform and

maximal overlap discrete wavelet transform (MODWT) which is so called “undec-
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imated discrete wavelet transform”. For detection of a variance change point, the

normalized cumulative sums of squares test statistics D ≡ max(D+, D−) which has

been investigated by Brown et al. (1975), Hsu (1977) and Inclán and Tiao (1994) is

calculated for the wavelet coefficients through DWT, where

Pk ≡
∑k

j=0X
2
j∑N−1

j=0 X2
j

,

D+ ≡ max0≤k≤N−2

(
k + 1

N − 1
− Pk

)
,

and

D− ≡ max0≤k≤N−2

(
Pk −

k + 1

N − 1

)
,

under the null hypothesis H0 : σ2
0 = σ2

1 = . . . = σ2
N−1. Since this testing procedure

is originally designed for a sequence of independent Gaussian white noise with zero

means and variances σ2
0, σ

2
1 , . . . , σ

2
N−1, they transform a fractionally difference Gaus-

sian white noise process, {Xt}N−1
t=0 into nearly uncorrelated process through DWT

device. After assuring a change point through the testing procedure, the location

of it is searched using the undecimated wavelet coefficients through MODWT. Fur-

thermore, based on this scheme to detect single change point, ’binary segmentation’

procedure proposed by Vostrikova (1981) is used to keep searching multiple change

points.
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CHAPTER IV

BAYESIAN ESTIMATION OF ARFIMA MODELS ON WAVELET DOMAIN

4.1 Introduction

A Bayesian estimation procedure for the model parameters of Gaussian ARFIMA

(p, d, q) processes is presented. The original data on time domain is transformed

to wavelet coefficients on wavelet domain using discrete wavelet transform (DWT).

Then Markov chain Monte Carlo (MCMC) is applied to those wavelet coefficients for

Bayesian estimation. Vannucci and Corradi’s (1999) algorithm is used to transform

the variance-covariance matrix on time domain by parameter values proposed on each

MCMC iteration to the one on wavelet domain. Simulations and application to the

U.S. GNP data are presented.

4.2 Model in the wavelet domain

The decorrelation property of the wavelet transform is a great advantage when

using data from a long memory process. Long memory data have a dense covariance

structure that makes the exact likelihood of the data difficult to handle. A wavelet

transform can represent the long-memory structure in a sparse form becoming a

useful tool to simplify the likelihood. Let Ψ = (φ, θ, d, σ2) and Ψ0 = (φ, θ, d), where

φ=(φ1, φ2, . . . , φp) and θ=(θ1, θ2, . . . , θq).

Suppose that X = (x1, x2, . . . , xn) come from Gaussian ARFIMA(p, d, q) process.

Then,

[X|Ψ] ∼ N(0,ΣX(Ψ)). (4.1)
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The model in the wavelet domain can be written as

[Zi|Ψ] ∼ N(0,ΣZi
(Ψ)) (4.2)

independently for i = 1, 2, . . . , n. Recall that the DWT is a linear orthogonal transfor-

mation and so wavelet coefficients inherit some of the features of the data, specifically

zero mean Gaussian.

By using the Vannucci and Corradi (1999) algorithm, the variances ΣZi
(Ψ) can

be easily calculated from the autocovariance function (2.11) as previously described.

Notice that the computations are considerably simple because only the variances are

used to construct the approximate likelihood on wavelet domain. We simply apply

the DWT2 to (2.11) and the diagonal elements of the resulting matrix, ΣZi
(Ψ) are

used as the variance σ2
Zi

(Ψ) of the corresponding wavelet coefficients Zi. Given the

form of the autocovariance function, we can write Σ2
Zi

(Ψ) in (4.2) as

ΣZi
(Ψ) = σ2 · σ2

Zi
(Ψ0), (4.3)

where σ2
Zi

(Ψ0) depend only on (d, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq). Thus (4.2) can be

written as

[Zi|Ψ] ∼ N(0, σ2 · σ2
Zi

(Ψ0)), (4.4)

where σ2 · σ2
Zi

is the ith diagonal element of ΣZ .

4.3 Bayesian modeling on wavelet domain

4.3.1 Prior distributions

Priors for the unknowns, i.e. the long memory parameter, d, autoregressive coeffi-

cients, φ1, φ2, . . . , φp, moving average coefficients, θ1, θ2, . . . , θq, and the nuisance scale

parameter, σ2 are needed to be specified in order to do inference. For the prior specifi-

cation, independent priors are assumed, which means that π(Ψ) = π(φ)π(θ)π(d)π(σ).
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As for the long memory parameter d, a sensible choice would be a mixture of two Beta

distributions on -1/2< d <0 and 0< d <1/2 with a point mass at d=0. However, an

uninformative prior, i.e. Uniform in (-1/2,1/2) is given for d, which is the range to

satisfy the stationarity and inevitability of the model (2.7). For the priors of φ’s and

θ’s, uniform priors defined on the ranges that satisfies the causality and invertibility

of the ARMA process. Also, improper priors are used for µ on R
1 and σ2 on R

+.

Thus, π(Ψ) ∝ 1/σ2 over the parameter space and 0 elsewhere. Also the likelihood

form of (4.4) is

π(Ψ|zn) = (1/σ2)n/2

(
1∏n

i=1 σ
2
zi
(Ψ0)

)1/2

exp

[
−
∑n

i=1(z
2
i /σ

2
zi
(Ψ0))

2σ2

]
(4.5)

4.3.2 Posterior distribution

The joint posterior distribution for Ψ may be written as

π(Ψ|zn) ∝ (1/σ2)(n/2)+1

(
1∏n

i=1 σ
2
zi
(Ψ0)

)1/2

exp

[
−
∑n

i=1(z
2
i /σ

2
zi
(Ψ0))

2σ2

]
(4.6)

where σ2 is the variance of white noise. Integrating out σ2 in equation (4.6) leads to

the marginal posterior distribution of Ψ0,

π(Ψ0|zn) ∝
(

1∏n
i=1 σ

2
zi
(Ψ0)

)1/2
[

n∑

i=1

(
z2

i

σ2
zi
(Ψ0)

)]−n/2

, (4.7)

which is shown in Appendix A. In equation (4.6), since σ−2 follows a gamma distri-

bution, the full conditional distribution of σ2 does a inverse gamma distribution:

π(σ2|Ψ0, zn) ∼ IG

(
n

2
,

2∑n
i=1(z

2
i /σ

2
zi
(Ψ0))

)
. (4.8)

The marginal posterior distribution of σ2, given data zn is:

π(σ2|zn) =

∫

Ψ0

π(σ2|Ψ0, zn)π(Ψ0|zn)dΨ0. (4.9)
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Samples may be drawn from equation (4.7), using the Metropolis algorithm. Based on

these samples Ψj
0 = (φ∗

j , θ
∗
j , dj), j = 1, . . . , N , the samples for σ2 can be obtained from

the Rao-Blackwellization steps shown above, i.e. for each Ψj
0 and their corresponding

samples σ2
j |Ψj

0, zn from (4.8), we may sample σ2
j |zn from equation (4.9).

There exists a technical problem in sampling Ψ0 = (φ, d, θ) from the posterior

distribution (4.7), using Gaussian proposal centered at the maximum likelihood es-

timates of the parameters and with covariance matrix given by the inverse of the

observed Fisher’s information matrix in the Metropolis algorithm. It comes from the

restrictions on the ranges of Ψ0 = (φ, θ, d). The problems arise because if we use

a Gaussian proposal for Metropolis algorithm, the ranges of the parameters in the

distribution are from −∞ to +∞ for each parameter, d, θ and φ. A transformation

method can be used to handle this. For example, in case of p = 1 and q = 1, that is

−1/2 < d < 1/2, −1 < θ < 1 and −1 < φ < 1, the following transformations for each

parameter are used.

d =
−1 + ed†

2(1 + ed†)
, θ =

−1 + eθ†

1 + eθ†
and φ =

−1 + eφ†

1 + eφ†
,

where −∞ < φ†, θ† and d† < ∞ are from Gaussian proposal distribution. Then, the

transformed posterior density for the model ARFIMA(p, d, q) where p = 1 and q = 1

is

π(Ψ0|Z)|J | = π(Ψ†
0|Z),

where Ψ∗
0 = (φ†, θ†, d†) and

|J | =

∣∣∣∣
∂Ψ0

∂Ψ†
0

∣∣∣∣

=
exp(d†)exp(φ†

1)exp(θ†1)

g(d∗, φ†
1, θ

†
1)

,

where g(d†, φ†
1, θ

†
1) = (1 + exp(d†))2(1 + exp(φ†

1))
2(1 + exp(θ†1))

2.
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Table 1: ARFIMA(1, d, 0): Estimates of d and φ from wavelet-based Bayesian method
with MP(7) wavelets, MLE and the Geweke and Porter-Hudak (1983) method, re-
spectively. Numbers in parentheses are standard errors.

(φ, d) φ=.5 d=.2 φ=-.8 d=.4

KV .5474(.0702) .1502(.0274) -.6669(.0601) .3801(.0281)
27 MLE .6466 .0015 -.6373 .3290

GPH .0550 .4993
KV .5599(.0458) .1585(.0247) -.7245(.0332) .3729(.0256)

29 MLE .6015 .1252 -.7198 .3671
GPH .2529 .5018

4.4 Simulation study

There are a number of ways to generate a time series that exhibits long-memory

properties. A computationally simple one was proposed by McLeod and Hipel (1978)

and involves the Cholesky decomposition of the correlation matrix RX(i,j) = [ρ(|i−j|)].

Given RX = MM ′ with M = [mi,j] a lower triangular matrix, if εt, t = 1, . . . , n is a

Gaussian white noise series with zero mean and unit variance, then the series

Xt = γ
1/2
0

t∑

i=1

mt,iε

will have the autocorrelation ρ(τ). The data for Simulation are here generated by us-

ing the McLeod and Hipel’s method with σ2 = 1. Simulations to estimate the autore-

gressive, moving average parameters and the long memory parameter are performed

for ARFIMA(1, d, 0), ARFIMA(0, d, 1) and ARFIMA(1, d, 1) models. For checking

robustness of the estimates the simulations are carried out according to different val-

ues of parameters (φ = .5,−.8, θ = .5,−.8 and d = .2, .4) and of the sample size

n = 27, 29. The wavelet family which are used in all simulations is Daubechies (1992)

minimum phase wavelets MP(7).

The similar settings to those of Pai and Ravishanker (1996) are used. For each

combination of the parameters the estimates based on ten parallel MCMC chains
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Table 2: ARFIMA(0, d, 1): Estimates of d and θ from wavelet-based Bayesian method
with MP(7) wavelets, MLE and the Geweke and Porter-Hudak (1983) method, re-
spectively. Numbers in parentheses are standard errors.

(d, θ) d=.2 θ=.5 d=.4 θ=-.8

KV .2059(.0659) .3484(.2051) .4104(.0170) -.6968(.0816)
27 MLE .0699 .4671 .1367 -.4029

GPH .4237 .2913
KV .1948(.0253) .4029(.0797) .3192(.0147) -.7155(.0313)

29 MLE .1559 .5547 .3024 -.7189
GPH .2316 .3580

are reported. The maximum likelihood estimates are used as initial values for each

MCMC sampler and then perturbed to obtain over-dispersed values to be used to

initialize the ten independent parallel MCMC chains. All chains were run for 10,000

iterations after a burn-in time of 10,000. Estimates were computed as posterior means

together with posterior standard errors, obtained from the pooled MCMC sample.

Tables 1, 2 and 3 summarize the numerical results. For comparison the values of

the MLE and the classical estimator of Geweke and Porter-Hudak (1983) based on a

regression on periodogram ordinate are reported together.

In the result of ARFIMA(1, d, 0) process wavelet-based Bayes estimates which

are here called “KV” are always better than MLE and GPH estimates for both small

and large sample sizes. MLE as expected improve considerably large sample sizes.

For ARFIMA(0, d, 1) model wavelet-based Bayes estimates are almost better except

the case of θ = .5, for which case KV estimates do not improve on MLE. In case of

ARFIMA(1, d, 1) process wavelet-based Bayes estimates for d improve on the other

methods, while MLE do a better job at estimating φ, although they are very close to

the MLE values. These results seem to indicate a better performance of the proposed

method based on wavelet domain with respect to the other two methods.
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Table 3: ARFIMA(1, d, 1): Estimates of d, φ and θ from wavelet-based Bayesian method with MP(7) wavelets, MLE and
the Geweke and Porter-Hudak (1983) method, respectively. Numbers in parentheses are standard errors.

(φ, d, θ) φ=.1 d=.4 θ=.5 φ=-.1 d=.4 θ=-.5

KV .1703(.1579) .2617(.0042) .6650(.2324) -.2568(.1709) .3755(.0226) -.2995(.1558)
27 MLE .0847 .2588 .7020 -.2147 .2447 -.2344

GPH .4777 .3145
KV .0459(.1346) .3915(.0075) .5577(.2136) -.0529(.0982) .2834(.0261) -.4183(.0921)

29 MLE .0698 .3859 .5646 -.0386 .2783 -.4374
GPH .5134 .1962
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4.5 Example: U.S. GNP data

We examined post-war quarterly U.S. GNP data from 1947(1) to 1991(1) with

n = 177. The original series shows strong trend and that the variability increases

along time. The logarithms of the original data and their first differences are taken

to treat the variability and trend, respectively. That is, when yt is the original U.S.

GNP series on given period, we use ln(yt) − ln(yt−1) as the analysis data. The (a) in

Figure 5 shows the first differences of the logarithms of the original series.

This series has been analyzed by several authors. A slightly shorter time series

was fitted by Sowell (1992b) with both ARMA and ARFIMA models. The AIC cri-

terion indicated the ARFIMA(3, d, 2) as the best model. Sowell also reported MLE

estimates for the long memory and the autoregressive and moving average parame-

ters of all models. As for Bayesian approaches, Pai and Ravishanker (1996) showed

evidence for the ARFIMA(0, d, 0) model without mean as the best fit, while Koop et

al. (1997) reported ARFIMA(1, d, 0) as best model. For some models there appears

to be some discrepancy between the parameter estimates they report and those of

Sowell.

We fitted ARFIMA(p, d, q) models with p, q = 0, 1. We used a circulant filter

by padding the series with replicas and truncating the wavelet transform. Estimates

and standard deviations for the parameters of the different models are reported in

Table 4.

Table 4: Wavelet-based Bayes estimates for U.S. GNP data

Model d φ θ

(1,d,0) -.4499(.0027) -.6910(.0376)
(0,d,1) .1925(.0303) .1705(.0521)
(1,d,1) -.3628(.0124) -.6991(.0203) .0456(.0361)
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In the case of ARFIMA(1, d, 0), ARFIMA(0, d, 1) and ARFIMA(1, d, 1), esti-

mates are based on ten independent parallel MCMC chains with 1,000 iterations

each and burn-in times of 1,000 iterations. With respect to previous works, these

estimates appear to be in better agreement with those reported by Sowell (1992b).

For example, Koop et al. (1997) reported the estimates of the long memory pa-

rameter d = −.29, .23,−.16, while MLE estimates were d = −.45, .16,−.38, for

ARFIMA(1, d, 0), ARFIMA(0, d, 1) and ARFIMA(1, d, 1), respectively. The (b), (c)

and (d) in Figure 5 show kernel density estimates of the posterior distributions of the

long memory parameter for the three different ARFIMA models, ARFIMA(1, d, 0),

ARFIMA(0, d, 1) and ARFIMA(1, d, 1).

4.6 Supplementary study on using diagonal elements of ΣW

Although Tewfik and kim (1992), McCoy and Walden (1996) and Jensen (2000)

showed a decorrelation property of discrete wavelet transform on long memory series,

we here report the empirical evidence about the property on ARFIMA(p, d, q) process

through a simulation study with ARFIMA(0, d, 0) process.

Tables 5 and 6 show numerical results for the estimation of the long memory

parameter, d of ARFIMA(0, d, 0) models. The simulated data are generated with

d = 0.05, 0.20, 0.45 and σ2 = 0.05. For checking the robustness of the results, we use

different sample sizes n = 128 (Table 5), n = 512 (Table 6) and different vanishing

moments 2 and 7 with Daubechies’s minimum phase wavelets.

In Tables 5 and 6, there are no remarkable differences between the estimated

values of the long memory parameter in the aspect of precision when we used the

full matrix and the diagonal elements of the covariance matrix ΣW of the wavelet

coefficients from ARFIMA(0, d, 0) models. In some cases, the biases when diagonal

terms are used is less than the case when th full matrix is used. When n = 512, high
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Figure 5: First differences of GNP data, in plot a), and kernel estimates of the poste-
rior density of d for b) ARFIMA(1, d, 0), c) ARFIMA(0, d, 1) and d) ARFIMA(1, d, 1)
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number of vanishing moments give less biases than low number of vanishing moments.

From this empirical study with theoretical works of Jensen (2000), we have an

evidence to assume uncorrelated wavelet coefficients and use only diagonal terms,

σ2 · σ2
Zi

(Ψ0) of the covariance matrix ΣW in (4.3) to evaluate the likelihood function

the estimation procedure in (4.5) .
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Table 5: Simulation result when diagonal elements and full matrix of ΣW used in the estimation of long memory parameter
of ARFIMA(0, d, 0) model with sample size n = 128. The numbers in parenthesis denote biases.

Diagonal Matrix Full Matrix
No. of Vanishing moments 2 7 2 7

d = 0.05 0.0605(0.0105) 0.0411(-0.0089) 0.0478(-0.0022) 0.0460(-0.0040)
σ2 = 0.90 0.6859(-0.2141) 0.6831(-0.2169) 0.6824(-0.2176) 0.6839(-0.2161)
d = 0.20 0.1379(-0.0621) 0.1971(-0.0029) 0.1209(-0.0791) 0.1532(-0.0468)
σ2 = 0.90 0.7500(-0.1500) 0.7583(-0.1417) 0.7462(-0.1538) 0.7611(-0.1389)
d = 0.45 0.4557(0.0057) 0.4410(-0.0090) 0.4276(-0.0224) 0.4282(-0.0218)
σ2 = 0.90 1.2132(0.3132) 1.2333(0.3333) 1.2258(0.3258) 1.2208(0.3208)
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Table 6: Simulation result when diagonal elements and full matrix of ΣW used in the estimation of long memory parameter
of ARFIMA(0, d, 0) model with sample size n = 512. The numbers in parenthesis denote biases.

Diagonal Matrix Full Matrix
No. of Vanishing moments 2 7 2 7

d = 0.05 0.0496(-0.0004) 0.0487(-0.0013) 0.0512(0.0012) 0.0542(0.0042)
σ2 = 0.90 0.8075(-0.0925) 0.8110(-0.089) 0.8072(-0.0928) 0.8091(-0.0909)
d = 0.20 0.2529(0.0529) 0.2286(0.0286) 0.1895(-0.0105) 0.2113 (0.0113)
σ2 = 0.90 0.8548(-0.0452) 0.8900(-0.0100) 0.8612(-0.0388) 0.8673 (-0.0327)
d = 0.45 0.4783(0.0283) 0.4659(0.0159) 0.4408(-0.0092) 0.4451(-0.0049)
σ2 = 0.90 0.7763(-0.1237) 0.7952(-0.1048) 0.7985(-0.1015) 0.8010(-0.0990)
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CHAPTER V

CHANGE POINT ANALYSIS ON WAVELET DOMAIN

5.1 Introduction

The number of change points is assumed unknown. Instead we specify the max-

imum number of change points a priori. Original data is transformed to wavelet

coefficients through discrete wavelet transform as in Chapter IV. Reversible jump

Markov chain Monte Carlo is applied to the wavelet coefficients to estimate the num-

ber of change points, locate the corresponding change points and estimate the other

model parameters of the Gaussian ARFIMA(p, d, q) process.

5.2 Model and likelihood

In this section, we consider the case that multiple changes exists in the long

memory parameter. The model is as follows.

Φ(B)(1 − B)dtXt = Θ(B)εt,

where

dt =





d1, if 1 ≤ t < c1,

d2, if c1 ≤ t < c2,

...
...

dk+1, if ck ≤ t ≤ n.

Integer-valued k satisfies 0 ≤ k ≤ kmax where kmax is pre-specified. This means

that we set up the maximum number of changes for long memory parameter dt a

priori. Ck = (c1, . . . , ck) is a vector of the positions that changes in long memory

parameter occur. dk = (d1, d2 . . . , dk+1) is a vector of long memory parameters cor-
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responding to each locations such that di ∈ (0, .5). Again, let Ψ0 = (φ, θ,dk), where

φ=(φ1, φ2, . . . , φp) and θ=(θ1, θ2, . . . , θq).

Here we assume that the original ARFIMA(p, d, q) model has constant mean µ.

We model wavelet coefficients rather than the original data. The DWT is a linear and

orthogonal transformation and wavelet coefficients therefore inherit the distribution

of the data, specifically they are zero mean Gaussian. After taking DWT, we get

wavelet coefficients z = (z1, z2, . . . , zn) with mean zero. The likelihood function is

f(z|φ,dk, θ, σ
2) = (

√
2π)−n

∏

i=1

(
1

σ2σ2
zi
(Ψ0)

)1/2

exp

[
−1

2

n∑

i=1

z2
i

σ2σ2
zi
(Ψ0)

]
.

5.2.1 Prior Distribution

We specify priors for the unknowns, i.e. the long memory parameter, dt, autore-

gressive coefficients, φ, moving average coefficients, θ, the number of change points

k and the variance of white noise σ2. Let ξk = (k, ωk) = (k,Ck,dk,φ, θ, σ
2), where

ωk = (Ck,dk,φ, θ, σ
2). For the prior specification we assume

π(k, ωk) = π(k)π(ωk|k)

= π(k)π(Ck|k)π(dk|k,Ck)π(φ)π(θ)π(σ2)

For the long memory parameter dk where k = 0, 1, 2, 3, . . . , kmax, we use an uninfor-

mative prior, i.e. uniform in (0, 0.5) which is the range of the model to have long

memory. For the priors of φ’s and θ’s, we give uniform priors with the ranges to

satisfy the causality and invertibility of the ARMA process. As prior distributions of

σ2 we use an improper prior with π(σ2) ∝ 1
σ2 . For k, we set

k ∼ U{0, 1, 2, . . . , kmax}.

For a prior distribution of Ck, suppose that k∗ is generated on an iteration from dis-

crete uniform distribution with a range {0, 1, 2, . . . , kmax}. Then the possible ways we
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can pick k∗’s change points out of n−2 candidates are
(

n−2
k∗

)
. Using this information,

a reasonable choice for the prior distribution of Ck will be

Ck|k ∼
(
n− 2

k

)−1

. (5.1)

Also one can use an ordered prior distribution as the prior distribution for Ck. It is

Ck|k ∼ k!

(n− 2)k
. (5.2)

When we use the unordered prior distribution (5.1) the calculations of the acceptance

rates in birth step and death step for reversible jump MCMC in Section 5.3 become

simpler.

5.2.2 Posterior and full conditional distributions

The joint posterior distribution of the model parameters including Ck and k

which is derived in Appendix B.1 is

f(k,φ,dk, θ,Ck, σ
2|z) ∝

(
1∏n

i=1 σ
2σ2

zi
(Ψ0)

)1/2

exp

[
−1

2

n∑

i=1

z2
i

σ2σ2
zi
(Ψ0)

]

×
(
n− 2

k

)−1

σ−2. (5.3)

We treat σ2 as a nuisance parameter and integrate it out to get a proper marginal

posterior distribution of φ,dk, θ and Ck as follows:

f(k,φ,dk, θ,Ck|z) ∝
(

1∏n
i=1 σ

2
zi
(Ψ0)

)1/2
[

n∑

i=1

z2
i

σ2
zi
(Ψ0)

]−n/2

×
(
n− 2

k

)−1

,

which is a proper distribution because all the prior distributions except σ2 and like-

lihood function are proper.

In order to implement our MCMC estimation procedure we need full conditional

distributions of a change point and model parameters Ψ0 = (φ,dk, θ). From the joint
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posterior distribution, we get the conditional posterior distributions for cm as

P (cm|z, k, c1, c2, . . . , cm−1, cm+1, . . . , ck,Ψ)

∝
(

1
∏cm−1

i=cm−1+1 σ
2
zi
(φ, dm−1, θ)

)1/2(
1

∏cm+1−1
i=cm

σ2
zi
(φ, dm, θ)

)1/2

×




cm−1∑

i=cm−1+1

z2
i

σ2
zi
(φ, dm−1, θ)




−(cm−cm−1)/2

×
[

cm+1−1∑

i=cm

z2
i

σ2
zi
(φ, dm, θ)

]−(cm+1−cm−1)/2

, (5.4)

where cm = cm−1 + 1, cm−1 + 2, . . . , cm+1 − 1, c0 = 1 and m = 1, 2, . . . , k.

Also, the full conditional distribution of Ψ0 = (φ,dk, θ) is

P (φ,dk, θ|z, k,Ck)

∝
(

1
∏c1−1

i=1 σ2
zi
(φ, d1, θ)

)1/2 [c1−1∑

i=1

z2
i

σ2
zi
(φ, d1, θ)

]−(c1−1)/2

×
(

1
∏c2−1

i=c1
σ2

zi
(φ, d2, θ)

)1/2 [c2−1∑

i=c1

z2
i

σ2
zi
(φ, d2, θ)

]−(c2−c1)/2

...
...

×
(

1∏n
i=ck

σ2
zi
(φ, dk+1, θ)

)1/2 [ n∑

i=ck

z2
i

σ2
zi
(φ, dk+1, θ)

]−(n−ck+1)/2

(5.5)

5.3 Application of reversible jump MCMC

We adopt the reversible jump Markov chain Monte Carlo method introduced

by Green (1995) to make inferences about ARFIMA(p, d, q) model with an unknown

number of changes but known number of maximum changes, kmax. Our methodology

using a reversible jump MCMC is similar to Liu and Kao’s (1999) one except:

• We deal with general types of ARFIMA(p, d, q) models on wavelet domain while

they had inferences of ARFIMA(1, d, 0)-ARCH(1) models on original data do-

main.
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• we use metropolis algorithm to sample parameter values in (2) while they used

griddy Gibbs sampler.

Now we define three types of moving-patterns with (i) Birth step of a change-point,

(ii) Death step of a change-point and (iii) Transition step of model parameters ωk
′ =

(Ck,dk,φ, θ), which handle the varying dimension of parameter space along on each

iteration. A reversible jump MCMC algorithm randomly evolves with one of the

above steps at each iteration with the following probabilities, respectively,

• P (birth of a change-point) = αk,

• P (death of a change-point) = βk and

• P (transition of ωk
′) = γk,

where αk + βk + γk = 1. Green (1995) proposed that these probabilities could be

chosen in order to ensure αkπ(k) = βk+1π(k+1) which guarantees certain acceptance

in the corresponding Hastings sampler only for the number of steps so that

αk = c · min{1, π(k + 1)/π(k)}, βk+1 = c · min{1, π(k)/π(k + 1)},

where the constant c is as large as possible subject to αk + βk ≤ 0.9 for all k =

0, 1, . . . , kmax. Since π(k) = π(k+1) = 1/(kmax+1) in our setting of prior distribution

for k, αk = βk+1 = c ≤ 0.9 and so αk and βk+1 can be set to 0.45. Therefore, we can

set up each probability as





αk = 0.0, βk = 0.9, and γk = 0.1 if k = kmax,

αk = 0.9, βk = 0.0, and γk = 0.1 if k = 0,

αk = 0.45, βk = 0.45 and γk = 0.1 if k = 1, 2, 3, . . . , kmax − 1.
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5.3.1 Birth step of a change-point

The birth step of a change-point add a new change-point to the current state of

parameters, ζk = (k,Ck,dk,ωk
′). That is, the number of change-points get changed

from k to k + 1. Two uniform random variables, u1 and u2 are generated to match

the dimension of parameters such that u1 ∼ U{2, 3, . . . , n − 1} ∩ {c1, c2, . . . , ck}c,

where {c1, . . . , ck} is a set of existing change points and u2 ∼ U(−Ru1
, Ru1

), where

Ru1
= min{dm∗−1, 0.5 − dm∗−1} and m∗ = min{i|u1 < ci}.

Let the suggested locations of (k+1) change points be Ck+1
′ = (c′1, c

′
2, . . . , c

′
k+1) and

the corresponding long memory parameters dk+2
′ = (d′1, d

′
2, . . . , d

′
k+2), where

c′i =






ci, if 1 ≤ i ≤ m∗ − 1,

u1, if i = m∗,

ci−1, if m∗ + 1 ≤ i ≤ k + 1,

and

d′i =





di, if 1 ≤ i ≤ m∗ − 1,

dm∗ − u2, if i = m∗,

dm∗ + u2, if i = m∗ + 1,

di−1, if m∗ + 2 ≤ i ≤ k + 2.

Then the proposed parameter space becomes ζ ′k+1 = (k + 1,Ck+1
′,dk+1

′,ωk
′). Note

that ωk
′ is not changed. We accept a proposed transition from ζk+1 to ζ ′k+1 with

probability

αbirth(ζk, ζ
′
k+1)

= min(1, posterior ratio× proposal ratio× |J |)

= min

(
1,
Q(φ, d′i, θ)

Q(φ, di, θ)
× 4Ru1

βk+1

αk

)
, (5.6)
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where

Q(φ, d′i, θ) =


 1
∏c′

i+2
−1

i=c′i
σ2

zi
(φ, d′i, θ)




1/2 


c′i+2
−1∑

i=c′i

z2
i

σ2
zi
(φ, d′i, θ)



−(c′i+2

−c′i)/2

and

Q(φ, di, θ) =

(
1

∏ci+1−1
i=ci

σ2
zi
(φ, di, θ)

)1/2 [ci+1−1∑

i=ci

z2
i

σ2
zi
(φ, di, θ)

]−(ci+1−ci)/2

,

which is derived in Appendix B.2.

5.3.2 Death step of a change-point

The death step of a change-point drops one among the existing change-points.

That is, the number of change points is changed from k to k − 1. A uniform ran-

dom variable u is generated to match the dimension of parameters with a range

over {c1, c2, . . . , ck}. Let the proposed locations with (k − 1) change points be

Ck−1
∗ = (c∗1, c

∗
2, . . . , c

∗
k−1) and the corresponding long memory parameters dk−1

∗ =

(d∗1, d
∗
2, . . . , d

∗
k), where

c∗i =





ci, if 1 ≤ i ≤ u− 1,

ci+1, if u ≤ i ≤ k − 1,

and

d∗i =





di, if 1 ≤ i ≤ u− 1,

(du + du+1)/2, if i = u,

di+1, if u+ 1 ≤ i ≤ k.

The resulting parameter space is ζ∗k−1 = (k − 1,Ck−1
∗,dk−1

∗,ωk
′). Note again that

ωk
′ still remains same. We accept a transition from ζk to ζ∗k−1 with probability

αdeath(ζk, ζ
∗
k−1) = min(1, posterior ratio× proposal ratio× |J |)

= min

(
1,
Q(φ, d∗i , θ)

Q(φ, di, θ)
× αk−1

4Ruβk

)
, (5.7)



54

where

Q(φ, d∗i , θ) =


 1
∏c∗i −1

i=c∗i−1
σ2

zi
(φ, d∗i , θ)




1/2 


c∗i −1∑

i=c∗i−1

z2
i

σ2
zi
(φ, d∗i , θ)



−(c∗i −c∗i−1

)/2

and

Q(φ, di, θ) =

(
1

∏ci+1−1
i=ci−1

σ2
zi
(φ, di, θ)

)1/2



ci+1−1∑

i=ci−1

z2
i

σ2
zi
(φ, di, θ)




−(ci+1−ci−1)/2

,

which is derived in Appendix B.3.

5.3.3 Transition step of model parameters, ωk
′

We update the model parameters by sampling Ck from the full conditional distri-

bution (5.4) and (φ,dk, θ) from the full conditional distribution (5.5). For the latter

we use a Metropolis algorithm with a multivariate normal distribution as proposal

distribution, centered at the maximum likelihood estimates of the parameters and

with covariance matrix given by observed Fisher information.

Unlike the estimation procedure of the model parameters of ARFIMA(p, d, q)

model in Chapter IV, we cannot use the transformation technique in this Metropolis

step, which transforms the proposal values from multivariate normal distribution into

the values over the restricted ranges which are needed for the invertibility and station-

ary conditions of AR and MA parameters and the range of long memory parameter

dt. The reason is that dt in birth and death step of reversible jump algorithm are

updated from one-to-one function using uniform distributions which have the ranges

satisfying those restrictions and so the acceptance rates in birth and death steps do

not use the same transformation technique as in Metropolis step of Chapter IV. For

this reason, we use rejection sampling method instead of transformation technique in

the Metropolis step. This method is computationally expensive but, more reasonable

than transformation technique in our situation.
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5.4 Simulation studies

We carried out simulation studies with data sets of sample sizes n = 512 which

are generated by McLeod and Hipel’s (1978) method. For the single change point

case, we simulated datasets with a change at t = 256. For multiple changes, we

induced changes at t = 128 and 256. We simulated data from ARFIMA(1, 1, 1),

ARFIMA(1, 1, 0) and ARFIMA(0, 1, 1) models with one change point and from ARF-

IMA(1, 1, 1) with two change points. In all analyses we used discrete wavelet trans-

forms with Daubechies’ minimum phase wavelets with seven vanishing moments,

Daubechies (1992). For the detection of the change points, the wavelet coefficients of

the highest level are used and those affected by the boundary conditions are discarded.

The initial value for the number of change points, k, is set to zero and the max-

imum number of change points, kmax is allowed to 3. This is a reasonable choice

because we usually estimate the model parameters with the assumption that there

do not exist change points in a given data. For MCMC sampling, we use parametric

optimal values as the initial values of φ, θ and d and inverse of Fisher’s information

matrix as the variance-covariance matrices of multivariate normal proposal distribu-

tion for the Metropolis step. When sampling cm from (5.4), the c’s changed during

the reversible jump step is re-calculated and standardized so to sum up to one. Then

only one point among the candidate points is sampled from a multinomial distribu-

tion with the standardized values as multinomial probabilities and passed to the next

Metropolis step with (5.5). The iteration size is N = 20, 000 with a burn in of 10, 000.

At each iteration, one of the three move type is randomly chosen and new param-

eter values are obtained according to the chosen move type. This MCMC algorithm

produces a sample on all parameters from which the number of change points, k, can

be estimated as the posterior mean, denoted by k̂. Inference on the model parameters
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is then obtained given k̂.

Tables 7, 9 and 11 show the posterior probabilities for the number of change

points, k for ARFIMA(1, d, 1), ARFIMA(1, d, 0) and ARFIMA(0, d, 1) models with

one change point and Tables 8, 10 and 12 report the estimates of the model parameters

and the location of change points, c’s corresponding to k̂ with the highest posterior

probability π(k̂|·). Tables 13 and 14 refer to an ARFIMA(1, d, 1) model with two

change points. The number of change points is correctly estimated in all cases. The

method also shows good performance in the estimation of the model parameters and in

the location of the change points, although there appears to be a slight overestimation

of the location for ARFIMA(0, d, 1) models with one change point and for the multiple

change point case.

Table 7: Posterior probability of the number of change points k in the simulation
of ARFIMA(1, d, 1) model with φ=0.1, d1=0.2, d2=0.4, θ=0.5 and one change point
c=256 .

No. of change points Posterior probability

k̂ π(k̂|·)
0 0.0320
1 0.5381
2 0.3204
3 0.1095

Table 8: Parameter estimates of ARFIMA(1, d, 1) model in the case of k̂ = 1.

No. of change points Posterior probability Parameter

k̂ π(k̂|·) estimates

φ̂=0.1651

1 0.5381 θ̂=0.5225

d̂1=0.1065

d̂2=0.4187
ĉ1=252
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Table 9: Posterior probability of the number of change points k in the simulation of
ARFIMA(1, d, 0) model with φ=0.3, d1=0.2, d2=0.3 and one change point c=256.

No. of change points Posterior probability

k̂ π(k̂|·)
0 0.3559
1 0.3932
2 0.1890
3 0.0619

Table 10: Parameter estimates of ARFIMA(1, d, 0) model from simulated data in the
case of k̂ = 1.

No. of change points Posterior probability Parameter

k̂ π(k̂|·) estimates

1 0.3931 φ̂=0.2425

d̂1=0.1362

d̂2=0.3282
ĉ1=256
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Table 11: Posterior probability of the number of change points k in the simulation of
ARFIMA(0, d, 1) model with d1=0.2, d2=0.3, θ = 0.3 and one change point c=256.

No. of change points Posterior probability

k̂ π(k̂|·)
0 0.1832
1 0.4982
2 0.2487
3 0.0699

Table 12: Parameter estimates of ARFIMA(0, d, 1) model from simulated data in the
case of k̂ = 1.

No. of change points Posterior probability Parameter

k̂ π(k̂|·) estimates

1 0.4982 θ̂=0.2902

d̂1=0.1123

d̂2=0.3739
ĉ1=276
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Table 13: Posterior probability of the number of change points k in the simulation of
ARFIMA(1, d, 1) model with φ = 0.1, θ = 0.4, d1 = 0.05, d2 = 0.35, d3 = 0.45 and
two change points at c1 = 128 and c2 = 256.

No. of change points Posterior probability

k̂ π(k̂|·)
0 0.0012
1 0.3675
2 0.5447
3 0.0866

Table 14: Parameter estimates of ARFIMA(1, d, 1) model from simulated data in the
case of k̂ = 2..

No. of change points Posterior probability Parameter

k̂ π(k̂|·) estimates

φ̂=0.0660

2 0.5447 θ̂=0.4022

d̂1=0.0798

d̂2=0.2801

d̂3=0.4451
ĉ1=138
ĉ2=284
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5.5 Application to Nile River data

As an application of the method proposed in this chapter, the yearly minimum

level of the Nile River from A.D. 622 to A.D. 1134 with n = 512 is used, which is a

benchmark in the long memory literature.

Beran and Terrin (1996) fit the data with a ARFIMA(0, d, 0). They reported that

there is a change between the first 100 years (A.D. 722) and thereafter in the long

memory parameter. They segmented the whole series into six consecutive disjoint

sets of observations of length 100, and estimated the Hurst parameter H on each set.

The estimated values of d were 0.0433 for the first 100 years, and 0.3531, 0.3652,

0.3281, 0.3435 and 0.4354 for the following sets. Ray and Tsay (2002) reported an

estimate of d̂ = 0.05 for the first 100 years and of d̂ = 0.45.

We fitted an ARFIMA(0, d, 0) model to this data. Table 15 shows the posterior

estimates for the number of change points, which indicates the posterior mode at

k̂ = 1 suggesting the existence of one change point in the data. Table 16 reports the

estimates of the model parameters and of the location of the change point for k̂ = 1.

Our method puts the change at the year A.D. 720, slightly earlier than what suggested

by Beran and Terrin (1996). Our estimates of the long memory parameter before and

after the estimated change point are d1 = 0.0668 and d2 = 0.4007, respectively.

Notice that our estimate of d for k̂ = 0, i.e. d̂ = 0.3704, is very close to Beran and

Terrin’s estimate, 0.40, under the assumption that there is no change point. This

value is also very close to the average estimate, 0.36506, for the five consecutive

disjoint segments after the first 100 years found by Beran and Terrin (1996). Our

inference is summarized in Figure 6.
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Table 15: Posterior probability of the number of change points k in the Nile River
data using ARFIMA(0, d, 0) model.

No. of change points Posterior probability

k̂ π(k̂|·)
0 0.3665
1 0.4192
2 0.1600
3 0.0543

Table 16: Parameter estimates of ARFIMA(0, d, 0) model in the Nile River data when
k̂ = 1.

No. of change points Posterior probability Parameter

k̂ π(k̂|·) estimates

d̂1=0.0668

1 0.4192 d̂2=0.4007
ĉ1=98(A.D. 720)
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Figure 6: Nile River data: original data, plot a), and kernel estimates of the posterior
density of d before A.D. 720, plot b) and after A.D. 720,plot c). Plot d) shows the
MCMC trace of the number of change point
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CHAPTER VI

CONCLUSION

We have proposed a wavelet-based Bayesian approach to the analysis of long

memory processes, specially Gaussian ARFIMA(p, d, q), autoregressive fractionally

integrated moving average models with unknown autoregressive and moving average

parameters. The two main topics are Bayesian estimation of the model parameters

and Bayesian detection and estimation of change points of the long memory param-

eter over time on wavelet domain. We have used the decorrelation nature of the

discrete wavelet transform for long memory processes and carried out Bayesian pos-

terior inference on the parameters by Markov chain Monte Carlo methods. Vannucci

and Corradi’s algorithm (1999) enables us to easily implement Bayesian MCMC on

wavelet domain. Simulation studies and real examples have shown the usefulness

of wavelet methods and Bayesian methodologies in the analysis of data from long

memory processes.

For the wavelet-based Bayesian estimation of Gaussian ARFIMA(p, d, q) models,

the main concern is placed on the estimation of autoregressive, moving average and

long memory parameters. However the inferential procedure can be easily generalized

to include other model parameter such as the white noise variance either by embedding

the Metropolis sampler into a Gibbs sampler that uses the full conditional distribution

of the parameter or by using a Rao-Blackwellization procedure. An open problem is to

determine the order of the autoregressive and moving average polynomials together in

the above estimation procedure although the simplest way is to first get the estimate

of the long memory parameter from ARFIMA(0, d, 0) model and then identify ARMA

model using standard time series technique. The wavelet-based Bayesian estimation
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procedure presented in this dissertation can be easily generalized to non-stationary

ARFIMA(p, d, q) models in which the long memory parameter d is larger than or

equal to 0.5.

For wavelet-based Bayesian detection and estimation of change points of the

long memory parameter, the number of change points is assumed unknown. To

handle the uncertainty of the number of change points reversible jump MCMC is

used. Though Bayesian model averaging methods can be adopted for solving this

kind of problem, reversible jump MCMC gives us an additional information which is

the posterior probabilities of the number of change points and we can use them for

posterior inference.
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APPENDIX A

IN BAYESIAN ESTIMATION OF ARFIMA MODELS ON WAVELET DOMAIN

In this appendix, the posterior distribution 4.7 of Ψ0 = (φ, d, θ) in Chapter IV

is derived from the joint posterior distribution of Ψ, (4.6) through integrating out σ2

which is the the variance of white noise ε. If we integrate out σ2 in equation (4.6),

π(Ψ0|zn) ∝
(

1∏n
i=1 σ

2
zi
(Ψ0)

)1/2

·
∫

(1/σ2)(n/2)+1exp

[
−
∑n

i=1(z
2
i /σ

2
zi
(Ψ0))

2σ2

]
dσ2

= 2n/2

(
1∏n

i=1 σ
2
zi
(Ψ0)

)1/2
[

n∑

i=1

(
z2

i

σ2
zi
(Ψ0)

)]−n/2

·
∫

Γ(n/2)−12−n/2

[
n∑

i=1

(
z2

i

σ2
zi
(Ψ0)

)]n/2

(σ−2)n/2−1

×exp

[
− σ−2

2/
∑n

i=1(z
2
i /σ

2
zi
(Ψ0))

]
dσ−2.

Since the integrand is the form of a Gamma p.d.f., the marginal posterior distribution

of Ψ0 becomes

π(Ψ0|zn) ∝
(

1∏n
i=1 σ

2
zi
(Ψ0)

)1/2
[

n∑

i=1

(
z2

i

σ2
zi
(Ψ0)

)]−n/2

.
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APPENDIX B

IN CHANGE POINT ANALYSIS ON WAVELET DOMAIN

This appendix provides some details of the reversible jump methods described

in Chapter V. The joint posterior distribution of Ψ is calculated in Section B.1. The

acceptance probability αbirth of a proposed change point for addition in the birth step

is derived in Section B.2. Finally the acceptance probability αdeath of an existing

change point for deletion in the death step is derived in Section B.3.

B.1 Joint posterior distribution of Ψ in (5.3)

Since the posterior distribution is proportional to the product of likelihood func-

tion and prior distributions,

f(k,φ,dk, θ,Ck, σ
2|z) ∝ f(z|φ,dk, θ) · π(k, ωk)

=

(
1∏n

i=1 σ
2σ2

zi
(Ψ0)

)1/2

exp

[
−1

2

n∑

i=1

z2
i

σ2σ2
zi
(Ψ0)

]

· (1 + kmax)
−1 ·

(
n− 2

k

)−1

σ−2 · 1 · 1 · 1

2

∝
(

1∏n
i=1 σ

2σ2
zi
(Ψ0)

)1/2

exp

[
−1

2

n∑

i=1

z2
i

σ2σ2
zi
(Ψ0)

]

·
(
n− 2

k

)−1

σ−2.

B.2 Derivation of the acceptance probability αbirth for birth step in (5.6)

To get the acceptance probability for birth step, we need three components which

are Jacobian for dimension changing, proposal ratio and posterior ratio. Then the

acceptance probability is calculated by αbirth(ζk, ζ
′
k+1) = min(1, posterior ratio ×
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proposal ratio × |J |). Let T (dm∗, u2) = (dm∗ − u2, dm∗ + u2). The Jacobian for the

acceptance probability for this birth stage is

|J | =

∣∣∣∣
∂T (dm∗ , u2)

∂(dm∗ , u2)

∣∣∣∣

=

∣∣∣∣∣∣∣

1 1

−1 1

∣∣∣∣∣∣∣
= 2.

The posterior ratio is

posterior ratio{k→(k+1)}

∝



 1
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Also, the proposal ratio can be written as

proposal ratio{k→(k+1)} =
βk+1 · (k + 1)−1

αk{2Ru1
(n− k − 2)}−1

=
2Ru1

βk+1(n− k − 2)

αk(k + 1)

The denominator of the above is from the fact that when the transition is made

from ζk to ζk+1, three probabilistic components are needed, which one of them is a

birth probability αk since k’s change points already exist and the other is a product

of probability that we choose one candidate point for a birth among the (n− k − 2)
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points and a probability to split one long memory parameter into two. The numerator

consists of a death probability βk+1 and a probability for dropping one point among

the existing points, (k+1). Then the acceptance probability of a proposed transition

from ζk+1 to ζ ′k+1 is

αbirth(ζk, ζ
′
k+1)

= min

(
1,
Q(φ, d′i, θ)

Q(φ, di, θ)
× 4Ru1

βk+1

αk

)
,

where
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.

B.3 Derivation of the acceptance probability αdeath for death step in (5.7)

Similar to the calculation of the acceptance probability in birth step, we also need

three components for the acceptance probability αdeath which is min(1, posterior ratio×

proposal ratio × |J |). Let T ∗(du, du+1) = ((du + du+1)/2, du). The Jacobian for di-

mension matching is

|J | =

∣∣∣∣
∂T ∗(du, du+1)

∂(du, du+1)

∣∣∣∣

=

∣∣∣∣∣∣∣

1/2 0

1/2 1
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The posterior ratio is

posterior ratio{k→(k−1)}

=
f(k − 1,φ,d∗
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Finally the proposal ratio can be written as

proposal ratio{k→(k−1)} =
αk−1{2Ru(n− k − 1)}−1

βkk−1

=
αk−1k

2Ruβk(n− k − 1)
,

where Ru = min{d∗u, 0.5−d∗u}. We accept a transition from ζk to ζ∗k−1 with probability
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