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ABSTRACT 
 
 
 
 

Microbubble Drag Reduction Phenomenon Study in a Channel Flow. (August 2004) 

Jose Alfredo Jimenez Bernal, B.S., Acapulco Institute of Technology (Mexico); 

 M.S., National Polytechnic Institute (Mexico) 

Co-Chairs of Advisory Committee: Dr. Yassin A. Hassan 
  Dr. Denis Phares 

 

 

An experimental study on drag reduction by injection of microbubbles was performed 

in the upper wall of a rectangular channel at Re = 5128. Particle Image Velocimetry 

measurement technique (PIV) was used to obtain instantaneous velocity fields in the x-y 

plane. Microbubbles, with an average diameter of 30µm, were produced by electrolysis 

using platinum wires with a diameter of 76 µm. They were injected in the buffer layer 

producing several different values of local void fraction. A maximum drag reduction of 

38.45% was attained with a local void fraction of 4.8 %. The pressure drop in the test 

station was measured by a reluctance pressure transducer. Several parameters such as 

velocity profile, turbulent intensities, skewness, flatness, joint probability density 

function (JPDF), enstrophy, one and two-dimensional energy spectra were evaluated. 

The results indicate that microbubbles reduced the intermittency of the streamwise 

fluctuating component in the region near the wall. At the same time they destroy or 

reduce the vortical structures regions (high shear zones) close to the wall. They also 

redistribute the energy among different eddy sizes. An energy shift from larger 
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wavenumbers to lower wavenumbers is observed in the near wall region (buffer layer). 

However, outside this region, the opposite trend takes place. The JPDF results indicate 

that there is a decrease in the correlation between the streamwise and the normal 

fluctuating velocities, resulting in a reduction of the Reynolds stresses. The results of 

this study indicate that pursuing drag reduction by injection of microbubbles in the 

buffer layer could result in great saving of energy and money. 

The high wavenumber region of the one dimensional wavenumber spectra was 

evaluated from PIV spatial information, where the maximum wavenumber depends on 

the streamwise length (for streamwise wavenumber) of the recorded image and the 

minimum wavenumber depends on the distance between vectors. On the other hand, the 

low wavenumber region was calculated from the PIV temporal information by assuming 

Taylor’s frozen hypothesis. This new approach allows obtaining the energy distribution 

of a wider wavenumber region. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 

Everyday, energy is used for keeping the motion of a fluid over a solid surface and 

moving a solid body through a fluid. Unfortunately, a great amount of it is spent on 

overcoming drag, which results in loss and degradation of energy. Therefore, a decrease 

of the drag could have a worldwide impact on environment and economy. The reduction 

of drag, which is a complex phenomenon, can be utilized in several engineering and 

industrial applications such as hydraulic machines, oil well operations, pumping 

systems, slurry pipeline systems, oil pipeline transport, automobiles, aircraft, 

submarines, ships, etc. Pursuing a better understanding of the drag reduction 

phenomenon could also allow the design of more efficient systems and faster 

transportation vehicles; it means that savings in fuel by doing the same work with less 

energy and a decrease of contaminant emissions due to less burning fossil fuels would be  

viable. According to Wood (2003) the transportation sector consumption exceeded the 

USA oil production by 85 % in 2002; this deficit is expected to be 140 % by 2020. 

Moreover, 25 % of the energy consumed in USA is used to overcome aerodynamic drag. 
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If aerodynamic drag were reduced by 50 %, yearly costs savings in the 30 billion 

dollar range could be obtained.  These facts make drag reduction an attractive issue for 

research. Furthermore, there is not yet a unique theory that can describe this complicated 

phenomenon, despite the significant theoretical and practical studies of the last three 

decades. 

 

1.2 Background 

 

A drag force is produced in the direction of the flow when a fluid moves over a solid 

body, and it is the resultant of two forces. One is due to skin friction drag or friction 

drag, which is directly related to the wall shear stress; the other is the result of pressure 

drag, which is associated with the normal stresses. Skin friction, a consequence of the 

no-slip boundary on the surface, can be either laminar at low Reynolds numbers or 

turbulent at high Reynolds numbers (Bushnell & Moore 1991). Most of the practical 

situations where drag reduction could produce significant savings of energy and money 

take place in turbulent flow conditions. The total shear stress in a turbulent flow is 

higher than laminar and is defined as 

 

uv
dy
dU

turbtot ρ−µ=τ+τ=τ     (1) 

 

where y is the distance from the wall; U is the local mean velocity; µ is the absolute 
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viscosity or dynamic viscosity; uv  is the Reynolds stress, and ρ is the density of the 

fluid.  

The dynamics of the turbulence near the wall should be understood because turbulent 

boundary layer structures are responsible for most of the dissipation of energy. 

Furthermore, these structures can be incoherent and coherent (vortices), which lie down 

parallel and close to the wall. The coherent structures, oriented in the streamwise 

direction, account for 80% of the turbulent fluctuating energy (Lumley & Blossey 1998). 

They have a diameter in wall units that goes from 20 to 50 (Kim 2003) and are found in 

the buffer layer (y+ = 10-50). Moreover, streaks of low and high velocity and high skin 

friction are also attributed to coherent structures.  

Nature has been the most efficient in terms of energy consumption through the years. 

It is one of the main reasons that studies have performed to observe and carry out 

experiments with birds and free swimming aquatic animals such as squids, fishes and 

whales to elucidate how nature achieves drag reduction. For instance, sharks have small 

riblets (with parallel, converging and diverging patterns) on their skin, which are 

assumed to improve their swimming performance (Koeltzsch et al. 2002). Some other 

species also deploy roughness by projecting bands near the position of maximum body 

girth to ensure the presence of turbulent flow over the afterbody to avoid flow 

separation, which would increase the pressure drag. Furthermore, investigations indicate 

most fish slim, which contains high molecular weight polymer and surfactants, manifest 

a considerable drag reduction behavior with maximum effectiveness taking place close 

to the wall region. It suggests that drag reduction by addition of additives and surfactants 
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is present in nature (Bushnell & Moore 1991).  Hence, it is clear that some of the 

technology applied to skin friction reduction can be identified in several natural systems. 

  

1.3 Drag reduction techniques 

 

Despite, most of the research related to drag reduction that has been carried out by 

academic institutions, industries and government agencies such as Defense Advanced 

Research Projects Agency (DARPA), the main dilemma is to take these techniques from 

the laboratory environment to practical systems and to clarify why and how drag 

reduction occurs. 

The techniques to reduce skin friction drag are categorized as laminar flow control 

(delay of transition to turbulence) and reduction of friction drag in the boundary layer. 

They are also subdivided as active control when they involve energy consumption and 

passive control when they require no external activities.  

Several hypotheses have been suggested to elucidate the decrease of drag. However, 

there is no consensus about one specific hypothesis that can clarify this phenomenon. A 

review of some experimental and numerical results about drag reduction by riblets, 

addition of polymers and microbubbles injection is reported below.  

 

1.3.1 Drag reduction by riblets 

 

There is no doubt about the applicability and effectiveness of riblets (Wilkinson et al. 

1988; Jimenez & Pinelli 1997). However, the physics of the drag reduction mechanism 
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by this technique is not yet well understood and several approaches are still being 

developed to clarify it. 

The use of riblets, which is a passive technique for turbulent drag reduction and 

enhancement of heat transfer, has been studied for more than two decades by several 

research groups. Riblets can have different shapes (V, U, and L-grooves, etc.) and have 

to be aligned with the flow direction. The most significant parameters to describe a riblet 

are spacing riblet (s), height of the riblet (h), and the spacing of the riblet in wall units, 

which is shown in the equation (2), where uτ is the friction velocity and  ν is the 

kinematic viscosity of the fluid. 

 

ν
= τ+ su

s                                (2) 

 

The practical applicability of riblets was demonstrated by a rowing boat team in the 

Olympic Games in 1984 and in the America’s cup in 1987; furthermore, swimming suits 

with riblets were used in the Olympic Games in 2000. Moreover, a flight test of an 

airbus aircraft with riblets in the fuselage and wings was carried out in 1989 with a net 

2% of drag reduction (Karniadakis & Choi 2003).  

Baron & Quadrio (1993) performed some experiments using V riblets (figure 1) in a 

wind tunnel with a length of 170 cm, a width of 30 cm and a height of 9.3 cm. The test 

section was located in the lower wall of the tunnel at 65 cm downstream of the leading 

edge. Experiments were carried out using smooth and V riblet surfaces, which have to be 
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flushed to the wall. The velocity was measured by a constant temperature hot wire 

anemometer with a sample frequency of 6.25 kHz during 30 seconds. The velocity of the 

air ranged from 0 to 20 m/s with s = 0.07 cm. The best performance of the riblets was 

achieved at s+ = 12 for a skin friction reduction of 6 percent. The turbulent intensity with 

riblets is lower than without them and the maximum value of the turbulent intensity is 

achieved about y+ = yuτ/ν ≈ 10. 

 

 

 

FIGURE 1. Parameters for V-riblets. 

 

 

Choi & Orchard (1997) performed an experiment in the lower wall of a flat plate with 

a width of 51 cm and a length of 250 cm. The plate was located inside a low speed wind 
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tunnel with a total length of 300 cm.  This investigation is very interesting; because both 

an increase in heat transfer and a drag reduction effect took place at the same time. A 

constant heat flux was transmitted at constant temperature to the test plate, which was 

situated at 190 cm far from the leading edge of the flat plate; the longitudinal pressure 

gradient at this region was nearly zero. The V-riblets, which are shown in figure 1, were 

mounted with the peaks flushed with the surrounding flat plate. Riblets with an s/h =1 

and s = 0.183 cm were tested using a free stream velocity of 250 cm/s. Not only an 

increase of 10 % in the heat transfer coefficient, but also a roughly 6 % of drag reduction 

was observed.  Furthermore, the turbulent intensity profile for the riblets case is lower 

than without them, and in both cases the maximum value was reported for y+ = yuτ/ν = 

13 (where y is the distance from the wall). Turbulent energy of the spectra showed a 

reduction at almost the whole frequency range, when riblets are present. The velocity 

information was obtained from a boundary layer type hot wire probe that operates at 

constant temperature (Dantec 55P15); it has a platinum wire with a length of 0.125 cm 

and a diameter of 5 mm. 

A study was performed in a Plexiglas flat plate with a length of 240 cm, a width of 18 

cm and 1 cm thick (Wang et al. 2000). The plate was located in an open channel with 18 

cm wide, 22.5 cm high and 300 cm long. The test station, which was located at 68 cm 

downstream the leading edge of the flat plate, was machined with spaced V type riblets 

whose dimensions are s = 0.2 cm and h = w = s/2. Figure 2 displays the parameters of 

this kind of riblet.  The velocity measurements were obtained by Laser Doppler 

Velocimetry (LDV) technique along the center lane of the test station. A tripping rod 
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(figure 3) was situated at 10 cm downstream the sharp leading edge to reduce the 

distance to get fully developed flow in the test station. Water was run over the flat plate 

at 17.5 cm/s. The turbulent intensity profile with riblets was higher than without them. 

Furthermore, it was reported that the thickness of the viscous layer for the plate with 

riblets was larger than for the plate without them; no difference was reported for the 

evaluation of both skewness and flatness between the plate with riblets and the plate 

without them. 

 

 

 
FIGURE 2. Parameters of V-space riblets. 

 

 
FIGURE 3. Location of the tripping wire and the riblets. 
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Bechert et al. (1997) tested several regular configurations to elucidate how drag 

reduction by riblets can be improved. In their experiments, baby oil was flown through a 

rectangular channel with a width of 25 cm and a height of 85 cm. A shear stress balance 

was used to measure the shear stress at the wall. The results for the V riblet shape with α 

= 60 o and s =3.034 mm indicated that the maximum drag reduction around 5% was 

attained at s+ ≈ 15. However, for an α = 90 o
 the maximum drag reduction was lower 

than 4 % and was roughly maintained in a range from s+ ≈ 17 to 24. Moreover, an 

increase of drag was reported after s+ ≈ 28 for α = 60o and s+ ≈ 34 for α = 90o. For the 

semicircular scalloped with increase groove depth and with h/s = 1,  t/s = 0.018 where t 

is ridge width, and s = 0.4 cm, the maximum drag reduction was around 6 % for s+ ≈ 14; 

for h/s = 0.7, t/s = 0.035, and s = 0.631 cm the highest drag reduction was about 6.5 % at 

s+ ≈ 15; h/s = 0.7, t/s = 0.015 and s = 0.34 cm the greatest drag reduction was 

approximately 7.5 % for s+ ≈ 14. Bechert et al. (2000) also tested the channel with an 

array of three dimensional trapezoidal riblets, which occupied 64 % of a test plate with 

dimensions 40 cm x 50 cm; this array is illustrated in figure 4. In this experiment, a 

maximum drag reduction of 6.89 % was achieved for the following conditions t = 0.01 

cm, a = 0.23 cm, w/s = 1.5, h/s = 0.3, α = 45o, s = 0.46 cm and s+ ≈ 28. Likewise, the 

greatest value of drag reduction obtained for t = 0.01 cm, a = 0.46 cm, w/s = 2, h/s = 0.4, 

α = 45o, s = 0.46 cm and s+ ≈ 20 was 7.29%. Finally, the highest value for the t = 0.01 

cm, a = 0.92 cm, w/s = 3, h/s = 0.85, α = 45o, s = 0.46 cm and, s+ ≈ 16 was 6.85 %. It 

was reported that two dimensional riblets could produce larger drag reduction than three 

dimensional riblets. 
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FIGURE 4. Configuration of the array of 3-D trapezoidal riblets. 

 

 

Experiments with semicircular riblets were carried out in a closed type subsonic wind 

tunnel by Lee & Lee (2001). A sharp flat plate with a length of 620 cm was installed in 

the test section of a wind tunnel. Roughness elements were situated at 50 cm 

downstream the leading edge of the flat plate to get a fully developed flow at the 

measurement station, which is located at 541 cm downstream the leading edge. The 

measurements are performed in two exchangeable plates with 30 cm wide and 60 cm 

long, one of them is smooth and the other has riblets. The plate with riblets was aligned 

to the flat plate by using the virtual origin of the riblets. They have semicircular grooves 

with an s = 0.3 cm.  Moreover, instantaneous velocity fields in y-z plane (vertical plane) 

with an area of 6.75 x 6.75 mm2 were obtained by Particle Image Velocimetry (PIV) 

measurement technique. Their PIV system was in general composed of an Nd:YAG laser 

with a maximum frequency of 40 Hz (width pulse about 7ns, and approximately 25 
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mJ/pulse), and  high speed CCD camera (model speed-cam+) with a frame rate from 31-

1000 frames per second and a resolution of 512 x 512 pixels. The thickness of the laser 

light sheet was 4 mm. The measurements were taken at two free stream velocities (3 and 

5 m/s). A reduction of drag was reported at the lowest velocity with s+ = 25.2. However, 

the opposite trend occurred for the highest velocity at s+ = 40.6. 

 

1.3.2 Drag reduction by addition of polymers 

 

Modification of the boundary layer structure can produce a significant reduction of 

skin friction on laminar and turbulent flows by the addition of insoluble particles or 

fibers and soluble long chain polymers or association colloids (White & Hemmings 

1976). Although, most of the experimental and numerical studies that have been carried 

out for more than half of a century have been focused on addition of polymers, the 

physical mechanism of this method is not yet completely comprehended. However, good 

agreement is observed for the evaluation of some statistical parameters such as Reynolds 

stress and root mean square of the fluctuating velocities in a turbulent flow by all 

investigations (Warholic et al. 1999).  

According to White & Hemmings (1976) the first study on drag reduction by 

additives can be attributed to Hele-Shaw, who in 1897 was investigating the skin friction 

on marine animals. He added bile to water in order to investigate the slime of fishes. The 

observations from his flow visualization indicated that skin friction was reduced. 

Lumley (1969) reported that several polymers could be added to different fluids to 
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obtain a decrease of drag for instance polyisobutyline (PIB) in cyclohexane and in 

benzene, polymethacrylate (PMM) in toluene, polyethylene oxide (PEO), which is 

uncomplicated to manipulate in water.  

Toms (1977) conducted in 1946 one of the most famous experiments, which 

practically started the modern era of drag reduction by addition of polymers. His flow 

apparatus consisted of a tube that was fitted between two glass aspirator jars; the fluid 

was moved from one jar to the other by creating a pressure gradient (∆P) between them. 

∆P was created by maintaining one of the jars at atmospheric pressure while reducing 

the pressure in the other. Both jars were submersed in a water tank to maintain constant 

temperature (25o C). A U mercury manometer was used to measure the pressure. At the 

beginning of each test (∆P = 0) the jars were half their capacity.  The amount of flow 

was evaluated taking the time the solution spends to go from one jar to the other. From 

the experiments it was concluded that Newtonian fluids leave the laminar region at 2000 

< Re < 4000. On the other hand the conclusion about polymer solution reducing the drag 

was achieved because the rate of flow at constant pressure was increased as the 

concentration of polymer was increased. 

Warholic et al. (1999) reported an investigation on drag reduction by addition of 

Percol 727 (Copolymer of polyacylamide and sodium acrilate). This study was 

conducted on a channel with a length of 1100 cm, a height of 5.1 cm, and a width of 61 

cm; several polymer concentrations (from 5 to 200 ppm) were studied. Moreover, a 

Validyne pressure transducer (DP103) was used to measure the pressure drop (∆p) with 

polymer and without polymer over a distance (∆x) of 154 cm. These ∆p values were 
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used to evaluate the wall shear stress τw as  

 

H
x
p

w ∆
∆

−=τ                                                             (3) 

 

where H is half height of the channel. Furthermore, measurements of two components of 

the velocity at different distances from the wall were performed at fully developed flow 

by LDV.  The results for a drag reduction lower than 35 % can be summarized as follow. 

The root mean square of the fluctuating velocities (turbulent intensities) is made 

dimensionless by the friction velocity; it was observed that the streamwise turbulent 

intensity is increased as drag reduction increment from 14 to 33 %. The opposite trend is 

observed for the normal component. The Reynolds Stresses are made dimensionless by 

τw, and show a decrease when the drag reduction increased. The average stress that was 

assumed to be added by polymer had a positive value in the viscous sublayer. However, 

it reduced drastically above y/H = 0.2. 

Another set of experiments for drag reduction by addition of Percol 727 was also 

carried out in the channel described above, but in this case PIV measurement technique 

was used to measure instantaneous velocity fields in the x-y and x-z planes (Warholic et 

al. 2001). The PIV system was composed of a pulsed ruby-laser with energy of 1 J/pulse, 

a CCD camera with a resolution of 256 x 256 pixels; the time difference between pulses 

was 4 µs and a cylindrical lens was used to transform the beam of laser-light into a sheet 

of light with a thickness of 1mm. Streamwise turbulent intensity profiles increased when 

the drag reduction augments. However, after y/H ≈ 0.5 the opposite trend occurs. 
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Normal turbulent intensity profile decreases when the drag reduction increases for the 

whole range of y/H. The Reynolds stress decreased as the drag reduction is incremented. 

A reduction of the burst production was observed when drag reduction is present; it can 

be interpreted as the turbulence production close to the wall is being diminished by the 

addition of the polymers. 

 

1.3.3 Drag reduction by injection of microbubbles 

 

Attempting to reduce drag of water vehicles by air injection is not new.  Several 

patents were granted by the end of the 19th century and beginning of the 20th century; 

most of them consisted in placing an air film between the hull and the boundary layer 

(Latorre 1997). However, the first study on drag reduction in the United States of 

America (USA) by injection of bubbles was reported by McCormick & Bhattacharya 

(1973). This experiment was carried out in a fully submersed axisymetric body of 

revolution (SABR) with a length of 91.44 cm and a maximum diameter of 12.7 cm. The 

total drag force was measured by a dynamometer that was mounted to the SABR. 

Hydrogen bubbles were produced by driving an electrical current through a wrapped 

wire (0.6 cm in diameter) to the SABR, the mass rate of hydrogen produced by 

electrolysis was evaluated as  
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where I is the applied electrical current in amperes, W and Z are the atomic weight and 

valence number of the gas, respectively. For Hydrogen W = 1.008 and z = +1. The 

bubbles were injected beneath the boundary layer, and a maximum total drag reduction 

of approximately 30 % was measured. The total drag reduction was lower at higher 

Reynolds number. The drag reduction could be imputed to the decrease of the viscosity 

near the wall, which could also stop the transmission of the small viscous shear stresses 

from the turbulent region of the boundary layer to the wall. The size of the bubbles was 

not reported on this study. 

Experimentation about drag reduction by saturating the boundary layer with bubbles 

was performed in a plate and in the initial channel section in the former USSR 

(Bogdevich et al. 1977). The plate had a length of 95.5 cm, width of 24.4 cm, and a 

thickness of 4 cm. The bubbles were produced by injecting air through a porous 

aluminum plate that was flushed 8 cm downstream the leading edge of the plate. The 

skin friction was measured by probes with floating surface elements. A gas bubble 

concentration was estimated by probes sensitive to the medium electrical conductivity. 

The pressure fluctuations measurements were accomplished by a probe with sensitive 

piezoceramics element with a diameter of 0.14 mm. If the void fraction is kept constant, 

the drag reduction increased when the Reynolds number was augmented. Moreover, 

when the void fraction increased so did the drag reduction until a maximum value was 

achieved; after that maximum value of void fraction the opposite trend is observed. The 

same shape and location of the peak value for the distribution of the bubbles were 

observed at different void fractions. 
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Experiments were carried out at the top and bottom of a rectangular test section 

(length of 76.2 cm and a cross section of 50.8 cm x 11.4 cm) of a water channel by 

Madavan et al. (1984). Laser Dopler anemometer (LDA) technique was used to measure 

velocity profiles.  Microbubbles were produced by driving air into a sintered stainless 

steel plate and injected in the boundary layer.  A floating element force balance was used 

for the integrated skin friction evaluation, and a flush mounted hot film probe was used 

to measure the local skin friction. The skin friction reduction in the bottom wall is less 

than in the upper wall at low velocities. This performance could be originated by 

buoyancy effects, because at higher velocities the buoyancy effects can be neglected. 

The maximum integrated skin friction reduction was more than 80 %.  Differences of the 

velocity and turbulent intensities with and without bubbles are slight outside the 

boundary layer. It was reported that microbubbles modify only the boundary layer. 

Moreover, spectra results showed that there is a shift of the turbulent energy toward 

lower frequencies when the bubbles are introduced in the boundary layer; this loss of 

high frequency can be interpreted as a decrease in the turbulent Re due to the decrease of 

density and increase of viscosity of the air. 

The mixing length model was used was used in a numerical study for drag reduction 

by microbubbles (Madavan et al. 1985). During the analysis, the viscosity and density 

were locally changed as a function of a trapezoidal concentration profile. Two 

mathematical models were used to evaluate the viscosity with microbubbles; they are 

reported in equation (5) and equation (6), where µ’ is the viscosity of the liquid-bubble 

mixture, µ  is the viscosity of the liquid, and φ is the bubble concentration in the 
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boundary layer. 

( )φ+µ=µ 5.21'                                                               (5) 
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=µ                                                              (6) 

 

A maximum drag reduction of 50 % was obtained in this numerical study and it was 

shown that the skin friction depends on the concentration, location, and distribution of 

the bubbles in the boundary layer. The bubbles are most efficient when they are located 

in the buffer layer. They can also maintain the reduction of skin friction over long 

distances if remained in the boundary layer.  The void fraction was observed to decrease 

in the streamwise direction. 

Experiments were carried out using an axisymmetric body (AB) with a length of 63.2 

cm and diameter of 8.9 cm; it was totally submerged in a water tunnel with a diameter of 

305 mm (Deutsch & Castano 1986). Velocities profiles measurements were done by 

Laser Doppler Velocimetry (LDV) measurement technique. A wire with a diameter of 

0.035 cm was located 4.6 cm downstream the leading edge of the AB in order to trip the 

boundary layer and reduce the distance to get fully developed flow. A force balance was 

used to evaluate the integrated skin friction. Injection of helium and air were tested 

separately to elucidate which of them is more effective to reduce the skin friction. 

Maximum 80% integrated skin friction reduction by injection of helium was measured at 

high velocities. The greatest value of drag reduction by injection of air was 55 % and 
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was obtained at low velocities.  These results shown that the increase of drag reduction 

by injection of helium (about 80 %) is larger than that by injection of air (about 40%) at 

the highest mean velocity. However the opposite performance is observed at the lowest 

velocity (15 % for helium and 20 % for air). Both size and distribution of the bubbles 

were not reported on this work. 

A test was conducted by Lance & Bataille (1991) in a bubbly flow, which was 

developed in vertical channel with a length of 200 cm and a square cross section of 45 x 

45 cm. A grid constituted of 260 equally spaced injectors of air with 0.08 cm in diameter 

was located perpendicular to the streamwise direction of the flow. This grid helped to 

obtain isotropic turbulence. The size of the bubbles was measured photographically and 

the mean equivalent diameter of the bubbles was about 0.5 cm. The void fraction, ranges 

from 0 to 0.5, was evaluated by optical probe that is able to sense the variation of the 

optical index of the medium. The measurements of the velocity fluctuations were 

obtained from hot-film and laser Doppler anemometry. The isotropy was practically not 

altered with the increase of the void fraction. Energy of the higher frequency of the 

spectra without bubbles is lower than with a void fraction of 1.9 %. However, the 

opposite trend is observed in the lower frequency range. 

Kato et al. (1994) conducted some experiments in water tunnel, which had a test 

section with a rectangular cross section (12 cm x 5 cm) that was located in the bottom 

wall of the channel. LDV was used as a measurement technique and a mixture of both 

water and air was injected within the boundary layer to reduce the drag by a slit in the 

surface. It was reported that the bubbles decrease their drag reduction effect when the 
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amount of injected water in the mixture was increased. Finally, the disadvantage of this 

technique to reduce the drag is due to the high energy consumption of the mixture and 

injection of air-water in the boundary layer. 

Guin et al. (1996) carried out some experiments in a water channel with an aspect 

ratio equal to 10. Bubbles were produced by injecting air through porous plates, which 

were flushed to the upper and bottom walls of the channel, they were located at 60 

channel height downstream the channel inlet. The void fraction was measure by a fiber 

optic probe and a sort of isokinetic sampling probe. The shear stress with bubbles and 

without bubbles was measured by a floating element transducer. The injection of bubbles 

in the upper wall produced a maximum drag reduction about 20 %. However, when the 

bubbles were injected in the bottom wall the maximum drag reduction was about 14 %. 

A valuable approach was suggested by Fontaine et al. (1999) by injecting micro 

bubbles with homogeneous polymer and surfactant solutions. They run some 

experiments in axisymmetric body with a length of 63.2 cm and a diameter of 8.9 cm. A 

wire with a diameter of 0.035 was located at 4.6 cm form the leading edge of the body to 

assure fully developed flow in the test section. Measurements of integrated skin friction 

were obtained from a force sensor, which was located at 19.6 cm from the leading edge 

of the body.  The measurements were performed for a combination of homogeneous 

polymer, surfactants and microbubble. It was observed that the reduction of drag for a 

combination of polymer and microbubbles was greater than that obtained for polymer or 

microbubbles alone. A drag reduction higher than 80 % was measured with a polymer 

concentration of 20 ppm and 10 m3/s of gas.  It was concluded that polymers probably 
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modify the turbulence close to the wall in such way that the effectiveness of the 

microbubbles was increased. Furthermore, it was observed that reducing the bubble size 

by the addition of a surfactant did not modify the characteristics of drag reduction by 

microbubbles. 

Kodama et al. (2000) reported some experimental results, which were obtained in a 

water channel flow whose test section length, height, and width were 300 cm, 10 cm and 

1.5 cm, respectively. The bubbles were produce by flowing air through a porous plate, 

which is located in the upper wall of the channel at 103.8 cm downstream the inlet of the 

channel. The skin friction was measured with bubbles and without bubbles by a skin 

friction sensor at three different positions in the streamwise direction. Measurements at 

three different positions and velocities (5, 7, and 10 m/s) were reported. When the void 

fraction was increased so was skin friction reduction. Furthermore, the maximum skin 

friction reported was 30 %. 

A numerical investigation was conducted by Kanai & Miyata (2001) to clarify the 

interaction between wall turbulence and bubbles. Two computational domains of 1 x 1 x 

1 and 2 x 1 x 2 in the x, y, and z directions were used for a turbulent Poiseuille flow 

under gravitational force and for a turbulent Couette flow, respectively. In the former, 

when the bubbles were present in the buffer layer, it was observed that the fluctuations 

of the streamwise velocity were decreased, and the velocity profile was modified.  For 

the turbulent Couette flow, a peak was observed in the distribution of the bubbles at y+ = 

18 when drag reduction occurred, and the velocity profile was also altered by the 

presence of the bubbles. Moreover, a reduction of the bursting process was observed. 
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CHAPTER II 

EXPERIMENTAL SET UP AND PIV SYSTEM 

 

This section describes the experimental setup where the measurements were carried 

out, the calibration, synchronization, and the basics of the Particle Image Velocimetry 

(PIV) measurement technique, which was used to measure instantaneous velocity fields 

close to the upper wall of a turbulent water channel. Furthermore, the pressure drop 

measurement in the test station and the electrolysis production array that was used to 

produce the microbubbles are described.  

 

2.1 Test facility 

 

The experiments were carried out in a flow test facility, which was constituted by a 

rectangular channel as shown at figure 5. The channel has a length of 483 cm, a width of 

20.5 cm and a height of 5.6 cm; it was built with Plexiglas due to the optical properties 

of this material. Water was pumped from the lower tank to the upper tank by 3 pumps 

with power consumptions of 1/6, 1/4, 1/2 HP, respectively. The upper tank was designed 

to have a constant pressure head, which provides a constant rate flow for the channel. 

The flow of water was controlled by two globe valves and one butterfly valve. Water, 

flowed through the channel by gravity to avoid the flow oscillations of the pumps, was 

quantified by two digital turbine flow meters (GPI, 0-50 GPM) and a float meter or more 

often called rotameter (Dwyer, 0-10 GPM). 
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FIGURE 5. Schematic diagram of the experimental set up. 
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A honeycomb and a screen grid with an array of 400 equally spaced holes with a 

diameter of 0.4 cm and a length of 1cm was placed at the inlet of the channel to flat the 

velocity profile, to reduce the distance to attain fully developed flow, and to get rid of 

the bigger vortices that are created in the inlet of the channel. The water flow was seeded 

by polystyrene neutrally buoyant particles with a diameter that goes from 6 to 9 µm, and 

a density of 1.050 g/cm.3. These particles can reflect enough light to be detected by the 

CCD (Charge Couple Device) camera; they were injected and mixed thoroughly in the 

lower tank before turning the pumps on. Through the entire experiment the particles 

were assumed to follow the flow. The channel was filled slowly to avoid pulverizing 

trapped air in the flow that occurred when the channel was filled rapidly. Henceforward, 

the flow conditions were adjusted by the valves. 

 

2.2 Microbubble production 

 

Most of the bubbles production methods reported in the literature have been chiefly 

focused on porous media plates and electrolysis. While there is a lot of information 

about evaluation of total void fraction and distribution of the bubbles, there is a lack of 

information about the size of bubbles and their exact location in the turbulent boundary 

layer. In this experiment, an in-house arrangement to generate microbubbles by 

electrolysis was developed; the configuration is constituted of two parallel platinum 

wires with a diameter of 76 µm, which are used as cathode an anode, respectively. They 

are parallel and separated each other by a distance 2.54 cm. The anode is located at 10 
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cm upstream the test station and 0.5 cm far from the upper wall.  The cathode is 

separated 1 cm far from the wall. This array was proposed to inject the majority of the 

microbubbles in the buffer layer. The ratio between the distance from the closest wire to 

test station and the wire diameter is equal to 1315. Hence, the wire effect on the test 

station can be neglected. Furthermore, an electrical current of 25 mA was driven through 

the wires to break up the water molecules to produce microbubbles of hydrogen and 

oxygen, and an average diameter of 30 µm was observed for the former.  

 

2.3 Pressure measurements 

 

Measurements of the pressure drop in the streamwise direction are mandatory during 

the study of near wall turbulence and drag reduction. This parameter is very important to 

evaluate the shear stress at the wall and subsequently the total shear stress. The former 

will allow the estimation of the friction velocity, which is the near wall scaling 

parameter. The experiments were run at a low Reynolds number, Re = UbH/ν = 5128 

(considering half height of the channel, the kinematic viscosity of water and the bulk 

velocity). At low Reynolds number, the pressure drop is very small and consequently 

very difficult to measure. Fortunately, there was in the market a reluctance differential 

pressure transducer (Validyne DP-103), which was able to measure a pressure drop 

range from 0-35 Pa. This device was installed in the upper wall of the channel, two 1/8 “ 

NPT holes were drilled with a depth of 0.75 times the thickness of the wall. Soon after, 

one hole of 1/32’’ of diameter was perforated in the center of each hole through the wall 
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as shown in figure 6; the holes were separated by a distance of 154 cm. Then, an acrylic 

pipe with a diameter 1/4’’ was installed from the pressure transducer to the holes 

mentioned above by fast fitting connectors, which facilitated the dismounting and 

assembling of the device. 

 

 

 

FIGURE 6. Description of the holes to connect the pressure transducer. 

 

 

2.4 Particle Image Velocimetry (PIV) 

 

Most of the instantaneous flow information reported in drag reduction studies has 

been acquire in the vicinity of the wall, which is the region that has to be studied to 

clarify this phenomenon.  It is also clear that detailed qualitative and quantitative data 

are necessary in order to obtain better conclusion about the properties of the flow. 

Several techniques such hot film or hot-wire anemometry, Doppler Velocimetry (LDV) 

or Laser Doppler Anemometry (LDA), and Particle Image Velocimnetry (PIV) have 



 

 

26
 

been used to measure instantaneous velocities. 

Hot-wire and hot-film are one-point intrusive measurement techniques, which are 

able to measure the velocity fluctuations at one point. It is assumed that there is a 

relationship between the heat removed from the wire by convection and the velocity of 

the fluid. This technique can be also very accurate and suitable even to measure the 

components of the velocity at two different points at the same instant, which allows the 

evaluations of statistics that can not be obtained from on point measurements. Several 

precautions, such as maintaining constant fluid temperature, avoiding impurities in the 

fluid that can damage or adhere to the wire, and keeping the wire free of bubbles in a 

bubbly flow have to be taken. If a velocity field wants to be obtained the probe has to be 

located at different positions, which is an extremely time consuming procedure. The 

sample frequency of this technique can be expressed in MHz. 

LDA or LDV is a non intrusive measurement technique, which does not need 

calibration. The velocity is measured from the Doppler laser frequency shift in laser light 

scattered by the seeding particles in the flow. This is only a one point technique that 

offers the information covering an interval of time. A velocity field can be obtained by 

moving the measuring volume, which has the size of the region intersected by the laser 

beams. The frequency sample can be measured in kHz. 

 

2.4.1 PIV basics 

 

Particle Image Velocimetry (PIV), which is an optical and non-intrusive measurement 
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technique, has the extraordinary ability to measure instantaneous velocity fields. It 

allows the evaluation of invaluable information about spatial structures and properties of 

the flow such as velocity profiles, turbulent intensities, Reynolds stress, vorticity, 

enstrophy, spatial derivatives, etc. It is clear that PIV overcomes the other techniques 

mentioned above when spatial information is necessary.  However, the temporal history 

of the flow is limited due to the kind of recording devices, and energy and frequency of 

the Laser used to illuminate the seeding particles. Optical access in perpendicular planes 

was required to place the sheet of light and the camera of the PIV system that was used 

to estimate instantaneous velocity fields in the x-y plane in this experiment.  

The basic operation principle of this technique is described as follow. Lasers, which 

are used as source of illumination due to their emission of monochromatic light, produce 

a beam that is transformed into a sheet of light by an array of cylindrical lenses. This 

sheet of light illuminates a plane in the seeded flow. The scattered light from the seeding 

particles can be recorded in a photographical negative or in a CCD camera; the recording 

process can be performed in a single or double exposure mode. 

While in the film camera the image need to be digitalized by a scanner and then saved 

in the computer for post processing, the CCD camera produces digitalized images that 

can be recorded directly in the computer as soon as they are taken.  

The basic idea for measuring the velocity consists on evaluating the displacement ∆x 

and ∆y of the seeding particles in two consecutive frames, which are separated each 

other by a time ∆t. It can be represented mathematically in the equation (7) and equation 

(8) and graphically in figure 7.  
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FIGURE 7. Graphic representation of the velocity of tracer particles. 
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2.4.2 PIV system 

 

In this experiment, two hundred pictures per set were recorded by a CCD Kodak 

camera (model Megaplus ES 1.0/1.0) with a resolution of 1008 x 1018 pixels. The 

camera has the trigger double exposure capability, which permits measurements at high 

velocity flows. The seeded flow was illuminated by dual oscillator Nd:Yag laser with a 

power of 300-350 mJ/pulse and a wavelength of 532 nm (green light). The pulse 

duration was approximately 7 ns. The incident laser beam was transformed into a 1 mm 

thickness sheet of light by an array of cylindrical and spherical lenses.  

 Two successive images were necessary to obtain a velocity field by statistical 

methods; hence, one hundred velocity fields per set were obtained. The duration time 

between two consecutive pictures was 1 ms, and the time between velocity fields was 32 

ms. 

 

2.4.3 PIV synchronization 

 

The commercial frame rate of the CCD camera was increased from 30 to 60 fps by 

doing a precise synchronization between the laser light pulsing and the double exposure 

capability of the CCD camera. A high accuracy pulse generator (Stanford Research 

System Inc., model DG535) with a four channel digital delay/pulse with an accuracy of 

picoseconds was used to synchronize the PIV system. 

Two exposure times were used for the odd and even frames in order to attain the 60 
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fps, 0.128, and 32.4 ms, respectively. The diagram of the synchronization and timing 

used on this study is shown in figure 8. 

 

2.4.4 PIV calibration 

 

A calibration grid with adjacent white dots regularly divided, is located at the viewing 

plane, in order to obtain a scale for the physical measurement. This scale can also be 

obtained from the focal length, the angles and the distances, actual position of the lens 

plane, lens distortion. However, this approach is very complex because an exact 

knowledge of these parameters is necessary. 

 

2.4.5 Image processing 

 

Image preprocessing was indispensable to clear away the noise, background, and 

reflection effects that could provoke a mismatch of the seeding particles through 

consecutive frames. The illumination of the odd and even image may vary due to 

different exposure times (0.128 and 32.4 ms, respectively). The preprocessing of the odd 

and even images was made separately and can be summarized as follow. First, the 

original set of odd images was averaged. Second, the odd average image was subtracted 

from each original odd image of the set. Finally, the images from the subtracting process 

were equalized. The same procedure was applied to the even images.   

After the preprocessing step the images were processed by two different particle 
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tracking software (PIV analysis process), which use a cross-correlation algorithm. One 

of the codes works on a windows platform and can use directly the images from the 

preprocessing process. Likewise, this code allows the user to have different image 

threshold and tracking parameter for each pair of images (Yamamoto et al. 2002). The 

second software is an in-house code (Hassan et al. 1992), which works on UNIX 

platform and need the images to be transformed to ASCII files before processing. This 

transformation was made by a program developed in Lab VIEW programming language.  

The resulting velocity vectors from each application were compared, corrected and 

combined. This hybrid technique widely increment the number of vectors used for the 

flow field analysis. Moreover, the velocity vectors went through two separated filtering 

process. The first filter got rid of the vectors that had a lower cross-correlation value 

than the average value (~50% of the vectors).  The second filter took away the vectors 

that were not within +/- standard deviation value of the magnitude and direction of the 

representative velocity vector within a small window (~20 X 20 pixels). About 40% of 

the initial vectors of each velocity field remain after performing the filtering processes. 

Then, the resulting vectors of both filtering process for each velocity field, are combined 

to get one single file, and compared to remove repeated vectors. The average number of 

velocity vector for each velocity field is about 1500 in an area of ~1.28 cm2. Finally, 

these vectors are interpolated using the inverse distance algorithm in a window of 20 x 

20 pixels to obtain 100 instantaneous velocity fields per set in an ordered grid of 50 x 50 

vectors.
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FIGURE 8. Schematic-diagram for the synchronization stage. 
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CHAPTER III 

TURBULENT CHANNEL FLOW 

 

     Drag reduction by injection of microbubbles is a very complex phenomenon. It is 

very difficult if not impossible to obtain a deterministic model that can represent the 

whole physical mechanism due to the randomness of turbulence. Hence, statistical 

methods become the best option. In this study the evaluation of several statistical 

parameters with microbubbles and without microbubbles in a turbulent channel flow was 

performed. It allowed clarifying how the injection of microbubbles affects the turbulent 

intensity, skewness, flatness, vorticity, enstrophy, spectra, and probability density 

functions of the streamwise and normal fluctuating components of the velocity. 

 

3.1 Equations of motion 

 

There are two basic mathematical models that can attempt to describe the mean flow 

quantities of an adiabatic, incompressible, and Newtonian fluid. One is the conservation 

of mass equation also called continuity equation, which is represented by equation (9). 

The other is the Navier-Stokes (N-S) equation or momentum equation, which is 

described by equation (10), where ũi is the instantaneous velocity component in the 

direction (xi), p~  is the instantaneous static pressure, ν is the kinematic viscosity, and ρ is 

the density of the fluid. 
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3.2 Reynolds decomposition 

 

 It is frequently stated that turbulence is one of the great unsolved problems of classical 

physics (Nelkin 1992). Turbulent flows are ubiquitous and occur at high Reynolds 

numbers, they are characterized by high diffusivity and dissipation levels. Reynolds 

decomposition is a valuable approach during the analysis of turbulent flows; it splits up 

the instantaneous component of the velocity and the pressure into an average and a 

fluctuating part as shown at equation (11) and equation (12). 

 

iii uUu~ +=                 (11) 

 

pPp~ +=                                                            (12) 

 

The average value of the velocity and pressure over an interval of time can be 

obtained from equation (13) and equation (14), respectively; the symbol < > means time 

average. 
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∫
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T
1P                                          (14) 

 

The time average of fluctuating quantities has to be zero (<u> = 0). It can is 

illustrated in figure 9. This evaluation has to be performed during the analysis of a 

turbulent flow to assure the measurements are right. 

 

 

 

FIGURE 9. Components of the instantaneous velocity 
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 Substituting equation (11) an equation (12) into equation (10), and making the time 

average leads to 
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The second term on the right hand of equation (15) represents the transport of 

momentum due to fluctuating velocities. The term  jivu  is called the Reynolds shear 

stress, which is the contribution of the turbulent motion to the mean stress tensor. When 

the N-S equations are timed average information about the structures of the flow is lost 

and distilled in the Reynolds stresses, which are not known. It means that more 

unknowns have been produced during the time average process and the number of 

equations is insufficient to solve the system of equations (closure problem). 

 

3.3 Turbulent quantities 

 

Not only the role of near wall streamwise vortices has been found to be very 

important in the wall bounded turbulent flow but also downward sweep motion by 

streamwise  vortices near the wall is closely correlated with skin friction (Choi et al. 

2002). The study of the region close to the wall is very important to clarify skin friction 

reduction. Hence, the evaluation several near wall parameters with microbubbles and 

without microbubbles will allow a comparison, which would conduct to elucidate the 
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effect of the microbubbles in the drag reduction phenomenon. 

The kinematic viscosity and the wall shear stress are the most important parameters 

near the wall region. They can help to scale several characteristics dimensions of 

turbulent flows. The wall shear stress can be represented by 

 

0y
w dy

dU

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ=τ                                              (16) 

 

and practically evaluated by equation (3). For a channel flow, it is clear that wτ  is totally 

independent of the Reynolds stress, which is zero at the wall and at the center of a close 

channel. In a turbulent flow several scales exist; most of them are obtained by the 

friction velocity uτ, which is also associated with the wall shear stress τw. The evaluation 

of the friction velocity can be done by equation (17), where ρ is the density of the fluid. 

 

ρ
τ

=τ
wu                                                        (17) 

 

Equation (18) and equation (19) represents the velocity U and the distance from the 

wall y in wall units, respectively. These dimensionless quantities have been used 

extensively in the literature to describe turbulent flows. 
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There are several turbulent time scales in turbulent wall flows that can be evaluated. 

They are associated with the velocities and length scales of the flow. More energetic 

turbulent events are related with small time scales or small eddies. On the other hand, 

calm events tend to have longer time scales or big sizes (Christensen & Adrian 2002). 

The inner time scale which is associated with smaller eddies is defined by the equation 

(20) while the outer scale which is related to the bigger eddies is calculated by equation 

(21). 
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The evaluation of the time scale, velocity scale, length scale and dissipation of the 

smallest eddies is attributed to Kolmogorov. These scales are known as Kolmogorov 

scales and represented as follow. 
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According to Christensen & Adrian (2002) the last equation can be also approximated 

by 

 

 
H

uU 2
CL

B
τ=ε                                              (26) 

 

where H is half height of the channel and UCL is the center line velocity. 

Statistical description of turbulence allows examining how fluctuations are distributed 

around an average value and how adjacent fluctuations (next to each other in time or 

space) are related (Tennekes & Lumley 1972). Statistical moments were evaluated for 

the instantaneous velocity fields obtained from PIV in this drag reduction study. The 

first moment corresponds to the mean value. The second moment is the variance or the 

square of the standard deviation; in fluid mechanics the root mean square (rms) is the 
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turbulent intensity. The third moment is known as skewness, and finally, the fourth 

moment is the flatness. Equations used to evaluate these parameters are depicted below. 

 

∑
=

=
N

1i

u~
N
1U                                        (27) 

 

( )∑
=

−=
N

1i

22 Uu~
N
1u                               (28) 

 

2urms'u ==                                         29) 

 

( )∑
=

−=
N

1i

3
2/32

Uu~

uN

1S                            (30) 

 

( )∑
=

−=
N

1i

4
22

Uu~

uN

1F                             (31) 

 

3.4 Vorticity and enstrophy 

 

Vorticity is a peculiarity of turbulent flows, which is directly related to the viscous 

effects and has dimensions of (sec-1). It is also a well known that fluid particles can only 
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be set up in rotation by an unbalanced shear stress. Hence, vorticity is an indicator of 

body rotation. On the other hand, pressure forces and gravity forces act through the 

center of mass of a particle and can not produce rotation (Panton 1996). The vorticity of 

the small scales eddies is very much larger than that of the large-scale motion; it 

indicates that the small scale energy is little compared to the large scale energy. This is 

typical of all turbulence.  Furthermore, most of the energy is associated with large scale 

motion and most of the vorticity is associated with small scale motion (Tennekes & 

Lumley 1972). The vorticity can be evaluated by equation (32), where V is the velocity 

vector. 

 

xV∇=ω                                                             (32) 

 

However, in this study of drag reduction there was only information to evaluate the 

spanwise vorticity. Hence, equation (32) becomes. 
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Several structures can be found in turbulent flows. They are present even in 

homogeneous and isotropic turbulence. However, not much information exists about 

their nature. The primary evidence is related to spatial localization of subregions with 

large enstrophy (Tsinober 2001). While the vorticity conserves the sign information, the 

enstrophy does not. It permits a better location of the turbulent structures in the spatial 
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domain. The enstrophy is defined as the dot product of the vorticity as shown in equation 

(34); it means that it is not a vector. It is one the parameters that highlights the power of 

the spatial resolution offered by PIV measurement technique compared with other one-

point measurement techniques. 

 

ωω= .Enstrophy                                                     (34) 

 

3.5 Spectra 

 

In a turbulent flow, there is a very complex phenomenon of transference of energy 

between eddies of different size. To explain this process is necessary to define an eddy 

as a spatial structure that lasts for a short period of time; it can be like a vortex, an 

imbedded jet, a mushroom shape, or any other recognizable form (Panton 1996). 

Furthermore, small eddies (small scales) exist inside larger eddies (large scales) and 

even smaller eddies subsist inside small eddies. Turbulence takes kinetic energy from the 

mean flow (turbulence production) at the largest eddies. Then, this energy is transferred 

by inviscid processes to smaller scales (inertial subrange) and so on until at the smallest 

scales the energy is dissipated by viscous action. The parameter that allows getting an 

idea of how eddies with different size exchange energy with each other is spectra. It can 

also be defined as a function that produces the total energy content when is integrated 

over all wavenumbers or over all frequencies.  

Although turbulence is a three dimensional (3D) phenomenon, most of the spectra 
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evaluations reported in the literature have come from data measured by stationary one 

point measurements techniques (hot wire). First of all, the evaluation of a temporal 

correlation (autocorrelation) has to be performed as shown at equation (35). Then, the 

application of twice the Fourier transform to the autocorrelation gives the one-

dimensional frequency spectra as illustrated in equation (36). 

 

)'tt(u)t(u)'t(R +=                                             (35) 
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∞
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∞

∞−

π− ==
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'ft2i'ft2i 'dte)'t(R4'dte)'t(R2)f(E                             (36) 

 

In the last two equations f represents the frequency in Hz, t is the time of the sample, 

and t’ is the temporal increment that is analyzed. 

PIV offers spatial information that allows the evaluation of spectra in the 

wavenumber domain. First of all, the calculation of a spatial correlation has to be 

performed as shown at equation (37). Then, the application of twice the Fourier 

transform to the spatial correlation gives the one-dimensional wavenumber spectra as 

illustrated in equation (36). 

 

)sx(u)x(u)s(R xx +=                                             (37) 



 

 

44
 

 ∫∫
∞

π−

∞

∞−

π− ==

0

x
xS1k2i

x
xS1k2i

x1 dse)s(R4dse)s(R2)k(E                      (38) 

 

In the last two equations, k1 represents the streamwise wavenumber, x is the 

streamwise direction, and sx is the increment that is being analyzed. 

To transform from frequency spectra to wavenumber spectra the assumption of 

Taylor’s frozen hypothesis is necessary. This theory that regards a relationship between 

frequency and wavenumber spectra was developed by G. I. Taylor in 1938; he presumed 

that the changes in the streamwise fluctuating velocity with time at the fix measurement 

point could be due to the passage of a frozen pattern of turbulent motion past the point, 

provided that the mean (or free stream) velocity carrying the turbulent eddies was much 

larger than the turbulent fluctuations, which can interpreted as the velocity field at 

different instants could be related by the transformation portrayed in equation (39) and 

the local time derivative at a point could be replaced by the convective derivative as 

shown in equation (40) (McComb 1990). 
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The transformation of the spectra from the frequency domain to the wavenumber 
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domain by assuming frozen Taylor’s hypothesis can be performed by equation (41). 

 

)k(UE)f(E 1=                                                      (41) 

 

In this study, one of the most important parameters that wase evaluated from the 

PIV’s spatial information is the two dimensional spectra, which was calculated for the 

plane x-y. The two dimensional spectra is evaluated by equation (42), where k1 and k2 

are the wavenumbers in the streamwise and normal direction, respectively. Furthermore, 

sx and sy corresponds to the increments analyzed in the respective direction (Geckinli & 

Yavuz 1983). 
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3.6 Joint probability density function 

 

If u and v are assumed as variables with zero mean, the joint probality density 

function is proportional to the time that the moving point spends in a small window 

between u and u + ∆u, v and v + ∆v. The probability density function of u for a Gaussian 

distribution can be evaluated by the equation (43) as described by Pope (2000). 
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In the equation (43), σ is the standard deviation, which was calculated by equation 

(44), where u is the fluctuating velocity, a represents the limit where u and v velocities 

are evaluated.  
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CHAPTER IV 

EXPERIMENTAL RESULTS AND ANALYSIS 

 
Instantaneous velocity fields in the x-y plane were measured by Particle Image 

Velocimetry (PIV) measurement technique in the upper wall of a turbulent water 

channel flow at 315 cm downstream the inlet of the channel. The water was run through 

the channel at a Reynolds number, Re = UbH/ν = 5128. Electrolysis was used to produce 

microbubbles, which were injected in the boundary layer. Several low-local void 

fractions were tested. The use of low-local values of void fraction caused a decrease of 

undesirable speckles effects and an absence of extreme brightness provoked by high 

bubble saturation. Then, the uncertainty of the PIV measurements was reduced when the 

microbubbles were present.  

 

4.1 Experimental results 

 

Four different void fraction conditions were investigated. They were locally evaluated 

in a small control volume (CV) whose dimensions were the viewing area times the 

thickness of the laser sheet or 1.28 cm2 x 0.1 cm. Microbubbles and tracer particles 

images were simultaneously recorded on the same frame at Re = 5128. The light 

reflection intensity of the microbubbles was higher than the correspondent to the tracer 

particles. Furthermore, the size of the bubbles was larger than the size of the tracer 

particles. A computer program was used to separate the bubbles from the tracer particles 



 

 

48
 

(Hassan et al. 1992). The information of the bubbles was used to evaluate the gas 

volume in the measurement window. The hydrogen microbubbles that were produced by 

electrolysis had an average diameter about 30 µm. The values of friction velocity, 

average microbubble diameter, average microbubble diameter in wall units, void 

fraction, and drag reduction are reported in table 1. 

 

 

 

Re =  5128 
uτ [mm/s] 10.88 10.6 9.7 9.1 

d [µm] 30 30 30 30 

d+ 0.33 0.31 0.29 0.27 

α 2.38% 3.44% 4.4% 4.8% 

DR 12.06% 16.6% 29.81% 38.45% 
 
 

TABLE 1. Drag reduction values at Re = 5128 with various void fractions. 

 

 

The average velocity distribution as function of the distance from the wall is an 

important characteristic of any turbulent flow. It is expected that the most significant 

changes will be observed in the region close to the wall due to the no-slip condition and 

viscous effects. Traditionally, most of the velocity profiles have been obtained using one 

fixed-point measurement techniques (hot-wire measurements). If a velocity field is 

required several sensors can be placed simultaneously in different points of the 
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measurement region or one sensor can be moved to different positions in the required 

measurement region at distinct times; this is a high time consuming task if a large 

velocity field is needed. However, PIV overcomes those difficulties because this 

measurement technique provides instantaneous velocity fields in a two dimensional 

plane. For instance, the velocity field of the average streamwise velocity in wall units for 

a single phase flow at Re = 5128 is illustrated in figure 10; it was obtained by averaging 

100 velocity fields, which were separated each other by 32 ms. 

 

 

 

FIGURE 10. Streamwise velocity map for single phase flow in wall units. 
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FIGURE 11. Turbulent intensity map for u fluctuating component (single phase). 

 

 

The streamwise turbulent intensity (u’) maps for single phase and for the maximum 

drag reduction are depicted in figure 11 and figure 12, respectively. They are made 

dimensionless by using the corresponding friction velocity. It is observed that the 

maximum value of u’ for single phase occurs about y+ ≈ 14; a similar value was 

observed in other works (Günter et al. 1998; Warholic 1997; Warholic et al. 1999). The 
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values of u’ for a maximum drag reduction of 38.45 % are larger than those of single 

phase flow. 

 

 

 

FIGURE 12. Turbulent intensity map for u fluctuating component (DR = 38.45 %). 

 
 
 
The normal turbulent intensity (v’) maps for single phase and for the maximum drag 

reduction (38.45 %) are depicted in figure 13 and figure 14, respectively. They are also 
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made dimensionless by using the corresponding friction velocity. It is observed that most 

of the maximum values of v’ for single phase occurs about y+ ≈ 70; a similar value is 

observed in other works (Günter et al. 1998). The value of v’ is increased for a drag 

reduction equal to 38.45 %. The changes of the turbulent intensity suggest that 

microbubbles produce a redistribution of the turbulent structures near the wall region. 

 

 

 

FIGURE 13. Turbulent intensity map for v fluctuating component (single phase). 
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FIGURE 14. Turbulent intensity map for v fluctuating component (DR = 38.45%). 

 

 

Higher order moments such as skewness (S) and flatness (F) must be evaluated to 

obtain more specific information about turbulence. They offer information about the 

intermittency of the variable that is analyzed.  Skewness is the third order moment, 

which is used to describe the asymmetry of the probability density function. In this part 

of the study, skewness and flatness of the streamwise and normal velocity fluctuations 

were evaluated. When a signal is Gaussian the probability distribution has a probability 

distribution symmetric about the mean value with S = 0 and F = 3, respectively. 
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FIGURE 15.  Skewness factor of the streamwise fluctuating velocity S(u) versus the 
distance from the wall in wall units. 
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FIGURE 16. Skewness factor of the normal fluctuating velocity S(v) versus the distance 
from the wall in wall units. 
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FIGURE 17. Flatness factor of the streamwise fluctuating velocity F(u) versus the 
distance from the wall in wall units. 
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FIGURE 18. Flatness factor of the normal fluctuating velocity F(v) versus the distance 
from the wall in wall units. 
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The skewness of the streamwise velocity fluctuation is shown in figure 15; a 

maximum value of skewness is observed close to the wall and it crosses 0 around y+ = 

14 for single phase flow (this trend is similar to the one portrayed by Warholic (1997) 

for Re = 5100). The intermittency seems to be higher most of the time for the single 

phase flow; it could mean that the microbubbles reduce the randomness of the 

streamwise velocity fluctuation and modify the energy content along the different values 

of wavenumber. On the other, the skewness of the normal fluctuating component, which 

is portrayed in figure 16, is not affected in the same way that the streamwise fluctuation 

velocity. The maximum value for S(v) is not observed near the wall region and S(v) 

crosses 0 about y+ = 36. 

The flatness of the streamwise fluctuating velocity, F(u) shows a great intermittency 

at y+>35 (see figure 17) for single phase. However, when microbubbles are present the 

intermittency is decreased. Figure 18 illustrates the flatness of the normal fluctuating 

velocity, F(v); it is observed that the effect of the microbubbles  in the near wall region 

is negligible. However, far from the microbubbles increase the intermittency. 

 The evaluation of one dimensional spectra was one of the most essential results that 

were obtained in this study. This evaluation gives information about the distribution and 

interchange of fluctuating turbulent kinetic energy between eddies of different size. The 

calculation of spectra was performed to a single phase flow and to a two phase flow 

(drag reduction) in order to observe the effect of the microbubbles in the different 

wavenumer regions. The one dimensional spectra for the streamwise fluctuating velocity 

Euu(k1), for normal fluctuating component Evv(k1) and for the product of the two 
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components Euv(k1) were evaluated in the streamwise wavenumber k1. The spectra were 

not made dimensionless to show if the energy distribution is really being reduced or not 

when the microbubbles are present.  

The spectra for single phase and maximum drag reduction are compared at several 

distances from the wall. The maximum value of 38.45 % drag reduction was obtained 

with a local void fraction of 4.8 %. Most of the results of wavenumber spectra reported 

in the literature have been done using data from hot wire measurements, which are 

transformed from frequency spectra into wavenumber spectra by assuming Taylor’s 

frozen hypothesis. 

The PIV spatial information was used to evaluate the spectra in the streamwise 

wavenumber; the length of the PIV window (Lx) was related to the maximum eddy size 

(minimum wavenumber) and the space between vectors (∆X) was related to the 

minimum eddy size (maximum wavenumber) as shown by Murai et al. (2000). These 

considerations, allowed obtaining a minimum dimensionless wavenumber (k1H)min = 

H/Lx = 28mm/(11.9mm) = 2.3 and maximum (k1H)max = H/2∆X = 58.8 from the spatial 

information. However, there was still information in the one hundred velocity fields for 

dimensionless wavenumbers lower than 2.3; this information was obtained from the 

temporal information by assuming Taylor’s frozen hypothesis. This new approach of 

using the temporal and spatial information of the fluctuating velocity fields allowed a 

larger wavenumber range. 

The existence of a plateau-like region was observed in the higher wavenumber region 

of Euu(k1), Euv(k1) and Evv(k1). This could be attributed to the energy contribution of 
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higher wavenumber components that can not be resolved from the spatial resolution and 

to noise. To reduce the effects of noise on the one dimensional spectra results, the area 

under the portion of the curve that corresponds the plateau-like region is integrated to 

obtain the energy content in that zone. A percentage of this energy is subtracted from 

each of the components of the spectra that were obtained from the PIV spatial 

information. The percentage that is subtracted is chosen as a function of the best fitting 

of the inertial subrange to the -5/3 slope for single phase. This process was applied to the 

results of Euu(k1), Euv(k1) and Evv(k1) that are shown in figure 19 to figure 65.  

The one-dimensional spectra for the streamwise fluctuating velocity at different 

positions from the wall are shown from figure 19 to figure 34.  It is observed from the 

evaluation of Euu(k1) in the viscous region (y+ = 3.7) and part of the buffer layer (y+ = 

6.5, 9.2, 12, 14.7, 17.4, 20.2, and 22.9)  that the energy contain of single phase flow is 

larger than that of two phase flow (see figure 19 to figure 26). Furthermore, there is a 

redistribution of energy from high wavenumber to low wavenumbers; this shift of 

energy is analogous to the one reported by Wei & Willmarth (1992) for drag reduction 

by polymer injection. It is plausible that microbubbles redistribute the large coherent 

structures near the wall region. On other hand, the energy is shifted from lower to larger 

wavenumbers outside the buffer layer. These results indicates that the interactions that 

takes place outside the buffer layer do not have a big effect in the reduction of drag 

because the higher production and dissipation occurs between y+ = 10-20. 

When the results of Evv(k1) from Taylor’s frozen hypothesis and the results from the 

spatial information were plotted together a discontinuity was observed at k1H = 2.3. This  
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FIGURE 19. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.01. 



 

 

62
 

 
 

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

k1H

Eu
u(

k1
)/H

 (m
m

/s
)^

2

single phase

void fraction = 4.8 %

1

-1

3

-5

y+ = 6.5

From applying Taylor's frozen 
hypothesis to the Fourier transform 

of the autocorrelation

Fourier transform of the  
two-point correlation

 
FIGURE 20. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.019. 
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FIGURE 21. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.027. 
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FIGURE 22. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.036. 
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FIGURE 23. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.044. 
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FIGURE 24. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.052. 
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FIGURE 25. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.06. 
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FIGURE 26. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.069. 
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FIGURE 27. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.077. 
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FIGURE 28. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.085. 
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FIGURE 29. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.094. 
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FIGURE 30. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.10. 
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FIGURE 31. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.11. 
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FIGURE 32. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.118. 
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FIGURE 33. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.127. 
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FIGURE 34. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.15. 
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FIGURE 35. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.011. 
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FIGURE 36. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.019. 
 



 

 

79
 

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

k1H

Ev
v(

k1
)/H

 (m
m

/s
)^

2

single phase

void fraction = 4.8 %

1

-1

3

-5

y+ = 9.2

Fourier transform of the 
two-point correlation

From applying Taylor's frozen
hypotheis to the Fourrier 

transform
of the  autocorrelation

 
FIGURE 37. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.027. 
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FIGURE 38. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.044. 
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FIGURE 39. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.052. 
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FIGURE 40. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.06. 
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FIGURE 41. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.069. 
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FIGURE 42. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.077. 
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FIGURE 43. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.085. 
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FIGURE 44. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.094. 
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FIGURE 45. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.10. 
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FIGURE 46. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.11. 



 

 

89
 

 
 

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

k1H

Ev
v(

k1
)/H

 (m
m

/s
)^

2

single phase

void fraction = 4.8 %

1

-1

3

-5

y+ = 39.4

Fourier transform of the 
two-point correlation

From applying Taylor's frozen
hypotheis to the Fourrier 

transform
of the  autocorrelation

 
FIGURE 47. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.118. 
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FIGURE 48. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.127. 
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FIGURE 49. Dimensional normal spectra versus non-dimensional wavenumber at y/H = 
0.15. 
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FIGURE 50. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.01. 
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FIGURE 51. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.019. 
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FIGURE 52. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.027. 



 

 

95
 

 
 

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

k1H

Eu
v(

k1
)/H

 (m
m

/s
)^

2

single phase

void fraction = 4.8 %

1

-1

3

-5

y+ = 12

From applying Taylor's frozen
hypotheis to the Fourrier 

transform
of the  autocorrelation

Fourier transform of the 
two-point correlation

 
FIGURE 53. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.036. 
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FIGURE 54. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.044. 
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FIGURE 55. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.052. 
 



 

 

98
 

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

k1H

Eu
v(

k1
)/H

 (m
m

/s
)^

2

single phase

void fraction = 4.8 %

1

-1

3

-5

y+ = 20.2

From applying Taylor's frozen
hypotheis to the Fourrier 

transform
of the  autocorrelation

Fourier transform of the 
two-point correlation

 
FIGURE 56.  Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.06. 
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FIGURE 57. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.069. 
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FIGURE 58. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.077. 
 



 

 

101
 

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

k1H

Eu
v(

k1
)/H

 (m
m

/s
)^

2

single phase

void fraction = 4.8 %

1

-1

3

-5

y+ = 28.4

From applying Taylor's frozen
hypotheis to the Fourrier 

transform
of the  autocorrelation

Fourier transform of the 
two-point correlation

 
 
FIGURE 59. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.085. 
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FIGURE 60. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.094. 
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FIGURE 61. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.1. 
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FIGURE 62. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.11. 
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FIGURE 63. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.118. 
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FIGURE 64. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.127. 
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FIGURE 65. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H = 
0.15. 



 

 

108
 

 
 
 
 
 
 
 
 

 
FIGURE 66.Contour of dimensional 2D spectra for Euu(k1, k2) at y+ = x+ = 3.70 (single 
phase). 
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can be attributed to the fact that normal fluctuations are aligned with the normal 

wavenumber (k2). Therefore, the use of streamwise convection velocity for the Taylor’s 

frozen hypothesis was not adequate and did not yield satisfactory results for the 

approach propose in this study.  Then, the local value of the mean velocity at y+ = 3.7 

was used and produced better results in the buffer layer to reduce the discontinuity 

mentioned above as shown in figure 35 to figure 49. 

The results for Euv(k1) at different positions from the wall are shown in figure 50 to 

figure 65. The assumption of Taylor’s frozen hypothesis performed very well in the 

overlapping region (k1H = 2.3). These figures show that the beginning of the buffer layer 

there is a redistribution of the energy from larger to lower wavenumbers. However, the 

opposite trend is observed at the end and outside the buffer layer. 

The results of one-dimensional spectra show that the wavenumber region of the 

spectra can be increased by using the temporal and spatial information of the PIV 

fluctuating velocity fields. The Taylor’s frozen hypothesis has a good agreement for 

Euu(k1) and Euv(k1). However, it did not work very well in the near wall region for 

Evv(k1).  

The spatial information of PIV allowed the evaluation of the dimensional 2D spectra. 

This comparison for single phase and maximum drag reduction was important because 

the contributions of the streamwise wavenumber and normal wavenumber were taken 

into account at the same time.  Figure 66 shows the contour of dimensional 2D spectra 

for Euu(k1, k2) at y+ = x+ = 3.70 (single phase) and figure 67 shows the contour of 

dimensional 2D spectra for Euu(k1, k2) at y+ = x+ = 3.70 for a DR = 38.45%.  A shift of 
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energy from high wavenumbers to low wavenumbers was observed; this trend was also 

observed in the one-dimensional spectra.  It illustrates that there is a reduction of the 

production of turbulence. Moreover, the microbubbles seem to have a bigger effect on 

the streamwise wavenumber. 

Figure 68 shows the contour of dimensional 2D spectra for Evv(k1, k2) at y+ = x+ = 

3.70 for single phase and figure 69 shows the dimensional 2D spectra for Evv(k1, k2) at 

y+ = x+ = 3.70 for a DR = 38.45%. The microbubbles produce a shift of energy from 

high wavenumbers to low wavenumbers. Furthermore, the microbubbles affect 

uniformly both the normal and streamwise wavenumber. 

Figure 70 shows the contour of Euv(k1, k2) at y+ = x+ = 3.70 for single phase and 

figure 71 depicts the contour of Euv(k1, k2) at y+ = x+ = 3.70 for a DR = 38.45%. The 

energy is also shifted from high wavenumber to low wavenumber. Moreover, the 

microbubbles produced the same effect in both normal and streamwise wavenumber. It 

is plausible that the shift of energy observed on these results could be associated with a 

reduction of the Reynolds stresses. 

Contours of dimensional 2D spectra for Euu(k1, k2), Evv(k1, k2), and Euv(k1, k2)  at y+ = 

x+ = 69.7 for single phase and maximum drag reduction are shown from figure 72 to 77. 

These figures show clearly that there is also a redistribution of energy. However, in the 

lower wavenumber region the energy contain of single phase flow is lower that that of 

the DR = 38.45 %; this trend is contrary to that the spectra evaluated in the near wall 

region. It suggests that the phenomenon that occurs in the near wall region is different 

from the one occurring far from the wall. 
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FIGURE  67. Contour of dimensional 2D spectra for Euu(k1, k2) at y+ = x+ = 3.70 (DR = 
38.45 %). 
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FIGURE 68. Contour of dimensional 2D spectra for Evv(k1, k2) at y+ = x+ = 3.70 (single 
phase). 
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FIGURE 69. Contour of dimensional 2D spectra for Evv(k1, k2) at y+ = x+ = 3.70 (DR = 
38.45 %). 
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FIGURE 70. Contour of dimensional 2D spectra for Euv(k1, k2) at y+ = x+ = 3.70 (single 
phase). 
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FIGURE 71. Contour of dimensional 2D spectra for Euv(k1, k2) at y+ = x+ = 3.70 (DR = 
38.45 %). 
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FIGURE 72. Contour of dimensional 2D spectra for Euu(k1, k2) at y+ = x+ = 69.7 (single 
phase). 
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FIGURE 73. Contour of dimensional 2D spectra for Euu(k1, k2) at y+ = x+ = 69.7 (DR = 
38.45%). 
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FIGURE 74. Contour of dimensional 2D spectra for Evv(k1, k2) at y+ = x+ = 69.7 (single 
phase). 
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FIGURE 75. Contour of dimensional 2D spectra for Evv(k1, k2) at y+ = x+ = 69.7 (single 
phase). 
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FIGURE 76. Contour of dimensional 2D spectra for Euv(k1, k2) at y+ = x+ = 69.7 (single 
phase). 
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FIGURE 77. Contour of dimensional 2D spectra for Euv(k1, k2) at y+ = x+ = 69.7 (DR = 
38.45 %). 
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The joint probability density function of the streamwise and normal fluctuating 

components of the velocity JPDF(u,v) was evaluated for single phase flow and for a 

maximum drag reduction case of 38.45 % at several distances from the wall (y+ = 10, 15, 

25, 35, 50 and 100); the JPDF(u,v) is constant along the contour lines. These results are 

reported in figure 78 to figure 91. 

The evaluation of the JPDF in the region of maximum energy production (y+ = 10-15) 

illustrates contour regions that are predominantly x-direction oriented. This behavior 

means the appearing of high values of the streamwise velocity fluctuating with relatively 

small normal velocity fluctuations. 

The presence of microbubbles within the boundary layer produces a decrease in the 

values of the joint PDF. This indicates a reduction of the correlation of the u and v 

velocity fluctuations which leads directly to a decrease in the Reynolds stresses and 

consequently a reduction in drag. 

As the distance from the wall increases, the shape of the joint probability density 

function for single phase flow corresponds to an enhanced negative correlation 

(Tennekes & Lumley 1972) and enlarged Reynolds stresses  uvρ−  . 

Similar results of the JPDF were presented by Gampert & Yong (1989). They showed 

the JPDF for pure water and for a polymer drag-reducing solution. The changes in the 

shape of the JPDF for the polymer solution were more palpable on their comparison than 

in the comparison presented on this drag reduction by microbubble injection study. 

However, the tendency of decrease in a negative correlation and therefore a decrease in 

the Reynolds stresses can be observed in both cases. The lack of data in the literature 
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related to the values of the JPDF for microbubble injection does not allow a complete 

comparison between the behavior of polymers and microbubbles in drag reduction 

phenomena. 

Gyr & Bewersdorff (1989) presented joint PDF results of a comparison between the 

effects of polymers and solvents in the drag reduction phenomena. Although both 

solutions produce a drag reducing effect, the shape of the joint PDF results are quite 

different between both of them and also differ from the results presented in this 

investigation. Again, the lack of data about the values of the joint PDF makes impossible 

a quantitative comparison, but it seems to be evident that the agent used to produce the 

desired drag reduction effect has an influence in the modification of the behavior of the 

joint PDF of u and v in turbulent flows under drag reduction effects.  

The inner product of the vorticity is the enstrophy. The evaluation of this parameter is 

fundamental because it can allow the location of stronger structures in the near wall 

region.  While the vorticity save the sign information enstrophy does not. It is a good 

indicator of the vortical structures and regions with high shear stress. In figures 92, 93 

and 94 the instantaneous enstrophy is evaluated. It is shown that there is a reduction of 

the intensity of the structures near the wall for the cases with drag reduction when they 

are compared with the single phase case. It implies that the microbubbles reduce and 

modify the regions of high shear that are close the wall. 
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FIGURE 78.  JPDF at y+ = 10 (single phase). 
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FIGURE 79. JPDF at y+ = 10 (DR = 38.45 %). 
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FIGURE 80. JPDF at y+ = 15 (single phase). 
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FIGURE 81. JPDF at y+ = 15 (DR = 38.45 %). 
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FIGURE 82. JPDF at y+ = 25 (single phase). 
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FIGURE 83. JPDF at y+ = 25 (DR = 38.45 %). 
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FIGURE 84. JPDF at y+ = 35 (single phase). 
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FIGURE 85. JPDF at y+ = 35 (DR = 38.45 %). 
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FIGURE 86. JPDF at y+ = 50 (single phase). 
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FIGURE 87. JPDF at y+ = 50 (DR = 38.45 %). 
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FIGURE 88. JPDF at y+ = 70 (single phase). 
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FIGURE 89. JPDF at y+ = 70 (DR = 38.45 %). 
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FIGURE 90. JPDF at y+ = 100 (single phase). 
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FIGURE 91. JPDF at y+ = 100 (DR = 38.45 %). 
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 b) 
FIGURE 92. Instantaneous enstrophy for a) single phase, b) DR = 12.06 %. 
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b) 
FIGURE 93. Instantaneous enstrophy for a) DR = 16.62 %, b) DR = 29.81 %. 
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FIGURE 94. Instantaneous enstrophy for  DR = 38.45 %. 
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CHAPTER V 

CONCLUSIONS 

 

Drag reduction is a complex process that can produce great savings of energy and 

money in different engineering applications. An experimental study in the near upper 

wall of a rectangular channel was carried out. Microbubbles with an average diameter of 

30 µm, were produced by electrolysis and injected in the near wall region to reduce the 

drag.  Particle Image Velocimetry (PIV) measurement technique was used to measure 

instantaneous x-y velocity fields. Qualitative and quantitative information was obtained 

from the statistical parameters that were evaluated.  

A maximum drag reduction of 38.45 % was obtained for a local void fraction of 4.8 

%. It indicates that local low concentrations of microbubbles produce a significant 

reduction of the drag. The results also show that microbubbles reduce the intermittency 

of the streamwise fluctuating velocity. However, a slight increase of the intermittency is 

present in the region close to the wall for the normal fluctuating component. When the 

spectra was evaluated in the region near the wall (inside the buffer layer), a shift of 

energy from high to low wavenumbers was observed for the maximum drag reduction 

results; it would indicate that then dissipation of turbulent energy would be reduced. On 

the other hand, the opposite trend was observed outside the buffer layer. It illustrates that 

two different phenomena are present. It is plausible that the transfer of momentum in the 

wall direction is altered by the presence of the microbubbles. 
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 The new approach of using the spatial and the temporal information of PIV to 

evaluate the one dimensional wavenumber spectra results in obtaining more information 

about the distribution and interchange of turbulent fluctuating energy in wider 

wavenumber region. 

It is necessary to point out that previous results of 2D spectra and JPDF evaluation for 

drag reduction by microbubbles injection were not found in the literature. The 2D 

spectra shows a shift of energy from high to low streamwise and normal wavenumbers. 

The JPDF results suggest that the correlation between u and v is decreased by the 

microbubbles; it mean that Reynolds stresses are suppressed where microbubbles are 

present. 

 The evaluation of the enstrophy shows a reduction of the high shear vortical 

structures near the wall region. Hence, it suggested that the microbubbles should be 

injected within the buffer layer to obtain better results. 

It is suggested that there is an apparent interaction between the microbubbles and the 

smallest scales in the dissipation range; this interaction causes a reduction of the energy 

that is dissipated into internal energy of the fluid. These results suggest that there is a 

relationship between the Kolmogorov length scale and the diameter of the bubble d; it is 

plausible that when d < η drag reduction occurs.  
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NOMENCLATURE 

 

Eij(k1) One dimensional spectra  

Eij(k1, k2) Two dimensional spectra 

Hm&  Hydrogen mass rate 

CCD Charge couple device 

DR Drag reduction 

D Diameter of the bubble 

d+ Diameter of the bubble in wall units 

F Flatness 

F frequency 

H  Half height of the channel 

H Height of the riblet 

I Electrical current 

JPDF(u, v) Joint probability density function 

k1 Wavenumber in the streamwise direction 

k2 Wavenumber in the normal direction 

N Total number of samples 

P Static pressure 

Re Reynolds number 

Rij(s) Spatial correlation 

Rij(t’) Temporal correlation 
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S Skewness 

sx Increment in the x-direction 

sy Increment in the y-direction 

S Riblet space 

s+ Riblet space in wall units 

U Fluctuating streamwise velocity 

U Mean local velocity 

uτ Friction velocity 

u’ Turbulent intensity of the streamwise component 

Ub Bulk velocity 

V Vector velocity 

V Fluctuating normal velocity 

v’ Turbulent intensity of the normal velocity 

W Atomic weight 

X Streamwise direction 

Y Normal direction 

y+ Distance from the wall  in wall units 

Z Valence number 

Z Spanwise direction 

Greek letter  

α        Void fraction       

µ Absolute water viscosity 
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µ’ Viscosity of liquid-bubble mixture  

ν Water Kinematic viscosity 

εB Bulk dissipation 

ρ Water density 

τ Shear stress 

ωz Spanwise vorticity 

φ Bubble concentration in the boundary layer 

η Kolmogorov length scale 

∆p Pressure gradient 

ρp Seed particle’s density 

τw Shear stress at the wall 

τtot Total shear stress 

τturb Turbulent stress 
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APPENDIX A 

 

This appendix shows fluctuating velocity fields for single phase flow at different 

times. 
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FIGURE A-1. Fluctuating velocity field at t =0.825 s (single phase). 
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FIGURE A-2. Fluctuating velocity field at t = 0.891(single phase). 
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FIGURE A-3. Fluctuating velocity field at t =1.089 s (single phase). 
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FIGURE A-4. Fluctuating velocity field at t =3.2 s (single phase). 
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APPENDIX B 

 

This appendix shows the one dimensional spectra, Euu (k1) at different distance from 

the wall without any correction.  
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FIGURE B-1. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.01 (without any correction).  
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FIGURE B-2. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.019 (without any correction). 
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FIGURE B-3. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.027 (without any correction). 
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FIGURE B-4. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.036 (without any correction). 
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FIGURE B-5. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.044 (without any correction). 
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FIGURE B-6. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.052 (without any correction). 
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FIGURE B-7. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.06 (without any correction). 
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FIGURE B-8. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.069 (without any correction). 
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FIGURE B-9. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.077 (without any correction). 
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FIGURE B-10. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.085 (without any correction). 
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FIGURE B-11. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.094 (without any correction). 
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FIGURE B-12. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.10 (without any correction). 
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FIGURE B-13. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.11 (without any correction). 
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FIGURE B-14. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.118 (without any correction). 
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FIGURE B-15. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.127 (without any correction). 
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FIGURE B-16. Dimensional streamwise spectra versus non-dimensional wavenumber at 
y/H = 0.15 (without any correction). 
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APPENDIX C 

 

This appendix shows the one dimensional spectra, Evv (k1) at different distance from 

the wall without any correction. The discontinuities at k1H = 2.3 are produced by 

Taylor’s frozen hypothesis. 
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FIGURE C-1. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.011 (without any correction). 
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FIGURE C-2. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.019 (without any correction). 
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FIGURE C-3. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.027 (without any correction). 
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FIGURE C-4. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.044 (without any correction). 
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FIGURE C-5. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.052 (without any correction). 
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FIGURE C-6. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.06 (without any correction). 
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FIGURE C-7. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.069 (without any correction). 
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FIGURE C-8. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.077 (without any correction). 
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FIGURE C-9. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.085 (without any correction). 
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FIGURE C-10. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.094 (without any correction). 
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FIGURE C-11. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.10 (without any correction). 
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FIGURE C-11. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.11 (without any correction). 
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FIGURE C-12. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.118 (without any correction). 
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FIGURE C-13. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.127 (without any correction). 
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FIGURE C-14. Dimensional normal spectra versus non-dimensional wavenumber at y/H 
= 0.15 (without any correction). 
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APPENDIX D 

 

This appendix shows the one dimensional spectra, Euv (k1) at different distance from 

the wall without any correction. 
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FIGURE D-1. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.01 (without any correction). 
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FIGURE D-2. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.019 (without any correction). 
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FIGURE D-3. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.027 (without any correction). 
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FIGURE D-4. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.044 (without any correction). 
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FIGURE D-5. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.052 (without any correction). 
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FIGURE D-6. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.06 (without any correction). 
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FIGURE D-7.  Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.069 (without any correction). 
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FIGURE D-8. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.077 (without any correction). 
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FIGURE D-9. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.085 (without any correction). 
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FIGURE D-10. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.094 (without any correction). 
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FIGURE D-11. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.1 (without any correction). 
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FIGURE D-12. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.11 (without any correction). 
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FIGURE D-13. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.118 (without any correction). 
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FIGURE D-14. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.127 (without any correction). 
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FIGURE D-15. Dimensional Euv(k1) spectra versus non-dimensional wavenumber at y/H 
= 0.15 (without any correction). 
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