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ABSTRACT

Design and Analysis of Iteratively Decodable Codes

for ISI Channels. (August 2004)

Dũng Ngoc Doan, B.E., Hanoi University of Technology;

M.E., Asian Institute of Technology

Chair of Advisory Committee: Dr. Krishna R. Narayanan

Recent advancements in iterative processing have allowed communication sys-

tems to perform close to capacity limits with manageable complexity. For many chan-

nels such as the AWGN and flat fading channels, codes that perform only a fraction

of a dB from the capacity have been designed in the literature. In this dissertation,

we will focus on the design and analysis of near-capacity achieving codes for another

important class of channels, namely inter-symbol interference (ISI) channels. We pro-

pose various coding schemes such as low-density parity-check (LDPC) codes, parallel

and serial concatenations for ISI channels when there is no spectral shaping used at

the transmitter. The design and analysis techniques use the idea of extrinsic infor-

mation transfer (EXIT) function matching and provide insights into the performance

of different codes and receiver structures. We then present a coding scheme which

is the concatenation of an LDPC code with a spectral shaping block code designed

to be matched to the channel’s spectrum. We will discuss how to design the shaping

code and the outer LDPC code. We will show that spectral shaping matched codes

can be used for the parallel concatenation to achieve near capacity performance. We

will also discuss the capacity of multiple antenna ISI channels. We study the effects

of transmitter and receiver diversities and noisy channel state information on channel

capacity.
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CHAPTER I

INTRODUCTION AND ORGANIZATION OF THE DISSERTATION

A. Introduction

A typical communication system consists of a transmitter, a transmission medium

(or channel), and a receiver. Different designs for the transmitter and the receiver

are necessary, depending on channel characteristics, system complexity, and available

resources. For the last 50 years, ever since Shannon presented the landmark paper

on communication theory, many practical systems have been realized. The discovery

of turbo codes by Berrou et al. [1] and the rediscovery of low-density parity-check

(LDPC) codes [2] have significant impacts on the way a modern communication sys-

tem is built.

Recent advancements in iterative (turbo) processing have allowed communica-

tion systems to perform close to capacity limits with manageable complexity. For

many channels such as the AWGN and flat fading channels, codes that perform only

a fraction of a dB from the capacity have been designed in the literature. In this dis-

sertation, we will focus on the design and analysis of near-capacity achieving codes for

another important class of channels, namely inter-symbol interference (ISI) channels.

ISI results from non-Nyquist Tx/Rx filters, transmission of wide band signals over

a band limited channel, over sampling at higher than Nyquist rate, or due to non-ideal

frequency response of the channel. ISI can be understood as the received signal at

the channel output being dependent on signals at past, current, and possibly future

time instants. ISI causes distortion to the transmitted signals, which is undesirable

in most applications. ISI channels are often encountered in many practical systems

The journal model is IEEE Transactions on Automatic Control.
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such as cellular networks, code division multiple access (CDMA) systems with large

spreading gain, wireless LAN with high data rate, and multi-track magnetic recording

systems.

For reliable communication through ISI channels, different methods can be used

to combat the detrimental effect of ISI. Among them, spectrum shaping, channel

equalization, and channel coding are the most popular methods used. In this disser-

tation, we focus on coding for ISI channels. We extensively use iterative principles

for the design and analysis of iteratively decodable codes. We will give motivations

of our research in each individual chapter.

This chapter is intentionally made brief to give a general picture about problems

discussed in this dissertation. More detailed introductions can be found in subsequent

chapters.

B. Organization of the Dissertation

The dissertation is organized as follows.

In Chapter II, we provide some relevant background, which is helpful for the

exposition of subsequent chapters.

In Chapter III, we study code design and analysis for ISI channels without spec-

tral shaping, and in the context of serial concatenation. We study convergence of it-

erative decoding/equalization using extrinsic information transfer (EXIT) functions.

We present new results pertaining to the convergence of precoded ISI channels, and

use these to design convolutional codes for ISI channels. We also design LDPC codes

for these channels using EXIT functions. Our technique will be shown to provide

much insight into code design and analysis.

In Chapter IV, we propose low complexity coding schemes for ISI channels which
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perform close to the channel capacity by using spectral shaping techniques. We use

codes that are spectrally matched to the channel for serial and parallel concatenations.

Analysis using EXIT functions and BER simulations shows that both schemes surpass

the independent identically distributed (i.i.d.) channel capacity and outperform other

existing schemes.

In Chapter V, we extend results in Chapter III to automatic retransmission

request (ARQ) schemes. We propose a novel combining scheme, namely iterative

combining, which is shown to significantly improve system performance in terms of

both frame error rate and convergence.

In Chapter VI, we consider the problem of finding the capacity for multiple

antenna ISI channels with and without perfect channel state information. We study

the effects on channel capacity of channel estimation errors. We will discuss possible

capacity-achieving coding schemes for multiple antenna ISI channels.
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CHAPTER II

BACKGROUND

In this chapter, we present some background on ISI channels, channel capacity, various

types of coding and decoding schemes, and techniques to analyze them.

A. ISI Channel and Capacity

1. ISI Channel

The output of a discrete-time ISI channel, denoted by yn, can be expressed as

yn =

L∑

ℓ=0

fℓ · xn−ℓ + zn = rn + zn, 0 ≤ n < N, (2.1)

where xN−1
0 = (x0, x1, . . . , xN−1) is the channel input sequence of length N , rn is the

noiseless channel output, fL
0 = (f0, f1, . . . , fL) is the channel state information (CSI),

and zN−1
0 = (z0, z1, . . . , zN−1) is a sequence of additive white Gaussian noise (AWGN)

samples with zero mean and variance σ2
z . The channel output at time n, yn, depends

not only on the useful input signal at time n, xn, but also on other interfering signals

xn−L, . . . , xn−1 as well as the AWGN zn. The parameter L is called channel memory,

which is often used as an indicator of how severe the effect of ISI is. It also dictates

receiver complexity. The ISI channel can be represented by either a trellis with ML

states for M-ary modulation or a finite state machine with L delay elements.

2. Channel Capacity

In this section, we will discuss the capacity of ISI channels for both constrained

(limited to a finite alphabet) and unconstrained channel inputs. We will use the

results in this section to design capacity achieving codes in Chapter IV.



5

a. Unconstrained Inputs

Channel capacity, denoted by C, is defined as

C = , lim
N→∞

sup
p

X
N−1
0

1

N
I
(
XN−1

0 ;Y N−1
0

)
(2.2)

where I
(
XN−1

0 ;Y N−1
0

)
is the mutual information between input {Xn} and output

{Yn} and pXN−1
0

is the probability distribution function (pdf) of the input. We use

upper case letters to represent random variables.

It has been shown in [3] that the capacity of the discrete-time ISI channel for

unconstrained inputs is obtained as

CG =
1

2π

∫ π

0

log

(
1 +

PX,opt(e
jw)|F (ejw)|2
σ2

z

)
dw, (2.3)

where F (ejw) is the discrete Fourier transform of fL
0 , PX,opt(e

jw) is the optimum

water-filling power spectrum density (PSD) found according to

PX,opt(e
jw) =





λ− σ2
z

|F (ejw)|2 , if λ > σ2
z

|F (ejw)|2 ,

0, otherwise,
(2.4)

where λ is the water-level and is chosen such that

1

π

∫ π

0

PX,opt(e
jw)dw = E[|Xn|2] = Es.

The capacity-achieving inputs Xn are correlated Gaussian random variables with zero

mean and covariances

rX(k) = E [Xn+kXn] =
1

π

∫ π

0

PX,opt(e
jw) cos(kw)dw.

We are interested in computing the loss in capacity of an ISI channel when the

input PSD is restricted to a fixed PX(ejw). Define the capacity loss as the difference
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between the capacity CG and the maximal achievable mutual information through

the channel when the input has PSD PX(ejw):

∆C(PX) , CG − I (X;Y |PX) , (2.5)

where

I (X;Y |PX) = lim
N→∞

sup
p

X
N−1
0

PX(ejw) fixed

1

N
I
(
XN−1

0 ;Y N−1
0

)
. (2.6)

It can be easily shown from [3] that

I (X;Y |PX) =
1

2π

∫ π

0

log

(
1 +

PX(ejw)|F (ejw)|2
σ2

z

)
dw (2.7)

∆C(PX) =
1

2π

∫ π

0

log

(
σ2

z + PX,opt(e
jw)|F (ejw)|2

σ2
z + PX(ejw)|F (ejw)|2

)
dw. (2.8)

Note that the supremum in (2.6) is satisfied by a Gaussian input.

b. Constrained Inputs

Channel capacity for constrained inputs, denoted by CA, is defined as

CA , lim
N→∞

sup
p

X
N−1
0

Xn∈A

1

N
I
(
XN−1

0 ;Y N−1
0

)
(2.9)

where A is a finite alphabet that Xn are constrained to.

It should be noted that the result in subsection a is only applicable to uncon-

strained inputs. Finding the true capacity of an ISI channel when channel inputs

are constrained to a finite alphabet is still an open problem although tight lower and

upper bounds have been found recently [4], [5].

For constrained inputs, there has been no close-formed expression found for the

channel capacity; and it is not clear what input PSD PX(ejw) achieves capacity in the
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constrained case. In the next subsection, we discuss a special case when the channel

input is identical independently distributed (i.i.d.). In this case, channel capacity can

be computed.

c. i.i.d. Capacity

When the input to the channel is i.i.d., the input-output mutual information in this

case (often called i.i.d. capacity) is defined as

Ci.i.d. , lim
N→∞

sup
p

X
N−1
0

=
∏N

n=1 pXn

1

N
I
(
XN−1

0 ;Y N−1
0

)
. (2.10)

For unconstrained inputs, the i.i.d. capacity is easily computed by replacing PX,opt(e
jw)

in (2.7) with PX(ejw) ≡ Es, resulting in

Ci.i.d.,G =
1

2π

∫ π

0

log

(
1 +

Es|F (ejw)|2
σ2

z

)
dw.

For constrained inputs, we rewrite the mutual information I
(
XN−1

0 ;Y N−1
0

)
in (2.10)

as

I
(
XN−1

0 ;Y N−1
0

)
= h(Y N−1

0 ) − h(Y N−1
0 |XN−1

0 ), (2.11)

where h(·) and h(·|·) represent entropy and conditional entropy, respectively. The

second term in the right hand side of (2.11) is actually the entropy of the AWGN

term, which is easily computed (namely it is equal to N
2

log (2πeσ2
z)). The first term

can be computed by using the Asymptotic Equipartition Property (AEP) for random

processes

h(Y N−1
0 ) = lim

N→∞
log Pr

(
Y N−1

0

)
almost surely,
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where Pr
(
Y N−1

0

)
is the probability of receiving sequence Y N−1

0 , which can be easily

computed by using the BCJR forward recursion. We will discuss BCJR algorithm

shortly.

Since there is no close-formed expression for constrained capacity, i.i.d. capacity

is often used as a lower bound on the true capacity of the channel. We are interested

in i.i.d. capacity because in several coded systems, the channel inputs (codewords)

behave like i.i.d. sequences when the codeword length is large and an interleaver is

used in front of the channel.

d. Tight Lower Bound on Channel Capacity

In the previous subsection, we have discussed channel capacity when the channel

input is i.i.d.. The i.i.d. capacity can be used as a lower bound on the channel

capacity. However, it can be intuitively clear that the i.i.d. input may result in

a large capacity loss for constrained alphabets. To find a tighter lower bound, we

need to maximize the quantity h(Y N−1
0 ). Obviously, any input sequence {xN−1

0 } can

be used to find a lower bound on capacity. A tighter lower bound can be found

by not constraining the input to be i.i.d.. In general, it is hard to find a sequence

{xN−1
0 } of finite alphabet that maximizes the entropy h(Y N−1

0 ). However, for the low

rate region (or equivalently, low signal to noise ratio region), the input {xN−1
0 } that

maximizes the noiseless channel output energy 1
N

∑N−1
n=0 |rn|2 often results in higher

entropy h(Y N−1
0 ), and consequently higher mutual information. This input sequence

can be found by using an algorithm which is similar to the Viterbi algorithm to find

the maximum path metric.
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B. Channel Coding

1. Turbo Codes

A conventional turbo code, or parallel concatenated convolutional codes(PCCC), con-

sists of two identical component recursive systematic convolutional (RSC) codes and

a random interleaver, as shown in Fig. 1. The role of the interleaver is to spread out

error patterns that cause small output (Hamming) weight at a component code so

that the output weight at the other component code is large. This does not necessar-

ily mean that the overall minimum output weight of the turbo code is large; however,

small Hamming weight outputs appear less frequently.

RSC 1

RSC 2

Interleaver

data

systematic

parity 1

parity 2

Fig. 1. A rate 1/3 turbo encoder.

2. Serial Concatenation

Similar to the turbo code, a serially concatenated code is formed by an outer code, a

random interleaver, and an inner code as shown in Fig. 2. The inner and outer codes

are normally chosen to be convolutional codes; and in this case it is often known
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as serially concatenated convolutional code (SCCC). It has been shown [6] that by

choosing the inner code to be recursive, good distance spectrum of the overall code

can be obtained. Since an SCCC normally has a higher minimum Hamming distance

compared to that of a PCCC, SCCC is often preferred in some application which

requires a lower error floor.

Inner code

data

Outer code Interleaver
to channel

Fig. 2. A serial concatenation.

3. LDPC Codes

Another important class of codes we will use widely in the dissertation is LDPC codes.

An LDPC code is a block code whose parity check matrix H contains mostly zeros

in its entries. The LDPC encoder can be represented by a bipartite graph with two

types of nodes, namely bit nodes and check nodes. The graph is drawn from the parity

check matrix H whose rows represent parity check nodes and columns represent coded

bit nodes. Entries with value one in the H matrix represent the connections between

the corresponding bit and check nodes in the graph. A simple example depicting this

is given in Fig. 3.

As we can see from the figure, there is the irregularity in the graph of the code.

In other words, the number of connections stemming from coded bit nodes (or parity

check nodes) is not uniform. The irregularity of an LDPC code is often represented by
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1 0 1 1 0
1 1 0 1 0

0 1 1 1 1

coded bits

p
a

rity
 c

h
e
c
k
s


H  =

Fig. 3. The bipartite graph of an LDPC encoder.

using degree profiles [7]. Degree profiles (edge perspective) are a pair of polynomials

λ(x) =

dl∑

i=1

λix
i−1 and ρ(x) =

dr∑

i=1

ρix
i−1

where λi represents the percentage of edges from bit nodes (left nodes) which have i

connections (edges) to check nodes (right nodes) and ρi represents the percentage of

edges from check nodes which have i connections to bit nodes. The example in Fig. 3

has the following degree profiles:

λ(x) =
1

10
+

6

10
x+

3

10
x2 and ρ(x) =

6

10
x2 +

4

10
x3.

C. Soft-Input Soft-Output Decoding

We now discuss soft-input soft-output (SISO) decoding for a trellis-based code. Since

an ISI channel can be represented by a trellis, SISO decoding algorithms for trellis-

based channel codes can be directly applied to the decoding of ISI channels. (Typi-

cally, this is referred to as channel equalization.) In the second part of the dissertation,
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we will use extensively the a posteriori probability (APP) decoding with the BCJR

algorithm [8]. Basically, BCJR is a recursive algorithm whose inputs are channel soft

values (either in terms of probabilities or log likelihood ratios), and where forward

and backward recursions are used to compute soft outputs. The BCJR algorithm

outputs joint probabilities of the state sequence {Sn} given the observation sequence

Y N−1
0 as follows:

σn(m′, m) = Pr(Sn−1 = m′;Sn = m;Y N−1
0 ).

Let us define the following probability functions:

• Forward recursion: αn(m) = Pr(Sn = m;Y n−1
0 )

• Backward recursion: βn(m) = Pr(Y N−1
n |Sn = m)

• Transition probability: γn(m
′, m) = Pr(Sn = m;Yn|Sn−1 = m′).

Using Markov properties, it can be shown that:

σn(m′, m) = αn(m′)γn(m′, m)βn+1(m)

αn(m) =
∑

m′

αn−1(m
′)γn(m′, m)

βn(m) =
∑

m′

βn+1(m
′)γn+1(m,m

′).

For actual implementation, the normalized version of the BCJR algorithm is often

used. This helps prevent numerical overflows in the forward and backward recursions.

The normalized forward and backward recursions are implemented as follows:

αn(m) =

∑
m′ αn−1(m

′)γn(m′, m)∑
m′,m αn−1(m′)γn(m′, m)

βn(m) =

∑
m′ βn+1(m

′)γn+1(m,m
′)∑

m′,m βn+1(m′)γn+1(m,m′)
.
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D. Transfer of Soft Information in Iterative Equalization and Decoding

π−1

π

π

(  )o
(  )i

Equalizer Decoder

(  )o

’

x(  )i

^
b

b
x

D D D

f0 fLf1 f2

. . .

. . .

xx
Mod.

AWGN

Extrinsic information

L
L

ba
Encoder

L

r

z

y

L
a

Discrete−time ISI channel

Fig. 4. System model of a serial concatenation with iterative equalization.

We first introduce the concept of iterative equalization (aka turbo equalization).

Fig. 4 depicts the system model when iterative equalization takes place. The iter-

ative equalization is an iterative procedure where soft information for coded bits is

exchanged between the soft-input soft-output (SISO) equalizer and the SISO decoder.

Each round of exchanging the information between the equalizer and the decoder is

called one iteration. Many iterations may be necessary before final hard decision.

We now discuss the concept of effective channels for the system given in Fig. 4.

During the mth iteration, the inner decoder (inner SISO, or Equalizer) provides the

outer decoder (outer SISO) extrinsic LLR information L
(m)
ext,o(xn). We define the ex-

pected value (or mean) of the extrinsic log likelihood ratio (LLR) as

φ(m)
o , Ez;x[X ′

nL
(m)
ext (xn)], (2.12)

where the notation Ez;x denotes the expectation over noise z and all channel inputs
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x,

L
(m)
ext (xn) = log

P (m)(Xn = 1)

P (m)(Xn = 0)
,

with P (m)(xn) being the extrinsic probabilities given by the soft-input soft-output

(SISO) equalizer (inner SISO), x′n = (2xn − 1) is the BPSK modulated signal of xn,

and m denotes the iteration number. Thus, φ
(m)
o represents a measure of how reliable

the hypothetical channel as seen by the outer SISO is. The higher φ
(m)
o is, the more

reliable the effective channel as seen by the outer SISO during the mth iteration is.

Similarly, φ
(m)
i is the mean LLR of the equivalent channel as seen by the inner SISO

during the (m+ 1)th iteration. The turbo equalization process can be visualized by

thinking of each SISO block as a dynamic transformer which operates on the mean

LLR’s (φ
(m)
i and φ

(m)
o ). At medium to high Eb/N0 regions, as the iterations proceed,

φ
(m)
i and φ

(m)
o increase with high probability. This process is repeated until φ

(m)
i and

φ
(m)
o reach infinity, which signifies convergence of the decoding algorithm. However,

at low Eb/N0, φ
(m)
i and φ

(m)
o do not increase rapidly or, sometimes, do not increase

beyond some value at all.

However, decoding for LDPC codes is often done based on the message passing

algorithm [9].

E. EXIT Functions

In the literature, there have been many other measures of performance proposed. We

will use in this section the extrinsic mutual information transfer (EXIT) functions

[10]. Other measures of performance will be discussed further in Chapter III. Let

I
(m)
A represent the mutual information between the channel input X and the a priori

LLR of X at iteration m, denoted by L
(m)
ap , where L

(m)
ap has a Gaussian distribution;
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and I
(m)
E represent the mutual information between the channel input X and the

extrinsic LLR of X, denoted by L
(m)
ext . That is,

I
(m)
A , Ez;x[I(X;L(m)

ap )], L(m)
ap ∼ N

(
x′φ(m)

ap , 2φ(m)
ap

)

I
(m)
E , Ez;x[I(X;L

(m)
ext )]

where φ
(m)
ap denotes the mean of the a priori LLR. The EXIT curve is a function

between a priori mutual information I
(m)
A and extrinsic mutual information I

(m)
E .

It can be seen that I
(m)
A and I

(m)
E are in the range [0, 1] and directly related to

the mean LLR φ(m). The mutual information reaches value one as φ(m) approaches

infinity. This ensures the convergence of the iterative equalization/decoding process.

The mutual information can be used to study the convergence of turbo equalization

for ISI channels. We now discuss some key properties of EXIT functions for decoders

and equalizers.

1. Properties of EXIT Functions

Let Teq and Tdec be EXIT functions (output extrinsic mutual information as a function

of input a priori mutual information) for the equalizer and the decoder, respectively.

Then the following two important properties can be shown [11].

• Convergence Property: For the turbo equalization to converge,

T −1
dec (x) < Teq(x,Eb/N0), 0 ≤ x < 1.

• Area Property: If the extrinsic information is from an erasure channel, under

optimal decoding, the code rate R is related to the area under the EXIT function
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of the decoder as follows

∫ 1

0

T −1
dec (x)dx = R

or

∫ 1

0

Tdec(x)dx = 1 −R.

By simulation, it has been also observed that even the extrinsic information is from

a Gaussian channel, the area under the EXIT function approximates very well the

code rate.

These two properties will be used for code design. We mention briefly the idea

in the following subsection; and further discussion on this will be revisited in later

chapters when we design specific codes.

2. Using EXIT Functions for Code Design

Basing on the convergence and area properties of EXIT functions, it can be seen that

the optimal code is the one whose EXIT function satisfies

T −1
dec (x) = Teq(x,Eb/N0), 0 < x ≤ 1.

In other words, the area under the EXIT function of the equalizer is the achievable

information rate (or, loosely speaking, i.i.d. capacity). Thus, the problem of designing

optimal codes becomes a curve fitting problem. This significantly reduces the design

complexity since the EXIT functions of the decoder and the equalizer can be computed

separately. By not combining EXIT functions of the equalizer and the decoder, more

insights into code design, achievable information rate, and rate loss can be seen easily.

We will discuss more about this in later chapters.
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CHAPTER III

CONVERGENCE OF TURBO EQUALIZATION FOR ISI CHANNELS

In this chapter, we present new results pertaining to the design and analysis of codes

for ISI channels when there is no spectral shaping, and in the context of iterative

equalization. We first study the design and analysis of convolutional codes with

binary precoding. An analytical proof is presented to show that precoding results in

a loss in fidelity during the first iteration for all 2-tap ISI channels. Based on this

and the convergence properties of precoded and non-precoded channels, it is shown

that by using a mixture of precoded and non-precoded parts, better performance can

be achieved. Due to the recursiveness introduced from precoding, the codes required

to achieve good performance are very simple codes and, hence, the resulting schemes

provide good bit error rate performance at low receiver complexity. We then propose

an LDPC code design technique based on EXIT functions. This technique will be

shown very accurate and results in good codes. By not combining EXIT functions

of the equalizer and the decoder as done in the literature, more insights into code

design, achievable information rate, and rate loss can be seen easily.

A. Introduction

Most of the work on turbo equalization has considered only finite impulse response ISI

channels which are non-recursive [12], [13]. When viewed as a serial concatenation

scheme with an outer code, there is no interleaving gain due to the ISI channel.

Consequently, either powerful codes such as turbo codes and LDPC codes should be

used as the outer code; or when convolutional codes are used as in [12], the resulting

gain is rather small.

A precoding technique that makes the ISI channel appear recursive without in-
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creasing the equalization complexity has been used in the area of magnetic recording

with very high code rates [14], [15]. Other than in this application, there has been

limited work in considering such precoding for general ISI channels and lower rate

codes except for [16], [17]. The union bound on the bit error rate (BER) on precoded

ISI channels with an outer code was presented in [17]. Such a distance spectrum

based analysis is useful only for the high signal to noise ratio (SNR) and is practically

useless for lower values of SNR.

In this chapter, we analyze the performance of the iterative equalization using a

technique similar to that of density evolution [9] or the extrinsic information transfer

(EXIT) chart [18, 10]. We design convolutional codes and LDPC codes for ISI chan-

nels. When convolutional codes are used as outer codes, precoding is also utilized.

In [15], a similar study was used to describe the effect of precoding on the con-

vergence of turbo equalization. There a measure of performance called fidelity of the

equivalent channels as seen by the decoder and the equalizer at every iteration was

defined. It was shown that the initial fidelity at the output of the equalizer at the

first iteration is important to the convergence of iterative decoding [15]. It was also

shown through simulations that precoding reduces the initial fidelity; however, this

was not proved in [15].

Two new results are presented in this chapter. An analytical proof is given to

show that the initial fidelity is worse for precoded channels than non-precoded chan-

nels for all 2-tap ISI channels and all values of SNR. Using this fact, it is shown

that by using a mixture of precoded and non-precoded ISI channels, improved per-

formance can be achieved. Analysis via density evolution shows that the resulting

schemes provide close to capacity performance (within a few tenths of a dB) with

very simple outer codes and, hence, with fairly low decoding complexity.

The remainder of the chapter is organized as follows. In Section B, we present the
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system model. In Section C, we study some measures of performance, which are useful

to study density evolution. We prove some key properties of precoding that affect the

convergence of turbo equalization. In Section D, we consider the convergence analysis

of coded schemes over ISI channels. We propose a system that uses precoding only

for a fraction of the coded bits and show how to optimize this fraction. In Section E,

we design LDPC codes for ISI channel using the EXIT function matching technique.

Finally, we conclude the chapter in Section F.

B. Precoded ISI Channels

We will discuss coding techniques for ISI channels in the context of the serial concate-

nation with iterative equalization as shown in Fig. 5. When the encoder is chosen

π−1

π

π

(  )o
(  )i

Equalizer Decoder

(  )o

’

x(  )i

^
b

b
x

D D D

f0 fLf1 f2

. . .

. . .

xx
Mod.

AWGN

Extrinsic information

L
L

ba
Encoder

L

z

n

r

L
a

Discrete−time ISI channel

Fig. 5. System model for the serial concatenation of a outer code and an ISI channel

to be a convolutional code, we use precoding before channel transmission. However,

when LDPC codes are used, precoding before channel transmission is not necessary.

The reason behind this is explained as following.
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Since the ISI channel is typically a feed-forward (non-recursive) code, combina-

tion of the outer convolutional code and the channel corresponds to a serial concate-

nation with non-recursive inner code. It is well-known from [6] that when the inner

code of a serial concatenated code is not recursive, an interleaving gain does not re-

sult and, hence, performance of such a scheme is not good. Nevertheless almost all

previous work in the turbo equalization area uses such a system.

π

+ +

+

hJ
hh1 2h0=1 =1

f0 fL

D D D. . .

D D D. . .

Mod.

f1 f2 . . .

xba
Encoder

Rate−1 recursive inner code 

ISI channel

r

Fig. 6. Concatenation of a rate-1 recursive inner coder (precoder) and an ISI channel.

π

+ +

+

hM

d(  )kγ(    )

hh1 2h0=1

Memoryless−nonlinear signal mapping:

D D D. . .
xba

Encoder

r

d

. . .

Fig. 7. The equivalent precoded ISI channel, where M = max(L, J).
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We now discuss a technique that makes the non-recursive channel appear recur-

sive and, hence, results in an interleaving gain. The idea is to encode the coded data

coming from the outer code using a rate-one recursive convolutional encoder (binary

precoder) prior to transmission over the channel as shown in Fig. 6.

The binary precoder is a convolutional code with memory J and is specified by

the polynomial

h(D) =
J⊕

i=1

hiD
i, hi ∈ {0, 1}, h0 = hJ = 1, (3.1)

where ⊕ denotes binary modulo addition. Figure 6 shows the concatenation of the

binary precoder and an equivalent discrete-time ISI channel. We can represent this

concatenation by combining the channel memory and the precoder memory into a

canonic form as illustrated in Fig. 7. When J ≤ L, the number of states in the trellis

of the precoded ISI channel is the same as that of the non-precoded ISI channel, thus

decoding complexity remains the same. The mapping function in Fig. 7 is defined as

γ
(
d(n)

)
,

L∑

i=0

fiµ(dn−i), (3.2)

where d(n) = (dn, dn−1, . . . , dn−L), and µ(dn) is the modulation function depending on

which modulation format is used. For BPSK modulation, we have µ(dn) = 2dn − 1.

Note that the input d = (d0, d1, . . . , dN−1) to the mapper is now an encoded version

of a codeword x of the outer code and satisfies the following relation:

dn =
J⊕

i=1

hidn−i ⊕ xn. (3.3)

We can rewrite (3.3) as

xn =
J⊕

i=0

hidn−i. (3.4)
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In this chapter, we focus on the convergence of precoded ISI channels. In Chapter

V, we will show that when precoding is used for both static and fading ISI chan-

nels, recursiveness is obtained. Thus, by employing precoding, interleaving gains are

possible for all ISI channels.

It must be emphasized here that the purpose of the proposed precoding is quite

different from conventional precoding schemes such as Tomlinson-Harashima (TH)

precoding, which are aimed at canceling the ISI at the transmitter. The precoding

technique considered here simply attempts to make the ISI channel appear recur-

sive and does not attempt to cancel ISI. As a result, unlike TH precoding, channel

knowledge is not required at the transmitter.

C. Measures of Performance

In Chapter II, we have discussed the concept an equivalent channel in the turbo

equalization. We have used the mean of extrinsic LLR and extrinsic mutual informa-

tion as measures of performance of the equivalent channel. It is possible to use other

measures of performance other than the mean LLR and mutual information for the

reliability of the equivalent channels. We will consider the following closely related

quantities in this chapter.

• Mean of the extrinsic LLR:

φ(m) , Ez;x[X ′
nL

(m)
ext (xn)],

where X ′
n = (2Xn−1) is the BPSK modulated signal of Xn; (We use upper-case

letters to denotes random variables, and lower-case letters to denote realiza-

tions.)
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• Fidelity [15]:

π(m) , Ez;x

[
X ′

nX̃
(m)
n

]
,

where X̃
(m)
n = 1 × P (m)(X̂n = 1) + (−1) × P (m)(X̂n = 0) = tanh

(
L

(m)
ext (xn)/2

)

is the soft estimate of X ′
n at the mth iteration;

• Extrinsic mutual information [10]:

I
(m)
E , Ez;x[I(Xn;L

(m)
ext (xn)]

=
1

2

∑

x′
n∈{±1}

∫ +∞

−∞

pL(ψ|X = x′n) log2

2pL(ψ|X = x′n)

pL(ψ|X = −1) + pL(ψ|X = +1)
dψ,

(3.5)

where pL(·|·) denotes the conditional probability density function (pdf) of the

extrinsic LLR L
(m)
ext (xn);

• Expected ratio of the probability of correct decision to the probability of erroneous

decision:

CER
(m)

, Ez;xn−1
0 ,xN−1

n+1

[
P (m)(X̂n = 1|Xn = 1)

P (m)(X̂n = 0|Xn = 1)
+
P (m)(X̂n = 0|Xn = 0)

P (m)(X̂n = 1|Xn = 0)

]
,

where P (m)(·|·) denotes the conditional extrinsic a posteriori probability at the

mth iteration.

It can be seen that the fidelity π(m) and the mutual information I
(m)
E are in the

range [0, 1] and directly related to the mean LLR φ(m). The fidelity and mutual in-

formation reach value one as φ(m) approaches infinity. Similarly, when φ(m) reaches

infinity, so does CER
(m)

. This ensures the convergence of the iterative equaliza-

tion/decoding process. Any of the above quantities can be used in order to study

the convergence of the turbo equalization for ISI channels. The mean LLR results



24

in a diagram that is easy to visualize. However, analytical results will be presented

for other performance measures. When the mutual information is used instead of the

mean LLR, the resulting diagram is the EXIT chart [10].

Now, we study the effect of precoding on these performance measures. We first

prove the following property.

Property 1: For every 2-tap ISI channel, at a given Eb/N0, π
(1)
o,np ≥ π

(1)
o,p, where

π
(1)
o,np and π

(1)
o,p are the initial reliabilities for non-precoded and precoded 2-tap ISI

channels, respectively.

The proof is provided in Appendix A.

We now investigate closely the relationship between π
(1)
o and CER

(1)
. We prove

that under certain conditions, it is possible to prove directly that CER
(1)

for the

2-tap non-precoded channel is higher than that for the precoded one. First, we

note that Pnp(X̂n = 1|Xn = 0), Pnp(X̂n = 0|Xn = 1), Pp(X̂n = 1|Xn = 0), and

Pp(X̂n = 0|Xn = 1), where the subscripts p and np denote precoded and non-precoded

channels, respectively, are random variables with respect to the additive noise and

transmitted sequences x. We assume that pdfs of those random variables exist and

are continuous. Let pnp;1|0, pnp;0|1, pp;1|0, and pp;0|1 be pdfs of Pnp(X̂n = 1|Xn = 0),

Pnp(X̂n = 0|Xn = 1), Pp(X̂n = 1|Xn = 0), and Pp(X̂n = 0|Xn = 1), respectively.

Then we have the following property.

Property 2: If pnp;1|0 and pp;1|0 cross over each other at only one point whose

abscissa is in (0, 1) and if pnp;0|1 and pp;0|1 cross over each other at only one point whose

abscissa is in (0, 1), then for every 2-tap ISI channel, at a given Eb/N0, CER
(1)

np ≥

CER
(1)

p , where the subscripts p and np represent for the precoded and non-precoded

channels, respectively.

The proof is provided in Appendix B.
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Fig. 8. Loss of mutual information at the first iteration: Plot of I
(1)
E,o as a function of

Eb/N0 for the 2-tap (
√

0.5,−
√

0.5) ISI channel.

We are unable to prove that precoding causes a degradation of soft information

quality as measured by the mean LLR φ
(1)
o and the mutual information I

(1)
E . Thus,

we resort to the Monte-Carlo simulation. Figure 8 compares loss in I
(1)
E for the 2-tap

(
√

0.5,−
√

0.5) ISI channel. It can be seen that the loss in I
(1)
E due to precoding can

be as much as 2 dB in Eb/N0 compared to no precoding. For ISI channels with more

than 2 taps, we also observed the loss in I
(1)
E .

Following is another crucial property that affects the convergence.

Property 3 [19]: Let Fi,p and Fi,np be the transfer functions (the output mean

LLR as functions of the input mean LLR) of the precoded and non-precoded inner
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SISO (equalizer), respectively. Asymptotically, Fi,np

(
φ

(m)
i

)
→ 2/σ2

z as φ
(m)
i → ∞

while Fi,p

(
φ

(m)
i

)
→ ∞ as φ

(m)
i → ∞.

D. Channel Mixture

In this section, we will demonstrate that by using only a fraction of precoded bits to

the channel, better performance can be achieved. In the following first subsection,

we will use the expected extrinsic LLR transfer diagram to design codes because it is

easier to visually see the convergence of turbo equalization. For the threshold com-

putation, it has been pointed out by ten Brink [10] and Narayanan [15] that mutual

information transfer diagram (EXIT chart) and fidelity transfer diagram should be

used, respectively. Thus, we will also use EXIT chart here to study our system and

point out why using mutual information is more robust than using mean LLR in code

design.

1. Code Design Based on Expected Extrinsic LLR Transfer Diagram

From Properties 1 and 2 and the discussion in the previous section, we can see that

φ
(m)
o,p ≤ φ

(m)
o,np for small m. Thus, with a fixed outer code, the increase of mean LLR

(or, fidelity; or, mutual information) for non-precoded channels is higher than that

for precoded channels during the first few iterations. (When m is small.) In contrast,

from Property 3, we see that the convergence behavior of the precoded system is

faster as the number of iterations increases. This is because the asymptotic slope

of Fi,p for the precoded channel is higher than that of Fi,np for the non-precoded

channel. This implies that the non-precoded channel is better during the first few

iterations whereas the precoded one is better during the later iterations. In order

to combine the advantages of the precoded and non-precoded bits, we propose to
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combine the precoded and non-precoded ISI channels by partitioning the interleaved

codewords of the outer code into two blocks. A precoder is used with one of the block

whereas it is not used with the other. Hence, the effective inner channel is now a

mixture of precoded and non-precoded channels. This technique is similar to doping

proposed by ten Brink in [20]. However, the fraction of precoded and non-precoded

bits is usually not very small like in doping. Let a fraction λ of the bits of the outer

code word (after interleaving) be precoded and the fraction (1− λ) be non-precoded.

Then, if the transfer characteristics of the precoded and non-precoded channels are

Fi,p and Fi,np, the transfer function of the mixture is Fi,mix = λFi,p + (1 − λ)Fi,np.

The optimum value of λ depends on the actual channel, precoder, and the outer code.

We now propose a technique to determine this value λ.

a. Optimizing the Mixture

Let Fo be the transfer function of the outer code. At a given value of Eb/N0, let a

be the abscissa of the intersection of the curves F−1
i,p and Fo, b be the abscissa of the

intersection of F−1
i,np and Fo, and finally c be the abscissa of the intersection of F−1

i,np

and F−1
i,p . If any of the above pair of curves intersects at more than one point, then

let a be the smallest value and b be the largest value.

Condition 1: In order for the mixture to provide better results than either the

precoded ISI channel or the non-precoded ISI channel, the following condition must

be satisfied: a ≤ c ≤ b.

Proof: This can be seen since for the values of Eb/N0 for which the crossover

between F−1
i,p and F−1

i,np is above the curve Fo, both the curves F−1
i,p and F−1

i,np will

intersect Fo and, hence, for any linear combination of them, F−1
i,mix will also intersect

Fo and, hence, there will be a fixed point.

This property makes it much easier for us to find a near optimum value of λ. We
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first note that a lower bound on the threshold (Eb/N0)Th with the optimum λ occurs

for that value of Eb/No for which a = b = c. The following approach is then used to

find the optimum λ.

We first compute the value of Eb/N0 (say (Eb/N0)Th) for which the crossover

between the curves F−1
i,p and F−1

i,np is on the curve Fo. This implies that for all values

of Eb/N0 < (Eb/N0)Th the crossover point will lie above the curve Fo and, hence, no

further improvement is possible. Once (Eb/N0)Th is determined then the value of λ

for which there are no fixed points between Fo and F−1
i,mix is the optimum λ. It should

be noted that this procedure is much simpler than evaluating all possible λ and their

associated thresholds, since we directly find the optimum threshold first and then find

the optimum λ.

The above procedure was verified to provide improved results over purely pre-

coded or non-precoded channels. As an example, the advantage of using mixed ISI

channels is demonstrated through Fig. 9. The outer code is the rate-half, 4-state

convolutional code with polynomial: (1 +D +D2, 1 +D2). The channel has 2 taps:

f0 =
√

0.5, f1 = −
√

0.5. For this channel, the binary input i.i.d. capacity is 0.8 dB.

We found that λ = 0.55 and the precoder is 1 ⊕D. The threshold for the precoded

system is 1.45 dB. With the optimized mixture, the threshold is 1.0 dB, which is only

0.2 dB away from the binary input i.i.d capacity of this ISI channel. In this case,

we obtain the coding gain of 0.45 dB. It should be noted that the complexity of the

proposed scheme is significantly smaller than using a turbo outer code with turbo

equalization, since the outer code is only a 4-state convolutional code. Also note that

either of the proposed techniques (precoding or mixture precoding) does not increase

the receiver complexity beyond that of turbo equalization with the non-precoded

channel.
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Fig. 9. Density evolution of the 2-tap (
√

0.5,−
√

0.5) ISI channel and the

(1 + D + D2, 1 + D2) outer convolutional code; the precoding polynomial

h(D) = 1 ⊕D.

2. Code Design Based on Extrinsic Information Transfer (EXIT) Functions

In the previous subsection, we have used the expected extrinsic LLR transfer diagram

F along with the assumption that the pdfs of the LLRs are symmetric Gaussian for

code design. This approach has been used in [21] and [22]. However, this approach

can lead to inaccuracies as described below. First note that if, pL,p, pL,np, and pL,mix

are the pdfs of extrinsic LLRs at the output of the inner SISO for precoded, non-
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precoded, and mixed channels, respectively. Then,

pL,mix = λpL,p + (1 − λ)pL,np. (3.6)

When the mean LLR input to the inner SISO approaches infinity, the mean LLR at

the output of the inner SISO also approaches infinity; however, the pdf cannot be

assumed to be Gaussian, since it is linear combination of two Gaussian pdfs according

to (3.6). This leads to inaccuracies particularly since in this case, even though the

output LLR from the inner SISO approaches infinity, it does not mean that the

equivalent channel as seen by the outer code is fully reliable. Because the mean LLR

contributed by the non-precoded part is upper bounded by 2/σ2
z , and the pdf of the

extrinsic LLR is Gaussian with variance twice the mean, the equivalent channel as

seen by the outer code for the coded bits transmitted using the non-precoded part still

has some amount of uncertainty. Thus, we need to use a more robust tool to design

code. Here, we choose EXIT chart [10] since it has been shown by many authors that

this technique gives highly accurate results.

Let Ti be the mutual information transfer function (we call ‘transfer function’

for short, but this should not be confused with the mean LLR transfer functions, as

defined in the previous section) of the inner SISO, i.e., the output mutual information

I
(m)
E (extrinsic part) as a function of input mutual information I

(m)
A (a priori part)

at a given value of Eb/N0. That is, I
(m)
E = Ti

(
I

(m)
A , Eb/N0

)
. Also let Ti,p, Ti,np, and

Ti,mix be the transfer functions for the precoded, non-precoded, and mixed channels,

respectively. It is difficult to get closed-form expressions for Ti,p and Ti,np for general

ISI channels. Thus, we use Monte-Carlo simulations to find Ti,p and Ti,np. In general,

there is no linear relation between Ti,mix and the pair {Ti,p, Ti,np}, except for some

special cases, such as when pdfs of extrinsic LLRs at the outputs of the inner SISO

blocks for both non-precoded and precoded channels are symmetric and consistent
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[9]. This can be easily observed from the definition of mutual information as defined

in (3.5). To find Ti,mix, the pdf of the LLR for the channel mixture can be computed

by first computing pL,p and pL,np through simulations and then using (3.6). Once

pL,mix is obtained, it is straightforward to compute Ti,mix by replacing pL in (3.5) with

pL,mix.
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Fig. 10. Channel mixture at 1.2 dB: 2-tap (
√

0.5,−
√

0.5) ISI channel and

(1 + D + D2, 1 + D2) outer convolutional code, precoding polynomial

h(D) = 1 ⊕D.

We are now interested in value Ti,mix(1, Eb/N0), i.e., the output extrinsic mutual

information I
(m)
E when the input a priori mutual information I

(m)
A is equal 1. That is

when the input a priori LLR is equal infinity. From the proof of Property 3, we know

that both p∞L,p and p∞L,np are Gaussian with means ∞ and 2/σ2
z , respectively, where
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(1 + D + D2, 1 + D2) outer convolutional code, precoding polynomial

h(D) = 1 ⊕D.

p∞L,p, p
∞
L,np denote pdfs for precoded and non-precoded channels when the input a priori

LLR is infinite. Consequently, Ti,mix(1, Eb/N0) ≤ 1, where the equality holds when

Eb/N0 = ∞, or when λ = 1 (purely precoded channel). Let To be the transfer function

of the outer SISO. If To (Ti,mix(1, Eb/N0)) < 1, then there exists a fixed point before

point (1, 1). Denote (I
(∞)
A , I

(∞)
E ) as the fixed point of the turbo equalization/decoding

process. When both the a priori and extrinsic LLRs are assumed to be Gaussian

distributed, there is a one-to-one correspondence between the fixed point (I
(∞)
A , I

(∞)
E )

and the value of BER [10]. When either I
(∞)
E → 1 or I

(∞)
A → 1, BER → 0. For simple

outer codes such as convolutional codes, both I
(∞)
A < 1 and I

(∞)
E < 1 and therefore
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the BER can never be made zero. Consequently, an error floor always exists when

a channel mixture is used. However, in practice, we can restrict our attention to a

finite but low BER and the channel mixture is still useful.

We use the same channel and outer code as in the previous subsection and a

similar procedure to optimize the fraction λ; however, we only require that there are

no fixed points in the range (IA, IE), which can be determined given a BER of interest

[10]. The results of the channel mixture are given in Figures 10 and 11. The threshold

for the precoded channel is 1.6 dB, which is 0.15 dB different from the one computed

by the mean LLR transfer diagram in the previous subsection. If the BER is required

to be of 10−3, the optimum λ is 0.56 and the threshold for the channel mixture is 1.2

dB (see Fig. 10), and when BER = 10−4, the optimum λ is 0.7 and the resulting

threshold is 1.3 dB (see Fig. 11).

E. Design of LDPC Codes

We have presented some key properties of EXIT functions that are useful to our code

design purpose in Chapter II). In this chapter, we present the LDPC code design

idea in the context of iterative equalization.

1. Using EXIT Functions for LDPC Code Design

Basing on the convergence and area properties of EXIT functions, we can state the

following about design of LDPC codes:

1. An LDPC code is optimal for a given ISI channel, Eb/N0 and equalizer if

the EXIT function of the LDPC code for a given (λ, ρ) satisfies T −1
dec (x) =

Teq(x,Eb/N0). Therefore, the LDPC code design problem can be stated as one

of finding degree profiles (λ, ρ) such that the EXIT transfer function for the
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LDPC has the same shape as that of Teq(x,Eb/N0).

2. The achievable information rate for a given equalizer under iterative equalization

is the area of the curve under the transfer function Teq(x,Eb/N0). In other

words, the capacity loss due to the use of sub-optimum code with EXIT function

T −1
dec (x) is the area of the gap between T −1

dec (x) and Teq(x,Eb/N0).

We note here that precoding does not increase information rate of ISI channels.

Thus, when LDPC outer codes are chosen, precoding is unnecessary. However, pre-

coding is crucial in designing convolutional outer codes for ISI channels because it

helps improve the convergence in the last stage of iterations.

In [19], we use a Gaussian approximation together with EXIT functions to de-

sign LDPC codes. This technique can be simplified to a simple linear optimization

problem, in contrast to previous work in the literature where complex nonlinear op-

timization was used to track the pdf of information messages. We refer the reader to

[19] for more detailed of the design technique.

By not combining EXIT functions of the equalizer and the decoder (joint EXIT

function), more insight into code design, achievable information rate, and rate loss

can be seen easily. We state in the following some important results (See Fig. 12).

a. Use of LDPC Codes Optimum for the AWGN Channel

It can be shown that an LDPC code that is optimal for the AWGN channel has a flat

EXIT function. Since the EXIT function for an ISI channel has a slope, thus, using

LDPC codes optimal for the AWGN channel results in a loss in rate. This rate loss

is the area in between the two EXIT functions.
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Fig. 12. EXIT chart for an ISI channel and an LDPC code designed based on EXIT

function matching.

b. Rate Loss due to Non-iterative Equalization

In some applications, iterative equalization is not viable because of its high complex-

ity. In this case, the maximum achievable rate is the area of a square dictated by the

first point in the EXIT function of the channel. Thus, this loss is the same as that

when LDPC codes optimal for the AWGN channel are used for ISI channels.
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Fig. 13. EXIT functions for different sub-optimal equalizers.

c. Rate Loss due to Sub-optimal Equalizers

It is obvious that the EXIT function for the optimal equalizer (BCJR algorithm)

has the highest rate (or, area under the EXIT function) compared to all the other

sub-optimal equalizers. Thus, the rate loss due to the sub-optimal equalization is the

area of the gap between the optimal and sub-optimal EXIT functions. Fig. 13 shown

EXIT functions for the optimal and sub-optimal equalizers. We refer the reader to

[19] for more details on the descriptions of different types of sub-optimal equalizers.

Here, it can be interpreted that the first points of the EXIT functions for different

sub-optimal equalizers are lower than that of the optimal equalizer. This indicates
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that when using LDPC codes optimal for the AWGN channel, or when there is no

iteration in the equalization/decoding process, there is a significant rate loss.

However, the last points of the EXIT functions for most sub-optimal equalizers

are the same as that of the optimal equalizer, except for the delay decision feed-back

sequence estimation BCJR (DDFSE-BCJR). This means that if an outer code is a

convolutional code, there is almost no rate loss when iterative equalization is present.

This is because the last point of the EXIT function dictates the performance.

F. Conclusion

We have demonstrated that precoding is important for ISI channels to achieve cod-

ing gains. We have shown via density evolution that precoding provides excellent

performance and does not increase complexity or decrease coding rate. We showed

analytically that precoding always results in a loss in fidelity during the first stage of

iteration for 2-tap channels. For channels with longer memory Monte-Carlo simula-

tions show the same. Using this fact and by properly designing the outer code and

precoder, low complexity systems can be realized. It is also interesting that designing

rules based on distance spectrum are not necessarily true for iterative decoding in

the low Eb/N0 regions. We have shown that by using a mixture of precoded and

non-precoded channels, better performance can be achieved. Recently, Tuchler and

Hagenauer [23] proposed a serially concatenated scheme using mixed outer codes,

instead of the channel mixture proposed in this chapter. It seems interesting to

combine both the channel mixture and mixed outer codes to get close the capacity

performance. This problem is under our current investigation. Finally, we presented

design of LDPC codes using EXIT functions. This technique has been proved to be

less complex; and resulted in good codes.
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CHAPTER IV

CODE DESIGN AND ANALYSIS WITH SPECTRAL SHAPING

In this chapter, we propose two low complexity coding schemes for inter-symbol inter-

ference (ISI) channels which perform close to the channel capacity. The first scheme

is a serial concatenation of an outer code and a spectral shaping inner code. The

second scheme is a parallel concatenation of two component trellis codes which are

designed to be spectrally matched to the channel. Analysis using EXIT functions

and BER simulations shows that both schemes surpass the independent identically

distributed (i.i.d.) channel capacity and outperform other existing schemes.

A. Introduction

For unconstrained channel inputs (not restricted to finite constellations), the optimal

channel input is governed by the water-filling spectrum [3] (also shown in Chapter II).

In the low rate region, from empirical observations, unconstrained and constrained

channel capacity curves lie very close to each other. Furthermore, in this case the

channel output (interference plus noise) is mainly contributed by the additive Gaus-

sian component. Therefore, coding techniques for unconstrained input signals can

be used as a guideline to design codes for the constrained case. Consequently, codes

with flat spectra suffer from a rate loss when used for ISI channels. The capacity loss

can be quantified exactly for the unconstrained inputs. Unfortunately, for the finite

alphabet inputs, there is still no strong result on the relationship between the infor-

mation rate and the code spectrum. For more details on this, the reader is referred

to [24]. Thus, it is necessary to use some form of spectral shaping for ISI channels.

Designing good codes based on spectral shaping is the main idea and the contribution

of this chapter.
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Matched spectral-null (MSN) codes [25] guarantee that the nulls of codewords

are matched to the nulls of the channel frequency response. The concatenation of

an MSN inner code and an outer convolutional code was presented in [26]. This

scheme was shown to perform quite well for the dicode channel (with impulse response

1−D). This suggests that by using a spectral shaping inner code concatenated with a

powerful outer code, such as an LDPC code or a turbo code, significant coding gains

can be obtained. There is not much work available on this except for [27]. However,

the technique in [27] is quite complex and becomes unmanageable when the channel

has a large memory. The spectral shaping proposed in this chapter is different from

matching the spectral nulls and is based on matching the water-filling spectrum.

In the low rate region, the shaping code focuses the signal power near the peaks

of the channel response in contrast to MSN codes, where channel input sequences

are ensured to have nulls at frequencies where the channel frequency response has

nulls. In [19] and [28], good LDPC codes were designed for partial response channels

without spectral shaping. In this chapter, we use the technique proposed in [19] to

design good LDPC codes for general ISI channels with spectral shaping.

Wolf and Ungerboeck [29] used the concept of set partitioning to design trellis

codes for partial response channels. The code was chosen such that the minimum

Euclidean distance between permitted noiseless (excluding AWGN) channel outputs

is increased. This can be done by considering the set of noiseless channel outputs

as an expanded set of signals being transmitted through an AWGN channel. Haeb

[30] extended this idea to the multidimensional case. A coding gain of up to 7 dB

compared to the uncoded case was achieved by a simple 8-state trellis code.

Designing turbo codes matched to ISI channels poses a challenging problem due

to tight restrictions of the component codes in the parallel concatenation. Pusch,

Weinrichter, and Taferner [31] proposed a turbo-coding scheme for the 1−D2 channel.
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By using the fact that the 1 − D2 channel can be considered as two interleaved

independent 1 −D channels [29], the component codes were designed to have power

spectrum density (PSD) matched to the 1 − D channel. The coding gain obtained

is quite modest (around 1.5 dB away from the i.i.d. capacity at rate 1/4 for the

information block length of 1000 bits). For other channels, to our best knowledge,

there is still no result on the design of turbo codes matched to the channel.

In this chapter, we apply concepts of spectral shaping and set partitioning to

design iteratively decodable codes matched to ISI channels. The main tools used to

find good codes are extrinsic information transfer (EXIT) functions [10]. We propose

two simple coding schemes which perform better than the binary i.i.d. capacity and

outperform other existing schemes.

The first scheme is a serial concatenation of an outer code and a spectral shaping

(ISI-matched) inner code. This scheme is based on the observation that the binary

i.i.d. capacity of the concatenation between the inner code and the ISI channel is

higher than that of the channel alone in the low rate region. For some special cases,

such as when the inner code is the biphase code and the channel is the dicode channel,

coding for the AWGN channel can be applied.

The second scheme is a parallel concatenation of two component trellis codes

designed such that the minimum Euclidean distance between permitted noiseless

channel outputs is as large as possible. Moreover, the trellis transitions are taken

from codewords of a block codebook whose PSD is matched to that of the channel.

Component trellis codes can be designed by using existing techniques, such as those

proposed in [29] and [30]. However, some critical modifications are required, which

will be discussed in more details in later sections.
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Fig. 14. System model for the serially concatenated scheme.

The generic system model (without the receiver) is shown in Fig. 14. An outer

code Co is serially concatenated with a spectral shaping (ISI-matched) inner code Ci.

The inner code is spectrally matched to the ISI channel. In general, the choice of an

outer code can be an LDPC code, turbo code, repeat accumulate (RA) code, or even

a simple repetition code depending on the actual channel realization and the ISI-

matched inner code. We use EXIT functions to find good codes instead of tracking

the evolution of pdfs of messages [28], which is computationally complex. For the

case when the outer code is an LDPC code, a simple technique proposed in [19] is

used.

In [19], an LDPC code is designed such that the LDPC decoder EXIT function

matched to the equalizer EXIT function. This is done so that the LDPC code rate

is as high as possible. It should be noted that the code rate is approximately equal

to the area under the decoder EXIT function [11], which is upper-bounded by the

equalizer EXIT function.

The overall receiver is an iterative receiver which performs turbo equalization by

passing extrinsic messages on the coded bits between the decoder and the equalizer.

The decoder implements the message passing algorithm for the outer code. The

equalizer works on the combined trellis of the inner code and the ISI channel.
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1. Block Inner Codes for Spectral Shaping

We use an inner code before the ISI channel so that the combined inner code and

ISI channel has a higher i.i.d. capacity than that of the channel alone for the desired

operating rate region. In [27], good trellis codes that nearly optimize the i.i.d capacity

for the combined channel are proposed and shown to provide good performance.

However, this technique is quite complicated, even for channels with short memories.

Here, we propose the design of an inner code based on a simple spectral shaping

technique, rather than on maximizing the mutual information as done in [27]. Both

block and trellis codes can be used for shaping; however, we consider only block

codes in this chapter. The basic idea is to design a block code such that the PSD

of codewords is matched closely to the water-filling spectrum. For a wide range of

Eb/N0, for most channels, the channel spectrum (square of the magnitude of the

channel frequency response) is a good approximation to the water-filling spectrum.

We focus on block codes of length (L+ 1), where L is the channel memory. To make

the exposition simple, we consider only the BPSK modulation. Extension to other

code lengths and modulation schemes is straightforward.

Let X be the codebook (inner shaping code alone) consisting of M = 2(L+1)R

codewords x(0), . . . , x(M−1), where x(m) =
(
x

(m)
0 , . . . , x

(m)
L

)
, x

(m)
l ∈ {±1}, and R is the

code rate in bits. The DFT of codeword x(m) is defined as

X(m)(ejw) ,

L∑

l=0

x
(m)
l e−jlw. (4.1)

Further, we define the partial PSD of x(m) as

P
(m)
X (ejw) , |X(m)(ejw)|2. (4.2)

Define the bit-reversed (or, mirror) and complement sequences of x = (x0, . . . , xL),
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respectively, as

xrev = (xL, . . . , x0) xcomp = (−x0, . . . ,−xL). (4.3)

Therefore, the DFTs of xrev and xcomp are, respectively, Xrev(e
jw) = ejLwX∗(ejw) and

Xcomp(e
jw) = −X(ejw). Consequently, the partial PSDs of x, xrev, and xcomp are the

same. This helps reduce the code searching complexity, as being shown shortly.

The PSD of a coded sequence obtained by serially concatenating codewords from

X is [32]

PX(ejw) =
1

M(L+ 1)

M−1∑

m=0

P
(m)
X (ejw). (4.4)

In order to design a good code, M/2 codewords (due to the symmetry we can include

their complements) must be chosen jointly out of 2L+1 length-(L+1) sequences so that

the capacity loss resulting from using PX(ejw) is minimal or, equivalently, I (X;Y |PX)

is maximized. Since we are interested in low rates (or, equivalently, low SNR), we can

further simplify the search for M sequences which result in the highest I (X;Y |PX)

by applying the approximation log(1 + x) ≈ x, for small x, to (2.7). With this we

obtain the cost function:

I (X;Y |PX) ≈ 1

2π

∫ π

0

PX(ejw)|F (ejw)|2
σ2

z

dw

=
2

M(L+ 1)

M/2∑

m=0

Ĩ
(
X;Y |P (m)

X

)
, (4.5)

where

Ĩ
(
X;Y |P (m)

X

)
=

1

2π

∫ π

0

P
(m)
X (ejw)|F (ejw)|2

σ2
z

dw (4.6)

are partial cost functions.

It can be seen from (4.5) that the partial PSD of each sequence linearly con-
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tributes to the channel capacity. We can use (4.5) as a guideline for designing the

block code. The block code will consists of M/2 distinct sequences and M/2 comple-

ment sequences of them. We want to choose M/2 distinct codewords, which are not

complements of each other, whose Ĩ
(
X;Y |P (m)

X

)
is as large as possible. However,

since the overall transmitted codebook is obtained by concatenating a small codebook,

the chosen codebook should also possess good distance properties in order to provide

good BER performance. Let r(m) denote the noiseless channel output when the chan-

nel input is x(m). We want the minimum Euclidean distance between any pair of

outputs in the set {r(0), . . . , r(M−1)} to be high. Thus any choice of {x(0), . . . , x(M−1)}

that simultaneous provides large I (X;Y |PX) and results in a high minimum Eu-

clidean distance between the corresponding outputs is a good choice. Since we are

usually interested in small values of M , this can be easily done. For the ISI channels

investigated in this chapter, codes designed to maximize I (X;Y |PX) also result in

the highest free Euclidean distance between corresponding channel outputs (among

all possible candidates {x(0), . . . , x(M−1)}). If this is not the case, we must compute

the binary i.i.d. capacities for different codebooks combined with the ISI channel and

pick the one which has the highest binary i.i.d. capacity. It should be noted here

that the complexity of the combined trellis of the block code and the ISI channel is

lower compared to that of the ISI channel alone for the desired working rate region

(see Subsection 3). Thus, the search for the best sequences is not computationally

intensive. Furthermore, we pick the first pair of codewords to be {± sign(f )}. This

guarantees good spectral matching. The above design procedure can be used to design

good block shaping codes; however, no optimality can be claimed. The efficiency of

the proposed designed algorithm will be illustrated through the following examples.

Example 1: Block spectral shaping for the 1 ±DK channel

It is well-known that the 1±DK channel can be considered as K time-interleaved
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Fig. 15. Capacity for the dicode channel.

1 ± D channels [29] with independent coding and decoding. Coding for the 1 − D

channel can be applied to the 1 +D channel by complementing the even coded bits.

Therefore, we need only to consider the dicode channel. The biphase code is the

simplest rate half block code of length two which maps −1 to x(0) = (−1, 1), and 1

to x(1) = (1,−1). This corresponds to M = 2, R = 1/2. It is easily seen that the

spectrum of the biphase code is exactly the same as that of the dicode channel [25],

which is a good approximation to the water-filling spectrum at low SNR. The i.i.d.

capacity and EXIT functions of the combined biphase code and dicode channel are

shown in Fig. 15 and Fig. 16, respectively. We also plot the capacity for the dicode
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Fig. 16. EXIT functions for the concatenation of biphase and dicode for different values

of Eb/N0.

channel for comparison. Two key observations are made from Figs. 15 and 16. First,

from the capacity curves, we can see that the combined biphase and dicode scheme

has better i.i.d. capacity than the dicode channel alone when the rate is less than

approximately 0.35 bits per channel use. Second, from the EXIT diagram, we can see

that the combined biphase and dicode scheme has almost flat EXIT functions for all

values of Eb/N0 simulated. This means that the combined biphase and dicode scheme

acts as an equivalent AWGN channel. (Note that for the AWGN channel, the EXIT

functions are flat.) Thus, we can use any codes that are optimal or near optimal for
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the AWGN channel here. We choose to use LDPC codes since they perform very

well over the AWGN channel. Others candidates can be irregular repeat accumulate

(IRA) codes and turbo codes.

Example 2: Block spectral shaping for the f0 + f1D channel with multilevel PAM

modulation

The frequency response of this channel is quite similar to that of the 1 − D

channel when f0 and f1 are of different signs; and similar to that of the 1+D channel

when f0 and f1 are of the same sign. Thus we can use the biphase coding idea here

with a small modification. Length-2 codewords of the rate-half block code BISI2 are

obtained as follows. The first coded bit of a codeword is the same as the input symbol.

The second coded bit is the same as the input symbol if f0 and f1 have the same sign,

otherwise, the negative of the input symbol. Note that BISI2 has the same codewords

as the biphase code when f0 and f1 have opposite signs, and the BPSK modulation

is used. Moreover, we need only one bit for the channel state information at the

transmitter (to know whether f0 and f1 are of the same sign or not). For the binary

input case, the i.i.d. capacity and EXIT functions of the combined block code BISI2

and f0 + f1D channel also have similar behaviors as those of the biphase code over

the dicode channel for a large range of channel coefficients f0 and f1. This suggests

that we can use codes optimized for the AWGN channel as outer codes to achieve a

very good performance. This block code will be used again in the next section (see

Example 5).

Example 3: Block spectral shaping for the 4-tap f = (0.38,−0.6,−0.6, 0.38) ISI

channel

Here L = 3. We fix the code rate R = 1/2 and, therefore, M = 4. The four

codewords that maximize I (X;Y |PX) are x(0) = (1,−1,−1, 1) and x(1) = −x(0),

x(2) = (−1,−1, 1, 1) and x(3) = −x(2) (or, {9,6,3,12} in decimal representation, re-
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Fig. 17. Capacity loss due to the use of sub-optimal input PSD PX(ejw) as opposed to

the optimal water-filling PSD PX,opt(e
jw). The first 2 codewords are 6 and 9

(in decimal representation); the third codeword is numbered near each curve;

and the fourth codeword is the complement of the third codeword.

spectively). We plot the capacity loss due to the use of non-optimal input PSD

PX(ejw) as opposed to the optimal water-filling PSD PX,opt(e
jw). In Fig. 17, we plot

the i.i.d capacity of the combined block code and channel by fixing two codewords

of the block code to be (1,−1,−1, 1) = sign(f ) and (−1, 1, 1,−1) = −sign(f ), and

by varying the other two. The third codeword (decimal representation) is numbered

near each curve; and the fourth codeword is the complement of the third codeword.

Clearly, in the low rate region, the designed codebook X = {9, 6, 3, 12} results in the

least loss in rate. This code also results in the highest minimum (squared) Euclidean
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distance between corresponding outputs, which is equal to 8.4544. To show that the

proposed procedure results in good codes, in Fig. 18, the i.i.d capacity with the block

code is shown in comparison to the i.i.d capacity of the ISI channel without the code.

It can be seen that for code rates below 0.35, a significant coding gain is obtained. At

low rates, the constrained i.i.d capacity is close to the unconstrained capacity with

the same input PSD PX(ejw).

2. Threshold

To show that the proposed scheme performs well, we compute the threshold for the

LDPC code with the spectral shaping inner code. As an example, we consider the 2-
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tap channel with the impulse response 0.8+0.6D. The inner code is the binary block

code BISI2 as mentioned in Example 2. Since the combination of this spectral shapping

inner code and the 2-tap 0.8 + 0.6D ISI channel behaves as an equivalent AWGN

(with flat EXIT functions), coding techniques used for the AWGN channel can be

directly applied here. The outer code is an irregular LDPC code of rate 1/2 optimized

for AWGN channel with left and right degree profiles given by λ(x) = 0.23403x +

0.21242x2 + 0.1469x5 + 0.10284x6 + 0.30381x19 and ρ(x) = 0.71875x7 + 0.28125x8,

taken from [33]. Similar degree profiles can also be obtained by a technique proposed

in [19]. The overall rate is 1/4. The i.i.d. capacity in Eb/N0 at rate 1/4 is −0.5 dB

before shaping and −1.5 dB after shaping. Thus, the upper limit on the achievable

improvement in Eb/N0 for the serially concatenated scheme is 1 dB. By using density

evolution, the threshold of the proposed scheme was found to be −1.2 dB. We also

use Monte-Carlo simulation to verify the performance of the proposed scheme. The

simulated Eb/N0 required to get the BER of 10−5 is −1.0 dB for an information block

length of 105 bits. It can be seen that the proposed scheme outperforms the i.i.d.

capacity by 0.5 dB and is only 0.5 dB away from the achievable limit.

3. Trellis Complexity

One important property of the spectral shaping block code is that when combined

with an (L+1)-tap ISI channel, the total number of states in the joint trellis is equal

to the codebook size M = 2(L+1)R as opposed to 2L as the number of states of the ISI

channel alone. The rate region such that the decoding complexity of the combined

block code and ISI channel is lower than that of the channel without block coding

satisfies the following equation

2L · 2 ≥ 2(L+1)R · 2 · 1

R
⇔ L ≥ (L+ 1)R− log(R).
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Fig. 19. The parallel concatenation for the ISI channel.

C. Parallel Concatenation

In the previous section, we proposed the serially concatenated scheme for use in

ISI channels. In practice, the parallel concatenated scheme is also widely used. In

this section, we focus on the parallel scheme. The proposed scheme is shown in

Fig. 19. It is a parallel concatenation of two ISI-matched trellis component codes

which are designed such that their PSDs are matched to the water-filling PSD of the

channel, and that the output minimum Euclidean distance is as large as possible. The

component encoders are in general non-systematic. The transmission of the coded

signals to the channel needs to be slightly modified compared to the conventional

way done in turbo codes. The coded signals coming out of the first (upper) ISI-

matched trellis component code are first transmitted block-wise. The second (lower)

ISI-matched trellis component code starts to transmit only after the upper code has

finished its transmission. That is, bit-wise multiplexing [1] is not used here. With

this schedule, the approach can be applied to any ISI channel, and is not restricted

only to the 1 −D2 channel as in [31]. A similar transmission schedule was proposed

in [34], [35], but there, only turbo decoding was considered. The overall receiver is

an iterative decoder which performs iterative decoding similar to that in turbo codes.
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Here, each component decoder works on the combined trellis of the ISI-matched trellis

code and the ISI channel.

The code trellis is built to satisfy the following conditions:

Condition 1: The outputs along the branch transitions are chosen from the set of

block codewords to satisfy the spectrum property (discussed in the previous section).

Condition 2: The minimum Euclidean distance at the noiseless channel outputs

is as large as possible [29], [30].

Condition 3: The trellis represents a recursive encoder.

It should be noted here that for the case of ISI channels, recursiveness means that

when a channel input error event is of weight 1, the corresponding noiseless channel

output error event is of infinite weight with probability 1 (with respect to the length

of the channel input error event). For further discussion on this we refer the reader

to [34].

Condition 1 results in a shaping gain and Condition 2 results in a coding gain.

Note that we will suffer from a rate loss for Conditions 1 and 2 to be satisfied. If

the rate loss is smaller than the coding/shaping gain, then the combined trellis code

and ISI channel scheme will have a higher i.i.d. capacity than that of the original ISI

channel.

It can be shown that [30] Conditions 1 and 2 can be satisfied by the serial

concatenation of a trellis code designed by set partitioning and a spectral shaping

block code. A similar result can be found in [36]. We will not discuss set partitioning

in the chapter. The reader is referred to [29] and [30] for more details on this.

Condition 3 is satisfied by choosing an appropriate mapping of the input bits to the

trellis branches. However, to obtain good codes for use in the parallel concatenation,

it is important to optimize this mapping. We will use EXIT functions to find suitable

input mappings.
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Fig. 20. EXIT functions of the rate half Pusch and Weinrichter’s code used in the

parallel concatenated scheme of rate 1/4 over the 0.8 + 0.6D ISI channel.

To demonstrate the idea, we present two simple examples.

Example 4:

The ISI-matched trellis component codes are taken from [36] with a slight mod-

ification to make the trellis recursive. It was also pointed out in [31] that the non-

recursive codes introduced in [36] would have poor performance when used in a parallel

concatenated scheme. The trellis code consists of 4 states. From the EXIT functions

(see Fig. 20), we see that this code should not be used in a parallel concatenated

scheme. It is because when there is no input a priori information, the output extrinsic

information is very low. Thus, the iteration will get stuck from the beginning.

Example 5:
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Fig. 21. Different input mappings for f0+f1D channels when sign(f0f1) = −1 (dashed

lines: input bit is equal to 1; solid lines: input bit is equal to 0) (a) Good

mapping; (b) Bad mapping.

The example is adopted from [30] with a modification that the trellis encoder

is made recursive. However, it should be noted here that direct application of the

techniques in [29] and [30] generally will not result in good component codes for use

in the parallel concatenation. The main problem we have to solve here is to make the

joint trellis of the ISI-matched trellis component code and the ISI channel recursive so

that the interleaving gain can be achieved. It should be noted here that the optimal

input mapping (with respect to the decoding threshold) of the trellis encoder depends

on the channel state information. Fig. 21 shows two different mappings of information

bits. The trellises of the combined 4-state 4-PAM recursive trellis code, 4-PAM block

code BISI2 (as in Example 2), and f0 + f1D channel (or RTBC for short) with two

different mappings are given in Table I.
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Table I. State transition for the combined trellis code and the 1−D channel with good

and bad input mappings

Start Input Input Output End Noiseless

state k-tuple k-tuple n-tuple state channel

(Good) (Bad) output

0 0 1 -3 3 3 -2 6

0 1 0 1 -1 0 2 -2

1 0 1 -3 3 3 -6 6

1 1 0 1 -1 0 -2 -2

2 0 0 3 -3 4 4 -6

2 1 1 -1 1 7 0 2

3 0 0 -1 1 4 0 -6

3 1 1 3 -3 7 -4 2

4 0 1 -3 3 1 0 6

4 1 0 1 -1 2 4 -2

5 0 1 -3 3 1 -4 6

5 1 0 1 -1 2 0 -2

6 0 0 3 -3 6 6 -6

6 1 1 -1 1 5 2 2

7 0 0 3 -3 6 2 -6

7 1 1 -1 1 5 -2 2
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Fig. 22. EXIT functions of the parallel concatenation for the 1 −D channel.

An interesting feature about the EXIT function of the RTBC scheme (see Fig. 22)

is that the output extrinsic mutual information reaches value 1 when the input a priori

mutual information is 1. Note that this property is required for a parallel concatenated

scheme to have a finite threshold; and hence this scheme is suitable for the parallel

concatenation. As seen, the threshold for this scheme is about Eb/N0 = −1.15 dB,

which offers 0.75 dB improvement compared to the case without spectral shaping.

The i.i.d. capacity of the dicode channel without spectral shaping is Eb/N0 = −0.4
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dB at rate 1/4. Monte-Carlo BER simulation for short block length also verifies the

usefulness of the scheme (see Fig. 23). At BER of 10−5 and interleaver length of

1000 bits, the performance of the new scheme is approximately 0.3 dB better than

the scheme proposed by Pusch et al. [31]. The decoder for each branch (upper and

lower RTBCs) has only 8 states compared to 24 states of the scheme in [31].
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Fig. 23. Bit error rate of the new parallel concatenation for the 1 −D channel.

D. Conclusion

We have presented different simple coding techniques for ISI channels which perform

well in the medium to low rate region. The basic idea is to use a spectral shaping

block code in order to shape the spectrum of the transmitted signals to the desired
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water-filling spectrum. We showed that the spectral shaping can be combined directly

with the trellis of the component encoders in order to build parallel concatenated

schemes. The proposed schemes were shown to provide performance better than the

i.i.d. capacity and to perform only with a few tenths of a dB away from the capacity

limit. Significant performance gains were shown for short block lengths.
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CHAPTER V

ITERATIVE PACKET COMBINING SCHEMES FOR INTER-SYMBOL

INTERFERENCE CHANNELS

In this chapter, we extend results on precoding in Chapter III to automatic repeat

request (ARQ) schemes. We study packet combining techniques for retransmission

schemes over ISI channels. Two types of combining schemes are investigated, namely,

maximum likelihood combining (MLC) and iterative combining (IC). By first employ-

ing a precoding technique and then by interpreting the ISI channel as a trellis code,

the transmissions of the same data packet at different times through the channel can

be treated as the parallel concatenation of recursive trellis codes. If interleavers are

used in between retransmissions, ‘turbo’ coding gains can be achieved by iterative

equalization. It is shown that IC provides excellent performance and outperforms

other forms of combining in terms of frame error rate (FER) performance both ana-

lytically and through simulations.

A. Introduction

In communication systems, there are two fundamental techniques used for error con-

trol: Forward error correction (FEC) and automatic repeat request (ARQ). In FEC

schemes, the receivers have the ability to correct erroneous data, while in pure ARQ

schemes, the receivers can only detect if there are errors in the transmission. Auto-

matic repeat request schemes are widely used in data communication where trans-

mission delay is acceptable. In Type I ARQ schemes, uncoded data is transmitted

in packets and when an erroneous packet is detected, the receiver can request the

transmitter to re-send the same packet of data until no error is detected. Hybrid

ARQ schemes (Type II or Type III ARQ schemes) which combine FEC and ARQ are
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also commonly used [37].

It is well known that the throughput of an ARQ scheme can be improved by

using packet combining. In packet combining, all received copies of the data packet

are combined to form a more reliable estimate of the transmitted data. In Chase’s

combining scheme [38], a codeword from a code of rate R is repeated K times to form

a codeword from a lower rate code of rate R/K. Each received copy is weighted by

its corresponding reliability, which depends on the instantaneous gain of the channel.

Cyclic redundancy check (CRC) bits usually form an error detection code and are

used by the receiver to determine if the packet has been decoded correctly. In [39],

a version of packet combining was proposed in which K copies of a data packet are

combined into a single packet of the same length as that of the original transmitted

data packet by averaging the soft decision values from the constituent copies. It was

shown that for AWGN channels, this scheme is equivalent to Maximum Likelihood

(ML) diversity combing.

Since packet data systems can tolerate the latency due to a large interleaver size,

turbo codes are ideally suited for packet data transmission. Although application of

the turbo principle to coded systems over ISI channels has recently been investigated

by some authors [12], [13], its performance in ARQ schemes has not been studied in

detail. Balachandran and Anderson [40] proposed a turbo-like scheme where compo-

nent encoders of the original turbo code were replaced by two equivalent discrete-time

ISI channels. The decoder is an iterative decoder that iteratively decodes (or, equal-

izes) the received signals to form an estimate of the data. The performance of this

parallel scheme is improved only marginally compared to using a Viterbi decoder to

jointly decode both the transmissions, when perfect channel state information (CSI) is

available at the receiver. In [41], a low complexity linear iterative turbo-equalization

scheme for dual ISI channels was investigated. Similar to this chapter, [41] also ad-
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dresses turbo equalization of ISI channels alone (without an outer code) and, hence,

the results in [41] are applicable to the special case of one retransmission. However,

in contrast to this chapter, [41] does not consider any form of precoding. As shown

in this chapter, this precoding is essential to obtain an interleaving gain.

The focus of this chapter is in designing packet combining schemes for combining

multiple retransmissions through ISI channels in order to reduce the FER (or, equiv-

alently, the number of retransmissions required to successfully decode a packet). We

first show that the poor performance of the parallel concatenation scheme in [40] is

because it is a parallel concatenation of two non-recursive codes (ISI channels). We

use a technique recently proposed in [15] in the context of serial concatenation to

make the ISI channel appear recursive. With this technique, multiple transmissions

through the ISI channel become parallel concatenation of recursive codes. Hence,

multiple transmissions of uncoded (or, coded) data through ISI channels can be it-

eratively combined to result in significantly lower FER than other forms of packet

combining schemes. It is shown both analytically and through simulations that IC

when used with precoding results in excellent FER and outperforms the scheme in

[40], without increasing the complexity or decreasing the data rate. Moreover, the

IC schemes require very little modification at the transmitter, and are a promising

solution to systems that enjoy low cost and easy-to-implement terminals.

The remainder of the chapter is organized as follows. In Section B, we present

the system model. In Section C, we study ML combining and IC schemes. In Section

In Section D, we present some important properties of precoded ISI channels and

derive upper performance bounds based on the uniform interleaver concept for the IC

schemes. We provide some results and discussion in Section E. Finally, we conclude

the chapter in Section F.
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B. System Model
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Fig. 24. Retransmissions of the same data packet over the channel can be viewed as a

parallel concatenation of K trellis codes.

The system model is shown in Fig. 24. A block of N bits of data is encoded

by an optional outer code and then modulated and transmitted K times over a

channel corrupted by ISI and AWGN. For ease of exposition, we assume that the

modulation is binary phase shift keying (BPSK), although the proposed techniques

are applicable to any memoryless modulation. The receive filter is a whitened matched

filter corresponding to the channel impulse response h(t). The output samples of the

equivalent discrete-time ISI channel can be expressed as

yn = rn + zn, 0 ≤ n < N (5.1)

where rn =
∑L

l=0 (2xn−l − 1)fl (for BPSK), xt = 1/2 for t < 0, is the noiseless

channel output, f = (f0, f1, . . . , fL) is the equivalent discrete-time channel coefficient

vector, L is the channel memory, and z = (z0, z1, . . . , zN−1) is a sequence of inde-

pendent identically distributed (i.i.d.) Gaussian noise samples with zero mean and

variance KN0/(2Eb), where Eb is the average energy per bit. The input to the chan-

nel x = (x0, x1, . . . , xN−1) is a sequence of i.i.d. input data with xn ∈ {0, 1} in the
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absence of an outer code, or x is a codeword from an outer code. The outer code can

be a convolutional code which admits easy soft-decision decoding or a block code such

as a Bose Chaudhuri Hocquenghem (BCH) or a Reed-Solomon (RS) code, which is

typically decoded using a hard decision algebraic decoder. In the most general case,

the channel can be time-variant, with the static (time-invariant) channel being a spe-

cial case. At the receiver, an equalizer is implemented by using the Viterbi algorithm

(VA) for MLC schemes while the outer code is decoded using a hard decision decoder.

When considering IC, the Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [8] is

used for equalization. The equalizer output is then fed to the outer decoder (if the

outer code is used).

C. Combining Techniques

During the first transmission, the received packet is equalized and decoded using

the outer code and then checked for errors using an error detection code. A CRC

or the outer code itself may serve as the error detection code. When the packet is

determined to be in error, a retransmission is requested. What is retransmitted during

the retransmissions and how the retransmissions are combined depend on the exact

combining technique used at the receiver. Here, we consider two types of combining

schemes which will be discussed in the following Subsections. It should be emphasized

that the focus of this chapter is on techniques to combine the retransmissions for the

purpose of equalization only, that is, the packet combining techniques themselves do

not take advantage of the outer code, if it is present. The decoding is done after the

packets are combined. Therefore, the presence or absence of the outer code does not

have a significant impact on the performance of the combining schemes. Extension

to the case of combining using the outer code is straightforward, though usually it is
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computationally complex.

1. ML Combining (MLC)

Here, the retransmissions are identical to the original transmission and the receiver

uses the VA to combine the retransmissions using an ML rule. MLC uses the VA to

search the trellis path that has minimum metric. For ISI channels, the path metric

for a single received copy of the transmitted packet x is given below

Msingle =
N−1∑

n=0

(yn − r̂n)2 (5.2)

≡
N−1∑

n=0

(
r̂2
n − 2r̂nyn

)
(5.3)

where y = (y0, y1, . . . , yN−1) is the received signal and r̂n =
∑L

l=0 (2x̂n−l − 1)fl, where

x̂n is the tentatively estimated version of the transmitted data xn. In (5.3) we have

dropped the term
∑N−1

n=0 y
2
n since it is the same for all possible transmitted pack-

ets. Suppose that K copies of the transmitted packet x have been received, say

y1, y2, . . . , yK . It can be easily shown that when the ISI channel is time-invariant,

the branch metric at time k is

λn =
K∑

r=1

(
r̂2
n − 2r̂nyr,n

)
(5.4)

where yr,n is the received signal at time k of the r-th copy. Correspondingly, the ML

path metric for combining K received copies is

MMLC =
N−1∑

n=0

(
r̂2
n − 2r̂nyn

)
(5.5)

where

yn =
1

n

K∑

r=1

yr,n.
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From (5.3) and (5.5), it is clear that for ISI channels, the ML path metric for multiple

received copy combining has a form similar to that for single received copy combining.

2. Iterative Combining (IC)

In the case of IC, during a retransmission, an interleaver is placed at the input to

the ISI channel as shown in Fig. 24. Different interleavers are used for different

retransmissions. This is the only modification that is required at the transmitter.

We begin by noting that, the equivalent discrete-time ISI channel can be treated as

a rate-one feed-forward convolutional encoder with constraint length (L+1). The ISI

channel is characterized by the the polynomial

f(D) =

L∑

l=0

flD
l (5.6)

and is normalized so that
∑L

l=0 f
2
l = 1 if the channel is time-invariant. Multiple re-

transmissions through the ISI channel can be considered as a concatenation of convo-

lutional codes. When an interleaver is used in between the transmissions, it represents

a parallel concatenated turbo code where the ISI channels are the component codes.

Multiple transmissions are combined using a turbo decoder that iteratively forms esti-

mates for the transmitted data packet x based on the received copies y1, y2, . . . , yK .

The receiver consists of K component soft-input soft-output (SISO) decoders. In

order to fully make use of available soft information from the component SISO de-

coders, when K > 2, the parallel structure [42] is used in iterative decoding. During

the completion of the (m+1)th iteration, the soft information (extrinsic information)

produced by the i-th SISO is given by

L
(m+1)
ext,i (xn) = G

(
yi, L

(m)
ext,j(xl); 1 ≤ j ≤ K, j 6= i; 0 ≤ l < N

)
,

1 ≤ i ≤ K, 0 ≤ n < N
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where G is the MAP decoding function which can be implemented using either the

BCJR algorithm or the SOVA or any variation of these algorithms. In this chapter,

we consider only the Max-Log-MAP implementation [43].

D. Distance-Spectrum Based Properties of Precoded ISI Channels

It is more convenient to use the D-transform notation for the sequences. We define

the following (See Chapter III for more details on procoding.)

• Channel input: x(D) = x0 ⊕ x1D ⊕ x2D
2 ⊕ · · ·

• Precoder output: d(D) = d0 ⊕ d1D ⊕ d2D
2 ⊕ · · ·

• Noiseless channel output:

r(D) = r0 + r1D + r2D
2 + · · · = γ

(
d(0)
)

+ γ
(
d(1)
)
D + γ

(
d(2)
)
D2 + · · ·

• Modulated signal: µ(d(D)) = µ(d0) + µ(d1)D + µ(d2)D
2 + · · · .

We now discuss some important properties of precoded ISI channels in the light

of distance-spectrum based analysis.

1. Recursive Property

Property 1: When the input error sequence to channel is of weight one, the output

channel error sequence is of infinite weight.

Proof: It is clear from (3.4) that x(D) = d(D)h(D), or d(D) = x(D)/h(D).

We now consider two sequences at the input to the precoder x1(D) and x2(D).

Correspondingly, we have the precoded output sequences d1(D) = x1(D)/h(D) and

d2(D) = x2(D)/h(D). Without including AWGN, the received sequences correspond-

ing to d1(D) and d2(D) are r1(D) and r2(D), respectively. The squared Euclidean
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distance between these two received sequences is

δ2(r1(D), r2(D)) = ‖εr(D)‖2 =
N−1∑

n=0

|(r2,k − r1,k)|2

=

N−1∑

n=0

∣∣∣γ
(
d

(n)
2

)
− γ
(
d

(n)
1

)∣∣∣
2

= ‖f(D)[µ(d2(D)) − µ(d1(D))]‖2

= ‖f(D)εµ(d(D))‖2

where εr(D) = r2(D) − r1(D) and εµ(d(D)) = µ(d2(D)) − µ(d1(D)). Let us consider

an input sequence x1(D) and another input sequence x2(D) = x1(D)⊕Dn, for some

0 ≤ n < N . This corresponds to an input error event εx(D) = x1(D) ⊕ x2(D) = Dn.

The error sequence at the output of the precoder εd(D) = d1(D)⊕d2(D) = Dn/h(D)

contains an infinite number of non-zero coefficients when N → ∞. In other words,

d1(D) and d2(D) differ in infinitely many positions and consequently εµ(d(D)) is

an infinite weight sequence. Though εµ(d(D)) is of infinite weight, there are some

cases that the sequence f(D)εµ(d(D)) is of finite weight. Equivalently, there is no

guarantee that the squared Euclidean distance δ2(r1(D), r2(D)) is of infinite weight

for a particular sequence εµ(d(D)). We can easily verify this claim by considering

channels which have nulls, such as a 2-tap channel with coefficients f0 = −f1. In

this case, when the error sequence εµ(d(D)) = 2 + 2D + 2D2 + · · · or εµ(d(D)) =

−2 − 2D − 2D2 − · · · (for BPSK), we have δ2(r1(D), r2(D)) = 4f 2
0 + 4f 2

1 = 4.

Fortunately, the probability of appearance of an infinite weight sequence εµ(a(D))

such that δ2(r1(D), r2(D)) = ‖f(D)εµ(d(D))‖2 is of finite weight is asymptotically

(in length N) zero. Therefore, when we consider the average of δ2(r1(D), r2(D))

over all possible infinite weight error sequences εµ(d(D)), Eεµ [δ2(r1(D), r2(D))] is of

infinite weight. �

We use this recursive property of precoded ISI channels in our IC ARQ scheme.
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The retransmission schemes and packet combining techniques for precoded ISI chan-

nels are similar to those discussed in Section C, except that at the receiver, the

precoded channel is treated as the actual ISI channel.

2. Frame Error Rate Property

Property 2: When the input to the channel x(D) is a sequence of i.i.d. random

variables, the probability of a frame error is the same for both precoded and non-

precoded ISI channels when ML decoding is used. Therefore, for Type I or Type II

ARQ schemes, the probability of requesting a retransmission after the first transmis-

sion is unaffected due to precoding.

Proof: Consider an error event ε. For the non-precoded ISI channel, correspond-

ing to the error event ε, let x(D), x̂(D), rnp(D), and r̂np(D) be the input sequence,

estimated input sequence, noiseless channel output sequence, and estimated noiseless

channel output sequence, respectively. We have

εx(D) = x(D) ⊕ x̂(D) (5.7)

as the input error sequence associated with ε and

εy,np(D) = r̂np(D) − rnp(D) (5.8)

as the channel output error sequence associated with ε. We have

εy,np(D) = εµ(x(D))f(D) (5.9)

where εµ(x(D)) = µ(x̂(D)) − µ(x(D)). The distance spectrum of the non-precoded

ISI channel is defined as the set ∆np that contains all possible values of squared
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Euclidean error distances ∆2
np(ε) defined as

∆2
np(ε) = ‖εy,np(D)‖2 = ‖εµ(x(D))f(D)‖2, ∀ x(D) 6= x̂(D).

For the precoded ISI channel, the input error sequence εx(D)h(D) to the precoded

channel produces the channel output error sequence

εy,p(D) = εµ(x(D)h(D)/h(D))f(D) = εy,np(D). (5.10)

Since the input sequence x(D) has the i.i.d. property, εx(D) is i.i.d. and, hence,

εx(D)h(D) is also i.i.d.. This means that the distance spectrum of the precoded ISI

channel, denoted by ∆p, is the same as that of the non-precoded ISI channel, ∆np.
1

Thus the FER of the precoded ISI channel is the same as that of the non-precoded

ISI channel. �

3. Interleaving Gain Property for Non-fading Precoded ISI Channels

One of the important parameters for ARQ schemes is the expected number of trans-

missions that must be made before a packet is accepted, denoted by Tr. It is well

known that for packet combining schemes, Tr is upper and lower bounded by [39]

1 +
∞∑

n=1

K∏

i=1

P (Ei) ≤ Tr ≤ 1 +
∞∑

n=1

P (En) (5.11)

where P (En) is the probability of a retransmission request is made while decoding

the packet formed by combining K received copies. We can interpret P (En) as the

probability of an error event after combining K received copies of the data packet

given that the combining of the previous (K− 1) copies was in error. In this Section,

we focus on the calculation of P (En) for IC schemes by assuming ML decoding. We

1When the length of the packet N is large, we can ignore the trellis terminating
effect.
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show the following property.

Property 3: For large Eb/No, the union bound on P (En) denoted by PU(En)

satisfies

PU(En) ∝





N, for non-precoded ISI channels

N2−K , for precoded ISI channels.

Proof: We begin by noting that the mapping function in (3.2) is non-linear. Thus

in the evaluation of the error performance for an ISI channel, we cannot assume that

the transmitted (correct) sequence is the all-zero sequence. The squared Euclidean

error distance caused by an error event ε depends on the transmitted sequence x(D).

Note that when x(D) is i.i.d. the input error sequence associated with an error event

ε, εx(D) = x(D) ⊕ x̂(D) is also i.i.d. and is one of the possible input sequences.

Define ACISI(w, δ2) as the average number of error events of the ISI channel (or,

the precoded ISI channel) that have squared Euclidean error distance δ2 and w data

bit errors. Assuming that (K−1) uniform interleavers [44] are used during the retrans-

missions over the ISI channel, the distance spectrum of the parallel concatenation of

K ISI channels is approximated as

ACP (w, δ2) ≈
(
N

w

)1−K ∆2
max∑

∆2
1=∆2

min

∆2
max∑

∆2
2=∆2

min

. . .

∆2
max∑

∆2
n=∆2

min︸ ︷︷ ︸
∆2

1+∆2
2+...+∆2

n=δ2

·
K∏

i=1

ACISI(w,∆2
i ). (5.12)

We can interpret ACP (w, δ2) as the average number of error events of the parallel

concatenation that have squared Euclidean error distance δ2 and w data bit errors.

The multiplicity
(

N
w

)1−K
in (5.12) is due to the contribution of (K − 1) uniform
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interleavers. Applying the union bounding technique, P (En) is upper bounded by

P (En) ≤ PU(En)

=
∑

δ2∈∆

N∑

w=wmin

ACP (w, δ2)Q

(√
δ2

2K

Eb

N0

)
(5.13)

where ∆ is the set of all possible squared Euclidean error distances of the parallel

concatenation.

To see the effect of the precoder on the performance of the IC schemes, we follow

the approach in [44] and [45]. For large interleaver size N , the average number of

error events of the ISI channel ACISI(w, δ2) is approximated as [45]

ACISI(w, δ2) ≈
nmax∑

n=1

(
N

n

)
ACISI(w, δ2, n) (5.14)

where ACISI(w, δ2, n) is the average number of error events that have squared Eu-

clidean error distance δ2, and w data bit errors, which are formed by concatenating

n sub-error events, and nmax is the largest number of sub-error events generated by

weight w input error sequences εx(D). Substituting (5.14) into (5.12), we have

ACP (w, δ2) ≈
(
N

w

)1−K ∆2
max∑

∆2
1=∆2

min

∆2
max∑

∆2
2=∆2

min

. . .

∆2
max∑

∆2
n=∆2

min︸ ︷︷ ︸
∆2

1+∆2
2+...+∆2

n=δ2

·
K∏

i=1

nmax∑

ni=1

(
N

ni

)
ACISI(w,∆2

i , ni). (5.15)
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By using the approximation
(

N
n

)
≈ Nn

n!
for large N , we obtain

ACP (w, δ2) ≈
∆2

max∑

∆2
1=∆2

min

∆2
max∑

∆2
2=∆2

min

. . .

∆2
max∑

∆2
n=∆2

min︸ ︷︷ ︸
∆2

1+∆2
2+...+∆2

n=δ2

nmax∑

n1=1

nmax∑

n2=1

. . .

·
nmax∑

nn=1

Nn1+n2+...+nn−w(K−1)

· (w!)n−1

n1!n2! . . . nn!

K∏

i=1

ACISI(w,∆2
i , ni). (5.16)

We now focus on terms that mostly contribute to the right hand side of (5.13). That

is, we find the largest possible power of N , denoted by LN . From (5.16) we have LN =

Knmax − w(K − 1). For the case of non-precoded ISI channels, the minimum value

of input error sequence weight w that can produce finite weight squared Euclidean

error distance ∆2
np(ε) is wmin = 1. The maximum number of sub-error events in this

case is nmax = w. Thus, LN,np = K · 1 − 1 · (K − 1) = 1. For precoded ISI channels,

the minimum value of input error sequence weight w that can produce finite weight

squared Euclidean error distance ∆2
p(ε) is wmin = 2 and correspondingly nmax = ⌊w

2
⌋,

where ⌊x⌋ denotes the largest integer part of x. Thus, for the lowest weight (w = 2)

input error sequences, we have LN,p = K · 1− 2(K − 1) = 2−K. Property 2 follows

immediately. �

It should be noted here that the above analysis shows the dependence of the

truncated union bound on the probability of retransmission PU(En) on the length N

for precoded and non-precoded systems. For the range of Eb/N0 and N for which

the truncated union bound is tight, the above result applies to the probability of re-

transmission P (En) as well. However, for the range of Eb/N0 for which the truncated

union bound becomes loose such as when N becomes very large for a fixed Eb/N0, the

result is not necessarily valid for P (En) and, hence, is weak. In the following, when
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making conclusions about P (En) based on the above analysis, it is to be assumed

that the Eb/N0 is large enough that the union bound is tight.

Property 2 states that for non-precoded ISI channels, the union bound on P (En)

increases when the interleaver size N increases (this is of course undesirable) while

for precoded ISI channels, the union bound on P (En) decreases when N increases for

the case K ≥ 3. It is interesting to note that for non-precoded ISI channels, PU(En)

increases linearly with N for both MLC and IC, hence, iterative combining offers no

substantial improvement in performance. This explains the results in [40]. However,

for precoded ISI channels, IC can significantly improve the performance over MLC.

It is interesting to note from Property 2 that when the number of transmissions

K = 2, PU(En) is independent of interleaver size N for precoded ISI channels. In

other words, there is no coding gain for precoded ISI channels for the case K = 2.

This result agrees with that for repeat-accumulate codes [46] with repetition codes

of length two. For the case of non-precoded ISI channels, PU(En) increases as N

increases. Thus, precoded ISI channels still outperform non-precoded ISI channels in

terms of PU(En), even when K = 2.

4. Interleaving Gain Property for Fading Precoded ISI Channels

So far, we have only considered time-invariant ISI channels. We next show that an

interleaving gain results for time-variant ISI channels as well.

Property 4: An interleaving gain is present for time-variant (multi-path fading)

ISI channels if a precoder is used. Hence, Property 2 is also valid for multi-path

fading channels.

Proof: We first show that for time-variant ISI channels, when precoding is used,

the recursiveness is also obtained. That is, we have to show that a weight one input

error sequence εx(D) produces a squared Euclidean error distance of infinite weight.
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At time k, we denote the realization of the channel coefficient vector as f(n) =

(f0(n), f1(n), . . . , fL(n)). The channel polynomial is now f(D, n) =
∑L

l=0 fl(n)Di.

Taking the average of the squared Euclidean error distance of Rayleigh fading channels

over all possible realizations of the channel coefficient vector f(n), we have

δ2(ε) = Ef [δ
2(ε)] =

N−1∑

n=0

∆2
n(ε) (5.17)

where

∆2
n(ε) = Ef [∆

2
n(ε)], 0 ≤ n < N

= Ef




∣∣∣∣∣

L∑

l=0

fl(n)εµ(dn−l)

∣∣∣∣∣

2




=

L∑

l=0

σ2
fl
ε2

µ(dn−l) (5.18)

where σ2
fl

is the variance of the lth fading tap and εµ(dn) is the nth coefficient of

the error polynomial εµ(d(D)). In (5.18), we have assumed independent Rayleigh

fading on each of the taps. We can see that the average squared Euclidean error

distance of the Rayleigh fading channels depends on their power profiles. Again, if

εx(D) = Dt for t ≥ 0, we will have εµ(d(D)) of infinite weight and, hence, δ2(ε) is of

infinite weight.

It is possible to show that the pairwise error probability (PEP) caused by the

error event ε, denoted by P (ε), is a function of the averaged squared Euclidean error

distances
{

∆2
n(ε); 0 ≤ n < N

}
and Eb/N0. That is P (ε) = g

(
Eb/N0,∆2

n(ε); 0 ≤

n < N
)
, where g(·) is some deterministic function. Note that for the case of time-

invariant ISI channels, g(·) becomes the Gaussian tail function Q(·). We now proceed

in the same light as for the case of time-invariant channels. It is easy to show that

the probability of a retransmission request being made while decoding the packet
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formed by combining K received copies averaged over all realizations of the channel

coefficient vector is upper bounded as

P (En) ≤
∑

∆2
n(ε)

N∑

w=wmin

ACP

(
w,∆2

n(ε); 0 ≤ n < N
)

·g
(
Eb/N0,∆2

n(ε); 0 ≤ n < N
)

(5.19)

where ACP

(
w,∆2

n(ε); 0 ≤ n < N
)

is the average number of error events of the parallel

concatenation that have average squared Euclidean error distances
{

∆2
n(ε); 0 ≤ n <

N
}

so that at fixed Eb/N0 the function g
(
Eb/N0,∆2

n(ε); 0 ≤ n < N
)

has a fixed

value, and w data bit errors. Since recursiveness is also obtained when precoding is

used, we can show that ACP

(
w,∆2

n(ε); 0 ≤ n < N
)

depends on the value of N ,

which exactly follows the same behavior as in Property 2. �

It has also been shown that precoding for ISI channels significantly improves

convergence of IC schemes. The convergence-based analysis for precoded ISI channels

is discussed more detailed in Chapter III. Further discussion on this can be also found

in [34].

E. Results

The performance of combining schemes has been investigated for three different chan-

nels. The first channel has one interfering symbol (2-tap channel), with impulse re-

sponse (IR) f2(D) = 0.89443 + 0.44721D. The second channel has 3 taps with IR

f3(D) = 0.5 + 0.7071D+ 0.5D2 and is taken from [40] for comparison purposes. The

other channel has 5 taps with IR f5(D) = 0.67082 + 0.5D+ 0.3873D2 + 0.31623D3 +

0.22361D4. As mentioned in [15], every precoder of the form h(D) = 1 ⊕DJ results

in an interleaving gain. In our simulations, we choose the precoder of the simplest

form, i.e.: h(D) = 1 ⊕ D. We see that this precoder, though simple, performs well
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for all tested channels. To save simulation time, but still be able to demonstrate

the performance of the MLC and IC schemes, we fix the number of transmissions

to K = 2, and record the FER at the output of the equalizer. For the IC schemes,

S-random interleavers of sizes 500 and 2000 bits (S = 12 and 17, respectively) and

six iterations were used in all cases.
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Nonprecoded MLC             
Precoded IC, 6 iterations   
Nonprecoded IC, 6 iterations

Fig. 25. Frame error rate for the (0.89443, 0.44721) ISI channel; interleaver size

N = 500; precoding polynomial h(D) = 1 ⊕ D; number of transmissions

K = 2.

Figure 25 shows the performance of the MLC and IC schemes over the channel

f2(D) with one interfering symbol. At the second transmission, and at FER of 10−3,

precoded IC offers a coding gain of approximately 4 dB for interleaver size N = 500

over non-precoded IC. Comparing MLC schemes, precoded IC offers a coding gain
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Fig. 26. FER bounds for the (0.89443, 0.44721) ISI channel; ‘uniform’ interleaver of

sizes N = 500 and N = 2000; precoding polynomial h(D) = 1 ⊕D; numbers

of transmissions K = 2 and K = 3.

of roughly 5.5 dB, also at FER=10−3. We also plot upper bound curves for this ISI

channel (see Fig. 26) for different values of interleaver sizes as well as numbers of

transmissions. In the evaluation of the bound, only significant terms in the distance

spectrum of the parallel concatenation of the ISI channels are included. For the ISI

channel with 2 taps, we can apply quasi-regularity properties [47], [48] to compute

the distance spectrum. The bound is useful when used to predict the error floor of

the system at high Eb/N0 where simulation is burdensome or impossible. We can see

that when the number of transmissions K = 3 the precoded ISI channel can achieve

interleaving gains in contrast to the non-precoded ISI channel.
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Fig. 27. Frame error rate for the (0.5, 0.7071, 0.5) ISI channel; interleaver size N = 500;

precoding polynomial h(D) = 1 ⊕D; number of transmissions K = 2.

Figures 27 and 28 show the performance results of the MLC and IC schemes

over the 3-tap f3(D) and 5-tap f5(D) ISI channels respectively . The IC schemes

result in significant improvements in terms of FER over MLC schemes. Precoded

IC has the best performance and offers a coding gain of more than 6 dB over MLC

for interleaver size 500. Precoded IC is still superior to non-precoded IC. By using

precoding, improvements of about 2.5 dB for channel f3(D) and 3.0 dB for channel

f5(D) with interleaver size N = 500 are obtained.

Figure 29 shows the results of MLC and IC schemes over the 3-tap channel f3(D)

for interleavers of sizes 500 and 2000. It can be seen that for non-precoded IC, at
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Fig. 28. Frame error rate for the (0.67082, 0.5, 0.3873, 0.31623, 0.22361) ISI channel;

interleaver size N = 500; precoding polynomial h(D) = 1 ⊕ D; number of

transmissions K = 2.

a fixed value of Eb/N0, FER increases by a factor of roughly four times when the

interleaver size increases from 500 to 2000 bits. However, FER curves for precoded

IC remain almost unchanged when the interleaver size varies. Note that in our case

K = 2 and these results perfectly reflect the analytical explanations in Section D.

Figure 30 shows the performance results of MLC and IC schemes for the 3-tap

channel f3(D) when the decoder is mismatched to the channel. Similar to [40], the

channel estimates used in the decoder are: f̂0 = 0.42814, f̂1 = 0.79556, and f̂2 =

0.42814. It can be seen that the IC schemes offer a potential robustness to mis-

matched decoding. From Fig. 27 and Fig. 30, it can be seen that the performance
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Fig. 29. Coding gains for the (0.5, 0.7071, 0.5) ISI channel; interleaver sizes N = 500

and N = 2000; precoding polynomial h(D) = 1⊕D; number of transmissions

K = 2.

with mismatched decoding is about 0.75 dB of the performance with perfect channel

knowledge for the three tap ISI channel at a FER of 10−2. In terms of FER, the

precoded IC scheme offers coding gains of 2.5 dB and 7.5 dB over the non-precoded

IC and MLC schemes respectively when the interleaver is of size N = 500.

F. Conclusion

The iterative principle applied to ARQ systems has been investigated for various ISI

channels. By using binary precoding before the channel, the parallel concatenation of

ISI channels follows a similar behavior as that of a multiple turbo code. Interleaving
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Fig. 30. Frame error rate for the (0.5, 0.7071, 0.5) ISI channel; interleaver size N = 500;

precoding polynomial h(D) = 1 ⊕ D; mismatched channel at receiver

f̂ = (0.42814, 0.79556, 0.42814); number of transmissions K = 2.

gains can be achieved in contrast to the scheme in [40]. In all cases investigated,

precoded IC outperforms non-precoded IC and MLC with significant coding gains

both when perfect channel state information is available and when the receiver uses

mismatched channel estimates.
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CHAPTER VI

CAPACITY OF MULTIPLE ANTENNA ISI CHANNELS AND SUMMARY

We consider the problem of finding the capacity for multiple antenna discrete-time

ISI systems. We first investigate the capacity when both the transmitter and the

receiver have perfect channel state information (CSI). It is shown that the capacity of

the multiple-input single-output (MISO) ISI system is the same as that of the single-

input multiple-output (SIMO) ISI system, which can be computed as the capacity

of a single-input single-output ISI system with an equivalent composite frequency

response. When the transmitter, however, has no knowledge of the CSI and the

receiver utilizes a noisy (estimated) CSI, mismatched capacity is found. The effects on

channel capacity of random and deterministic channel estimation errors are quantified.

A. Introduction

The capacity of an single-input single-output discrete-time ISI channel can be com-

puted using the so called water-filling solution [3], analogously to the water-filling

solution for the continuous-time ISI channel [49]. Finding the channel capacity be-

comes challenging for a more general case when there are NT transmit antennas and

NR receive antennas in the system, or a multiple-input multiple-output (MIMO) sys-

tem. Each channel, the channel from a certain transmit antenna to a receive antenna,

is modeled as a discrete-time ISI channel with L interfering symbols (memory L). This

kind of system is often encountered in, for example, cellular networks, wireless LAN

with high data rate, and multi-track magnetic recording systems.

There has been a large quantity of work dedicated to MIMO systems because

of the promising enhancement in capacity without power and bandwidth penalties.

However, there has been no closed-form expression for the capacity of these system
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when the ISI is present, even for a simpler case when there is one antenna at the

transmitter or one antenna at the receiver. The authors in [50] claimed that the

extension of the results for single antenna ISI channels to MIMO ISI channels is

possible; however, no explicit capacity expression was given [50]. The problem of

finding capacity for MIMO ISI channels was discussed by Diggavi in [51]; and it was

pointed out that finding optimum power allocation is a hard problem. So the author

contented with uncorrelated inputs (flat spectrum) in both space and time.

Recently, the authors in [52] computed the capacity for MISO ISI channels. It

is based on the OFDM approach by splitting the channel spectra into different small

bands of flat frequency response. The optimum power allocation was found. However,

the approach is quite complicated and a compact expression for the capacity was not

given. The evaluation of the capacity becomes challenging when the block length

N becomes large because it involves matrix multiplications and determination of

determinants of matrices of size N -by-N . Some related results can be deduced from

the literature in the area of multiple-access and broadcast channels [53], [54], however,

the problem setups there are quite different.

Computing capacity for MIMO systems when only noisy CSI is available at

either the transmitter or the receiver, or both attracts much attention lately [55],

[56], [57], [58]. However, these results are only available for either ISI-free channels

or optimal receivers (using optimal decoding metric at the receiver). When receivers

use mismatched decoding metric, some channel capacity results can be found in [59]

and [60] for single antenna channels; but no such a result is available for MISO or

SIMO ISI channels.

In this chapter, we extend the results in [3], [50], [59], and [60] to the MISO ISI

and SIMO ISI systems. We provide closed-form expressions for the capacity of these

systems. We first assume that the CSI is known at both the transmitter and the
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receiver. Our approach is quite conventional (similar to [3]), and is simpler compared

to [52]. The results provide a lot of insight and lead us to many useful interpretations.

We then investigate a more practical problem when the transmitter has no CSI,

and the receiver has only noisy estimates of the CSI. This reflects the real life situation

in which the receiver has to estimate the CSI through the received signals or through

some backup channels (for example, the control channel in the down-link of a cellular

network). In this case, we compute the mismatched capacity.

Although the results for the case when the transmitter and the receiver have

perfect CSI are interesting; and to the best of our knowledge they have not been

mentioned before, we believe the major contribution of this chapter is in computing

the mismatched capacity.

B. Channel Model

The outputs of an MIMO discrete-time ISI system are expressed as

yr,n =

NT∑

t=1

L∑

l=0

fr,t,l · xt,n−l + zr,n, 1 ≤ r ≤ NR, 0 ≤ n < N (6.1)

where NT is the number of transmit antennas, NR is the number of receive antennas,

N is the block length, {yr,n} is the output sequence at the r-th receive antenna, {xt,n}

is the input sequence to the t-th transmit antenna, fr,t,l is the l-th tap in the channel

with memory L between the t-th transmit antenna and the r-th receive antenna,

and {zr,n} is a sequence of complex white Gaussian noise added to the r-th receive

antenna with zero mean and autocorrelation E[zr,n1z
∗
r,n2

] = N0δn1−n2, where δ0 = 1

and δn = 0 for n 6= 0.1 We assume that each of NTNR channels has finite energy and

1If the noise is colored, we can use a whitening filter for the noise before decoding.
This operation is information lossless. However, care should be made when designing
such a filter so that it is physically realizable.
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remains unchanged during the duration of N symbols, and changes independently

between blocks (block fading channels). We also assume that the channel input has

finite energy. That is,

NT∑

t=1

E[|xt,n|2] ≤ Es, 0 ≤ n < N

where E[·] stands for expectation operation.

As done in [3] and [50], we use the complex N -circular Gaussian channel (NCGC)

as

yr[n] =

NT∑

t=1

N−1∑

l=0

fr,t[n]xt[n− l] + zr[n], 1 ≤ r ≤ NR, 0 ≤ n < N (6.2)

where fr,t[0, N − 1] is obtained by padding N −L− 1, assuming L < N , zeros to the

end of fr,t,l, i.e.,

fr,t[n] =





fr,t,n, if 0 ≤ n ≤ L

0, if L < n < N,

and u[n] = un mod N , where {un} is a generic sequence. We use the notation:

u[n1, n2] = {un1, . . . , un2}, for n1 ≤ n2. By the argument similar to [3], it can be

shown that asymptotically with respect to the block length N , the channels defined

in (6.1) and (6.2) are equivalent in terms of capacity. However, if cyclic prefixes are

added to input sequences {xt,n}, both channel models are equivalent for all values of

N . Thus, we need to consider only the NCGC.

We define the discrete Fourier transform (DFT) and inverse discrete Fourier
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transform (IDFT) pair as follows:

DFT: U [k] ,

N−1∑

n=0

u[n]Ω−kn
N , 0 ≤ k < N, (6.3)

IDFT: u[n] ,
1

N

N−1∑

k=0

U [k]Ωkn
N , 0 ≤ n < N (6.4)

where ΩN = ej2π/N , j =
√
−1, and u[0, N − 1] is an arbitrary sequence (either real or

complex valued). This will be used in the subsequent sections.

C. Perfect CSI at Transmitter and Receiver

In this section, we investigate the capacity for MISO and SIMO discrete-time ISI

channels assuming that perfect CSI is available at both the transmitter and the re-

ceiver. We start with MISO ISI channels. Similar results are then applied to the

SIMO ISI channels. The technique computing the capacity here is quite conventional

and is adopted from [3] and [50]. Specifically, we convert the time-domain channels

to the frequency-domain ones by the help of the DFT of N -circular sequences. Then

we convert them back to the desired time-domain representation by using the IDFT.

This technique has been used widely recently to cope with ISI channels [53], [54]. We

show that the resulting capacity of both channels are equivalent, as expected, even

though this simple result has not been mentioned for ISI systems before. (This is

true for ISI-free systems [61].)
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1. MISO Discrete-Time ISI System

By omitting the index representing the receive antenna, the output of an MISO

complex NCGC is given by

y[n] =

NT∑

t=1

N−1∑

l=0

ft[l]xt[n− l] + z[n], 0 ≤ n < N (6.5)

with power constraints:

NT∑

t=1

E[|xt,n|2] ≤ Es, 0 ≤ n < N. (6.6)

The following result is the generalization of [3] and [50] for the case of multiple inputs.

Note that in [3], the real-valued channel model is assumed.

Theorem 1: The capacity of the MISO complex NCGC (6.5) with respect to the

block length N is

CMISO
N =

1

N

N−1∑

k=0

log

(
1 +

PX,opt[k]‖F[k]‖2

N0

)

where ‖F[k]‖2 =
∑NT

t=1 |Ft[k]|2, Ft[k] is the DFT of ft[0, N − 1], and

PX,opt[k] = max

(
λ− N0

‖F[k]‖2
, 0

)
, 0 ≤ k < N (6.7)

where the water level λ is found through the power constraint

1

N

N−1∑

k=0

PX,opt[k] = Es.

Moreover, the capacity achieving input sequence is a circularly symmetric complex

Gaussian sequence with zero mean and its correlation sequence rxt,i
[0, N − 1] is the
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IDFT of F ∗
t [k]Fi[k]

PX,opt[k]

‖F[k]‖2 , i.e.,

rxt,i
[m] , E[xt[n +m]x∗i [n]]

=
1

N

N−1∑

k=0

F ∗
t [k]Fi[k]

PX,opt[k]

‖F[k]‖2
Ωmk, 1 ≤ t, i ≤ NT , 0 ≤ m < N. (6.8)

Proof: By definition, the capacity of the channel (6.5) with respect to block length

N can be expressed as

CMISO
N = sup

px

IMISO
N

, sup
px

1

N
I(x1[0, N − 1], . . . , xNT

[0, N − 1]; y[0, N − 1]) (6.9)

where the supremum is taken over all pdf’s px of the joint sequence {x1[0, N −

1], . . . , xNT
[0, N − 1]} satisfying the per-block power constraint:

NT∑

t=1

N−1∑

n=0

E[|xt[n]|2] ≤ NEs. (6.10)

It will be clear that the capacity CMISO
N defined in (6.9) is still the same even when

stronger per-symbol power constraints

NT∑

t=1

E[|xt[n]|2] ≤ Es, 0 ≤ n < N (6.11)

are imposed.

Taking the DFT of (6.5) and using the linearity property of DFT, we get a set

of N parallel complex Gaussian channels as follows:

Y [k] =

NT∑

t=1

Ft[k]Xt[k] + Z[k], 0 ≤ k < N (6.12)

where Xt[0, N − 1], Y [0, N − 1], Z[0, N − 1], and Ft[0, N − 1] are, respectively, the

DFTs of xt[0, N − 1], y[0, N − 1], z[0, N − 1], and ft[0, N − 1]. Using Parseval’s
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theorem, the power constraint (6.10) becomes

NT∑

t=1

N−1∑

k=0

E[|Xt[k]|2] ≤ N2Es.

Defining X[k] = [X1[k]· · ·XNT
[k]]T and F[k] = [F1[k]· · ·FNT

[k]]T , (6.12) becomes

Y [k] = FT [k]X[k] + Z[k], 0 ≤ k < N.

Since the DFT is invertible, the transform in (6.12) is information lossless. Thus,

IMISO
N =

1

N
I(X[0, N − 1];Y [0, N − 1]) ≤ 1

N

N−1∑

k=0

I(X[k];Y [k]) (6.13)

with equality iff Y [k] are independent. The terms I(X[k];Y [k]) can be computed by

using the technique proposed in [61] by performing the single value decomposition

(SVD) of FT [k]. However, this would lead to a complicated expression. Here, we are

interested in a closed-form expression for the capacity. Thus we choose to apply a

different approach. We write

I(X[k];Y [k]) = h(Y [k]) − h(Y [k]|X[k]), 0 ≤ k < N

= h(Y [k]) − h(Z[k]), (6.14)

where h(·) denotes differential entropy, and the second equality is because the input

X[0, N − 1] and noise Z[0, N − 1] are independent. It is easy to verify that [50], [61]

h(Z[k]) = log(πeNN0). So our next step is to find h(Y [k]).

Applying the Cauchy-Bunyakovski-Schwartz inequality2 twice to the variance of

2The Cauchy-Bunyakovski-Schwartz inequality states: |∑k xkyk|2 ≤∑
k |xk|2

∑
i |yi|2, with equality iff yk = λx∗k, ∀k, where λ is a constant.
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Y [k] we get

E[|Y [k]|2] =

NT∑

t=1

NT∑

i=1

Ft[k]F
∗
i [k]E[Xt[k]X

∗
i [k]] +NN0

(a)
=

∣∣∣∣
NT∑

t=1

Ft[k]

NT∑

i=1

F ∗
i [k]E[Xt[k]X

∗
i [k]]

∣∣∣∣ +NN0

(b)

≤
(

NT∑

t=1

|Ft[k]|2
)1/2( NT∑

t=1

∣∣∣∣
NT∑

i=1

F ∗
i [k]E[Xt[k]X

∗
i [k]]

∣∣∣∣
2
)1/2

+NN0 (6.15)

(c)

≤ ‖F[k]‖
[

NT∑

t=1

(
NT∑

m=1

|Fm[k]|2
)(

NT∑

i=1

|E[Xt[k]X
∗
i [k]]|2

)]1/2

+NN0

= ‖F[k]‖2

(
NT∑

t=1

NT∑

i=1

|E[Xt[k]X
∗
i [k]]|2

)1/2

+NN0

where ‖F[k]‖2 ,
∑NT

t=1 |Ft[k]|2. (a) is obvious because the variance is always non-

negative. (b) becomes equality iff

NT∑

i=1

F ∗
i [k]E[Xt[k]X

∗
i [k]] = p[k]F ∗

t [k], (6.16)

where p[k] is some deterministic function. (c) becomes equality iff

E[Xt[k]X
∗
i [k]] = qt[k]Fi[k] (6.17)

where qt[k] is some deterministic function. Substituting (6.17) into (6.16) we get

qt[k]‖F[k]‖2 = p[k]F ∗
t [k]. (6.18)

We can safely assume that ‖F[k]‖2 6= 0. If this is not the case, then it means

Ft[k] = 0, 1 ≤ t ≤ NT . In this case, we do not assign any power to the frequency k.
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Thus, equivalently, (6.18) becomes

qt[k] = p[k]
F ∗

t [k]

‖F[k]‖2
. (6.19)

Substituting (6.19) into (6.17) we get

E[Xt[k]X
∗
i [k]] = NPX[k]

F ∗
t [k]Fi[k]

‖F[k]‖2
(6.20)

where PX[k] = p[k]/N . By equating t = i in the equation above, it can be easily seen

that p[k] (or, equivalently, PX[k]) must be non-negative. Summing up (6.20) over

0 ≤ k < N and 1 ≤ t ≤ NT for t = i and using the power constraint (6.10) gives

1

N

N−1∑

k=0

PX[k] ≤ Es. (6.21)

Substituting (6.16) into (6.15) and using the fact that p[k] (or PX[k] = p[k]/N) is

non-negative, we get

E[|Y [k]|2] = NPX[k]‖F[k]‖2 +NN0.

It is well-known that among random variables of the same variance, a circularly

symmetric complex Gaussian distributed random variable has the largest entropy.

Thus, (6.14) follows

I(X[k];Y [k]) ≤ log

(
E[|Y [k]|2]
NN0

)
= log

(
1 +

PX[k]‖F[k]‖2

N0

)
(6.22)

with equality iff X[k] are circularly symmetric complex Gaussian random variables

with zero mean and correlation given in (6.20).
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Combining (6.22) and (6.13), we get

IMISO
N ≤ 1

N

N−1∑

k=0

log

(
1 +

PX[k]‖F[k]‖2

N0

)
(6.23)

with equality iff X[k] are independent circularly symmetric complex Gaussian random

variables. We can think of (6.23) as the mutual information of an equivalent scalar

channel with composite frequency response ‖F(ejw)‖ =
(∑NT

t=1 |Ft(e
jw)|2

)1/2

, where

Ft(e
jw) =

∑N−1
n=0 ft[n]e−jnw =

∑L
l=0 ft,le

−jlw. The input to this equivalent channel is

a sequence of one-dimension random variables Xeq[0, N − 1] with power constraint

(6.21). The solution to this equivalent problem is the well-known water-filling solution

[49]. The resulting optimum power allocation of Xeq[0, N−1], denoted by PX,opt[k], is

given in (6.7). Note that the water-filling solution is still the same for the case when

we have per-symbol power constraint as given in (6.11). Using [50, Theorem 4], the

capacity achieving sequence in time domain xt[0, N −1], 1 ≤ t ≤ NT is the circularly

symmetric complex Gaussian sequence with zero mean and correlation given in (6.8).

�

When the block length tends to infinity, we have the following result.

Corollary 1: The capacity of the MISO discrete-time ISI channel is

CMISO =
1

2π

∫ 2π

0

log

(
1 +

PX,opt(e
jw)‖F(ejw)‖2

N0

)
dw (6.24)

where ‖F(ejw)‖2 =
∑NT

t=1 |Ft(e
jw)|2, and Ft(e

jw) =
∑L

l=0 ft,le
−jlw.

The capacity is achieved when the input to the t-th antenna is a circularly sym-

metric complex Gaussian sequence with zero mean and PSD

PXt(e
jw) = |Ft(e

jw)|2PX,opt(e
jw)

‖F(ejw)‖2
, 1 ≤ t ≤ NT (6.25)
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where

PX,opt(e
jw) = max

(
λ− N0

‖F(ejw)‖2
, 0

)
,

where the water-lever λ is chosen to satisfy the power constraint

1

2π

∫ 2π

0

PX,opt(e
jw)dw = Es. (6.26)

Proof: By the same argument in [3], the capacity of the NCGC is the same as that

of the actual channel as the block length N → ∞. Thus,

CMISO = lim
N→∞

CMISO
N .

We use the property of Riemann integrals,

lim
N→∞

1

N

N−1∑

k=0

g
(
‖F[k]‖2

)
= lim

N→∞

1

2π

N−1∑

k=0

g
(
‖F(wk)‖2

)
∆w =

1

2π

∫ 2π

0

g
(
‖F(w)‖2

)
dw

where g(·) is any continuous real-valued function, ‖F[k]‖2 = ‖F(wk)‖2, wk = k∆w,

0 ≤ k < N , and ∆w = 2π/N . We get the expressions for the capacity and input PSD

as given in (6.24) and (6.25), respectively. �

2. SIMO Discrete-Time ISI System

The following results are similar to those for MISO ISI channels computed in the

previous subsection.

Theorem 2: The capacity of the SIMO complex NCGC (6.2) is

CSIMO
N =

1

N

N−1∑

k=0

log

(
1 +

PX,opt[k]‖F[k]‖2

N0

)
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where ‖F[k]‖2 =
∑NR

r=1 |Fr[k]|2, Fr[k] is the DFT of fr[0, N − 1], and

PX,opt[k] = max

(
λ− N0

‖F[k]‖2
, 0

)
, 0 ≤ k < N (6.27)

where the water-level λ is found through the power constraint

1

N

N−1∑

k=0

PX,opt[k] = Es.

Moreover, the capacity achieving input sequence is a circularly symmetric complex

Gaussian sequence with zero mean and its correlation sequence rx[0, N − 1] is the

IDFT of PX [0, N − 1], i.e.,

rx[m] , E[x[n +m]x∗[n]] =
1

N

N−1∑

k=0

PX,opt[k]Ω
mk, 0 ≤ m < N. (6.28)

When the block length tends to infinity, we have the following result.

Corollary 2: The capacity of the SIMO discrete-time ISI channel (6.1) is

CSIMO =
1

2π

∫ 2π

0

log

(
1 +

PX,opt(e
jw)‖F(ejw)‖2

N0

)
dw

where ‖F(ejw)‖2 =
∑NR

r=1 |Fr(e
jw)|2, and Fr(e

jw) =
∑L

l=0 fr,le
−jlw. The capacity is

achieved when the input is a circularly symmetric complex Gaussian sequence with

zero mean and PSD

PX,opt(e
jw) = max

(
λ− N0

‖F(ejw)‖2
, 0

)

where the water-lever λ is chosen to satisfy the power constraint

1

2π

∫ 2π

0

PX,opt(e
jw)dw = Es.

The proofs are quite similar to those for the MISO ISI channels.
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• Remark 1: The capacity of the MISO ISI system is equivalent to that of the

SIMO ISI system. This result is known for an ISI free system, but has not been

proved for the ISI channel case before.

• Remark 2: The optimum transmission scheme for MISO ISI channels is that

the inputs to transmit antennas are outputs of a common source whose PSD

is the water-filling PSD of the composite channel with response ‖F(ejw)‖, then

being filtered by different filters F ∗
t (ejw)/||F(ejw)||. For MISO continuous-time

ISI channels, a similar result was presented in [62] but a robust proof was not

given.

• Remark 3: It was shown in [52] that the channel capacity can be achieved

through OFDM with separate coding on each sub-carrier. Our proposed ap-

proach is simpler and the results here show that capacity can alternatively be

achieved by serial transmission. This result shows that a single Gaussian code-

book (whose PSD matches the water-filling spectrum of the composite channel)

suffices to achieve capacity unlike in the OFDM case when a codebook of differ-

ent rates should be used on each sub-carrier. The codewords can then be filtered

(beam-forming) by different filters before transmission through the different an-

tennas. Our approach is particularly well suited, when the capacity-achieving

frequency band is concentrated within continuous intervals. This is often the

case since the equivalent channel ‖F(ejw)‖ now is a summation of many individ-

ual channels. Thus, it is flattened out over the whole range of frequency. The

result that serial transmission can be used to achieve capacity for the single

antenna ISI channel case is due to Forney and Ungerboeck [63]. The results

here show that this is true for the MISO ISI case as well.
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3. MIMO Discrete-Time ISI System

The general expression for the capacity of MIMO ISI channels is given in [51]. How-

ever, the detailed proof was not included in [51]. Furthermore, the solution for the

optimization of input PSD was not found there. Thus, the author used the flat in-

put PSD in both space and time dimensions. For MIMO channels without ISI, in

general, the optimization solution also has no closed-form expression except for some

asymptotic cases. Thus we leave this open problem of finding capacity for MIMO ISI

channels as the future research.

It has been shown that the SIMO and MISO ISI channels behave equivalently

and they accept quite similar analysis approaches. Thus, from now on, we only focus

on the MISO ISI channels. Similar results can be deduced for the counterpart MISO

ISI channels. In the next section, we shall discuss another interesting problem when

CSI is not present at the transmitter and the receiver only has a noisy CSI.

D. Information Rate for Nearest Neighbor Decoding

A more practical scenario is when the receiver does not have perfect CSI but only the

estimated CSI, or when it is too expensive to have/to implement the system with the

precise CSI. The receiver may form the estimated CSI based on the received signals,

or through a separate control channel which is independent of the transmitted data.

Another similar problem arises when sub-optimum, or reduced-complexity, schemes

are used for both the transmitter and the receiver. Instead of using the original

channel coefficients, the receiver, or possibly the transmitter, uses the shortened ver-

sion of them to reduce the encoding and decoding complexity. (In this chapter, we

interchangeably use channel coefficients, channel taps, and CSI to mean the same

thing.)
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1. Estimated CSI

In this subsection, we investigate the case when the estimated channel coefficients

{f̂t,l} are available only at the receiver. An acceptable representation of {f̂t,l} is

f̂t,l = f t,l + f̃t,l, 1 ≤ t ≤ NT , 0 ≤ l ≤ L (6.29)

where f t,l are fixed constants during the transmission block, and f̃t,l are random

variables with E[f̃t,l] = 0 and E[|f̃t,l|2] = σ2
f̃
. The values of f t,l depend on the channel

estimation method used. It is usually assumed that f t,l = E[ft,l] when the channels

undergo fading [56]. This represents an unbiased estimator. The results provided

here are for one single realization of the channel. When studying outage capacity,

averaging over statistics of the channels is necessary. We further assume that f̃t,l

are independent of the channel inputs xt,n, and that the processes {yn} and {f̃t,l}

are jointly ergodic. By introducing the random terms f̃t,l, we include many practical

scenarios, enabling us to investigate the problem more flexibly. The assumption

that variances of f̃t,l are the same is not totally unreasonable because normally the

receiver employs only one channel estimation method. It is possible that the channel

estimation error becomes smaller when the energy captured by the receiver along some

paths is high. This situation can also be dealt with but it will make the expression

messier. However, the assumption above is still made since it allows us to have a

somewhat cleaner expression, as being seen shortly in the following subsections.

2. Decoding Metric

The optimum decoder requires the knowledge of the pdf of the receive sequence {yn}

given the input sequence {xt,n} and the estimated CSI {f̂t,l}. However, this is often

hard to obtain, especially when the receiver has to estimate the channel statistics.
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Thus, a sub-optimum decoder is used instead. The decoder decodes the received

signals by minimizing the following decoding metric

DN(m) =
1

N

N−1∑

n=0

∣∣∣∣yn −
NT∑

t=1

L∑

l=1

f̂t,lx
(m)
t,n−l

∣∣∣∣
2

(6.30)

where the input sequence to the t-th transmit antenna {x(m)
t,n } is the m-th codeword

taken from a codebook M of eNR codewords, where R (in nats) is the code rate. Since

the transmitter has no knowledge of the CSI, i.i.d. Gaussian codewords are used.

By using the argument similar to that in [3], [59], the MISO NCGC and the true

MISO ISI channels are equivalent in terms of capacity when N → ∞. Thus we only

consider the MISO NCGC.

The decoding metric for the MISO NCGC is then

D̃N(m) =
1

N

N−1∑

n=0

∣∣∣∣y[n] −
NT∑

t=1

N−1∑

l=0

f̂t[n]x
(m)
t [n− l]

∣∣∣∣
2

(6.31)

where f̂t[0, N−1] is the sequence obtained from f̂t,l by padding N−L−1 zeros at the

end, and the indices in the summation in (6.31) are taken modulo N . As N → ∞,

the end effects vanish and, hence, decoding using the metrics (6.30) and (6.31) is

equivalent. That is, the decoder chooses message m as

m = arg min
m̂∈M

D̃N(m̂). (6.32)

By Parseval’s theorem, the decoding metric (6.31) becomes

D̃N(m) =
1

N2

N−1∑

k=0

∣∣∣∣Y [k] −
NT∑

t=1

F̂t[k]X
(m)
t [k]

∣∣∣∣
2

where

F̂t[k] = F t[k] + F̃t[k], 1 ≤ t ≤ NT , 0 ≤ k < N,
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and F t[k] and F̃t[k] are, respectively, the DFTs of f t[0, N − 1] and f̃t[0, N − 1]. It is

easy to verify that E[|F̃t[k]|2] = (L+ 1)σ2
f̃
. Moreover, F̃t[k] are independent in space

(with index t) and correlated in frequency (with index k). That is, E[F̃t1 [k1]F̃
∗
t2
[k2]] =

0, 0 ≤ k1, k2, < N, t1 6= t2; and E[F̃t[k1]F̃
∗
t [k2]] 6= 0, k1 6= k2.

3. Generalized Mutual Information

The generalized mutual information (GMI) [60], denoted by IMISO
GMI , of the system

assuming the decoding rule (6.32) specifies the highest rate at which the probability

of error averaged over all i.i.d. Gaussian input sequences tends to zero as block length

N goes to infinity. The following result quantifies the IMISO
GMI , and is the generalization

of [59].

Theorem 3: The GMI of the MISO NCGC whose decoder is based on (6.32), and

whose channel input is an i.i.d. Gaussian ensemble is

IMISO
GMI = sup

θ<0
I(θ) = sup

θ<0
[θT − Λ(θ)] (6.33)

where

T =
1

2π

∫ π

0

‖∆F(ejw)‖2Es/NT dw

+ (L+ 1)σ2
f̃
Es + N0,

‖∆F(ejw)‖2 =

NT∑

t=1

∣∣Ft(e
jw) − F t(e

jw)
∣∣2,

F t(e
jw) =

N−1∑

n=0

f t[n]e−jnw =
L∑

l=0

f t,le
−jlw,

‖F(ejw)‖2 =

NT∑

t=1

|F t(e
jw)|2, (6.34)
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and

ψ(θ,X , w) =
θ
(
‖F(ejw)‖2Es/NT + N0

)

1 − θEsX /NT

− log(1 − θEsX /NT ),

Λ(θ) =
1

2π

∫ 2π

0

∫ ∞

0

ψ(θ,X , w)fX (X )dXdw (6.35)

and fX (X ) is the non-central chi-square pdf with 2NT degrees of freedom, and is

given by

fX (X ) =
1

(L+ 1)σ2
f̃

( X
‖F(ejw)‖2

)(NT −1)/2

· exp

(
−‖F(ejw)‖2 + X

(L+ 1)σ2
f̃

)

· INT −1

(√
X‖F(ejw)‖
(L+ 1)σ2

f̃

)
, X ≥ 0. (6.36)

Proof: Since the codewords are chosen independently according to the Gaussian prod-

uct distribution, the decoder (6.32) is symmetric and the probability of error averaged

over an ensemble of codebooks does not depend on the actual transmitted code-

word. Thus, without loss of generality, we assume that the transmitted codeword is

x
(1) = {x(1)

t [0, N − 1], 1 ≤ t ≤ NT}. Thus, the received signals are expressed as

y[n] =

NT∑

t=1

N−1∑

l=0

ft[l]x
(1)
t [n− l] + z[n].

In general, we denote the DFT of x
(m) as X(m). That is, X(1) = [X

(m)
1 [0, N −

1]· · ·X(m)
NT

[0, N − 1]]T , where X
(m)
t [k] are i.i.d. complex Gaussian random variables

with zero mean and variance Es/NT .

Using the property of Riemann integrals [3], the joint ergodicity of processes

y[0, N − 1] and f̃t[0, N − 1] (so are their DFTs), and the independence among F̃t[k],



101

X
(m)
t [k], and Z[k], the metric accumulated by the correct codeword X(1) converges

almost surely (a.s.) to

T = lim
N→∞

D̃N (1)

= lim
N→∞

1

N2

N−1∑

k=0

∣∣∣∣
NT∑

t=1

(
Ft[k] − F̂t[k]

)
X

(1)
t [k] + Z[k]

∣∣∣∣
2

= lim
N→∞

1

N

N−1∑

k=0

1

N

∣∣∣∣
NT∑

t=1

{(
Ft[k] − F t[k]

)
− F̃t[k]

}
X

(1)
t [k] + Z[k]

∣∣∣∣
2

a.s.
= lim

N→∞

1

2π

∫ 2π

0

1

N
E

[∣∣∣∣
NT∑

t=1

{[
Ft(e

jw) − F t(e
jw)
]
− F̃t(e

jw)
}
X

(1)
t [k] + Z[k]

∣∣∣∣
2
]

dw,

a.s.
=

1

2π

∫ 2π

0

{[
‖∆F(ejw)‖2 +NT (L+ 1)σ2

f̃

]
Es/NT + N0

}
dw,

where

‖∆F(ejw)‖2 ,

NT∑

t=1

∣∣Ft(e
jw) − F t(e

jw)
∣∣2.

An error occurs when the decoder declares message m 6= 1. The probability of error

is then equal to Pr
[
D̃N(m) < D̃N(1)

]
. Using the Gartner-Ellis theorem [64], [60], it

follows that

IMISO
GMI = − lim

N→∞

1

N
log Pr

[
D̃N(m) < D̃N (1)

]
= sup

θ<0
[θT − Λ(θ)]

where Λ(θ) is the limiting logarithmic moment generating function (MGF)

Λ(θ) = lim
N→∞

1

N
ΛN(Nθ) (6.37)

where ΛN(θ) is the MGF of metric D̃N(m), and is defined as

ΛN(θ) , E[exp(θD̃N(m))|Y [0, N − 1], F t[0, N − 1], 1 ≤ t ≤ NT ].
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Given Y [0, N − 1] and F t[0, N − 1], 1 ≤ t ≤ NT , D̃N(m) is simply the summation

of N non-central chi-squared random variables with 2 degrees of freedom each. It is

easy to verify that

ΛN(θ) =

N−1∑

k=0

[ |Y [k]|2θ/N2

1 − ‖F̂[k]‖2θEs/(NNT )
− log

(
1 − ‖F̂[k]‖2θEs/(NNT )

)]
(6.38)

where

‖F̂[k]‖2 =

NT∑

t=1

∣∣F t[k] + F̃t[k]
∣∣2.

Replacing (6.38) into (6.37), using the property of Riemann integrals, and using the

ergodicity argument, we obtain

Λ(θ) = lim
N→∞

1

N

N−1∑

k=0

[
|Y [k]|2θ/N

1 − ‖F̂[k]‖2θEs/NT

− log
(
1 − ‖F̂[k]‖2θEs/NT

)]

a.s.
= lim

N→∞

1

2π

∫ 2π

0

E

[ ∣∣∑NT

t=1 Ft(e
jw)X

(1)
t [k] + Z[k]

∣∣2θ/N
1 −∑NT

t=1

∣∣F t(ejw) + F̃t(ejw)
∣∣2θEs/NT

− log

(
1 −

NT∑

t=1

∣∣F t(e
jw) + F̃t(e

jw)
∣∣2θEs/NT

)]
dw

a.s.
=

1

2π

∫ 2π

0

∫ ∞

0

[
θ
(
‖F(ejw)‖2Es/NT + N0

)

1 − θEsX /NT

− log
(
1 − θEsX /NT

)
]

· fX (X )dXdw,

where the last equality is obtained because X
(1)
t [k] and F̃t[k] are independent, and the

summation
∑NT

t=1

∣∣F t(e
jw) + F̃t(e

jw)
∣∣2 follows the non-central chi-square distribution

with 2NT degrees of freedom and is given in (6.36). �

With the original form of the GMI above, it is hard to gain some intuition behind

even though we have used a quite simple set up for the channel estimation error (6.29).

So we study some simplified cases.
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a. Without Deterministic Channel Estimation Error

We consider the case when the deterministic channel estimation error vanishes, i.e.,

‖∆F(ejw)‖2 = 0, or F(ejw) = F(ejw). This represents an unbiased estimator. When

the number of transmit antennas is large, or approaches infinity as in the asymp-

totic case, we can say more about ‖F(ejw)‖2/NT . For the analysis to be tractable,

we assume that the channel coefficients ft,l spatially possess the same statistics (at

different transmit antennas) and that they are temporally independent. That is, ft1,l

and ft2,l are of the same statistics (identical distribution); and ft,l1 and ft,l2 , l1 6= l2,

are independent. We note here that this does not violate our assumption that the

channel coefficients ft,l do not change during the whole transmission block of duration

N symbols. What we mean by statistics is that the channels change independently

from transmission block to transmission block, and they possess the randomness with

the above assumptions. To avoid confusion, we introduce one more time index, de-

noted by κ, in the definition of channel coefficients to denote different transmission

blocks. In this case, we write ft,l(κ). Thus, ft,l(κ) change with respect to κ, and

remain constants for fixed κ. Denote E[|ft,l(κ)|2] = σ2
fl
, 0 ≤ l ≤ L. Clearly, ft1,l(κ)

and ft2,l(κ), t1 6= t2, are different realizations of different processes with the same

statistics (distribution). Consequently, in the limiting case,

lim
NT→∞

1

NT
‖F(ejw)‖2 = lim

NT →∞

1

NT

NT∑

t=1

∣∣∣∣
L∑

l=0

ft,l(κ)e
−jlw

∣∣∣∣
2

(a)
= E

[∣∣∣∣
L∑

l=0

ft,l(κ)e
−jlw

∣∣∣∣
2]
, a.s.

(b)
=

L∑

l=0

σ2
fl

, ‖σf‖2 (6.39)
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where (a) is true because we assume that ft1,l(κ) are jointly ergodic, and ft1,l(κ) and

ft2,l(κ) are of the identical distribution; and (b) is true because we implicitly assume

that E[ft,l(κ)] = 0. This result implies that the equivalent channel behaves like a flat

spectrum slow fading channel.

We are interested in the distribution of the random variable φ = X /NT , where

X follows the non-central chi-squared distribution with 2NT degrees of freedom as

defined in (6.36). In fact, as NT → ∞, φ has an impulse distribution at σ2
f̃

+ ‖σf‖2,

i.e.,

fφ(X /NT ) = δ
(
X /NT − σ2

f̃
− ‖σf‖2

)
. (6.40)

This can be easily verified by using the fact that E[X ] = NTσ
2
f̃

+ ‖F(ejw)‖2 and

E[|X |2] − E
2[X ] = NTσ

2
f̃

+ 2σ2
f̃
‖F(ejw)‖2. Thus, E[φ] = σ2

f̃
+ ‖F(ejw)‖2/NT and

σ2
φ , E[|φ|2] − E

2[φ] = σ2
f̃
/NT + 2σ2

f̃
‖F(ejw)‖2/N2

T . As NT → ∞, E[φ] → σ2
f̃

+ ‖σf‖2

and σ2
φ → 0, assuming that σ2

f̃
and ‖σf‖2 are bounded (since ‖F(ejw)‖2 = ‖F(ejw)‖2).

Substituting (6.39) and (6.40) into (6.35) we obtain

Λ(θ) =
θ
(
Es‖σf‖2 + N0

)

1 − θEs

(
σ2

f̃
+ ‖σf‖2

) − log
(
1 − θEs

(
σ2

f̃
+ ‖σf‖2

))
. (6.41)

The metric accumulated by the correct codeword is now

T = (L+ 1)Esσ
2
f̃

+ N0.

By taking the derivative of I(θ) in (6.33) with respect to θ and equating it to zero,



105

we obtain

0 = aθ2 + bθ + c, (6.42)

a = Es

(
σ2

f̃
+ ‖σf‖2

)2
[(L+ 1)Esσ

2
f̃

+ N0] > 0,

b =
(
σ2

f̃
+ ‖σf‖2

)[
Es‖σf‖2 − 2N0 − (2L+ 1)Esσ

2
f̃

]
,

c = Lσ2
f̃
− 2‖σf‖2.

Denote roots of (6.42) by θ1 and θ2. We are interested in a negative real root of

(6.42), if it exists.3 Thus, there are two cases we need to consider.

• When b ≥ 0: then σ2
f̃
≤ ‖σf‖

2

2L+1
− 2N0

(2L+1)Es
. This automatically gives c < 0, and

consequently ∆ = b2 − 4ac > 0 since a > 0 (always), and both roots are real.

Obviously, there must be at least one negative root say θ1 = (−b−
√

∆)/(2a) <

0.

• When b < 0: then σ2
f̃
>

‖σf‖
2

2L+1
− 2N0

(2L+1)Es
. If ∆ = b2 − 4ac > 0, there must be

at least one positive root, say θ2 = (−b +
√

∆)/(2a) > 0, since a > 0. Since

θ1 θ2 = c/a, θ1 < 0 when c < 0. Obviously, c < 0 (i.e., σ2
f̃
<

2‖σf ‖
2

L
) implies

∆ > 0. Thus, when
‖σf‖

2

2L+1
− 2N0

(2L+1)Es
< σ2

f̃
<

2‖σf ‖
2

L
, there must one positive root

and one negative root. When c ≥ 0 (i.e., σ2
f̃
≥ 2‖σf ‖

2

L
), either ∆ < 0 or ∆ ≥ 0,

in which if the latter is true, then both roots must be non-negative.

Thus, the optimum solution is θ∗ = θ1 =
(
− b −

√
b2 − 4ac

)
/(2a) < 0, when

σ2
f̃
<

2‖σf ‖
2

L
. If σ2

f̃
≥ 2‖σf ‖

2

L
, θ∗ = 0 and the resulting GMI is equal to zero, regardless

of how large the transmit power Es is. This result specifies the threshold effect of the

3The probability of decoding error is proportional to eθE(D̃∞(m)), for some positive

function E(D̃∞(m)). (We are dealing with positive transmission rate.) Thus, the
probability of error can approach 0 only when θ is negative.
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variance of the random channel estimation error, and is summarized as follows.

Lemma 1: As the number of antennas NT approaches infinity, the random

channel estimation error has the fatal effect on GMI if E[ft,l(κ)] = 0 and σ2
f̃

≥
2‖σf ‖

2

L
= 2

L

∑L
l=0 σ

2
fl
. In this case, regardless of how large the transmit power Es is,

the GMI is equal to zero.

• Remark 4: The distribution of channel coefficients in time or space has no

influence on GMI because only the total channel gain ||σf ||2 appears in the

expression.

• Remark 5: It is interesting to note here that if ‖∆F(ejw)‖2 vanishes, it can

be seen that the metric accumulated by the correct codeword T depends on

(L + 1)σ2
f̃
. That is, the effect of the channel estimation error increases by

a factor of (L + 1) compared to the frequency non-selective single antenna

case. More interestingly, increasing the number of antennas NT means that

the random channel estimation noise sources increase; However, this does not

worsen the overall effect of random channel estimation noise. This is because the

noise sources (variances) are scaled by the signal power transmitted over each

antenna (equal to Es/NT ), which decreases by the same factor as the number

of random noise source increases.

When the random channel estimation error diminishes, (i.e., σ2
f̃

= 0), it is easy

to verify that the optimization parameter θ∗ = −1/N0. In this case, the resulting

GMI is

IGMI = log

(
1 +

Es

N0
||σf ||2

)

which does not depend on the number of channel coefficients L+ 1.
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b. Without Random Channel Estimation Error

When the random channel estimation noises f̃t,l disappear, the distribution fX (X )

becomes an impulse at ‖F(ejw)‖2. That is,

fX (X ) = δ
(
X − ‖F(ejw)‖2

)
. (6.43)

Replacing (6.43) into (6.35) we get

Λ(θ) =
1

2π

∫ 2π

0

[
θ(‖F(ejw)‖2Es/NT + N0)

1 − θEs‖F(ejw)‖2/NT

− log
(
1 − θEs‖F(ejw)‖2/NT

)]
dw.

(6.44)

The metric accumulated by the correct codeword T does not depend on the random

channel estimation noise, and is reduced to

T =
1

2π

∫ 2π

0

‖∆F(ejw)‖2Es/NT dw + N0.

The resulting IMISO
GMI has a similar form as [59] for the single antenna channel. However,

the result here is for the MISO case. Thus our result is more general.

In general, the optimum value of θ, denoted by θ∗, is a function of the channel

response as well as the channel estimation error. Unfortunately, we are unable to

find a closed-form expression for this optimization parameter. Thus, to compute the

GMI, we use the numerical method. However, when the constant channel estimation

error vanishes, i.e., ‖∆F(ejw)‖2 = 0, by taking the derivative of I(θ) = θT −Λ(θ) and

solving the quadratic equation, the optimum θ would be: θ∗ = −1/N0. In this case,

the GMI becomes the familiar i.i.d. Gaussian capacity CG and is given by

IMISO
GMI = CG =

1

2π

∫ 2π

0

log

(
1 +

Es‖F(ejw)‖2

N0

)
dw. (6.45)
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E. Conclusion

We have investigated the capacity for MISO and SIMO discrete-time ISI channels in

the chapter. First, it was assumed that the CSI is perfectly known at the transmitter

and the receiver. In this case, the capacity of the MISO and SIMO discrete-time ISI

channels are the same. This result is well-known for the ISI-free channels, but has

not been reported before for ISI channels. We then looked into the problem when the

receiver has noisy CSI, and the transmitter has no CSI. Also, the receiver employs a

sub-optimum decoding metric, instead of the optimum decoder as done in [56]. The

code design idea for single antenna ISI channels can be used for multiple antenna ISI

channels.
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APPENDIX A

PROOF OF PROPERTY 1, CHAPTER III

r
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x
n 
= 0

x
n 
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Fig. 31. Trellis of 2-tap (f0, f1) channels; for the precoded channel, the precoder poly-

nomial h(D) = 1 ⊕D; a = f0 + f1; b = f0 − f1.

The trellis diagrams of the precoded and non-precoded ISI channels are presented

in Fig. 31. At time instant n, we consider two cases; that is, the transmitted bits

xn = 1 and xn = 0. Since there is no a priori knowledge available at the first iteration,

the inner SISO assumes that the probability of transmitting xj , for j 6= n, is equally

likely. Let X 1
n = {xN−1

0 : xn = 1} and X 0
n = {xN−1

0 : xn = 0}. We assume that the

equalizer uses the BCJR algorithm [8] to compute the a posteriori probabilities. We
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obtain the following relations for the forward and backward recursions:

αn(0) =
1

2
αn−1(0)pZn(rn + a + zn) +

1

2
αn−1(1)pZn(rn + b+ zn), (A.1)

αn(1) =
1

2
αn−1(0)pZn(rn − b+ zn) +

1

2
αn−1(1)pZn(rn − a + zn), (A.2)

βn(0) =
1

2
βn+1(0)pZn(rn + a + zn) +

1

2
βn+1(1)pZn(rn − b+ zn), (A.3)

βn(1) =
1

2
βn+1(0)pZn(rn + b+ zn) +

1

2
βn+1(1)pZn(rn − a+ zn), (A.4)

where rn = f0x
′
n + f1x

′
n−1 is the noiseless channel output, f0 and f1 are the first

and second channel taps, respectively, a = f0 + f1, b = f0 − f1, and pZn(zn) =

1√
2πσ2

z

e−z2
n/(2σ2

z ) is the pdf of the nth noise sample. For a fixed transmitted sequence

x, r is also fixed. Thus, taking the expectation of (A.1)–(A.4) over noise samples

results in

Ezn
0
[αn(0)] = CEzn−1

0
[αn−1(0)]e−(rn+a)2/(4σ2

z ) + CEzn−1
0

[αn−1(1)]e−(rn+b)2/(4σ2
z ),

(A.5)

Ezn
0
[αn(1)] = CEzn−1

0
[αn−1(0)]e−(rn−b)2/(4σ2

z ) + CEzn−1
0

[αn−1(1)]e−(rn−a)2/(4σ2
z ),

(A.6)

EzN−1
n

[βn(0)] = CEzN−1
n+1

[βn+1(0)]e−(rn+a)2/(4σ2
z ) + CEzN−1

n+1
[βn+1(1)]e−(rn−b)2/(4σ2

z ),

(A.7)

EzN−1
n

[βn(1)] = CEzN−1
n+1

[βn+1(0)]e−(rn+b)2/(4σ2
z ) + CEzN−1

n+1
[βn+1(1)]e−(rn−a)2/(4σ2

z ).

(A.8)

In (A.5)–(A.8), we have used Ezn

[
1√
2πσ2

z

e−(rn+m+zn)2/(2σ2
z )
]

= 1

2
√

πσ2
z

e−(rn+m)2/(4σ2
z ) and

C = 1

4
√

πσ2
z

. Since equations (A.5)–(A.8) share the common multiplication constant

C, we can drop it without causing any confusion. We are now interested in finding

the average values of the left-hand sides of (A.5)–(A.8) over all possible transmitted
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channel input sequences x (or, equivalently over all possible noiseless channel output

sequences r). We first focus on the forward recursion in (A.5). We have the following

relations:

Ezn
0 ;rn−1

0 ,rn=a[αn(0)] ∝ Ezn−1
0 ;rn−1

0 |rn=a[αn−1(0)]e−a2/σ2
z +

+ Ezn−1
0 ;rn−1

0 |rn=a[αn−1(1)]e−(a+b)2/(4σ2
z ), (A.9)

Ezn
0 ;rn−1

0 ,rn=−a[αn(0)] ∝ Ezn−1
0 ;rn−1

0 |rn=−a[αn−1(0)] +

+ Ezn−1
0 ;rn−1

0 |rn=−a[αn−1(1)]e−(a−b)2/(4σ2
z ), (A.10)

Ezn
0 ;rn−1

0 ,rn=b[αn(0)] ∝ Ezn−1
0 ;rn−1

0 |rn=b[αn−1(0)]e−(a+b)2/(4σ2
z ) +

+ Ezn−1
0 ;rn−1

0 |rn=b[αn−1(1)]e−b2/σ2
z , (A.11)

Ezn
0 ;rn−1

0 ,rn=−b[αn(0)] ∝ Ezn−1
0 ;rn−1

0 |rn=−b[αn−1(0)]e−(a−b)2/(4σ2
z ) +

+ Ezn−1
0 ;rn−1

0 |rn=−b[αn−1(1)]. (A.12)

It should be mentioned here that in (A.9)–(A.12), we actually take the average of the

quantity Ezn
0
[αn(0)] over all realizations of rn

0 . This should not be confused with the

restriction that for a particular branch in the trellis, αn must be in a certain state.

In (A.9)–(A.12), we have used the following notations: {rn−1
0 , rn = m} is the set of

all possible rn
0 of length n + 1 such that the nth component rn = m; {rn−1

0 |rn = m}

is the set of all possible rn−1
0 of length n given that rn = m.

From the trellis diagrams in Fig. 31, it is easily seen that {rn−1
0 |rn = a} ≡

{rn−1
0 |rn = −b} and {rn−1

0 |rn = −a} ≡ {rn−1
0 |rn = b}. Thus,

Ezn−1
0 ;rn−1

0 |rn=a[αn−1(0)] = Ezn−1
0 ;rn−1

0 |rn=−b[αn−1(0)] , αa,−b
n−1 (0), (A.13)

Ezn−1
0 ;rn−1

0 |rn=−a[αn−1(0)] = Ezn−1
0 ;rn−1

0 |rn=b[αn−1(0)] , α−a,b
n−1 (0), (A.14)

Ezn−1
0 ;rn−1

0 |rn=a[αn−1(1)] = Ezn−1
0 ;rn−1

0 |rn=−b[αn−1(1)] , αa,−b
n−1 (1), (A.15)

Ezn−1
0 ;rn−1

0 |rn=−a[αn−1(1)] = Ezn−1
0 ;rn−1

0 |rn=b[αn−1(1)] , α−a,b
n−1 (1). (A.16)



120

Since rn = −a and rn = −b merge into state Sn = 0 and rn = a and rn = b merge

into state Sn = 1, we obtain

αa,−b
n (0) = Ezn

0 ;rn−1
0 ,rn=a[αn(0)] + Ezn

0 ;rn−1
0 ,rn=b[αn(0)], (A.17)

α−a,b
n (0) = Ezn

0 ;rn−1
0 ,rn=−a[αn(0)] + Ezn

0 ;rn−1
0 ,rn=−b[αn(0)], (A.18)

αa,−b
n (1) = Ezn

0 ;rn−1
0 ,rn=a[αn(1)] + Ezn

0 ;rn−1
0 ,rn=b[αn(1)], (A.19)

α−a,b
n (1) = Ezn

0 ;rn−1
0 ,rn=−a[αn(1)] + Ezn

0 ;rn−1
0 ,rn=−b[αn(1)]. (A.20)

Substituting (A.13)–(A.16) into (A.9)–(A.12) and then summing them according to

(A.17)–(A.20), we have relations for the forward recursions at time instant n:

αa,−b
n (0) ∝ e−a2/σ2

zαa,−b
n−1 (0) + e−b2/σ2

zα−a,b
n−1 (1) + e−(a+b)2/(4σ2

z )
[
α−a,b

n−1 (0) + αa,−b
n−1 (1)

]
,

(A.21)

α−a,b
n (0) ∝ α−a,b

n−1 (0) + αa,−b
n−1 (1) + e−(a−b)2/(4σ2

z )
[
αa,−b

n−1 (0) + α−a,b
n−1 (1)

]
, (A.22)

αa,−b
n (1) = α−a,b

n (0), (A.23)

α−a,b
n (1) ∝ e−b2/σ2

zαa,−b
n−1 (0) + e−a2/σ2

zα−a,b
n−1 (1) + e−(a+b)2/(4σ2

z )
[
α−a,b

n−1 (0) + αa,−b
n−1 (1)

]
.

(A.24)

Thus, equations (A.21)–(A.24) are the forward recursions on expected values directly,

which will be used to compute the conditional a posteriori probabilities.

Likewise, by using the fact that {rN−1
n+1 |rn = a} ≡ {rN−1

n+1 |rn = b}, {rN−1
n+1 |rn =

−a} ≡ {rN−1
n+1 |rn = −b}, and rn = −a and rn = b diverge from state Sn−1 = 0, rn = a

and rn = −b diverge from state Sn−1 = 1, we obtain relations for the backward
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recursions on expected values at time instant n as

βa,b
n (0) ∝ e−a2/σ2

zβa,b
n+1(0) + e−b2/σ2

zβ−a,−b
n+1 (1) + +e−(a−b)2/(4σ2

z )
[
β−a,−b

n+1 (0) + βa,b
n+1(1)

]
,

(A.25)

β−a,−b
n (0) ∝ β−a,−b

n+1 (0) + βa,b
n+1(1) + e−(a+b)2/(4σ2

z )
[
βa,b

n+1(0) + β−a,−b
n+1 (1)

]
, (A.26)

βa,b
n (1) = β−a,−b

n (0), (A.27)

β−a,−b
n (1) ∝ e−b2/σ2

zβa,b
n+1(0) + e−a2/σ2

zβ−a,−b
n+1 (1) + e−(a−b)2/(4σ2

z )
[
β−a,−b

n+1 (0) + βa,b
n+1(1)

]
.

(A.28)

The initializations for (A.21)–(A.28) are done as usual, depending on the starting

state and whether the trellis is terminated or not. We now calculate the a posteriori

probabilities for bit xn averaged over noise samples and transmitted sequences for the

non-precoded and precoded channels. For a fixed transmitted sequence x, r is also

fixed. Thus, P
(
yn−1

0 , yn, y
N−1
n+1 |rN−1

0

)
= P

(
yn−1

0 |rn−1
0

)
P (yn|rn)P

(
yN−1

n+1 |rN−1
n+1

)
. We

have

Ez [Pnp(X̂n = 1)] ∝
[
Ezn−1

0
[αn−1(0)]e−(rn−b)2/(4σ2

z ) +

+ Ezn−1
0

[αn−1(1)]e−(rn−a)2/(4σ2
z )
]
EzN−1

n+1
[βn+1(1)], (A.29)

Ez [Pnp(X̂n = 0)] ∝
[
Ezn−1

0
[αn−1(0)]e−(rn+a)2/(2N+0) +

+ Ezn−1
0

[αn−1(1)]e−(rn+b)2/(4σ2
z )
]
EzN−1

n+1
[βn+1(0)], (A.30)

Ez [Pp(X̂n = 1)] ∝ Ezn−1
0

[αn−1(0)]e−(rn−b)2/(4σ2
z )

EzN−1
n+1

[βn+1(1)] +

+ Ezn−1
0

[αn−1(1)]e−(rn+b)2/(4σ2
z )

EzN−1
n+1

[βn+1(0)], (A.31)

Ez [Pp(X̂n = 0)] ∝ Ezn−1
0

[αn−1(0)]e−(rn+a)2/(4σ2
z )

EzN−1
n+1

[βn+1(0)] +

+ Ezn−1
0

[αn−1(1)]e−(rn−a)2/(4σ2
z )

EzN−1
n+1

[βn+1(1)]. (A.32)
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Assuming that Xn = 1 was transmitted at time n, the noiseless channel output rn for

the non-precoded channel must be in the set {a, b}. Thus, the conditional a posteriori

probability can be expressed as

Pnp(X̂n = 0|Xn = 1) = Ez;x∈X 1
n
[Pnp(X̂n = 0)]

= Ez;rn−1
0 ,rn=a,rN−1

n+1
[Pnp(X̂n = 0)] +

+ Ez;rn−1
0 ,rn=b,rN−1

n+1
[Pnp(X̂n = 0)]. (A.33)

The two terms in the right-hand side of (A.33) can be directly calculated by the

BCJR algorithm to obtain

Ez;rn−1
0 ,rn=a,rN−1

n+1
[Pnp(X̂n = 0)] ∝

[
e−a2/σ2

zαa,−b
n−1 (0) + e−(a+b)2/(4σ2

z )αa,−b
n−1 (1)

]
βa,b

n+1(0),

(A.34)

Ez;rn−1
0 ,rn=b,rN−1

n+1
[Pnp(X̂n = 0)] ∝

[
e−b2/σ2

zα−a,b
n−1 (1) + e−(a+b)2/(4σ2

z )α−a,b
n−1 (0)

]
βa,b

n+1(0).

(A.35)

Note that in (A.34), the forward and backward recursions, αa,−b
n−1 and βa,b

n+1, are con-

nected by the branch with rn = a. Thus, they have a common superscript a. Similarly,

in (A.35), α−a,b
n−1 and βa,b

n+1 are connected by the branch with rn = b. Thus, they have

a common superscript b.

Substituting (A.34) and (A.35) into (A.33), we get

Pnp(X̂n = 0|Xn = 1) ∝
{
e−a2/σ2

zαa,−b
n−1 (0) + e−b2/σ2

zα−a,b
n−1 (1) +

+ e−(a+b)2/(4σ2
z )
[
α−a,b

n−1 (0) + αa,−b
n−1 (1)

]}
βa,b

n+1(0).(A.36)



123

Likewise, we have

Pnp(X̂n = 1|Xn = 0) = Ez;x∈X 0
n
[Pnp(X̂n = 0)]

∝
{
e−b2/σ2

zαa,−b
n−1 (0) + e−a2/σ2

zα−a,b
n−1 (1) +

+ e−(a+b)2/(4σ2
z )
[
α−a,b

n−1 (0) + αa,−b
n−1 (1)

]}
β−a,−b

n+1 (1), (A.37)

Pp(X̂n = 0|Xn = 1) = Ez;x∈X 1
n
[Pp(X̂n = 0)]

∝ e−(a−b)2/(4σ2
z )
[
αa,−b

n−1 (0)β−a,−b
n+1 (0) + α−a,b

n−1 (1)βa,b
n+1(1)

]
+

+ e−(a+b)2/(4σ2
z )
[
α−a,b

n−1 (0)βa,b
n+1(0) + αa,−b

n−1 (1)β−a,−b
n+1 (1)

]
, (A.38)

Pp(X̂n = 1|Xn = 0) = Ez;x∈X 0
n
[Pp(X̂n = 0)]

∝ e−(a−b)2/(4σ2
z )
[
αa,−b

n−1 (0)βa,b
n+1(1) + α−a,b

n−1 (1)β−a,−b
n+1 (0)

]
+

+ e−(a+b)2/(4σ2
z )
[
α−a,b

n−1 (0)β−a,−b
n+1 (1) + αa,−b

n−1 (1)βa,b
n+1(0)

]
. (A.39)

Using the relations P
(
X̂

(1)
n = 1

)
= eL

(1)
ext(xn)

(
1+eL

(1)
ext(xn)

) , P
(
X̂

(1)
n = 0

)
= 1(

1+eL
(1)
ext(xn)

) , and

L
(1)
ext(xn) = log

(
P (X̂n=1)

P (X̂n=0)

)
,4 we get:

π(1) = Ez;x[P (X̂n = 1|Xn = 1) + P (X̂n = 0|Xn = 0) −

−P (X̂n = 0|Xn = 1) − P (X̂n = 1|Xn = 0)]

= Ez;x[2 − 2P (X̂n = 0|Xn = 1) − 2P (X̂n = 1|Xn = 0)].

We have to show:

Ez;x[Pp(X̂n = 0|Xn = 1)] − Ez;x[Pnp(X̂n = 0|Xn = 1)] +

Ez;x[Pp(X̂n = 1|Xn = 0)] − Ez;x[Pnp(X̂n = 1|Xn = 0)] ≥ 0. (A.40)

4At the first iteration, the a priori information is equal zero.
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To prove (A.40), it suffices to show that R1|0 ≤ 1 and R0|1 ≤ 1, where

R1|0 =
Pnp(X̂n = 1|Xn = 0)

Pp(X̂n = 1|Xn = 0)
, (A.41)

R0|1 =
Pnp(X̂n = 0|Xn = 1)

Pp(X̂n = 0|Xn = 1)
. (A.42)

For the 2-tap (f0, f1 =
√

1 − f 2
0 ) channel, it suffices to consider 0.5 ≤ f 2

0 ≤ 1 due

to the symmetry property of R1|0 and R0|1 with respect to f0 and f1. The plot of

R1|0 and R0|1 for different 2-tap channels and noise variances is shown in Fig. 32.5 It

should be noted that R1|0 and R0|1 are continuous and monotonic functions of f0 at

fixed Eb/N0. It is clear that in all cases, R1|0 ≤ 1 and R0|1 ≤ 1.

It should be pointed out here that computation of R1|0 and R0|1 does not involve

simulating the channel and the equalizer. Furthermore, the numerical problem does

not appear in evaluating R1|0 and R0|1 since they are ratios of probabilities and upper-

bounded by 1.

5R1|0 and R0|1 converge to their stable values very fast (after no more than 20 time
indexes used to compute the forward and backward recursions).
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Fig. 32. Plot of R1|0 and R0|1 as functions of Eb/N0 for various 2-tap ISI channels.
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APPENDIX B

PROOF OF PROPERTY 2, CHAPTER III

To show CER
(1)

np ≥ CER
(1)

p , it is equivalent to show

Ez;x

[
P

(1)
np (X̂n = 1|Xn = 1)

P
(1)
np (X̂n = 0|Xn = 1)

− P
(1)
p (X̂n = 1|Xn = 1)

P
(1)
p (X̂n = 0|Xn = 1)

]

+ Ez;x

[
P

(1)
np (X̂n = 0|Xn = 0)

P
(1)
np (X̂n = 1|Xn = 0)

− P
(1)
p (X̂n = 0|Xn = 0)

P
(1)
p (X̂n = 1|Xn = 0)

]
≥ 0. (B.1)

Since P (X̂n = 1|Xn = xn) + P (X̂n = 0|Xn = xn) can be normalized to value one, to

show (B.1), it suffices to show

Ez;x

[
1

Pnp(X̂n = 0|Xn = 1)
− 1

Pp(X̂n = 0|Xn = 1)

]
≥ 0 (B.2)

and

Ez;x

[
1

Pnp(X̂n = 1|Xn = 0)
− 1

Pp(X̂n = 1|Xn = 0)

]
≥ 0. (B.3)

We first prove the following claim:

Claim 1: Let pU and pV be pdfs of random variables U and V , respectively,

where U, V ∈ [0, 1]. If pU and pV satisfy the following conditions: pU and pV cross

over each other at only one point whose abscissa is in (0, 1) and E[U ] ≥ E[V ], then

E[1/U ] ≤ E[1/V ].

Proof: Let pU and pV meet at point A with the abscissa xA ∈ (0, 1), and h =

pU − pV . The following must be true about h: h(x) ≤ 0, for x ≤ xA, h(x) ≥ 0, for
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x > xA, and
∫ 1

0
h(x)dx = 0. Let ∆ = E[1/U ] − E[1/V ]. Then,

∆ =

∫ 1

0

h(x)

x
dx

=

∫ xA

0

h(x)

x
dx+

∫ 1

xA

h(x)

x
dx

≤ 1

xA

∫ xA

0

h(x)dx+
1

xA

∫ 1

xA

h(x)dx = 0. (B.4)

In (B.4), we have used the integral theorem.

By Claim 1 and the fact that R0|1 ≤ 1 and R1|0 ≤ 1, the proof is complete.
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