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ABSTRACT

Code Constructions and Code Families for Nonbinary Quantum Stabilizer Codes.

(August 2004)

Avanti Ulhas Ketkar, B.E., Pune University

Chair of Advisory Committee: Dr. Andreas Klappenecker

Stabilizer codes form a special class of quantum error correcting codes. Nonbi-

nary quantum stabilizer codes are studied in this thesis. A lot of work on binary

quantum stabilizer codes has been done. Nonbinary stabilizer codes have received

much less attention. Various results on binary stabilizer codes such as various code

families and general code constructions are generalized to the nonbinary case in this

thesis. The lower bound on the minimum distance of a code is nothing but the min-

imum distance of the currently best known code. The focus of this research is to

improve the lower bounds on this minimum distance. To achieve this goal, various

existing quantum codes are studied that have good minimum distance. Some new

families of nonbinary stabilizer codes such as quantum BCH codes are constructed.

Different ways of constructing new codes from the existing ones are also found. All

these constructions together help improve the lower bounds.
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CHAPTER I

INTRODUCTION

A. Background

Quantum information and computation is the study of information processing that

uses quantum mechanical systems. The motivation behind studying quantum com-

puters is their enormous information storing and processing capacity. The discovery

of Shor’s factorization algorithm [1] and Grover’s Search algorithm [1] made this

power practically useful. This discovery motivates us to compare the capabilities of

classical and quantum computers. Small quantum computers doing several opera-

tions represent the state of the art quantum computation. The study of quantum

cryptography, quantum error correcting codes and fault tolerant quantum comput-

ing makes the implementation of a quantum computer practically realizable. This

chapter covers the basics of this quantum computation and error correcting codes.

The unit of information in quantum computing is called a quantum bit or qubit.

A qubit can be in a state |0〉 or |1〉, or a linear superposition

ψ = α|0〉+ β|1〉,

where α, β ∈ C. The basis states |0〉 or |1〉 play the same role as the bits 0 and

1, in classical information theory. The coefficients α, β are assumed to satisfy the

condition |α|2 + |β|2 = 1. If the qubit is measured in the computational basis, |0〉 will

be observed with the probability |α|2 and |1〉 with the probability |β|2. The Dirac ket

notation α|0〉+ β|1〉 is customary in quantum computing, but it simply represents a

vector (a, b) in C2. Similarly, multiple qubits can be in a superposition of states with

The journal model is IEEE Transactions on Automatic Control.
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different amplitudes of the basis states. For instance, a two-qubit state can be given

as

ψ = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉,

where α00, α01, α10, α11 ∈ C and |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. Analogous

to classical computers, quantum computers have logical gates, wires and quantum

circuits. The quantum gates are nothing but unitary matrices acting on quantum

states. Pauli matrices denote the most important single qubit gates. These gates

include the I gate, which is an Identity matrix or no operation, the X gate, which

is analogous to the classical NOT gate, the Z gate, which is a phase gate and the Y

gate, which is a combination of X and Z gates. Another important single qubit gate,

sometimes called as square root of NOT gate, is Hadamard gate, which is given by

H =
1√
2







1 1

1 −1






.

The controlled-NOT gate and the Toffoli gate are the multiple qubit gates. The

controlled-NOT gate flips the target bit if the control bit is 1. The Toffoli gate flips the

target bit if both the control-bits are 1. Quantum computations are performed using

these basic gates and other arbitrary unitary operations. Quantum information is very

sensitive to the environment. When the computer interacts with its environment, the

quantum state of the computer becomes entangled with the state of the environment;

hence, the quantum state of the computer decays into an incoherent mixed state.

This phenomenon is known as decoherence. Decoherence drastically compromises

the performance of the machine. Hence, one needs a means to protect the quantum

information.
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B. Mathematical Basics

We now study some mathematics fundamentals that need to be understood for the

theory of error correction.

1. Galois fields

A field is a set F which contains at least two elements and has two operations + and

×. A field is closed under addition and multiplication and satisfies the associative,

commutative and distributive laws. It has additive and multiplicative identities and

inverses for each element except that 0 does not have a multiplicative inverse. A

field with a finite number of elements is called a finite field or a Galois field. A finite

field has pm elements, where p is a prime and m is an integer. The set of nonzero

elements of the field is a cyclic group under multiplication. A generator of this cyclic

group is called a primitive element of the field. A finite field can be considered as

the set of polynomials with coefficients in Fp, when addition and multiplication is

taken modulo an irreducible polynomial of degree n. Quantum information theory

has a special interest in the Galois field of 4 elements. It is generated by polynomials

over F2 modulo the irreducible polynomial x2 + x + 1. Its elements are denoted as

{0, 1, ω, ω2}.

2. Notions of inner product

Two vectors are orthogonal to each other with respect to some notion of inner product

if the product is zero. There are several notions of inner product defined, namely,

the standard inner product, the trace-symplectic form, the Hermitian inner product,

the alternating Hermitian product, the symplectic inner product or the twisted inner

product, the trace-alternating form and so on. Each of these notions has different
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definitions and different degrees of generalization. The specific notion of inner product

will be explained whenever it is used for the first time in the following chapters.

C. Error Correcting Codes

1. Classical error correcting codes

The basic idea behind the error correcting codes is to add some redundancy to the

message word of length k to give a code word of length n. In a q-ary error correcting

code, every bit can take q values from Fq, where q is a prime power. If q = 2, the code

is called a binary code. If q ≥ 2, the code is called a nonbinary code. Hence, the code

space contains qk different code words that are taken from the vector space Fn
q . The

Hamming distance between two code vectors is the number of coordinates in which

they differ. The minimum distance of a code C is the minimum Hamming distance

between all distinct pairs of code words in C. A code with minimum distance d can

detect all the errors of weight less than or equal to d−1 and can correct all the errors

of weight less than or equal to b(d− 1)/2c, where weight of a vector is defined as the

number of nonzero components in the vector. The minimum distance of a code thus

determines the error correcting capability of the code.

If k information bits are encoded into n information bits with minimum dis-

tance d, then the classical error correcting code is said to be an [n, k, d] code. A

binary [n, k] code C is a k-dimensional subspace of Fn
2 . It is customary in coding

theory to write the code words as row vectors. The matrix whose rows form a basis

of C is called a generator matrix. Consider, for example, a [5, 3] binary code C whose

generator matrix G can be given as
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G =













1 0 0 1 1

0 1 0 0 1

0 0 1 1 1













.

All the code words in C can be obtained by the linear combination of theses three

vectors. Another way of describing the code is via its parity check matrix H; in this

case, the code is given by the kernel of the map x→ xHT . A parity check matrix of

the [5, 3] code C is therefore given as

H =







1 0 1 1 0

1 1 1 0 1






.

For any error correcting code, GHT = 0. Also, if an [n, k] code C has generator matrix

G = (I, A) in the standard form, then the parity check matrix of C is H = (−AT , I),

where AT is the transpose of A and is an (n−k)×k matrix and I is an (n−k)×(n−k)

identity matrix.

The error correction is now explained. Let e denote the error acting on the code

word x. Consider a received vector y, which is given by the sum of the code word

x and error vector e, i.e., y = x + e. Then y is in some coset of C, and this coset

contains all expressions e = y− x, where x ∈ C. Let H be the parity check matrix of

code C with rows h1, h2 . . . hn−k. If y ∈ V , then the syndrome of y is defined to be a

column vector

syn(y) =

































y.h1

y.h2

.

.

.

y.hn−k

































.
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An appropriate error correcting scheme is applied depending upon the syndrome

measured for the received word.

2. Quantum error correcting codes

The basic idea of error correction, i.e., adding redundancy to information bits to

allow for error correction in classical error correction, remains the same in quantum

error correction. However, some new ideas need to be introduced in quantum error

correction to deal with the following difficulties [1]:

• No cloning: The no cloning theorem states that quantum information cannot

be copied.

• Errors are continuous: A continuum of errors might occur on a single qubit.

• Measurement destroys quantum information.

However, these difficulties can be overcome. This can be explained using a 3-bit

repetition code. Suppose a single state a|0〉+ b|1〉 is encoded as a|000〉+ b|111〉. The

error correction is done in two stages.

1. Error detection and syndrome measurement: The measurement result of the

received state is called error syndrome. If the error flips the bit value(s) of the

state, then it is called a bit flip error. If the error changes the phase of the state,

then it is called a phase flip error. For the bit flip channel, this code has four

error syndromes:

P0 = |000〉〈000|+ |111〉〈111| (1.1)

P1 = |100〉〈100|+ |011〉〈011| (1.2)

P2 = |010〉〈010|+ |101〉〈101| (1.3)

P3 = |001〉〈001|+ |110〉〈110| (1.4)
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These syndromes represent no error, bit flip on qubit one, bit flip on qubit two

and bit flip on qubit three, respectively. Suppose the first bit is flipped to give

ψ = a|100〉+ b|011〉. Then, 〈ψ|P1|ψ〉 = 1. Thus, the output tells that the error

is on the first bit without measuring or destroying the state.

2. Recovery: Depending on the syndrome, an appropriate correction is applied.

So, if the first bit is flipped by the error, it is flipped back by the correction

circuit.

The code Q = {a|000〉 + b|111〉|a, b ∈ C} is a 2-dimensional subspace of Cq. It

is an example of a so called stabilizer code. Let

Z =







1 0

0 −1







denote the phase gate. Consider the group with 4 elements S = {I ⊗ I ⊗ I, Z ⊗ Z ⊗

I, I ⊗ Z ⊗ Z,Z ⊗ I ⊗ Z}. The projection onto the code Q is defined by:

PQ =
1

|S|
∑

M∈S

M.

This quantum code Q detects an error if and only if PQEPQ = cEPQ holds, where

cE ∈ C. It follows that a phase error Z ⊗ I ⊗ I is not detectable. Indeed, one notes

that

PQ(Z ⊗ I ⊗ I)PQ = |000〉〈000| − |111〉〈111| 6= cPQ

for every c ∈ C, so Z⊗I⊗I cannot be detected by this code. This discussion provides

strong background to study the special class of codes called stabilizer codes. Contin-

uing from here, chapter II explains the connection between classical self-orthogonal

codes and quantum stabilizer codes that helps in constructing the quantum codes.

Chapter III then explains the various existing quantum code families and shows how

the new code families such as quantum BCH codes are constructed. Chapter IV
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proves general code constructions where new quantum codes are constructed from

the existing ones. Using all these results, how the actual improvement in the lower

bounds is achieved is explained in chapter V. The conclusions and future work then

follow.
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CHAPTER II

CONNECTION BETWEEN CLASSICAL SELF-ORTHOGONAL CODES AND

QUANTUM STABILIZER CODES

Error correcting codes form a very useful and significant part of classical information

theory. This area is very well studied. The results presented in this chapter make use

of these classical error correcting codes to build nonbinary quantum stabilizer codes.

A brief overview of the generalization of the binary stabilizer codes to the nonbinary

case is given. The material is based on [2, 3, 4, 5, 6, 7]. For the sake of completeness

some of the proofs are restated and expanded.

To relate the quantum stailizer codes to classical self-orthogonal codes, we make

use of an error basis, an error group and the stabilizer group. An error basis is

nothing but a set of matrices that is basis for all the error operators in the q-ary

system. Section A will explain the error basis of our interest in more detail. The set

of all the error operators generated by the error basis is called error group Gn. An

abelian subgroup S, of this error group is the stabilizer group which is of our interest.

If we operate in a q-ary system, then the problem of constructing the quantum error

correcting codes reduces to two steps. The first step is to find the appropriate error

basis and the group generated by this error basis. In the next step, an abelian

subgroup of this error group is chosen as a stabilizer S. The commutativity plays

an important role in the construction of the stabilizer codes. While constructing the

quantum codes from classical codes, some notion of inner product is used to arrive at

the commutativity of operators in the stabilizer. We explain this construction, step

by step, starting out with the appropriate selection of error basis.
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A. Error Basis

In [2] nonbinary error bases are discussed in detail and their application to quantum

codes is discussed in [5]. The relevant results now follow. Even though many bases

are possible, the bases where the operators are invertible and unitary are useful.

Lemma 1. Let E denote a set of q2 unitary error operators over Fq. This set E is

called a nice error basis if and only if

• it contains the identity matrix

• the product of two elements in E is a scalar multiple of another element in E .

• the trace Tr(A†B) = 0 for distinct elements A,B of E .

More about these nice error basis can be found in [8]. The nice error basis that

we choose for our connection between classical and quantum codes, is the following:

{TiRj : i, j ∈ Fp} (2.1)

where Tij = δi,j−1 mod p, Rij = εiδi,j , ε = e−ι2π/p and ι =
√
−1. A direct consequence

of the definitions can be stated as

TiTj = T(i+j) mod p

RiRj = R(i+j) mod p

where i, j ∈ Fp.

Lemma 2. The set of matrices given by TiRj form an orthogonal basis for the set of

complex matrices of size p.

Proof. The proof can be found in [5].
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An interesting observation is that this basis separates the errors into amplitude

errors and phase errors and any error can be considered as a combination of these

two basic errors.

The extension of this basis to the case of q = pm is now given by recognizing

that Fpm
∼= Fm

p as vector spaces over Fp. The error basis can therefore be generated

by tensoring the basis over Fp, m number of times. That the basis so generated is

invertible and orthogonal is proven in [5]. This leads to the following lemma. Proof

is omitted.

Lemma 3. The m-fold tensor products {(TaRb)1 ⊗ (TaRb)2 ⊗ . . . (TaRb)m} of TaRb,

where a, b ∈ Fp, form a nice error basis over Fq.

The operators in the stabilizer commute. Therefore, the crucial information

that we need to extract from the error basis are the relations with respect to the

commutativity of two error operators. We relate the classical self-orthogonal codes

to the stabilizer codes in such a way that some notion of inner product between the

error basis in the classical code get converted to the commutativity of the operators

in the stabilizer. For the p-ary case we have

TiRj = ε−ijRjTi (2.2)

Let a, b ∈ Fn
q , then 〈a, b〉 =

∑n
i=1 aibi denotes the standard inner product of a, b.

Extending this to the pm-ary case, we get:

TaRb = ε−〈a,b〉RbTa (2.3)

where the standard inner product is over Fp. When this is extended to an operator
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for n qubits we get the following relation for an error operator of n qubits:

Ea,b = Ta(1)Rb(1) ⊗ Ta(2)Rb(2) · · · ⊗ Ta(n)Rb(n)

= ε−
P

n

i=1〈a(i),b(i)〉Rb(1)Ta(1) ⊗Rb(2)Ta(2) · · · ⊗Rb(n)Ta(n)

= ε−〈a,b〉vRb(1)Ta(1) ⊗Rb(2)Ta(2) · · · ⊗ Rb(n)Ta(n)

where the vector inner product between a,b is given as:

〈a,b〉v =

n
∑

i=1

〈a(i), b(i)〉 =

n
∑

i=1

m
∑

j=1

a
(i)
j b

(i)
j .

From these relations we can deduce that

Ea,b = ε−〈b,c〉vEa+d,b+c

Ec,d = ε−〈a,d〉vEa+d,b+c

Lemma 4. The error operators Ea,b and Ec,d commute if and only if

〈a,d〉v − 〈b, c〉v =

n
∑

i=1

〈a(i), d(i)〉 − 〈b(i), c(i)〉 = 0 (2.4)

holds.

Thus, we translated the commutativity relation in quantum stabilizer codes to

the inner product notion in classical codes.

B. From Quantum Stabilizer Codes to Classical Codes

A stabilizer code Q is the joint +1 eigenspace of an abelian subgroup S of the error

group Gn. If Q ≤ Cqn

is a quantum code with stabilizer S, then the centralizer

C(S) of the stabilizer is defined as a subgroup of Gn such that elements in C(S)

commute with all the elements of S. All the errors outside C(S)−〈S〉 are detectable.

The code Q can correct errors of weight less than or equal to t, if C(S) − 〈S〉 does
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not contain errors of weight less than or equal to 2t. Note that, when a quantum

stabilizer code Q is derived from the classical self-orthogonal code C, the classical

code C corresponds to the stabilizer of the quantum code and the dual code of C

corresponds to the centralizer of the stabilizer. Hence, S ⊂ C(S) gives us a condition

that, classical codes should be contained in their dual (self-orthogonal code) with an

appropriate definition of inner product. We also have a condition that there cannot

be any vectors of weight less than d in C⊥ \ C if Q has distance d.

First we connect the stabilizer over Fq to F2n
q . As mentioned in the last section

every error operator is defined by two vectors a, b ∈ Fn
q . We can associate a vector

(a|b) of length 2n for every operator and thus form an isomorphism over F2n
q .

Let v, v′ ∈ F2n
q be two operatots such that v = (a|b) and v′ = (a′|b′). These

operators commute if the following relation holds

〈a,b′〉v − 〈a′,b〉v = 0
n
∑

i=1

〈ai, b′i〉 − 〈a′i, bi〉 = 0.

This is the vector symplectic product between v, v′ denoted as 〈v, v′〉vs. As similar

notion of inner product, called the symplectic inner product, denoted by 〈.|.〉s, is used

later where the summation for the vectors is not present. The next lemma therefore

follows.

Lemma 5. The stabilizer of a q−ary quantum code is isomorphic to C ⊂ F2n
q and

C(S) is isomorphic to the symplectic dual of C over Fp.

However, this symplectic product is actually over Fp. Though we have a classical

code at this point the notion of the inner product is defined in a rather inconvenient

form and does not have any apparent relation to one of the standard inner products

over Fq. To take advantage of classical codes we now define an automorphism over
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Fq so that the current symplectic inner product can be more conveniently related to

the inner product over Fq. This motivates the middle connection between classical

and quantum codes.

1. Connecting to classical codes over F2n
q

At this point, we have the p-ary error basis. To operate in a q-ary system, we have

to tensor these basis m times. To simplify this and get the q-ary basis, we define an

automorphism ϕ. Let ϕ∗ be an automorphism of Fm
p . For a = (a(1), a(2), . . . , a(n)) ∈

Fn
pm ,

ϕ∗∗(a) = (ϕ∗(a(1)), ϕ∗(a(2)), . . . , ϕ∗(a(n))).

Let us further define the automorphism of F2n
q . For all vectors v = (a|b) ∈ F2n

q , define

ϕ(v) = (a|ϕ∗∗(b))

where a, b ∈ Fn
q . Let C ≤ F2n

q be an additive self-orthogonal code where the orthog-

onality is with respect to the symplectic product over Fp. Let the code generated by

the automorphism be ϕ(C). Thus if we have (a|b) ∈ ϕ(C) then (a|ϕ−1(b)) ∈ C. Let

the matrix M defining ϕ∗−1 be given by

Mi,j = trpm/p(αiαj),

where α is a basis of Fpm over Fp. The code C is self-orthogonal with respect to the

symplectic product defined over Fp. We have:

〈(a|ϕ∗−1(b)), (a′|ϕ∗−1(b′))〉vs = 〈a, ϕ∗−1(b′)〉v − 〈a′, ϕ∗−1(b)〉v. (2.5)
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For a, b ∈ Fq we have aT = (a1, a2, . . . , am) and bT = (b1, b2, . . . , bm) ∈ Fpm where a,b

are in matrix form. This leads to

aTMb =
m
∑

i=1

m
∑

j=1

aibj tr(αiαj) =
m
∑

i=1

m
∑

j=1

tr(aibjαiαj)

= tr((

m
∑

i=1

aiαi)(

m
∑

j=1

bjαj)) = tr(ab)

This automorphism conveniently transforms the symplectic product over Fp to trace

of the symplectic product over Fq as follows

〈(a|ϕ−1
∗ b), (a′|ϕ−1

∗ b′)〉vs = tr(〈a, b′〉 − 〈a′, b〉) (2.6)

= trq/p(〈(a|b), (a′|b′)〉s). (2.7)

So we need to find codes that are self-orthogonal with respect to the inner product

defined by trq/p(〈a,b′〉 − 〈a′,b〉). This is nothing but trace of the symplectic inner

product defined earlier and is called trace-symplectic form. Note that it is possible

to choose the basis {αi; i = 1, 2 . . .m} such that ϕ∗ is an identity.

2. Connecting to classical codes over Fn
q2

In this section a connection is established between classical self-orthogonal codes of

length n over Fq2 to self-orthogonal codes over length 2n over Fq.

Suppose (a|b), (a′|b′) ∈ F2n
q , then we define the trace-symplectic form between

(a|b), (a′|b′) as

trq/p(〈(a|b), (a′|b′)〉s) = trq/p(〈a, b′〉 − 〈a′, b〉) (2.8)

It is obvious that vectors orthogonal with respect to the symplectic inner product

will be orthogonal with respect to the trace-symplectic form. Let [ω, ωq] be a normal
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basis of Fq2 over Fq. Then, for each vector v = (a|b) ∈ F2n
q , we define a mapping

φ : F2n
q /F

n
q2 given by

φ(v) = ωa+ ωqb. (2.9)

It is clear that the weight of v is equal to the Hamming weight of φ(v), and the

distance between vectors v = (a|b), v′ = (a′|b′) ∈ F2n
q is equal to dist(φ(v), φ(v′)).

Suppose v, v′ ∈ F2n
q , then we define the trace-alternating form as

〈φ(v), φ(v′)〉a = Trq/p(
〈φ(v), φ(v′)q〉 − 〈φ(v)q, φ(v′)〉

ω2 − ωq2
). (2.10)

Lemma 6. The trace-symplectic form of v and v ′ is equal to the trace-alternating

form.

Proof. Suppose that φ(v) = ωa + ωqb and φ(v′) = ωa′ + ωqb′. Then the trace-

alternating form of T = 〈φ(v)φ(v′)〉a is given by

T = trq/p

(

〈(ωa+ ωqb), (ωqa′ + ωq2
b′)〉 − 〈(ωqa+ ωq2

b), (ωa′ + ωqb′)〉
ωωq2 − ωqωq

)

.

After multiplying and taking out the common terms, we get the standard inner prod-

ucts as:

T = trq/p

(

〈a, b′〉((ωωq2
)− (ωqωq)) + 〈a′, b〉((ωqωq)− (ωq2

ω))

ω2 − ωq2

)

.

Note that the terms ωω̄aa′ and ωqω̄qbb′ get canceled. Further simplifying we get,

T = trq/p

(

(ω2 − ωq2
)(〈a, b′〉 − 〈a′, b〉)
ω2 − ωq2

)

= trq/p(〈a, b′〉 − 〈a′, b〉).

Hence proved.

Theorem 7. There exists an additive classical code over F2n
q , self-orthogonal with
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respect to the trace-symplectic form if and only if there exists an additive classical

code over Fn
q2 self-orthogonal with respect to the trace-alternating form.

Proof. This follows from Lemma 6 and the fact that mapping φ is an isometry.

C. Existence of Quantum Codes

We can now formally relate the existence of quantum codes by examining the corre-

sponding classical codes based on the previous results.

Theorem 8. Let C be a [n, k, d]q classical code such that C⊥ ⊆ C where the inner

product is with respect to the standard inner product. Then there exists [[n, 2k−n, d]]q
quantum code.

Proof. This construction is exact generalization of the CSS codes. Let C be defined

by the generator matrix G and parity check matrix H. Since C⊥ ⊆ C it is self-

orthogonal. If we define C ′ as the direct sum C⊥ ⊕ C⊥, then we have a F2n
q code

whose generator matrix is given as







H 0

0 H







Any vector v ∈ C ′ is of the form (a|0) or (0|b) where a, b ∈ C⊥. When we take the

symplectic product we get

〈(a|0), (b|0)〉s = 〈a, 0〉 − 〈0, b〉 = 0 (2.11)

〈(a|0), (0|b)〉s = 〈a, b〉 − 〈0, 0〉 = 0 (2.12)

where the second symplectic product vanishes because C⊥ is self-orthogonal. This

has a dimension of 2n − 2k. Therefore the stabilizer has a dimension 2n − 2k. The

quantum code has a dimension n − (2n − 2k) = 2k − n. Since C has a minimum
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distance of d, C⊥s\C has a distance greater or equal to d. The corresponding quantum

code therefore has a distance greater than or equal to d.

Corollary 9. If there exists a classical code C, [n, (n − k)/2]q2 self-orthogonal with

respect to the trace-alternating form, then there exists a quantum code with the pa-

rameters [[n, k, d]] where d = min {w(x) : x ∈ C⊥a\C}.

Corollary 10. If there exists a classical [n, (n − k)]q code C, self-orthogonal with

respect to the trace-symplectic form, then there exists a quantum code with the param-

eters [[n, k, d]] where d = min {w(x) : x ∈ C⊥ts\C}.

It should be noted that at no point have we considered the code C to be linear

over Fq2 , hence the codes so constructed will be purely additive codes. If however

the code is linear then it is sufficient for the existence of self-orthogonal code C,

[n, (n − k)/2]q2 for the existence of an [[n, k, d]]q quantum code. Because the code

is linear, we need to only list (n − k)/2 generators, as the other generators can be

obtained by multiplication of one of the basis elements used for expanding F2
q over

Fq in the mapping φ.

D. Conclusion

To summarize, we have looked in detail the various links that connect the quantum

codes to classical codes. And we have shown how the problem of nonbinary quantum

stabilizer code maybe translated to design of self-orthogonal codes over Fn
q2 . We have

clarified the various notions of inner product that come into picture at various stages

in this process. We have also looked at two constructions for quantum codes from

classical codes.
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CHAPTER III

QUANTUM CODE FAMILIES

As stated earlier, the goal of this research is to improve the lower bounds on the

nonbinary quantum stabilizer codes. The following chapters explain how this goal is

achieved.

A. Existing Quantum Codes

With the aim of meeting the proposed upper bounds, the existing literature is searched

for good nonbinary quantum stabilizer codes. The following results prove to be useful.

Theorem 11. For any prime power q and an integer in the range 0 ≤ µ < (q − 1),

there exist quantum stabilizer codes with parameters [[q2, q2 − 2µ − 2, µ + 2]]q and

[[q2 − 1, q2 − 2µ− 1, µ+ 1]]q.

Proof. Please see [9] for proof.

For instance, the MDS code [[9, 5, 3]]3 can be constructed using this theorem.

MDS code is the Maximally Distance Seperable code and therefore has excellent error

correcting capability.

Theorem 12. By shortening of MDS code, for an integer s, and an integer d, 2 ≤

d ≤ q , there exist quantum stabilizer codes [[q2 − s, q2 − 2d+ 2− s, d]]q.

Proof. Please see [9] for proof.

For example, [[7, 3, 3]]3 code can be constructed from [[9, 5, 3]]3 code. These

results are taken from [9]. Both these results give us some good codes to start with.
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Theorem 13. Let q be a prime power. For an even integer r, there exist quantum

stabilizer codes with parameters

[[
qr+2 − 1

q2 − 1
,
qr+2 − 1

q2 − 1
− (r + 2), 3]]q.

For an odd integer r there exist quantum stabilizer codes with parameters

[[
q3(qr+2 − 1)

(q2 − 1)
,
q3(qr+2 − 1)

(q2 − 1)
− (r + 2), 3]]q.

The details of these two results can be found in [6]. Another simple result can

be stated as:

Lemma 14. An [[n, n, 1]]q quantum stabilizer code always exists.

In this section, we use the Hermitian duality between vectors. For any element

α ∈ Fq2 , we define the conjugate of that element as αq and it is denoted by ᾱ. For

a vector a ∈ Fn
q2 , we define ā as the conjugate of a and the conjugate is taken over

each component. The Hermitian inner product of two vectors in Fn
q2 is defined as

〈a, b〉h = 〈a, b̄〉 =

n
∑

i=1

aib̄i =

n
∑

i=1

aib
q
i , where a, b ∈ Fn

q2 .

Lemma 15. Any classical code self-orthogonal with respect to the Hermitian product

will be self-orthogonal with respect to the trace-alternating form.

Proof. The Hermitian product between a, b ∈ F n
q2 is given by

n
∑

i=1

aib
q
i = 0⇒

n
∑

i=1

(aib
q
i )

q = 0⇒
n
∑

i=1

aq
i bi = 0

Hence,
n
∑

i=1

aib
q
i −

n
∑

i=1

aq
i bi = 0
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For a, b ∈ F n
q2 , the trace-alternating form between them is given by

∑n
i=1 aib

q
i −

∑n
i=1 a

q
i bi

ω2 − ω2q
,

where (ω, ωq) is a normal basis of Fq2 over Fq. Thus, the trace-alternating form

vanishes when the Hermitian product vanishes.

The connection between the classical and quantum codes from Chapter II can

then be used to construct corresponding quantum codes.

B. Searching for Codes

The very first approach taken for finding quantum codes is to search for the classical

self-orthogonal codes exhaustively (brute force approach). Choosing all combinations

of (q2)k vectors from the (q2)n vectors is, however, very expensive, and hence, some

optimizations are necessary. The following approach is then taken

• For a classical [n, k, d] code, the generator matrix G is a k × n matrix that can

always be reduced to a standard form. This standard form is given as

G =

[

Ik×k Ak×n−k

]

,

where I is an identity matrix and A is an arbitrary matrix.

• Instead of choosing (q2)k vectors from (q2)n vectors, k vectors are generated each

time that satisfy this standard form. This approach of choosing the generators

instead of choosing all the code vectors reduces the search space by a very large

factor. This choosing operation is saved and the reduction of factor (q2)k is

achieved due to the standard form.

• The all zero vector is eliminated and the self-orthogonality of the generators is
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checked.

• An [n, k, d] code is pure if the dual of the code does not contain vectors of weight

less than d; otherwise, the code is impure. Since the search was done for pure

codes, the vectors with weight less than d are eliminated.

• The most expensive operation of checking linear independence is then done.

Even though the search algorithm is optimized over the exhaustive search, it did not

give significant results. This is because of the exponential complexity of operations

such as checking the linear independence of code vectors. It might be improved by

making use of the exact weight enumerators and standard form of the dual code’s

generator matrix. Machines with higher power might also help.

C. Quantum BCH Codes

It has been shown previously that binary quantum codes can be constructed from

classical cyclic codes or, in particular, Bose-Chaudhuri-Hocquenghem codes (BCH

codes) [4, 9, 11]. BCH codes form an extremely important class of error correcting

codes.

Lemma 16. Let ω be a primitive nth root of unity over Fq and let g(X) be a monic

polynomial over Fq of smallest degree that has the δ− 1 numbers ωb, ωb+1, . . . , ωb+δ−2

among its zeros, where b ≥ 0 and δ ≥ 1. Thus,

g(X) = lcm{mb(X), mb+1(X), . . . , mb+δ−2(X)},

where mi(X) is the minimal polynomial of ωi. The q-ary cyclic code with this g(X)

as a generating polynomial is called the BCH code with designed distance δ.
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We can construct nonbinary quantum codes if we start with classical self-orthogonal

BCH codes using the connection given in Chapter II. Such quantum codes derived

from classical self-orthogonal BCH codes are called quantum BCH codes. The first

construction gives us smaller codes and hence is more useful in practice. However,

the last two constructions help in constructing higher dimensional codes. In general,

three families of quantum BCH codes are constructed. Furthermore, some of these

codes meet the proposed upper bounds on minimum distance. Hence, they provide us

with the starting point for improving the lower bounds. Let C be an [n, k, d] classical

BCH code which is used to construct the quantum BCH code. Let ZC denote the

zero set of C over a field Fq2 . The generator polynomial of C is then given by

g(X) =
∏

z∈Zc

(X − αz).

Let h(X) be of minimal degree so that g(X)h(X) = 0 mod (Xn − 1). Then the

generator polynomial of the Hermitian dual code is defined as [9]

h∗(X) =
∏

z∈Zn\Zc

(X − α−qz),

where Zn is the set of all n roots of Xn− 1 = 0. Hence, the zero set of the orthogonal

set is given as

ZC⊥ = {−qz mod n : z ∈ {0, 1, 2 . . . n− 1}\ZC}.

The roots are −qz for this dual code because the duality is with respect to the

Hermitian product. Therefore, each element is raised to power q.

Lemma 17. A classical BCH code is self-orthogonal if the set of the roots of the dual

code is a subset of the set of the roots of the BCH code.

Proof. Let g(X) be a generating polynomial of a BCH code C over Fq and let h∗(X)

be the generating polynomial of the Hermitian dual code of C. The result, however,
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holds for any notion of inner product. Any codeword in C can be given as

c(X) = g(X)m1(X)

where m1 ∈ F[X]. Any code word in the dual code of C can be given as

c∗(X) = h∗(X)m2(X)

where m2 ∈ F[X]. But if all the roots of h∗(X) are contained in the roots of g(X),

c(X) can be represented as

c(X) = g(X)m1(X) = h∗(X)m3(X)m1(X) = h∗(X)m′(X),

where g(X) = m3(X)h∗(X) and m′(X) ∈ F[X]. Thus, every code word generated by

g(X) can be generated by h∗(X). Thus, the code C is contained in its dual code and

hence is self-orthogonal.

Since the roots of the dual code lie in the set of the roots of the BCH code C,

all the vectors generated by the generator matrix of C lie in the set of all the vectors

of the dual code C⊥. Hence, the quantum BCH code can be derived from a classical

BCH code if ZC⊥ ⊆ ZC . The following algorithm gives us quantum BCH codes over

Fq derived from classical linear self-orthogonal codes over Fq2 . The self-orthogonality

is with respect to the Hermitian product.

1. Take n, d, q as integer input parameters where q is a perfect square.

2. Calculate the exponent m such that n divides qm.

3. Choose n elements from Fqm such that they are n-th roots of unity and order

them. Call this set of ordered roots as Zn.

4. The minimum distance of the code should be at least d. So the dual code should
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have at least d−1 consecutive elements from the ordered roots as the zeros of its

generator polynomial. Hence, choose consecutive d− 1 roots from the ordered

roots as the zeros of the dual code.

5. To calculate all the conjugates, raise the elements to power q, m−1 times. Note

that some elements might be repeated. All these roots will give us the set of

zeros of the dual code. Call this set ZH .

6. To obtain roots of h∗(X), raise all these roots to the power −√q. This is because

the dual code is with respect to Hermitian inner product defined earlier. The

square root is taken because the field entered as input is q2. Call this set ZD.

7. The roots of g(X) can be found out as Zn\ZD. Call this set as ZC.

8. If ZH ⊆ ZC , then the BCH code is self-orthogonal. If the number of roots of

g(X) is k′, k = n− k′. Hence, we obtain [n, k, d] classical BCH code.

9. From the connection between classical and quantum codes, it can be seen as

the corresponding quantum code [[n, n − 2k, d]] where k = n − k′. The actual

distance of the quantum code can, however, be higher than this distance. This

quantum BCH code is over F√q.

10. The roots of the classical BCH code and its dual are then given as powers of

the primitive element in Fqm .

11. Repeat steps 4 to 10 for all the n combinations of d − 1 consecutive elements.

There are n combinations because the consecutiveness is cyclic.

We used this algorithm to construct quantum BCH codes. We used The Mathematica

Book [10] to search for BCH codes over F9 and F16 to give us codes over F3 and F4.
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We can also calculate the generator polynomials for these codes and their dual

codes using the roots given by the program. Using these codes, we provide the

following parameters of nonbinary quantum BCH codes over F3 and F4. After finding

out some quantum BCH codes along with the zeros of the code and its dual, the

following observations can be made

• The codes currently found do not cover the continuous values of n. This is

because n|(qm− 1). As m increases, the program takes longer time to run. For

values of q as 9 and 16, m can, at most, be 3 for the program to run in a decent

amount of time. This puts restrictions on the values of n.

• The minimum distances of these quantum BCH codes are not very good. How-

ever, some of them are MDS codes. Thus, they help in improving the lower

bounds to a large extent in combination with the general code constructions

which are explained in the next chapter.

Table I gives the quantum BCH codes over F3. In the following tables, the codes

shown in bold font are the codes that meet the proposed upper bound on the min-

imum distance. The roots of the generator polynomial of the code g(x) and the

generator polynomial of the dual code h∗(x) are given. The roots are given as the

powers of the primitive element in the field Fqm . The codes over F4 are given in Table

II.
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Table I.: Parameters of quantum BCH codes over F3

[[n, k, d]] codes Roots of g(x) Roots of h∗(x)

[[8, 6, 2]] (m=1) 1, 0, 7, 2, 4, 6, 3 1

[[10, 2, 3]] (m=2) 0, 24, 56, 40, 32, 48 24, 48, 32, 56

[[10, 6, 2]] (m=2) 0, 24, 56, 40, 64, 32, 16, 48 24, 56

[[13, 1, 3]] (m=3) 504, 336, 0, 280, 56, 168, 112 56, 112, 168, 280,

336, 504

[[13, 7, 3]] (m=3) 560, 224, 504, 336, 0, 280, 112, 280, 336

56, 168, 672, 112

[[16, 6, 4]] (m=2) 55, 15, 5, 20, 45, 60, 0, 30, 45, 10, 55, 5, 15

10, 40, 70

[[16, 10, 3]] (m=2) 55, 15, 75, 5, 20, 45, 60, 35, 45, 10, 5

0, 30, 10, 40, 70

[[16, 12, 2]] (m=2) 55, 15, 75, 5, 20, 45, 60, 35, 45, 5

0, 30, 10, 40, 50, 70

[[16, 14, 2]] (m=2) 55, 15, 25, 75, 5, 20, 65, 45, 10

60, 35, 0, 30, 10, 40, 70

[[20, 4, 5]] (m=2) 20, 60, 0, 72, 8, 40, 52, 64, 44, 8, 52, 16, 68,

44, 16, 76, 68 76, 64, 72

[[20, 8, 4]] (m=2) 20, 60, 0, 72, 8, 40, 52, 64, 44, 8, 52, 68,

32, 44, 16, 76, 68, 48 76, 72

[[20, 12, 3]] (m=2) 20, 60, 0, 72, 8, 4, 36, 40, 44, 8, 52, 68,

52, 64, 32, 44, 16, 76, 68, 48 76, 72

Continued on next page



28

Table I – Continued from previous page

[[n, k, d]] codes Roots of g(x) Roots of h∗(x)

[[20, 16, 2]] (m=2) 20, 60, 0, 24, 72, 8, 4, 56, 36, 40, 44, 76

52, 64, 32, 44, 16, 76, 68, 48

[[26, 14, 3]] (m=3) 196, 560, 224, 700, 504, 588, 0, 84, 196, 392, 588,

476, 308, 252, 392, 364, 56, 448, 448, 308, 616

616, 644, 28, 168, 672

[[26, 20, 2]](m=3) 196, 560, 224, 700, 504, 588, 336, 0, 196, 588, 308

84,476,

308, 252, 392, 280, 364, 56, 448, 616,

644, 28, 168, 672, 112

[[40, 24, 5]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 2, 4, 6, 8, 18, 36,

60, 14, 0, 12, 72, 8, 30, 4 54, 72

1, 0, 28, 36, 40, 22,

64, 32, 38, 44, 16, 76, 66, 50,

34, 70, 48

[[40, 26, 5]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 4, 6, 8, 10, 36,

60, 14, 0, 12, 72, 8, 74, 30, 54, 72

4, 26, 10, 28, 36,

40, 22, 64, 32, 38, 44, 16, 76,

66, 34, 70, 48

[[40, 28, 4]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 2, 4, 6, 18, 36,

60, 14, 0, 54, 12,

24, 72, 8, 30, 4, 56, 10, 28,

Continued on next page
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Table I – Continued from previous page

[[n, k, d]] codes Roots of g(x) Roots of h∗(x)

36, 40, 22, 64, 32,

38, 44, 16, 76, 66, 50, 34, 70,

48

[[40, 30, 4]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 6, 8, 10, 54, 72

60, 14, 0, 12, 72,

8, 74, 30, 4, 26, 10, 28, 36,

40, 52, 22, 64,

32, 38, 44, 16, 76, 66, 68, 34,

70, 48

[[40, 32, 3]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 2, 4, 28, 36

60, 14, 0, 12, 24, 78, 72, 62,

8, 30, 4, 56, 10, 28, 36, 40,

22, 64, 32, 38, 44, 16, 76, 66,

50, 34, 70, 48

[[40, 34, 3]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 8, 10, 72

60, 14, 0, 12, 78, 72, 62, 8,

30, 4, 26, 10, 28, 36, 40, 52,

22, 64, 32, 38, 44, 16, 76, 66,

74, 34, 70, 48, 68,

[[40, 36, 2]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 60, 14, 0, 12, 24, 2, 18

78, 72, 62, 8, 30, 4, 56, 10, 28, 36, 40, 52, 22,

64, 32, 38, 44, 16, 76, 66, 68, 50, 34, 70, 48

Continued on next page
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Table I – Continued from previous page

[[n, k, d]] codes Roots of g(x) Roots of h∗(x)

[[40, 38, 2]] (m=2) 2, 6, 42, 46, 58, 54, 20, 18, 60, 14, 0, 12 4, 36

24, 78, 72, 62, 8, 74, 30, 4, 56, 26, 10, 28, 36,

40, 52, 22, 64, 32, 38, 44, 16, 76, 66, 50, 34,

70, 48

Table II.: Parameters of quantum BCH codes over F4

[[n, k, d]] codes [[n, k, d]] codes

over F4

[[7, 1, 3]] (m=3) [[21, 13, 3]] (m=3)

[[9, 1, 3]] (m=3) [[21, 15, 2]] (m=3)

[[9, 3, 2]] (m=3) [[21, 19, 2]] (m=3)

[[9, 7, 2]] (m=3) [[35, 5, 6]] (m=3)

[[17, 9, 3]] (m=2) [[35, 17, 4]] (m=3)

[[17, 13, 3]] (m=2) [[35, 23, 3]] (m=3)

[[15, 11, 3]] (m=1) [[35, 29, 2]] (m=3)

[[15, 13, 2]] (m=1) [[39, 27, 3]] (m=3)

[[21, 1, 5]] (m=3) [[39, 31, 3]] (m=3)

[[21, 3, 5]] (m=3) [[39, 33, 2]] (m=3)

[[21, 7, 4]] (m=3) [[39, 37, 2]] (m=3)

[[21, 9, 3]] (m=3)
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Example 18. Consider the example of [[8, 6, 2]]3. The generator polynomial of this

code is given by

g(x) = x7 + ω5x6 + ω2x5 + ω7x4 + ω4x3 + ωx2 + ω6x+ ω3.

The generator polynomial of its dual code is

h∗(x) = x− ω.

Note that degree of g(x) is 7 and that of h∗(x) is 1. Hence, k = 7 − 1 = 6 and the

quantum BCH code obtained is a [[8, 6, 2]]3 code. It can also be verified that these

codes are orthogonal with respect to the Hermitian product by constructing their

generator matrices. Table II gives the quantum BCH codes over F4. Roots of these

codes can also be provided.

The third construction in [9] can be generalized. This construction is mainly

useful for finding higher dimensional codes.

Lemma 19. Let C = [n, k, d] be a self-orthogonal linear code over Fql that has the

dual code C⊥s = [n, n− k, d⊥s]. Let B be a self dual basis of Fql over Fq. Expanding

each element of Fql with respect to the basis B gives a linear self-orthogonal code

C2 = [ln, lk, d2 ≥ d] over Fq. The dual C⊥s = [ln, l(n− k), d2
⊥s ≥ d⊥s] is obtained in

the same manner. The results in chapter II can then be used to construct the quantum

error correcting code.

Proof. The theorem is proved by expanding the vectors in self dual basis [15]. Let

C and C⊥ denote the BCH code and its dual with respect to the standard inner

product over Fql . Let u, v be length n vectors such that u ∈ C and v ∈ C⊥. Let

α = α1, α2 . . . αl denote the self dual basis over Fq from Fql, then
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〈u, v〉 =
n
∑

i=1

uivi = 0.

Taking the trace operation from Fql to Fq and expanding over the l-ary self dual

basis,

0 = tr(

n
∑

i=1

uivi)

= tr(

n
∑

i=1

l
∑

j=1

uijαj

l
∑

k=1

vikαk)

= tr(

n
∑

i=1

l
∑

j=1

uijvijαjαj)

=

n
∑

i=1

l
∑

j=1

uijvij tr(αjαj)

=

n
∑

i=1

l
∑

j=1

uijvij.

Thus, expanding in the specific bases retains the self-orthogonality over the new

code and the new code remains self-orthogonal. The results in Chapter II can then

be used to construct the corresponding quantum code.

We use this result to construct quantum BCH codes. Tables III and IV show

codes constructed from the classical BCH codes over higher fields.

Similar construction is now explained which again gives us quantum codes with

large values of n and k.

Theorem 20. If a BCH code exists over Fq2l self-orthogonal with respect to the

product, 〈u, v〉h =
∑n

i=1 uiv
q
i = 0, all the q2-ary images of this code will be again

Hermitian self-orthogonal where the l-ary expansion is done over specific basis.

Proof. Let C and C⊥ denote the BCH code and its dual with respect to the defined

product over Fq2l . Let u, v be length n vectors such that u ∈ C and v ∈ C⊥. Let
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Table III. Parameters of quantum BCH codes over F3 from Fql

Extension field Fql Quantum BCH code over Fq

for classical code

27 [[24, 12, 2]], [[32, 8, 4]], [[32, 16, 3]], [[32, 24, 2]],

[[39, 27, 3]], [[39, 21, 4]], [[39, 15, 5]], [[39, 9, 6]],

[[39, 3, 7]], [[78, 6, 13]], [[78, 12, 12]], [[78, 18, 11]]

[[78, 24, 10]], [[78, 30, 9]], [[78, 36, 8]], [[78, 42, 7]]

[[78, 48, 6]], [[78, 54, 5]], [[78, 60, 4]], [[78, 66, 3]]

[[78, 72, 2]]

81 [[40, 8, 5]], [[40, 16, 4]], [[40, 24, 3]], [[40, 32, 2]],

[[64, 8, 8]], [[64, 16, 7]], [[64, 24, 6]], [[64, 32, 5]],

[[64, 40, 4]], [[64, 48, 3]], [[64, 56, 2]], [[80, 8, 10]]

[[80, 16, 9]], [[80, 24, 8]], [[80, 32, 7]], [[80, 40, 6]]

[[80, 48, 5]], [[80, 56, 4]], [[80, 64, 3]], [[80, 72, 2]]
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Table IV. Parameters of quantum BCH codes over F4 from Fql

Extension field Fql Quantum BCH code over Fq

for classical code

64 [[21, 3, 4]], [[21, 9, 3]], [[21, 15, 2]], [[27, 3, 5]],

[[27, 9, 4]], [[27, 15, 3]], [[27, 21, 2]], [[45, 21, 3]],

[[45, 27, 3]], [[45, 33, 2]], [[45, 39, 2], [[63, 3, 11]]

[[63, 3, 11]], [[63, 3, 11]], [[63, 3, 11]], [[63, 3, 11]]

[[63, 3, 11]], [[63, 9, 10]], [[63, 15, 9]], [[63, 21, 8]]

[[63, 27, 7]], [[63, 33, 6]], [[63, 39, 5]], [[63, 45, 4]],

[[63, 51, 3]], [[63, 57, 2]], [[105, 93, 2]], [[105, 99, 2]],

[[105, 81, 3]], [[105, 87, 3]], [[105, 69, 4]], [[105, 75, 4]],

[[105, 57, 5]], [[105, 63, 5]], [[105, 51, 6]],

256 [[20, 4, 3]], [[20, 12, 2]], [[60, 4, 8]], [[60, 12, 7]],

[[60, 20, 6]], [[60, 28, 5]], [[60, 36, 4]], [[60, 44, 3]],

[[60, 52, 2]], [[68, 4, 9]], [[68, 12, 8]], [[68, 20, 7]],

[[68, 28, 6]], [[68, 36, 5]], [[68, 44, 4]], [[68, 52, 3]],

[[68, 60, 2]]
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α = α1, α2 . . . αl denote the self dual basis over Fq2 from Fq2l . Let β = β1, β2, . . . , βl

be another basis where β = αq2l−1
.

〈u, v〉h =

n
∑

i=1

uq
ivi = 0.

Taking the trace operation from Fq2l to Fq2 and expanding over the l-ary self

dual basis,

0 = tr(

n
∑

i=1

uq
ivi)

= tr(
n
∑

i=1

l
∑

j=1

uq
ijβ

q
j

l
∑

k=1

vikαk)

= tr(
n
∑

i=1

l
∑

j=1

uq
ijvijβ

q
jαj)

=
n
∑

i=1

l
∑

j=1

uq
ijvij tr(αql

j αj)

=
n
∑

i=1

l
∑

j=1

uq
ijvij tr(αjαj)

=
n
∑

i=1

l
∑

j=1

uq
ijvij.

Thus, expanding in specific bases retains the self-orthogonality over the new code

and the new code remains self-orthogonal. The connection given in Chapter II can

then be used to construct the corresponding quantum code.

We use this result to construct the following codes. Tables V and VI show codes

constructed from the classical BCH codes over higher fields.

The list of codes provided here is not complete and can be extended by using more

powerful machines. The codes provided here, however, illustrate how the quantum

BCH code families are constructed in general. We start with these codes in the tables
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Table V. Parameters of quantum BCH codes over F3 from Fq2l

Extension field Fq2l Quantum BCH code over Fq

for classical code

27 [[24, 12, 2]], [[39, 33, 2]],

[[39, 27, 3]], [[39, 21, 4]], [[39, 15, 5]], [[39, 9, 6]],

[[39, 3, 7]]

81 [[20, 12, 2]], [[20, 4, 3]], [[32, 16, 3]], [[32, 8, 4]],

[[32, 24, 2]], [[64, 8, 8]], [[64, 16, 7]], [[64, 24, 6]],

[[64, 32, 5]], [[40, 32, 2]], [[40, 24, 3]], [[40, 16, 4]],

[[64, 40, 4]], [[64, 48, 3]], [[64, 56, 2]], [[80, 8, 10]],

[[80, 16, 9]], [[80, 24, 8]], [[80, 32, 7]], [[80, 40, 6]],

[[80, 48, 5]], [[80, 56, 4]], [[80, 64, 3]], [[80, 72, 2]],

[[40, 8, 5]]

Table VI. Parameters of quantum BCH codes over F4 from Fq2l

Extension field Fq2l Quantum BCH code over Fq

for classical code

64 [[21, 3, 4]], [[21, 9, 3]], [[21, 15, 2]], [[63, 39, 5]],

[[63, 45, 4]], [[63, 51, 3]], [[63, 57, 2]]

256 [[20, 4, 3]], [[20, 12, 2]], [[60, 4, 8]], [[60, 12, 7]],

[[60, 20, 6]], [[60, 28, 5]], [[60, 36, 4]], [[60, 44, 3]]

[[60, 52, 2]]
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and go on improving the lower bounds throughout the tables using different code

constructions. These code constructions are explained in Chapter IV.



38

CHAPTER IV

GENERAL CODE CONSTRUCTIONS

The code constructions given in this chapter construct nonbinary quantum stabilizer

codes from the existing ones. We use two notions of duality, the trace-symplectic form

and the trace-alternating form. The main sources of the construction of stabilizer

codes are in the following theorems that are discussed in Chapter II

Theorem 21. If there exists a classical [2n, qn−k]q code C, self-orthogonal with respect

to the trace-symplectic form, then there exists a quantum code with the parameters

[[n, k, d]]q, where d = min{w(x) : x ∈ C⊥ts\C}.

Theorem 22. If there exists a classical [n, qn−k]q2 code C, self-orthogonal with respect

to the trace-alternating form, then there exists a quantum code with the parameters

[[n, k, d]], where d = min{w(x) : x ∈ C⊥a\C}.

A. Constructions with Single Starting Code

Lemma 23. If an [[n, k, d]]q stabilizer code exists for k > 0, then there exists an

impure [[n+ 1, k, d]]q stabilizer code.

Proof. If an [[n, k, d]]q stabilizer code exists, then there exists an additive subcode

C ≤ F2n
q such that |C| = qn−k, C ≤ C⊥ts, and swt(C⊥ts \C) = d. Define the additive

code

C ′ = {(aα|b0) |α ∈ Fq, (a|b) ∈ F2n
q }.

We have |C ′| = qn−k+1. The definition ensures that C ′ is self-orthogonal with respect

to the trace-symplectic form. Indeed, two arbitrary elements (aα|b0) and (a′α′|b′0) of
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C ′ satisfy the duality condition

〈(aα|b0)|(a′α′|b′0)〉ts = 〈(a|b)|(a′|b′)〉ts + tr(α · 0− α′ · 0) = 0.

A vector in the trace-symplectic dual of C ′ has to be of the form (aα|b0) with (a|b) ∈

C⊥ts and α ∈ Fq. Furthermore, the symplectic weight given by

swt(C ′⊥ts \ C ′) = min{swt(aα|b0) |α ∈ Fq, a, b ∈ C⊥ts \ C},

coincides with swt(C⊥ts \ C). Therefore, an [[n + 1, k, d]]q stabilizer code exists. If

d > 1, then the code is impure, because C ′⊥ts contains the vector (0α|00) of symplectic

weight 1.

Lemma 24. If a pure [[n, k, d]]q stabilizer code exists with n ≥ 2 and d ≥ 2, then

there exists a pure [[n− 1, k + 1, d− 1]]q stabilizer code.

Proof. If a pure [[n, k, d]]q stabilizer code exists, then there exists an additive code

D ≤ Fn
q2 that is self-orthogonal with respect to the trace-alternating form, so that

|D| = qn−k and wt(D⊥a) = d. Let D⊥a

0 denote the code obtained by puncturing the

first coordinate of D⊥ta. Since the minimum distance of D⊥a is at least 2, we know

that |D⊥a

0 | = |D⊥a| = qn+k, and we note that the minimum distance of D⊥a

0 is d− 1.

The dual of D⊥a

0 consists of all vectors u in Fn−1
q2 such that 0u is contained in D.

Furthermore, if u is an element of D0, then 0u is contained in D; hence, D0 is a

self-orthogonal additive code. The code D0 is of size q(n−1)−(k+1), because

dimD0 + dimD⊥a

0 = dimFn−1
q2

when we view D0 and its dual as Fp–vector spaces. It follows that there exists a pure

[[n− 1, k + 1, d− 1]]q stabilizer code.
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Lemma 25. If a (pure) [[n, k, d]]q stabilizer code exists with n ≥ 2 (k ≥ 1), then

there exists a (pure) [[n, k − 1, d∗]]q stabilizer code such that d∗ ≥ d.

Proof. If an [[n, k, d]]q stabilizer code exists, then there exists an additive code D ≤

Fn
q2 such that D ≤ D⊥a with wt(D⊥a \D) = d and |D| = qn−k. Choose an additive

code Db of size |Db| = qn−k+1 such that D ≤ Db ≤ D⊥a. Since D ≤ Db, we have

D⊥a

b ≤ D⊥a. The set Σb = D⊥a

b \ Db is a subset of D⊥a \ D, hence, the minimum

weight d∗ of Σb is at least d. This proves the existence of an [[n, k − 1, d∗]] code.

If the code is pure, then wt(D⊥a) = d. It follows from D⊥a

b ≤ D⊥a that

wt(D⊥a

b ) ≥ d, hence the smaller code is pure as well.

Corollary 26. If a pure [[n, k, d]]q stabilizer code with n ≥ 2 and d ≥ 2 exists, then

there exists a pure [[n− 1, k, d− 1]]q stabilizer code.

Proof. Combine Lemmas 24 and 25.

Lemma 27. Suppose that Q is a pure [[n, k, d]]q stabilizer code with n ≥ 2 and d ≥ 2

such that the stabilizer group contains an element of weight 1. Then there exists an

[[n− 1, k, d]]q stabilizer code.

Proof. It follows from the hypothesis that there exists an additive code D ≤ Fn
q2 of

size |D| = qn−k that contains a vector v of weight 1, and satisfies wt(D⊥a \ D) = d.

Let D0 denote the code obtained by puncturing D at the nonzero position of v.

B. Constructions with Two Starting Codes

Lemma 28. Consider two codes [[n1, k1, d1]]q and [[n2, k2, d2]]q defined by Q1 and Q2,

respectively. The direct sum of these two codes, defined as Q1 ⊕ Q2 = {uv : u ∈

Q1, v ∈ Q2}, will give a code [[n1 + n2, k1 + k2, d]]q, where d = min{d1, d2} and uv is

the concatenation of vectors.
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Proof. The proof of the direct sum method from [4] generalizes.

Lemma 29. Suppose that an [[n,K, d]]q and an [[n′, K ′, d′]]q stabilizer code exists. K

and K’ are the dimensions of these codes. Then there exists an [[n+n′, KK ′,min(d, d′)]]q

stabilizer code.

Proof. Suppose that P and P ′ are the orthogonal projectors onto the stabilizer codes

for the [[n,K, d]]q and [[n′, K ′, d′]]q stabilizer codes, respectively. Then P ⊗ P ′ is an

orthogonal projector onto a KK ′-dimensional subspace Q∗ of Cd, where d = qn+n′

.

Let S and S ′, respectively, denote the stabilizer groups of the images of P and P ′.

Then S∗ = {E ⊗ E ′ |E ∈ S,E ′ ∈ S ′} is the stabilizer group of Q∗.

If an element F ⊗ F ∗ of Gn ⊗ Gn′ = Gn+n′ is not detectable, then F has to

commute with all elements in S, and F ′ has to commute with all elements in S ′. It

is not possible that both F ∈ Z(Gn)S and F ′ ∈ Z(Gn′)S ′ hold, because this would

imply that F ⊗F ′ is detectable. Z(Gn)S is nothing but the center of the error group

Gn. Therefore, either F or F ′ is not detectable, which shows that the weight of F⊗F ′

is at least min(d, d′).

Another direct sum construction for codes over F4 was discussed in [4]. We now

explain a similar construction for nonbinary codes over Fq2 .

Lemma 30. Let C1 be an [n, qn−k1] self-orthogonal code corresponding to an [[n, k1, d1]]

code and C2 be an [n, qn−k2] self-orthogonal code corresponding to an [[n, k2, d2]] code,

such that C1 ⊆ C2. The self-orthogonality is with respect to the trace-alternating

form. Then there exists a [[2n, k1 + k2, d]] code, where d = min{2d2, d1}.

Proof. Take C to be the (2n, q2n−(k1+k2)) additive code consisting of vectors u|u+ v,

such that u ∈ C1 and v ∈ C2, where bar denotes concatenation. Then C⊥a = {u+v|v :

u ∈ C⊥a

1 , v ∈ C⊥a

2 } that has minimum distance min{2d2, d1}. Let v1 = (u|u+ v) ∈ C
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and v2 = (u′ + v′|v′) ∈ C⊥a. These vectors remain self-orthogonal because

〈v1, v2〉a = 〈(u|u+ v), (u′ + v′|v′)〉a

= 〈u, u′〉a + 〈u, v′〉a + 〈u, v′〉a + 〈v, v′〉a

= 0.

C⊥a

2 ⊆ C⊥a

1 . Hence, 〈u, v′〉a = 0.

Lemma 31. Let C1 be an [n, qn−k1] self-orthogonal code corresponding to an [[n, k1, d1]]q

code and C2 be an [n, qn−k2] self-orthogonal code corresponding to an [[n, k2, d2]]q code,

such that C1 ⊆ C2. Then there exists a [[2n, k1− k2, d]] code, where d = min{2d1, d2}

and suppose that q is even.

Proof. Take C to be the [2n, q2n−k1+k2] additive code consisting of vectors u|u+v such

that u ∈ C⊥a

2 and v ∈ C1, where bar denotes concatenation. Then C⊥a = {u|u+ v :

u ∈ C⊥a

1 , v ∈ C2} that has minimum distance min{2d1, d2}. Let v1 = (u|u + v) ∈ C

and v2 = (u′|u′ + v′) ∈ C⊥a. These vectors remain self-orthogonal because

〈v1, v2〉a = 〈(u|u+ v), (u′|u′ + v′)〉a

= 〈u, u′〉a + 〈u, u′〉a + 〈u, v′〉a + 〈v, u′〉a + 〈v, v′〉a

= 2〈u, u′〉a

= 0

for even q. We have, 〈v, v′〉a = 0 because C1 ⊆ C2 ⊆ C2
⊥a ⊆ C1

⊥a. All vectors in C2

are thus in C1
⊥a, and hence, orthogonal to all vectors in C1. Further, the minimum

distance is min {2d1, d2}. Hence, proved by Theorem 22.

These code constructions help in improving the lower bounds for nonbinary quan-
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tum stabilizer codes. We illustrate this by a small part of our tables. We make use

of some existing quantum codes along with these code constructions.
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CHAPTER V

IMPROVING THE LOWER BOUNDS ON THE MINIMUM DISTANCE

This chapter explains how new quantum codes are constructed from the existing ones.

These code constructions help improve the lower bounds for nonbinary quantum sta-

bilizer codes. This is illustrated by a small part of our tables. Some existing quantum

codes are used along with these code constructions to achieve the improvements. An

improvement in a single place in the table, spreads in all the directions in the table

using these constructions. Thus, these construction play a very important role in the

whole process of improving the lower bounds.

A. A Small Example

Table VII shows a small part of the lower and upper bounds’ pairs for codes over F3.

The existing codes are shown in bold font in the table. How the lower bounds get

spread from these existing codes is shown using different superscripts. The explana-

tion of these superscripts is now given.

• α: Using Theorem 11

• β: Using Theorem 12

• γ: Using Theorem 14

• δ: Using Theorem 13

• p: Product Code

• g: Using [13]
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Table VII. General code constructions

n/k 1 2 3 4 5 6

3 2− 2β 1− 1← 1− 1γ - - -

4 2− 2← 2− 2β 1− 1← 1− 1γ - -

5 3− 3β 2− 2← 2− 2β 1− 1← 1− 1γ -

6 3− 3← 3− 3β 2− 2← 2− 2β 1− 1← 1− 1γ

7 3− 4← 3− 3← 3− 3β 2− 2← 2− 2β 1− 1←

8 3− 4← 3− 4d 3− 3← 3− 3α 2− 2← 2− 2α

9 4− 5g 3− 4← 3− 4← 3− 3← 3− 3α 2− 2←

10 4− 5↓ 3− 5← 3− 4← 3− 4← 3− 3← 3− 3δ

11 4− 6↓ 3− 5← 3− 5d 3− 4↓ 3− 4↓ 3− 3↓

12 4− 6↓ 4− 6p 3− 5d 3− 5↓ 3− 4↓ 3− 3↓

13 4− 7↓ 4− 6↓ 4− 6d 4− 5↓ 3− 4↓ 3− 4↓

14 5− 7← 5− 7d 5− 6↓ 4− 5↓ 3− 5↓ 3− 4↓

15 6− 8p 6− 7↓ 5− 6↓ 4− 6↓ 3− 5↓ 3− 5↓
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• ←: Using Lemma 25

• ↓: Using Lemma 23

• d: Using Lemma 24

The following tables explain how the constructions help improve the lower bounds on

the minimum distance of codes.

B. The Larger Tables

The larger tables again make use of the known codes, newly constructed codes and

all the above lemmas. Different lemmas might give same improvement on the lower

bounds. Hence to reduce the complexity, the code construction procedure is not

shown in the tables. Tables VIII, IX, X, XI, XII and XIII only show the lower

bound-upper bound pairs for all combinations of (n, k).

Table VIII.: Bounds on the minimum distance for codes

over F3 (k:1 to 10)

n/k 1 2 3 4 5 6 7 8 9 10

3 2-2 1-1 1-1 - - - - - - -

4 2-2 2-2 1-1 1-1 - - - - - -

5 3-3 2-2 2-2 1-1 1-1 - - - - -

6 3-3 3-3 2-2 2-2 1-1 1-1 - - - -

7 3-4 3-3 3-3 2-2 2-2 1-1 1-1 - - -

8 3-4 3-4 3-3 3-3 2-2 2-2 1-1 1-1 - -

9 4-5 3-4 3-4 3-3 3-3 2-2 2-2 1-1 1-1 -

Continued on next page
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Table VIII – Continued from previous page

n/k 1 2 3 4 5 6 7 8 9 10

10 4-5 3-5 3-4 3-4 3-3 3-3 2-2 1-2 1-1 1-1

11 4-6 3-5 3-5 3-4 3-4 3-3 2-2 1-2 1-2 1-1

12 4-6 4-6 3-5 3-5 3-4 3-3 2-3 2-2 1-2 1-2

13 4-7 4-6 4-6 4-5 3-4 3-4 3-3 2-3 1-2 1-2

14 5-7 5-7 5-6 4-5 3-5 3-4 3-4 2-3 1-3 1-2

15 6-8 6-7 5-6 4-6 3-5 3-5 3-4 2-4 1-3 1-3

16 6-8 6-7 5-7 4-6 3-6 3-5 3-5 2-4 2-4 2-3

17 6-8 6-8 5-7 4-7 3-6 3-6 3-5 2-5 2-4 2-4

18 6-9 6-8 5-8 4-7 3-7 3-6 3-6 2-5 2-5 2-4

19 6-9 6-9 5-8 4-8 4-7 3-7 3-6 2-6 2-5 2-5

20 6-10 6-9 5-9 5-8 4-8 4-7 3-7 2-6 2-6 2-5

21 6-10 6-10 6-9 5-9 5-8 4-8 3-7 3-7 2-6 2-6

22 6-11 6-10 6-10 6-9 5-9 4-8 4-8 3-7 2-7 2-6

23 7-11 7-11 7-10 6-10 5-9 5-9 4-8 3-8 2-7 2-7

24 8-11 8-11 7-11 6-10 6-10 5-9 4-9 3-8 2-8 2-7

25 9-12 8-11 7-11 6-11 6-10 5-10 4-9 3-9 2-8 2-8

26 9-12 8-12 7-11 6-11 6-10 5-10 4-10 3-9 2-9 2-8

27 9-13 8-12 7-12 6-11 6-11 5-10 4-10 3-10 3-9 3-9

28 9-13 8-13 7-12 7-12 6-11 5-11 4-10 3-10 3-9 3-9

29 9-14 8-13 8-13 7-12 6-12 5-11 4-11 3-10 3-10 3-9

30 9-14 9-14 8-13 7-13 6-12 6-12 4-11 4-11 4-10 4-10
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Table IX. Bounds on the minimum distance for codes over F3 (k:11 to 20)

n/k 11 12 13 14 15 16 17 18 19 20

10 - - - - - - - - - -

11 1-1 - - - - - - - - -

12 1-1 1-1 - - - - - - - -

13 1-2 1-1 1-1 - - - - - - -

14 1-2 1-2 1-1 1-1 - - - - - -

15 1-2 1-2 1-2 1-1 1-1 - - - - -

16 2-3 2-2 2-2 2-2 1-1 1-1 - - - -

17 2-3 2-3 2-2 2-2 1-2 1-1 1-1 - - -

18 2-4 2-3 2-3 2-2 1-2 1-2 1-1 1-1 - -

19 2-4 2-4 2-3 2-3 1-2 1-2 1-2 1-1 1-1 -

20 2-5 2-4 2-4 2-3 1-3 1-2 1-2 1-2 1-1 1-1

21 2-5 2-5 2-4 2-4 1-3 1-3 1-2 1-2 1-2 1-1

22 2-6 2-5 2-5 2-4 1-4 1-3 1-3 1-2 1-2 1-2

23 2-6 2-6 2-5 2-5 1-4 1-4 1-3 1-3 1-2 1-2

24 2-7 2-6 2-5 2-5 1-4 1-4 1-4 1-3 1-3 1-2

25 2-7 2-6 2-6 2-5 1-5 1-4 1-4 1-4 1-3 1-3

26 2-7 2-7 2-6 2-6 2-5 2-5 2-4 2-4 2-4 2-3

27 3-8 3-7 3-7 3-6 3-6 3-5 3-5 3-4 3-4 3-4

28 3-8 3-8 3-7 3-7 3-6 3-6 3-5 3-5 3-4 3-4

29 3-9 3-8 3-8 3-7 3-7 3-6 3-6 3-5 3-5 3-4

30 4-9 4-9 4-8 4-8 4-7 4-7 4-6 4-6 4-5 4-5
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Table X. Bounds on the minimum distance for codes over F3 (k:21 to 30)

n/k 21 22 23 24 25 26 27 28 29 30

20 - - - - - - - - - -

21 1-1 - - - - - - - - -

22 1-1 1-1 - - - - - - - -

23 1-2 1-1 1-1 - - - - - - -

24 1-2 1-2 1-1 1-1 - - - - - -

25 1-2 1-2 1-2 1-1 1-1 - - - - -

26 2-3 2-2 2-2 1-2 1-1 1-1 - - - -

27 3-3 3-3 2-2 1-2 1-2 1-1 1-1 - - -

28 3-4 3-3 2-3 2-2 1-2 1-2 1-1 1-1 - -

29 3-4 3-4 3-3 2-3 1-2 1-2 1-2 1-1 1-1 -

30 4-4 4-4 3-3 2-3 2-2 2-2 1-2 1-2 1-1 1-1
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Table XI.: Bounds on the minimum distance for codes

over F4 (k:1 to 10)

n/k 1 2 3 4 5 6 7 8 9 10

3 2-2 1-1 1-1 - - - - - - -

4 2-2 2-2 1-1 1-1 - - - - - -

5 3-3 2-2 2-2 1-1 1-1 - - - - -

6 3-3 3-3 2-2 2-2 1-1 1-1 - - - -

7 3-4 3-3 3-3 2-2 2-2 1-1 1-1 - - -

8 4-4 4-4 3-3 3-3 2-2 2-2 1-1 1-1 - -

9 4-5 4-4 3-4 3-3 3-3 2-2 2-2 1-1 1-1 -

10 4-5 4-5 4-4 4-4 3-3 3-3 2-2 2-2 1-1 1-1

11 4-6 4-5 4-5 4-4 3-4 3-3 3-3 2-2 2-2 1-1

12 4-6 4-6 4-5 4-5 4-4 4-4 3-3 3-3 2-2 2-2

13 4-7 4-6 4-6 4-5 4-5 4-4 3-4 3-3 3-3 2-2

14 5-7 5-7 4-6 4-6 4-5 4-5 4-4 4-4 3-3 3-3

15 6-8 5-7 4-7 4-6 4-6 4-5 4-5 4-4 3-4 3-3

16 6-8 5-8 4-7 4-7 4-6 4-6 4-5 4-5 4-4 4-4

17 6-9 5-8 5-8 4-7 4-7 4-6 4-6 4-5 4-5 4-4

18 6-9 6-9 5-8 4-8 4-7 4-7 4-6 4-6 4-5 4-5

19 6-10 6-9 5-9 4-8 4-8 4-7 4-7 4-6 4-6 4-5

20 6-10 6-10 5-9 5-9 4-8 4-8 4-7 4-7 4-6 4-6

21 6-11 6-10 6-10 5-9 5-9 4-8 4-8 4-7 4-7 4-6

22 6-11 6-11 6-10 6-10 5-9 4-9 4-8 4-8 4-7 4-6

Continued on next page
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Table XI – Continued from previous page

n/k 1 2 3 4 5 6 7 8 9 10

23 7-12 7-11 7-11 6-10 5-10 4-9 4-9 4-8 4-7 4-7

24 8-12 8-12 7-11 6-11 5-10 4-10 4-9 4-8 4-8 4-7

25 9-13 8-12 7-12 6-11 5-11 4-10 4-9 4-9 4-8 4-8

26 9-13 8-13 7-12 6-12 5-11 5-10 4-10 4-9 4-9 4-8

27 9-14 8-13 7-13 6-12 6-11 5-11 5-10 4-10 4-9 4-9

28 9-14 8-14 7-13 7-12 6-12 6-11 5-11 4-10 4-10 4-9

29 9-15 8-14 8-13 7-13 7-12 6-12 5-11 4-11 4-10 4-10

30 9-15 9-14 8-14 8-13 7-13 6-12 5-12 4-11 4-11 4-10
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Table XII. Bounds on the minimum distance for codes over F4 (k:11 to 20)

n/k 11 12 13 14 15 16 17 18 19 20

10 - - - - - - - - - -

11 1-1 - - - - - - - - -

12 1-1 1-1 - - - - - - - -

13 2-2 1-1 1-1 - - - - - - -

14 2-2 2-2 1-1 1-1 - - - - - -

15 3-3 2-2 2-2 1-1 1-1 - - - - -

16 3-3 3-3 2-2 2-2 1-1 1-1 - - - -

17 3-4 3-3 3-3 2-2 1-2 1-1 1-1 - - -

18 3-4 3-4 3-3 2-2 1-2 1-2 1-1 1-1 - -

19 3-5 3-4 3-3 2-3 1-2 1-2 1-2 1-1 1-1 -

20 3-5 3-4 3-4 2-3 1-3 1-2 1-2 1-2 1-1 1-1

21 3-5 3-5 3-4 2-4 1-3 1-3 1-2 1-2 1-2 1-1

22 3-6 3-5 3-5 2-4 1-4 1-3 1-3 1-2 1-2 1-2

23 3-6 3-6 3-5 2-5 1-4 1-4 1-3 1-3 1-2 1-2

24 3-7 3-6 3-6 2-5 1-5 1-4 1-4 1-3 1-3 1-2

25 3-7 3-7 3-6 2-6 1-5 1-5 1-4 1-4 1-3 1-3

26 3-8 3-7 3-7 2-6 1-6 1-5 1-5 1-4 1-4 1-3

27 3-8 3-8 3-7 2-7 1-6 1-6 1-5 1-5 1-4 1-4

28 3-9 3-8 3-8 2-7 1-7 1-6 1-6 1-5 1-5 1-4

29 3-9 3-9 3-8 2-8 1-7 1-7 1-6 1-6 1-5 1-5

30 3-10 3-9 3-9 2-8 1-8 1-7 1-7 1-6 1-6 1-5
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Table XIII. Bounds on the minimum distance for codes over F4 (k:21 to 30)

n/k 21 22 23 24 25 26 27 28 29 30

20 - - - - - - - - - -

21 1-1 - - - - - - - - -

22 1-1 1-1 - - - - - - - -

23 1-2 1-1 1-1 - - - - - - -

24 1-2 1-2 1-1 1-1 - - - - - -

25 1-2 1-2 1-2 1-1 1-1 - - - - -

26 1-3 1-2 1-2 1-2 1-1 1-1 - - - -

27 1-3 1-3 1-2 1-2 1-2 1-1 1-1 - - -

28 1-4 1-3 1-3 1-2 1-2 1-2 1-1 1-1 - -

29 1-4 1-4 1-3 1-3 1-2 1-2 1-2 1-1 1-1 -

30 1-5 1-4 1-4 1-3 1-3 1-2 1-2 1-2 1-1 1-1
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CHAPTER VI

FUTURE WORK

The tables in Chapter IV show that the lower bounds and the upper bounds on

the minimum distance of nonbinary stabilizer codes are very close to each other.

However, the picture is still not complete. Even though completing the tables depends

upon how tight the proposed upper bounds are, it also depends upon how good the

quantum codes are. More nonbinary quantum stabilizer code families need to be

constructed. Various code families that exist in classical theory such as Reed-Muller

codes, Hamming codes, etc. need to be used for finding nonbinary quantum stabilizer

codes. The current implementation of the exhaustive search program can be optimized

further. The various things that might help include

• Exploring the generator matrix properties of the dual code.

• Eliminating vectors for being code vectors using the weight distribution.

• Eliminating some vectors for being generators depending upon the weight enu-

merators.

These optimizations might directly give some codes with their generators.

Another important aspect of error correction is actually encoding and decoding

the data words using the encoding and decoding circuits. Some work has already

been done in this area. How to reduce the generator matrix to a standard form by

using Gaussian elimination and algorithms for constructing the encoding and decoding

circuits for the corresponding quantum error correcting codes is discussed in [16, 17,

4]. These results can be generalized to the nonbinary quantum stabilizer codes. The

standard form will change for the Fp-linear codes. It is a vast area that can be

explored thoroughly for constructing the encoding and decoding circuits for these
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already found codes, as well as the new codes. This will help in practically realizing

the error correcting codes. To make these circuits feasible to implement and use, the

concept of fault tolerant quantum computing comes into the picture. The encoding

and decoding circuits should then be made fault tolerant where fault tolerance means

elegant handling of errors in the error correction procedure itself. Studying all these

sub areas in this research area will make it well established.
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CHAPTER VII

CONCLUSION

This research work explored the relatively unstudied area of nonbinary stabilizer

codes. It can be concluded that most of the concepts of binary error correcting

codes or particularly binary stabilizer codes can be generalized to nonbinary stabilizer

codes. Existing literature in the area of the nonbinary stabilizer codes proved to be

useful. While exhaustively searching for codes, it is observed that the typical forms of

the generator matrices and weight enumerators helped reducing the search space. In

spite of these improvements, the searching approach did not help much because of the

limited optimizations implemented and machine power. A new quantum code family

called quantum BCH codes is found that helped us in building some MDS codes.

However, the distances obtained by these codes are not very impressive in general.

It is also proved that new quantum codes can be constructed from the existing ones.

These general code constructions gave a huge set of nonbinary quantum stabilizer

codes.

The upper bounds on the minimum distance of nonbinary stabilizer codes are

established in [14]. The main aim of this work was to improve the lower bounds in

such a way that ultimately they go as close as possible to the proposed upper bounds.

The lower bounds in the large part of the table met the upper bounds and nearly met

the upper bounds in other parts. This work not only improved the lower bounds

on the minimum distance but also made a significant contribution to the area of

constructing nonbinary quantum stabilizer codes. The small or no gaps in the upper

bounds and lower bounds table illustrate this fact. The work can be continued by

finding more code families, giving more code constructions and providing the encoding

circuits for these codes.
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APPENDIX A

IMPLEMENTATION DETAILS

In the course of this research, several implementations were done. I played around

with several mathematical tools like GAP, MOSEK, Mathematica [10] and so on. I

also used the standard programming languages like C, Lex & Yacc, C#, Java and so

on. The following programs were implemented at the beginning:

• A Java Applet that implemented Grover’s Search algorithm.

• A Quantum Circuit Simulator in Lex & Yacc.

• Small programs in GAP and MOSEK to learn about group theory and linear

programming bounds.

The following implementations are done in order to find and verify some results:

• A program that takes upper limit on n and a text file of upper bounds on

these codes as input. Using the existing quantum codes and the general code

constructions, the program gives a text file as output that has pairs of lower

bound-upper bound for all the (n,k) combinations. This code is developed in

C#.

• A program that takes a text file of lower-bound-upper bound pairs as input and

generates corresponding latex file for the same. It allows us to choose parts of

the table. This code is developed in C#.

• A program that exhaustively searches for classical self orthogonal codes. It

makes use of the standard form of the generator matrix to reduce the search

space. This program is developed in Mathematica.
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• A program that searches for self-orthogonal BCH codes to arrive at quantum

BCH codes. It calculates the roots of the dual code and the BCH code and

checks if the roots of the dual code are contained in that of the original code.

If the containment holds, the code is self-orthogonal. The actual code is given

below. This program is developed in Mathematica.

• A program similar to the previous one, that searches for self-orthogonal BCH

codes to arrive at quantum BCH codes over higher fields. It calculates the roots

of the dual code and the BCH code and checks if the roots of the dual code

are contained in that of the original code. If it is, the code is self-orthogonal.

Code over the higher field is self-orthogonal with respect to the standard inner

product. The code is similar to the one included. This program is developed in

Mathematica.

• A similar program that searches for self-orthogonal BCH codes to arrive at

quantum BCH codes over higher fields. It calculates the roots of the dual code

and the BCH code and checks if the roots of the dual code are contained in

that of the original code. If they do, the code is self-orthogonal. Code over the

lower field is self-orthogonal with respect to the Hermitian product. The code

is similar to the one included. This program is developed in Mathematica.
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(*********************************************************************)

(* Quantum BCH codes *)

(*********************************************************************)

(* Input: n,d,q values *)

(* Output: The zeros of the BCH code over Fq and zeros *)

(* of the alternating Hermitian dual code. *)

(* The program first finds the value of m such that n|qm − 1. *)

(* It then chooses n roots of unity from F(q
m) and orders them. *)

(* Then it chooses d-1 consecutive roots from this set as roots *)

(* of dual of C. *)

(* These roots are then conjugated m-1 times and the zero *)

(* set of the dual code *)

(* is formed. All these roots are then raised to the power of −√q *)

(* to form a set of conjugates. If these conjugates lie in the complementary *)

(* set of the previous roots, the corresponding BCH code is self orthogonal. *)

(* The corresponding quantum BCH code is then n, 2 * degree of g(x) - n, d *)

(*******************************************************************)

(* Include finite field package *)

<< AlgebraF̀initeFields`

(* This function calculates the Hermitian product of two vectors. It can be *)

(* used to verify that two vectors are Hermitian orthogonal*)

Hermitian[a , b , n , q ]:=(

p=0;

For[i=1,i < n+1,i++,

{

p=p+a[[i]]*Power[b[[i]],Sqrt[q]];
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}];

Print[p];

)

(* This function gives the roots of code polynomial and its dual *)

inc[n , d , q ]:=(

For[m=1,m < 50,m++,

{

If[Mod[Power[q,m]-1,n]==0,Break[]];

}

];

(* Exit if m exceeds 50 *)

If [ m==50,

{

Print[failed];

Abort[]

}];

Print[m];

(* Use the sequential labeling in finite fields *)

SetFieldFormat[GF[Power[q,m]],FormatType→FunctionOfCode[fqm]];

(* Find the primitive element *)

For[i=1,i<Power[q,m]+1,i++,

{

flag=0;

For[j=1,j<Power[q,m]-1,j++,

{
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t=Power[fqm[i],j];

If[t=fqm[1],flag=1;];

}]

If[flag=0,Break[];];

}];

pe=fqm[i];

(* Find the nth roots of unity in the field Fqm *)

myroots={};

For[i=1,i<Power[q,m]+1,i++,

{

If[Power[fqm[i],n]==fqm[1],

myroots=Append[myroots,fqm[i]];

];

}

];

(* Find the generating element to order the roots *)

For[i=1,i<Length[myroots]+1,i++,

{

flag=0;

For[j=1,j<n,j++,

{

t=Power[myroots[[i]],j];

If[t==fqm[1],flag=1;];

}]

If[flag=0,Break[];];

}];
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orderedroots={};

orderedroots=Append[orderedroots,myroots[[i]]];

For[j=2,j<n+1,j++,{

orderedroots=Append[orderedroots,Power[myroots[[i]],j]];

}];

myroots=orderedroots;

le=Length[myroots];

(* This loop allows the wrap around choice of sequential roots *)

For[i=1,i<d-1,i++,

{ myroots=Append[myroots,myroots[[i]]];

}

];

For[j=1,j<le+1,j++,

{

exist={};

For[i=1,i<n+1,i++,exist=Append[exist,0]];

For[k=j,k<j+d-1,k++,

{

b={};

If[k<le+1,exist[[k]]=1;,exist[[k-le]]=1;];

t=myroots[[k]];

(* Calculate m-1 conjugates *)

For[o=1,o<m,o++,

{

s=Power[t,q];

b=Position[myroots,s];
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c=b[[1]][[1]];

exist[[c]]=1;

t=s;

}];

}

];

(* Collect the roots of the dual code *)

zerosdual=Position[exist,1];

smallset={};

For[g=1,g<Length[zerosdual]+1,g++,

{

x=myroots[[zerosdual[[g]]]];

smallset=Append[smallset,x];

}

];

conjus={};

For[i=1,i<Length[zerosdual]+1,i++,

{

y=myroots[[zerosdual[[i]]]];

(* Raise the roots to the power -Sqrt(q) *)

t=Power[y,-Sqrt[q]];

conjus=Append[conjus,t];

}

];

cs={};

For[i=1,i¡Length[conjus]+1,i++,
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cs=Append[cs,conjus[[i]][[1]]]];

cc=Complement[orderedroots,cs];

ss={};

For[i=1,i<Length[smallset]+1,i++,

ss=Append[ss,smallset[[i]][[1]]]];

countsmall=Length[ss];

countinter=Length[Intersection[cc,ss]];

(* Print the result if the containment holds *)

If[countsmall=countinter,

{

Print[CODE];

Print[cc];

(* Calculate the powers of the primitive element *)

For[jk=1,jk<Length[cc]+1,jk++,

{

For[ik=1,ik<Power[q,m],ik++,

{

If[Power[pe,ik]==cc[[jk]],

If[ik=Power[q,m]-1,Print[0],

Print[ik];];

];

}

];

}];

Print[ss];

For[jk=1,jk<Length[ss]+1,jk++,
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{

For[ik=1,ik<Power[q,m],ik++,

{

If[Power[pe,ik]=ss[[jk]],

If[ik==Power[q,m]-1,Print[0],

Print[ik];];

];

}

];

}];

(* Print the dimensions of the corresponding QBCH code *)

Print[n, , 2∗Length[cc]−n, , d];

}];

}];

)
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