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ABSTRACT 

Non-Aqueous, Capillary Electrophoretic Separations of Enantiomers with a Charged 

Cyclodextrin Highly-Soluble in Organic Solvents.  (August 2004) 

Silvia Elena Sanchez Vindas, 

B.S., University of Costa Rica 

Chair of Advisory Committee: Dr. Gyula Vigh 

 
The synthesis of the sodium salt of heptakis (2, 3-di-O-acetyl-6-O-sulfo)-β-

cyclodextrin was modified to increase the isomeric purity to 98.5%.  This salt was used 

to obtain the organic-solvent-soluble, single-isomer, charged tetrabutylammonium salt of 

heptakis (2, 3-di-O-acetyl-6-O-sulfo)-β-cyclodextrin.  Its isomeric purity was higher 

than 99%, as determined by CE, and its structure was confirmed by NMR and ESI-MS 

analysis.  The hydrophobic single-isomer cyclodextrin was utilized to separate the 

enantiomers of weak base analytes in aprotic media by capillary electrophoresis.  The 

effective mobilities and separation selectivities follow trends observed with negatively 

charged cyclodextrins in amphiprotic solvents.  The properties of the dissolved 

cyclodextrin are altered by its counter ion, thereby affecting the separations of 

enantiomers.  The aprotic media allow the modification of the separation selectivity, 

since the binding strength of the enantiomers to the cyclodextrin is intermediate between 

that reported in aqueous and methanolic buffers. 
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CHAPTER I 

INTRODUCTION 

1.1  Capillary electrophoresis 

Capillary electromigration techniques are analytical separation methods that are 

carried out in small channels (traditionally, narrow-bore fused silica capillaries) filled 

with buffers and in the presence of a high electric field, E (100-500V/cm).  Separation of 

the charged analytes is based on the different observed velocities, vobs, produced by the 

electrokinetic phenomena (electrophoresis and electroosmosis) [1-3]. 

)(** effeoobsobs EEv µµµ +==              (1) 

where µobs is the observed mobility resulting from the combination of the electroosmotic 

flow mobility, µEO, and the effective electrophoretic mobility of the ion, µeff [4]. 

Electroosmotic flow, EOF, is the result of the attraction of free ions in the 

background electrolyte, BE, to the electrostatically charged surface that creates a thin 

Debye layer of mobile charges.  In the presence of E, the Debye layer acquires a 

momentum that is transmitted to the bulk solution through viscosity effects generating a 

plug-type flow.  Its mobility can be described by the Helmholtz-Smoluchowski equation 

(equation 2) when all the other parameters are constant inside the capillary. 

πη
ζεµ

4
Eeo −=                 (2) 

where ε is the dielectric constant, η is the viscosity of the fluid, and ζ is the zeta-

potential at the interface of the Debye and Stern layers [4]. 

This thesis follows the format of the journal Electrophoresis. 
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The plug flow profile creates ideal conditions for minimum band broadening and 

provides the CE technique with the highest resolving power for liquid phase separations 

[4].  Separation efficiency of the system is characterized by the number of theoretical 

plates of the system, N, calculated as 

t

d
obs

DL
VL

N
2

µ
=                 (3) 

where D is the diffusion coefficient of the analyte, V is the applied voltage, Ld is the 

effective length of the capillary used in the separation, and Lt is the total length of the 

capillary [5].  As indicated by equation 4, µeff depends on the viscosity of the medium 

similarly to µEO, 

i

i

r6π
z
η

µ eeff =                 (4) 

where e is the electron charge, zi is the charge of ion i of hydrodynamic radius ri. The 

temperature dependence of D and η is a crucial determinant of CE separation efficiency. 

Excessive heating leads to poor separation efficiency, sample decomposition, and fluid 

vaporization [4].  Modern systems, however, use thermostatted capillaries to reduce 

these ill effects of band broadening.  The major source of thermal band broadening is the 

so-called Joule heat which stems from the flow of electric current through the BE.  The 

temperature of the buffer increases proportionally to E2, and if no efficient heat 

dissipation is used, a radial temperature gradient is created inside the channel.  As a 

result, a parabolic flow profile is developed, causing axial dispersion of the analyte band 

[5, 6].  Therefore, BE conductivity and the separation voltage must be optimized to 
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attain the maximum values so that Joule heat is conveniently dissipated [6, 7].  Since it is 

known that thermal effects produce deviations from Ohm�s Law, working with V within 

the linear range is a simple method to assure that there is adequate heat dissipation in the 

electrophoretic system [8]. 

Traditional weaknesses of CE were low sensitivity, limited choice of detectors, 

low reproducibility and poor robustness [1, 2].  Although reproducibility remains an 

issue associated with poor control of the injected sample volume [9], basic CE 

instrument design has improved (automated injectors, diverse sensitive detection 

schemes, and capillaries arrays that increase sample throughput) [1]. 

A host of detection methods is available with detection limits ranging from single 

molecule to 10-5M.  Examples include fluorescence, pulsed amperometric, conductivity, 

electrochemical, MS, refractive-index, laser-induced fluorescence, and UV detection [1, 

10].  The UV absorbance detector is popularly considered a universal detector when it is 

used in both direct and indirect modes [11, 12]. 

Indirect UV detection is the common detection method of choice for inorganic 

ions and carbohydrates [12, 13].  In the indirect UV mode, all signals are related to the 

absorbance of a reporter agent or probe (usually with a concentration of 2-20mM) which 

is usually a co-ion of the analyte [11, 12, 14].  The relation between the concentrations 

of the reporter agent and the analyte is described by the transfer ratio, TR (equation 5). 

s
a

BE
i

s
i

ai c
cc

TR
−

=,                (5) 

where c is analytical concentration, i refers to the reporter agent in the sample zone, s, or 
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in the background electrolyte zone, BE, and a refers to the analyte.  Negative TR (a dip 

in signal) is produced when the absolute mobility of the probe is lower than that of the 

analyte; otherwise, a positive TR (a peak signal) is generated [11].  TRs are calculated 

from the ratio of the slope of calibration curves for the probe and the analyte in a non-

UV absorbent buffer.  Their values can be used to characterize the sensitivity of a 

particular BE system.  A caveat to this practice, and limitation for common use, is the 

fact that TR holds true only if (i) the system does not contain other co-ions with mobility 

values intermediate to that of the analyte and the probe, and (ii) mobility values of the 

analyte and reporter agent are close to each other [15].  Recently, it has been reported 

that the use of a conversion factor (normalized-area-to-TR ratio) calculated for each 

analyte and an internal standard simplifies simultaneous quantitative analysis of analytes 

without resorting to multiple calibration curves [11]. 

Signal-to-noise ratio in indirect UV detection CE depends on instrument 

performance, as well as BE composition, capillary type, and thermal conditions.  The 

concentration of the reporter agent must be as high as possible to maximize stacking and 

minimize electromigration dispersion without producing probe adsorption or creating 

excessive Joule heat [12, 16].  Even under the best conditions, there are three inherent 

types of baseline fluctuations in indirect UV detection:  detector noise, low frequency 

noise, and disturbances or system peaks that may interfere with the analyte signal [14, 

16]. 

Capillary electrophoresis (CE) has been used successfully in the last 20 years.  

The technique provides short analysis times, high separation efficiency (more than 105 
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theoretical plates), and a broad range of possibilities for separating diverse compounds.  

CE is a viable alternative to GC and HPLC analysis for industrial applications.  In 

biologically related areas, CE is a well-established technique for the assessment of both 

small molecules and biopharmaceutical compounds.  Other applications include drug 

assay and their characterization (pKa, binding constant, pI, and mobility), enantiomer 

separations, and forensic analysis [1, 2, 10]. 

 

1.2  Enantiomer separations by CE 

Resolution of enantiomers is one of the most prominent and frequent application 

of CE because of its simplicity, high selectivity, and efficiency with only small amounts 

of chiral selectors.  From the different approaches used to separate enantiomers, adding a 

chiral compound to the buffer is the most common and flexible method [17-19].  

Enantiomer separation results from the formation of different diasteromeric complexes 

between each enantiomer and the chiral selector in reversible and fast equilibrium.  

Different diasteromeric complexes are formed from each enantiomer when differences in 

the interaction strengths vary the size, net charge, and/or pKa value inducing different 

µeff for each complex during the CE separation [18, 20-26]. 

From a practical point of view, enantiomer separations are studied in terms of 

peak resolution, Rs, described by equation 6 [27-29]: 

eff
2

3eff
1

3

eff
2

eff
1

s
zα)(1αzβ)(α

zzβ1βα1α
T8

ElR
+++

++−
×=

k
e            (6) 

where l is the length of the capillary, k is Boltzman�s constant, T is the absolute 
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temperature, zeff is the effective charge of the analyte complex, α is the separation 

selectivity (defined in equation 7), and β is the normalized electro-osmotic mobility 

(defined in equation 8). 

eff
s

eff
f

µ
µ

α =                 (7) 

eff
s

eo

µ
µβ =                   (8) 

Selectivity manipulation is obtained from modification of µeff through variation 

of the composition and pH of the BE, temperature, concentration of the organic 

modifiers, concentration and nature of the chiral selector [17, 18].  From reported 

models of enantiomer separations in CE, generalizations for selectivity optimization 

have been made:  i) pH is the most efficacious parameter, ii) the largest selectivity value 

occurs at a particular chiral selector concentration that might not be its maximum 

concentration in the BE, iii) spontaneous complexation is an exothermic process, 

therefore significant decrease in temperature can improve selectivity, iv) organic 

modifiers weaken too strong interactions in the complex, increasing the optimum chiral 

resolving agent concentration to a practical value [18, 20-26, 30-32].  Once selectivity 

has been optimized, resolution can be improved with the adjustment of µEO to a value 

that is close to -µeff but still produces practical separation times [27-29, 33]. 

Often, CE offers a cheaper and more flexible method development than HPLC, 

especially because of the wide spectrum of available chiral selectors:  chiral micelles, 

crown ethers, chiral ligands, proteins, oligo- and polysaccharides, macrocyclic 
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antibiotics, and cyclodextrins [17-19].  Although in general, to stimulate complexation it 

is preferable that charges on the chiral selectors and the enantiomers are opposite and, to 

afford speedy separations, the chiral selectors are multiply charged; there is not enough 

knowledge at the present to exactly predict the best chiral selector for any particular 

analyte [17, 18, 34]. 

Determination and modeling of the chiral selector-analyte interactions is of 

considerable academic interest.  Molecular recognition studies aim to gain an 

understanding of how structural aspects of the chiral resolving agent and analytes 

modify their interactions and affect enantiomer separations [18, 35].  Common 

techniques used for such studies include NMR, MS, and X-ray crystallographic analyses 

[36-38]. 

 

1.3  CDs as chiral resolving agents for CE 

Cyclodextrins are cyclic oligosaccharides built from D-(+)-glucopyranose units 

linked by α(1, 4) bonds forming an overall truncated cone shape of molecule (Figure I-

1). The cavity�s internal surface, created by the carbon skeleton of glucose, is 

hydrophobic.  The rims of the CD are hydrophilic due to the presence of hydroxyl 

groups.  The smaller rim has primary alcohol groups located at achiral C6 in the glucose 

unit, while the larger rim has the secondary alcohol groups at chiral C2 and C3.  

According to the number of glucose units in the ring, three types of CDs exist:  α-CD 

has 6 glucose units, β-CD has 7 glucose units, and γ-CD has 8 glucose units.  The 

structure is rigid because the 2-hydroxyl and 3-hydroxyl group in adjacent glucose rings 
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Figure I-1.  Characteristics of CDs. 
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form intramolecular hydrogen bonding [39, 40]. 

Low solubility (in the mM range or less) and the limited types of interactions 

(Van der Waals and hydrogen-bonding) of the native cyclodextrins motivated 

researchers to modify these characteristics.  Direct derivatization of the hydroxyl groups 

leads to the large number of existing CD derivatives that can be broadly classified as 

neutral and charged CDs [40-42].  These derivatives expand the non-covalent host-guest 

interactions, and frequently are responsible for the complex formation between the 

enantiomer and the CD, with the introduction of electrostatic, hydrogen bond, dipole 

and/or π-π interactions [40, 43].  Ionic moieties were introduced separate neutral 

enantiomers.  Strong electrolyte CDs are preferred because their charge state is 

permanent and independent of the pH within the working pH range of CE.  Because 

separations are usually performed in a fused silica capillary, the use of negatively 

charged CDs is favored because cationic CDs tend to adsorb on the capillary [41]. 

It has been shown that the degree of substitution plays an important role in the 

separations.  CD complexation and hydroxyl groups� competition for the reagent 

complicate selective modification of CDs [44].  Randomly substituted CDs made from 

different sources differ in isomeric composition which, in turn, leads to different 

separation selectivity.  Therefore, for molecular recognition studies, single-isomer CDs 

have been synthesized and characterized [45-52].  Syntheses of single isomers require a 

series of protection and deprotection steps to assure derivatization on the selected 

positions, increasing their cost with respect to the randomly substituted CDs [42].  

Characterization of CDs combines the information obtained from HPLC [53-56], 
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indirect-UV CE [46, 47, 51-58], NMR [46-48, 50-55, 58, 59], ESI-MS [60, 61] and/or 

MALDI-MS [46-48, 50, 62], to document their composition and degree of substitution.  

Additionally, MS provides the molecular weight [46-48, 61, 62] and X-ray 

crystallography confirms the chemical structure for single isomer CDs [63]. 

In chiral CE, CDs are normally used as buffer additives, although there are some 

reports with CDs chemically bonded to the capillary wall.    Chiral selectivity is 

influenced by the size and shape of the CD, as well as the fit of the enantiomer in to the 

cavity and/or its interactions with the functional groups present on the rims of the CD 

[40].  The enantiomer-CD ratio in the complex is usually 1:1, but there are reported 

cases of larger ratios in which external interactions between the enantiomers and the CD 

are present [39].  However, the influence of those characteristics is not straightforward, 

limiting the possibilities of predicting the best CD for a particular application [39]. 

Three types of enantiomer separations have been defined for weakly acidic and 

basic analytes.  Desionoselective separations occur when the selectivity is achieved only 

in the complexation of the neutral form of the enantiomer.  In the opposite situation, 

ionoselective separations are due to the selective complexation of the dissociated 

enantiomer.  When both chemical forms of the enantiomer complex selectively, 

duoselective separations can be achieved [23, 24].  Cyclodextrins are the most 

commonly used chiral resolving agents in CE because of their high separation efficiency 

and reasonable selectivity without interfering with analyte detection.  All types of chiral 

compounds of practical interest have been separated with CDs in aqueous, hydro-organic 

and a few pure organic solvents [40, 41, 44, 64, 65]. 
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1.4  Enantiomer separations by non-aqueous CE (NACE) 

Separations carried out in aqueous media proliferate in the applicable literature 

because of the well-known acid-base chemistry, low viscosity, low volatility, and 

relative availability of water [66-68].  However, CE can be carried out in amphiprotic 

and aprotic solvents as far as they are pure, non-flammable compounds with high ε (≥ 

30), low η and low vapor pressure [69-71].  Amphiprotic solvents, such as water, have a 

large autoprotolysis constant, Kauto and can act as proton donors or acceptors. 

Amphiprotic protogenic solvents, such as acetic acid, have strongly acidic properties that 

enhance the basicity of solutes. Amphiprotic protophilic solvents (e.g., amides) have 

more basic characteristics and act as proton donors or acceptors.  Aprotic solvents 

typically possess a low Kauto, and can only accept protons.  Differences in Kauto are 

related to the different abilities of solvents to solvate ions, but most importantly, to the 

pH scale in a particular solvent [64, 72-75]. 

In general, a pH scale used in non-aqueous solvents is called the apparent pH 

scale (pH*).  The pH* scale reflects the ability of a solvent to distinguish acid-base 

strengths [72].  Better differentiation is observed in solvents with large pKauto and poor 

hydrogen-bond donor characteristics [76, 77].  This means that water produces a 

�leveling effect� for acids and bases because its low pKauto and strong solvation 

properties.  Organic solvents shift pKa to a larger value with respect to water.  The effect 

is more pronounced with acids (HA) than with protonated bases (BH+) due to the poor 

solvation ability of organic solvents for anions [70, 71, 77-81]. 

A special characteristic of organic solvents used as BE advents the production of 
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low current compared with the current in an equivalent aqueous BE.  Therefore, Joule 

heat problems are reduced, allowing the use of higher electrolyte concentration, higher 

E, increased sample load and wider internal diameter capillaries.  As a consequence 

separation efficiency and sensitivity can be increased in NACE compared to aqueous CE 

[71-73, 77, 82, 83]. 

With the wide characteristics of organic solvents and their variation in acid-base 

chemistry, NACE offers great possibilities for fine tuning analysis time and Rs, in 

addition to the obvious benefit of allowing the analysis of water-insoluble, ionisable 

compounds and its suitability for CE-MS [64, 71, 77, 82, 84, 85].  Often, α is different 

from that observed in aqueous media.  The solvated size of ions is differentially altered 

as a result of variation in ε and sometimes ion-pairs are created [72].  The larger the 

extent of solvation, the larger ri becomes, thereby reducing µeff [79].  Different η values 

change µEO and µeff, affecting Rs not only through α, but also through β.  Decreasing η 

increases µeff because the resistance of the medium to motion of ions is less, producing 

faster analysis times [64, 74, 75, 79, 86].  Lower ε /η ratios and larger pKa of the silanol 

groups on the capillary wall (lower ζ at the same pH of BE) decrease µEO.  Formation 

constants of the enantiomer-chiral selector complex are weakened in organic solvents 

permitting separations that are difficult to optimize in aqueous media [64, 66, 84]. 

Additionally, organic solvents offer the potential for separation mechanisms 

based on interactions that can either not take place or are too weak to be measured in 

aqueous media [71].  Mainly hydrophilic interactions, such as hydrogen bonding, dipole 

related and ionic ones are thermodynamically strengthened in non-aqueous media [72, 
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84, 87, 88].  In contrast, solvophobic interactions �which predominate in aqueous 

buffers� are minimal as the organic solvent can behave as a competitor in the possible 

interactions between the enantiomer and the CD [72, 87].  Study of all those interactions 

will provide a deeper understanding of separation selectivity in CE [70].  Such studies 

are particularly helpful to add to the understanding of enantiomer separations. 

Enantiomer separations in NACE utilize chiral selectors that participate in ion-

pair formation or ion-dipole interactions [69].  Camphorsulfonate [88, 89], neutral CDs 

[66, 84, 90-92], quaternary ammonium CD [93] and sulfated CDs [49, 83, 84, 89, 94-

99], quinine [59, 100] and its derivatives [59, 101], and quinidine [102] and its 

derivatives [102] are common chiral resolving agents used for NACE separations.  The 

selection of resolving agents and solvents is limited by solubility problems, especially 

for charged cyclodextrins [68, 72, 75]. 

Even though Ye and Khaledi reported the first non-aqueous CE (NACE) 

enantiomer separation with a CD in 1994; it is only recently that the use of pure non-

aqueous solvents is gaining prominence for enantiomer separations [66].  Common 

organic solvents used in NACE are methanol (MeOH) [49, 59, 88, 89, 92-101], ethanol 

(EtOH) [59, 101], acetonitrile (ACN) [88, 102], formamide (FA) [83, 84, 91], N-

methylformamide (NMF) [66, 84, 90, 93], and N, N-dimethylformamide (DMF) [84].  

The utility of amide solvents is limited by their strong absorbance at low UV 

wavelengths [70, 71, 75]. 
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1.5  Objective and its bases for this thesis project 

The proliferation and success of chiral analysis with CE has prompted the study 

of chiral selectivity mechanisms in an attempt to understand such systems to the point 

where knowledge-based predictions can be done efficiently.  Non-aqueous medium 

offers the opportunity to study chiral interactions that are weak or non-existent in 

aqueous BE.  It is the aim of this project to study in NACE how hydrophilic interactions 

affect chiral selectivity.  To that effect the characteristics and properties of aprotic 

solvents mentioned in the previous section provide a good medium.  Therefore ACN will 

be used as a solvent of the BE. 

To study chiral interactions, a single isomer CD must be used for the conclusions 

to be meaningful.  It is reasonable to utilize a sulfated CD and, hopefully, add to the 

knowledge about the behavior of these particular chiral resolving agents because, as it 

was mentioned, they are broadly used in enantiomer separation CE with high success.  

However, none of the existing sulfated single isomer CDs is soluble in ACN in a large 

enough concentration to be useful in enantiomer separation studies. 

An organic-solvent soluble CD was synthesized and characterized before the 

enantiomer separations were studied.  The synthetic route for such a CD can follow the 

chemistry in any of the synthetic schemes reported for single isomer sulfated CDs, with 

the necessary modifications to provide larger solubility in ACN.  Since it is believed that 

the limited solubility comes from the presence of an inorganic counter ion, the most 

logical modification is the exchange of the cation to an organic counter ion.  For such 

change the major modification in the reported synthesis schemes should occur in the last 
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step, where the cation is introduced.  Although new applications with the synthesized 

CD were not explored in this study, the existence of a CD highly soluble in a common 

used NACE solvent, ACN, will broaden the range of applications of charged CDs to 

compounds that are in-soluble in aqueous media. 

The combination of the aprotic non-aqueous medium with the use of CDs with an 

opposite charge to that of the enantiomers was expected to promote ion-pair interactions.  

Such interactions can replace the solvophobic interactions that in aqueous media induce 

the formation of the diasteromeric complexes.  Since ion-pairing interactions occur 

indiscriminatively, it was expected that they will not interfere with studies of the 

hydrophilic interactions. 

Since ion-pair formation is a basic requirement for complexation to occur, the 

analytes tried were limited to basic compounds analyzed in an acidic buffer.  To allow 

comparisons of the obtained results with reported separations in aqueous buffers, chiral 

drugs previously analyzed with single isomer sulfated CDs will be employed. 
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CHAPTER II 

SYNTHESIS OF THE SODIUM SALT OF HEPTAKIS (2, 3-DI-O-

ACETYL-6-O-SULFO)-β-CYCLODEXTRIN  

2.1  Introduction 

The complete synthesis of the sodium salt of heptakis (2, 3-di-O-acetyl-6-O-

sulfo)-β-cyclodextrin (Na7HDAS) has been reported by Vincent [52, 53].  The synthesis 

consists of four steps.  The synthesis of each intermediate follows modified procedures 

of Takeo [103].  The synthesis of the final product is based on U.S. Patent 4020160 

[104]. The schematic of the synthesis is illustrated in Figure II-1.  

First, the primary alcohol group is protected with the silylating agent tert-

butyldimethylchlorosilane (TBDMSi-Cl).  Two main impurities are present just prior to 

the end of the reaction: the under-silylated CD with six TBDMSi attached and the over-

silylated CD with eight TBDMSi attached.  For lack of an efficient purification method 

for the under-silylated material, a large excess of TBDMSi-Cl is added to force the 

conversion of the hexasilylated derivative to heptakis (6-O-tert-butyldimethylsilyl)-β-

cyclodextrin, HBMSi-βCD. 

Step two utilizes acetic anhydride to peracetylate the secondary alcohol groups 

on the CD.  The recovery of CD-related products from the pyridine (Py) containing 

reaction medium requires a large amount of acid, which is not compatible with the acetyl 

groups.  Therefore, the product, heptakis (2, 3-O-diacetyl-6-O-tert-butyldimethylsilyl)-β-

cyclodextrin, HABMSi-βCD, becomes less pure compared to the product obtained at the 
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Figure II-1.  Schematic of the synthesis of Na7HDAS from native β-CD. 
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end of the reaction.  This situation is aggravated by the lack of a method for removing 

the isomeric impurities. 

Step three is the removal of the TBDMSi group using BF3·etherate. This Lewis 

acid, however, initiates undesirable hydrolysis of some of the acetyl groups during work-

up. Aggravating the hydrolysis problem are the side-products that can not be easily 

removed. Another limitation of this step is the technique used to determine the purity of 

heptakis (2, 3-O-diacetyl)-β-cyclodextrin, HDA-βCD.  The fluoride present in the 

reaction mixture is not compatible with reversed-phase HPLC columns, so thin layer 

chromatography, TLC, is used. 

In the final step of the synthesis, HDA-βCD is sulfated with SO3·Py.  The 

product, Na7HDAS was obtained with 97% purity. The need to synthesize intermediates 

of near 100% isomeric purity, as means to increase the purity of the final product, is one 

of the primary reasons why improvements were developed for every step in the synthetic 

scheme. 

 

2.2  Materials and methods 

The chemicals used in the synthesis were from different commercial brands as 

specified below: Native β-CD, (Cargil, Hammond, IN); TBDMSi-Cl (FMC Lithium 

Division, Bessemer City, NC);  Im (Chem Impex International, Wood Dale, IL); Ac2O 

(Acros Organics, Pittsburgh, PA); TRIS (GFS Incorporated, Columbus, OH), EtOAc, 

DMF, MeOH, EtOH, iPrOH, HOAc, HF, H2SO4, THF, ACN, CHCl3, CH2Cl2, hexanes 

and NaHCO3 (EM Science, Gibbstown, NJ); deuterated solvents (Cambridge Isotope, 
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Andover, MA); all other chemicals, (Aldrich Chemical Company, Milwaukee, WI). 

Dry solvents were prepared by static drying: 4Å molecular sieves were rinsed 

alternately with water and ethanol, and pre-dried in a vacuum oven at room temperature.  

To regenerate the sieves, they were heated to 250°C for 48h.  To a liter of the solvent, 

100g of molecular sieves was added; the solvent-sieves mixture was shaken at least three 

times a day for two days prior to use. 

For intermediates 1 and 3, the reaction progress was monitored by TLC utilizing 

Silica-60 plates (EM Science, Gibbstown, NJ).  The plate was stained with an α-naphtol 

solution (10g α-naphtol, 20mL sulfuric acid, 120mL ethanol and 25mL water). CD-

related spots were visualized by heating the plate at 100ûC for 5min to 10min. 

Analytical isocratic reversed-phase HPLC was utilized to monitor the formation 

of intermediate 2, as well as to assay the purity of each intermediate. The same 

chromatographic method was used to study the work-up procedures. The instrument 

consisted of (i) a Waters 600 Multisolvent Delivery system (Millipore) equipped with a 

regulated helium source for solvent sparging; (ii) a Waters U6K manual injector 

(Millipore, Milford, MA); (iii) a Sedex 55 Evaporative Light Scattering Detector 

(Parmentier, Alfortville, France) with a gain setting of 7 and a temperature regulator at 

35 to work at 55°C; and (iv) an AD 406 data acquisition system operated under Gold 8.1 

chromatographic software control (Beckman-Coulter, Fullerton, CA) running on a Tiger 

K6 AMD 3-400MHz CPU personal computer.  The 4.6mm ID columns were 25cm long 

and packed with 5µm Zorbax silica or 5µm Zorbax RX C8 stationary phase.  The 

chromatograms were analyzed using Caesar for Windows 4.1 software (Analytical 
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Devices, Inc., Alameda, CA).  Purities were calculated from the peak areas assuming 

that the detector response factors are the same for similar compounds.  For aqueous 

reversed-phase HPLC, doubly deionized water from a Milli Q unit (Millipore) was 

filtered through 0.45µm pore membrane filters (Millipore).  All samples injected were 

previously filtered through a disc filter with a 0.45µm pore nylon membrane (Millipore) 

To monitor the solvent content of the solid products, 1H NMR was used.  Spectra 

were obtained on a Varian Inova 300MHz spectrometer, UNIX based (Varian Assoc., 

Walnut Creek, CA), with a Quad probe for 1H, 19F, 31P, and 13C, using Solaris 2.4 

software running on a SUN workstation. Confirmation of the product identity was made 

possible by comparing the obtained CD backbone signals with literature values. 

Indirect-UV detection CE was used to monitor the reaction progress and the 

removal of the impurities during work-up in the final step. A P/ACE 2100 system 

(Beckman-Coulter, Fullerton, CA) was utilized. Working conditions included: UV 

detector wavelength 210nm, 20°C, 10kV separation potential with a positive polarity at 

the inlet, and a 19/26cm long, 26µm i.d. bare fused-silica capillary (Polymicro 

Technolgies, Phoenix, AZ).  The capillary was rinsed with buffer for 2min between runs 

and with water for 5min at the end of the day.  The background electrolyte was prepared 

by weighing 25mmol of p-toluenesulfonic acid (pTSA) and 50mmol of TRIS and then 

dissolving them with doubly deionized water to obtain 1.00L of buffer with a pH of 8.3.  

All the solutions were filtered with 

Each of the proposed modification to the synthesis procedure was studied first on 

a small scale (5 or 10g).  When conditions were promising, the experiment was 
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gradually scaled up to 25g, 50g, 100g, and 300g. 

Preferred methods of purification included precipitations to isolate CD products 

from a reaction mixture and re-crystallizations to purify the single isomer CD.  Single-

solvent re-crystallization is a practical purification method but it is often beset by 

problems of limited selectivity; therefore, the use of solvent mixtures as re-

crystallization media was pursued in this study.  Experiments to define re-crystallization 

conditions were made in a three-neck round-bottom flask connected to a thermometer 

and a water-cooled condenser that circumvents solvent loss.  Thermal control was 

achieved using a heating mantle.  A mixture of the impure solid and the solvent that 

afforded the highest solubility was heated until a clear solution was obtained.  While at 

high temperature, the second solvent was added slowly.  The heating mantle was turned 

off and was removed when the flask was approximately 10°C above room temperature.  

The mother liquor composition which provided the best selectivity was ascertained.  A 

compromise between the purity of the solid and percent recovery of the target CD was 

considered in determining the necessary amount of the solvent mixture.  Experiments 

were initially conducted on a small scale (25g of impure material) to verify the 

assumption that the samples analyzed represented the recovered solid.  Once the re-

crystallization conditions were deemed satisfactory, the experiments were gradually 

scaled up. 

The specific details of the modified final synthetic procedures are outlined in 

Appendix A. 



 22

2.3  Results and discussion 

2.3.1  Silylation of primary alcohol groups 

The first step converts the polar native β-CD to a hydrophobic Hams-βCD. Long 

reaction times are expected since silylating of alcohol groups is typically slow [105] and 

dilute solutions are preferred to improve selectivity towards substitution of the primary 

alcohol group.  At the 2kg scale, it takes up to 2 weeks to add 7 equivalents of TBDMSi-

Cl, plus an additional week for the 1.5 equivalent needed to reduce the concentration of 

under-silylated material to below 0.5%mol/mol.  Towards the end of the reaction, the 

percent conversion of the target molecule decreases since most of the silylating agent is 

used up in producing octasilylated CD from the target compound, rather than converting 

the under-silylated CD to HBMSi-βCD.  These facts underscore the importance of 

developing a re-crystallization method that efficiently removes both the under- and over-

silylated impurities. Major modifications of the existing synthetic route were introduced 

to address these issues. 

The original procedure reports [53] acetone as the solvent with the greatest 

selectivity in separating the over-silylated compounds. Under-silylated products have 

been found to be removed using DMF-water mixtures. A combination of acetone, DMF 

and water was explored to selectively remove under- and over-silylated products in a 

single operation.  Determination of the solvent percentage that provided the greatest 

selectivity was performed by re-crystallizing a solid test mixture containing 4% under-

silylated CD, 8% over-silylated CD, and 88% HBMSi-βCD. The results are illustrated in 

Figures II-2 to II-4.  As the percentage of acetone increased, the mother liquor retained
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Figure II-2.  Effect of acetone percentage on HBMSi-βCD re-crystallizations found from 
the chromatograms for the mother liquors.  Chromatographic conditions:  reversed-phase 
HPLC, mobile phase 90:10 EtOAc:MeOH, 2mL/min, at 1600psi. 
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Figure II-3.  Effect of DMF percentage on HBMSi-βCD re-crystallizations found from 
the chromatograms for the mother liquors.  Peak labels and chromatographic conditions 
as described in Figure II-2. 
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Figure II-4.  Effect of water percentage on HBMSi-βCD re-crystallizations found from 
the chromatograms for the mother liquors.  Peak labels and chromatographic conditions 
as described in Figure II-2. 



 26

4 5 6 7 8 9 10 11 12 13 14 15
0.00

0.02

0.04

0.06

0.08 ml/g, % recovery
 12.0, 83.7
  9.0, 87.9
  6.0, 93.2
  3.0, 96.3

EL
SD

 si
gn

al
/m

V

Time/min

 

Figure II-5.  Effect of the amount of solvent mixture to mass of solid material ratio on 
the purity of HBMSi-βCD found from the chromatograms for the recovered solids.  The 
solvent mixture contains 10% water, 5% DMF, and 85% acetone.  Peak labels and 
chromatographic conditions as described in Figure II-2. 
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more over-silylated material.  As the DMF and water content increased, the removal of 

the under-silylated CD improved.  A compromise was reached with a solvent mixture of 

85% acetone, 10% water, and 5% DMF. 

An important consideration when establishing re-crystallization conditions is 

the ratio of solvent volume to mass of impure solid.  A very small ratio means that there 

is inadequate volume of solvent to dissolve all the impurities. If the ratio is too large, an 

excessive amount of the target compound is lost in the mother liquor. Results of the re-

crystallization experiments using various solvent-volume-to-solute-mass ratios are 

summarized in Figure II-5.  As expected, more impurities are retained by the solid as the 

solvent-to-solid-material ratio is decreased.  The exception is the 3mL/g ratio.  During 

the first re-crystallization, extraneous compounds carried over from the reaction mixture 

increase the solubility of the impurities in the mother liquor. Since those extraneous 

compounds are no longer present after the first re-crystallization, in terms of 

reproducibility, the 3mL/g ratio is not a good choice.  At the 6mL/g ratio, there is 2% 

more of under-silylated impurity than at 9mL/g and 12mL/g; however, the recovery of 

HBMSi-βCD is 5.0% and 10% better than at 9mL/g and 12mL/g, respectively.  

Therefore, the 6mL/g ratio offers the best compromise between purity and percent 

recovery of the target CD. 

The silylation step was performed on a 200g scale.  1H NMR confirmed the 

identity of the product.  This intermediate was obtained with an isomeric purity greater 

than 99.5%. 
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2.3.2  Acetylation of secondary alcohol groups 

Step two of the synthesis involves the peracetylation of the secondary alcohol 

groups according to reported procedures [52-54, 103] shown in Figure II-6. 

Pyridine had to be replaced as the reaction solvent because the acetic 

acid/pyridinium acetate system became sufficiently acidic to hydrolyze the acetyl groups 

of HABMSi-βCD.  The first option was EtOAC since both HBMSi-βCD and the target, 

HABMSi-βCD, are soluble in it.  In addition, EtOAc, being immiscible with water, is 

compatible with the work-up procedure.  DMF was also considered, because its ability to 

break intra-molecular hydrogen-bonding in the reactant CD could favor the acetylation; 

experiments proved this hypothesis wrong.  The results presented in Figure II-7 

indicated that the reaction was significantly slower when DMF was present, while 

EtOAc had no significant effect on the reaction rate.  Therefore, EtOAc was used for all 

further experiments. 

Further reduction of the amount of Py in this reaction was possible only if the 

excess of acetic anhydride (AcOAc) was decreased.  Table II-1 summarizes the results 

of these experiments.  As expected, the decrease in excess of AcOAC increased the 

reaction time.  HPLC analysis of the composition of the reaction mixtures taken beyond 

98% conversion confirmed that the concentration of some of the impurities increased 

with time at the expense of HABMSi-β-CD.  Additionally, temperature control of the 

reaction over the course of several days proved to be impractical, thus justifying an 

increase in the amount of catalyst to assure a rapid reaction with low loss of target CD. 

Although the reaction can be performed with only 10% excess of acetylating agent, this  
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Figure II-7.  Chromatograms obtained for the acetylation reactions performed in Py, 
EtOAc, and a mixture of 33% DMF, 67% EtOAc.  Chromatographic conditions:  
reversed-phase HPLC, mobile phase 95:5 EtOAc:MeOH, 2mL/min, at 1600psi. 
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Table II-1.  Study of the variation in time and percent conversion in the acetylation 
reaction with different amounts of reactants. The Py/AcOAc mol ratio is 1.1. 

 
Experiment 

# 
EtOAc/CD 

(mL/g) 
Excess AcOAc 
(% mol/mol) 

DMAP/stoich. Py 
(%mol/mol) 

Yield 
(%) 

Reaction 
Time (h) 

1 1.2 107 0.5 99.3 22 
2 1.0 80 0.5 98.0 24 
3 2.0 50 0.5 97.8 52 
4 2.0 50 1.0 98.1 23 
5 2.0 50 1.7 98.4 18 
6 2.0 50 3.3 97.9 10 
7 2.0 50 5.0 97.1 9 
8 2.0 50 6.7 98.5 4 
9 2.0 20 8.2 98.5 6 

10 2.0 10 8.2 97.8 7 
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condition requires an extremely dry reaction medium.  Amines are particularly difficult 

to dry and the reactant HBMSi-βCD tenaciously retains water from the re-crystallization 

solvent.  Therefore, reproducibility problems were observed at low excess of AcOAc.  

When taking all these considerations into account, it was concluded that the reaction 

should take place in EtOAC with a 20% excess of acetylating agent (based on the initial 

amount of HBMSi-βCD), a 10% excess of Py (based on the amount of acetylating 

agent), and an 8% of catalyst (based on the stoichiometric amount of base). 

The last modification dealt with the re-crystallization conditions.  It was known 

that the product was highly soluble in most common organic solvents, including acetone.  

The ability of the DMF/water mixture to re-crystallize the less hydrophobic CDs of the 

silylation reaction suggested that such a mixture may work for post-acetylation 

purification as well.  A solid mixture containing 97% HABMSi-βCD and 3% impurities, 

typically obtained at the end of the reaction, was used in the re-crystallization 

experiments.  Figure II-8 illustrates the results obtained.  The separation selectivity of 

the solvent mixture showed a maximum as the water percentage was increased.  Water 

reduces each compound�s solubility in DMF to a different extent.  The least hydrophobic 

impurities achieved minimal solubility last, at which point the selectivity of the solvent 

mixture will decrease.  It was concluded that 5% water and 95% DMF was the best 

solvent mixture for the re-crystallizations. 

The acetylation was performed on a 200g scale.  1H NMR confirmed the identity 

of the product.  The second intermediate was obtained with an isomeric purity higher 

than 99.5%.
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Figure II-8.  Effect of the DMF to water ratio on the re-crystallization of HABMSi-βCD 
found from the chromatograms for the mother liquors.  Chromatographic conditions as 
described in Figure II-7. 
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2.3.3  Deprotection of primary alcohol groups:  removal of the tert-butyldimethylsilyl 

group 

Step three is the removal of the protecting group.  Usually, BF3
.etherate is 

utilized for this purpose, as indicated in Figure II-9 [52, 53, 60, 103, 106-108].  The 

mechanism of the reaction is not fully known.  Although BF3 is a mild reagent for the 

removal of the silyl groups, the acidic medium produced during work-up is incompatible 

with the acetyl groups of the CD.  Therefore, an alternative procedure was sought for the 

removal of the TBDMSi group. 

A well-known general silyl-group removal method is called �reactions with 

naked fluoride� [107, 109-112].  The two most common reagents for this step are TBAF 

[107, 109-113], and HF(aq)/Py [113, 114-116].  The first reagent is not a possible option 

for this particular CD because the reaction produces a basic medium, which is also 

incompatible with the acetyl groups.  The second reagent has two limitations.  The 

silylated-acetylated-CD has low solubility in water.  Moreover, from the acetylation 

reaction it was learned that the prolonged presence of pyridinium ion hydrolyses the 

acetyl group. A combined approach using the two reagents is illustrated in Figure II-10.  

Mixing HF and methylmorpholine, MeMo, produces an ion pair between F- and 

methylmorpholinium, MeMoH+.  Being a weaker acid than pyridinium, MeMoH+ should 

have a lesser effect on the acetyl groups and should react with any base produced from 

the reaction between TBAF and CD.  As a first step, the proposed procedure was 

compared with the method used by Vincent [53, 52].  Figure II-11 shows the TLC results 

at the end of the reaction obtained from both methods.  While the reaction with BF3 
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Figure II-11.  Removal of the TBDMSi group with TBAF/HF/MeMo (A) and with BF3 
(B).  The HDA-βCD standard is shown on lane St.  The silica TLC plates were run with 
an eluent 50:10:1 CHCl3:MeOH:H2O. 
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Figure II-12.  Removal of the silyl-group with TBAF/HF/MeMo (A) and with MeMo/HF 
(B).  The HDA-βCD standard is shown on lane St.  TLC plates were run as described in 
Figure II-11. 
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shows at least three different side-products that are less hydrophobic than the target, the 

reaction with TBAF shows only one, confirming that the proposed system is less harsh 

on the acetyl groups. 

To establish if TBAF was the fluoride source rather than the MeMo-HF, the 

reaction with only MeMo/HF was studied. The TLC plates in Figure II-12 reveal that the 

reaction containing TBAF is basically finished after only 2h.  However, without TBAF, 

after 34h of reaction, the mixture still has compounds in the early stages of the reaction 

(cf. top spots in the TLC plate). These results indicate that most probably, TBAF is the 

source of fluoride for the reaction, while Memo/HF is used as a fluoride depot that 

releases fluoride only after neutralization of the basic products from the TBAF reaction. 

The alternative procedure involves longer reaction times (26h). The possibility of 

speeding up the reaction by increasing the temperature was studied.  Figure II-13 shows 

the TLC plates from these experiments.  As expected, the increase in temperature 

enhances the reaction rate.  While at 30°C the reaction is not yet finished after 7h, the 

reaction at 50°C is almost complete after 2h.  Since the temperature increase does not 

significantly elevate the production of the less hydrophobic impurities, the reaction can 

be carried out with TBAF, MeMo, and HF at 50°C. 

Experiments using different amounts of TBAF were performed.  The results are 

illustrated in Figure II-14.  All the reactions showed satisfactory conversion levels 

without significant hydrolysis.  However, at and below 43% mol/mol excess of F-, the 

reaction slowed down significantly.  Therefore, it was concluded that the reaction should 

take place in THF with 70% mol/mol TBAF and 100% mol/mol HF (both based on the  
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Figure II-13.  Temperature effect on the rate of the silyl-group removal reaction with 
TBAF/HF/MeMo.  The HDA-βCD standard is shown on lane St.  TLC plates were run 
as described in Figure II-11. 
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Figure II-14.  Effect of the TBAF amount (as %F- excess over the 7 equivalents of 
MeMoHF) on the removal of the silyl-group.  The HDA-βCD standard is shown on lane 
St.  TLC plates were run as described in Figure II-11. 
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initial amount of HDABMSi-βCD), and 10% mol/mol excess of MeMo (based on the 

amount of HF) at 50°C. 

HPLC is an indispensable quantitative method that can be used in designing the 

re-crystallization solvent scheme.  It has been reported by Zhu [56] that normal-phase 

HPLC can be used for the analysis of the final product; however, it presents two 

drawbacks.  First, normal-phase HPLC provides limited selectivity for the separation of 

CD-derivatives compared to reversed-phase HPLC, and usually results in the tailing of 

the analyte peak.  Second, CHCl3 employed in the mobile phase is not compatible with 

PEEK tubing used in the instrument.  For a reversed-phase HPLC method, an aqueous 

mobile phase was needed since HAD-βCD was not retained even in pure methanol.  

Water/methanol mixtures always lead to high pressure drops in the column, especially 

when the composition is near the viscosity maximum, at 1:1 combination.  The column 

was hence jacketed to increase the temperature and keep the pressure drop on the 

column around 2000psi. The mobile phase, equilibrated at 40°C, with a composition of 

57:43 methanol:water afforded a k� of 10. 

The last aspect considered in this procedural modification is the purification of 

the product.  Vincent�s procedure [52, 53] reported acetone as a good re-crystallization 

solvent for the hydrophobic impurities.  However, the more abundant impurities were 

the under-acetylated, less hydrophobic impurities.  This problem resembled what was 

encountered in the purification of the acetylated CD; therefore, re-crystallization from 

DMF-water mixtures was studied.  Determination of the solvent composition that 

provided the greatest selectivity was performed by re-crystallizing a solid test mixture  
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Figure II-15.  Effect of the DMF to water ratio on re-crystallization of HDA-βCD found 
from the chromatograms for the mother liquors.  Chromatographic conditions:  normal-
phase HPLC, mobile phase 57:43 MeOH:water, 40°C, 2mL/min, at 2000psi. 
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Figure II-16.  Effect of the amount of solvent mixture to mass of solid material ratio on 
the purity of HDA-βCD found from the chromatograms for the recovered solids.  The 
solvent mixture contains 50% water and 50% DMF.  Peak labels and chromatographic 
conditions as described in Figure II-15. 
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containing 2.5% under-acetylated CD, 1.5% hydrophobic CD impurities, and 96% 

HDA-βCD.  The results are shown in Figure II-15.  The solubility of the impurities 

exhibited a maximum as the amount of DMF was decreased.  From the compositions 

studied, the mixture of 50% DMF and 50% water provided the best selectivity. 

The effect of the ratio of the amount of the solvent mixture to the amount of impure 

HAD-βCD was also studied.  Figure II-16 shows the results.  A significant improvement 

in purity was obtained when the ratio was increased from 2mL/g to 4mL/g, but not when 

it went from 4mL/g to 5mL/g. A ratio of 4mL/g was therefore kept for further re-

crystallizations. 

The removal of the TBDMSi groups was performed on a 350g scale.  1H NMR 

confirmed the identity of the product.  The intermediate was obtained with an isomeric 

purity of at least 99.5%. 

 

2.3.4  Sulfation of the primary alcohol groups 

Step four involves the sulfation of the primary alcohol groups in the CD, 

following the procedure reported by Vincent [52, 53] with small modifications as 

specified in Appendix A.  This step was performed on a 400g scale, and its product 

characterized by indirect detection CE and 1H NMR.  Na7HDAS was obtained with an 

isomeric purity of 98.5%. 
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CHAPTER III 

SYNTHESIS AND CHARACTERIZATION OF THE 

TETRABUTYLAMMONIUM SALT OF HEPTAKIS (2, 3-DI-O-

ACETYL-6-O-SULFO)-β-CYCLODEXTRIN  

3.1  Introduction 

NACE is an important area of CE analysis because it allows the study of 

molecular interactions that are suppressed in aqueous media [71].  A critical comparison 

of the behavior of charged CDs in aqueous and non-aqueous CE is expected to yield 

fundamental information regarding their enantio-selectivity in CE.  However, such 

comparison in aprotic media has been prevented by the limited solubility of the available 

charge CDs. 

The initial attempt to synthesize organic-solvent-soluble CDs involved the 

synthesis of β-CD derivatives.  The design of a CD that is highly soluble in organic 

solvents can be based on reported information of NACE analysis. 

It is known that when looking for explanations of the behavior of a particular 

chiral resolving agent, a single-isomer resolving agent should be employed [17].  There 

are four negatively charged single-isomers derivatives of βCD:  heptakis(6-O-sulfo)-β-

cyclodextrin, HS [51], heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-cyclodextrin, HDAS [52], 

heptakis(2,3-di-O-methyl-6-O-sulfo)-β-cyclodextrin, HDMS [58], and heptakis(2-O-

methyl-3,6-di-O-sulfo)-β-cyclodextrin, HMDS [46]. 
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A CD derivative that exhibits the larger variety of inter-molecular interactions in 

NACE is desired.  Non-aqueous solvents weaken solvophobic effects that drive the 

inclusion of enantiomers into the CD cavity, while polar interactions of the enantiomers 

with functional groups at positions 2, 3, and 6 of the glucose units of the CDs become 

more pronounced in NACE [72, 84, 87, 88]. 

Non-selective ion-pair interactions with oppositely charged enantiomers occur at 

the sulfo groups.  Dipole-dipole interactions require the presence of strong dipoles in the 

CD and the enantiomers [87].  Such interaction is available on the CD derivatives with 

acetyl groups.  For donor-acceptor interactions to exist, groups with free-electron pairs 

and hydrogen-bonding capabilities need to be present in both parts of the analyte-CD 

complex [87].  Hydroxyl groups provide hydrogen-bond donor capability but limit the 

solubility of the CD derivative in organic solvents.  Acetyl and methoxy groups bear 

hydrogen-bond acceptor and electron-donor properties.  Evidently, HDAS provides the 

most diverse interactions, increasing the possibilities of having selective interactions 

with enantiomers. 

The limited solubility of charged CDs in organic media is caused, in part, by 

their counter ion.  For instance, replacement of sodium ions by more hydrophobic 

cations can extend the use of CDs to commonly used non-aqueous media.  Bulky 

cations, such as tetraalkylammonium, TAA+, are ideal for this purpose.  TAA+ has been 

reported to reduce the adsorption of analyte cations on the capillary wall, thus improving 

CE separations [117].  However, significant adsorption of the counter ion is undesirable 

since it alters the electro-osmotic flow in the system.  Studies in formamide-based BEs 
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demonstrate that the adsorption of TAA+ onto the fused silica wall is reduced as the 

length of the alkyl-chains increases [117, 118].  Therefore, TBA+ was chosen as the 

counter ion for the sulfo-CD. 

At first glance, the synthesis of heptakis (2, 3-di-O-acetyl-6-O-sulfo)-β-

cyclodextrin tetrabutylammonium salt, TBA7HDAS, from Na7HDAS requires only a 

simple ion exchange.  However, the efficiency of ion exchange typically decreases with 

an increase in the size of the cation, excluding this approach from the efficient synthetic 

alternatives.  The most direct approach to obtain TBA7HDAS then is the use of a 

synthesis procedure analogous to the production of Na7HDAS from HDA-βCD, as 

shown in Figure III-1. 

 

3.2  Materials and methods 

The chemicals used in the synthesis were from different commercial brands as 

specified below:  TRIS, EtOAc, DMF, MeOH, EtOH, i-PrOH, THF, ACN, CHCl3, 

CH2Cl2, hexanes, and all deuterated solvents, as specified in Section 2.2 of Chapter II; 

HCl, EM Science (Gibbstown, NJ); all other chemicals, Aldrich Chemical Company 

(Milwaukee, WI).  Dry solvents were prepared as described in Section 2.2 of Chapter II. 

Indirect-UV detection CE was utilized to monitor the reaction progress as well as the 

removal of impurities during work-up. Also, the purity of the final product was 

determined by indirect-UV detection CE.  The CE system is the same that was described 

in Section 2.2 of Chapter II.  This system was also used to determine conductivity values 

of standard solutions of TBA7HDAS and Na7HDAS in pure water. 
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Mass spectrometric characterization was performed on a PE-Sciex Q-Start Pulsar 

ESI Q-TOF mass spectrometer equipped with an Ion Spray source (Applied 

Biosystems/MDS Sciex, Foster City, CA).  The sample was prepared at a concentration 

of 4mg/mL in ACN:water 1:1 solvent mixture. 

As part of the characterization of the final product, 1H-1H COSY-NMR and 1H-

13C HETCOR-NMR spectra were obtained.  A Varian Inova 500MHz spectrometer, 

UNIX based (Varian Assoc., Walnut Creek, CA) with a Quad probe for 1H, and 13C was 

used under the control of the Solaris 2.4 software running on a SUN workstation.  1H 

NMR was also used to monitor the solvent content of the solid products. 

Synthesis procedures were studied first on a small scale (5 or 10g).  When 

conditions were promising, the experiment was gradually scaled up to 25g and then to 

50g.  Methods of purification were developed as indicated in Section 2.2 of Chapter II. 

Solubility properties were studied as follows.  A weighed amount of solid was 

added to 1mL of solvent at room temperature in a 5mL vial with a stir bar.  Once 

saturation was reached, the vial was capped and placed in a water bath at 40°C on a stir 

plate.  The clear solution in the vial was allowed to cool to room temperature.  If no 

precipitation occurred, additional 0.01g of the solid was added and the procedure was 

repeated. 

The specific details of the synthetic procedure are outlined in Appendix A. 
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3.3  Results and discussion 

3.3.1  Synthesis of TBA7HDAS 

The proposed synthesis of TBA7HDAS includes a crucial step:  a weak base is 

used to neutralize pyridinium and leaves its cation as the counter ion for the CD.  Since 

the only available base with TBA+ as counter ion is the strong base TBAOH, the first 

step in the synthesis is to obtain an appropriate weak base. 

The most direct approach was to produce, in-situ, bicarbonate in the basic 

aqueous solution: 

H2O(l) + CO2(s) → H2CO3(aq) 

TBAOH(aq) + H2CO3(aq) → TBAHCO3(aq) + H2O(l) 

The pH of the commercially available 40%m/m TBAOH in water is about 14.  A 

solution of TBAHCO3 is expected to have a pH of about 8.3.  The pH of the hydroxide 

solution was monitored as dry ice was added to determine the point at which bicarbonate 

became the major base present. 

A solution of TBAHCO3 prepared by the previous procedure was successfully 

used in neutralizing pyridinium in the reaction mixture without quantifiable loss of 

acetyl groups in HDAS.  However, the reaction mixture produced in this case contains 

more compounds than the mixture in the analogous synthesis of Na7HDAS.  Since no 

slurry of TBAHCO3 was obtained, its excess remained in solution.  Also, the by-product, 

TBA2SO4, did not precipitate.  Therefore, a means of separating the CD from the 

reaction mixture was needed.  While small portions of the reaction mixture were tested 

with different solvents to induce product precipitation, the bulk solution container was 



 

 

52

left open.  After approximately two hours, a crystalline solid was observed.  Figure III-2 

A shows CE analysis of the solid.  The analysis indicates that the solid contains a 

mixture of HDAS7- and sulfate salts of TBA+. The µeff of each peak corresponds to the 

values for standards of TBA+, HDAS7- and SO4
2- in the same electrophoretic system.  

Figure III-2 B shows the result of 1H NMR analysis.  Concurring with the results from 

CE, the analysis indicates the presence of a TBA+ salt contamination.  Additionally, the 

spectrum reveals the presence of DMF and Py.  From signal integration, it can be 

approximated that the solid is a mixture of 73%m/m TBA7HDAS, 16%m/m (TBA)2SO4, 

9%m/m DMF, and 2%m/m Py. 

Additives for CE analysis, such as chiral resolving agents, must have a very low 

salt contamination level; the presence of such ionic compounds increases the 

conductivity of the BE and limits the maximum electric field that can be applied.  

Additives should also be free from UV-active groups because they reduce the sensitivity 

of the analyses utilizing the UV detector.  These conditions indicate that the solid 

TBA7HDAS required purification to remove (TBA)2SO4, DMF, and Py. 

Designing a re-crystallization method requires solubility data for the compound.  

Solubility tests (Table III-1) revealed that TBA7HDAS has low solubility in non-polar 

solvents such as benzene, hexanes, and t-butylmethylether.  Conversely, the product is 

soluble in polar amphiphilic solvents such as water and alcohols, much the same way 

that the sodium salt is.  TBA7HDAS is highly soluble in polar aprotic solvents such as 

acetone, ACN, EtOAc, CH2Cl2, unlike the analogous sodium salt.  Knowledge of the 

solubility properties of the product facilitated the design of a simpler, cleaner alternative  
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Figure III-2.  Purity assessment of the TBA7HDAS synthesized from HDA-βCD.  (A) 
Indirect-UV detection CE electropherograms obtained under the following conditions:  
BE is 20mM pTSA and 40mM TRIS at pH 8.3, 20°C, 5kV, 25µm I.D. naked fused-silica 
capillary, 19/26 cm effective/total lengths.  (B) 1H NMR analysis in CDCl3. 
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Table III-1.  Results of solubility studies of TBA7HDAS in solvents with different 
polarity, at 22°C. 

 
Non-polar 

solvent 
Solubility 

(g/mL) 
Polar Aprotic 

Solvent 
Solubility 

(g/mL) 
Polar amphiphilic 

solvent 
Solubility 

(g/mL) 
Benzene 0.5 ACN 1.5 MeOH  2.5 

CCl4 <0.1 acetone 0.9 EtOH 2.3 
Hexanes <0.1 CHCl3 0.4 water 1.7 
Toluene <0.1 EtOAc 0.2 iPrOH 0.9 
tBME <0.1 BuOAc <0.1   
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to obtain TBA7HDAS-βCD. 

If a solution is made with Na7HDAS and TBACl, the compounds will dissociate 

in water to form ions.  When the solution is extracted with dichloromethane only, 

TBA7HDAS and TBACl can move to the organic phase because neither Na7HDAS nor 

NaCl forms soluble ion pairs.  To reduce the possibility of extracting NanTBA(7-n)HDAS, 

10% excess of TBACl was used.  Once the phases are separated, the organic phase can 

be evaporated to dryness under mild conditions.  CE (Figure III-3A) and 1H NMR 

(Figure III-3B) were utilized to analyze the resulting solid.  A mixture of 84.9%m/m 

TBA7HDAS, 10.5%m/m TBACl, 3.6% water, and 1.0% CH2Cl2 was found to be the 

approximate composition of the solid.  This method was considered more advantageous 

than the synthesis from HDA-βCD, mainly because the solid product could be easily 

recovered by solvent evaporation.  Furthermore, the only inconvenient impurity left by 

this method is TBACl, which is present in half the amount that TBA2SO4 was present in 

the solid obtained by the synthetic route of Figure III-1. 

A polar solvent mixture is required to dissolve the impurity and precipitate the 

product.  Because in the first attempt to synthesize the product, it precipitated from a 

Py/DMF/water mixture, the combination DMF/water was the first natural choice.  Figure 

III-4 displays the results of the experiments performed.  Only after normalization of the 

signals for HDAS7- the chloride concentration can be compared.  No significant 

difference is observed between the chloride content of the 95% and 90% DMF solutions.  

A significant increase occurred when DMF was reduced to 80% and 70%; this result is 

not surprising since an increase in the polarity of the mixture favors the solubilization of 
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Figure III-3.  Purity assessment of the TBA7HDAS solid recovered from the CH2Cl2 
extract.  (A) Indirect-UV detection CE electropherograms obtained under the conditions 
described in Figure III-2.  (B) 1H NMR analysis in CDCl3.
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Figure III-4.  Effect of the DMF to water ratio on the re-crystallization of TBA7HDAS 
for Cl- removal found from the electropherograms (normalized to the TBA7HDAS peak) 
for the mother liquors.  Electrophoretic conditions as described in Figure III-2. 
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the chloride impurity.  A small decrease in the chloride content was observed at 70% 

DMF; most likely because at this point enough water is present to solubilize the product 

as well as the impurity, decreasing the selectivity of the solvent mixture.  Therefore, the 

re-crystallization conditions were set at 80%DMF and 20% water, at a concentration of 

2g impure solid per 1mL of solvent mixture.  Figure III-5 presents the results of the CE 

and 1H NMR analysis of the product at this stage of the work-up:  no TBACl can be 

detected. 

After the removal of TBACl, the solid product is essentially a mixture of the CD, 

DMF, and water.  Since the solid is expected to be used for CE separations utilizing UV 

detection, the DMF content had to be reduced.  A solvent that is miscible with DMF, but 

does not dissolve TBA7HDAS, was needed.  Another consideration is the fact that CD 

decomposes when drying in high vacuum at 60°C; therefore, a solvent with a low boiling 

point was required to ensure that any residue on the solid could be removed by high 

vacuum drying at room temperature.  These criteria were satisfied by t-butylmethylether, 

tBME.  As expected, the reduced solubility of TBA7HDAS requires extended refluxing 

of the slurry to allow the DMF trapped inside the solid to be released into the solution.  

The low efficiency of the cleaning process required that the product be suspended at 

50oC six consecutive times before the DMF content was reduced below the detection 

limit by NMR (about 0.02%m/m of the solid product), at which point UV detection 

became feasible.  Figure III-6 illustrates the CE and 1H NMR analysis of the final 

product. 



 

 

59

A)

2 3 4 5 6 7 8 9 10 11 12

 + at the detector
 - at the detector1x10-3 eo peak

TBA+

HDAS7-

A
bs

or
ba

nc
e/

A
U

Time/min

 

B)

45

2.97

14.01 7.00 27.99

6.60
56.02

9.08
8.31

0.98
41.84

55.99
55.97

84.00

123678 45 ppm

CD backbone

DMF

AcetylsDMF

Water

Acetone

CDCl3

TBA+

TBA+

 
Figure III-5.  Purity assessment, after the removal of TBACl, of the re-crystallized 
TBA7HDAS.  (A) Indirect-UV detection CE electropherograms obtained under the 
conditions described in Figure III-2.  (B) 1H NMR in CDCl3. 
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Figure III-6.  Purity assessment, after DMF removal, of the re-crystallized TBA7HDAS.  
(A) Indirect-UV detection CE electropherograms obtained under the conditions 
described in Figure III-2, with 10kV applied voltage.  (B) 1H NMR in CDCl3. 
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3.3.2  Confirmation of the structure of TBA7HDAS 

As a first indication that the product obtained had TBA+ ions instead of Na+ ions, 

the conductivities of the solutions of TBA7HDAS and Na7HDAS, with equal HDAS7- 

concentration were compared.  Because of the differences in the mobility of TBA+ and 

Na+, it is expected that the conductivity of a TBA7HDAS solution should be 45% lower 

than the conductivity of a Na7HDAS solution.  Experimental values indicated that the 

difference is about 33%.  The decrease in conductivity was the first indication of the 

presence of TBA+ instead of Na+.  These measurements, however, did not provide a 

quantitative proof of the stoichiometric substitution of the ions. 

Mass spectrometry can provide insights about the structure of the molecule.  

Usually, the molecular mass can be calculated from the molecular ion.  ESI-MS analysis 

of TBA7HDAS was performed.  No significant signals were obtained in positive mode 

ESI-MS; therefore negative mode ESI-MS was attempted.  The disadvantage of negative 

mode ESI-MS is that the formation of anions implies the dissociation of the compound, 

making impossible the confirmation of the presence of seven TBA+ cations.  Figure III-7 

displays the results.  The two enhanced signals show the existence of the correct 

structure of HDAS-βCD7- with five TBA+ ions for the doubly charged anion, and four 

TBA+ ions for the triple charged anion.  From these ions, one by one substitution of 

TBA+ by H+ generates the different signals in each charge cluster.  The commonality of 

all the signals is the presence of the HDAS7- ion, corroborating the results of the CE 

analysis that indicates that the solid contains a single CD isomer. 
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Figure III-7.  ESI-MS analysis of the TBA7HDAS structure.  (A)  Signal corresponding 
to the triple charged anion TBA4HDAS3-.  (B)  Signal corresponding to the doubly 
charged anion TBA5HDAS2-. 
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A comparison of 1H NMR in D2O of both TBA7HDAS and Na7HDAS provides 

additional proof that HDAS7- has not been affected during the synthesis.  Deutered water 

is a convenient solvent for this analysis since all proton signals are well resolved.  Figure 

III-8 displays these NMR spectra.  Table III-2 contains the chemical shift for the proton 

signals of HDAS7- and the experimental values of 3J.  No difference is found between 

the results for TBA7HDAS and Na7HDAS.  Identification of the signals was performed 

by combining the information from the splitting pattern as well as the measured coupling 

constants.  The assignment of the signals follows the same order as the signals of the 

gamma analog, ODAS7- [56].  The splitting pattern in the proton signals of the CD 

backbone and their integration values support the results from ESI-MS that indicate that 

HDAS7- is the only CD isomer in the solid.  Integration values found for the protons 

from TBA+ provide proof that seven TBA+ ions serve as counter-ions to HDAS7-. 

Because the synthesis of TBA7HDAS was monitored in part by 1H NMR in 

CDCl3, comparison of the results from both deutered solvents was needed.  As it is 

shown in the NMR spectra in Figures III-8 and III-10, and the data in Table III-2, 

chemical shifts in CDCl3 are in general the same as in D2O, except for H4 and H5.  An 

obvious feature is that CDCl3 increases the resolution of the proton signals from the two 

acetyl groups.  Interestingly, the splitting pattern of H4, H5 and H6 has changed:  the 

signals from the diasterotopic H6 protons are not longer resolved, and the signals from 

H4 and H5 have very similar chemical shifts, producing a single signal with multiple 

unresolved peaks that cannot be related to a particular splitting pattern.  These changes 

in the signals made impossible the determination of 3J among H4, H5 and H6.  To assess  
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Figure III-8.  1H NMRs in D2O of Na7HDAS (A) and TBA7HDAS (B) for comparison of 
the HDAS7- structure. 
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Table III-2.  Chemical shift and coupling constant, J, values for the protons in HDAS7-. 
 

Na7HDAS in D2O TBA7HDAS in D2O
TBA7HDAS in 

CDCl3 Proton 
3J 

type Chemical 
shift (ppm) 

3J 
(Hz) 

Chemical 
shift (ppm) 

3J 
(Hz) 

Chemical 
shift (ppm) 

3J 
(Hz)

1  5.20  5.20  5.52  
 3J12  3.1  2.9  3.0 

2  4.82  4.80  5.00  
 3J23  10.0  10.0  10.2 

3  5.30  5.30  5.60  
 3J34  8.6  8.6  8.4 

4  4.00  4.00  4.20-4.40  
 3J45  10.0  9.3  - 

5  4.12  4.10  4.20-4.40  
 3J56  10.7  10.7  - 

6  4.25, 4.40  4.25, 4.40  4.6  
        

CH3-
acetyls  2.004, 2.008  2.004, 2.008  2.23, 2.26  
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the identity of all signals in CDCl3, 2D NMR analysis needed to be performed. 

An H-H COSY NMR experiment (Figure III-9) was initially run.  From the cross 

signals (the ones outside of the diagonal), the connectivity of the protons signals can be 

identified.  H1 in the CD is the only signal that integrates for seven protons and is a 

doublet due to its interaction with H2.  In addition, the H1 signal has to appear at low 

field relative to the other CD signals since it is the only proton that is attached to a 

carbon bonded to two oxygen atoms.  All the above mentioned characteristics are found 

in the signal at 5.2ppm.  The signal of H1 is the starting point to decipher the 

connectivity shown by the COSY spectrum.  The signals from H2, H3 and H6 can be 

easily identified.  Once again, the challenge comes from H4 and H5.  The cross signal 

from H6 contains the three bond magnetization signal with H5, and a long distance 

interaction with H4.  In addition, the H6 cross peak has low intensity. Therefore, no 

additional information is gained from H6 for the identification of the relative position of 

H4 and H5.  However, the cross peak from H3 seems to be towards the low field side of 

the unresolved signal, which would indicate a significant shift in the position of H4 will 

respect to its value in D2O.  Confirmation of this characteristic can be obtained from a 

HETCOR NMR spectrum. 

The COSY NMR spectrum confirms the assignment of the proton signals from 

the TBA+ ion.  The protons in the carbon attached directly to the positively charged 

nitrogen characteristically move downfield to 3.5ppm.  The deshielding effect from the 

nitrogen weakens with distance and does not reach more than three bonds.  Therefore, 

only the methylene signal at 1.65ppm is at lower field with respect to the typical CH2  
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Figure III-9.  1H-1H COSY NMR in CDCl3 for the analysis of the TBA7HDAS structure.  
(A)  Complete COSY spectrum detailing the assignment of signals from the TBA+ ion.  
(B)  Zoom of the HDAS7- region detailing the assignment of signals from the CD 
backbone. 



 

 

68

ppm

20

40

60

80

100

A
B

C

D

acetyls

1.54.5 2.5 ppm5.5 3.5

70

80

90

100

5.5 4.5

1

2 34
5

6
ppm

ppm

C4
C3

C2 C1

OC5AcO

AcO
O

+N
CD CC

CB CAC6

OSO3
-

4

7

B

A

 
Figure III-10.  1H-13C HETCOR NMR in CDCl3 for the analysis of the TBA7HDAS 
structure.  (A)  Complete HETCOR spectrum detailing the assignment of signals from 
the TBA+ ion.  (B)  Zoom of the HDAS7- region detailing the assignment of signals from 
the CD backbone. 
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position between 1.5pmm and 2ppm.  The third methylene signal is found at 1.35ppm, 

within the normal chemical shift range.  Finally, methyl protons are found at a typical 

value of 0.9ppm. 

To solve the relative position of H4 and H5, the 1H-13C HETCOR NMR 

spectrum was obtained.  In this case, the cross signals relate the protons and carbons that 

are directly bonded.  Figure III-10 shows the HETCOR NMR spectrum.  From the 

COSY NMR information, C1, C2, C3, and C6 can be immediately identified.  In 

reported NMR analysis of CDs, C4 is at lower field than C5.  Such a reference allows 

the assignment of the two carbon peaks left.  This assignment confirms that the signal of 

H4 has moved to a lower field than H5, interchanging their relative positions from the 

one observed in D2O. 

The combined information accumulated from the aforementioned techniques 

indicates that the single-isomer, negatively-charged, HDAS7- derivative with seven 

TBA+ instead of Na+ was indeed obtained. 
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CHAPTER IV 

ENANTIOMER SEPARATIONS IN NON-AQUEOUS CAPILLARY 

ELECTROPHORESIS WITH HEPTAKIS (2, 3-DI-O-ACETYL-6-O-

SULFO)-β-CYCLODEXTRIN TETRABUTYLAMMONIUM SALT 

4.1  Introduction 

Highly sulfated cyclodextrins have become popular in CE enantiomer separations 

because they can achieve a high degree of enantio-selectivity, and result in large 

resolutions. Additionally, sulfated CDs allow rapid development and optimization of 

enantiomer separations [34, 119].  Sulfated CDs are especially useful for the separation 

of basic drugs where resolution is achieved by a combination of enantio-selective 

inclusion and ion pairing [84]. 

Sulfated CDs in NACE has been used successful for the separation of basic 

enantiomers.  As all randomly substituted CDs, randomly sulfated CD derivatives 

exhibit poor reproducibility due to synthetic batch-to-batch variability [75].  Improved 

analytical reproducibility has been achieved through the use of several single-isomer 

charged β or γ CDs.  These CDs are sodium salts of the sulfate groups at the C6 position 

of the glucose ring.  The oxygen atoms at C2 and C3 carbons atoms bear acetyl [94, 95, 

98] or methyl [49, 96, 97, 89, 120] groups.  NACE application of these CDs using other 

solvents has been limited by their poor solubility. 

Methanol has relatively similar properties to water as both are amphiphilic 

solvents.  Methanol�s lower polarity with respect to water allows it to compete strongly 
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with the enantiomer for complex formation with the CDs, lowering the formation 

constant values [71, 81].  Because of the previous utilization of Na7HDAS in methanol 

[98], the reported buffer, 50mM Cl2HOAC and 25mM TEA, will be used to provide 

insight into the effects of the CD�s counter ion on the separation of enantiomers. 

Acetonitrile is one of the least polar and viscous solvents in NACE [70, 72, 85].  

Its ε/η ratio produces high efficacy in the differentiation of anions and short analysis 

times for cations [75, 85, 86].  ACN lacks the ability to form donor hydrogen-bonds [70-

72].  This property significantly reduces the solvent-ion interactions, drastically changes 

the acid-base chemistry, promotes the formation of heteroconjugates and ion pairs, and 

enhances the hydrophilic interactions [70, 77, 88, 121-125].  As a result, solvent 

competition with the enantiomers for the CD is minimal in ACN [75]. 

The characteristics of ACN make it an excellent option for a solvent to study 

interactions that can be related to chiral recognition but are too weak in aqueous media.  

It can also provide information about the effects of the cation of the CD in these 

separations, specifically, about the effects of TBA+ in lieu of Na+.  Such comparisons 

between Na7HDAS and TBA7HDAS can be performed only at low chiral selector 

concentrations (<2mM) due to solubility limitations of Na7HDAS in ACN. 

Enantiomers of pharmaceutical bases are investigated in this study.  Positively 

charged basic analytes are expected to demonstrate that ion-pair interactions can drive 

complexation with the CD in NACE as hydrophobic effects do in aqueous media.  

Selectivity is expected to result from hydrophilic interactions such as dipole-dipole 

interactions and hydrogen-bonds, between the enantiomers and the chiral face of the CD. 
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4.2  Materials and methods 

The chemicals used in the enantiomer separations were from different 

commercial sources as specified below:  MeOH and ACN as specified in Section 2.2 of 

Chapter II; all other chemicals, including the chiral basic pharmaceuticals listed in Table 

IV-1, were from Sigma-Aldrich Chemical Company (Milwaukee, WI). 

A glass electrode with a Corning pH-ionmeter 150 in potential reading mode was 

used for the determination of the buffer capacity of the BE.  Determination of buffer 

capacity required the calibration of the pH-meter with picric acid solutions in ACN.  The 

calibration equation was obtained from a plot of the potential read from picric acid 

solutions vs. the theoretical pH* reported for these solutions. 

The buffers were prepared by weighing the necessary amounts of each 

component (methanesulphonic acid, MSA, or dichloroacetic acid, Cl2HOAc, and 

triethylamine, TEA) and diluting them to 500mL with HPLC grade MeOH or ACN.  The 

pH* was checked to assure that variations of no more than 0.3 pH-units occurred in each 

preparation. 

Indirect-UV detection and direct UV detection CE was utilized to monitor the 

stability of 10mM TBA7HDAS and 10mM Na7HDAS, kept at 9°C or 0°C, in the buffer 

systems chosen.  Additionally, direct UV detection was used during enantiomer 

separations by CE.  The CE system is the same that was described in Section 2.2 of 

Chapter II.  The capillary was rinsed with pure ACN for 5min, then with buffer for 5min 

at the beginning of a working day and in reverse order at the end of the day.  A final 

rinse for 2min with N2 was done at the end of the day.  Between runs, the capillary was 
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Table IV-1.  Basic chiral drugs studied in this thesis. 
 

Number Name Structure Pharmaceutical Use 

1 Alprenolol HCl 
O

N

OH
 

β-blocker 

2 Artane 
N

OH

 

Choline related 

3 Atenolol 
O

N

OH
H2N

O β-blocker 

4 Atropine O

O

HO

N

 

Anticholinergic 

5 Bupivacaine HCl 
N

N

O

 

Anesthetic 

6 Chlophedianol HCl 
N

OH

Cl

 

Antitussive 

7 Chlorpheniramine 
maleate 

N

N

Cl

 

Antihistaminic 

8 Clemastine fumarate 
NO

Cl  

Antihistaminic 

9 Fluoxetine HCl 

NO

F
F

F

 
Antidepressant 

10 Halostachin N

OH  
β-adrenergic agonist 
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Table IV-1.  Continued. 
 

Number Name Structure Pharmaceutical Use 

11 Hemicholinium-15 Br 
O

N+HO

 

Choline uptake 
inhibitor 

12 Homatropine HBr O

O

HO
N

 

Alkaloid 

13 Isoproterenol HCl N

OH

HO

HO

 
β-adrenergic agonist 

14 Ketamine HCl 

O

HN

Cl  
Anesthetic 

15 Mepenzolate Br 

N+

O

O

HO

 

Anticholinergic 

16 Oxyphencyclimine HCl 
OH

O

O

N

N

 

Anticholinergic 

17 Pindolol N

O

N

OH
 

β-blocker 

18 Piperoxan HCl O O

N

 

α-blocker 

19 Propranolol HCl 
O

N

OH
 

β-blocker 

20 Tolperisone HCl N

O

 
Muscle relaxant 
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rinsed for 1min with the BE from the reservoir use as the anode compartment during the 

separation. The same system was interfaced with an AD 406 data acquisition system 

(operated under Gold 8.1 chromatographic software control (Beckman-Coulter, 

Fullerton, CA) running on a Tiger K6 AMD 3-400MHz CPU personal computer) to 

measure the electrophoretic current in the capillary at different applied voltages.  From 

such data Ohm�s plots generated indicated that the maximum voltage to be used in the 

separations was 15kV. 

Because strong complexation is expected for the protonated bases, the range of 

CD concentration studied was low (0mM to 10mM).  BEs were prepared freshly every 

3h by weighing the required amount of TBA7HDAS into a 10mL volumetric flask, 

dissolving it with the buffer and then filling the flask to the volume mark.  The flask was 

kept in an ice/water bath, but the portion used for the sample was brought to room 

temperature 5 minutes prior to sample preparation. 

Samples were prepared immediately before their analysis.  To determine µeff of 

the enantiomers, an external marker was added to the samples in order to determine µEO.  

The external marker�s µeff was measured in each BE using the PreMCE method [126].  

To take advantage of the stacking phenomena samples were prepared in a more dilute 

BE than the one used for the separation.  Sample preparation was as follows:  2mM 

solution for the EOF marker compound (benzyltriethyl ammonium chloride, BzCl, α-

naphthalenesufonic acid, NSA, or nitromethane, NM) and 1mM for the chiral bases were 

obtained in pure ACN.  Dilution of 50µL of the internal reference solution and between 

100-150µL of the chiral base solution was performed with the BE to produce a final 
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solution of 0.5mL.  This solution was injected for 1s at 0.5psi into the capillary. 

 

4.3  Results and discussion 

4.3.1  Set up of the systems used for the separation of enantiomers 

In ACN, TEA is considered to be a strong base, while MSA is considered to be a 

weak acid with a pKa of 10.  Therefore, it is expected that the following reaction takes 

place completely. 

CH3SO3H + (CH3CH2)3N ! CH3SO −
3  + (CH3CH2)3NH+ 

In that case, a buffered system can be made with MSA and its conjugate base.  

However, special care must be taken in deciding the composition of the buffer in order 

to obtain maximum buffering capacity.  It has been reported that buffer capacity in 

aprotic solvents, particularly in ACN, is affected by heteroconjugation and 

homoconjugation equilibria in addition to possible ion paring.   It is not rare to find that 

the maximum buffer capacity is not at the 1/2 concentration ratio of the base/weak acid 

buffering compounds, as it is the rule in water.  Homoconjugation has been reported for 

MSA according to reaction 

CH3SO3H + CH3SO −
3  ! CH3SO −

3 HO3SCH3 

lowering the pKa value in ACN to about 8.5.  Analysis to determine the buffer 

composition that provides the highest buffering capacity was performed. 

The first step was the calibration of the pH-meter to relate the potentials readings to pH* 

of the ACN solutions.  It is known that direct pH readings cannot be related to pH* in 

non-aqueous solutions.  However, the potential readings of standard non-aqueous buffers 
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Figure IV-1.  Calibration of the pH-meter for measurements in ACN. 
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can be related to their pH* if the pKa of the buffer component is known and if the pKa 

value is invariant in the presence of small amounts of amphiphilic solvents.  This is the 

case for picric acid in ACN (pKa = 11).  The calibration curve obtained under these 

conditions is shown in Figure IV-1. 

The second step consists of performing titrations of MSA with TEA to calculate 

the buffer capacity as a function of the pH*.  The results are depicted in Figure IV-2.  As 

expected, the buffer capacity has a wide maximum that covers the pKa of MSA in a 

system with homoconjugation.  From the base/acid ratio, it is confirmed that the best 

buffering does not occur at a ratio of 0.5, but at lower ratios.  Therefore, the buffer 

system was set at a molar ratio of 0.45 TEA/MSA to produce a pH* of 8.3.  According 

to reports in the literature [121], under these conditions, all amines can be considered 

100% protonated. 

A second buffer system was also used, Cl2HOAc/TEA.  Dichloroacetic acid, with 

a pKa of 15, is less strong than MSA in ACN.  Literature reports [121] indicate that 

partial protonation of amines can be expected, especially for the secondary amines.  This 

buffer was chosen to perform separations in ACN and MeOH as means of comparison 

with separations reported in MeOH with Na7HDAS.  Therefore, the base/acid mole ratio 

used was the same as the reported one (1:2 TEA:Cl2HOAc). 

The next step for setting up the working conditions for the separations was to 

measure the stability of the chiral resolving agents in the selected buffers.  The results 

are described in Figures IV-3, IV-4 and IV-5.  Surprisingly, the TBA+ salt of HDAS7- 

degraded fast in the methanolic buffer, yet the Na+ counter part showed better resistance  
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Figure IV-2.  Determination of the buffer capacity of mixtures of MSA and TEA. 
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Figure IV-3.  Stability of 10mM Na7HDAS and 10mM TBA7HDAS in methanolic 
50mM Cl2HOAc and 25mM TEA buffer, kept at 9°C. Indirect-UV detection CE 
electropherograms obtained under the following conditions:  BE is 40mM phthalic acid 
and 20mM LiOH at 20°C, 10kV, 25µm I.D. naked fused-silica capillary, 19/26 cm 
effective/total lengths. 
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Figure IV-4.  Stability of 10mM TBA7HDAS in 50mM Cl2HOAc 25mM TEA buffer in 
methanol and ACN, kept at 9°C.  UV detection CE electropherograms obtained under 
the following conditions:  BE is 40mM H2SO4, 5mM methanesulfonic acid and 65mM 
LiOH at 20°C, 10kV, 25µm I.D. naked fused-silica capillary, 19/26 cm effective/total 
lengths. 
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Figure IV-5.  Stability of 10mM TBA7HDAS in 50mM MSA and 21mM TEA buffer in 
ACN, kept at  9°C (A) and 0°C (B).  Indirect-UV detection CE electropherograms 
obtained under the following conditions:  BE is 20mM pTSA and 40mM TRIS at pH 
8.3, 20°C, 10kV, 25µm I.D. naked fused-silica capillary, 19/26 cm effective/total 
lengths. 
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to hydrolysis (Figure IV-3).  Figure IV-4 shows, in a closer look, the stability of 

TBA7HDAS.  Even after 30min after preparation and storage at low temperature, the CD 

peak has broadened and impurity peaks have appeared.  Because of this limitation, the 

enantiomer separations in MeOH could not be performed since the results would not 

represent a separation by a single isomer sulfated CD.  Analysis of the CD in 

Cl2HOAc/TEA buffer in ACN (Figure IV-4) shows a better stability of TBA7HDAS, yet 

not as good as it has been reported in aqueous BE for the sodium counterpart.  The BE 

can be considered to contain a single isomer CD up to 3h after being prepared. 

As it was expected, the stability decreases as pH is decreased, most probably 

because hydrolysis of the acetyl groups of the CD.  Therefore, in MSA/TEA buffer, the 

useful period of time is reduced to 30min (Figure IV-5 A).  This circumstance forced the 

study of the stability of the BE at 0°C (Figure IV-5 B).  Under these conditions, the 

stability of the BE is successfully increased; thus, a 3h period of utility is reached. 

To assure that the concentration of the CD is known and that the CD is present as 

a single isomer, preparation of a small amount of BE every 3h, and preparation of the 

samples just prior to their analysis became a requirement to perform the separations. 

 

4.3.2  Separation of the enantiomers of basic drugs 

The first step in the analysis was to acquire the knowledge of the extent of 

protonation of the amines.  To that end, the mobility of each analyte in plain buffer was 

measured.  The results were compared with reported mobility in acidic aqueous and 

methanolic buffers (Table IV-2), where the analytes are considered to be 100% 
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Table IV-3.  Calculated µ ratios from different solvents to study the viscosity effects. 
 

Analyte 

Ratio of µ in 
aqueous buffer to µ 

in MSA-TEA 
buffer  

Ratio of µ in 
methanolic buffer 
to µ in MSA-TEA 

buffer 

Ratio of µ in 
Cl2HOAc-TEA 
buffer to µ in 

MSA-TEA buffer 
Hemicholinium-15 Br 0.40 0.63 0.93 
Mepenzolate Br- 0.37 0.58 0.94 
Tolperisone HCl 0.65 0.63 0.63 
Oxyphencyclimine 0.72 0.70 0.85 
Bupivacaine HCl 0.68 0.71 0.65 
Piperoxan HCl 0.95 0.57 0.58 
Chlorpheniramine HCl  0.47 0.72 
Chlophedianol HCl 0.94 0.61 0.61 
Clemastine fumarate 0.70  0.64 
Homatropine HBr 0.79 0.62 0.62 
Atropine 0.73  0.63 
Artane HCl 0.87  0.57 
Halostachin 1.32 0.92 0.55 
Fluoxetine HCl 0.85 0.76 0.61 
Isoproterenol HCl 1.11 0.78 0.22 
Ketamine HCl 0.83 0.78 0.62 
Pindolol 1.18 1.07 0.48 
Alprenolol HCl 1.31 1.14 0.43 
Propranolol HCl 1.34 1.00 0.40 
Atenolol 1.42 1.07 0.50 
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protonated.  When the mobility ratios of amines that have the same protonation in 

different buffers (such as the quaternary amines) is about constant, the difference can be 

attributed to the viscosity change, since it is a bulk property of the media that affects all 

analytes in an equal way.  Mepenzolate and hemichlolinium are the quaternary amines 

used in this study.  As expected, their mobility increase as the solvent of the buffer 

becomes less viscous.  The calculated mobility ratios are shown in Table IV-3.  The 

ratios of the quaternary amines indicate that the MSA/TEA buffer is about 40% less 

viscous than the methanolic buffer, and about 60% less viscous than the aqueous buffer.  

Additionally, there is about a 10% difference between the viscosity of the Cl2HOAc-

TEA buffer and the MSA-TEA buffer in ACN.  This information is of a major relevance 

when it is noted than for any of the other amines, the ratio deviates from 10%.  It is an 

indication that there is an additional cause for the slow-down of the amine compounds 

studied. 

Since only two more reasonable explanations were there for the significant 

reduction of the mobilities in Cl2HOAc-TEA buffer, namely a change in the degree of 

protonation or adsorption to the capillary, the slower base mobility was used to 

determine the k� value following the procedure reported by Cai [128].  The values of k� 

found for isoproterenol were so small (within the error of the method) that adsorption as 

the cause of the slow-down of the bases could be ruled out.  Therefore, it was concluded 

that the acidity of the Cl2HOAc-TEA buffer was not enough to completely protonate the 

bases.  As the pKa of the secondary amines is smaller than the pKa of the tertiary amines, 

the effect is more pronounced for the later type of amines.  Because of the characteristics 



 

 

87

showed by the buffers, the MSA-TEA buffer can be considered to be an acidic buffer 

and the Cl2HOAc-TEA buffer a neutral one. 

Separation of the enantiomers was studied first in the Cl2HOAc-TEA buffer.  The 

results are summarized in Table IV-4.  From the analysis of the data, it is found that all 

the bases strongly complex with the CD so that at some concentration the mobility of the 

base became anionic.  This behavior was expected as a result of non-selective ion-pair 

formation.  As a consequence, when there are additional selective interactions, the 

selectivity curve will show a discontinuity at the CD concentration where the mobility 

cross-over occurs. 

Within the strong complexation pattern, two general categories can be 

established, as exemplified in Figure IV-6.  The first one is for those bases with high 

mobility in the CD-free BE.  This category includes the two quaternary amines, 

tolperisone and oxyphencyclimine.  Complexation between the CD and the base is not 

strong enough to cause a negative mobility at 2mM CD concentration.  Therefore the 

selectivity curve shows points on both sides of the discontinuity, meaning that α  can be 

larger than 1 at 2mM, but lower than 1 at the other concentrations.  The second group 

contains all the bases with negative mobility at CD concentration as low as 2mM.  In this 

case the selectivity curve shows only the second side of the discontinuity.  Selectivity is 

at maximum (less than 1) at 2mM and tends to 1 as the CD concentration increases.  A 

subgroup is found with the bases that show a maximum of negative mobility in the 

concentration range studied.  This group includes chlorpheniramine, homatropine, 

atropine, artane, halostachine, fluoxentine, isoproterenol, and alprenolol.  It is expected
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Figure IV-6.  Mobility trends (A) and selectivity trends (B) found in the chiral analysis 
of bases in Cl2HOAc/TEA buffer in ACN. 
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Figure IV-7.  Correlation of complexation strength and the type of the amine analyte. 
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that such a behavior occurs in BEs with high concentrations of CD, as the effect of the 

ionic strength reduces the effective mobility of the analyte.  However, in this case, it can 

not be ascertained that ionic strength is the source of the phenomena since typical 

mobilities of other bases in group two are about -30x10-5cm2/(Vs) at the same 10mM CD 

concentration. 

Since complexation is not a guarantee that selectivity will be achieved, there is a 

group of amines that could not be resolved at any concentration.  These amines are 

oxyphencyclimine, clemastine, homatropine, and atropine.  The common characteristic 

of this group of amines is that the chiral center is separated from the nitrogen atom by 

more than 4 bonds.  This particularity could indicate that the position of the N with 

respect to the chiral center is important to assure that once the amine complexes with the 

CD, the chiral center will have interactions with the chiral face of the CD producing 

sufficiently different diastereometers. 

An additional general trend found in this BE is that the mobility decrease from 

the values at 0mM CD can be related to the type of cyclic amine (Figure IV-7).  The 

quaternary amines do not cross the zero mobility line until 5mM TBA7HDAS has been 

added to the buffer.  Tertiary amines may or may not cross over in BE with 2mM CD, 

but their interactions produce low mobilities, between 5x10-5 and -5x105cm2/(Vs), in that 

buffer.  Secondary amines have already negative mobility at 2mM CD and their values 

are normally larger than -15x105cm2/(Vs).  Such a trend can be related to the degree of 

protonation of the amine, therefore to the effective charge of the complex.  The less the 

amine is protonated, the weaker the ion-pair is therefore the effective charge of the CD is 
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reduced less when it is in the complex form which leads to faster mobility. 

In general, the best selectivity for the bases was found at 2mM CD.  Exceptions 

were mepenzolate, artane, isoproterenol and ketamine.  The CD concentration for best 

resolution depends on the type of the analyte.  Figure IV-8 shows the electropherograms 

of the chiral drugs for which baseline resolution was achieved at some CD 

concentration.  The examples at 5mM TBA7HDAS are bases for which the system has 

such favorable β value that a better resolution is achieved at 5mM, despite the fact that 

these conditions do not provide the best selectivity.  The bases best resolved at 2mM CD 

owe the separation to a combination of the best selectivity observed and a reasonable β 

value.  Exceptions are bupivacaine and chlophedianol for which the separation is most 

definitely selectivity driven.  The obtained data show some interesting points (data with 

dark background in Table IV-4) where baseline  separation can be achieved with 

separation selectivity as small as 0.99 because β value is as close to the ideal value as -

1.3 at 5mM and 10mM.  A small increase in α to 0.97 or 0.96 relaxes the need to 

optimize the counter EOF to half of the absolute value of the effective mobility of the 

analyte (β=-2). 

The second part of the study was done with the MSA/TEA buffer.  The 

separation data are summarized in Table IV-5.  As expected from the increase in the 

degree of protonation of the bases, the reduction in mobility with the addition of CD is 

smaller than the decrease observed in the Cl2HOAc-TEA buffer.  However, all the bases 

fall within the so-called strongly binding category as all of them cross over the zero 

mobility to a negative value at least at one of the CD concentrations studied.  This 
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Figure IV-8.  Electropherograms with the shorter analysis time for the base-line resolved 
analytes in 50mM Cl2HOAC, 25mM TEA and TBA7HDAS in ACN.  (A) Separations at 
5mM HDAS in a coated capillary.  (B)  Separations at 5mM HDAS in an uncoated fused 
silica capillary.  (C) Separations at 2mM HDAS in an uncoated fused silica capillary. 
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Figure IV-8.  Continued. 



  

95

Ta
bl

e 
IV

-5
.  

R
es

ul
ts

 o
f t

he
 se

pa
ra

tio
n 

of
 e

na
nt

io
m

er
s u

si
ng

 5
0m

M
 M

SA
 a

nd
 2

1m
M

 T
EA

 a
s 

bu
ffe

r i
n 

A
C

N
. 

 
2.

0 
5.

0 
10

.0
 

TB
A

7H
D

A
S 

(m
M

) 
A

na
ly

te
 

µ 
α 

β 
R

s 
µ 

α 
β 

R
s 

µ 
α 

β 
R

s 
H

em
ic

ho
lin

iu
m

-1
5 

B
r 

20
.9

 
1.

00
 

1.
6 

 
5.

8 
1.

00
 

2.
7 

 
-5

.2
 

0.
83

 
-3

.7
 

4.
5 

M
ep

en
zo

la
te

 B
r-

 
12

.8
 

1.
03

 
2.

7 
<0

.6
 

1.
3 

1.
36

 
16

.7
 

1.
7 

-7
.9

 
0.

97
 

-2
.2

 
1.

1 
To

lp
er

iso
ne

 H
C

l 
7.

4 
1.

09
 

4.
7 

0.
3 

4.
5 

1.
21

 
5.

2 
2.

8 
-0

.8
 

-0
.6

9 
-3

0 
3.

9 
O

xy
ph

en
cy

cl
im

in
e 

6.
1 

1.
00

 
5.

8 
 

-4
.0

 
0.

96
 

-6
.4

 
0.

61
 

-3
.2

 
0.

96
 

-5
.0

 
<0

.6
 

B
up

iv
ac

ai
ne

 H
C

l 
8.

1 
1.

00
 

4.
2 

 
4.

1 
1.

00
 

5.
4 

 
-8

.6
 

 
 

 
Pi

pe
ro

xa
n 

H
C

l 
7.

1 
1.

00
 

3.
3 

 
-2

.2
 

0.
87

 
-9

.3
 

1.
2 

-7
.6

 
0.

97
 

-2
.3

 
1.

6 
C

hl
or

ph
en

ira
m

in
e 

H
C

l 
-1

7.
9 

0.
99

6 
-1

.8
 

<0
.6

 
-1

0.
8 

1.
00

 
-2

.0
 

 
-1

2.
7 

1.
00

 
-1

.7
 

 
C

hl
op

he
di

an
ol

 H
C

l 
5.

4 
1.

00
 

4.
1 

 
-8

.5
 

0.
93

 
-3

.1
 

2.
6 

-8
.9

 
0.

93
 

-1
.9

 
4.

4 
C

le
m

as
tin

e 
fu

m
ar

at
e 

5.
2 

1.
00

 
4.

8 
 

-4
.2

 
1.

00
 

-6
.6

 
 

-4
.8

 
1.

00
 

-3
.5

 
 

H
om

at
ro

pi
ne

 H
B

r 
-6

.6
 

1.
00

 
-4

.3
 

 
-1

1.
2 

1.
00

 
-2

.3
 

 
-1

1.
5 

1.
00

 
-1

.8
 

 
A

tro
pi

ne
 

-5
.2

 
1.

00
 

-6
.6

 
 

-5
.4

 
0.

98
 

-3
.9

 
<0

.6
 

-1
9.

4 
0.

99
 

-1
.5

 
<0

.6
 

A
rta

ne
 H

C
l 

4.
3 

1.
00

 
6.

0 
 

4.
4 

1.
00

 
5.

0 
 

-1
0.

1 
1.

00
 

-3
.1

 
 

H
al

os
ta

ch
in

 
-1

6.
6 

0.
99

 
-2

.0
 

0.
9 

-1
4.

6 
0.

99
 

-1
.6

 
<0

.6
 

-1
3.

7 
 

 
 

Fl
uo

xe
tin

e 
H

C
l 

-1
7.

3 
0.

93
 

-2
.0

 
4.

6 
10

.0
 

0.
96

 
-1

.5
 

2.
0 

-1
4.

0 
0.

98
 

-1
.3

 
4.

2 
Is

op
ro

te
re

no
l H

C
l 

-1
4.

6 
0.

95
 

-1
.7

 
2.

2 
-1

8.
6 

0.
99

 
-1

.5
 

1.
4 

-1
6.

4 
0.

98
 

-1
.4

 
2.

6 
K

et
am

in
e 

H
C

l 
-5

.2
 

1.
00

 
-6

.2
 

 
-1

0.
3 

1.
00

 
-2

.6
 

 
-1

6.
4 

1.
00

 
 

 
Pi

nd
ol

ol
 

-1
3.

1 
0.

95
 

-2
.7

 
1.

3 
-1

4.
6 

0.
97

 
-1

.9
 

1.
4 

-1
3.

7 
0.

99
 

-1
.8

 
0.

6 
A

lp
re

no
lo

l H
C

l 
-1

1.
2 

0.
96

 
-3

.1
 

1.
2 

-1
5.

7 
0.

97
 

-1
.8

 
2.

0 
-1

5.
0 

0.
99

 
-1

.5
 

0.
9 

Pr
op

ra
no

lo
l H

C
l 

-7
.1

 
0.

91
 

-4
.2

 
1.

3 
-1

1.
0 

0.
96

 
-2

.0
 

2.
6 

-1
4.

0 
0.

98
 

-1
.6

 
1.

2 
A

te
no

lo
l 

-5
.2

 
0.

93
 

-1
.9

 
3.

3 
-2

0.
1 

0.
97

 
-1

.4
 

4.
3 

-2
5.

4 
0.

99
 

-1
.2

 
3.

3 



 

 

96

A)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
-30

-20

-10

0

10

20

30

40  Mepenzolate bromide
 Chlophedianol
 Isoproterenol
 Atenolol

µef
f /1

0-5
cm

2 V
-1
s-1

Conc. TBA7HDAS/mM

 

B)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

0.9

1.0

1.1

1.2

1.3

1.4

1.5
 Mepenzolate bromide
 Chlophedianol
 Isoproterenol
 Atenolol
 Clemastine fumarate

α

Cn TBA7HDAS/mM

 
Figure IV-9.  Mobility trends (A) and selectivity trends (B) found in the separation of the 
enantiomer of bases in 50mM MSA and 21mM TEA buffer in ACN. 
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confirms once again that ion-paring produced a non-discriminative complexation 

between the CD and the bases.  Additionally, the mobility trends are similar to those 

describe for the previous buffer system. 

Figure IV-9 shows the trends in mobility and selectivity found from the 

separation data.  Since all the bases have the same degree of protonation, the differences 

in the mobility curves can be related to the strength of binding between the CD and the 

enantiomer.  With that criterion, all the bases can be assigned to one of three groups.  

Bases with the stronger binding cross-over to negative mobility values at concentrations 

lower than 2mM.  This group contains all secondary amines, just as in the previous 

buffer.  However, their mobilities, as it has been mention above, are less negative in the 

acidic buffer.  The drugs with moderate binding strength have a positive mobility in the 

2mM CD BE, and bases with the weakest binding strength have negative mobility only 

in BE with 10mM or higher CD concentrations.  Curiously, all the amines in the latter 

group are amines with the N in a six-member ring.  However, the presence of 

oxyphencyclimine and piperoxan in the moderately strength binding group indicates that 

such a feature is not a rule. 

In the strongly and moderately binding groups a subdivision can be made 

similarly to the one found for the strongly binders in the Cl2HOAc-TEA buffer.  In 

Figure IV-9 isoproterenol and atenolol are used as examples.  The mobility of the bases 

in the 10mM CD BE is very similar to that of the 5mM CD BE for one subgroup and is 

significantly lower for the bases in the second subgroup.  Again, the observation of 

mobilities around -25x10-5 to -30x10-5cm2/(Vs) for some of the analytes at 10mM CD 
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indicates that the smaller mobility of other bases is not due to ionic strength effects. 

The selectivity trends are similar to the ones found with the previous BE.  The 

major difference is the fact that the bases that could not be resolved within the range of 

CD concentration studied (bupivacaine, clemastine, and homatropine) do not bear a 

common structural feature that could be used to explain the lack of separation.  The 

results of the separations in the acidic buffer actually exemplify how structural 

similarities must be used with caution for the prediction of separation selectivity.  Figure 

IV-10 shows how all the β-blockers studied have the same selectivity trend as one could 

expect base on their similar structure.  However, in the case the atropine and 

homatropine, the expectation does not hold true.  Selectivity is only found for atropine, 

yet the only difference in the structure of those two compounds is a CH2 unit between 

the hydroxyl group and the rest of the structure. 

There is not a clear cut answer as to which CD concentration provides the best 

selectivity for the bases, yet all the resolved secondary amines have their best α at 2mM 

CD just as they did in the Cl2HOAc-TEA system.  The CD concentration for best 

resolution depends once again on the analyte.  Figure IV-11 shows the 

electropherograms of the chiral drugs for which baseline resolution was achieved at 

some CD concentration.  This time, at all concentrations, examples can be found where 

drugs with favorable β values are better resolved even though the conditions do not 

provide the best selectivity; and in other examples bases are resolved due to a 

combination of sufficient selectivity and a reasonable β value.  The cases of mepenzolate 

and tolperisone stand apart, because for them the separation is most definitely selectivity 
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Figure IV-10.  Correlation between selectivity and structure of the enantiomers 
according to the data obtained in 50mM MSA and 21mM TEA buffer in ACN.
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Figure IV-11.  Electropherograms with the shorter analysis time for the base-line 
resolved analytes in 50mM MSA, 21mM TEA and TBA7HDAS in ACN.  (A) 
Separations at 10mM CD.  (B)  Separations at 5mM CD.  (C) Separations at 2mM CD. 
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Figure IV-11.  Continued. 
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driven at the respective CD concentrations.  As observed in the previously studied 

system, separations can be achieved with a selectivity as small as 0.99 because the β 

value is as close to the ideal value as -1.2 at 10mM (data with dark background in Table 

IV-5).  Once the EOF changes producing β value 30% worse (β=-1.5) the resolution is 

lost.  At that point, the data at 5mM and 2mM indicate that α must improve to at least 

0.97 in order to achieve baseline resolution. 

 

4.3.3  Comparison of the counter ion of HDAS7- and of the solvent of the buffer 

Because of the limited solubility of the sodium salt of the CD, measurements could only 

be done at 2mM CD.  The results are shown in Table IV-6, where for easier reading; 

data from Table IV-5 has been added.  The main difference found was a larger positive 

mobility values for all analytes when the Na+ salt was used.  The apparently weaker 

complexation may be caused by the incomplete dissociation of Na7HDAS.  The 

inorganic sodium ion is a hard ion that could be best stabilized in the organic media by 

ion-paring with the CD.  As a result, the presence of sodium ions can provide a 

competition with the bases for the formation of ion-pairing resulting in a smaller 

effective charge for the CD.  In any of the two scenarios, the result is a smaller decrease 

in the mobility with respect to the values when the TBA+ salt is used. 

As a result of the described pattern, halostachin and fluoxentine have mobilities 

that are close to a possible cross-over, which could explain the observed high separation 

selectivity and consequent resolution of the enantiomers.  Baseline resolution is not 

achieved for fluoxentine because the β value is poor (typical of separations where EOF 
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Table IV-6.  HDAS7- counter ion effect on the separation of enantiomers.  BE:  2mM 
HDAS7-, 50mM MSA, and 21mM TEA in ACN. 

 
Na+ TBA+ Counter ion 

Analyte µ α β Rs µ α β Rs 
Hemicholinium-15 Br 38.0 1.00 0.6  20.9 1.00 1.6  
Mepenzolate Br- 31.4 1.05 0.7 1.2 12.8 1.03 2.7 <0.6 
Tolperisone HCl 17.0 1.00 1.3  7.4 1.09 4.7 0.3 
Oxyphencyclimine 23.0 1.00 1.0  6.1 1.00 5.8  
Bupivacaine HCl 16.0 1.00 2.1  8.1 1.00 4.2  
Piperoxan HCl 13.0 1.00 2.8  7.1 1.00 3.3  
Chlorpheniramine HCl 15.0 1.00 2.4  -17.9 0.996 -1.8 <0.6 
Chlophedianol HCl 12.0 1.00 1.0  5.4 1.00 4.1  
Clemastine fumarate 14.0 1.00 3.0  5.2 1.00 4.8  
Homatropine HBr 9.0 1.09 2.7 0.9 -6.6 1.00 -4.3  
Atropine 7.9 1.00 2.2  -5.2 1.00 -6.6  
Artane HCl 16.0 1.00 1.0  4.3 1.00 6.0  
Halostachin 0.5 3.50 54 1.5 -16.6 0.99 -2.0 0.9 
Fluoxetine HCl 3.9 1.24 7.5 0.8 -17.3 0.93 -2.0 4.6 
Ketamine HCl 15.0 1.04 1.9 <0.6 -5.2 1.00 -6.2  
Pindolol 5.9 1.00 6.2  -13.1 0.95 -2.7 1.3 
Alprenolol HCl 2.5 1.00 11  -11.2 0.96 -3.1 1.2 
Propranolol HCl 3.2 1.00 6.0  -7.1 0.91 -4.2 1.3 
Atenolol 0.3 1.00 66  -5.2 0.93 -1.9 3.3 
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does not have opposite direction to the migration of the analyte). 

Separation selectivity for homatropine and ketamine is a moderate value because 

they are farther away from the mobility cross-over point.  It is worth to mention that the 

selectivity results found for homatropine and atropine with Na7HDAS are opposite to the 

results obtained with TBA7HDAS. 

Comparison of separation of piperoxan and pindolol in acidic buffers with a 

solvent other than ACN (Figure IV-12) indicates that the complexation strength of bases 

in ACN is intermediate between that of the aqueous buffers and the methanolic buffers.  

Since the trend does not follow the trend of solvent viscosity, the trend could be 

attributed to the different types of enantiomer-CD interactions that are promoted by each 

solvent.  The pattern could be used in the separation selectivity optimization.  It is 

especially important for those cases when a strong complexation in aqueous media 

produces an optimum concentration of chiral resolving agent that is too low; and 

methanol weakens the complexation to such a large extent that excessively large 

amounts of the expensive chiral resolving agent must be used. 
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Figure IV-12.  Comparison of the complexation strength of basic enantiomers with 
HDAS7- in different solvents.  The data in aqueous media were taken from ref. [52] and 
in methanolic media from [98]. 



 

 

106

CHAPTER V 

CONCLUSION 

To obtain the single-isomer TBA7HDAS, modifications were made to the 

reported synthetic route of Na7HDAS to produce a larger yield with increased purity.  

The major modifications were:  (i) reduction of the amount of acid produced during the 

acetylation step, thereby reducing hydrolysis of the acetyl groups, (ii) development of an 

alternative procedure for the removal of the silyl protecting group, thereby decreasing 

production time and maintaining the purity obtained with the original method, (iii) 

development of re-crystallization protocols as methods of purification that allow for the 

synthesis of all non ionic intermediate CDs with isomeric purities higher than 99.5%.  

To this end, mixtures of DMF and water proved to be a successful generic re-

crystallization system. 

The need to synthesize a hydrophobic sulfated CD for use in ACN was 

eliminated by modifying the available single-isomer Na7HDAS.  TBA7HDAS can be 

extracted from an aqueous mixture of TBACl and Na7HDAS with dichloromethane, 

which turned out to be a fairly easy procedure.  However, purification of the material 

was more complicated as the characteristic extreme solubility values of TBA7HDAS 

prevented any of the commonly used solvents from providing the required purification 

selectivity.  Therefore, a mixture of DMF-water must be used although the kinetics of 

such re-crystallization is slow.  The new hydrophobic sulfated CD, TBA7HDAS, was 

characterized by CE, ESI-MS, and NMR spectroscopy, proving that the compound 

obtained was a single-isomer CD with the proposed structure.  The replacement of 
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sodium ions with a more hydrophobic cation successfully increased the CD�s solubility 

in aprotic solvents.  Solutions of 150mM in MeOH and 100mM in ACN could be 

prepared. 

Successful separations of enantiomers were achieved in aprotic media, utilizing, 

for the first time, a single-isomer sulfated cyclodextrin as a chiral resolving agent.  

During the separations, variations in the acid-base chemistry of the BE components were 

noted: TEA behaved as strong base, MSA and Cl2HOAc as weak acids in ACN.  

Characteristics of the buffer solutions were also altered.  Maximum buffer capacity was 

found when the molar ratio of the conjugated base and the weak acid was smaller than 1.  

Additionally, the analytes' mobility in the CD-free BE demonstrated that the weak base 

analytes were less protonated with the Cl2HOAc-TEA buffer than with the MSA-TEA 

buffer.  This lesser protonation was a result of Cl2HOAc being a weaker acid than MSA 

in ACN. 

The separation results demonstrated that ion-pairing assured complexation of all 

basic analytes with the sulfated CD, even when the analytes were only partially 

protonated.  The complexation strength was large enough to lead to negative mobility 

values for all analytes at least one of the CD concentrations tested.  The effect of the 

charge of the weak base analyte on the mobility values of the complexes was confirmed: 

The smallest mobility reduction occurred in the acidic buffer that provided 100% 

protonation and, therefore, a smaller effective charge in the diasteromeric complexes. 

Although all bases were categorized as strongly binding analytes, subgroups 

were identified.  In some cases, there is a maximum value for the negative mobilities. 
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The traditional justification that ionic strength reduces mobility values at large CD 

concentrations cannot be used to justify the appearance of the maximum as other 

analytes had large negative mobility under the same conditions.  With the analyses made 

in Cl2HOAc-TEA buffer, reduction of the positive mobility of the free bases was 

dependant on the type of the amine:  the effective charge in the bases decreased from the 

permanently charged quaternary amines through the tertiary amines to the secondary 

amines. 

Separation selectivity plots were also obtained.  Weaker complexation in 

Cl2HOAc-TEA buffer affects the separation of analytes in which the amino group is 

separated from the chiral carbon by more than four bonds.  Similarity of the chemical 

structure alone did not seem sufficient for the prediction of separation selectivity 

because selectivity was similar for the β-blockers, but it was different for atropine and 

homatropine.  Other than the confirmation that ion pairing is a non-selective binding 

force, and that in successful separations there is more than one type of interaction, no 

other conclusion can be established concerning the role of hydrophilic interactions such 

as hydrogen bonds or dipole-dipole interactions, in controlling selectivity. 

Analyses at 2mM HDAS with the sodium salt and the tetrabutylammonium salt 

demonstrate that the counter ion of the CD indirectly affects the separation of 

enantiomers by altering the properties of the dissolved chiral resolving agent.  Weaker 

complexation for all bases in the sodium-containing BE was most probably due to the 

competition of sodium with the enantiomers for ion-pairing with the CD. 
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The binding strength of enantiomers to the sulfated CD in ACN was intermediate 

between that found in aqueous and methanolic buffers.  This introduced a new option for 

the modification of separation selectivity and therefore of the concentration that provides 

the best resolution. 
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APPENDIX A 

SYNTHESIS PROTOCOL FOR HEPTAKIS (2, 3-DI-O-ACETYL-6-O-

SULFO)-β-CYCLODEXTRIN TETRABUTYLAMMONIUM SALT 

A.1  Synthesis of Heptakis (6-O-tert-butyldimethylsilyl)-β-cyclodextrin from Native-β-

cyclodextrin 

Reagents needed: 

• 115g native-βCD:  mβCD x 1.15 (to account for mass loss during drying); MWβCD 

= 1135.01g/mol 

• 143mL sieve-dried DMF:  VDMF = 1.43mL x mβCD 

• 51g Im:  mIm = nβCD x 7 x 1.05 x MWIm; MWIm = 68.08g/mol 

• 54g TBDMSi-Cl in 108mL sieve-dried EtOAc:  mTBDMSi-Cl =  nβCD x 3.5 x 

MWTBDMSi-Cl; MWTBDMSi-Cl = 150.73g/mol; VEtOAc  = mTBDMSi-Cl x 2mL 

• 54g TBDMSi-Cl in 162mL sieve-dried EtOAc:  mTBDMSi-Cl = nβCD x 3.5 x  

MWTBDMSi-Cl; VEtOAc  = mTBDMSi-Cl x 3mL 

• Acetone for solution:  Vacetone = Vreaction-mixture x 0.3mL 

• Deionized water for precipitation:  Vwater = Vreaction-mixture x 0.2mL 

• Acetone for re-crystallization:  Vacetone = mimpure-solid x 6mL x 0.85 

• DMF for re-crystallization:  VDMF = mimpure-solid x 6mL x 0.05 

• Deionized water for re-crystallization:  Vwater = mimpure-solid x 6mL x 0.15 

Procedure: 

1.  Place 115g native-βCD in crystallizing dish and dry it in a vacuum oven at 
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80°C to constant mass.  Turn β-CD over several times per day to assist the drying 

process.  Mass loss should be approximately 13%. 

2.  Place a 1L, vertical-three-neck (24/40), round-bottom flask with a 1.5" 

football-shaped teflon-coated stir-bar, two 24/40 stoppers, and a 250mL equalizing 

addition funnel into an oven and dry overnight at 110°C. 

3.  Connect a nitrogen line to one of the side-necks on the flask. Connect the 

equalizing addition funnel to the central-neck and close the remaining side-neck with a 

stopper.  Place the flask onto a strong stir-plate.  Flush the system with dry nitrogen for 

approximately 20min.  Then close the system by placing a stopper on the equalizing 

addition funnel. 

4.  Open the side-neck and with minimum air exposure add DMF to the flask.  

Replace the stopper.  Begin vigorous stirring with the stir-bar.  Then, reopen the side-

neck and insert a large inner diameter, short-stem plastic funnel.  Add Im and wait until 

a clear, light yellow solution is obtained.  While swirling the funnel, add 100g of hot dry 

βCD into the flask.  Insure that βCD is well dispersed throughout the flask to avoid 

introduction of large chunks of βCD (which are very difficult to dissolve).  Then, replace 

the stopper. Continue stirring until a clear solution is obtained.  Occasionally, overnight 

stirring is necessary to obtain a clear, light honey-colored solution. 

5.  With minimum air exposure, prepare the first solution of TBDMSi-Cl in 

EtOAc.  Filter the solution through a glass wool pad directly into a 250mL equalizing 

addition funnel to remove particulate contamination.  Flush the vapor space of the 

reaction flask and the addition funnel with dry nitrogen.  Begin addition of the solution 
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at a rate of 20sec/drop.  Maintain very vigorous stirring in the flask to insure 

instantaneous mixing. 

Warning:  The addition rate is inversely proportional to the reaction scale.  The 

addition rate should be reduced for smaller batches and increased for larger ones.  A 

faster addition rate than the recommended one precipitates the under-silylated CD as a 

gum-type solid.  The solid is formed because the low reaction rate of TBDMSi-Cl does 

not alter the polarity of the CD as quickly as the polarity of the solution is reduced by the 

added ethyl acetate.  

6.  Monitor the progress of the reaction by TLC analysis of the reaction mixture 

as follows:  Take an aliquot of the reaction mixture using a long glass pipette with a 

drawn-out tip and add 0.25mL to a 2mL polypropylene Eppendorf tube.  Fill the tube to 

the 2mL mark with methanol.  Spot this solution onto a silica TLC plate.  Use 2.5cm x 

10cm aluminum-backed Silica plates and 50:10:1 CHCl3:MeOH:H2O as developing 

solvent.  Dry the plate for 5min in an oven at 90°C and then dip it into the α-naphtol 

staining solution.  Visualize the BMSin-βCD spots by placing the TLC plate into a 90°C 

oven for 10min.  The CD spots are dark purple-to-brown, on a light ochre-to-brown 

background. 

Warning:  Stainless steel needles or canules become badly corroded if they come 

in contact with the reaction mixture, even for a very short period of time.  Avoid their 

use even for sampling.  The composition of the TLC developing solvent changes rapidly 

due to evaporation.  Therefore, the developing solvent should be prepared frequently.  

7.  Once the addition of the first TBDMSi-Cl solution has been completed, 
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prepare the more diluted second solution with minimum air exposure.  Filter the solution 

through a glass wool pad directly into a 250mL equalizing addition funnel to remove 

particulate contamination.  Flush the vapor space of the reaction flask and the addition 

funnel with dry nitrogen.  Begin addition of the solution at a rate of 20sec/drop.  

Maintain vigorous stirring in the flask to insure instantaneous mixing.  A white, fine 

needle-like precipitate (imidazolium chloride, ImHCl) should appear in the reaction 

mixture once the total addition of 6 to 6.3 equivalents of TBDMSi-Cl is complete. 

8.  At least an hour after the seven equivalents of TBDMSi-Cl have been added, 

take an aliquot of the reaction mixture using a long glass pipette with a drawn-out tip.  

Add two drops of the reaction mixture to a 2mL polypropylene Eppendorf tube.  Fill the 

tube to the 2mL mark with HPLC grade methanol.  Filter the clear solution through a 

13mm diameter, 0.45µm pore-size nylon-membrane-filter.  Analyze the sample by 

isocratic, non-aqueous reversed-phase HPLC at room temperature using a 4.6mm x 

250mm column (Zorbax C8 or Luna C18 or similar) and EtOAc:MeOH eluent 

(composition in the 10:90 to 25:75 range, depending on the actual column) at 2mL/min.  

Use an evaporative light scattering detector.  Set the ELSD gain to 7.  Total analysis 

time is approximately 20min.  Pressure is approximately 1600psi on a clean column 

equipped with a guard column. 

9.  Integrate the peaks in the chromatogram to determine how far the reaction has 

progressed.  As a first approximation, in the absence of actual values, it is assumed that 

the ELSD response factors of all TBDMSin-βCD derivatives are identical.  ImHCl elutes 

at the dead-volume. The under-silylated CDs elute between 4min and 8min. HBMSi-
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βCD elutes at about 8min to 10min, and the over-silylated CDs elute between 10min and 

13min.  The reaction can be stopped when the combined peak areas for the under-

silylated CD are approximately the same as the over-silylated CDs.   

10.  If the reaction has not been completed, part of the TBDMSi-Cl has been lost 

due to humidity in the system and the formation of TBDMSi8-βCD and TBDMSi9-βCD.  

Calculate the amount of TBDMSi-Cl to be added to the reaction mixture from the 

percent area, Ai, of each peak, where i represents the number of TBDMSi substituents on 

βCD (0 ≤ i ≤ 21).  Calculate the number of moles of TBDMSi-Cl needed, nneeded
TBDMSi-Cl, 

as nneeded
TBDMSi-Cl = nnative-βCD Σ (7-i) Ai , where i < 7.  Calculate the amount of Im 

needed, nneeded
Im as 1.05 nneeded

TBDMSi-Cl. 

11.  Add the needed Im into the flask and drop the TBDMSi-Cl solution (3mL 

EtOAc/gTBDMSi-Cl) from the funnel at a 20s/drop rate.  At least an hour after the 

addition of the solution has been completed, repeat steps 8 and 9.   

12.  Once the reaction is complete, discontinue the stirring and allow the ImHCl 

to settle.  Take a clean, dry, 1L round-bottom flask and add to it a 1.5" football-shaped 

teflon-coated stir-bar.  Connect a vacuum filtration tulip to the ground joint.  Attach a 

9cm Buchner funnel to the tulip.  Connect the side-arm of the tulip to the stem of the T 

glass valve.  One side arm of the T valve is connected to a water aspirator, the other to a 

nitrogen line.  Position the T valve such that all three lines are connected.  Flush the 

flask with nitrogen.  Put the 9cm filter paper onto the Buchner funnel.  Turn on the water 

aspirator.  Turn off the nitrogen to the line.  Rapidly decant the bulk of the reaction 

mixture from the reaction flask onto the Buchner funnel. When almost all the liquid has 
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been filtered, pour the ImHCl onto the filter.  Rinse the flask with 50mL of dry EtOAc.  

Once filtration is completed, turn on the nitrogen again. Lift the tulip off of the flask and 

immediately close the flask with a stopper. 

13.  Replace the tulip with a connection to the vacuum inlet line of a rotavap.  

Connect the top vacuum release valve of the rotavap to a second nitrogen line.  Place a 

50mL flask onto the vapor duct of the rotavap.  Warm the water bath of the rotavap to 

55°C.  Set the T valve such that it connects only the aspirator and the rotavap.  Turn on 

the aspirator and the nitrogen line connected to the top valve of the rotavap.  Purge the 

rotavap with nitrogen until no residual solvent can be observed in the rotavap.  Turn off 

the water aspirator.  Replace the 50mL flask with the 1L flask that contains the reaction 

mixture.  Turn on the aspirator again.  Regulate the pressure with the vacuum release 

valve that is connected to the nitrogen line.  Rotavap off the mixture until EtOAc stops 

distilling.  

14.  Place the flask with the DMF-containing reaction mixture onto the high-

vacuum rotavap.  Warm the water bath to 30°C.  Rotavap until DMF stops distilling.  A 

gel remains in the flask.  

15. Add acetone to the flask and return the flask to the normal rotavap.  Turn the 

flask until a clear solution is obtained at 30°C.  Then, place the flask onto a cork-ring on 

a stir plate.  While stirring, add the water to precipitate the products of the reaction.  

Filter off the solid.  Rinse the solid on the Buchner with 50mL of acetone.  Dispose of 

the aqueous residue as waste. 

16.  Place a 1.5" football-shaped teflon-coated stir-bar into a 1L round bottom 
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flask.  Place the flask into a mantle on a stir plate.  Add 3mL acetone per gram 

theoretical of HBMSi-βCD.  Begin stirring.  Form slurry by addition of the solid �step 

15� through a large inner diameter, short-stem plastic funnel to the flask.  Connect a 

condenser to the flask to recirculate cold water.  Reflux the slurry for 2h while stirring.  

Replace the mantle with a cork-ring and allow the slurry cool to room temperature.  

Filter off the HBMSi-βCD.  Weigh the solid.  Rotavap the acetone from the mother 

liquor and pool the impure solids for further work-up. 

17.  To a round bottom flask add a football-shaped teflon-coated stir-bar.  Place 

the flask into a mantle on a stir plate.  Pour one third of the acetone for the re-

crystallization into the flask.  Begin stirring.  Add the solid �step16� to the flask using 

a large inner diameter, short-stem plastic funnel.  Add the DMF for re-crystallization and 

place a thermometer in the neck using rubber adaptors.  Regulate the heating mantle with 

the Variac to maintain the temperature between 50°C - 55°C until a clear solution is 

obtained.  Mix the remaining acetone with the water for the re-crystallization.  Slowly 

add the mixture to the hot solution in the flask.  Replace the heating mantle with a cork-

ring and allow the solution to cool to room temperature while stirring.  Filter off 

HBMSi-βCD. 

18.  Place 5mg of the crystals into a 2mL polypropylene Eppendorf tube.  Fill the 

tube to the 2mL mark with HPLC grade methanol.  Filter the clear solution through a 

13mm diameter, 0.45µm pore-size nylon-membrane-filter.  Check product purity by 

HPLC as in steps 8 and 9.  Repeat step 17 if the purity is less than 99.5%. 
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Figure A-1.  Purity characterization of final product, HBMSi-βCD, by 1H NMR in 
CDCl3 (A) and HPLC (B); chromatographic conditions as described in Figure II-2. 
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A.2  Synthesis of Heptakis (2, 3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin 

from Heptakis (6-O-tert-butyldimethylsilyl)-β-cyclodextrin 

Reagents needed: 

• 115g HBMSi-βCD: mHBMSi-βCD x 1.15(to account for mass loss during drying) 

MWHBMSi-βCD = 1934.842g/mol 

• 200mL sieve-dried EtOAc:  VEtOAc = 2mL x mHBMSi-βCD 

• 82mL Ac2O:  VAc2O =nHBMSi-βCD x 14 x 1.2 x MWAc2O / dAc2O; MWAc2O = 

102.09g/mol, dAc2O = 1.082g/mL 

• 78mL sieve-dried 99%+ Py:  VPy = nAc2O x 1.1 x MWPy / dPy; MWPy = 

79.10g/mol, dPy = 0.978g/mL 

• 8.5g DMAP:  mDMAP = nPy x 0.9 x 0.08 x MWDMAP; MWDMAP = 122.17g/mol 

• 9.5mL ethanol:  VEtOH = (nAc2O � (14 x nHBMSi-βCD)) x 1.1 x MWEtOH / dEtOH; 

MWEtOH = 46.07g/mol, dEtOH = 0.794g/mL 

• 10mL acetic acid for pyridine and DMAP removal:  VHOAc = ((nPy - nAc2O)+ 

nDMAP) x 1.05 x MWHOAc / dHOAc; MWHOAc = 60.05g/mol; dHOAc = 1.049g/mL 

• DMF for re-crystallization:  VDMF = mimpure-solid x 0.85 x 3mL x 0.95 

• Deionized water for re-crystallization:  Vwater = mimpure-solid x 0.85 x 3mL x 0.05 

Procedure: 

1.  Place 115g recrystallized pure HBMSi-βCD into a vacuum oven and dry at 

80°C to constant mass.  Turn HBMSi-βCD over several times per day to assist the 

drying process. 

2.  Place a 1L, three-neck (24/40), round-bottom flask with a 1.5" football-shaped 
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teflon-coated stir-bar, and a 24/40 stopper into an oven and dry overnight at 110°C. 

3.  Connect a nitrogen line to one of the side-necks on the flask. Connect a 

condenser to the central-neck and a thermometer to the remaining side-neck using rubber 

adaptors.  Place the flask into a heating mantle on a stir-plate.  Flush the system with dry 

nitrogen for approximately 5 minutes. Replace the nitrogen line with a stopper. 

4.  Open the side-neck and with minimum air exposure add EtOAc, Ac2O, and Py 

to the flask.  Replace the stopper.  Begin vigorous stirring with the stir-bar.  Then, 

reopen the side-neck and insert a large inner diameter, short-stem plastic funnel.  While 

swirling the funnel, first add 100g of dry HBMSi-βCD and then DMAP into the flask.  

The reaction mixture should become clear and slightly yellow.  The temperature will 

increase to about 40°C. 

5.  Regulate the heating mantle using the Variac to maintain the temperature of 

the reaction mixture between 50°C - 55°C.   Continue stirring for 8 to 10 hours. 

6.  Monitor the reaction progress by HPLC analysis of the reaction mixture as 

follows: Take an aliquot of the reaction mixture using a long glass pipette with a drawn-

out tip.  With a microsyringe, add 10µL of the reaction mixture to a 2mL polypropylene 

Eppendorf tube.  Fill the tube to the 2mL mark with HPLC grade methanol.  Filter the 

clear solution through a 13mm diameter, 0.45µm pore-size nylon-membrane-filter.  

Analyze the sample by isocratic, non-aqueous reversed-phase HPLC at room 

temperature utilizing a 4.6mm x 250mm column (Zorbax C8 or Luna C18 or similar) 

and EtOAc:MeOH eluent (composition in the 5:95 to 25:75 range depending on the 

actual column), at 2mL/min.  Use an evaporative light scattering detector.  Set ELSD 
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gain to 7.  Total analysis time is approximately 15min.  Pressure is approximately 

1200psi on a clean column equipped with a guard column. 

7. Integrate the peaks in the chromatogram to determine how far the reaction has 

progressed.  As a first approximation, in the absence of actual values, it is assumed that 

the ELSD response factors of all AnBMSin-βCD derivatives are identical.  Pyridinium 

chloride, PyHCl, elutes at the dead-volume.  The target material elutes between 9min 

and 10min.  Impurities elute after PyHCl and prior to the target.  The reaction can be 

stopped when the area percentage for peaks of the impurities are at most 1.5%. 

8.  Once the reaction is complete, replace the heating mantle with a cork-ring.  

While stirring, open the side-neck and add EtOH that will consume the excess Ac2O in 

the mixture.  Allow the mixture to cool to room temperature. 

9.  Measure the solution volume.  Transfer the reaction mixture into a 1L 

separatory funnel.  Add an equal volume of deionized water.  Shake the funnel and 

separate the phases.  Dispose of the aqueous phase. 

10.  Measure the organic phase volume and replace the lost EtOAc with recycled 

EtOAc.  Add the mixture back to the separatory funnel.  Mix the HOAc with enough 

deionized water to obtain the same volume of reaction mixture.  Add the acidic solution 

to the separatory funnel.  Shake the funnel and separate the phases.  Dispose of the 

aqueous phase. 

11.  Measure the organic phase volume and replace the lost EtOAc with recycled 

EtOAc.  Add the mixture back to the separatory funnel.  Add an equal volume of 

deionized water.  Shake the funnel and separate the phases.  Dispose of the aqueous 
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phase. 

Warning:  The extraction steps should be completed as quickly as possible 

because prolonged contact of the acid with the product can cause product loss. 

12.  Place two drops of the organic phase into a NMR tube.  Fill 5cm of the tube 

with CDCl3.  Check for the removal of Py by 1H NMR.  Repeat steps 10 and 11 if Py can 

be observed in the NMR spectrum. 

13.  Transfer the solution to a 1L round-bottom flask with a 1.5" football-shaped 

teflon-coated stir-bar.  Place the flask onto the rotavap.  Warm the water bath to 50°C.  

Rotavap the solution until EtOAc stops distilling.  The recovered EtOAc can be stored 

for future use as in steps 10 and 11. 

14.  Add 40% of DMF for re-crystallization to the flask and rotavap the solution 

until EtOAc stops distilling again.  Place the flask into a cork-ring on a stir plate.  Begin 

stirring.  Mix the remaining DMF with water for the re-crystallization.  Slowly add the 

mixture to the hot solution in the flask.  Attach a thermometer to the neck utilizing 

rubber adaptors.  Allow the solution cool.  Initial cloudiness should form at 

approximately 40°C.  Filter off the first crop of HABMSi-βCD when the temperature 

has reached 30°C.  Weight the solid. 

15.  Pour the filtrate back into the flask and close it with a stopper.  Place the 

flask into a cork-ring on a stir plate.  Begin stirring.  A second crop of the product will 

be obtained overnight. 

16.  To a round-bottom flask add a football-shape teflon-coated stir-bar.  Place 

the flask into a mantle on a stir plate.  Pour the DMF/water mixture for the re-
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crystallization into the flask.  Begin stirring.  Add the solid �step 13� to the flask 

through a wide-bore plastic funnel.  Attach a thermometer to the neck using rubber 

adaptors.  Regulate the heating mantle utilizing the Variac to maintain the temperature 

between 55°C - 60°C.  Once a clear solution is obtained, replace the heating mantle with 

a cork-ring.  Allow the solution to cool to 10°C below the temperature at which the 

initial cloudiness was formed (approximately 40°C).  Filter off the HABMSi-βCD. 

17.  Pour the filtrate into the flask and close with a stopper.  Place the flask into a 

cork-ring on a stir plate.  Begin stirring.  A second crop of the product will be obtained 

overnight.  Combine the mother liquors and rotavap the resulting solution to dryness in a 

high vacuum rotavap at 50°C.  Pool the impure solids for further work-up. 

18.  Place 5mg of the crystals into a 2mL polypropylene Eppendorf tube.  Fill the 

tube to the 2mL mark with HPLC grade methanol.  Filter the clear solution through a 

13mm diameter, 0.45µm pore-size nylon-membrane-filter.  Check product purity by 

HPLC as in steps 6 and 7.  Repeat steps 15 and 16 if the purity is less than 99.5%. 
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Figure A-2.  Purity characterization of final product, HABMSi-βCD, by 1H NMR in 
CDCl3 (A) and HPLC (B); chromatographic conditions as described in Figure II-7. 
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A.3  Synthesis of Heptakis (2, 3-di-O-acetyl)-β-cyclodextrin from Heptakis (2, 3-di-O-

acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin. 

Reagents needed: 

• 400g not dried HABMSi-βCD:  mHABMSi-βCD x 1.15 (to make up for solvent 

attached); MWHABMSi-βCD = 2523.365g/mol 

• 557mL THF:  VTHF = 1.6mL x mHABMSi-βCD 

• 8mL HF in water:  VHF in water = nHABMSi-βCD x 7 x MWHF / CHF in water / dHF in water; 

MWHF = 20.01g/mol, CHF in water = 48%m/m, dHF in water = 1.15g/mL 

• 27mL MeMo:  VMeMo = nHF x 1.1 x MWMeMo / dMeMo; MWMeMo = 101.15g/mol, 

dMeMo = 0.920g/mL 

• 414mL TBAF in THF:  VTBAF in THF = nHABMSi-βCD x 3 x 1000 / MTBAF; MTBAF = 

1M 

• 1.05L CH2Cl2:  VCH2Cl2 = 3mL x mHABMSi-βCD 

• Hexanes for precipitation:  VHexanes = Vreaction-mixture x 3mL 

• Acetone for re-crystallization:  Vacetone = mimpure-solid x 2mL 

• DMF for re-crystallization:  VDMF = mimpure-solid x 4mL x 0.5 

• Deionized water for re-crystallization:  Vwater = mimpure-solid x 3mL x 0.5 

Procedure: 

1.  Place 2L plastic Erlenmeyer flask with 2" teflon-coated flat-shaped stir-bar 

into water bath on stir/heater plate. 

2.  Add two thirds of THF, the 1M TBAF solution, and MeMo. Begin vigorous 

stirring with the stir-bar.  Slowly add the HF solution with a long-needle plastic-syringe.  
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The tip of the needle should be submerged into the solution to minimize vapor 

formation.  Insert a large inner diameter, short-stem plastic funnel in the neck of the 

Erlenmeyer flask.  While swirling the funnel, add 400g of re-crystallized HABMSi-βCD.  

Add the remaining third of THF and attach a condenser to the neck utilizing a rubber 

adaptor.  

3.  Insert a thermometer into the water bath. Turn on the heater plate and regulate 

the bath temperature to 45°C-50°C.  The reaction mixture should become clear and light 

brown.  Continue stirring for 8 to 10 hours. 

4.  Monitor the reaction progress by TLC analysis of the reaction mixture as 

follows:  Take an aliquot of the reaction mixture utilizing a long glass pipette with a 

drawn-out tip.  Add 0.5mL to a 1.5mL polypropylene Eppendorf tube.  Fill the tube to 

the 1mL mark with acetone.  Spot twice this solution onto a silica TLC plate.  Use 2.5cm 

x 10cm aluminum-backed Silica plates and 50:10:1 CHCl3:MeOH:H2O as developing 

solvent.  Dry the plate for 5min in an oven at 90°C and then dip it into the α-naphtol 

staining solution.  Visualize the AnBMSin-βCD spots by placing the TLC plate into a 

90°C oven for 10 min.  The CD spots are dark purple-to-brown on a light ochre-to-

brown background.  The reaction can be stopped when the major spot is at Rf = 

0.39(target), and the impurities are lighter spots at Rf = 0.33, 0.36, 0.44, 0.45. 

Warning:  The composition of the TLC developing solvent changes rapidly due 

to evaporation.  Therefore, the developing solvent should be frequently prepared. 

5.  Once the reaction is complete, discontinue heating.  Transfer the solution to a 

5L round-bottom flask with a 4" teflon-coated football-shaped stir-bar.  Place the flask 
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onto the rotavap.  Warm the water bath to 35°C.  Rotavap off the mixture until THF 

stops distilling. 

6.  Place the flask with the water-containing reaction mixture onto the high-

vacuum rotavap.  The water bath is kept at room temperature.  Rotavap until the solvent 

stops distilling.  Increase the water bath temperature to 35°C and rotovap for an 

additional 20min.  A gel remains in the flask. 

7.  Add CH2Cl2 to the flask and return the flask back to the normal rotavap.  Turn 

the flask until a clear solution is obtained at 30°C. 

8.  Measure the solution volume.  Transfer the reaction mixture into a 4L 

separatory funnel.  Add an equal volume of deionized water.  Shake the funnel and 

separate the phases.  Dispose of the aqueous phase. 

9.  Transfer the solution to a 2L round-bottom flask with a 4" football-shaped 

teflon-coated stir-bar.  Place the flask on the rotavap.  Warm the water bath to 30°C.  

Rotavap off the solvent until the organic phase has been concentrated to 40% of its 

original volume. 

10.  Add hexanes to a 3L round-bottom flask with a 4" football-shaped teflon-

coated stir-bar.  Place the flask in a cork-ring on a stir plate.  Begin vigorously stirring.  

Slowly add the concentrated organic phase to obtain a gel-like material.  Decant the 

solution and dispose it as waste. 

11.  Place the flask with the gel onto the high-vacuum rotavap.   Warm the water 

bath to 30°C.  Rotavap until the solid separates from the wall of the flask. Weigh the 

obtained solid. 
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12.  Add a 4" football-shaped teflon-coated stir-bar to a 3L round-bottom flask.  

Place the flask into a mantle on a stir plate.  Add acetone for the re-crystallization.  

Begin stirring.  Form slurry by addition of the solid �step 11� through a large inner 

diameter, short-stem plastic funnel to the flask.  Connect a condenser to the flask to re-

circulate cold water.  Reflux the slurry for 1h while stirring.  Replace the mantle with a 

cork-ring and allow the slurry to cool to room temperature while stirring.  Filter off the 

HDA-βCD.  Weigh the solid.  Rotavap the acetone from the mother liquor and pool the 

impure solids by dissolving in CH2Cl2 to be used in step 10. 

13.  To a round-bottom flask add a football-shaped teflon-coated stir-bar.  Place 

the flask into a mantle on a stir plate.  Pour two thirds of DMF into the flask for re-

crystallization.  Begin stirring.  Add the solid �step 12� to the flask using a large inner 

diameter, short-stem plastic funnel.  Regulate the heating mantle with the Variac to 

maintain the temperature between 50°C - 55°C until a clear solution is obtained.  Mix 

the remaining DMF with the water for the re-crystallization.  Slowly add the mixture.  

Replace the heating mantle with a cork-ring and while stirring, allow the solution to cool 

to room temperature.  Filter off HDA-βCD. 

14.  Check the product purity by HPLC analysis as follows:  Place 5mg of the 

crystals into a 2mL polypropylene Eppendorf tube.  Fill the tube to the 2mL mark with 

deionized water.  Filter the clear solution through a 13mm diameter 0.45µm pore-size 

nylon-membrane-filter.  Analyze the sample by isocratic, aqueous reversed-phase HPLC 

at 40°C using a 4.6mm x 250mm column (Luna C18 or similar) and MeOH:water eluent 

(composition at 57:43), at 2mL/min.  Use an evaporative light scattering detector.  Set 
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the ELSD gain to 7.  Total analysis time is approximately 20min.  Pressure is 

approximately 2700psi on a clean column equipped with a guard column. 

15.  Integrate the peaks in the chromatogram to evaluate the purity of the 

product.  As a first approximation, in the absence of actual values it is assumed that the 

ELSD response factors of all AnBMSin-βCD derivatives are identical.  The under-

acetylated impurities elute between 6min and the target.  The target material elutes 

between 11min and 15min, and the other impurities elute after the target and before 

20min.  Repeat steps 12 to remove impurities that elute after the target and/or step 13 to 

remove impurities that elute before the target. 
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Figure A-3.  Purity characterization of final product, HBMSi-βCD, by HPLC; 
chromatographic conditions as described in Figure II-15. 
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A.4  Synthesis of Heptakis (2, 3-di-O-acetyl-6-O-sulfo)-β-cyclodextrin sodium salt from 

Heptakis (2, 3-di-O-acetyl)-β-cyclodextrin. 

Reagents needed: 

• 460g HDA-βCD:  mHDA-βCD x 1.15 (to account for mass loss during drying); 

MWHDA-βCD = 1723.71g/mol 

• 800mL sieve-dried DMF:  VDMF = 2mL x mHDA-βCD 

• 310g sulfur trioxide-pyridine complex, SO3·Py:  mSO3.Py = nHDA-βCD x 7 x 1.2 x 

MWSO3·Py; MWSO3·Py= 159.16 

• 29mL sieve-dried 99%+ Py:  VPy = (nSO3·Py - 7 x nHDA-βCD) x 1.1 x MWPy / dPy; 

MWPy = 79.10g/mol, dPy = 0.978g/mL 

• 343g NaHCO3 in 440mL water:  mNaHCO3 = (2 x nSO3·Py- 7 x nHDA-βCD) x 1.8 x 

MWNaHCO3; MWNaHCO3 = 84.01g/mol; VH2O = 1.1mL x mHDA-βCD 

• iPrOH for precipitation:  ViPrOH = V HDAS-βCD solution x 5mL 

Procedure: 

1.  Place 460g of HDA-βCD in a crystallizing dish and dry it in a vacuum oven at 

80°C to constant mass.  Turn HDA-βCD over several times per day to assist the drying 

process. 

2.  Place a 2L round-bottom flask with a 4" football-shaped teflon-coated stir-bar, 

and one 24/40 stopper into an oven and dry overnight at 110°C. 

3.  Place the flask onto a cork-ring in a stir-plate.  With minimum air exposure, 

add DMF and Py to the flask.  Close the system with the stopper.  Begin vigorous 

stirring with the stir-bar.  While stirring, reopen the flask and insert a large inner 
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diameter, short-stem plastic funnel.  While swirling the funnel, add 400g of dry HDA-

βCD into the flask.  Replace the stopper. Continue stirring until a clear solution is 

obtained. 

4.  Reopen the flask and insert a large inner diameter, short-stem plastic funnel.  

While swirling the funnel, add the SO3⋅Py into the flask.  Replace the stopper. Continue 

stirring for 4h at room temperature. 

Warning:  Because SO3⋅Py is very moisture sensitive, minimize air exposure 

when handling. It is very corrosive.  Avoid contact with eyes and skin! 

5.  Monitor the progress of the reaction by indirect UV detection CE analysis as 

follows:  Prepare a 20mM pTSA and 40mM TRIS background electrolyte� BE� 

solution at pH 8.3.  Take an aliquot of the reaction mixture using a long glass pipette 

with a drawn-out tip and add 0.1mL to a 5mL P/ACE vial.  Add 4.6mL of BE.  Filter the 

clear solution through a 13mm diameter 0.45µm pore-size nylon-membrane-filter. 

Analyze the sample by indirect UV detection CE at 20°C utilizing 10kV applied 

potential with negative polarity at the detector end and a 25µm I.D. naked fused-silica 

capillary with 19/26cm effective/total length.  The capillary should be washed with 

buffer for 2min between every sample.  After the final sample of the day, the capillary 

should be washed with water for 30min and stored filled with nitrogen until next use. 

6. Integrate the peaks in the electropherogram to determine how far the reaction 

has progressed.  As a first approximation, in the absence of actual values it is assumed 

that response factors of all DAnSn-βCD derivatives are identical.  The EOF peak has an 

µEO of approximately 52x10-5cm2/(sV).  The under-sulfated CDs have µeff between 
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0cm2/(sV) and -34.5x10-5cm2/(sV).  The target has µeff of approximately -35x10-

5cm2/(sV) and the over-sulfated CD has µeff of approximately -39x10-5cm2/(sV). 

7.  Once the reaction is complete, prepare slurry of NaHCO3 in water.  Place a 3L 

beaker with a 4" flat-shaped teflon-coated stir-bar on a stir plate.  Transfer the reaction 

mixture to the beaker and begin vigorous stirring with the stir-bar.  Slowly add the slurry 

in portions, waiting until there is no more bubble formation between additions.  Be 

careful not to lose solution because of excessive foaming.  After half the slurry has been 

added, begin checking the pH prior to the addition of each subsequent portion.  No 

additional slurry is required when the strip of pH paper turns green.  Filter off the solids. 

8.  Transfer the filtrate to a 3L round-bottom flask with a 4" football-shaped 

teflon-coated stir-bar.  Place the flask onto a high vacuum rotavap.  Warm the water bath 

to 50°C.  Rotavap the solution to dryness. 

9.  Remove any remaining DMF as follows:  Prepare a saturated solution of 

HDAS-βCD in water.  Measure the solution volume.  Place as many 4L beakers with a 

4" flat-shaped teflon-coated stir-bar in a stir plate as required to accommodate 2.5L of 

iPrOH per 500mL of saturated solution.  Add iPrOH and begin vigorous stirring.  Slowly 

add the 500mL portion of saturated solution.  Discontinue stirring and allow the solid to 

settle (it can take several hours). 

10.  Begin stirring to form slurry in the beakers.  Filter off the solid utilizing a 

wide/large Buchner funnel.  Then, pour a first portion of the slurry onto the filter.  As 

soon as the liquid stops draining, transfer the solid into a crystallizing dish.  Do not 

allow the solid to dry in the filter paper as the paper will mix with the solid.  Place a new 
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filter paper and filter the next slurry portion.  Repeat the procedure until all of the 

HDAS-βCD slurry is processed. 

11.  Place 10mg of the solid into a NMR tube.  Fill 5cm of the tube with D2O.  

Check for the removal of the DMF by 1H NMR.  Repeat steps 9 and 10 if DMF can be 

observed in the NMR spectrum (usually a total of 4 precipitation steps are required). 

12.  Place a 1L round-bottom flask with a 1.5" football-shaped teflon-coated stir-

bar into a cork-ring on a stir plate.  Prepare a saturated solution of the solid �step 10�

in water in the flask.  Place the flask onto a high vacuum rotavap.  Warm the water bath 

to 50°C.  Rotavap the solution to dryness. 

13.  Dissolve 20mg of the solid in 4.6mL of buffer in a 5mL P/ACE vial.  Check 

purity of the product by CE as in step 5 and 6.  Check the Na2SO4 content by CE as in 

step 5 but with positive polarity at the detector end. 
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Figure A-4.  Purity characterization of final product, Na7HDAS, by 1H NMR in D2O (A) 
and indirect UV-detection CE (B); electrophoretic conditions as described in Figure III-
2. 
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A.5  Synthesis of Heptakis (2, 3-di-O-acetyl-6-O-sulfo)-β-cyclodextrin 

tetrabutylammonium salt from Heptakis (2, 3-di-O-acetyl-6-O-sulfo)-β-cyclodextrin 

sodium salt. 

Reagents needed: 

• 50g Na7HDAS: MWNa7HDAS = 2437.83g/mol 

• 99mL 40%w/w TBAOH in water:  VTBAOH = nNaHDAS x 7 x 1.05 x MWTBAOH x 

100 / (%w/w x dTBAOH solution); MWTBAOH= 242.53g/mol, dTBAOH = 0.926g/mL 

• 12.5mL 12M HCl:  VHCl = nTBAOH x MWHCl x 1000 / MHCl; MWHCl= 36.46g/mol 

• Dichloromethane, CH2Cl2 

• DMF for re-crystallization:  VDMF = mimpure-solid x 2mL x 0.8 

• Deionized water for re-crystallization:  Vwater = mimpure-solid x 2mL x 0.2 

• Tert-butylmethylether for re-crystallization:  VtBME = mimpure-solid x 10mL 

Procedure: 

1.  Place a 250mL beaker with a 2" flat-shaped teflon-coated stir-bar onto the 

stir-plate next to a pH-meter.  Add the 40%w/w TBAOH solution and the concentrated 

HCl solution into the beaker. 

2.  Calibrate a pH-meter.  Begin stirring with the stir-bar.  Adjust the pH to 7 by 

dropping diluted TBAOH or HCl as required.  The final pH can be up to 7.15 but never 

lower than 7. 

3.  Begin vigorously stirring.  While stirring, add 50g of Na7HDAS to the TBACl 

solution.  It will take approximately half an hour to completely dissolve the total amount 

of solid. 
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4.  Measure the solution volume.  Transfer the reaction mixture into a 250mL 

separatory funnel.  Add an equal volume of CH2Cl2.  Shake the funnel and separate the 

phases.  The organic phase is at the bottom of the funnel, dispose of the aqueous phase.  

The organic phase may be cloudy. 

5.  Measure the organic phase volume.  Add the mixture back to the separatory 

funnel.  Add an equal volume of deionized water to the separatory funnel.  Shake the 

funnel and separate the phases.  Dispose of the aqueous phase. 

6.  Transfer the solution to a 1L round-bottom flask with a 1.5" football-shaped 

teflon-coated stir-bar.  Place the flask onto the rotavap.  Warm the water bath to 50°C.  

Rotavap the solution to dryness. 

Warning:  when the water bath temperature is higher than 60°C, the product 

melts and it is difficult to recover a solid product. 

7.  Check for the absence of Na+ by indirect UV detection CE analysis as 

follows:  Prepare a 20mM pTSA and 40mM TRIS background electrolyte� BE� 

solution at pH 8.3.  Dissolve 20mg of the solid in 4.6mL of buffer in a 5mL P/ACE vial.  

Filter the clear solution through a 13mm diameter 0.45µm pore-size nylon-membrane-

filter. Analyze the sample by indirect UV detection CE at 20°C utilizing 10kV applied 

potential with negative polarity at the detector end and a 25µm I.D. naked fused-silica 

capillary with 19/26cm effective/total length.  The capillary should be washed with 

buffer for 2min between every sample.  After the final sample of the day, the capillary 

should be washed with water for 30min and stored filled with nitrogen until next use. 

8.  Remove the TBACl as follows:  To a crystallizing dish add a 4" flat-shaped 
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teflon-coated stir-bar.  Place the dish onto a stir/heater plate.  Pour the DMF into the dish 

for re-crystallization.  Begin stirring.  Add the solid �step 6� to the dish.  Regulate the 

heating to no more than 50°C until a clear solution is obtained.  Slowly add the water for 

the re-crystallization.  Turn off the heater and the stirring.  Allow the crystals to grow for 

about two to three days.  Filter off TBA7HDAS. 

9.  Dissolve 20mg of the solid in 4.6mL of buffer in a 5mL P/ACE vial.  Analyze 

the sample by CE as in step 7.  Integrate the peaks in the electropherogram to determine 

the isomeric purity.  As a first approximation, in the absence of actual values it is 

assumed that response factors of all DAnSn-βCD derivatives are identical.  The EOF 

peak has an µEO of approximately 52x10-5cm2/(sV).  The under-sulfated CDs have µeff 

between 0cm2/(sV) and -34.5x10-5cm2/(sV).  The target has µeff of approximately -

35x10-5cm2/(sV) and the over-sulfated CD has µeff of approximately -39x10-5cm2/(sV). 

10.  Check the TBACl content by CE as in step 7 but with positive polarity at the 

detector end.  Repeat step 8 if Cl- can be observed in the electropherogram (usually a 

total of 2 re-crystallization steps are required). 

11.  Once there is not more TBACl in the solid, removed the DMF as follows:  

Add a 2" football-shaped teflon-coated stir-bar to a 1L round-bottom flask.  Place the 

flask into a mantle on a stir plate.  Add tBME for the re-crystallization.  Begin stirring.  

Form slurry by addition of the solid �step 8� through a large inner diameter, short-

stem plastic funnel to the flask.  Connect a condenser to the flask to re-circulate cold 

water.  Reflux the slurry for 2h while stirring.  Replace the mantle with a cork-ring and 

allow the slurry to cool to room temperature while stirring.  Filter off the TBA7HDAS. 
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12.  Place 10mg of the solid into a NMR tube.  Fill 5cm of the tube with CDCl3.  

Check for the removal of the DMF by 1H NMR.  Repeat step 10 if DMF can be observed 

in the NMR spectrum (usually a total of 6 re-crystallizations steps are required). 

13.  Check purity of the product by CE as in step 9. 
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