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ABSTRACT 

Data Driven Process Monitoring Based on Neural Networks and  

Classification Trees. (August 2004) 

Yifeng Zhou, B.S., Xian Jiao-Tong University, China; 

M.S., Research Institute of Petroleum Processing, China 

Chair of Advisory Committee: Dr. M. Sam Mannan 

 

Process monitoring in the chemical and other process industries has been of 

great practical importance. Early detection of faults is critical in avoiding product 

quality deterioration, equipment damage, and personal injury. The goal of this 

dissertation is to develop process monitoring schemes that can be applied to complex 

process systems. 

Neural networks have been a popular tool for modeling and pattern 

classification for monitoring of process systems. However, due to the prohibitive 

computational cost caused by high dimensionality and frequently changing operating 

conditions in batch processes, their applications have been difficult. The first part of this 

work tackles this problem by employing a polynomial-based data preprocessing step 

that greatly reduces the dimensionality of the neural network process model. The 

process measurements and manipulated variables go through a polynomial regression 

step and the polynomial coefficients, which are usually of far lower dimensionality than 

the original data, are used to build a neural network model to produce residuals for fault 
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classification. Case studies show a significant reduction in neural model construction 

time and sometimes better classification results as well. 

The second part of this research investigates classification trees as a promising 

approach to fault detection and classification. It is found that the underlying principles 

of classification trees often result in complicated trees even for rather simple problems, 

and construction time can excessive for high dimensional problems. Fisher 

Discriminant Analysis (FDA), which features an optimal linear discrimination between 

different faults and projects original data on to perpendicular scores, is used as a 

dimensionality reduction tool. Classification trees use the scores to separate 

observations into different fault classes. A procedure identifies the order of FDA scores 

that results in a minimum tree cost as the optimal order. Comparisons to other popular 

multivariate statistical analysis based methods indicate that the new scheme exhibits 

better performance on a benchmarking problem. 
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I. INTRODUCTION  

1. Fault detection and diagnosis 

In chemical, petrochemical, food processing, papermaking, steel, power and 

other process industries, there has been a continuing demand for higher quality 

products, lower product rejection rates, and satisfying increasingly stringent safety and 

environmental regulations. Implementation and improvement of digital control scheme 

has been essential over the last three decades in order to meet these ever increasing 

standards especially since modern process plants are often large scale, highly complex, 

and operate with a huge number of process variables under closed loop control. 

Common distributed control systems are designed to replace human operators for tasks 

such as opening and closing valves, and perform those actions in an automated manner 

with greater accuracy. Application of advanced control systems, including supervisory 

control and model predictive control, has been of enormous benefits to various process 

industries. 

The primary purpose of process control systems is to maintain satisfactory 

operations by compensating for the disturbances and changes occurring in the process. 

While control systems are capable of compensating most disturbances and changes, 

there are changes in the process that the control system cannot adequately handle, which 

                                                           
  This dissertation follows the style and format of the ISA Transactions. 
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we call abnormal conditions, or by a more precise definition, undesired deviation of at 

least one variable or characteristic property of the system [1]. 

Despite the fact that automatic control has relieved the operators from most 

regulatory control tasks, responding to abnormal conditions has largely remained a 

manual activity. This includes timely detection of abnormal conditions, locating the 

cause and origin of the abnormal conditions, and taking appropriate measures to bring 

the process back to normal operating conditions. This entire activity is often referred to 

as Abnormal Conditions Management (ACM), Abnormal Situation Management 

(ASM)§, or Abnormal Events Management (AEM). 

Chemical plants experience numerous faults, which include sensor faults, 

process faults, actuator faults, and unexpected disturbances. A dead sensor is a common 

type of sensor faults while catalyst poisoning is an example of process faults. A sticking 

control valve represents actuator faults and an unexpected disturbance can be an 

extreme change in the feed concentration of a reactor. 

To minimize product rejection rate and plant down time, the faults need to be 

detected and diagnosed. A popular definition of fault detection is determining whether a 

fault has occurred, and fault diagnosis determines which fault has occurred, or 

determining the causes of out-of-control status [2]. Application of fault detection and 

diagnosis systems can minimize manufacturing cost, preventing damage to equipments, 

and improve the safety of plant operations. As chemical plants are increasingly 

                                                           
§ Abnormal Situation Management, ASM are registered service marks of Honeywell International Inc. 
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complex, highly integrated and heavily instrumented, the problem of detecting and 

diagnosing faults is becoming strategically important.  

A typical fault detection and diagnosis (FDD) scheme contains one or more 

measures, which are calculated from the process data and somehow represent the state 

of the process. By developing measures that accurately characterize the process 

behavior, faults can be detected and diagnosed by comparing the values of the measures 

with their values of the normal operating condition. 

FDD is closely related with Abnormal Situation Management (ASM), which 

deals with events that are out of the desired operating conditions. While FDD is a 

collection of technical procedures, ASM solutions contain many interactive parts, 

including management issues, hazard identification and risk analysis, process 

monitoring, and abnormal situation responding procedures. FDD constitutes an 

integrated part of process monitoring, as shown in Figure 1.1. 

No
Fault Detection Fault Diagnosis Process

Recovery
Yes

 

Fig. 1.1 A schematic diagram of the process monitoring loop 
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2. Overview 

FDD measures are mainly derived from three approaches: analytical model-

based, data driven, and knowledge-based. Analytical model-based approaches require 

accurate process models and a sufficient number of sensors for their implementation; 

data driven methods directly derive measures from process data and knowledge based 

approach uses qualitative models such as fault tree analysis.  

2.1 Analytical model based approach 

When the faults are connected with changes in unmeasurable state variables, a 

state estimation approach is appropriate. These unmeasurable states are reconstructed 

from the measurable input and output variables of the process using a Kalman Filter [3] 

[4], an unknown input observer [5], or a non-linear state observer[6]. The parameter 

estimation approach is appropriate if the process faults are associated with changes in 

parameters in the process model. The model parameters can be calculated with a least-

squares method, which can be implemented recursively to save computational costs. 

This approach is very intuitive if the process model is constructed from first principles 

and the model parameters have physical meaning in the process. When both 

unmeasurable states and parameters are needed for fault diagnosis, there exist observers 

that are capable of joint estimation of states and parameters [7]. 

A more advanced analytical model-based approach is analytical redundancy. 

Approaches that use analytical redundancy incorporate an explicit process model to 

generate and evaluate residuals [8]. In some cases the residual is generated between the 
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model prediction and the plant measurement. Observer-based approaches can be used to 

reconstruct the output of the system from the measurements with the aid of observers, in 

which case the output estimation error is used as the residual [9][10]. In the case of 

parameter estimation, the residuals can be taken as the difference between the nominal 

model parameters and the estimated model parameters. The second step of analytical 

redundancy approaches is residual evaluation, in which the resulting residual is used as 

feature input to fault detection and diagnosis through logical [11], causal [12], or pattern 

recognition techniques [13].  

Analytical model based approaches require accurate models to be effective [14]. 

It is shown that when uncertain models are used, control performance must be traded 

off against diagnostic performance [15] and the fault diagnosis and control schemes 

should be designed together [16]. Most applications of the analytical model-based 

methods have been to relatively small-scale systems [17] [18], i.e., systems with small 

number of inputs, outputs, and states. Accurate models for large-scale systems like the 

current chemical plants are difficult to obtain because of all the cross-couplings 

associated with a multivariable system. 

2.2 Knowledge-based approach 

For large-scale systems, accurate models may not be available or may be too 

costly and time-consuming to obtain. An alternative method is to use knowledge-based 

methods such as causal analysis and expert systems, which are based on qualitative 

models. Approaches based on causal analysis use the concept of causal modeling of 
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fault-symptom relationships. An example of causal analysis is the signed directed graph 

(SDG) [19] [20]. An SDG is a representation of the process causal information, in 

which the process variables and parameters are represented as graph nodes and causal 

relations are represented by directed arcs. Nodes in the SDG assume values of (0), (+) 

and (-) representing the nominal steady state value, higher and lower than steady state 

values. Directed arcs point from a cause node to its effect node. Arc signs associated 

with each directed arc could take values of (+) and (-) representing whether the cause 

and effect change in the same direction or opposite direction, respectively. The 

advantage of SDG is that all possible nodes can be located to explain an abnormal 

operating condition. However, constructing an SDG for a large chemical plant may be 

tedious. 

A traditional approach for building a knowledge expert system is to develop IF-

THEN rules through process knowledge [21]. Knowledge expert systems are flexible, 

fast to implement, and the conclusions are easy to verify. A new approach for building 

knowledge expert systems is to use machine-learning techniques. This system allows 

knowledge extraction and background knowledge encoding by integrating symbolic 

information into a neural network learning algorithm [22]. 

A real-time version of a fault tree model, a symptom tree model (STM), relates 

the faults and symptoms [22] [23]. In an STM, the root cause of a fault is determined by 

taking the intersection of causes attached to the observed symptoms. Often this 

procedure will result in more than one candidate faults, and there is no mechanism 
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available to decide the most probable fault. This problem is solved by a weighted 

symptom tree model (WSTM) [24], which contains a weight for each symptom-root 

cause pair. WSTM allows ranking all possible faults by their probabilities, and a 

subsequent pattern-matching step matches the observed fault propagation trends with 

standard trends obtained from training set. The best matching fault is selected as the 

diagnosed result. 

Knowledge-based approaches are also difficult to apply to large scale systems 

because constructing the fault models demands a large amount of effort and requires 

extensive process experience [25]. 

2.3 Data driven approach  

Because accurate models are difficult to develop for large-scale systems, most of 

the fault detection and diagnosis systems applied to industrial processes are based on 

data-driven approaches. Process data collected from the normal and abnormal operating 

conditions are used to develop measures for detecting and diagnosing faults. This class 

of methods includes multivariate statistical analysis, neural networks, classification and 

regression trees (CART), and hybrid methods using a combination of various 

techniques. Since these methods are data-driven, the effectiveness of these methods is 

highly dependent on the quality and the quantity of the process data. Although modern 

control systems allow acquiring huge amounts of process data, only a small portion is 

usable as it is often not certain these data are not corrupted and no unknown faults are 

occurring.  
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Multivariate statistical analysis-based approaches formulate the fault diagnosis 

problem as a statistical pattern recognition problem. Since process data are always 

subject to random disturbances, it is natural to analyze the system in a probabilistic 

setting. Multivariate statistical techniques, including principal component analysis 

(PCA), partial least squares (PLS), and Fisher discriminant analysis (FDA), are capable 

of reducing the dimensionality of the original data such that essential information is 

retained; they are also able to classify data points to pre-determined fault classes.  

Neural networks-based approaches assume a functional form for the decision 

rules thus describing the decision boundaries with a set of network parameters. The 

network parameters are obtained either by supervised training or unsupervised training 

using historical process data.  

3. Statement of the problem 

Although the applicability of data-driven methods for process fault detection and 

diagnosis has been well demonstrated, difficulties still arise when the process 

experiences slow deviation or frequent changes of operating conditions. The models for 

the data driven methods thus must be retrained to reflect the current process behavior. 

This is not a problem for simple statistical models such as PCA, but for computationally 

intensive models like neural networks or CART, excessive retraining time often 

becomes the bottleneck for their applications [26]. It is especially unacceptable for 

batch processes where online retraining is often required. 

The objectives of this research are to:  
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• Investigate appropriate dimensionality reduction techniques for neural 

network and CART approaches for process fault detection and diagnosis 

• Determine the optimal degree of dimensionality reduction by balancing 

loss of information and system complexity  

• Validate the developed algorithms on both simulated and real chemical 

processes and compare the results to that of the existing techniques 
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II. FAULT DETECTION AND CLASSIFICATION BASED ON 

NEURAL NETWORKS WITH FEATURE EXTRACTION* 

1. Introduction 

Batch processes are routinely used for manufacturing high value added 

chemicals such as pharmaceuticals, polymers, and fine chemicals. The batch mode of 

operation is preferred when the production volume is low and when the materials 

involved are hard to handle. The operating procedures often follow a “golden recipe” 

consisting of a series of operating conditions and processing times. Unlike continuous 

processes, batch processes are characterized by time-varying variables and process 

parameters. As a result, normal states are not described by the ranges of variables but by 

a set of acceptable “trajectories”. 

Monitoring tasks in batch processes are very difficult due to many reasons. For 

example, the absence of steady states operations, high nonlinearities of the processes, 

lack of online sensors for measuring product composition and the finite duration of the 

operation are the major problems for developing process supervision systems. 

Moreover, batch processes are generally operated as multi-product plants where many 

products share common equipment. Thus the production scheduling must be taken into 

account for development of supervision systems, because abnormal situations are 

                                                           
* Reprinted with permission from “Fault detection and classification in chemical processes based on 
neural networks with feature extraction”, Yifeng Zhou, Juergen Hahn, and M. Sam Mannan, 2003, ISA 
Transactions, Volume 42, Number 4, October 2003, 651-664. Copyright 2003 by ISA. All Rights 
Reserved. 



 
 

11

strongly dependent on the product manufacturing processes. Finally, the variability of 

batch-to-batch operations due to different operators and initial conditions implies 

substantial system complexity and uncertainty. 

Due to the inherent complexity and flexibility of batch processes, fault diagnosis 

systems that provide fault information to operating and scheduling levels allow 

improvement of product quality, facilitate active scheduling, and reduce risk of 

accidents. Fault detection and diagnosis problems have been intensively studied in 

recent years. Most of the approaches presented so far are applicable to steady state 

processes. These approaches can be divided into three groups: data driven methods 

[27][28][29][30], model-based methods [31][32] and combinations of both. However, 

due to the nonlinearity, complexity and absence of steady state operating conditions, the 

application of these methods to batch processes is usually very difficult.  

More recently, the potential of neural networks for fault diagnosis has been 

demonstrated [33][34][35]. A neural network-based approach is especially suitable for 

processes for which accurate mathematical models are too difficult or too expensive to 

obtain. Neural networks attempt to mimic the computational structures of the mammal 

brains by nonlinear mapping between input and output that consists of interconnected 

nodes arranged in layers. The layers are connected such that the signal on the input side 

can propagate through the network and reach the output side. Neural network behaviors 

are determined by the transfer functions of the units, network topology, and connection 

pattern of layers. Among all forms of neural networks, the two layer feed forward 
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network has been the most popular. This class of networks consists of two layers of 

nodes, namely the hidden layer and the output layer, and two layers of weights serving 

as the connections between the input and the hidden layer, as well as between the 

hidden layer and the output layer. No connection is allowed within its own layer and the 

information flow is one directional. Sigmoid functions are usually selected as the 

transfer function for hidden layer nodes and linear functions for the nodes of the output 

layer. 

It has been shown that this class of neural network can approximate any 

functional (one-one or many-one) continuous mapping from one finite-dimensional 

space to another arbitrarily well, provided the number of hidden nodes is sufficiently 

large [36]. It has also been proven that, in the context of pattern recognition, this class 

of networks with sigmoidal non-linearity and two layers of weights can approximate 

any decision boundary to within arbitrary accuracy [37][38][39]. These properties of 

two layer feed forward neural networks lay the theoretical foundation for applying 

neural networks to process modeling and fault diagnosis by pattern recognition. 

Neural networks can be applied to fault detection and diagnosis in two ways, 

performing as a process model or a pattern classifier. Numerous papers applying neural 

networks to fault detection and diagnosis can be summarized into three categories 

[40][41][42][43], as shown in Fig. 2.1. The first (Fig. 2.1(a)) is the use of a neural 

network to differentiate various fault patterns from normal operating conditions, 

according to different measured process output data. Training of the neural network can 
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be performed offline or online. In the second category, neural networks are used as 

classifiers to isolate faults represented by process model-generated residuals. The 

process model can be a mathematical model (Fig. 2.1(b)), based on which the fault 

diagnosis structure utilizes some process mechanism provided by the quantitative 

model, and therefore facilitates the implementation and training of the neural classifier.  

In cases where mathematical process models are not available, a neural network process 

model can be employed to generate residuals (Fig. 2.1(c)); another network is then used 

to isolate faults.  

Input Output Faults
Process Neural Network

Classifier

Input Output

Faults
Process

Residual
Model
Output

Math Model

Output

Faults
Process

Residual

+

-

Neural Network
Model

+

-

Input

Neural Network
Classifier

Neural Network
Classifier

Z-1

(a)

(b)

(c)

Model
Output

 

Fig. 2.1 Different approaches of applying neural networks to fault detection and 
diagnosis 
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The training session of the neural network uses the error in the output values to 

update the weights connecting layers, until the accuracy is within the tolerance level. 

The training time for a feed forward neural network using one of the variations of 

backpropagation can be substantial. For a simple 2-input 2-output system with 50 

training samples, 100,000 training iterations are not uncommon [44]. For large-scale 

systems, memory and computation time required for training a neural network can 

exceed hardware limits. This has been a bottleneck in developing fault diagnosis 

algorithms for industrial applications. Like other data-driven methods, the performance 

of neural networks is determined by the available data. It is highly possible that neural 

networks will generate unpredictable outputs when presented with an input out of the 

range of the training data. This suggests that the neural networks need to be retrained 

when there is a slight change of the normal operation conditions, e.g., a molecular 

weight specification change in a polymerization reactor. This is not a big problem if the 

neural networks are trained offline then used online in fault diagnosis systems. 

However, in batch processes, due to the share of common equipment by many products 

and variability through batch-to-batch operations, operating regions are seldom 

constant. To maximize the utilization of equipment, batch processes are often tightly 

scheduled and this requires considerable amount of online retraining of the neural 

network process model and fault classifier. This reduces the potential application of 

neural network based fault diagnosis systems to batch processes. 

In this section, a new neural network based fault diagnosis approach for batch 

processes is proposed to reduce the time required for training neural networks. A feed 
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forward neural network is employed to predict future process outputs by a series of past 

process inputs and outputs. Past process input/output data are fed into a preprocessor, 

which fits a polynomial to each series of input. Then the coefficients of the polynomials 

are fed into the network as inputs. A second neural network realized by a radial basis 

function (RBF) network is used as the classifier to classify faults. Compared with 

published approaches, this approach improves neural model training time without 

reducing accuracy, thus making on-line training possible.  

2. Process fault detection and classification based on neural networks with 

feature extraction 

2.1 Polynomial fitting as the feature extraction technique 

Neural networks can be used as a process model to generate residuals for 

process monitoring. In this case the neural network is usually a feed forward recurrent 

neural network, which uses past process inputs and past process outputs to generate 

one-step-ahead prediction of process outputs, as shown in Fig. 2.2 and the following 

formulation.  

( 1) neural network [ ( ), ( 1),... ( ), ( ), ( 1),... ( )]t t t t d t t t d+ = − − − −y y y y u u u  (2.1) 

where 

( 1)t +y : predicted process output vector 

( ), ( 1),... ( )t t t d− −y y y : the past process output vector sequence 
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( ), ( 1),... ( )t t t d− −u u u : the past process input vector sequence 

d : the length of the sample sequence 

u(t)

u(t-1)

u(t-2)

u(t-3)

y(t)

y(t-1)

y(t-2)

y(t-3)

Recurrent
Neural

Network
Process
Model

y(t+1)

 

Fig. 2.2 Recurrent neural network process model 

Since variables in chemical processes are changing continuously, the past 

process input and output sequences are not independent. Therefore the possibility exists 

for using a lower dimensional representation of the sequences and to realize 

dimensionality reduction. Due to the low frequency and large time constant nature of 

chemical process dynamics, least squares polynomial fitting is proposed as the 

dimensionality reduction technique, as shown in Figure 2.3. As one can see in Figure 

2.3, a process input sequence consisting of seven numbers is represented by a second 

order polynomial, which can be described with three coefficients. Therefore the 

dimension reduction from seven to three is realized. An added benefit of this feature 

extraction process is that it smoothes the original data and provides some degree of 

noise reduction.   
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Fig. 2.3 Polynomial fitting as a dimensionality reduction technique 

The new structure of the neural network process model is shown in the 

following formulation: 

polynomial fitting [ ( ), ( 1),... ( )]

polynomial fitting [ ( ), ( 1),... ( )]
( 1) neural network [ , ]

y

u

y u

t t t d

t t t d
t

= − −

= − −

+ =

a y y y

a u u u
y a a

   (2.2) 

where 

ya : the vector of polynomial coefficients fitted on the past process output 

sequence 

ua : the vector of polynomial coefficients fitted on the past process input 

sequence 

2.2 Determine the optimal structure of the neural network process model 

It has been shown that the length of the process input and output sequences 

provided to the neural network model has a significant impact on the model 
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performance [45]. Cross validation is employed to find the optimal model structure. The 

training dataset is randomly split into N sections, and one of these subsets is reserved 

for use as an independent test dataset, while the other N-1 subsets are combined for use 

as the training dataset. Various model structures with different lengths of process input 

and output sequences are tested, and each model structure is trained N times, with a 

different subset of the data reserved for use as the test dataset each time. Thus N 

different process models are produced, each of which is tested against its corresponding 

test dataset. The average performance of the N models is an excellent estimate of the 

performance of the original model (produced with the entire training dataset) on a future 

independent set of test dataset. The average performances of these models with different 

structures are compared and the one with the lowest prediction error is selected as the 

optimal structure. It is worth mentioning that besides cross validation, more advanced 

nonlinear model validation approaches such as correlation analysis [46] can also be 

used.  

2.3 Selection of the optimal order of the polynomial fitting preprocessor  

After the optimal length of process input and output sequences is found, the next 

step is to determine the optimal order of the polynomial to best represent the sequences 

by the polynomial coefficients. This again can be done with cross validation. A group of 

process input and output sequences are selected to represent the whole neural network 

training dataset. Suppose that each sequence contains d samples of a variable, each 

sequence is divided into d subsets with one sample in each subset. Polynomials of order 
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2, 3 and 4 are used to fit the combination of d-1 subsets and the last subset is used for 

testing. The average prediction errors of the polynomials with different order are 

compared and the one with the smallest error is selected as the optimal preprocessor.  

After the optimal structure of the neural network process model and the optimal 

order of the preprocessor are found, a new neural network process model with reduced 

dimensionality can be constructed, as shown in Figure 2.4. 
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Fig. 2.4 Neural network process model with dimensionality reduction 

 

2.4 Fault classification with radial basis function neural network  

Fault diagnosis is implemented with a radial basis function neural network 

functioning as a classifier. The residual vector generated from the process output and 

neural network prediction has different structures corresponding to different faults. A 

neural network classifier uses this feature to isolate faults. 
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The radial basis function (RBF) network used here consists of two layers: a 

hidden layer and an output layer. The hidden layer contains a number of RBF neurons, 

and each of them represents a single radial basis function. The transfer function of the 

hidden layer neurons is a radial basis function, in the form of 2( ) exp( )n nφ = − . The 

most popular RBF is a Gaussian type that is characterized by a center ( jc ) and a width 

( jr ). The RBF functions by measuring the Euclidean distance between input vector ( x ) 

and the center ( jc ), then performs the nonlinear transformation as given in the transfer 

function of the jth hidden layer neuron below: 

2

2( ) expj
jr

φ
− −

= jx c
x         (2.3) 

The output layer transfer function is linear, which is given in Eq. (2.4): 

( ) ( )k kj j k
j

y w bφ= +∑x x        (2.4) 

Where ky  is the output of the kth output layer neuron, kjw  is the weight of 

connection between jth hidden layer neuron and the kth output layer neuron, jφ is the 

output of the jth hidden layer neuron, and kb  the bias of the kth output layer neuron. 

From the formulation of transfer functions, one can see that after choosing RBF centers 

and widths, designing the RBF network is simply solving a linear system. There are 

several methods to choose the centers, such as K-means clustering algorithm [47], 

orthogonal least-squares algorithm [48]. The widths of RBFs can be chosen as the same, 
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or different for each neuron. In this research, Gaussian type RBF is used as the hidden 

layer transfer function and the width of every RBF is chosen as the same. Orthogonal 

least-squares algorithm is used to select the centers from the training set. The 

connection weights between the hidden layer and the output layer are obtained by 

solving the linear system using least squares method. 

3. Case study 1: a batch polymerization reactor 

3.1 Process simulation 

The process studied is a batch polymerization reactor for the production of 

polymethylmethacrylate (PMMA) from methylmethacrylate (MMA) and 

azobisisobutyronitrile (AIBN). In the stirred tank reactor, MMA as monomer and AIBN 

as initiator are reacting in toluene solvent. The process is optimized to produce as much 

PMMA of weight-average molecular weight of 400,000 as possible, under the given 

restrictions: production rate of PMMA 0.10 kg/h; initial volume fraction of solvent 

0.30; loading/startup time 1.0 hour; and batch cycle time 6.0 hours. The reactor is 

controlled by the net heat added to the jacket using a combination of cooling water and 

electric heaters. The control input profile described in the literature [49] will be used as 

the desired input trajectory. The detailed formulation of the kinetic model is omitted 

here since this process has been studied extensively in the literature [50]. 

Based on the analytical model found in the literature, a simulation program is 

developed and used to study the neural network-based fault diagnosis approach. The 
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most significant variables in the simulation are concentration of MMA ( mC ), 

concentration of AIBN ( iC ), reactor temperature ( T ), jacket temperature ( jT ), and 

electric heater power (u ). Since the development of detailed mechanistic models for 

complex industrial processes is usually difficult or even impossible, empirical models 

based on operating data should be used. When developing the fault diagnosis methods 

for this reactor, it is assumed that the dynamic process model is unknown and neural 

network models are developed. 

3.2 Conventional neural network process model 

To build neural network models for the polymerization reactor, data from ten 

batch runs are generated from the process simulation (treated as real process runs in this 

paper). Those data contain simulated measurements of mC , iC , T , jT , and u . Since it 

is generally difficult to obtain concentration of a material in real time, it is assumed that 

measurements of T , jT , and u  are obtained online while the measurements of mC and 

iC are obtained offline. This simulates the current industrial practice that many quality 

variables of polymerization processes are still measured offline through laboratory 

analysis. The data are generated by adding random perturbations to the nominal control 

input profile ( u ). Random variations are added to the control variable to reflect the 

different skill levels of different operators. Normally distributed random noises with 

zero means are also added to all the measurements to simulate sensor noises. The 

standard deviations of the noises for u , T , jT , mC  and iC  are 0.02 kW, 0.5 K, 0.5 K, 
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0.002 kmol/m3, 0.001 kmol/m3 respectively. Figs. 2.5 and 2.6 illustrate the effect of 

adding noise to MMA concentrations. The sampling time is 1.5 minutes and each run 

takes 6 hours. 

 

Fig. 2.5 MMA concentration before adding the white noise 

 



 
 

24

 

Fig. 2.6 MMA concentration after adding the white noise 

A multi-layer feed forward neural network with one hidden layer is used to 

develop a nonlinear representation of the polymerization reactor based on recurrent 

network structure described in the literature [43]. Feed forward neural networks are 

implemented with the Matlab Neural Network Toolbox. The details of the training and 

optimization process are shown below: 

• The model outputs are T , jT  at sampling time t and the model inputs are 

u, T , and jT  at sampling time t-1, t-2, … t-n (n being the time lag to be 

optimized); 

• All training data are scaled to the range of [0, 1] prior to the training 

process; 
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• Neural network weights are initialized to zero-mean random values; 

• The neural network weights are initialized as random numbers in the 

range (-0.1, 0.1); 

• The networks are trained using a Levenberg-Marquardt optimization 

algorithm [51]; 

• The number of hidden layer neurons in each network is optimized such 

that the minimum training error is achieved; 

• Number of epochs trained: 1000;  

• The error in training is computed with mean squared error, and the error 

in validation is computed with average relative prediction error (ARPE); 

• Output layers have two log-sigmoid neurons. 

  A number of networks with different structures are trained and tested. The 

number of hidden layer neurons in each network is optimized such that the minimum 

training error is achieved. Cross validation is employed to find the optimal network 

structure. The network with the smallest average relative prediction error on the 

validation sets is considered as the optimal model. The following optimal model 

structure is obtained and it has eight hidden neurons: 

[ ( ), ( )] neural network[ ( 1), ( 2),..., ( 6),

         ( 1), ( 2),..., ( 6), ( 1), ( 2),..., ( 6)]
j

j j j

T t T t T t T t T t

T t T t T t u t u t u t

= − − −

− − − − − −
  (2.5) 
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Since u , T , and jT  can be measured in real time, this model can be used to 

generate one-step ahead prediction of T  and jT . Model input structures can have a great 

impact on model accuracy. In this example, the time lags of inputs and outputs are 

determined by validation results. Different model structures are evaluated and their 

average relative prediction errors (ARPE) on the test data are compared, as shown in 

Table 2.1. The result indicates that increasing the number of model inputs may not 

necessarily improve model performance. For example the last network in the table has 

more inputs than any other network and its error is also larger than the rest of the 

networks. This is probably due to the fact that a large number of inputs results in the 

possibly over-fitting the data. 

 

Table 2.1 ARPE of various model structures 

Input variables ARPE 310×  

)3(),...,1(),3(),...,1(),3(),...,1( −−−−−− tututTtTtTtT jj  3.99 
)6(),...,1(),6(),...,1(),3(),...,1( −−−−−− tututTtTtTtT jj  2.52 
)6(),...,1(),3(),...,1(),6(),...,1( −−−−−− tututTtTtTtT jj  3.69 
)3(),...,1(),6(),...,1(),6(),...,1( −−−−−− tututTtTtTtT jj  1.87 
)6(),...,1(),6(),...,1(),6(),...,1( −−−−−− tututTtTtTtT jj  1.10 
)6(),...,1(),6(),...,1(),9(),...,1( −−−−−− tututTtTtTtT jj  3.81 
)6(),...,1(),9(),...,1(),9(),...,1( −−−−−− tututTtTtTtT jj  2.29 
)9(),...,1(),6(),...,1(),9(),...,1( −−−−−− tututTtTtTtT jj  4.68 
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3.3 Feature extraction 

To find the optimal degree of dimensionality reduction, 15 sequences of T , jT  , 

and u  are collected to represent the whole data set, with five sequences for each 

variable and six consecutive samples in each sequence. 2nd order, 3rd order, and 4th 

order polynomials are tested to describe these sequences. With the aid of cross 

validation, the average relative prediction error of each type of polynomial on each 

variable is calculated, as shown in Table 2.2. It is found that 2nd order polynomial best 

describes the sequences of T  and jT  but for u  3rd order is optimal. For simplicity, a 2nd 

order polynomial is chosen as the feature extraction preprocessor. 

Table 2.2 ARPE of various types of polynomials on each variable 

ARPE 2nd order 3rd order 4th order 
T  4.23 5.41 6.10 

jT  4.12 5.84 6.49 
u  5.75 4.50 7.86 

 

The new neural network model has the following structure: 

)]1(),1(),1(),1(),1(),1(                                     

),1(),1(),1([network neural)](),([
)]6(),...,2(),1([fitting   polynomialorder  nd2)]1(),1(),1([

)]6(),...,2(),1([fitting  polynomialorder  nd2)]1(),1(),1([
)]6(),...,2(),1(fitting[  polynomialorder  nd2)]1(),1(),1([

−−−−−−

−−−=
−−−=−−−

−−−=−−−
−−−=−−−

tctbtatctbta

tctbtatTtT
tutututctbta

tTtTtTtctbta
tTtTtTtctbta

uuuTjTjTj

TTTj

uuu

jjjTjTjTj

TTT

           (2.6) 
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A feed forward neural network is built based on the new structure. This network 

shares the same number of neurons in the hidden layer and the output layer with the 

obtained optimal model. The original training data are fitted to polynomial coefficients 

and then fed to the network as new training data.   The new network is trained and 

tested with the same number of epochs of training as the optimal network developed in 

the previous section. The training time and ARPE are compared and shown in Table 

2.3. 

Table 2.3 Comparisons of training time and ARPE of neural process models with 
and without feature extraction 

Model structure Training time (s) ARPE 310×
Feed forward neural net 534.2 1.10 
Feed forward neural net with input feature 
extraction 

70.7 1.52 

 

Table 2.3 indicates that the new model structure drastically reduced training 

time by more than seven folds compared to previously reported methods [43], for a 

slight sacrifice (ARPE increases by 0.04 percentage point) in model performance. This 

is probably due to the fact that introducing input feature extraction results in a system 

with more non-linearity. Absolute one-step-ahead prediction errors of the neural 

network models with or without input feature extraction are shown in Fig. 2.7, which 

illustrates the slight increase of prediction error by introducing input feature extraction.  
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Fig. 2.7 One-step-ahead prediction errors of the neural network model with and without 
input feature extraction 

 

3.4 Simulation of faults 

Two types of faults are studied in this section. One is the sensor fault T, which is 

simulated by superimposing a –10% change of the measured temperature; the other is 

fouling of the reactor jacket, simulated by a –10% change to B , the parameter in jacket 

heat transfer coefficient. The analytical process model is modified accordingly to 

simulate faulty batch runs. Five batches are simulated with two faults occurring, four of 

them used as training and one as validation set. To ensure that the faults can be detected 

whenever they occur, five different combinations of occurrence are selected as 

following. 
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Training set: 

–10% change of T  @ t  =  0 - 50; –10% change to B @ t  = 101-150; 

–10% change of T  @ t  = 101-150; –10% change to B  @ t  = 0 – 50; 

–10% change of T  @ t  = 101-150; –10% change to B  @ t  = 151-200; 

–10% change of T  @ t  = 101-150; –10% change to B  @ t  = 101-150 

Validation set: 

–10% change of T  @ t  = 51-100; –10% change to B  @ t  = 201-250 

3.5 Residual generation 

The trained feed forward neural network with input feature extraction is used as 

the fault detection residual generator. The residual is designed as the difference between 

the real process output and the neural network model output. Since only T  and jT  are 

available in real time, mC  and iC  are not included in the residual.  

3.6 Network training and simulation 

An RBF network classifier is developed with the Matlab Neural Network 

Toolbox. It has two inputs (corresponding to the dimension of the residual), two outputs 

(corresponding to two types of faults to be classified). Residuals generated with the 

neural network process model and the faulty process simulation are fed into the 

classifier as training input. The training target is set to zero for both of the classifier 

outputs for normal operating condition, and to one for a specific fault, with the other 
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remaining zero. In this way, a classifier output of [1, 0] indicates that the T sensor fault 

is occurring while [0, 1] indicates that cooling jacket fouling is occurring. 

The classifier is then trained with the residuals as inputs against the desired 

outputs. The details of the training process are shown below: 

• The networks are trained using Orthogonal Least Squares Learning 

Algorithm; 

• Performance goal (mean squared error): 0.01;  

• Spread constant (RBF width): 1.0; 

• Maximum number of neurons: 50; 

• The hidden layer contains Gaussian activation function; 

• The output layer contains linear activation function; 

• The trained network has 26 hidden layer neurons. 

The trained classifier is tested using another batch with two faults occurring 

consecutively. The two outputs of the neural classifier are shown in Figs. 2.8 and 2.9. It 

is clear that all two faults have been detected and isolated. The fact that classifier 

outputs are not zero when no fault occurs is due to errors of the neural model and noise. 
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Fig. 2.8 RBF network output 1 

 

Fig. 2.9 RBF network output 2 



 
 

33

4. Case study 2: a pilot distillation column 

4.1 Process description and data acquisition 

The pilot size distillation column studied in this work (flow scheme shown in 

Fig. 2.10) is approximately 60 feet high, six inches in diameter and is insulated. It 

separates a binary mixture of methanol and water using three sets of structured-packing 

(15 theoretical plates under normal operating conditions) with distributors above each 

set of packing. The reflux, feed and product flows are all measurable, and the column 

temperature and pressure profiles can be established from thermal couples and 

differential pressure measurements along the column. The process is controlled with a 

distributed control system with an automatic data acquisition system. All process data 

are recorded to a Microsoft Excel worksheet at an interval of 20 seconds. 

Two kinds of faults are induced in this study: a “sticky control valve” fault (fault 

1) is induced by setting the corresponding column temperature control loop to manual; a 

“vapor bypassing” fault (fault 2) is induced by opening the second (lower) feed line to 

the column. These simulated faults are very realistic in distillation processes. 

Nine process variables are chosen to represent the states of the process: column 

temperatures at theoretical plates 5, 6, 7, and 8; feed low rate; feed temperature; reflux 

flow rate; reflux temperature; and steam condensate flow.  
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569 points of normal process data, 154 points of “sticky valve” faulty process 

data, and 115 points of “vapor bypassing” faulty process data are recorded in a run. 

Another 20 points of “sticky valve” faulty process data, and 28 points of “vapor 

bypassing” faulty process data are recorded in a separate run, which are to be used as 

testing data. 

4.2 Conventional neural classifier approach 

Since the distillation column is operated at steady state, the process model is no 

longer needed to provide the reference to generate residuals. Instead, a simpler approach 

as illustrated in Fig. 2.1(a) is employed to differentiate various fault patterns from 

normal operating conditions, according to different measured process output data. This 

case study will show that the proposed feature extraction approach is also applicable in 

this circumstance.  

Two output nodes are used to classify three classes of process data, i.e. normal, 

fault 1, and fault 2. The first output node is to produce a unit value when the inputs 

belong to fault 1 and zero when the inputs fall into the fault 2 category. Similarly, the 

second output node produces a value of one for inputs from the category including fault 

2 and zero when presented with measurements from fault 1 type. 

A multi-layer feed forward neural network with one hidden layer is used to 

develop a nonlinear classifier. Feed forward neural networks are implemented with the 

Matlab Neural Network Toolbox. The details of the training and optimization process 

are shown below: 
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• Neural network inputs are the nine process variables shown above at 

sampling times t - 1, t - 2, … t - 6 (optimized with cross validation); 

Thus the neural network input contains 9×6 = 54 scalars; 

• All training data are scaled to the range of [0, 1] prior to the training 

process; 

• The neural network weights are initialized as random numbers in the 

range (-0.1, 0.1); 

• The networks are trained using a Levenberg-Marquardt optimization 

algorithm; 

• Number of epochs trained: 200;  

• The hidden layer has eight sigmoid neurons (optimized such that 

minimum training error is achieved); 

• The output layer has two linear neurons. 

The training process takes 639.31 seconds on a Pentium III 600MHz PC and 

reaches a training error of 1.97×10-9. The test data are then fed into the trained network 

and the classifier output are shown in Fig. 2.11 and Fig. 2.12.  
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Fig. 2.11 Output 1 of the conventional neural classifier: dash-dot line represents desired 
values and solid line is the actual classifier output 

 

Fig. 2.12 Output 2 of the conventional neural classifier: dash-dot line represents desired 
values and solid line is the actual classifier output 
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As can be seen from the figures, the actual neural classifier outputs will lie close 

to the values desired during training in subsequent use, while perhaps not matching 

them exactly. Thus, thresholds are specified that define the process state. A fault is 

deemed active if the corresponding output is greater than 0.7 and inactive if below 0.3. 

Any output lying between these two thresholds may be the result of the corresponding 

data not being definite members of a pre-defined category.  

Based on the thresholds defined above, the accuracy of the conventional neural 

classifier is 43 out of 48 for fault 1, and 42 out of 48 for fault 2. 

4.3 Neural classifier with feature extraction 

The details of the training and optimization process of the neural classifier with 

feature extraction are shown below: 

• Each series (sampling time t - 1, t - 2, … t - 6) of the nine process 

variables is fitted with a second order polynomial (order optimized with 

cross validation), then the coefficients of the polynomials (9 × 3 = 27 

numbers) are fed to the neural network as input; 

• All training data are scaled to the range of [0, 1] prior to the training 

process; 

• The neural network weights are initialized as random numbers in the 

range (-0.1, 0.1); 
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• The networks are trained using a Levenberg-Marquardt optimization 

algorithm; 

• Number of epochs trained: 200;  

• The hidden layer has eight sigmoid neurons; 

• The output layer has two linear neurons. 

The training process takes 194.63 seconds on the same Pentium III 600MHz PC 

and reaches a training error of 1.03×10-13. The test data are then fed into the trained 

network and the classifier output are shown in Figs. 2.13 and 2.14.  

 

Fig. 2.13 Output 1 of the neural classifier with feature extraction: dotted lines represent 
desired values and solid lines are the actual classifier output 
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Fig. 2.14 Output 2 of the neural classifier with feature extraction: dotted lines represent 
desired values and solid lines are the actual classifier output (two lines perfectly 

overlap)  

The accuracy of the neural classifier with feature extraction is 47 out of 48 for 

fault 1, and 48 out of 48 for fault 2. As can be seen from the results, not only is the 

training time drastically reduced (about 70%), but the classifier accuracy is also greatly 

improved.  

5. Conclusions 

Fault diagnosis for a batch polymerization process and a pilot size distillation 

process is investigated in this work by a feed forward neural model and a radial basis 

function neural classifier. Three approaches of applying neural networks to process fault 

diagnosis are discussed.  
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In batch processes, operating regions are seldom constant and this may require 

considerably amount of re-training of the neural process model. This reduces the 

potential of neural network based fault diagnosis systems applied to batch processes. In 

this work, by implementing an input feature extraction process for the neural model, the 

training time required for the neural process model is drastically reduced at the cost of a 

slight deterioration in model performance.  

In the first case study of a batch reactor, a temperature sensor fault and reactor 

jacket fouling are studied and classified successfully using the neural process model and 

an RBF neural classifier. In the second case study of a pilot size distillation process, a 

control valve fault and vapor bypassing are classified with better accuracy and reduced 

training time of the neural classifier. This is a general approach that can be applied for 

batch processes fault diagnosis using neural networks. 
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III. FAULT DETECTION AND CLASSIFICATION BASED ON 

CLASSIFICATION TREE AND DISCRIMINANT ANALYSIS 

1. Introduction 

Classification and regression tree (CART) of Breiman et al [53] is an innovative 

methodology for the analysis of large data sets via binary partitioning procedure. 

Classification tree analysis has the advantage of being concise, fast to compute, and 

making no assumption regarding the distribution of the predictor variables. 

This section will develop a general process monitoring scheme applicable for 

multivariate chemical processes based on classification trees. This technique, referred to 

as classification tree with discriminant analysis, integrates classification tree and Fisher 

Discriminant Analysis (FDA).  FDA is employed here to reduce the dimensionality of 

the process measurements and to produce an optimal lower dimensional representation 

of the process in terms of discriminating between classes. The classification tree is then 

applied to the scores produced by FDA and fault classification is performed. The 

proposed technique has better performance compared with the original classification 

tree in terms of classification accuracy and training time. 

In what follows, the principles of classification tree analysis are reviewed and 

then the new methodology is derived. Two case studies, the Tennessee Eastman Process 

simulation and a pilot size distillation column, are presented next in order to compare 
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the results with other published methodologies and to demonstrate the effectiveness of 

the new approach. Conclusions are drawn in the final section. 

2. Classification tree analysis principles 

Classification trees were first introduced by social scientists in the early 1960s 

[54]. Breiman et al [53] formulated classification trees in statistics in the 1980s and 

proposed the Classification and Regression Tree (CART) methodology, on which the 

classification tree building in this study is primarily based.  

2.1 Growing a classification tree 

CART is a form of binary recursive partitioning, that is, in the process of 

progressive splitting the set of training samples into smaller and smaller subsets, each 

subset can only have two branches, and this partitioning can be carried on several times. 

Fig. 3.1 shows the classification tree resulting from analysis of a set of process data. 

The training set contains three known classes: normal, fault A, and fault B. At first, all 

samples are assigned to one node (Node 1) and CART looks for the most informative 

property to separate samples, in this case this is the pressure. The samples in Node 1 are 

thus divided into two groups (Node –1 and Node 2), and CART continues to look for 

the best property to separate each group. For example, in Node 2, CART seeks a 

property that makes the samples reaching the immediate descendent nodes as “pure” as 

possible, and it finds that separating the samples by temperature will generate “purer” 

child nodes than if pressure were used. Thus, the original data set has been split into 

three pure sets and the partition stops.  
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The fundamental principle of CART is simple: simple decision trees with fewer 

nodes are preferred. That is the reason why CART looks for the most informative 

property that makes the data reaching the immediate child nodes as “pure” as possible, 

or as less “impure” as possible. 

Several different mathematical measures of tree cost (impurity) have been 

proposed, all of which have approximately the same behavior. Let ( )i t  denote the 

impurity of a node t .  

One measure is the entropy impurity index: 

2( ) ( | ) log ( | )
j

i t p j t p j t= −∑        (3.1) 

where ( | )p j t  is the portion of observations in node t  belonging to class j . It is 

obvious that if all the observations are of the same class, the impurity index is 0; 

otherwise it is positive and the maximum value occurs when the different classes are 

equally possible. 

Another impurity measure, the Gini diversity index [53], describes the expected 

error at node t  if the node label is selected randomly from the class distribution present 

at that node. 
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Fig. 3.1 Example of a simple classification tree 
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The node cost is formulated as 

( ) ( | ) ( | )
i j

i t p i t p j t
≠

= ∑        (3.2) 

where 

( )i t : Gini diversity index of node t  

( | )p i t : the portion of observations in node t  belonging to class i  

( | )p j t : the portion of observations in node t  belonging to class j  

Given a partial tree down to node t , the best property one choose to split further 

is the one that generates the lowest impurity index. The decrease in impurity index is 

formulated as 

( ) ( ) ( | ) ( ) [1 ( | )] ( )L Ri t i t p i L i t p i L i t∆ = − − −  

where Lt  and  Rt  are the left and right child nodes of t  

( | )p i L : the portion of observations at node t  that goes to Lt  

( )Li t , ( )Ri t : impurity indices of node Lt  and  Rt  

Although this optimization is performed at a single node, the recursive splitting 

process can go on until each leaf node becomes perfectly pure, in the extreme case, each 

leaf node corresponds to a single training sample. In this case, the tree impurity 

measure, as defined below, equals 0. 
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~( ) ( ) ( )
t T

I T i t p t
∈

= ×∑        (3.3) 

where 

~
T : the set of terminal nodes (i.e., leaves) of tree T  

T : the classification and regression tree 

( )p t : the portion of observations in node t  out of all observations  

2.2 Deciding the optimal tree size 

If the classification tree is grown fully until each leaf node achieves zero 

impurity, then the tree typically over-fits the training data and thus cannot be expected 

to work well with new noisy data. However, if partitioning is stopped too early, the 

error on the training data is not low enough and the performance on new data may not 

be sufficiently good. 

How shall one find the optimal tree size (depth)? One traditional approach is to 

use cross-validation. The training dataset is randomly split into N  subsets, and one of 

these subsets is reserved for use as an independent test dataset, while the other N -1 

subsets are combined for use as the training dataset. Trees with different sizes are 

tested, and at each size, N  trees are generated, with a different subset of the data 

reserved for use as the test dataset each time. Thus N  different trees are produced, each 

of which is tested against its corresponding test dataset. The average performance of the 

N  trees is an excellent estimate of the performance of the original tree (produced with 

the entire training dataset) on a future independent set of test dataset. The average 
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performance of these trees of different sizes is compared and the one with the lowest 

prediction error is selected as the optimal tree size. 

Another method is to set a threshold value in the reduction in node impurity 

index. Node splitting is stopped if the best split results in an impurity reduction less than 

this threshold value. This method utilizes all the training data, and tends to generate 

classification trees with balanced leaf node impurity. The major disadvantage is that it is 

often difficult to determine the threshold value, because the relationship between the 

threshold value and the tree performance is rarely simple. 

The cross-validation or threshold method work well and will find the optimal 

tree if the greatest impurity reduction occurs near the root node and the reduction in 

impurity reduces as the splitting goes on. However, this is not true for all occasions. 

Sometimes the most significant classification takes place near the leaf nodes and 

stopping splitting early will not achieve overall optimal accuracy. 

The alternative approach of generating the optimal classification tree to stop 

splitting is “Pruning”. A tree is grown fully, i.e., all leaf nodes are of perfect purity. 

Then, all pairs of neighboring leaf nodes are considered for elimination. Any pair whose 

elimination yields a satisfactory (small) increase in tree cost is deleted, and their 

common antecedent node becomes a leaf.  

The benefit of pruning is that it grows the tree to its full depth thus reduces the 

chance of missing significant classification functions close to the leaves. Pruning is 

frequently used with cross-validation to determine the best degree of pruning, which 
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comes at a huge computational expense. For large problems with high dimensionality 

and large number of training data, the computational cost could be significant. 

2.3 Assigning leaf node labels 

Assignment of class labels to the leaf nodes is straightforward. If the 

classification tree has been grown completely and pruned to its optimal depth, it is most 

likely that each leaf node has zero or a very small positive impurity index. If a leaf node 

contains only observations from one class, it will certainly be labeled as that class; if a 

leaf node is not pure and has observations from more than two classes, it will be labeled 

by the class that has most observations represented. 

3. Implementation issues of CART 

A significant benefit of the CART method is that it is straightforward to render 

the information in CART as logical expressions, which makes it easy to incorporate 

prior expert knowledge. 

As with other data-driven classification techniques, performance of 

classification trees is highly dependent on the quality and quantity of training data. In 

the context of process monitoring, faults that the classification tree will be able to 

recognize are the faults represented by the original training data from which the tree is 

built.  
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3.1 Decision boundaries created with CART 

Since the decision rule at each CART node only contains one property, which 

leads to a hyperplane decision boundary that are perpendicular to the coordinate axes, 

CART creates decision boundaries with portions perpendicular to the property axes 

(Fig. 3.2). With a sufficiently large tree, any decision boundary can be approximated 

arbitrarily well, provided that enough training data are present.  
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Fig. 3.2 Decision regions created by CART 

 

Since the decision boundary generated by CART is perpendicular to the 

property axes, unnecessarily complicated classification trees may result in the cases 

where decision boundaries do not align with the property axes. An obvious example is 

shown in Fig. 3.3, in which the simple decision boundary has to be approximated with 

segments of lines. However, using an appropriate linear combination of the variables, it 
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is possible to result in a much simpler tree. In this study, discriminant analysis is 

employed to find this optimal combination. 
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Fig. 3.3 A complicated classification tree could result from a simple decision boundary 
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3.2 Computational efficiency 

Because of its tree structure, it is very fast to perform classification using 

CART. It takes only h  steps of comparison to classify a pattern, where h  is the average 

length from root node to leaf nodes and it can be approximated as log( )n , where n  is 

the number of training patterns. 

Building a classification tree is computationally expensive. Suppose one has n  

training patterns and the dimension of the patterns is d . The computational complexity 

of building a fully-grown tree is illustrated as follows. 

At the root node, one has to sort the training patterns on each of the d  

dimensions. This step takes ( log )O dn n . Calculating impurity index takes ( )O dn , 

therefore, the computational cost of the root node is ( log )O dn n . Since there are two 

nodes on the next level, and each node takes log
2 2
n nO d⎛ ⎞

⎜ ⎟
⎝ ⎠

, the computational cost of 

level 2 is log
2
nO dn⎛ ⎞

⎜ ⎟
⎝ ⎠

. Similarly, the computational cost for level 3 is log
4
nO dn⎛ ⎞

⎜ ⎟
⎝ ⎠

 

and level 4 log
8
nO dn⎛ ⎞

⎜ ⎟
⎝ ⎠

, and so on. Noticing that the depth of the tree is log n , 

summing up the cost of each level the total cost is 21 (log )
2

O dn n⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

It is beneficial to get a rough idea on the computational time of CART. In an 

example performed by the author, it took about 200 seconds to build a classification tree 
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from a data set of 2000 samples and 33 variables with a Pentium III 600 MHz PC. If the 

data set is considerably large, computing time could be significant. 

In the process of pruning a classification tree, cross-validation is often employed 

to determine the optimal tree depth. This step can also be computationally expensive. 

For instance, one wants to examine the classification performance of D  different depths 

of tree, and divides n  training patterns into M  groups. For each depth, M  

classification trees are built and its performance evaluated, which takes 

21 1 1(log )
2

M MO M d n n
M M

− −⎛ ⎞
⎜ ⎟
⎝ ⎠

, or 21 1( 1) (log )
2

MO d M n n
M

−⎛ ⎞−⎜ ⎟
⎝ ⎠

. A total of 

D different depths of trees are examined, which results in a computational cost of 

21 1( 1) (log )
2

MO dD M n n
M

−⎛ ⎞−⎜ ⎟
⎝ ⎠

. If one assumes that 1M >> , the step of determining 

the optimal tree depth is 21 (log )
2

O DMdn n⎛ ⎞
⎜ ⎟
⎝ ⎠

, that is DM times the complexity of 

building a classification tree. 

4. Process monitoring based on classification tree and discriminant analysis 

 Dimensionality reduction can be a key factor in reducing the misclassification 

rate when a pattern classification scheme is applied to new data [ 55 ]. The 

dimensionality reduction is especially important when the dimension of the observation 

space is large while the number of observations is relatively small. Another benefit 

provided by dimensionality reduction is that computational intensity is greatly reduced 
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for some applications like neural network or classification tree, when training or 

constructing time is proportional to the dimension of the process data. 

Fisher Discriminant Analysis, a dimensionality reduction technique that has 

been extensively studied in the pattern classification literature, takes into account the 

information between the classes and provides an optimal lower dimensional 

representation in terms of discriminating among classes of data [56]. FDA determines a 

set of projection vectors, ordered in terms of maximizing the scatter between the classes 

while minimizing the scatter within each class. 

Define n  as the number of observations, m  as the number of measurement 

variables, p  as the number of classes, and jn  as the number of observations in the thj  

class. ix  represents the vector of measurement variables for the thi  observation. If the 

training data for all classes have already been stacked into the matrix n mX R ×∈ , then the 

transpose of the thi  row of X  is the column vector ix . To perform FDA, one needs to 

calculate the total-scatter, the within-class scatter, and the between-class scatter. The 

total-scatter matrix is: 

1
( )( ) '

n

t
i

S
=

= − −∑ i ix x x x        (3.4) 

where x  is the total mean vector 

∑
=

=
n

in 1

1
ixx          (3.5) 
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Define jχ  as the set of vectors ix  that belong to class j , the within-class scatter 

matrix of class j  is 

(
j

jS
χ∈

= − −∑
i

i j i j
x

x x )(x x )'        (3.6) 

where jx is the mean vector of class j  

∑
∈

=
jjn χix

ij xx 1          (3.7) 

The within-class scatter matrix is 

∑
=

=
p

j
jw SS

1
         (3.8) 

and the between-class scatter matrix is 

∑
=

−−=
p

j
jb nS

1
)'xx)(xx( jj        (3.9) 

The total scatter matrix is equal to the sum of the between-class scatter matrix 

and the within-class scatter matrix 

wbt SSS +=                  (3.10) 

The objective of the first FDA vector is to maximize the scatter between classes 

while minimizing the scatter within classes. 

0v
vv'
vv'

≠ ,max
w

b

S
S                   (3.11) 
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The second FDA vector is computed so to maximize the scatter between classes 

while minimizing the scatter within classes among all axes perpendicular to the first 

FDA vector, and so on for the remaining FDA vectors. Solving the optimization 

problem and the FDA vectors are equal to the eigenvectors wk of the generalized 

eigenvalue problem 

kk ww wkb SS λ=                  (3.12) 

where the eigenvalues kλ  indicate the degree of overall separability among the 

classes by projecting the data onto kw . Define matrix m p
pW R ×∈  with the p  FDA 

vectors as columns. Then the projection of the data from m -dimensional observation 

space to p -dimensional score space is described by 

pW ′=i iz x               (3.13) 

With the desirable property of FDA, a new process monitoring scheme that 

integrates FDA and classification tree is proposed. FDA extracts the most significant 

scores in the original process data and achieves optimal discrimination among different 

faults. The classification tree uses the FDA scores, the lower dimensional representation 

produced by FDA, to separate observations into different fault classes.  

To determine the optimal order of the dimensionality reduction (i.e., the order of 

the FDA score space), the following stopping rule is proposed, as illustrated in Fig. 3.4: 

at each stage of the FDA procedure, construct the classification tree and calculate its 

tree cost. Stop the FDA procedure when the addition of the next FDA score to the 



 
 

57

classification tree does not produce a tree that has a lower cost than the current one. The 

order of the FDA dimensionality reduction is thus determined. This procedure selects 

the order of FDA scores that gives a minimum tree cost. 

Decrease in
Tree Cost?

Fisher
Discriminant

Analysis

Optimal
Classification

Tree by Cross-
Validation

Calculate
Tree Cost

Increase the
Order of FDA by

one

Yes

No

Stop  

Fig. 3.4 Procedure to determine the optimal order of FDA 
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5. Case study 1: Tennessee Eastman Process 

5.1 Process description and data preparation 

The Tennessee Eastman Process (TEP) was developed by Eastman Chemical 

Company to provide a realistic industrial process for benchmarking process control and 

process monitoring methods. TEP is based on an actual chemical process but the 

components, kinetics, and operation conditions are modified for trade secret reasons. 

TEP has been widely used by process monitoring researchers as a source of data for 

comparing various methods [57, 58]. 

The process consists of a reactor, compressor, stripper, separator and condenser. 

Eight components are involved in the process. A flow sheet is shown in Fig. 3.5. The 

process produces two products G and H from four reactants A, C, D, and E. In the 

reaction system also present inert B and byproduct F.  

The reactions involved in the process are: 

A(g) + C(g) + D(g)  G(l), product 1 

A(g) + C(g) + E(g)  H(l), product 2 

A(g) + E(g)  F(l), byproduct 

         3D(g)  2F(l), byproduct               (3.14) 
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All the reactions are irreversible, exothermic, and approximately first-order with 

respect to the reactant concentrations. The reaction rates follow an Arrhenius expression 

and the reaction to produce G has high activation energy, resulting in a high sensitivity 

to temperature. 

The reactant gases are fed into the reactor where they form liquid products, 

catalyzed by a nonvolatile catalyst dissolved in the liquid. Cooling water runs inside the 

reactor to remove the heat of reaction. The gaseous products leave the reactor and the 

catalyst remains in. The product gas stream is cooled through a condenser and then fed 

to a vapor-liquid separator. Non-condensed vapor from the separator recycles back to 

the reactor through a compressor. The inert and byproduct are purged from the process 

in the vapor-liquid separator. Condensed stream from the separator moves to a stripper 

with feed stream to remove the remaining reactants. The products G and H exiting at the 

base of the stripper are pumped to a downstream unit that is not included in the 

illustration. 

The process contains 41 measured and 12 manipulated variables and all the 

process measurements include Gaussian noise. Of the 41 process variables, XMEAS(1) 

to XMEAS(22) are continuous measurements and the rest are composition measurement 

which are not available in real time (for example, XMEAS(23) to XMEAS(28) are 

sampled at 0.1hr interval and 0.1hr of dead time). XMEAS(1) through XMEAS(22) are 

listed in Table 3.1 and XMEAS(23) to XMEAS(41) are presented in Table 3.2. The 12 

manipulated variables are described in Table 3.3. 
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Table 3.1 Process measurements XMEAS(1) through XMEAS(22) (sampling 
interval 3 mins) 

Process 

Variable 
Description Units 

XMEAS(1) A Feed (stream 1) kscmh 

XMEAS(2) D Feed (stream 2) kg/hr 

XMEAS(3) E Feed (stream 3) kg/hr 

XMEAS(4) Total Feed (stream 4) kscmh 

XMEAS(5) Recycle Flow (stream 8) kscmh 

XMEAS(6) Reactor Feed Rate (stream 6) kscmh 

XMEAS(7) Reactor Pressure kPa Gauge 

XMEAS(8) Reactor Level % 

XMEAS(9) Reactor Temperature ºC 

XMEAS(10) Purge Rate (stream 9) kscmh 

XMEAS(11) Product Separator Temperature ºC 

XMEAS(12) Product Separator Level % 

XMEAS(13) Product Separator Pressure kPa Gauge 

XMEAS(14) Product Separator Underflow (stream 10) m3/hr 

XMEAS(15) Stripper Level % 

XMEAS(16) Stripper Pressure kPa Gauge 

XMEAS(17) Stripper Underflow (stream 11) m3/hr 

XMEAS(18) Stripper Temperature ºC 

XMEAS(19) Stripper Steam Flow kg/hr 

XMEAS(20) Compressor Work kW 

XMEAS(21) Reactor Cooling Water Outlet Temperature ºC 

XMEAS(22) Separator Cooling Water Outlet Temperature ºC 
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Table 3.2 Composition measurements 

Process 

Variable 
Component Stream 

Sampling 

Interval/Dead 

Time 

Units 

XMEAS(23) A 

XMEAS(24) B 

XMEAS(25) C 

XMEAS(26) D 

XMEAS(27) E 

XMEAS(28) F 

6 6min/6min 

XMEAS(29) A 

XMEAS(30) B 

XMEAS(31) C 

XMEAS(32) D 

XMEAS(33) E 

XMEAS(34) F 

XMEAS(35) G 

XMEAS(36) H 

9 6min/6min 

XMEAS(37) D 

XMEAS(38) E 

XMEAS(39) F 

XMEAS(40) G 

XMEAS(41) H 

11 15min/15min 

mol% 
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Table 3.3 Manipulated variables 

Process 

Variable 
Description Units 

XMV(1) D Feed Flow Rate (stream 2) kg/hr 

XMV(2) E Feed Flow Rate (stream 3) kg/hr 

XMV(3) A Feed Flow Rate (stream 1) kscmh 

XMV(4) A and C Feed Flow Rate (stream 4) kscmh 

XMV(5) Compressor Recycle Valve % 

XMV(6) Purge Valve (stream 9) % 

XMV(7) Separator Pot Liquid Flow Rate (stream 10) m3/hr 

XMV(8) Stripper Liquid Product Flow Rate (stream 11) m3/hr 

XMV(9) Stripper Steam Valve % 

XMV(10) Reactor Cooling Water Flow Rate m3/hr 

XMV(11) Condenser Cooling Water Flow Rate m3/hr 

XMV(12) Agitator Speed rpm 

 

The TEP simulation also contains 21 preprogrammed faults, 16 of them are 

known, and 5 are unknown. These faults are associated with step changes in the process 

variables, an increase in the variability of process variables, and actuator faults such as 

sticking valves. The simulation code and description of TEP is available in FORTRAN 

from several sources [59] [60]. 

Comparing different monitoring results is difficult since each approach employs 

a different control scheme that affects the system behavior and the consequent 

correlation between the process variables. To illustrate the presented approach and 
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make a meaningful comparison with other techniques, the simulation data for the faults 

and the normal conditions generated with the plant-wide control scheme described in 

the literature [61] are used in this study. Some process variables at the steady state and 

faulty state are shown in Figs. 3.6 and 3.7. 
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(a) 

Fig. 3.6 Closed-loop simulation of TEP without faults, the upper line represents %G and 
the lower line %H in (e) 
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Reactor Level at Steady State
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Product Separator Underflow at Steady State
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(c) 

Fig. 3.6 Continued 
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Reactor Temperature at Steady State
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(d) 

%G and %H in Product at Steady State
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Fig. 3.6 Continued 
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A Feed Flow Rate after Fault 1 occurs
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(a) 

A and C Feed Flow Rate after Fault 1 occurs
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(b) 

Fig. 3.7 Closed-loop simulation of some process variables after Fault 1 occurs 
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Reactore Pressure after Fault 1 occurs
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(c) 

Stripper Temperature after Fault 1 occurs
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(d) 

Fig. 3.7 Continued 
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Among the 21 preprogrammed faults, eight are selected as the testing faults. 

Seven of them are caused by step changes in process variables, one by increased 

variability in process variables. Since 19 measured variables are compositions that are 

not available in real time, they are not used in the process monitoring schemes. A 

sampling interval of 3 minutes was selected here to allow fast detection. 1055 samples 

are collected in a simulation as the training data and 1615 as the testing data in another 

simulation. Classification tree is implemented with the Statistics Toolbox of MATLAB 

6.5 for Windows. All the computing time is based on a Pentium III 600MHz PC.  

5.2 Fault detection and diagnosis with classification tree  

A maximum classification tree (e.g., a tree with every leaf node containing only 

one class) is created with the training data set with their respective fault classes (see Fig. 

3.8). This tree can perform fault detection and diagnosis by classifying process 

measurements into different classes. With this maximum tree, there is a strong 

possibility that it fits the training data set well but would not perform well at classifying 

new data. Some of its lower branches may be strongly affected by process noise of the 

training data. A simpler tree is preferred to avoid the problem of over-fitting. 
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Fig. 3.8 Maximum classification tree, node labels removed for clarity 

The optimal tree size is estimated with cross validation. The original training set 

is partitioned into 10 subsets, chosen randomly but with equal size and roughly the 

same class proportions. For each subset, a tree is fitted using the remaining data and use 

it to predict the subset. The information from all subsets is pooled to compute the cost 

of a tree of certain size. The cross validation error of various tree sizes is calculated and 

plotted in Fig. 3.9. The best tree size is selected as the one that has a cross validation 

error that is no more than one standard error above the minimum value along the cross 

validation line [53]. The optimal tree is thus obtained by pruning the maximum tree 

according to the best tree size. Fig. 3.10 shows the pruned tree. 
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Fig. 3.9 Choosing the optimal tree size by cross validation 
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Fig. 3.10 Pruned tree, node labels removed for clarity 

 

5.3 Fault detection and diagnosis with classification tree and discriminant 

analysis 

Fisher Discriminant Analysis is also implemented with MATLAB 6.5 based on 

the algorithm described in Section III.4. The original training data are transformed into 

FDA scores, which are subsequently used to build the classification tree. New process 

measurements need to be transformed in the same way to get FDA scores for the 

classification tree to perform fault detection and diagnosis.  

To find the optimal FDA order, starting from 1, a series of FDA of 

consecutively increasing orders are performed and classification trees are generated and 
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tested. Cross validation is employed to produce the optimal classification tree and the 

cost of the trees is plotted along the FDA order in Fig. 3.11. It is found that from order 9 

to order 10 the cost of the optimal tree does not decrease; therefore 9 is chosen as the 

optimal FDA order. A much more simplified classification tree (Fig. 3.12) is generated 

due to the reduced dimensionality. 

1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

FDA Order

Tr
ee

 C
os

t

 

Fig. 3.11 Optimal FDA order 

 

To compare the performance of various approaches, the misclassification rates 

on the testing data of classification tree, classification tree with discriminant analysis, 

and various statistical methods (results taken from literature [55]) are compared in 

Table 3.4. 
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Fig. 3.12  FDA scores result in a much smaller classification tree, node labels removed 
for clarity 
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When Fault 1 or Fault 2 occurs, the distribution of the variables associated with 

material balances changes correspondingly. Since more than half of the process 

variables deviate significantly from their normal operating states, these two faults are 

easily classified by all methods. The misclassification rates of Fault 3 are extremely 

high for all methods, due to the fact that the control system effectively compensates the 

disturbance such that this fault is unobservable from the process data. A significant 

effect of Fault 4 is to induce a step change in the reactor cooling water flow rate, while 

the other process variables remain steady after the fault occurs. This makes it harder for 

all methods to classify. Fault 5 is similar to Fault 4, except that it affects more variables. 

Like Fault 1 and 2, Fault 6 and 7 are easy for most methods because many process 

variables deviate from their normal states after they occur. Unlike Fault 1-7, Fault 8 is 

caused by increased variability in feed compositions. One can see that both 

classification tree methods and the other two statistical techniques performed poorly. 

It can be seen from the comparison that classification tree with discriminant 

analysis results in the lowest average misclassification rate for Fault 1~7, as well as 

greatly reduced training time compared to classification tree. However, classification 

tree-based methods are not effective when applied to random variation type of fault. 

The possible explanation is that classification tree examines process variables statically 

and a big portion of the abnormal states falls closely to normal states.  
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6. Case study 2: a pilot distillation column 

6.1 Process description and data acquisition 

The pilot size distillation column studied is the same one as described in Section 

II.4.1. Two types of faults are artificially induced in this study: a “sticky control valve” 

fault (fault 1) is induced by setting the corresponding column temperature control loop 

to manual; a “vapor bypass” fault (fault 2) is induced by opening the second (lower) 

feed line to the column. These simulated faults are very realistic in distillation 

processes. 

Nine process variables are chosen to represent the state of the process: column 

temperatures at theoretical plates 5, 6, 7, and 8 (TC/5 ~ TC/8); feed low rate; feed 

temperature; reflux flow rate; reflux temperature; and steam condensate flow. 300 

points of normal process data (samples 1~300), 133 points of “sticky control valve” 

faulty process data (samples 301~433), and 114 points of “vapor bypass” faulty process 

data (samples 434~547) are recorded in a run, as shown in Fig. 3.13. Another 20 points 

of “sticky control valve” faulty process data and 28 points of “vapor bypass” faulty 

process data are recorded in a separate run, which are to be used as testing data. 
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Fig. 3.13 Distillation column measurements used as the training data   

6.2 Discussion 

Both methods of classification trees with and without discriminant analysis are 

trained with the training data and tested against the test data. The misclassification rates 

of the methods are compared in Table 3.5. As one can see from the results, first order 

FDA is not capable of capturing enough variations in the original data and does not 

yield a satisfactory classification. Due to the strong correlations between temperature 

measurements, classification trees with only 2nd order FDA outperformed classification 

tree method by classification rates. The reduction in training time is not significant 

because of the relatively small size of the training data set. 
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Table 3.5 Comparison of misclassification rates of classification trees with and 
without discriminant analysis 

Fault Number and 
Description 

Classification 
Tree Only 

Classification 
Tree w/ FDA 

Order 1 

Classification 
Tree w/ FDA 

Order 2 

Classification 
Tree w/ FDA 

Order 3 
0 Normal 0 0 0 0 
1 Sticking Control Valve 0.04 0.64 0.04 0.04 
2 Vapor Bypassing 0.0909 0 0.0303 0.0303 

 

7. Conclusions 

Classification tree analysis has the advantage of being concise, fast to compute, 

and making no assumption regarding the distribution of the predicting variables. 

However, cross validation used in building a classification tree is a computationally 

intensive process, and it is even more difficult when applied to large-scale systems with 

high dimensional observations. Another disadvantage arises from the fact that the 

decision boundary generated by classification tree is perpendicular to the property axes, 

thus unnecessarily complicated classification tree may result in the cases where decision 

boundaries do not align with the property axes.  

The newly developed process monitoring scheme integrates classification tree 

and Fisher Discriminant Analysis (FDA). FDA extracts the most significant 

components in the original process data and achieves optimal discrimination among 

different faults, as well as reduces the dimension of the original data. Classification tree 

uses the FDA scores, which are the lower dimensional representation produced by FDA, 

to separate observations for different fault class. A stopping rule is applied to determine 
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the optimal order of FDA. This procedure selects the order of FDA scores that gives a 

minimum tree cost. 

Two case studies are presented to illustrate the effectiveness of the proposed 

methods compared with the original classification tree method. In the first case study, 

Tennessee Eastman Process simulations with 34 process variables and 15 simulated 

faults are examined. The results show a greatly reduced cross validation time in 

classification tree construction, as well as better classification performance. Process 

data collected from a pilot distillation column are used in the second case study. The 

new method again generates better classification accuracy and uses less construction 

time, although insignificant due to the relatively small size of the data set. This is a 

general approach that can be applied for process monitoring using classification trees.  
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IV. CONCLUSIONS AND RECOMMENDATIONS 

1. Conclusions 

Current approaches to process monitoring can be generally grouped into three 

categories: (1) Analytical model based methods, (2) Knowledge based methods, and (3) 

Historical data driven methods. Methods in (1) are theoretically elegant, but the 

difficulty in obtaining accurate analytical process model and model non-linearity 

seriously limit their applicability to process industries. Fault tree and digraph based 

methods belong to category (2), which are easy in principle but time consuming to 

develop. Historical data driven methods, including those that are based on multivariate 

statistical analysis (PCA, PLS, CVA, etc.) and most neural network based methods, 

consist of two steps, feature extraction and pattern recognition, and have been the most 

widely applied ones in process industries.  

Neural networks have been popular in process modeling and fault pattern 

recognition. However, in batch processes, operating regions are seldom constant and 

this may require considerable amount of re-training of the neural process model, whose 

computational expense is often prohibitive for today’s complex process systems. This 

reduces the potential of neural network-based fault diagnosis systems applied to batch 

processes. In this work, a polynomial regression based feature extraction/preprocessing 

scheme drastically reduced the dimensionality of input to neural model, thus reducing 

the neural network size, as well as the required training time. The method comes with a 
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slight sacrifice in model performance due to increased non-linearity introduced by the 

feature extraction step.  

Two case studies demonstrate the effectiveness of the new approach. In both 

cases, the new approach greatly reduces neural model training time and in the second 

case, the classification performance is also improved.  

Classification trees suffer from the computationally expensive cross validation 

during the building process, which can create real difficulties when applied to large-

scale systems with high dimensional observations. Another disadvantage is that the 

decision boundary generated by a classification tree is perpendicular to the property 

axes, thus unnecessarily complicated classification trees may result in the cases where 

decision boundaries do not align with the property axes.  

The newly developed process monitoring scheme addresses the issues by 

employing Fisher Discriminant Analysis (FDA). FDA extracts the most significant 

components in the original process data and achieves optimal discrimination among 

different faults, as well as reduces the dimension of the original data and projects old 

data into new “scores” that are perpendicular to each other. Classification trees use the 

FDA scores to separate observations into different fault classes. A procedure identifies 

the order of FDA scores that gives a minimum tree cost as the optimal order. 

Application of the new scheme on Tennessee Eastman Process simulations 

shows a greatly reduced cross validation time in classification tree construction, as well 

as better classification performance. The new approach is also compared with other 
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published statistical methods and demonstrated superior performance. The second case 

study on a distillation column setup shows results along similar lines.  

2. Recommendations 

Besides the issues addressed in this dissertation, historical data driven process 

monitoring methods suffer from their dependency on a priori fault information/process 

knowledge, i.e., if a new fault occurs, the system would not react.  

The author suggests the following research topics that may help to tackle the 

problem: 

• Hybrid methods: combining historical data driven methods with 

knowledge-based methods, such as a hybrid system of statistical analysis 

and fault tree: statistical analysis performs the fault detection and pattern 

clustering/classification, and fault tree is used for reasoning and diagnosis. 

The fault tree can be a dynamic one, which can be updated with new faults. 

This could be a viable research project since it can take advantage of 

knowledge gained in the fault tree research. 

• Process knowledge management: there should be a unified data structure to 

facilitate the management of process knowledge that is generated from 

HAZOP and process monitoring. 

• Data mining: modern chemical plants are producing an exploding amount 

of data, collected by thousands of sensors and stored with the help of data 
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librarian software. How to effectively extract useful information out of those 

data, e.g., distinguishing faults from fluctuations due to legitimate causes, 

and in the mean time get information to improve statistical process control  

(SPC) and process optimization. 
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APPENDIX A 

INTRODUCTION TO FEED-FORWARD NEURAL NETWORKS 

1. Architecture of Feed-Forward Neural Networks 

Although there are already a number of textbooks on neural networks, it is still 

necessary to briefly introduce the basic concepts of neural networks.  

Neural networks attempt to mimic the computational structures of the mammal 

brains by a nonlinear mapping between input and output that consists of interconnected 

nodes arranged in layers. The layers are connected such that the signal on the input side 

can propagate through the network and reach the output side. Neural network behaviors 

are determined by the transfer functions of the units, network topology, and connection 

pattern of layers.  

Among all forms of neural networks, the two-layer feed forward network has 

been most popular (see Fig. A.1 for an example). This class of networks consists of two 

layers of nodes, namely the hidden layer and the output layer, and two layers of weights 

serving as the connections between input and the hidden layer, as well as between the 

hidden layer and the output layer. No connection is allowed within its own layer and the 

information flow is one direction only. The weights represent the strength of connection 

between two linked nodes. Neural network training process adjusts the weights to 

achieve the best approximation between the network output and the desired output. 

Besides regular nodes, bias nodes that supply a constant output are connected to each 
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nodes in the hidden and the output layers. The bias node provides an activation 

threshold for the nodes, and is essential in order to classify network inputs into various 

subspaces. 
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Fig. A.1 A two layer feed-forward neural network 
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Each node in the hidden and the output layers is described by a transfer function. 

Usually a logistic sigmoid function is used, 

1( )
1 xF x

e−=
+

         (A.1) 

which is plotted in Fig. A.2. 

Some other transfer functions can also be used, such as tanh function, 

exp( ) exp( )( ) tanh( )
exp( ) exp( )

x xF x x
x x
− −

= =
+ −

      (A.2) 

ramp function, 

0,  0
( )

,  0
x

F x
x x

≤⎧
= ⎨ >⎩

        (A.3) 

and step function, 

1,  0
( )

  1,  0
x

F x
x

− <⎧
= ⎨ ≥⎩

        (A.4) 

However, for a specific feed-forward neural network, the nodes in the hidden 

and the output layers are usually fixed on the same transfer function, e.g., logistic 

sigmoid function for the hidden nodes and ramp function for the output nodes. 
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Fig. A.2 Plot of the logistic sigmoid transfer function 

As a nonlinear modeling tool, feed-forward neural networks have a number of 

advantages compared to conventional statistical methods. Conventional statistical 

methods require explicit formulation of the functions, which is not always readily 

available for many nonlinear problems. If these functions are incorrectly specified, the 

regression will not be satisfactory. Furthermore, convergence in nonlinear regression 

also requires extensive mathematical and numerical expertise. In the contrary, neural 

networks do not need a specific form of the correlation, therefore is very fast to 

implement. Neural network modeling has other benefits such as when data used for 

training can are noisy or incomplete, continuous learning through new training data can 

be applied to improve performance. 
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2. Training of Feed-Forward Neural Networks 

Neural networks utilize the network weights and input values to calculate 

outputs, take a two-layer network as the example: 

(2) (1)

0 0
( ) 

M d

k kj ji i
j i

y g w g w x
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑%        (A.5) 

where 

d: number of inputs 

M: number of hidden nodes 

(1)
jiw : a weight in the first layer, going from input i to hidden unit j 

(2)
kjw : a weight in the second layer, going from hidden unit j to output node k 

g : hidden layer transfer function 

g% : output layer transfer function 

ky : kth output 

ix : ith input 

The objective of network training is to minimize the sum-of-squares error with 

respect to weight vector w , given by a sum over all patterns in the training set, and over 

all outputs, of the form 

( )2

1 1

1( ) ( ; )
2

N c
n n

k k
n k

E y t
= =

= −∑∑w x w       (A.6) 
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where 

N: the number of training patterns 

c: the number of outputs 

nx : input vector 

n
kt  : target value for output node k when the input vector is nx  

The popular training algorithm, error back-propagation, involves a forward path 

calculating the outputs and backward path updating the weight vector. In the mth 

training iteration, the weight is adjusted as 

( ) ( 1) ( )m m m
ji ji jiw w w−= + ∆         (A.7) 

where 

( )m
jiw : the weight between the jth node of the upper layer and the ith node of the 

lower layer, in the mth training iteration 

( 1)m
jiw − : the weight between the jth node of the upper layer and the ith node of the 

lower layer, in the (m-1)th training iteration 

( )m
jiw∆ : the weight adjustment 

Weight adjustment is given by 

( ) ( ) ( ) ( 1)m m m m
ji j i jiw o wηδ α −∆ = + ∆        (A.8) 

where 
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η : learning rate, providing the step size during gradient decent. To achieve fast 

convergence, the largest possible value that does not lead to oscillation is used. 

( )m
jδ : error signal of the jth node in the mth training iteration 

( )m
io : output value of the ith node of the previous layer in the mth training 

iteration. 

α : momentum term, 0<α <1, optimized to achieve fast convergence 

If j is an output layer node,  ( )m
jδ is given by 

( ) ( ) ( ) ' ( ) ( ) ( )( ) ( )m m m m m m
j j j ji i jo

i
t y g w o wδ = − +∑%      (A.9) 

( )m
jt : target value for output layer node j 

( )m
jy : network output value of node j 

'g% : derivative of output layer transfer function 

( )m
jow : the weight between the oth node of the hidden layer and the jth node of 

the output layer, in the mth training iteration 

If j is a hidden layer node, 

( ) ' ( ) ( ) ( ) ( ) ( )( )m m m m m m
j ji i jo k kj

i k
g w o w wδ δ= +∑ ∑               (A.10) 

where 'g  is the derivative of the hidden layer transfer function. 
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As one can see, error back propagation algorithm calculates an error for each 

node in the output and hidden layers using equation (A.9) and (A.10), then recursively 

updates the weights of all the nodes using equation (A.8), starting from the output layer 

to the hidden layer. 

3. Computational efficiency of error back propagation 

In a practical neural network, the number of weights W  is much larger than the 

number of nodes, therefore, the computational cost in both the forward and backward 

propagation phases is ( )O W . Thus for a single training pattern, the computational 

complexity of error back propagation is ( )O W . For a total of N  training patterns, the 

computational complexity becomes ( )O NW . 

4. Implementation issues 

4.1 Data pre-processing 

In principle, neural networks can perform essentially arbitrary nonlinear 

mapping between the raw input data directly and the required final output values. Such 

an approach generally gives poor results because the training of the neural network may 

involve a nonlinear optimization algorithm. In many applications, data pre-processing is 

one of the most significant factors in determining the network performance.  

The simplest pre-processing may take the form of a linear transformation of the 

input and the output data. Input variables are often correlated, thus more complex pre-



 
 

101

processing may include dimensionality reduction and the incorporation of prior 

knowledge, which also reduces network size and training time. 

4.2 Network topology 

It is generally accepted that in order to perform arbitrary nonlinear mapping 

between sets of data, only one hidden layer is necessary in a neural network using 

sigmoid transfer function. 

The number of hidden nodes is decided by the nonlinearity of the mapping, the 

amount of data, and error tolerance. However, there is no universal method to determine 

how many hidden nodes are needed in a two-layer feed-forward neural network. Too 

small number of hidden nodes may not achieve a satisfactory accuracy and too large the 

number may result in poor generality. It is often practical to start with a small number 

of hidden nodes and gradually increase the number.  

4.3 Convergence 

The objective of neural network training is to minimize the error function ( )E w  

(A.6), which is typically a highly nonlinear function of the weights w and there may 

exist many local minima that will trap the training algorithm. The momentum factor α , 

which tends to keep the weight changes moving in a certain direction, allows the 

training algorithm to slip over small local minima and reach the global minimum. An 

alternative approach is to start the training again using a different set of initial weights if 

it is found that the error function keeps oscillating around a set of weights without 

improvement. 
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APPENDIX B 

MATLAB CODE 

5. Polymerization reactor subroutine 

function f=fedbatch(t, x) 

f=zeros(4,1); 

Cm=x(1); 

Ci=x(2); 

T=x(3); 

Tj=x(4); 

 

% Parameters 

m=1.26; 

 

% control input 

u= 0.00001*(0.0419*(t/3600)^3 - 0.145*(t/3600)^2 - 

0.1335*(t/3600) + 319.5); 

 

% Modeling equations 

f(1)=-.2706652952e-27*(1+.8458069884e-1*Cm)*Cm/exp(-

352.0958084                      *1/T)/exp(2.3-

.1916666667e-2*(601.00-100*Cm)/(.6997288005+ .4277900178e-

1*Cm))*(.20-.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))/exp(17485.02994*1/T)* (.1193640e24*exp(-

352.0958084*1/T)*exp(-15449.10180*1/T)*Ci+2*sqrt 

(.3561941124e46*exp(-352.0958084*1/T)^2*exp(-
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15449.10180*1/T)^2* Ci^2+.4241271488e62*exp(-

352.0958084*1/T)*exp 

(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-

387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T) ^2*exp(-

15449.10180*1/T)*Ci))*(.492e6*exp(-2191.616766*1/T)/ 

(1+.4409514079e-35/exp(-352.0958084*1/T)/exp(2.3-

.1916666667e-2*(601.00-100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*(.20-.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178 e-

1*Cm))^2/exp(17485.02994*1/T)*(.1193640e24*exp(-352.0958084 

*1/T)*exp(-15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-

15449.10180*1/T)^2*Ci^2+.4241271488e62 *exp(-

352.0958084*1/T)*exp(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-

387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-

15449.10180*1/T)*Ci))*exp(-2191.616766*1/T)/exp(-

14011.97605*1/T))+.466e10*exp(-8922.155689*1/T)); 

 

f(2)=-.105e16*exp(-15449.10180*1/T)*Ci-.2289305982e-

28*Cm^2/exp(-352.0958084*1/T)/exp(2.3-.1916666667e-

2*(601.00-100*Cm)/ (.6997288005+.4277900178e-1*Cm))*(.20-

.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-
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1*Cm))/exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T) *exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-

15449.10180*1/T)^2*Ci^2+.4241271488e62* exp(-

352.0958084*1/T)*exp(2.3-.1916666667e-2*(601.00-100*Cm)/ 

(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-387)^2-

.2500000000e-4*(601.00-100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-15449.10180*1/T)*Ci)) 

*(.492e6*exp(-2191.616766*1/T)/(1+.4409514079e-35/exp(-

352.0958084* 

1/T)/exp(2.3-.1916666667e-2*(601.00-100*Cm)/(.6997288005 

+.4277900178e-1*Cm))^2*(.20-.821e-5*(T-387)^2-.2500000000e-

4*(601.00-100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/ 

exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T)*exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-15449.10180*1/T)^2*Ci^2+ 

.4241271488e62*exp(-352.0958084*1/T)*exp(2.3-.1916666667e-

2*(601.00-100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-

.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+ .4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp (15449.10180*1/T)* 

Ci))* exp (-2191.616766*1/T)/exp(-

14011.97605*1/T))+.466e10*exp(-8922.155689*1/T)); 

 

f(3)=.4055679109e-20*exp(-2191.616766*1/T)/(1+.4409514079e-

35/exp (-352.0958084*1/T)/exp(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2*(.20-.821e-5 
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*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2/exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T) *exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-

15449.10180*1/T)^2*Ci^2+.4241271488e62 *exp(-

352.0958084*1/T)*exp(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-

387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-

15449.10180*1/T)*Ci))*exp(-2191.616766*1/T)/exp(-

14011.97605*1/T))/exp(-352.0958084*1/T)/exp(2.3-

.1916666667e-2*(601.00-100*Cm)/    

(.6997288005+.4277900178e-1*Cm))*(.20-.821e-5*(T-387)^2-

.2500000000e-4*(601.00-100*Cm)/(.6997288005+.4277900178e-

1*Cm))/exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T) *exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-15449.10180*1/T)^2*Ci^2 ... 

+.4241271488e62*exp(-352.0958084*1/T)*exp(2.3-.1916666667e-

2*(601.00-100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-

.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178 e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-

15449.10180*1/T)*Ci))*Cm/ (1+.8458069884e-1*Cm)-.38e-

2*(1+.50833*(1-.1663893511*Cm)/(1+ 

.1663893511*Cm))*(.2+.8*exp(-7*(1-.1663893511*Cm)^3  
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/(1+.1663893511*Cm)^3))*(T-Tj); 

 

f(4)=.8e-3*(1+.50833*(1-.1663893511*Cm)/(1+.1663893511 

*Cm)) *(.2+.8*exp(-7*(1-

.1663893511*Cm)^3/(1+.1663893511*Cm)^3))*(T-Tj)+.10841-

.37e-3*Tj+m*u; 
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6. Generating data with faults for the neural network approach 

% main program: generating data for neural network approach 

y0=[6.01 0.13 319.5 293]'; 

% Adjust sampling rate by specify the middle number 

t=0:90:21600; 

length_t=length(t); 

[t,y]=ode45('polyreactor', t ,y0); 

% noise generation 

n1=0.002 * randn(length_t, 1); 

n2=0.001 * randn(length_t, 1); 

n3=0.01 * randn(length_t, 1); 

n4=0.01*randn(length_t, 1); 

 

noise=[n1 n2 n3 n4]; 

% add noise to y 

yn=y+noise; 

%plot(t, yn); 

%pause; 

 

% reproduce u 

u=zeros(length_t, 1); 

i=1; 

for t1=0:180:21600 

    u(i,1)= 0.00001*(0.0419*(t1/3600)^3 - 0.145*(t1/3600)^2 

- 0.1335*(t1/3600) + 319.5); 

    i=i+1; 

end 
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%plot(t,q) 

 

% cleaning workspace 

clear n1 n2 n3 n4 n5 noise t1 i y0 y; 

 

yn=real(yn); 

u=real(u); 

 

% prepare data for neural nets 

% input 1~6: Cm(t-1) ... Cm(t-6) 

% input 7~12: u(t-1) ... u(t-6) 

% output : Cm(t), Ci(t), T(t), Tj(t) 

in=zeros(length_t-6, 12); 

out=zeros(length_t-6,4); 

 

% Normalization 

normalized_yn=zeros(length_t, 4); 

normalized_yn(:,1)=(yn(:,1) - 

mean(yn(:,1)))./(max(yn(:,1))-min(yn(:,1))); 

normalized_yn(:,2)=(yn(:,2) - 

mean(yn(:,2)))./(max(yn(:,2))-min(yn(:,2))); 

normalized_yn(:,3)=(yn(:,3) - 

mean(yn(:,3)))./(max(yn(:,3))-min(yn(:,3))); 

normalized_yn(:,4)=(yn(:,4) - 

mean(yn(:,4)))./(max(yn(:,4))-min(yn(:,4))); 

 

normalized_u=zeros(length_t,1); 

normalized_u=(u-mean(u))./(max(u)-min(u)); 
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% add jacket fouling fault 

plant_output=normalized_yn(7:length(yn(:,4)),:); 

temp=plant_output; 

% plant_output is the final values used for residual 

generation 

plant_output(151:200,4)=temp(151:200,4)*.8; 

 

% prepare input for neural model 

temp=normalized_yn; 

normalized_yn(51:100,3)=temp(51:100,3)*.8; 

for i=7:length_t     

    in(i-6,6)=normalized_yn(i-1,4); 

    in(i-6,5)=normalized_yn(i-2,4); 

    in(i-6,4)=normalized_yn(i-3,4); 

    in(i-6,3)=normalized_yn(i-4,4); 

    in(i-6,2)=normalized_yn(i-5,4); 

    in(i-6,1)=normalized_yn(i-6,4); 

    

    in(i-6,12)=normalized_yn(i-1,3); 

    in(i-6,11)=normalized_yn(i-2,3); 

    in(i-6,10)=normalized_yn(i-3,3); 

    in(i-6,9)=normalized_yn(i-4,3); 

    in(i-6,8)=normalized_yn(i-5,3); 

    in(i-6,7)=normalized_yn(i-6,3); 

     

end 

in=in'; 
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7. Generating training data for CART approach 

load d00.dat; 

load d01.dat 

load d02.dat 

load d03.dat 

d00=d00'; 

d00=[d00,zeros(500,1)]; 

d01=[d01,zeros(480,1)]; 

d02=[d02,zeros(480,1)]; 

d03=[d03,zeros(480,1)]; 

d01(:,53)=ones(480,1); 

d02(:,53)=2*ones(480,1); 

d03(:,53)=3*ones(480,1); 

d00=[d00(:,1:22),d00(:,42:53)]; 

d01=[d01(:,1:22),d01(:,42:53)]; 

d02=[d02(:,1:22),d02(:,42:53)]; 

d03=[d03(:,1:22),d03(:,42:53)]; 

training=[d00;d01;d02;d03]; 
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8. Generating testing data for CART approach 

load d00_te.dat; 

load d01_te.dat 

load d02_te.dat 

load d03_te.dat 

d00_te=[d00_te,zeros(960,1)]; 

d01_te=[d01_te,zeros(960,1)]; 

d02_te=[d02_te,zeros(960,1)]; 

d03_te=[d03_te,zeros(960,1)]; 

d01_te(:,53)=ones(960,1); 

d02_te(:,53)=2*ones(960,1); 

d03_te(:,53)=3*ones(960,1); 

d00_te=[d00_te(:,1:22),d00_te(:,42:53)]; 

d01_te=[d01_te(:,1:22),d01_te(:,42:53)]; 

d02_te=[d02_te(:,1:22),d02_te(:,42:53)]; 

d03_te=[d03_te(:,1:22),d03_te(:,42:53)]; 

testing=[d00_te;d01_te;d02_te;d03_te]; 
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9. CART main program 

function m=fda_cart_main(train_x,train_y,test_x,test_y) 

tic; 

Wp=FDA(train_x, train_y); 

fda_train_x=train_x*Wp; 

fda_test_x=test_x*Wp; 

T = optimal_tree_fit(fda_train_x,train_y); 

YFIT_num = tree_evaluate(T, fda_test_x); 

m=misclass(YFIT_num, str2num(test_y)); 

toc 

 

 

function m=FDA(train_x, train_y) 

% Fisher Discriminant Analysis 

% train_x: numerical, training data, predicting variables 

% train_y: string, training data, classes 

%  

% function returns Wp -- loading vector 

row_size_of_set=size(train_x)*[1;0]; 

column_size_of_set=size(train_x)*[0;1]; 

% backup train_y value 

temp=train_y; 

% convert to numerical 

train_y=str2num(train_y); 

% maximum number of classes = 20 

boundary_of_classes=zeros(20,2); 

current_class=1; 

boundary_of_classes(current_class,1)=1; 
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counter=1; 

% find class boundaries 

while counter < row_size_of_set 

 wh

ile train_y(counter)== 0 && counter < row_size_of_set 

        counter=counter+1; 

 end 

    boundary_of_classes(current_class,2)=counter-1; 

    current_class=current_class+1; 

    boundary_of_classes(current_class,1)=counter; 

    train_y=train_y-ones(row_size_of_set,1); 

end 

boundary_of_classes(current_class-1,2)=counter; 

number_of_class=current_class-1; 

% restore train_y 

train_y=temp; 

% total mean and covariance 

avgT=mean(train_x); 

sT=(row_size_of_set-1)*cov(train_x); 

% calculating class averages and covariances 

% Maximum number of classes equals 20 

% sb -- between class, sw -- within class 

s=zeros(column_size_of_set,column_size_of_set, 20);  

avg=zeros(20,column_size_of_set);  

sb=zeros(column_size_of_set,column_size_of_set);  

sw=zeros(column_size_of_set,column_size_of_set); 

for i=1:number_of_class 
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avg(i,:)=mean(train_x(boundary_of_classes(i,1):boundary_of_

classes(i,2),:)); 

    s(:,:,i)=(boundary_of_classes(i,2)-

boundary_of_classes(i,1))*... 

        

cov(train_x(boundary_of_classes(i,1):boundary_of_classes(i,

2),:)); 

    sw=sw+s(:,:,i); 

    sb=sb+(boundary_of_classes(i,2)-

boundary_of_classes(i,1)+1)*(avg(i,:)-avgT)'*(avg(i,:)-

avgT); 

end 

% testing if sT=sb+sw; erase this line after debug 

% sT-sb-sw 

[V,D]=eig(sb,sw); 

diag(D) 

order=input('enter the FDA order you chose:\n'); 

m=V(:,1:order); 

 

function m=cart_main(train_x,train_y,test_x,test_y) 

tic; 

T = optimal_tree_fit(train_x,train_y); 

YFIT_num = tree_evaluate(T, test_x); 

m=misclass(YFIT_num, str2num(test_y)); 

toc 

 

function m=misclass(actual, target) 
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% Compare the actual CART classification with desired 

values on the test 

% set 

% actual and target:both of them are integer. 

%  

size_of_set=size(actual); 

% maximum number of classes = 20 

boundary_of_classes=zeros(20,2); 

% backup target value 

temp=target; 

current_class=1; 

boundary_of_classes(current_class,1)=1; 

counter=1; 

while counter < size_of_set(1) 

 while target(counter)== 0 && counter < size_of_set(1) 

        counter=counter+1; 

 end 

    boundary_of_classes(current_class,2)=counter-1; 

    current_class=current_class+1; 

    boundary_of_classes(current_class,1)=counter; 

    target=target-ones(size_of_set); 

end 

boundary_of_classes(current_class-1,2)=counter; 

% restore target value 

target=temp; 

number_of_class=current_class-1; 

% last component stores overall misclassification rate 

misclass=zeros(number_of_class+1,1); 

temp=sign(abs(actual - target)); 
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for i=1:number_of_class 

    

misclass(i,1)=sum(temp(boundary_of_classes(i,1):boundary_of

_classes(i,2),1))/(boundary_of_classes(i,2)-

boundary_of_classes(i,1)+1); 

end 

misclass(number_of_class+1,1)=sum(temp)/size_of_set(1); 

m=misclass; 

 

 

function T = optimal_tree_fit(train_x,train_y_cart) 

% Find the optimal classification tree by cross-validation 

% Inputs: train_x -- numerical 

% train_y_cart -- string 

% 

% Output: T -- Classification tree 

% 

% Get the original tree 

T=treefit(train_x, train_y_cart, 'prune', 'on'); 

% Optimizing the CART using cross-validation 

[c,s,n,best] = treetest(T,'cross',train_x,train_y_cart); 

% Prune the tree 

T = treeprune(T,'level',best); 

 

function YFIT_num = tree_evaluate(T, test_x) 

% Test the classification tree using testing data 

% returns numerical values of classes 

YFIT = treeval(T,test_x);; 

YFIT_num=double(YFIT)-ones(size(YFIT)); 
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