

DATA DRIVEN PROCESS MONITORING BASED ON NEURAL

NETWORKS AND CLASSIFICATION TREES

A Dissertation

by

YIFENG ZHOU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Chemical Engineering

ii

DATA DRIVEN PROCESS MONITORING BASED ON NEURAL

NETWORKS AND CLASSIFICATION TREES

A Dissertation

by

YIFENG ZHOU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

M. Sam Mannan

(Co-Chair of Committee)
 Juergen Hahn

(Co-Chair of Committee)

Harry H. West

(Member)
 Shankar P. Bhattacharyya

(Member)

Kenneth R. Hall

(Head of Department)

August 2004

Major Subject: Chemical Engineering

iii

ABSTRACT

Data Driven Process Monitoring Based on Neural Networks and

Classification Trees. (August 2004)

Yifeng Zhou, B.S., Xian Jiao-Tong University, China;

M.S., Research Institute of Petroleum Processing, China

Chair of Advisory Committee: Dr. M. Sam Mannan

Process monitoring in the chemical and other process industries has been of

great practical importance. Early detection of faults is critical in avoiding product

quality deterioration, equipment damage, and personal injury. The goal of this

dissertation is to develop process monitoring schemes that can be applied to complex

process systems.

Neural networks have been a popular tool for modeling and pattern

classification for monitoring of process systems. However, due to the prohibitive

computational cost caused by high dimensionality and frequently changing operating

conditions in batch processes, their applications have been difficult. The first part of this

work tackles this problem by employing a polynomial-based data preprocessing step

that greatly reduces the dimensionality of the neural network process model. The

process measurements and manipulated variables go through a polynomial regression

step and the polynomial coefficients, which are usually of far lower dimensionality than

the original data, are used to build a neural network model to produce residuals for fault

iv

classification. Case studies show a significant reduction in neural model construction

time and sometimes better classification results as well.

The second part of this research investigates classification trees as a promising

approach to fault detection and classification. It is found that the underlying principles

of classification trees often result in complicated trees even for rather simple problems,

and construction time can excessive for high dimensional problems. Fisher

Discriminant Analysis (FDA), which features an optimal linear discrimination between

different faults and projects original data on to perpendicular scores, is used as a

dimensionality reduction tool. Classification trees use the scores to separate

observations into different fault classes. A procedure identifies the order of FDA scores

that results in a minimum tree cost as the optimal order. Comparisons to other popular

multivariate statistical analysis based methods indicate that the new scheme exhibits

better performance on a benchmarking problem.

v

DEDICATION

To my parents

vi

ACKNOWLEDGEMENTS

I have to express my sincere gratitude toward my advisor and mentor, Dr. Sam

Mannan, for his stimulating guidance, patience, encouragement, and unfaltering support

throughout these last five years. I believe that selecting him as my advisor was one of

the best decisions that I have ever made. In addition to the enormous guidance on my

research, he has had a lasting impact on my career.

 I would also like to thank Dr. Juergen Hahn, Dr. Harry H. West, and Dr.

Shankar P. Bhattacharyya for serving on my advisory committee and for their guidance

on my research. Special thanks to friends and mentors Dr. Jiaxiang Zhou, Dr. Hong P.

Gao of Applied Materials, Inc. and Dr. Harold Wade of Wade Associates, Inc., for

technical advice and career guidance. Gratitude is expressed to the faculty, staff and

graduate students at the Mary Kay O’Connor Process Safety Center and the Chemical

Engineering Department at Texas A&M University for their service and support.

I would like to acknowledge my family members and friends for their love and

friendship.

vii

TABLE OF CONTENTS

Page

ABSTRACT .. iii

DEDICATION ..v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF TABLES ..x

LIST OF FIGURES... xi

I. INTRODUCTION ...1

1. Fault detection and diagnosis ..1

2. Overview ...4
2.1 Analytical model based approach ..4
2.2 Knowledge-based approach ...5
2.3 Data driven approach ...7

3. Statement of the problem ..8

II. FAULT DETECTION AND CLASSIFICATION BASED ON NEURAL
NETWORKS WITH FEATURE EXTRACTION..10

1. Introduction ...10

2. Process fault detection and classification based on neural networks
with feature extraction...15

2.1 Polynomial fitting as the feature extraction technique...............................15
2.2 Determine the optimal structure of the neural network process model......17
2.3 Selection of the optimal order of the polynomial fitting preprocessor18
2.4 Fault classification with radial basis function neural network...................19

3. Case study 1: a batch polymerization reactor..21
3.1 Process simulation..21
3.2 Conventional neural network process model ...22
3.3 Feature extraction...27

viii

Page

3.4 Simulation of faults ..29
3.5 Residual generation ..30
3.6 Network training and simulation..30

4. Case study 2: a pilot distillation column ...33
4.1 Process description and data acquisition ..33
4.2 Conventional neural classifier approach ..35
4.3 Neural classifier with feature extraction ..38

5. Conclusions ...40

III. FAULT DETECTION AND CLASSIFICATION BASED ON
CLASSIFICATION TREE AND DISCRIMINANT ANALYSIS...........................42

1. Introduction ...42

2. Classification tree analysis principles ...43
2.1 Growing a classification tree..43
2.2 Deciding the optimal tree size..47
2.3 Assigning leaf node labels..49

3. Implementation issues of CART ...49
3.1 Decision boundaries created with CART...50
3.2 Computational efficiency ...52

4. Process monitoring based on classification tree and discriminant analysis53

5. Case study 1: Tennessee Eastman Process..58
5.1 Process description and data preparation ...58
5.2 Fault detection and diagnosis with classification tree69
5.3 Fault detection and diagnosis with classification tree

and discriminant analysis ...72

6. Case study 2: a pilot distillation column ...77
6.1 Process description and data acquisition ..77
6.2 Discussion ..78

7. Conclusions ...79

IV. CONCLUSIONS AND RECOMMENDATIONS ...81

1. Conclusions ...81

2. Recommendations ...83

REFERENCES..85

ix

Page

APPENDIX A INTRODUCTION TO FEED-FORWARD NEURAL NETWORKS...93

APPENDIX B MATLAB CODE..102

VITA ..117

x

LIST OF TABLES

Page

Table 2.1 ARPE of various model structures ..26

Table 2.2 ARPE of various types of polynomials on each variable..............................27

Table 2.3 Comparisons of training time and ARPE of neural process models with
and without feature extraction...28

Table 3.1 Process measurements XMEAS(1) through XMEAS(22)
(sampling interval 3 mins)...61

Table 3.2 Composition measurements ..62

Table 3.3 Manipulated variables ...63

Table 3.4 Comparison of misclassification rates and constructing time of various
methods, best results shown in bold..75

Table 3.5 Comparison of misclassification rates of classification trees
with and without discriminant analysis ...79

xi

LIST OF FIGURES

Page

Fig. 1.1 A schematic diagram of the process monitoring loop.....................................3

Fig. 2.1 Different approaches of applying neural networks to fault detection and
diagnosis..13

Fig. 2.2 Recurrent neural network process model ..16

Fig. 2.3 Polynomial fitting as a dimensionality reduction technique17

Fig. 2.4 Neural network process model with dimensionality reduction19

Fig. 2.5 MMA concentration before adding the white noise......................................23

Fig. 2.6 MMA concentration after adding the white noise...24

Fig. 2.7 One-step-ahead prediction errors of the neural network model
with and without input feature extraction ...29

Fig. 2.8 RBF network output 1 ...32

Fig. 2.9 RBF network output 2 ...32

Fig. 2.10 Schematic of the pilot size distillation process ...34

Fig. 2.11 Output 1 of the conventional neural classifier: dash-dot line
 represents desired values and solid line is the actual classifier output.........37

Fig. 2.12 Output 2 of the conventional neural classifier: dash-dot line
 represents desired values and solid line is the actual classifier output.........37

Fig. 2.13 Output 1 of the neural classifier with feature extraction: dotted lines
 represent desired values and solid lines are the actual classifier output39

Fig. 2.14 Output 2 of the neural classifier with feature extraction:
dotted lines represent desired values and solid lines are
the actual classifier output (two lines perfectly overlap)40

Fig. 3.1 Example of a simple classification tree...45

Fig. 3.2 Decision regions created by CART...50

xii

Page

Fig. 3.3 A complicated classification tree could result from a simple decision
 boundary...51

Fig. 3.4 Procedure to determine the optimal order of FDA..57

Fig. 3.5 Schematic of the Tennessee Eastman Process ..59

Fig. 3.6 Closed-loop simulation of TEP without faults,
the upper line represents %G and the lower line %H in (e)64

Fig. 3.7 Closed-loop simulation of some process variables after Fault 1 occurs67

Fig. 3.8 Maximum classification tree, node labels removed for clarity70

Fig. 3.9 Choosing the optimal tree size by cross validation71

Fig. 3.10 Pruned tree, node labels removed for clarity...72

Fig. 3.11 Optimal FDA order ...73

Fig. 3.12 FDA scores result in a much smaller classification tree,
node labels removed for clarity ...74

Fig. 3.13 Distillation column measurements used as the training data78

Fig. A.1 A two layer feed-forward neural network ...94

Fig. A.2 Plot of the logistic sigmoid transfer function ..96

1

I. INTRODUCTION

1. Fault detection and diagnosis

In chemical, petrochemical, food processing, papermaking, steel, power and

other process industries, there has been a continuing demand for higher quality

products, lower product rejection rates, and satisfying increasingly stringent safety and

environmental regulations. Implementation and improvement of digital control scheme

has been essential over the last three decades in order to meet these ever increasing

standards especially since modern process plants are often large scale, highly complex,

and operate with a huge number of process variables under closed loop control.

Common distributed control systems are designed to replace human operators for tasks

such as opening and closing valves, and perform those actions in an automated manner

with greater accuracy. Application of advanced control systems, including supervisory

control and model predictive control, has been of enormous benefits to various process

industries.

The primary purpose of process control systems is to maintain satisfactory

operations by compensating for the disturbances and changes occurring in the process.

While control systems are capable of compensating most disturbances and changes,

there are changes in the process that the control system cannot adequately handle, which

 This dissertation follows the style and format of the ISA Transactions.

2

we call abnormal conditions, or by a more precise definition, undesired deviation of at

least one variable or characteristic property of the system [1].

Despite the fact that automatic control has relieved the operators from most

regulatory control tasks, responding to abnormal conditions has largely remained a

manual activity. This includes timely detection of abnormal conditions, locating the

cause and origin of the abnormal conditions, and taking appropriate measures to bring

the process back to normal operating conditions. This entire activity is often referred to

as Abnormal Conditions Management (ACM), Abnormal Situation Management

(ASM)§, or Abnormal Events Management (AEM).

Chemical plants experience numerous faults, which include sensor faults,

process faults, actuator faults, and unexpected disturbances. A dead sensor is a common

type of sensor faults while catalyst poisoning is an example of process faults. A sticking

control valve represents actuator faults and an unexpected disturbance can be an

extreme change in the feed concentration of a reactor.

To minimize product rejection rate and plant down time, the faults need to be

detected and diagnosed. A popular definition of fault detection is determining whether a

fault has occurred, and fault diagnosis determines which fault has occurred, or

determining the causes of out-of-control status [2]. Application of fault detection and

diagnosis systems can minimize manufacturing cost, preventing damage to equipments,

and improve the safety of plant operations. As chemical plants are increasingly

§ Abnormal Situation Management, ASM are registered service marks of Honeywell International Inc.

3

complex, highly integrated and heavily instrumented, the problem of detecting and

diagnosing faults is becoming strategically important.

A typical fault detection and diagnosis (FDD) scheme contains one or more

measures, which are calculated from the process data and somehow represent the state

of the process. By developing measures that accurately characterize the process

behavior, faults can be detected and diagnosed by comparing the values of the measures

with their values of the normal operating condition.

FDD is closely related with Abnormal Situation Management (ASM), which

deals with events that are out of the desired operating conditions. While FDD is a

collection of technical procedures, ASM solutions contain many interactive parts,

including management issues, hazard identification and risk analysis, process

monitoring, and abnormal situation responding procedures. FDD constitutes an

integrated part of process monitoring, as shown in Figure 1.1.

No
Fault Detection Fault Diagnosis Process

Recovery
Yes

Fig. 1.1 A schematic diagram of the process monitoring loop

4

2. Overview

FDD measures are mainly derived from three approaches: analytical model-

based, data driven, and knowledge-based. Analytical model-based approaches require

accurate process models and a sufficient number of sensors for their implementation;

data driven methods directly derive measures from process data and knowledge based

approach uses qualitative models such as fault tree analysis.

2.1 Analytical model based approach

When the faults are connected with changes in unmeasurable state variables, a

state estimation approach is appropriate. These unmeasurable states are reconstructed

from the measurable input and output variables of the process using a Kalman Filter [3]

[4], an unknown input observer [5], or a non-linear state observer[6]. The parameter

estimation approach is appropriate if the process faults are associated with changes in

parameters in the process model. The model parameters can be calculated with a least-

squares method, which can be implemented recursively to save computational costs.

This approach is very intuitive if the process model is constructed from first principles

and the model parameters have physical meaning in the process. When both

unmeasurable states and parameters are needed for fault diagnosis, there exist observers

that are capable of joint estimation of states and parameters [7].

A more advanced analytical model-based approach is analytical redundancy.

Approaches that use analytical redundancy incorporate an explicit process model to

generate and evaluate residuals [8]. In some cases the residual is generated between the

5

model prediction and the plant measurement. Observer-based approaches can be used to

reconstruct the output of the system from the measurements with the aid of observers, in

which case the output estimation error is used as the residual [9][10]. In the case of

parameter estimation, the residuals can be taken as the difference between the nominal

model parameters and the estimated model parameters. The second step of analytical

redundancy approaches is residual evaluation, in which the resulting residual is used as

feature input to fault detection and diagnosis through logical [11], causal [12], or pattern

recognition techniques [13].

Analytical model based approaches require accurate models to be effective [14].

It is shown that when uncertain models are used, control performance must be traded

off against diagnostic performance [15] and the fault diagnosis and control schemes

should be designed together [16]. Most applications of the analytical model-based

methods have been to relatively small-scale systems [17] [18], i.e., systems with small

number of inputs, outputs, and states. Accurate models for large-scale systems like the

current chemical plants are difficult to obtain because of all the cross-couplings

associated with a multivariable system.

2.2 Knowledge-based approach

For large-scale systems, accurate models may not be available or may be too

costly and time-consuming to obtain. An alternative method is to use knowledge-based

methods such as causal analysis and expert systems, which are based on qualitative

models. Approaches based on causal analysis use the concept of causal modeling of

6

fault-symptom relationships. An example of causal analysis is the signed directed graph

(SDG) [19] [20]. An SDG is a representation of the process causal information, in

which the process variables and parameters are represented as graph nodes and causal

relations are represented by directed arcs. Nodes in the SDG assume values of (0), (+)

and (-) representing the nominal steady state value, higher and lower than steady state

values. Directed arcs point from a cause node to its effect node. Arc signs associated

with each directed arc could take values of (+) and (-) representing whether the cause

and effect change in the same direction or opposite direction, respectively. The

advantage of SDG is that all possible nodes can be located to explain an abnormal

operating condition. However, constructing an SDG for a large chemical plant may be

tedious.

A traditional approach for building a knowledge expert system is to develop IF-

THEN rules through process knowledge [21]. Knowledge expert systems are flexible,

fast to implement, and the conclusions are easy to verify. A new approach for building

knowledge expert systems is to use machine-learning techniques. This system allows

knowledge extraction and background knowledge encoding by integrating symbolic

information into a neural network learning algorithm [22].

A real-time version of a fault tree model, a symptom tree model (STM), relates

the faults and symptoms [22] [23]. In an STM, the root cause of a fault is determined by

taking the intersection of causes attached to the observed symptoms. Often this

procedure will result in more than one candidate faults, and there is no mechanism

7

available to decide the most probable fault. This problem is solved by a weighted

symptom tree model (WSTM) [24], which contains a weight for each symptom-root

cause pair. WSTM allows ranking all possible faults by their probabilities, and a

subsequent pattern-matching step matches the observed fault propagation trends with

standard trends obtained from training set. The best matching fault is selected as the

diagnosed result.

Knowledge-based approaches are also difficult to apply to large scale systems

because constructing the fault models demands a large amount of effort and requires

extensive process experience [25].

2.3 Data driven approach

Because accurate models are difficult to develop for large-scale systems, most of

the fault detection and diagnosis systems applied to industrial processes are based on

data-driven approaches. Process data collected from the normal and abnormal operating

conditions are used to develop measures for detecting and diagnosing faults. This class

of methods includes multivariate statistical analysis, neural networks, classification and

regression trees (CART), and hybrid methods using a combination of various

techniques. Since these methods are data-driven, the effectiveness of these methods is

highly dependent on the quality and the quantity of the process data. Although modern

control systems allow acquiring huge amounts of process data, only a small portion is

usable as it is often not certain these data are not corrupted and no unknown faults are

occurring.

8

Multivariate statistical analysis-based approaches formulate the fault diagnosis

problem as a statistical pattern recognition problem. Since process data are always

subject to random disturbances, it is natural to analyze the system in a probabilistic

setting. Multivariate statistical techniques, including principal component analysis

(PCA), partial least squares (PLS), and Fisher discriminant analysis (FDA), are capable

of reducing the dimensionality of the original data such that essential information is

retained; they are also able to classify data points to pre-determined fault classes.

Neural networks-based approaches assume a functional form for the decision

rules thus describing the decision boundaries with a set of network parameters. The

network parameters are obtained either by supervised training or unsupervised training

using historical process data.

3. Statement of the problem

Although the applicability of data-driven methods for process fault detection and

diagnosis has been well demonstrated, difficulties still arise when the process

experiences slow deviation or frequent changes of operating conditions. The models for

the data driven methods thus must be retrained to reflect the current process behavior.

This is not a problem for simple statistical models such as PCA, but for computationally

intensive models like neural networks or CART, excessive retraining time often

becomes the bottleneck for their applications [26]. It is especially unacceptable for

batch processes where online retraining is often required.

The objectives of this research are to:

9

• Investigate appropriate dimensionality reduction techniques for neural

network and CART approaches for process fault detection and diagnosis

• Determine the optimal degree of dimensionality reduction by balancing

loss of information and system complexity

• Validate the developed algorithms on both simulated and real chemical

processes and compare the results to that of the existing techniques

10

II. FAULT DETECTION AND CLASSIFICATION BASED ON

NEURAL NETWORKS WITH FEATURE EXTRACTION*

1. Introduction

Batch processes are routinely used for manufacturing high value added

chemicals such as pharmaceuticals, polymers, and fine chemicals. The batch mode of

operation is preferred when the production volume is low and when the materials

involved are hard to handle. The operating procedures often follow a “golden recipe”

consisting of a series of operating conditions and processing times. Unlike continuous

processes, batch processes are characterized by time-varying variables and process

parameters. As a result, normal states are not described by the ranges of variables but by

a set of acceptable “trajectories”.

Monitoring tasks in batch processes are very difficult due to many reasons. For

example, the absence of steady states operations, high nonlinearities of the processes,

lack of online sensors for measuring product composition and the finite duration of the

operation are the major problems for developing process supervision systems.

Moreover, batch processes are generally operated as multi-product plants where many

products share common equipment. Thus the production scheduling must be taken into

account for development of supervision systems, because abnormal situations are

* Reprinted with permission from “Fault detection and classification in chemical processes based on
neural networks with feature extraction”, Yifeng Zhou, Juergen Hahn, and M. Sam Mannan, 2003, ISA
Transactions, Volume 42, Number 4, October 2003, 651-664. Copyright 2003 by ISA. All Rights
Reserved.

11

strongly dependent on the product manufacturing processes. Finally, the variability of

batch-to-batch operations due to different operators and initial conditions implies

substantial system complexity and uncertainty.

Due to the inherent complexity and flexibility of batch processes, fault diagnosis

systems that provide fault information to operating and scheduling levels allow

improvement of product quality, facilitate active scheduling, and reduce risk of

accidents. Fault detection and diagnosis problems have been intensively studied in

recent years. Most of the approaches presented so far are applicable to steady state

processes. These approaches can be divided into three groups: data driven methods

[27][28][29][30], model-based methods [31][32] and combinations of both. However,

due to the nonlinearity, complexity and absence of steady state operating conditions, the

application of these methods to batch processes is usually very difficult.

More recently, the potential of neural networks for fault diagnosis has been

demonstrated [33][34][35]. A neural network-based approach is especially suitable for

processes for which accurate mathematical models are too difficult or too expensive to

obtain. Neural networks attempt to mimic the computational structures of the mammal

brains by nonlinear mapping between input and output that consists of interconnected

nodes arranged in layers. The layers are connected such that the signal on the input side

can propagate through the network and reach the output side. Neural network behaviors

are determined by the transfer functions of the units, network topology, and connection

pattern of layers. Among all forms of neural networks, the two layer feed forward

12

network has been the most popular. This class of networks consists of two layers of

nodes, namely the hidden layer and the output layer, and two layers of weights serving

as the connections between the input and the hidden layer, as well as between the

hidden layer and the output layer. No connection is allowed within its own layer and the

information flow is one directional. Sigmoid functions are usually selected as the

transfer function for hidden layer nodes and linear functions for the nodes of the output

layer.

It has been shown that this class of neural network can approximate any

functional (one-one or many-one) continuous mapping from one finite-dimensional

space to another arbitrarily well, provided the number of hidden nodes is sufficiently

large [36]. It has also been proven that, in the context of pattern recognition, this class

of networks with sigmoidal non-linearity and two layers of weights can approximate

any decision boundary to within arbitrary accuracy [37][38][39]. These properties of

two layer feed forward neural networks lay the theoretical foundation for applying

neural networks to process modeling and fault diagnosis by pattern recognition.

Neural networks can be applied to fault detection and diagnosis in two ways,

performing as a process model or a pattern classifier. Numerous papers applying neural

networks to fault detection and diagnosis can be summarized into three categories

[40][41][42][43], as shown in Fig. 2.1. The first (Fig. 2.1(a)) is the use of a neural

network to differentiate various fault patterns from normal operating conditions,

according to different measured process output data. Training of the neural network can

13

be performed offline or online. In the second category, neural networks are used as

classifiers to isolate faults represented by process model-generated residuals. The

process model can be a mathematical model (Fig. 2.1(b)), based on which the fault

diagnosis structure utilizes some process mechanism provided by the quantitative

model, and therefore facilitates the implementation and training of the neural classifier.

In cases where mathematical process models are not available, a neural network process

model can be employed to generate residuals (Fig. 2.1(c)); another network is then used

to isolate faults.

Input Output Faults
Process Neural Network

Classifier

Input Output

Faults
Process

Residual
Model
Output

Math Model

Output

Faults
Process

Residual

+

-

Neural Network
Model

+

-

Input

Neural Network
Classifier

Neural Network
Classifier

Z-1

(a)

(b)

(c)

Model
Output

Fig. 2.1 Different approaches of applying neural networks to fault detection and
diagnosis

14

The training session of the neural network uses the error in the output values to

update the weights connecting layers, until the accuracy is within the tolerance level.

The training time for a feed forward neural network using one of the variations of

backpropagation can be substantial. For a simple 2-input 2-output system with 50

training samples, 100,000 training iterations are not uncommon [44]. For large-scale

systems, memory and computation time required for training a neural network can

exceed hardware limits. This has been a bottleneck in developing fault diagnosis

algorithms for industrial applications. Like other data-driven methods, the performance

of neural networks is determined by the available data. It is highly possible that neural

networks will generate unpredictable outputs when presented with an input out of the

range of the training data. This suggests that the neural networks need to be retrained

when there is a slight change of the normal operation conditions, e.g., a molecular

weight specification change in a polymerization reactor. This is not a big problem if the

neural networks are trained offline then used online in fault diagnosis systems.

However, in batch processes, due to the share of common equipment by many products

and variability through batch-to-batch operations, operating regions are seldom

constant. To maximize the utilization of equipment, batch processes are often tightly

scheduled and this requires considerable amount of online retraining of the neural

network process model and fault classifier. This reduces the potential application of

neural network based fault diagnosis systems to batch processes.

In this section, a new neural network based fault diagnosis approach for batch

processes is proposed to reduce the time required for training neural networks. A feed

15

forward neural network is employed to predict future process outputs by a series of past

process inputs and outputs. Past process input/output data are fed into a preprocessor,

which fits a polynomial to each series of input. Then the coefficients of the polynomials

are fed into the network as inputs. A second neural network realized by a radial basis

function (RBF) network is used as the classifier to classify faults. Compared with

published approaches, this approach improves neural model training time without

reducing accuracy, thus making on-line training possible.

2. Process fault detection and classification based on neural networks with

feature extraction

2.1 Polynomial fitting as the feature extraction technique

Neural networks can be used as a process model to generate residuals for

process monitoring. In this case the neural network is usually a feed forward recurrent

neural network, which uses past process inputs and past process outputs to generate

one-step-ahead prediction of process outputs, as shown in Fig. 2.2 and the following

formulation.

(1) neural network [(), (1),... (), (), (1),... ()]t t t t d t t t d+ = − − − −y y y y u u u (2.1)

where

(1)t +y : predicted process output vector

(), (1),... ()t t t d− −y y y : the past process output vector sequence

16

(), (1),... ()t t t d− −u u u : the past process input vector sequence

d : the length of the sample sequence

u(t)

u(t-1)

u(t-2)

u(t-3)

y(t)

y(t-1)

y(t-2)

y(t-3)

Recurrent
Neural

Network
Process
Model

y(t+1)

Fig. 2.2 Recurrent neural network process model

Since variables in chemical processes are changing continuously, the past

process input and output sequences are not independent. Therefore the possibility exists

for using a lower dimensional representation of the sequences and to realize

dimensionality reduction. Due to the low frequency and large time constant nature of

chemical process dynamics, least squares polynomial fitting is proposed as the

dimensionality reduction technique, as shown in Figure 2.3. As one can see in Figure

2.3, a process input sequence consisting of seven numbers is represented by a second

order polynomial, which can be described with three coefficients. Therefore the

dimension reduction from seven to three is realized. An added benefit of this feature

extraction process is that it smoothes the original data and provides some degree of

noise reduction.

17

1 2 3 4 5 6 7

u

u=au*t2+bu*t+cu

t

Fig. 2.3 Polynomial fitting as a dimensionality reduction technique

The new structure of the neural network process model is shown in the

following formulation:

polynomial fitting [(), (1),... ()]

polynomial fitting [(), (1),... ()]
(1) neural network [,]

y

u

y u

t t t d

t t t d
t

= − −

= − −

+ =

a y y y

a u u u
y a a

 (2.2)

where

ya : the vector of polynomial coefficients fitted on the past process output

sequence

ua : the vector of polynomial coefficients fitted on the past process input

sequence

2.2 Determine the optimal structure of the neural network process model

It has been shown that the length of the process input and output sequences

provided to the neural network model has a significant impact on the model

18

performance [45]. Cross validation is employed to find the optimal model structure. The

training dataset is randomly split into N sections, and one of these subsets is reserved

for use as an independent test dataset, while the other N-1 subsets are combined for use

as the training dataset. Various model structures with different lengths of process input

and output sequences are tested, and each model structure is trained N times, with a

different subset of the data reserved for use as the test dataset each time. Thus N

different process models are produced, each of which is tested against its corresponding

test dataset. The average performance of the N models is an excellent estimate of the

performance of the original model (produced with the entire training dataset) on a future

independent set of test dataset. The average performances of these models with different

structures are compared and the one with the lowest prediction error is selected as the

optimal structure. It is worth mentioning that besides cross validation, more advanced

nonlinear model validation approaches such as correlation analysis [46] can also be

used.

2.3 Selection of the optimal order of the polynomial fitting preprocessor

After the optimal length of process input and output sequences is found, the next

step is to determine the optimal order of the polynomial to best represent the sequences

by the polynomial coefficients. This again can be done with cross validation. A group of

process input and output sequences are selected to represent the whole neural network

training dataset. Suppose that each sequence contains d samples of a variable, each

sequence is divided into d subsets with one sample in each subset. Polynomials of order

19

2, 3 and 4 are used to fit the combination of d-1 subsets and the last subset is used for

testing. The average prediction errors of the polynomials with different order are

compared and the one with the smallest error is selected as the optimal preprocessor.

After the optimal structure of the neural network process model and the optimal

order of the preprocessor are found, a new neural network process model with reduced

dimensionality can be constructed, as shown in Figure 2.4.

u(t)

u(t-1)

u(t-d)

y(t)

y(t-1)

y(t-d)

y(t+1)

Poly-
nomial
Fitting

Poly-
nomial
Fitting

..

..

Neural
Network
Process

Model with
Much
Fewer
Inputs

au

bu

cu

ay

by

cy

Fig. 2.4 Neural network process model with dimensionality reduction

2.4 Fault classification with radial basis function neural network

Fault diagnosis is implemented with a radial basis function neural network

functioning as a classifier. The residual vector generated from the process output and

neural network prediction has different structures corresponding to different faults. A

neural network classifier uses this feature to isolate faults.

20

The radial basis function (RBF) network used here consists of two layers: a

hidden layer and an output layer. The hidden layer contains a number of RBF neurons,

and each of them represents a single radial basis function. The transfer function of the

hidden layer neurons is a radial basis function, in the form of 2() exp()n nφ = − . The

most popular RBF is a Gaussian type that is characterized by a center (jc) and a width

(jr). The RBF functions by measuring the Euclidean distance between input vector (x)

and the center (jc), then performs the nonlinear transformation as given in the transfer

function of the jth hidden layer neuron below:

2

2() expj
jr

φ
− −

= jx c
x (2.3)

The output layer transfer function is linear, which is given in Eq. (2.4):

() ()k kj j k
j

y w bφ= +∑x x (2.4)

Where ky is the output of the kth output layer neuron, kjw is the weight of

connection between jth hidden layer neuron and the kth output layer neuron, jφ is the

output of the jth hidden layer neuron, and kb the bias of the kth output layer neuron.

From the formulation of transfer functions, one can see that after choosing RBF centers

and widths, designing the RBF network is simply solving a linear system. There are

several methods to choose the centers, such as K-means clustering algorithm [47],

orthogonal least-squares algorithm [48]. The widths of RBFs can be chosen as the same,

21

or different for each neuron. In this research, Gaussian type RBF is used as the hidden

layer transfer function and the width of every RBF is chosen as the same. Orthogonal

least-squares algorithm is used to select the centers from the training set. The

connection weights between the hidden layer and the output layer are obtained by

solving the linear system using least squares method.

3. Case study 1: a batch polymerization reactor

3.1 Process simulation

The process studied is a batch polymerization reactor for the production of

polymethylmethacrylate (PMMA) from methylmethacrylate (MMA) and

azobisisobutyronitrile (AIBN). In the stirred tank reactor, MMA as monomer and AIBN

as initiator are reacting in toluene solvent. The process is optimized to produce as much

PMMA of weight-average molecular weight of 400,000 as possible, under the given

restrictions: production rate of PMMA 0.10 kg/h; initial volume fraction of solvent

0.30; loading/startup time 1.0 hour; and batch cycle time 6.0 hours. The reactor is

controlled by the net heat added to the jacket using a combination of cooling water and

electric heaters. The control input profile described in the literature [49] will be used as

the desired input trajectory. The detailed formulation of the kinetic model is omitted

here since this process has been studied extensively in the literature [50].

Based on the analytical model found in the literature, a simulation program is

developed and used to study the neural network-based fault diagnosis approach. The

22

most significant variables in the simulation are concentration of MMA (mC),

concentration of AIBN (iC), reactor temperature (T), jacket temperature (jT), and

electric heater power (u). Since the development of detailed mechanistic models for

complex industrial processes is usually difficult or even impossible, empirical models

based on operating data should be used. When developing the fault diagnosis methods

for this reactor, it is assumed that the dynamic process model is unknown and neural

network models are developed.

3.2 Conventional neural network process model

To build neural network models for the polymerization reactor, data from ten

batch runs are generated from the process simulation (treated as real process runs in this

paper). Those data contain simulated measurements of mC , iC , T , jT , and u . Since it

is generally difficult to obtain concentration of a material in real time, it is assumed that

measurements of T , jT , and u are obtained online while the measurements of mC and

iC are obtained offline. This simulates the current industrial practice that many quality

variables of polymerization processes are still measured offline through laboratory

analysis. The data are generated by adding random perturbations to the nominal control

input profile (u). Random variations are added to the control variable to reflect the

different skill levels of different operators. Normally distributed random noises with

zero means are also added to all the measurements to simulate sensor noises. The

standard deviations of the noises for u , T , jT , mC and iC are 0.02 kW, 0.5 K, 0.5 K,

23

0.002 kmol/m3, 0.001 kmol/m3 respectively. Figs. 2.5 and 2.6 illustrate the effect of

adding noise to MMA concentrations. The sampling time is 1.5 minutes and each run

takes 6 hours.

Fig. 2.5 MMA concentration before adding the white noise

24

Fig. 2.6 MMA concentration after adding the white noise

A multi-layer feed forward neural network with one hidden layer is used to

develop a nonlinear representation of the polymerization reactor based on recurrent

network structure described in the literature [43]. Feed forward neural networks are

implemented with the Matlab Neural Network Toolbox. The details of the training and

optimization process are shown below:

• The model outputs are T , jT at sampling time t and the model inputs are

u, T , and jT at sampling time t-1, t-2, … t-n (n being the time lag to be

optimized);

• All training data are scaled to the range of [0, 1] prior to the training

process;

25

• Neural network weights are initialized to zero-mean random values;

• The neural network weights are initialized as random numbers in the

range (-0.1, 0.1);

• The networks are trained using a Levenberg-Marquardt optimization

algorithm [51];

• The number of hidden layer neurons in each network is optimized such

that the minimum training error is achieved;

• Number of epochs trained: 1000;

• The error in training is computed with mean squared error, and the error

in validation is computed with average relative prediction error (ARPE);

• Output layers have two log-sigmoid neurons.

 A number of networks with different structures are trained and tested. The

number of hidden layer neurons in each network is optimized such that the minimum

training error is achieved. Cross validation is employed to find the optimal network

structure. The network with the smallest average relative prediction error on the

validation sets is considered as the optimal model. The following optimal model

structure is obtained and it has eight hidden neurons:

[(), ()] neural network[(1), (2),..., (6),

 (1), (2),..., (6), (1), (2),..., (6)]
j

j j j

T t T t T t T t T t

T t T t T t u t u t u t

= − − −

− − − − − −
 (2.5)

26

Since u , T , and jT can be measured in real time, this model can be used to

generate one-step ahead prediction of T and jT . Model input structures can have a great

impact on model accuracy. In this example, the time lags of inputs and outputs are

determined by validation results. Different model structures are evaluated and their

average relative prediction errors (ARPE) on the test data are compared, as shown in

Table 2.1. The result indicates that increasing the number of model inputs may not

necessarily improve model performance. For example the last network in the table has

more inputs than any other network and its error is also larger than the rest of the

networks. This is probably due to the fact that a large number of inputs results in the

possibly over-fitting the data.

Table 2.1 ARPE of various model structures

Input variables ARPE 310×

)3(),...,1(),3(),...,1(),3(),...,1(−−−−−− tututTtTtTtT jj 3.99
)6(),...,1(),6(),...,1(),3(),...,1(−−−−−− tututTtTtTtT jj 2.52
)6(),...,1(),3(),...,1(),6(),...,1(−−−−−− tututTtTtTtT jj 3.69
)3(),...,1(),6(),...,1(),6(),...,1(−−−−−− tututTtTtTtT jj 1.87
)6(),...,1(),6(),...,1(),6(),...,1(−−−−−− tututTtTtTtT jj 1.10
)6(),...,1(),6(),...,1(),9(),...,1(−−−−−− tututTtTtTtT jj 3.81
)6(),...,1(),9(),...,1(),9(),...,1(−−−−−− tututTtTtTtT jj 2.29
)9(),...,1(),6(),...,1(),9(),...,1(−−−−−− tututTtTtTtT jj 4.68

27

3.3 Feature extraction

To find the optimal degree of dimensionality reduction, 15 sequences of T , jT ,

and u are collected to represent the whole data set, with five sequences for each

variable and six consecutive samples in each sequence. 2nd order, 3rd order, and 4th

order polynomials are tested to describe these sequences. With the aid of cross

validation, the average relative prediction error of each type of polynomial on each

variable is calculated, as shown in Table 2.2. It is found that 2nd order polynomial best

describes the sequences of T and jT but for u 3rd order is optimal. For simplicity, a 2nd

order polynomial is chosen as the feature extraction preprocessor.

Table 2.2 ARPE of various types of polynomials on each variable

ARPE 2nd order 3rd order 4th order
T 4.23 5.41 6.10

jT 4.12 5.84 6.49
u 5.75 4.50 7.86

The new neural network model has the following structure:

)]1(),1(),1(),1(),1(),1(

),1(),1(),1([network neural)](),([
)]6(),...,2(),1([fitting polynomialorder nd2)]1(),1(),1([

)]6(),...,2(),1([fitting polynomialorder nd2)]1(),1(),1([
)]6(),...,2(),1(fitting[polynomialorder nd2)]1(),1(),1([

−−−−−−

−−−=
−−−=−−−

−−−=−−−
−−−=−−−

tctbtatctbta

tctbtatTtT
tutututctbta

tTtTtTtctbta
tTtTtTtctbta

uuuTjTjTj

TTTj

uuu

jjjTjTjTj

TTT

 (2.6)

28

A feed forward neural network is built based on the new structure. This network

shares the same number of neurons in the hidden layer and the output layer with the

obtained optimal model. The original training data are fitted to polynomial coefficients

and then fed to the network as new training data. The new network is trained and

tested with the same number of epochs of training as the optimal network developed in

the previous section. The training time and ARPE are compared and shown in Table

2.3.

Table 2.3 Comparisons of training time and ARPE of neural process models with
and without feature extraction

Model structure Training time (s) ARPE 310×
Feed forward neural net 534.2 1.10
Feed forward neural net with input feature
extraction

70.7 1.52

Table 2.3 indicates that the new model structure drastically reduced training

time by more than seven folds compared to previously reported methods [43], for a

slight sacrifice (ARPE increases by 0.04 percentage point) in model performance. This

is probably due to the fact that introducing input feature extraction results in a system

with more non-linearity. Absolute one-step-ahead prediction errors of the neural

network models with or without input feature extraction are shown in Fig. 2.7, which

illustrates the slight increase of prediction error by introducing input feature extraction.

29

Fig. 2.7 One-step-ahead prediction errors of the neural network model with and without
input feature extraction

3.4 Simulation of faults

Two types of faults are studied in this section. One is the sensor fault T, which is

simulated by superimposing a –10% change of the measured temperature; the other is

fouling of the reactor jacket, simulated by a –10% change to B , the parameter in jacket

heat transfer coefficient. The analytical process model is modified accordingly to

simulate faulty batch runs. Five batches are simulated with two faults occurring, four of

them used as training and one as validation set. To ensure that the faults can be detected

whenever they occur, five different combinations of occurrence are selected as

following.

30

Training set:

–10% change of T @ t = 0 - 50; –10% change to B @ t = 101-150;

–10% change of T @ t = 101-150; –10% change to B @ t = 0 – 50;

–10% change of T @ t = 101-150; –10% change to B @ t = 151-200;

–10% change of T @ t = 101-150; –10% change to B @ t = 101-150

Validation set:

–10% change of T @ t = 51-100; –10% change to B @ t = 201-250

3.5 Residual generation

The trained feed forward neural network with input feature extraction is used as

the fault detection residual generator. The residual is designed as the difference between

the real process output and the neural network model output. Since only T and jT are

available in real time, mC and iC are not included in the residual.

3.6 Network training and simulation

An RBF network classifier is developed with the Matlab Neural Network

Toolbox. It has two inputs (corresponding to the dimension of the residual), two outputs

(corresponding to two types of faults to be classified). Residuals generated with the

neural network process model and the faulty process simulation are fed into the

classifier as training input. The training target is set to zero for both of the classifier

outputs for normal operating condition, and to one for a specific fault, with the other

31

remaining zero. In this way, a classifier output of [1, 0] indicates that the T sensor fault

is occurring while [0, 1] indicates that cooling jacket fouling is occurring.

The classifier is then trained with the residuals as inputs against the desired

outputs. The details of the training process are shown below:

• The networks are trained using Orthogonal Least Squares Learning

Algorithm;

• Performance goal (mean squared error): 0.01;

• Spread constant (RBF width): 1.0;

• Maximum number of neurons: 50;

• The hidden layer contains Gaussian activation function;

• The output layer contains linear activation function;

• The trained network has 26 hidden layer neurons.

The trained classifier is tested using another batch with two faults occurring

consecutively. The two outputs of the neural classifier are shown in Figs. 2.8 and 2.9. It

is clear that all two faults have been detected and isolated. The fact that classifier

outputs are not zero when no fault occurs is due to errors of the neural model and noise.

32

Fig. 2.8 RBF network output 1

Fig. 2.9 RBF network output 2

33

4. Case study 2: a pilot distillation column

4.1 Process description and data acquisition

The pilot size distillation column studied in this work (flow scheme shown in

Fig. 2.10) is approximately 60 feet high, six inches in diameter and is insulated. It

separates a binary mixture of methanol and water using three sets of structured-packing

(15 theoretical plates under normal operating conditions) with distributors above each

set of packing. The reflux, feed and product flows are all measurable, and the column

temperature and pressure profiles can be established from thermal couples and

differential pressure measurements along the column. The process is controlled with a

distributed control system with an automatic data acquisition system. All process data

are recorded to a Microsoft Excel worksheet at an interval of 20 seconds.

Two kinds of faults are induced in this study: a “sticky control valve” fault (fault

1) is induced by setting the corresponding column temperature control loop to manual; a

“vapor bypassing” fault (fault 2) is induced by opening the second (lower) feed line to

the column. These simulated faults are very realistic in distillation processes.

Nine process variables are chosen to represent the states of the process: column

temperatures at theoretical plates 5, 6, 7, and 8; feed low rate; feed temperature; reflux

flow rate; reflux temperature; and steam condensate flow.

34

D
is

til
la

tio
n

C
ol

um
n

E
4

R
eb

oi
le

r

A
cc

um
ul

at
or

Fe
ed

 T
an

ks

P
3

P
4

E
2

E
5P

1

E
1

E
3

TI

LI
C

FI

dP

TI
C

P
2

S
te

am

N
2

V
en

t
H

IC

TI
O

ve
rh

ea
d

FI
C

TI
FI

TI
FI

P
ro

du
ct

 R
et

ur
n

C
oo

lin
g

W
at

er

C
oo

lin
g

W
at

er
 R

et
ur

n

N
2

V
en

t

C
oo

lin
g

W
at

er

FI

P
IC

LI
C

LI
C

C
on

de
ns

at
e

S
te

am

TI
FI

C

R
ef

lu
x

B
ot

to
m

s

P
re

ss
ur

e
R

el
ie

f

 [52]

Fi
g.

 2
.1

0
Sc

he
m

at
ic

 o
f t

he
 p

ilo
t s

iz
e

di
st

ill
at

io
n

pr
oc

es
s [

52
]

35

569 points of normal process data, 154 points of “sticky valve” faulty process

data, and 115 points of “vapor bypassing” faulty process data are recorded in a run.

Another 20 points of “sticky valve” faulty process data, and 28 points of “vapor

bypassing” faulty process data are recorded in a separate run, which are to be used as

testing data.

4.2 Conventional neural classifier approach

Since the distillation column is operated at steady state, the process model is no

longer needed to provide the reference to generate residuals. Instead, a simpler approach

as illustrated in Fig. 2.1(a) is employed to differentiate various fault patterns from

normal operating conditions, according to different measured process output data. This

case study will show that the proposed feature extraction approach is also applicable in

this circumstance.

Two output nodes are used to classify three classes of process data, i.e. normal,

fault 1, and fault 2. The first output node is to produce a unit value when the inputs

belong to fault 1 and zero when the inputs fall into the fault 2 category. Similarly, the

second output node produces a value of one for inputs from the category including fault

2 and zero when presented with measurements from fault 1 type.

A multi-layer feed forward neural network with one hidden layer is used to

develop a nonlinear classifier. Feed forward neural networks are implemented with the

Matlab Neural Network Toolbox. The details of the training and optimization process

are shown below:

36

• Neural network inputs are the nine process variables shown above at

sampling times t - 1, t - 2, … t - 6 (optimized with cross validation);

Thus the neural network input contains 9×6 = 54 scalars;

• All training data are scaled to the range of [0, 1] prior to the training

process;

• The neural network weights are initialized as random numbers in the

range (-0.1, 0.1);

• The networks are trained using a Levenberg-Marquardt optimization

algorithm;

• Number of epochs trained: 200;

• The hidden layer has eight sigmoid neurons (optimized such that

minimum training error is achieved);

• The output layer has two linear neurons.

The training process takes 639.31 seconds on a Pentium III 600MHz PC and

reaches a training error of 1.97×10-9. The test data are then fed into the trained network

and the classifier output are shown in Fig. 2.11 and Fig. 2.12.

37

Fig. 2.11 Output 1 of the conventional neural classifier: dash-dot line represents desired
values and solid line is the actual classifier output

Fig. 2.12 Output 2 of the conventional neural classifier: dash-dot line represents desired
values and solid line is the actual classifier output

38

As can be seen from the figures, the actual neural classifier outputs will lie close

to the values desired during training in subsequent use, while perhaps not matching

them exactly. Thus, thresholds are specified that define the process state. A fault is

deemed active if the corresponding output is greater than 0.7 and inactive if below 0.3.

Any output lying between these two thresholds may be the result of the corresponding

data not being definite members of a pre-defined category.

Based on the thresholds defined above, the accuracy of the conventional neural

classifier is 43 out of 48 for fault 1, and 42 out of 48 for fault 2.

4.3 Neural classifier with feature extraction

The details of the training and optimization process of the neural classifier with

feature extraction are shown below:

• Each series (sampling time t - 1, t - 2, … t - 6) of the nine process

variables is fitted with a second order polynomial (order optimized with

cross validation), then the coefficients of the polynomials (9 × 3 = 27

numbers) are fed to the neural network as input;

• All training data are scaled to the range of [0, 1] prior to the training

process;

• The neural network weights are initialized as random numbers in the

range (-0.1, 0.1);

39

• The networks are trained using a Levenberg-Marquardt optimization

algorithm;

• Number of epochs trained: 200;

• The hidden layer has eight sigmoid neurons;

• The output layer has two linear neurons.

The training process takes 194.63 seconds on the same Pentium III 600MHz PC

and reaches a training error of 1.03×10-13. The test data are then fed into the trained

network and the classifier output are shown in Figs. 2.13 and 2.14.

Fig. 2.13 Output 1 of the neural classifier with feature extraction: dotted lines represent
desired values and solid lines are the actual classifier output

40

Fig. 2.14 Output 2 of the neural classifier with feature extraction: dotted lines represent
desired values and solid lines are the actual classifier output (two lines perfectly

overlap)

The accuracy of the neural classifier with feature extraction is 47 out of 48 for

fault 1, and 48 out of 48 for fault 2. As can be seen from the results, not only is the

training time drastically reduced (about 70%), but the classifier accuracy is also greatly

improved.

5. Conclusions

Fault diagnosis for a batch polymerization process and a pilot size distillation

process is investigated in this work by a feed forward neural model and a radial basis

function neural classifier. Three approaches of applying neural networks to process fault

diagnosis are discussed.

41

In batch processes, operating regions are seldom constant and this may require

considerably amount of re-training of the neural process model. This reduces the

potential of neural network based fault diagnosis systems applied to batch processes. In

this work, by implementing an input feature extraction process for the neural model, the

training time required for the neural process model is drastically reduced at the cost of a

slight deterioration in model performance.

In the first case study of a batch reactor, a temperature sensor fault and reactor

jacket fouling are studied and classified successfully using the neural process model and

an RBF neural classifier. In the second case study of a pilot size distillation process, a

control valve fault and vapor bypassing are classified with better accuracy and reduced

training time of the neural classifier. This is a general approach that can be applied for

batch processes fault diagnosis using neural networks.

42

III. FAULT DETECTION AND CLASSIFICATION BASED ON

CLASSIFICATION TREE AND DISCRIMINANT ANALYSIS

1. Introduction

Classification and regression tree (CART) of Breiman et al [53] is an innovative

methodology for the analysis of large data sets via binary partitioning procedure.

Classification tree analysis has the advantage of being concise, fast to compute, and

making no assumption regarding the distribution of the predictor variables.

This section will develop a general process monitoring scheme applicable for

multivariate chemical processes based on classification trees. This technique, referred to

as classification tree with discriminant analysis, integrates classification tree and Fisher

Discriminant Analysis (FDA). FDA is employed here to reduce the dimensionality of

the process measurements and to produce an optimal lower dimensional representation

of the process in terms of discriminating between classes. The classification tree is then

applied to the scores produced by FDA and fault classification is performed. The

proposed technique has better performance compared with the original classification

tree in terms of classification accuracy and training time.

In what follows, the principles of classification tree analysis are reviewed and

then the new methodology is derived. Two case studies, the Tennessee Eastman Process

simulation and a pilot size distillation column, are presented next in order to compare

43

the results with other published methodologies and to demonstrate the effectiveness of

the new approach. Conclusions are drawn in the final section.

2. Classification tree analysis principles

Classification trees were first introduced by social scientists in the early 1960s

[54]. Breiman et al [53] formulated classification trees in statistics in the 1980s and

proposed the Classification and Regression Tree (CART) methodology, on which the

classification tree building in this study is primarily based.

2.1 Growing a classification tree

CART is a form of binary recursive partitioning, that is, in the process of

progressive splitting the set of training samples into smaller and smaller subsets, each

subset can only have two branches, and this partitioning can be carried on several times.

Fig. 3.1 shows the classification tree resulting from analysis of a set of process data.

The training set contains three known classes: normal, fault A, and fault B. At first, all

samples are assigned to one node (Node 1) and CART looks for the most informative

property to separate samples, in this case this is the pressure. The samples in Node 1 are

thus divided into two groups (Node –1 and Node 2), and CART continues to look for

the best property to separate each group. For example, in Node 2, CART seeks a

property that makes the samples reaching the immediate descendent nodes as “pure” as

possible, and it finds that separating the samples by temperature will generate “purer”

child nodes than if pressure were used. Thus, the original data set has been split into

three pure sets and the partition stops.

44

The fundamental principle of CART is simple: simple decision trees with fewer

nodes are preferred. That is the reason why CART looks for the most informative

property that makes the data reaching the immediate child nodes as “pure” as possible,

or as less “impure” as possible.

Several different mathematical measures of tree cost (impurity) have been

proposed, all of which have approximately the same behavior. Let ()i t denote the

impurity of a node t .

One measure is the entropy impurity index:

2() (|) log (|)
j

i t p j t p j t= −∑ (3.1)

where (|)p j t is the portion of observations in node t belonging to class j . It is

obvious that if all the observations are of the same class, the impurity index is 0;

otherwise it is positive and the maximum value occurs when the different classes are

equally possible.

Another impurity measure, the Gini diversity index [53], describes the expected

error at node t if the node label is selected randomly from the class distribution present

at that node.

45

Temperature

P
re

ss
ur

e

Normal

Fault
A

Fault
B

Temperature

P
re

ss
ur

e

Normal

Fault
A

Fault
B

Temperature

P
re

ss
ur

e

Normal

Fault
A

Fault
B

Node 1
All Samples

Node 1
Pressure <P

T

P

Normal

Yes No

Node 1
Pressure <P

Node -1
Class=Normal

Yes No

Node 2
Temperature

<T

Yes No

Node -2
Class=Fault A

Node -3
Class=Fault B

Fig. 3.1 Example of a simple classification tree

46

The node cost is formulated as

() (|) (|)
i j

i t p i t p j t
≠

= ∑ (3.2)

where

()i t : Gini diversity index of node t

(|)p i t : the portion of observations in node t belonging to class i

(|)p j t : the portion of observations in node t belonging to class j

Given a partial tree down to node t , the best property one choose to split further

is the one that generates the lowest impurity index. The decrease in impurity index is

formulated as

() () (|) () [1 (|)] ()L Ri t i t p i L i t p i L i t∆ = − − −

where Lt and Rt are the left and right child nodes of t

(|)p i L : the portion of observations at node t that goes to Lt

()Li t , ()Ri t : impurity indices of node Lt and Rt

Although this optimization is performed at a single node, the recursive splitting

process can go on until each leaf node becomes perfectly pure, in the extreme case, each

leaf node corresponds to a single training sample. In this case, the tree impurity

measure, as defined below, equals 0.

47

~() () ()
t T

I T i t p t
∈

= ×∑ (3.3)

where

~
T : the set of terminal nodes (i.e., leaves) of tree T

T : the classification and regression tree

()p t : the portion of observations in node t out of all observations

2.2 Deciding the optimal tree size

If the classification tree is grown fully until each leaf node achieves zero

impurity, then the tree typically over-fits the training data and thus cannot be expected

to work well with new noisy data. However, if partitioning is stopped too early, the

error on the training data is not low enough and the performance on new data may not

be sufficiently good.

How shall one find the optimal tree size (depth)? One traditional approach is to

use cross-validation. The training dataset is randomly split into N subsets, and one of

these subsets is reserved for use as an independent test dataset, while the other N -1

subsets are combined for use as the training dataset. Trees with different sizes are

tested, and at each size, N trees are generated, with a different subset of the data

reserved for use as the test dataset each time. Thus N different trees are produced, each

of which is tested against its corresponding test dataset. The average performance of the

N trees is an excellent estimate of the performance of the original tree (produced with

the entire training dataset) on a future independent set of test dataset. The average

48

performance of these trees of different sizes is compared and the one with the lowest

prediction error is selected as the optimal tree size.

Another method is to set a threshold value in the reduction in node impurity

index. Node splitting is stopped if the best split results in an impurity reduction less than

this threshold value. This method utilizes all the training data, and tends to generate

classification trees with balanced leaf node impurity. The major disadvantage is that it is

often difficult to determine the threshold value, because the relationship between the

threshold value and the tree performance is rarely simple.

The cross-validation or threshold method work well and will find the optimal

tree if the greatest impurity reduction occurs near the root node and the reduction in

impurity reduces as the splitting goes on. However, this is not true for all occasions.

Sometimes the most significant classification takes place near the leaf nodes and

stopping splitting early will not achieve overall optimal accuracy.

The alternative approach of generating the optimal classification tree to stop

splitting is “Pruning”. A tree is grown fully, i.e., all leaf nodes are of perfect purity.

Then, all pairs of neighboring leaf nodes are considered for elimination. Any pair whose

elimination yields a satisfactory (small) increase in tree cost is deleted, and their

common antecedent node becomes a leaf.

The benefit of pruning is that it grows the tree to its full depth thus reduces the

chance of missing significant classification functions close to the leaves. Pruning is

frequently used with cross-validation to determine the best degree of pruning, which

49

comes at a huge computational expense. For large problems with high dimensionality

and large number of training data, the computational cost could be significant.

2.3 Assigning leaf node labels

Assignment of class labels to the leaf nodes is straightforward. If the

classification tree has been grown completely and pruned to its optimal depth, it is most

likely that each leaf node has zero or a very small positive impurity index. If a leaf node

contains only observations from one class, it will certainly be labeled as that class; if a

leaf node is not pure and has observations from more than two classes, it will be labeled

by the class that has most observations represented.

3. Implementation issues of CART

A significant benefit of the CART method is that it is straightforward to render

the information in CART as logical expressions, which makes it easy to incorporate

prior expert knowledge.

As with other data-driven classification techniques, performance of

classification trees is highly dependent on the quality and quantity of training data. In

the context of process monitoring, faults that the classification tree will be able to

recognize are the faults represented by the original training data from which the tree is

built.

50

3.1 Decision boundaries created with CART

Since the decision rule at each CART node only contains one property, which

leads to a hyperplane decision boundary that are perpendicular to the coordinate axes,

CART creates decision boundaries with portions perpendicular to the property axes

(Fig. 3.2). With a sufficiently large tree, any decision boundary can be approximated

arbitrarily well, provided that enough training data are present.

X2

X1

R2

R1

R2
X2

X1

R2

R2

R1

R1

R1

R1

R2

X3

Fig. 3.2 Decision regions created by CART

Since the decision boundary generated by CART is perpendicular to the

property axes, unnecessarily complicated classification trees may result in the cases

where decision boundaries do not align with the property axes. An obvious example is

shown in Fig. 3.3, in which the simple decision boundary has to be approximated with

segments of lines. However, using an appropriate linear combination of the variables, it

51

is possible to result in a much simpler tree. In this study, discriminant analysis is

employed to find this optimal combination.

X2

X1

X2

X1

R2

R2

R1

R1

a

b

c

d e

X1<a

X2<d

R1

R2

X1<b

R2 X2<e

R1 X1<c

R2 R1

X1-X2<0

R1R2

Fig. 3.3 A complicated classification tree could result from a simple decision boundary

52

3.2 Computational efficiency

Because of its tree structure, it is very fast to perform classification using

CART. It takes only h steps of comparison to classify a pattern, where h is the average

length from root node to leaf nodes and it can be approximated as log()n , where n is

the number of training patterns.

Building a classification tree is computationally expensive. Suppose one has n

training patterns and the dimension of the patterns is d . The computational complexity

of building a fully-grown tree is illustrated as follows.

At the root node, one has to sort the training patterns on each of the d

dimensions. This step takes (log)O dn n . Calculating impurity index takes ()O dn ,

therefore, the computational cost of the root node is (log)O dn n . Since there are two

nodes on the next level, and each node takes log
2 2
n nO d⎛ ⎞

⎜ ⎟
⎝ ⎠

, the computational cost of

level 2 is log
2
nO dn⎛ ⎞

⎜ ⎟
⎝ ⎠

. Similarly, the computational cost for level 3 is log
4
nO dn⎛ ⎞

⎜ ⎟
⎝ ⎠

and level 4 log
8
nO dn⎛ ⎞

⎜ ⎟
⎝ ⎠

, and so on. Noticing that the depth of the tree is log n ,

summing up the cost of each level the total cost is 21 (log)
2

O dn n⎛ ⎞
⎜ ⎟
⎝ ⎠

.

It is beneficial to get a rough idea on the computational time of CART. In an

example performed by the author, it took about 200 seconds to build a classification tree

53

from a data set of 2000 samples and 33 variables with a Pentium III 600 MHz PC. If the

data set is considerably large, computing time could be significant.

In the process of pruning a classification tree, cross-validation is often employed

to determine the optimal tree depth. This step can also be computationally expensive.

For instance, one wants to examine the classification performance of D different depths

of tree, and divides n training patterns into M groups. For each depth, M

classification trees are built and its performance evaluated, which takes

21 1 1(log)
2

M MO M d n n
M M

− −⎛ ⎞
⎜ ⎟
⎝ ⎠

, or 21 1(1) (log)
2

MO d M n n
M

−⎛ ⎞−⎜ ⎟
⎝ ⎠

. A total of

D different depths of trees are examined, which results in a computational cost of

21 1(1) (log)
2

MO dD M n n
M

−⎛ ⎞−⎜ ⎟
⎝ ⎠

. If one assumes that 1M >> , the step of determining

the optimal tree depth is 21 (log)
2

O DMdn n⎛ ⎞
⎜ ⎟
⎝ ⎠

, that is DM times the complexity of

building a classification tree.

4. Process monitoring based on classification tree and discriminant analysis

 Dimensionality reduction can be a key factor in reducing the misclassification

rate when a pattern classification scheme is applied to new data [55]. The

dimensionality reduction is especially important when the dimension of the observation

space is large while the number of observations is relatively small. Another benefit

provided by dimensionality reduction is that computational intensity is greatly reduced

54

for some applications like neural network or classification tree, when training or

constructing time is proportional to the dimension of the process data.

Fisher Discriminant Analysis, a dimensionality reduction technique that has

been extensively studied in the pattern classification literature, takes into account the

information between the classes and provides an optimal lower dimensional

representation in terms of discriminating among classes of data [56]. FDA determines a

set of projection vectors, ordered in terms of maximizing the scatter between the classes

while minimizing the scatter within each class.

Define n as the number of observations, m as the number of measurement

variables, p as the number of classes, and jn as the number of observations in the thj

class. ix represents the vector of measurement variables for the thi observation. If the

training data for all classes have already been stacked into the matrix n mX R ×∈ , then the

transpose of the thi row of X is the column vector ix . To perform FDA, one needs to

calculate the total-scatter, the within-class scatter, and the between-class scatter. The

total-scatter matrix is:

1
()() '

n

t
i

S
=

= − −∑ i ix x x x (3.4)

where x is the total mean vector

∑
=

=
n

in 1

1
ixx (3.5)

55

Define jχ as the set of vectors ix that belong to class j , the within-class scatter

matrix of class j is

(
j

jS
χ∈

= − −∑
i

i j i j
x

x x)(x x)' (3.6)

where jx is the mean vector of class j

∑
∈

=
jjn χix

ij xx 1 (3.7)

The within-class scatter matrix is

∑
=

=
p

j
jw SS

1
 (3.8)

and the between-class scatter matrix is

∑
=

−−=
p

j
jb nS

1
)'xx)(xx(jj (3.9)

The total scatter matrix is equal to the sum of the between-class scatter matrix

and the within-class scatter matrix

wbt SSS += (3.10)

The objective of the first FDA vector is to maximize the scatter between classes

while minimizing the scatter within classes.

0v
vv'
vv'

≠ ,max
w

b

S
S (3.11)

56

The second FDA vector is computed so to maximize the scatter between classes

while minimizing the scatter within classes among all axes perpendicular to the first

FDA vector, and so on for the remaining FDA vectors. Solving the optimization

problem and the FDA vectors are equal to the eigenvectors wk of the generalized

eigenvalue problem

kk ww wkb SS λ= (3.12)

where the eigenvalues kλ indicate the degree of overall separability among the

classes by projecting the data onto kw . Define matrix m p
pW R ×∈ with the p FDA

vectors as columns. Then the projection of the data from m -dimensional observation

space to p -dimensional score space is described by

pW ′=i iz x (3.13)

With the desirable property of FDA, a new process monitoring scheme that

integrates FDA and classification tree is proposed. FDA extracts the most significant

scores in the original process data and achieves optimal discrimination among different

faults. The classification tree uses the FDA scores, the lower dimensional representation

produced by FDA, to separate observations into different fault classes.

To determine the optimal order of the dimensionality reduction (i.e., the order of

the FDA score space), the following stopping rule is proposed, as illustrated in Fig. 3.4:

at each stage of the FDA procedure, construct the classification tree and calculate its

tree cost. Stop the FDA procedure when the addition of the next FDA score to the

57

classification tree does not produce a tree that has a lower cost than the current one. The

order of the FDA dimensionality reduction is thus determined. This procedure selects

the order of FDA scores that gives a minimum tree cost.

Decrease in
Tree Cost?

Fisher
Discriminant

Analysis

Optimal
Classification

Tree by Cross-
Validation

Calculate
Tree Cost

Increase the
Order of FDA by

one

Yes

No

Stop

Fig. 3.4 Procedure to determine the optimal order of FDA

58

5. Case study 1: Tennessee Eastman Process

5.1 Process description and data preparation

The Tennessee Eastman Process (TEP) was developed by Eastman Chemical

Company to provide a realistic industrial process for benchmarking process control and

process monitoring methods. TEP is based on an actual chemical process but the

components, kinetics, and operation conditions are modified for trade secret reasons.

TEP has been widely used by process monitoring researchers as a source of data for

comparing various methods [57, 58].

The process consists of a reactor, compressor, stripper, separator and condenser.

Eight components are involved in the process. A flow sheet is shown in Fig. 3.5. The

process produces two products G and H from four reactants A, C, D, and E. In the

reaction system also present inert B and byproduct F.

The reactions involved in the process are:

A(g) + C(g) + D(g) G(l), product 1

A(g) + C(g) + E(g) H(l), product 2

A(g) + E(g) F(l), byproduct

 3D(g) 2F(l), byproduct (3.14)

59

R
ea

ct
orC
on

de
ns

er

S
tri

pp
er

V
ap

or
/L

iq
ui

d
S

ep
ar

at
or

A N A L Y Z E R

X
A

X
B

X
C

X
D

X
E

X
F

X
G

X
H

A N A L Y Z E R

X
D

X
E

X
F

X
G

X
H

A N A L Y Z E R

X
A

X
B

X
C

X
D

X
E

X
F

A D E

A
/B

/C

P
ur

ge

P
ro

du
ct

C
on

de
ns

at
e

S
te

am

C
om

pr
es

so
r

C
W

S

C
W

R

C
W

S

C
W

R

FC 1
FI

X
C 13

FC 2
FI

X
C 14

FC 3
FI

X
C 15

FC 4
FI

LC 17

LI

FI

TI
TC 18

TC 10
TI

S
C

P
I

TI

FC 11

FI

FI
FC 5

JI
LI

P
I

TI FI

LC 7

P
H

L
6

FI
FC 6

X
C 19

LI

LC 8

FI
FC 9TC 16

X
C 20

TI

1 2 3

4

5

6

7

8

9

10

11

12

13

P
I

 [59]

Fi
g.

 3
.5

 S
ch

em
at

ic
 o

f t
he

 T
en

ne
ss

ee
 E

as
tm

an
 P

ro
ce

ss
 [5

9]

60

All the reactions are irreversible, exothermic, and approximately first-order with

respect to the reactant concentrations. The reaction rates follow an Arrhenius expression

and the reaction to produce G has high activation energy, resulting in a high sensitivity

to temperature.

The reactant gases are fed into the reactor where they form liquid products,

catalyzed by a nonvolatile catalyst dissolved in the liquid. Cooling water runs inside the

reactor to remove the heat of reaction. The gaseous products leave the reactor and the

catalyst remains in. The product gas stream is cooled through a condenser and then fed

to a vapor-liquid separator. Non-condensed vapor from the separator recycles back to

the reactor through a compressor. The inert and byproduct are purged from the process

in the vapor-liquid separator. Condensed stream from the separator moves to a stripper

with feed stream to remove the remaining reactants. The products G and H exiting at the

base of the stripper are pumped to a downstream unit that is not included in the

illustration.

The process contains 41 measured and 12 manipulated variables and all the

process measurements include Gaussian noise. Of the 41 process variables, XMEAS(1)

to XMEAS(22) are continuous measurements and the rest are composition measurement

which are not available in real time (for example, XMEAS(23) to XMEAS(28) are

sampled at 0.1hr interval and 0.1hr of dead time). XMEAS(1) through XMEAS(22) are

listed in Table 3.1 and XMEAS(23) to XMEAS(41) are presented in Table 3.2. The 12

manipulated variables are described in Table 3.3.

61

Table 3.1 Process measurements XMEAS(1) through XMEAS(22) (sampling
interval 3 mins)

Process

Variable
Description Units

XMEAS(1) A Feed (stream 1) kscmh

XMEAS(2) D Feed (stream 2) kg/hr

XMEAS(3) E Feed (stream 3) kg/hr

XMEAS(4) Total Feed (stream 4) kscmh

XMEAS(5) Recycle Flow (stream 8) kscmh

XMEAS(6) Reactor Feed Rate (stream 6) kscmh

XMEAS(7) Reactor Pressure kPa Gauge

XMEAS(8) Reactor Level %

XMEAS(9) Reactor Temperature ºC

XMEAS(10) Purge Rate (stream 9) kscmh

XMEAS(11) Product Separator Temperature ºC

XMEAS(12) Product Separator Level %

XMEAS(13) Product Separator Pressure kPa Gauge

XMEAS(14) Product Separator Underflow (stream 10) m3/hr

XMEAS(15) Stripper Level %

XMEAS(16) Stripper Pressure kPa Gauge

XMEAS(17) Stripper Underflow (stream 11) m3/hr

XMEAS(18) Stripper Temperature ºC

XMEAS(19) Stripper Steam Flow kg/hr

XMEAS(20) Compressor Work kW

XMEAS(21) Reactor Cooling Water Outlet Temperature ºC

XMEAS(22) Separator Cooling Water Outlet Temperature ºC

62

Table 3.2 Composition measurements

Process

Variable
Component Stream

Sampling

Interval/Dead

Time

Units

XMEAS(23) A

XMEAS(24) B

XMEAS(25) C

XMEAS(26) D

XMEAS(27) E

XMEAS(28) F

6 6min/6min

XMEAS(29) A

XMEAS(30) B

XMEAS(31) C

XMEAS(32) D

XMEAS(33) E

XMEAS(34) F

XMEAS(35) G

XMEAS(36) H

9 6min/6min

XMEAS(37) D

XMEAS(38) E

XMEAS(39) F

XMEAS(40) G

XMEAS(41) H

11 15min/15min

mol%

63

Table 3.3 Manipulated variables

Process

Variable
Description Units

XMV(1) D Feed Flow Rate (stream 2) kg/hr

XMV(2) E Feed Flow Rate (stream 3) kg/hr

XMV(3) A Feed Flow Rate (stream 1) kscmh

XMV(4) A and C Feed Flow Rate (stream 4) kscmh

XMV(5) Compressor Recycle Valve %

XMV(6) Purge Valve (stream 9) %

XMV(7) Separator Pot Liquid Flow Rate (stream 10) m3/hr

XMV(8) Stripper Liquid Product Flow Rate (stream 11) m3/hr

XMV(9) Stripper Steam Valve %

XMV(10) Reactor Cooling Water Flow Rate m3/hr

XMV(11) Condenser Cooling Water Flow Rate m3/hr

XMV(12) Agitator Speed rpm

The TEP simulation also contains 21 preprogrammed faults, 16 of them are

known, and 5 are unknown. These faults are associated with step changes in the process

variables, an increase in the variability of process variables, and actuator faults such as

sticking valves. The simulation code and description of TEP is available in FORTRAN

from several sources [59] [60].

Comparing different monitoring results is difficult since each approach employs

a different control scheme that affects the system behavior and the consequent

correlation between the process variables. To illustrate the presented approach and

64

make a meaningful comparison with other techniques, the simulation data for the faults

and the normal conditions generated with the plant-wide control scheme described in

the literature [61] are used in this study. Some process variables at the steady state and

faulty state are shown in Figs. 3.6 and 3.7.

Reactor Pressure at Steady State

2685

2690

2695

2700

2705

2710

2715

2720

0 100 200 300 400 500 600

Samples

Pr
es

su
re

, k
Pa

(a)

Fig. 3.6 Closed-loop simulation of TEP without faults, the upper line represents %G and
the lower line %H in (e)

65

Reactor Level at Steady State

70

71

72

73

74

75

76

77

78

79

80

0 100 200 300 400 500 600

Samples

Le
ve

l,
%

(b)

Product Separator Underflow at Steady State

20

21

22

23

24

25

26

27

28

29

30

0 100 200 300 400 500 600

Samples

Fl
ow

 R
at

e,
 m

3 /h
r

(c)

Fig. 3.6 Continued

66

Reactor Temperature at Steady State

119

120

121

122

0 100 200 300 400 500 600

Samples

Te
m

pe
ra

tu
re

, C

(d)

%G and %H in Product at Steady State

30

40

50

60

0 100 200 300 400 500 600

Samples

C
om

po
si

tio
n,

 m
ol

%

(e)

Fig. 3.6 Continued

67

A Feed Flow Rate after Fault 1 occurs

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Samples

Fl
ow

 R
at

e,
 k

sc
m

h

(a)

A and C Feed Flow Rate after Fault 1 occurs

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

0 100 200 300 400 500

Samples

Fl
ow

 R
at

e,
 k

sc
m

h

(b)

Fig. 3.7 Closed-loop simulation of some process variables after Fault 1 occurs

68

Reactore Pressure after Fault 1 occurs

2640

2660

2680

2700

2720

2740

2760

2780

2800

2820

2840

0 100 200 300 400 500

Samples

Pr
es

su
re

, k
Pa

 G
au

ge

(c)

Stripper Temperature after Fault 1 occurs

64

65

66

67

68

69

70

71

72

73

74

0 100 200 300 400 500

Samples

Te
m

pe
ra

tu
re

, C

(d)

Fig. 3.7 Continued

69

Among the 21 preprogrammed faults, eight are selected as the testing faults.

Seven of them are caused by step changes in process variables, one by increased

variability in process variables. Since 19 measured variables are compositions that are

not available in real time, they are not used in the process monitoring schemes. A

sampling interval of 3 minutes was selected here to allow fast detection. 1055 samples

are collected in a simulation as the training data and 1615 as the testing data in another

simulation. Classification tree is implemented with the Statistics Toolbox of MATLAB

6.5 for Windows. All the computing time is based on a Pentium III 600MHz PC.

5.2 Fault detection and diagnosis with classification tree

A maximum classification tree (e.g., a tree with every leaf node containing only

one class) is created with the training data set with their respective fault classes (see Fig.

3.8). This tree can perform fault detection and diagnosis by classifying process

measurements into different classes. With this maximum tree, there is a strong

possibility that it fits the training data set well but would not perform well at classifying

new data. Some of its lower branches may be strongly affected by process noise of the

training data. A simpler tree is preferred to avoid the problem of over-fitting.

70

Fig. 3.8 Maximum classification tree, node labels removed for clarity

The optimal tree size is estimated with cross validation. The original training set

is partitioned into 10 subsets, chosen randomly but with equal size and roughly the

same class proportions. For each subset, a tree is fitted using the remaining data and use

it to predict the subset. The information from all subsets is pooled to compute the cost

of a tree of certain size. The cross validation error of various tree sizes is calculated and

plotted in Fig. 3.9. The best tree size is selected as the one that has a cross validation

error that is no more than one standard error above the minimum value along the cross

validation line [53]. The optimal tree is thus obtained by pruning the maximum tree

according to the best tree size. Fig. 3.10 shows the pruned tree.

71

0 20 40 60 80 100 120 140 160 1800.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of terminal nodes

Tr
ee

 C
os

t
Cross-validation error

Estimated best tree size

Fig. 3.9 Choosing the optimal tree size by cross validation

72

Fig. 3.10 Pruned tree, node labels removed for clarity

5.3 Fault detection and diagnosis with classification tree and discriminant

analysis

Fisher Discriminant Analysis is also implemented with MATLAB 6.5 based on

the algorithm described in Section III.4. The original training data are transformed into

FDA scores, which are subsequently used to build the classification tree. New process

measurements need to be transformed in the same way to get FDA scores for the

classification tree to perform fault detection and diagnosis.

To find the optimal FDA order, starting from 1, a series of FDA of

consecutively increasing orders are performed and classification trees are generated and

73

tested. Cross validation is employed to produce the optimal classification tree and the

cost of the trees is plotted along the FDA order in Fig. 3.11. It is found that from order 9

to order 10 the cost of the optimal tree does not decrease; therefore 9 is chosen as the

optimal FDA order. A much more simplified classification tree (Fig. 3.12) is generated

due to the reduced dimensionality.

1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

FDA Order

Tr
ee

 C
os

t

Fig. 3.11 Optimal FDA order

To compare the performance of various approaches, the misclassification rates

on the testing data of classification tree, classification tree with discriminant analysis,

and various statistical methods (results taken from literature [55]) are compared in

Table 3.4.

74

Fig. 3.12 FDA scores result in a much smaller classification tree, node labels removed
for clarity

75

Fa
ul

t N
um

be
r a

nd
 D

es
cr

ip
tio

n
Fa

ul
t T

yp
e

C
la

ss
ifi

ca
tio

n
Tr

ee

C
la

ss
ifi

ca
tio

n
Tr

ee
 w

/
D

is
cr

im
in

an
t

A
na

ly
si

s

Pr
in

ci
pa

l
C

om
po

ne
nt

A

na
ly

si
s –

 T
2

Pa
rti

al
 L

ea
st

Sq

ua
re

s

C
an

on
ic

al

V
ar

ia
te

A

na
ly

si
s -

 Q

1A
/C

 F
ee

d
R

at
io

St

ep

0.
02

6
0.

02
5

0.
02

4
0.

01
3

0.
24

5
2

B
 C

om
po

si
tio

n
St

ep

0.
00

0
0.

00
0

0.
01

8
0.

01
4

0.
15

5
3

D
 F

ee
d

Te
m

p.

St
ep

0.

72
4

0.
86

3
0.

78
3

0.
96

1
0.

97
8

4
R

ea
ct

or
 C

oo
lin

g
W

at
er

 T
em

p.

St
ep

0.

04
6

0.
12

1
0.

16
3

0.
17

0
0.

89
0

5
C

on
de

ns
er

 C
oo

lin
g

W
at

er
 T

em
p.

St

ep

0.
45

4
0.

01
1

0.
02

1
0.

00
6

0.
17

4
6

A
 F

ee
d

Lo
ss

St

ep

0.
01

5
0.

00
0

0
0.

43
5

0.
01

4
7

C
 H

ea
de

r P
re

ss
ur

e
Lo

ss

St
ep

0.

00
0

0.
00

0
0

0
0.

57
8

8
A

 B
 C

 F
ee

d
C

om
po

si
tio

n
R

an
do

m

V
ar

ia
tio

n
0.

56
9

0.
41

9
0.

03

0.
85

1
0.

67
0

C
on

st
ru

ct
in

g
Ti

m
e,

 se
c

10

3
36

Ta
bl

e
3.

4
C

om
pa

ris
on

 o
f m

is
cl

as
si

fic
at

io
n

ra
te

s a
nd

 c
on

st
ru

ct
io

n
tim

e
fo

r
va

rio
us

 m
et

ho
ds

, b
es

t r
es

ul
ts

 sh
ow

n
in

 b
ol

d

76

When Fault 1 or Fault 2 occurs, the distribution of the variables associated with

material balances changes correspondingly. Since more than half of the process

variables deviate significantly from their normal operating states, these two faults are

easily classified by all methods. The misclassification rates of Fault 3 are extremely

high for all methods, due to the fact that the control system effectively compensates the

disturbance such that this fault is unobservable from the process data. A significant

effect of Fault 4 is to induce a step change in the reactor cooling water flow rate, while

the other process variables remain steady after the fault occurs. This makes it harder for

all methods to classify. Fault 5 is similar to Fault 4, except that it affects more variables.

Like Fault 1 and 2, Fault 6 and 7 are easy for most methods because many process

variables deviate from their normal states after they occur. Unlike Fault 1-7, Fault 8 is

caused by increased variability in feed compositions. One can see that both

classification tree methods and the other two statistical techniques performed poorly.

It can be seen from the comparison that classification tree with discriminant

analysis results in the lowest average misclassification rate for Fault 1~7, as well as

greatly reduced training time compared to classification tree. However, classification

tree-based methods are not effective when applied to random variation type of fault.

The possible explanation is that classification tree examines process variables statically

and a big portion of the abnormal states falls closely to normal states.

77

6. Case study 2: a pilot distillation column

6.1 Process description and data acquisition

The pilot size distillation column studied is the same one as described in Section

II.4.1. Two types of faults are artificially induced in this study: a “sticky control valve”

fault (fault 1) is induced by setting the corresponding column temperature control loop

to manual; a “vapor bypass” fault (fault 2) is induced by opening the second (lower)

feed line to the column. These simulated faults are very realistic in distillation

processes.

Nine process variables are chosen to represent the state of the process: column

temperatures at theoretical plates 5, 6, 7, and 8 (TC/5 ~ TC/8); feed low rate; feed

temperature; reflux flow rate; reflux temperature; and steam condensate flow. 300

points of normal process data (samples 1~300), 133 points of “sticky control valve”

faulty process data (samples 301~433), and 114 points of “vapor bypass” faulty process

data (samples 434~547) are recorded in a run, as shown in Fig. 3.13. Another 20 points

of “sticky control valve” faulty process data and 28 points of “vapor bypass” faulty

process data are recorded in a separate run, which are to be used as testing data.

78

0 100 200 300 400 500 600

50

100

150

200

250

Samples

TC/5
TC/6
TC/7
TC/8

Reflux T

Feed Flow
Feed T

Reflux Flow
Steam

Condensate Flow

Fig. 3.13 Distillation column measurements used as the training data

6.2 Discussion

Both methods of classification trees with and without discriminant analysis are

trained with the training data and tested against the test data. The misclassification rates

of the methods are compared in Table 3.5. As one can see from the results, first order

FDA is not capable of capturing enough variations in the original data and does not

yield a satisfactory classification. Due to the strong correlations between temperature

measurements, classification trees with only 2nd order FDA outperformed classification

tree method by classification rates. The reduction in training time is not significant

because of the relatively small size of the training data set.

79

Table 3.5 Comparison of misclassification rates of classification trees with and
without discriminant analysis

Fault Number and
Description

Classification
Tree Only

Classification
Tree w/ FDA

Order 1

Classification
Tree w/ FDA

Order 2

Classification
Tree w/ FDA

Order 3
0 Normal 0 0 0 0
1 Sticking Control Valve 0.04 0.64 0.04 0.04
2 Vapor Bypassing 0.0909 0 0.0303 0.0303

7. Conclusions

Classification tree analysis has the advantage of being concise, fast to compute,

and making no assumption regarding the distribution of the predicting variables.

However, cross validation used in building a classification tree is a computationally

intensive process, and it is even more difficult when applied to large-scale systems with

high dimensional observations. Another disadvantage arises from the fact that the

decision boundary generated by classification tree is perpendicular to the property axes,

thus unnecessarily complicated classification tree may result in the cases where decision

boundaries do not align with the property axes.

The newly developed process monitoring scheme integrates classification tree

and Fisher Discriminant Analysis (FDA). FDA extracts the most significant

components in the original process data and achieves optimal discrimination among

different faults, as well as reduces the dimension of the original data. Classification tree

uses the FDA scores, which are the lower dimensional representation produced by FDA,

to separate observations for different fault class. A stopping rule is applied to determine

80

the optimal order of FDA. This procedure selects the order of FDA scores that gives a

minimum tree cost.

Two case studies are presented to illustrate the effectiveness of the proposed

methods compared with the original classification tree method. In the first case study,

Tennessee Eastman Process simulations with 34 process variables and 15 simulated

faults are examined. The results show a greatly reduced cross validation time in

classification tree construction, as well as better classification performance. Process

data collected from a pilot distillation column are used in the second case study. The

new method again generates better classification accuracy and uses less construction

time, although insignificant due to the relatively small size of the data set. This is a

general approach that can be applied for process monitoring using classification trees.

81

IV. CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions

Current approaches to process monitoring can be generally grouped into three

categories: (1) Analytical model based methods, (2) Knowledge based methods, and (3)

Historical data driven methods. Methods in (1) are theoretically elegant, but the

difficulty in obtaining accurate analytical process model and model non-linearity

seriously limit their applicability to process industries. Fault tree and digraph based

methods belong to category (2), which are easy in principle but time consuming to

develop. Historical data driven methods, including those that are based on multivariate

statistical analysis (PCA, PLS, CVA, etc.) and most neural network based methods,

consist of two steps, feature extraction and pattern recognition, and have been the most

widely applied ones in process industries.

Neural networks have been popular in process modeling and fault pattern

recognition. However, in batch processes, operating regions are seldom constant and

this may require considerable amount of re-training of the neural process model, whose

computational expense is often prohibitive for today’s complex process systems. This

reduces the potential of neural network-based fault diagnosis systems applied to batch

processes. In this work, a polynomial regression based feature extraction/preprocessing

scheme drastically reduced the dimensionality of input to neural model, thus reducing

the neural network size, as well as the required training time. The method comes with a

82

slight sacrifice in model performance due to increased non-linearity introduced by the

feature extraction step.

Two case studies demonstrate the effectiveness of the new approach. In both

cases, the new approach greatly reduces neural model training time and in the second

case, the classification performance is also improved.

Classification trees suffer from the computationally expensive cross validation

during the building process, which can create real difficulties when applied to large-

scale systems with high dimensional observations. Another disadvantage is that the

decision boundary generated by a classification tree is perpendicular to the property

axes, thus unnecessarily complicated classification trees may result in the cases where

decision boundaries do not align with the property axes.

The newly developed process monitoring scheme addresses the issues by

employing Fisher Discriminant Analysis (FDA). FDA extracts the most significant

components in the original process data and achieves optimal discrimination among

different faults, as well as reduces the dimension of the original data and projects old

data into new “scores” that are perpendicular to each other. Classification trees use the

FDA scores to separate observations into different fault classes. A procedure identifies

the order of FDA scores that gives a minimum tree cost as the optimal order.

Application of the new scheme on Tennessee Eastman Process simulations

shows a greatly reduced cross validation time in classification tree construction, as well

as better classification performance. The new approach is also compared with other

83

published statistical methods and demonstrated superior performance. The second case

study on a distillation column setup shows results along similar lines.

2. Recommendations

Besides the issues addressed in this dissertation, historical data driven process

monitoring methods suffer from their dependency on a priori fault information/process

knowledge, i.e., if a new fault occurs, the system would not react.

The author suggests the following research topics that may help to tackle the

problem:

• Hybrid methods: combining historical data driven methods with

knowledge-based methods, such as a hybrid system of statistical analysis

and fault tree: statistical analysis performs the fault detection and pattern

clustering/classification, and fault tree is used for reasoning and diagnosis.

The fault tree can be a dynamic one, which can be updated with new faults.

This could be a viable research project since it can take advantage of

knowledge gained in the fault tree research.

• Process knowledge management: there should be a unified data structure to

facilitate the management of process knowledge that is generated from

HAZOP and process monitoring.

• Data mining: modern chemical plants are producing an exploding amount

of data, collected by thousands of sensors and stored with the help of data

84

librarian software. How to effectively extract useful information out of those

data, e.g., distinguishing faults from fluctuations due to legitimate causes,

and in the mean time get information to improve statistical process control

(SPC) and process optimization.

85

REFERENCES

[1] R. Isermann and P. Ball, Trends in the application of model based fault detection

and diagnosis of technical processes. in Proc. of the 13th IFAC World Congress,

volume N, 1-12, IEEE Press, Piscataway, NJ, 1996

[2] A. C. Raich and A. Cinar, Statistical process monitoring and disturbance diagnosis

in multivariable continuous processes. AIChE J., 42, (1996) 995-1009

[3] W. L. Brogan, Modern Control Theory, Prentice-Hall, Englewood Cliffs, NJ, 1991

[4] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980

[5] P. M. Frank and J. Wünnenberg, Robust fault diagnosis using unknown input

observer schemes, in R. J. Patton, P. M. Frank, R. N. Clard (eds), Fault Diagnosis

in Dynamic Systems: Theory and Application, Prentice-Hall, New York, 47-98,

1989

[6] N. Kazantzis and C. Kravaris, Discrete-time nonlinear observer design using

functional equations, Systems & Control Letters, 42, (2001) 81-94

[7] Q. Zhang and B. Delyon, A new approach to adaptive observer design for MIMO

systems, Proceedings of the 2001 American Control Conference, volume 2, 1545-

1550, 2001

[8] R. K. Mehra and J. Peschon, An innovative approach to fault detection and

diagnosis in dynamic systems, Automatica, 7, 637-640, 1971

[9] X. Ding and L. Guo, Observer-based fault detection optimized in the frequency

domain, in Proc. of the 13th IFAC World Congress, volume N, 157-162, IEEE

Press, Piscataway, NJ, 1996

86

[10] P. M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy – a survey and some new results, Automatica, 26, 459-474,

1990

[11] E. Gomez, H. Unbehauen, P. Kortmann, and S. Peters, Fault detection and

diagnosis with the help of fuzzy-logic and with application to a laboratory

turbogenerator, in Proc. of the 13th IFAC World Congress, volume N, 175-180,

IEEE Press, Piscataway, NJ, 1996

[12] P. M. Frank and N. Kiupel, Residual evaluation for fault diagnosis using adaptive

fuzzy thresholds and fuzzy inference. in Proc. of the 13th IFAC World Congress,

volume N, 115-120, IEEE Press, Piscataway, NJ, 1996

[13] K. Danai and V. B. Jammu, Robust residual generation for fault diagnosis thru

pattern classification. in Proc. of the 13th IFAC World Congress, volume N, 193-

198, IEEE Press, Piscataway, NJ, 1996

[14] R. Isermann and B. Freyermuth, Process fault diagnosis based on process model

knowledge – part I: principles for fault diagnosis with parameter estimation,

ASME J. of Dynamics, Measurement, and Control, 113, (1991) 620-626

[15] C. N. Nett, C. A. Jacobson, and A. T. Miller, An integrated approach to controls

and diagnostics: the 4-parameter controller, in Proc. of the American Control

Conf., 824-835, IEEE Press, Piscataway, NJ, 1988

[16] M. L. Tyler and M. Morari, Optimal and robust design of integrated control and

diagnostic modules, in Proc. of the American Control Conf., 2060-2064, IEEE

Press, Piscataway, NJ, 1994

[17] P. Kesavan and J. H. Lee, Diagnostic tools for multivariable model-based control

systems, Ind. Eng. Chem. Res., 36, (1997) 2725-2738

87

[18] W. Ku, R. H. Storer, and C. Georgakis, Uses of state estimation for statistical

process control, Comp. & Chem. Eng., 18, (1994) S571-575

[19] M. Iri, K. Aoki, E. O’shima, and H. Matsuyama, An algorithm for diagnosis of

system failures in the chemical process, Comp. & Chem. Eng., 3, (1979) 489-493

[20] J. Shiozaki, H. Matsuyama, E. O’shima, and M. Iri, An improved algorithm for

diagnosis of system failures in the chemical process, Comp. & Chem. Eng., 9,

(1985) 285-293

[21] M. A. Kramer and F. E. Finch, Development and classification of expert systems

for chemical process fault diagnosis, Robotics and Computer-integrated

Manufacturing, 4, (1988) 4346-4376

[22] E. S. Yoon and J. H. Han, Process failure detection and diagnosis using the tree

model, in Proc. of the IFAC World Congress, 126-129, Pergamon Press, Oxford,

UK, 1987

[23] Q. Zhang, A frequency and knowledge tree/causality diagram based expert system

approach for fault diagnosis, Reliability Engineering & System Safety, 43, (1994)

17-28

[24] Y. S. Oh, J. H. Yoon, D. Nam, C. Han, and E. S. Yoon, Intelligent fault diagnosis

based on weighted symptom tree model and fault propagation trends, in Joint 6th

International Symposium on Process System Engineering and 30th European

Symposium on Computer Aided Process Engineering, S941-946, Elsevier Science

Ltd, Oxford, UK, 1997

[25] J. Zhang, E. B. Martin, and A. J. Morris, Fault detection and classification through

multivariate statistical techniques, in Proc. of the American Control Conference,

751-755, IEEE Press, Piscataway, NJ, 1995

88

[26] R. Rengaswamy and V. Venkatasubramanian, A fast training neural network and

its updation for incipient fault detection and diagnosis, Comp. & Chem. Eng., 24,

(2000) 431-437

[27] R. Dunia, S. J. Qin, Joint diagnosis of process and sensor faults using principal

component analysis, Control Engineering Practice, 6 (4) (1998) 457-469

[28] R. Dunia, S. J. Qin, T. F. Edgar, T. J. McAvoy, Identification of faulty sensors

using principal component analysis, AIChE Journal, 42 (10) (1996) 2797-2812

[29] P. Amann, E. A. Garcia, B. Koeppen-Seliger, P. M. Frank, Knowledge- and data-

based models for fault diagnosis, Systems Analysis Modeling Simulation, 35 (1)

(1999) 25-44

[30] T. Kourti, P. Nomikos, J. F. MacGregor, Analysis, monitoring and fault diagnosis

of batch processes using multiblock and multiway PLS, Journal of Process

Control, 5 (4) (1995) 277-284

[31] I.-C. Chang, C.-C. Yu, C.-T. Liou, Model-based approach for fault diagnosis. 1.

Principles of deep model algorithm, Industrial & Engineering Chemistry

Research, 33, (6) (1994) 1542-1555

[32] Y. Zhang, J. Jiang, Interacting multiple-model based fault detection, diagnosis and

fault-tolerant control approach, in Proceedings of the IEEE Conference on

Decision and Control, 4, 3593-3598, 1999

[33] V. Venkatasubramanian, R. Vaidyanathan, Process fault detection and diagnosis

using neural networks I. Steady-state processes, Computers and Chemical

Engineering, 14 (1990) 699-712

89

[34] C. M. Shen, T. Bi, Z. Yan, Y. Wen, On-line fault section estimation in power

systems with radial basis function neural network, International Journal of

Electrical Power & Energy Systems, 24 (2002) 321-328

[35] M. Catelani, A. Fort, Fault diagnosis of electronic analog circuits using a radial

basis function network classifier, Measurement, 28 (2000) 147-158

[36] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford Univ. Press, New

York, 1995

[37] K. Funahashi, On the approximate realization of continuous mappings by neural

networks, Neural Networks, 2 (1989) 183-192

[38] N. E. Cotter, The Stone-Weierstrass theorem and its application to neural networks,

IEEE Trans. on Neural Networks, 1 (1990) 290-295

[39] Y. Ito, Representation of functions by superpositions of a step or sigmoid function

and their applications to neural network theory, Neural Networks, 4 (1991) 385-

394

[40] M. Borairi, H. Wang, Actuator and sensor fault diagnosis of non-linear dynamic

systems via genetic neural networks and adaptive parameter estimation technique,

in Proc. of the 1998 IEEE International Conference on Control Applications. 278-

282, IEEE Press, Piscataway, USA, 1998

[41] J. B. Gomm, Adaptive neural network approach to on-line learning for process

fault diagnosis, Transactions of the Institute of Measurement and Control , 20

(1998) 144-152

90

[42] A. Alessandri, M. Baglietto, T. Parisini, Robust model-based fault diagnosis using

neural nonlinear estimators, in Proc. of the 1998 37th IEEE Conference on

Decision and Control, 72-77, IEEE Press, Piscataway, NJ, 1998

[43] D. L. Yu, J. B. Gomm, D. Williams, Sensor fault diagnosis in a chemical process

via RBF neural networks, Control Engineering Practice, 7 (1999) 49-55

[44] M. Y. Chow, B. Li, and G. Goddu, Intelligent motor fault detection, in L. C. Jain,

R. P. Johnson, Y. Takefuji, and L. A. Zadeh, (eds) Knowledge-based Intelligent

Techniques in Industry, 191-223, CRC Press, New York, 1999

[45] Y. Tian, J. Zhang and J. Morris, Optimal control of a fed-batch bioreactor based

upon an augmented recurrent neural network model, Neurocomputing, 48 (2002)

919-936

[46] S. A. Billings, Q. M. Zhu, Nonlinear model validation using correlation tests,

International Journal of Control, 60 (6) (1994), 1107-1120

[47] J. Moody, C. J. Darken, Fast learning in networks of locally-tuned processing

units, Neural Compututation, 1(2) (1989), 281-294

[48] S. Chen, P. M. Grant, and C. F. N. Cowan, Orthogonal least-squares algorithm for

training multioutput radial basis function networks, Radar and Signal Processing,

IEE Proceedings F, 139 (1992) 378 –384

[49] C. Kravaris, S. Palanki, Robust nonlinear state feedback under structured

uncertainty, AIChE Journal 34 (1988) 1119-1127

[50] M. Soroush, C. Kravaris, Optimal design and operation of batch reactors. 2. A case

study, Industrial & Engineering Chemistry Research, 32 (1993) 882-893

91

[51] D. Marquardt, An algorithm for least squares estimation of nonlinear parameters,

SIAM Journal of Applied Mathematics, 11 (1963) 431-441

[52] Chemical Engineering Department, Texas A&M University, Chemical Engineering

Unit Operations Laboratory II (lab instruction), Texas A&M University, College

Station, TX, 2000

[53] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And

Regression Trees, Wadsworth, Belmont, CA, 1984

[54] J. N. Morgan, J. A. Sonquist, Problems in the analysis of survey data, and a

proposal, J. Am. Stat. Assoc., 58 (1963) 415-434

[55] E. L. Russell, L. H. Chiang, R. D. Braatz, Data-Driven Techniques for Fault

Detection and Diagnosis in Chemical Processes, Springer-Verlag, London, 2000

[56] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley

& Sons, New York, 1973

[57] H. B. Aradhye, B. R. Bakshi, and R. Strauss, Process monitoring by PCA, dynamic

PCA and multiscale PCA – Theoretical analysis and disturbance detection in the

Tennessee Eastman process, in AIChE Annual Meeting, paper 224g, 1999

[58] G. Chen and T. J. McAvoy, Predictive online monitoring of continuous processes,

J. of Process Control, 8, (1997) 409-420

[59] J. J. Downs and E. F. Vogel, A plant-wide industrial-process control problem,

Computers & Chemical Engineering, 17, (1993) 245-255

[60] R. D. Braatz, Multiscale Systems Research Laboratory (web page)

http://brahms.scs.uiuc.edu, 2002

92

[61] P. R. Lyman, C. Georgakis, Plant-wide control of the Tennessee Eastman problem,

Computer and Chemical Engineering, 19, (1995) 321-331

93

APPENDIX A

INTRODUCTION TO FEED-FORWARD NEURAL NETWORKS

1. Architecture of Feed-Forward Neural Networks

Although there are already a number of textbooks on neural networks, it is still

necessary to briefly introduce the basic concepts of neural networks.

Neural networks attempt to mimic the computational structures of the mammal

brains by a nonlinear mapping between input and output that consists of interconnected

nodes arranged in layers. The layers are connected such that the signal on the input side

can propagate through the network and reach the output side. Neural network behaviors

are determined by the transfer functions of the units, network topology, and connection

pattern of layers.

Among all forms of neural networks, the two-layer feed forward network has

been most popular (see Fig. A.1 for an example). This class of networks consists of two

layers of nodes, namely the hidden layer and the output layer, and two layers of weights

serving as the connections between input and the hidden layer, as well as between the

hidden layer and the output layer. No connection is allowed within its own layer and the

information flow is one direction only. The weights represent the strength of connection

between two linked nodes. Neural network training process adjusts the weights to

achieve the best approximation between the network output and the desired output.

Besides regular nodes, bias nodes that supply a constant output are connected to each

94

nodes in the hidden and the output layers. The bias node provides an activation

threshold for the nodes, and is essential in order to classify network inputs into various

subspaces.

H2

H1

H3

O2

O1
X1

X2

Y1

Y2

Bias2

Hidden Layer Output Layer

Bias1
1
10W

2
10W

2
20W

2
23W

2
13W

2
12W

2
22W1

12W

1
22W

1
32W

F(x)∑

X2*W1
32

Bias1*W1
30

X1*W1
31

Input

Nonlinear
monotonic
function

Fig. A.1 A two layer feed-forward neural network

95

Each node in the hidden and the output layers is described by a transfer function.

Usually a logistic sigmoid function is used,

1()
1 xF x

e−=
+

 (A.1)

which is plotted in Fig. A.2.

Some other transfer functions can also be used, such as tanh function,

exp() exp()() tanh()
exp() exp()

x xF x x
x x
− −

= =
+ −

 (A.2)

ramp function,

0, 0
()

, 0
x

F x
x x

≤⎧
= ⎨ >⎩

 (A.3)

and step function,

1, 0
()

 1, 0
x

F x
x

− <⎧
= ⎨ ≥⎩

 (A.4)

However, for a specific feed-forward neural network, the nodes in the hidden

and the output layers are usually fixed on the same transfer function, e.g., logistic

sigmoid function for the hidden nodes and ramp function for the output nodes.

96

0

0.2

0.4

0.6

0.8

1

1.2

-5 -3 -1 1 3 5
x

F(
x)

Fig. A.2 Plot of the logistic sigmoid transfer function

As a nonlinear modeling tool, feed-forward neural networks have a number of

advantages compared to conventional statistical methods. Conventional statistical

methods require explicit formulation of the functions, which is not always readily

available for many nonlinear problems. If these functions are incorrectly specified, the

regression will not be satisfactory. Furthermore, convergence in nonlinear regression

also requires extensive mathematical and numerical expertise. In the contrary, neural

networks do not need a specific form of the correlation, therefore is very fast to

implement. Neural network modeling has other benefits such as when data used for

training can are noisy or incomplete, continuous learning through new training data can

be applied to improve performance.

97

2. Training of Feed-Forward Neural Networks

Neural networks utilize the network weights and input values to calculate

outputs, take a two-layer network as the example:

(2) (1)

0 0
()

M d

k kj ji i
j i

y g w g w x
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑% (A.5)

where

d: number of inputs

M: number of hidden nodes

(1)
jiw : a weight in the first layer, going from input i to hidden unit j

(2)
kjw : a weight in the second layer, going from hidden unit j to output node k

g : hidden layer transfer function

g% : output layer transfer function

ky : kth output

ix : ith input

The objective of network training is to minimize the sum-of-squares error with

respect to weight vector w , given by a sum over all patterns in the training set, and over

all outputs, of the form

()2

1 1

1() (;)
2

N c
n n

k k
n k

E y t
= =

= −∑∑w x w (A.6)

98

where

N: the number of training patterns

c: the number of outputs

nx : input vector

n
kt : target value for output node k when the input vector is nx

The popular training algorithm, error back-propagation, involves a forward path

calculating the outputs and backward path updating the weight vector. In the mth

training iteration, the weight is adjusted as

() (1) ()m m m
ji ji jiw w w−= + ∆ (A.7)

where

()m
jiw : the weight between the jth node of the upper layer and the ith node of the

lower layer, in the mth training iteration

(1)m
jiw − : the weight between the jth node of the upper layer and the ith node of the

lower layer, in the (m-1)th training iteration

()m
jiw∆ : the weight adjustment

Weight adjustment is given by

() () () (1)m m m m
ji j i jiw o wηδ α −∆ = + ∆ (A.8)

where

99

η : learning rate, providing the step size during gradient decent. To achieve fast

convergence, the largest possible value that does not lead to oscillation is used.

()m
jδ : error signal of the jth node in the mth training iteration

()m
io : output value of the ith node of the previous layer in the mth training

iteration.

α : momentum term, 0<α <1, optimized to achieve fast convergence

If j is an output layer node, ()m
jδ is given by

() () () ' () () ()() ()m m m m m m
j j j ji i jo

i
t y g w o wδ = − +∑% (A.9)

()m
jt : target value for output layer node j

()m
jy : network output value of node j

'g% : derivative of output layer transfer function

()m
jow : the weight between the oth node of the hidden layer and the jth node of

the output layer, in the mth training iteration

If j is a hidden layer node,

() ' () () () () ()()m m m m m m
j ji i jo k kj

i k
g w o w wδ δ= +∑ ∑ (A.10)

where 'g is the derivative of the hidden layer transfer function.

100

As one can see, error back propagation algorithm calculates an error for each

node in the output and hidden layers using equation (A.9) and (A.10), then recursively

updates the weights of all the nodes using equation (A.8), starting from the output layer

to the hidden layer.

3. Computational efficiency of error back propagation

In a practical neural network, the number of weights W is much larger than the

number of nodes, therefore, the computational cost in both the forward and backward

propagation phases is ()O W . Thus for a single training pattern, the computational

complexity of error back propagation is ()O W . For a total of N training patterns, the

computational complexity becomes ()O NW .

4. Implementation issues

4.1 Data pre-processing

In principle, neural networks can perform essentially arbitrary nonlinear

mapping between the raw input data directly and the required final output values. Such

an approach generally gives poor results because the training of the neural network may

involve a nonlinear optimization algorithm. In many applications, data pre-processing is

one of the most significant factors in determining the network performance.

The simplest pre-processing may take the form of a linear transformation of the

input and the output data. Input variables are often correlated, thus more complex pre-

101

processing may include dimensionality reduction and the incorporation of prior

knowledge, which also reduces network size and training time.

4.2 Network topology

It is generally accepted that in order to perform arbitrary nonlinear mapping

between sets of data, only one hidden layer is necessary in a neural network using

sigmoid transfer function.

The number of hidden nodes is decided by the nonlinearity of the mapping, the

amount of data, and error tolerance. However, there is no universal method to determine

how many hidden nodes are needed in a two-layer feed-forward neural network. Too

small number of hidden nodes may not achieve a satisfactory accuracy and too large the

number may result in poor generality. It is often practical to start with a small number

of hidden nodes and gradually increase the number.

4.3 Convergence

The objective of neural network training is to minimize the error function ()E w

(A.6), which is typically a highly nonlinear function of the weights w and there may

exist many local minima that will trap the training algorithm. The momentum factor α ,

which tends to keep the weight changes moving in a certain direction, allows the

training algorithm to slip over small local minima and reach the global minimum. An

alternative approach is to start the training again using a different set of initial weights if

it is found that the error function keeps oscillating around a set of weights without

improvement.

102

APPENDIX B

MATLAB CODE

5. Polymerization reactor subroutine

function f=fedbatch(t, x)

f=zeros(4,1);

Cm=x(1);

Ci=x(2);

T=x(3);

Tj=x(4);

% Parameters

m=1.26;

% control input

u= 0.00001*(0.0419*(t/3600)^3 - 0.145*(t/3600)^2 -

0.1335*(t/3600) + 319.5);

% Modeling equations

f(1)=-.2706652952e-27*(1+.8458069884e-1*Cm)*Cm/exp(-

352.0958084 *1/T)/exp(2.3-

.1916666667e-2*(601.00-100*Cm)/(.6997288005+ .4277900178e-

1*Cm))*(.20-.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))/exp(17485.02994*1/T)* (.1193640e24*exp(-

352.0958084*1/T)*exp(-15449.10180*1/T)*Ci+2*sqrt

(.3561941124e46*exp(-352.0958084*1/T)^2*exp(-

103

15449.10180*1/T)^2* Ci^2+.4241271488e62*exp(-

352.0958084*1/T)*exp

(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-

387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T) ^2*exp(-

15449.10180*1/T)*Ci))*(.492e6*exp(-2191.616766*1/T)/

(1+.4409514079e-35/exp(-352.0958084*1/T)/exp(2.3-

.1916666667e-2*(601.00-100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*(.20-.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178 e-

1*Cm))^2/exp(17485.02994*1/T)*(.1193640e24*exp(-352.0958084

*1/T)*exp(-15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-

15449.10180*1/T)^2*Ci^2+.4241271488e62 *exp(-

352.0958084*1/T)*exp(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-

387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-

15449.10180*1/T)*Ci))*exp(-2191.616766*1/T)/exp(-

14011.97605*1/T))+.466e10*exp(-8922.155689*1/T));

f(2)=-.105e16*exp(-15449.10180*1/T)*Ci-.2289305982e-

28*Cm^2/exp(-352.0958084*1/T)/exp(2.3-.1916666667e-

2*(601.00-100*Cm)/ (.6997288005+.4277900178e-1*Cm))*(.20-

.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

104

1*Cm))/exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T) *exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-

15449.10180*1/T)^2*Ci^2+.4241271488e62* exp(-

352.0958084*1/T)*exp(2.3-.1916666667e-2*(601.00-100*Cm)/

(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-387)^2-

.2500000000e-4*(601.00-100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-15449.10180*1/T)*Ci))

*(.492e6*exp(-2191.616766*1/T)/(1+.4409514079e-35/exp(-

352.0958084*

1/T)/exp(2.3-.1916666667e-2*(601.00-100*Cm)/(.6997288005

+.4277900178e-1*Cm))^2*(.20-.821e-5*(T-387)^2-.2500000000e-

4*(601.00-100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/

exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T)*exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-15449.10180*1/T)^2*Ci^2+

.4241271488e62*exp(-352.0958084*1/T)*exp(2.3-.1916666667e-

2*(601.00-100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-

.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+ .4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp (15449.10180*1/T)*

Ci))* exp (-2191.616766*1/T)/exp(-

14011.97605*1/T))+.466e10*exp(-8922.155689*1/T));

f(3)=.4055679109e-20*exp(-2191.616766*1/T)/(1+.4409514079e-

35/exp (-352.0958084*1/T)/exp(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2*(.20-.821e-5

105

(T-387)^2-.2500000000e-4(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2/exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T) *exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-

15449.10180*1/T)^2*Ci^2+.4241271488e62 *exp(-

352.0958084*1/T)*exp(2.3-.1916666667e-2*(601.00-

100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-.821e-5*(T-

387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-

15449.10180*1/T)*Ci))*exp(-2191.616766*1/T)/exp(-

14011.97605*1/T))/exp(-352.0958084*1/T)/exp(2.3-

.1916666667e-2*(601.00-100*Cm)/

(.6997288005+.4277900178e-1*Cm))*(.20-.821e-5*(T-387)^2-

.2500000000e-4*(601.00-100*Cm)/(.6997288005+.4277900178e-

1*Cm))/exp(17485.02994*1/T)*(.1193640e24*exp(-

352.0958084*1/T) *exp(-

15449.10180*1/T)*Ci+2*sqrt(.3561941124e46*exp(-

352.0958084*1/T)^2*exp(-15449.10180*1/T)^2*Ci^2 ...

+.4241271488e62*exp(-352.0958084*1/T)*exp(2.3-.1916666667e-

2*(601.00-100*Cm)/(.6997288005+.4277900178e-1*Cm))^2/(.20-

.821e-5*(T-387)^2-.2500000000e-4*(601.00-

100*Cm)/(.6997288005+.4277900178 e-

1*Cm))^2*exp(17485.02994*1/T)^2*exp(-

15449.10180*1/T)*Ci))*Cm/ (1+.8458069884e-1*Cm)-.38e-

2*(1+.50833*(1-.1663893511*Cm)/(1+

.1663893511*Cm))*(.2+.8*exp(-7*(1-.1663893511*Cm)^3

106

/(1+.1663893511*Cm)^3))*(T-Tj);

f(4)=.8e-3*(1+.50833*(1-.1663893511*Cm)/(1+.1663893511

*Cm)) *(.2+.8*exp(-7*(1-

.1663893511*Cm)^3/(1+.1663893511*Cm)^3))*(T-Tj)+.10841-

.37e-3*Tj+m*u;

107

6. Generating data with faults for the neural network approach

% main program: generating data for neural network approach

y0=[6.01 0.13 319.5 293]';

% Adjust sampling rate by specify the middle number

t=0:90:21600;

length_t=length(t);

[t,y]=ode45('polyreactor', t ,y0);

% noise generation

n1=0.002 * randn(length_t, 1);

n2=0.001 * randn(length_t, 1);

n3=0.01 * randn(length_t, 1);

n4=0.01*randn(length_t, 1);

noise=[n1 n2 n3 n4];

% add noise to y

yn=y+noise;

%plot(t, yn);

%pause;

% reproduce u

u=zeros(length_t, 1);

i=1;

for t1=0:180:21600

 u(i,1)= 0.00001*(0.0419*(t1/3600)^3 - 0.145*(t1/3600)^2

- 0.1335*(t1/3600) + 319.5);

 i=i+1;

end

108

%plot(t,q)

% cleaning workspace

clear n1 n2 n3 n4 n5 noise t1 i y0 y;

yn=real(yn);

u=real(u);

% prepare data for neural nets

% input 1~6: Cm(t-1) ... Cm(t-6)

% input 7~12: u(t-1) ... u(t-6)

% output : Cm(t), Ci(t), T(t), Tj(t)

in=zeros(length_t-6, 12);

out=zeros(length_t-6,4);

% Normalization

normalized_yn=zeros(length_t, 4);

normalized_yn(:,1)=(yn(:,1) -

mean(yn(:,1)))./(max(yn(:,1))-min(yn(:,1)));

normalized_yn(:,2)=(yn(:,2) -

mean(yn(:,2)))./(max(yn(:,2))-min(yn(:,2)));

normalized_yn(:,3)=(yn(:,3) -

mean(yn(:,3)))./(max(yn(:,3))-min(yn(:,3)));

normalized_yn(:,4)=(yn(:,4) -

mean(yn(:,4)))./(max(yn(:,4))-min(yn(:,4)));

normalized_u=zeros(length_t,1);

normalized_u=(u-mean(u))./(max(u)-min(u));

109

% add jacket fouling fault

plant_output=normalized_yn(7:length(yn(:,4)),:);

temp=plant_output;

% plant_output is the final values used for residual

generation

plant_output(151:200,4)=temp(151:200,4)*.8;

% prepare input for neural model

temp=normalized_yn;

normalized_yn(51:100,3)=temp(51:100,3)*.8;

for i=7:length_t

 in(i-6,6)=normalized_yn(i-1,4);

 in(i-6,5)=normalized_yn(i-2,4);

 in(i-6,4)=normalized_yn(i-3,4);

 in(i-6,3)=normalized_yn(i-4,4);

 in(i-6,2)=normalized_yn(i-5,4);

 in(i-6,1)=normalized_yn(i-6,4);

 in(i-6,12)=normalized_yn(i-1,3);

 in(i-6,11)=normalized_yn(i-2,3);

 in(i-6,10)=normalized_yn(i-3,3);

 in(i-6,9)=normalized_yn(i-4,3);

 in(i-6,8)=normalized_yn(i-5,3);

 in(i-6,7)=normalized_yn(i-6,3);

end

in=in';

110

7. Generating training data for CART approach

load d00.dat;

load d01.dat

load d02.dat

load d03.dat

d00=d00';

d00=[d00,zeros(500,1)];

d01=[d01,zeros(480,1)];

d02=[d02,zeros(480,1)];

d03=[d03,zeros(480,1)];

d01(:,53)=ones(480,1);

d02(:,53)=2*ones(480,1);

d03(:,53)=3*ones(480,1);

d00=[d00(:,1:22),d00(:,42:53)];

d01=[d01(:,1:22),d01(:,42:53)];

d02=[d02(:,1:22),d02(:,42:53)];

d03=[d03(:,1:22),d03(:,42:53)];

training=[d00;d01;d02;d03];

111

8. Generating testing data for CART approach

load d00_te.dat;

load d01_te.dat

load d02_te.dat

load d03_te.dat

d00_te=[d00_te,zeros(960,1)];

d01_te=[d01_te,zeros(960,1)];

d02_te=[d02_te,zeros(960,1)];

d03_te=[d03_te,zeros(960,1)];

d01_te(:,53)=ones(960,1);

d02_te(:,53)=2*ones(960,1);

d03_te(:,53)=3*ones(960,1);

d00_te=[d00_te(:,1:22),d00_te(:,42:53)];

d01_te=[d01_te(:,1:22),d01_te(:,42:53)];

d02_te=[d02_te(:,1:22),d02_te(:,42:53)];

d03_te=[d03_te(:,1:22),d03_te(:,42:53)];

testing=[d00_te;d01_te;d02_te;d03_te];

112

9. CART main program

function m=fda_cart_main(train_x,train_y,test_x,test_y)

tic;

Wp=FDA(train_x, train_y);

fda_train_x=train_x*Wp;

fda_test_x=test_x*Wp;

T = optimal_tree_fit(fda_train_x,train_y);

YFIT_num = tree_evaluate(T, fda_test_x);

m=misclass(YFIT_num, str2num(test_y));

toc

function m=FDA(train_x, train_y)

% Fisher Discriminant Analysis

% train_x: numerical, training data, predicting variables

% train_y: string, training data, classes

%

% function returns Wp -- loading vector

row_size_of_set=size(train_x)*[1;0];

column_size_of_set=size(train_x)*[0;1];

% backup train_y value

temp=train_y;

% convert to numerical

train_y=str2num(train_y);

% maximum number of classes = 20

boundary_of_classes=zeros(20,2);

current_class=1;

boundary_of_classes(current_class,1)=1;

113

counter=1;

% find class boundaries

while counter < row_size_of_set

 wh

ile train_y(counter)== 0 && counter < row_size_of_set

 counter=counter+1;

 end

 boundary_of_classes(current_class,2)=counter-1;

 current_class=current_class+1;

 boundary_of_classes(current_class,1)=counter;

 train_y=train_y-ones(row_size_of_set,1);

end

boundary_of_classes(current_class-1,2)=counter;

number_of_class=current_class-1;

% restore train_y

train_y=temp;

% total mean and covariance

avgT=mean(train_x);

sT=(row_size_of_set-1)*cov(train_x);

% calculating class averages and covariances

% Maximum number of classes equals 20

% sb -- between class, sw -- within class

s=zeros(column_size_of_set,column_size_of_set, 20);

avg=zeros(20,column_size_of_set);

sb=zeros(column_size_of_set,column_size_of_set);

sw=zeros(column_size_of_set,column_size_of_set);

for i=1:number_of_class

114

avg(i,:)=mean(train_x(boundary_of_classes(i,1):boundary_of_

classes(i,2),:));

 s(:,:,i)=(boundary_of_classes(i,2)-

boundary_of_classes(i,1))*...

cov(train_x(boundary_of_classes(i,1):boundary_of_classes(i,

2),:));

 sw=sw+s(:,:,i);

 sb=sb+(boundary_of_classes(i,2)-

boundary_of_classes(i,1)+1)*(avg(i,:)-avgT)'*(avg(i,:)-

avgT);

end

% testing if sT=sb+sw; erase this line after debug

% sT-sb-sw

[V,D]=eig(sb,sw);

diag(D)

order=input('enter the FDA order you chose:\n');

m=V(:,1:order);

function m=cart_main(train_x,train_y,test_x,test_y)

tic;

T = optimal_tree_fit(train_x,train_y);

YFIT_num = tree_evaluate(T, test_x);

m=misclass(YFIT_num, str2num(test_y));

toc

function m=misclass(actual, target)

115

% Compare the actual CART classification with desired

values on the test

% set

% actual and target:both of them are integer.

%

size_of_set=size(actual);

% maximum number of classes = 20

boundary_of_classes=zeros(20,2);

% backup target value

temp=target;

current_class=1;

boundary_of_classes(current_class,1)=1;

counter=1;

while counter < size_of_set(1)

 while target(counter)== 0 && counter < size_of_set(1)

 counter=counter+1;

 end

 boundary_of_classes(current_class,2)=counter-1;

 current_class=current_class+1;

 boundary_of_classes(current_class,1)=counter;

 target=target-ones(size_of_set);

end

boundary_of_classes(current_class-1,2)=counter;

% restore target value

target=temp;

number_of_class=current_class-1;

% last component stores overall misclassification rate

misclass=zeros(number_of_class+1,1);

temp=sign(abs(actual - target));

116

for i=1:number_of_class

misclass(i,1)=sum(temp(boundary_of_classes(i,1):boundary_of

_classes(i,2),1))/(boundary_of_classes(i,2)-

boundary_of_classes(i,1)+1);

end

misclass(number_of_class+1,1)=sum(temp)/size_of_set(1);

m=misclass;

function T = optimal_tree_fit(train_x,train_y_cart)

% Find the optimal classification tree by cross-validation

% Inputs: train_x -- numerical

% train_y_cart -- string

%

% Output: T -- Classification tree

%

% Get the original tree

T=treefit(train_x, train_y_cart, 'prune', 'on');

% Optimizing the CART using cross-validation

[c,s,n,best] = treetest(T,'cross',train_x,train_y_cart);

% Prune the tree

T = treeprune(T,'level',best);

function YFIT_num = tree_evaluate(T, test_x)

% Test the classification tree using testing data

% returns numerical values of classes

YFIT = treeval(T,test_x);;

YFIT_num=double(YFIT)-ones(size(YFIT));

117

VITA

Born in July 1975 in Luoyang, Henan, China, Yifeng Zhou holds a B.S. degree

with honors in chemical engineering from Xian Jiao-Tong University (1996), and a

M.S. degree from the Research Institute of Petroleum Processing (1999). During his

Ph.D. studies at Texas A&M University, he worked for the Mary Kay O’Connor

Process Safety Center for four years as a graduate researcher focusing on abnormal

situation management and process monitoring. In Fall 2003 and Spring 2004, Yifeng

worked as a college intern with Applied Materials, Inc. in Austin, Texas.

Yifeng Zhou’s permanent address is:

Luoyang Zhonghao Gongsi, #20-9

Yiyang, Henan, 471600

China

