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   ABSTRACT 

 

Storm Surge Analysis Using Numerical and Statistical Techniques and Comparison with 

NWS Model SLOSH. (August 2004) 

Manish Aggarwal, B.E., Delhi College of Engineering, 

Delhi, India 

Chair of Advisory Committee: Dr. Billy Edge 
 
 

This thesis presents a technique for storm surge forecasting. Storm surge is the 

water that is pushed toward the shore by the force of the winds swirling around the storm. 

This advancing surge combines with the normal tides to create the hurricane storm tide, 

which can increase the mean water level by almost 20 feet. Numerical modeling is an 

important tool used for storm surge forecast. Numerical model ADCIRC (Advanced 

Circulation model; Luettich et al, 1992) is used in this thesis for simulating hurricanes. A 

statistical technique, EST (Empirical Statistical Technique) is used to generate life cycle 

storm surge values from the simulated hurricanes. These two models have been applied to 

Freeport, TX. The thesis also compares the results with the model SLOSH (Sea, Lake, 

and Overland Surges from Hurricanes), which is currently used for evacuation and 

planning. The present approach of classifying hurricanes according to their maximum 

sustained winds is analyzed. This approach is not found to applicable in all the cases and 

more research needs to be done. An alternate approach is suggested for hurricane storm 

surge estimation. 

 

 



 iv

 

 

DEDICATION 

To God and my family for guiding me throughout my life 



 v

ACKNOWLEDGMENTS 

 

This research was conducted at Texas A&M University and was supported by the 

Department of Civil Engineering, Texas A&M University through the Texas Engineering 

Experiment Station (TEEX). 

I would like to thank my Chair Dr. Billy Edge for his guidance and contribution in 

my understanding of this research and coastal engineering as a whole. I would also like to 

thank my advisory committee members: Dr. C. H. Kim and Dr. Douglas Sherman for 

their trust and guidance throughout this research project. 

I also wish to thank my fellow classmates and friends for their active help and 

contribution: Dr. Wahyu Pandoe, Mr. Young-Hyun Park, and Mr. Oscar Cruz Castro. 

The thesis would not have been possible without the interest shown by Mr. George 

Kidwell and Mr. Mel McKey of the Velasco Drainage District who made substantial 

contributions to the completion of this modeling study. 

Special thanks to my family for their constant support and motivation without 

which, I would have never come this far. 



 vi

TABLE OF CONTENTS 
                                                                                                                                       Page 

ABSTRACT....................................................................................................................... iii 

DEDICATION................................................................................................................... iv 

ACKNOWLEDGMENTS……..……………………………………..…………………   v 

LIST OF FIGURES……………………..………………………………..……………  viii 

LIST OF TABLES……………………….……………………………………………….x 

1 INTRODUCTION ...................................................................................................... 1 

1.1  Motivation........................................................................................................... 1 
1.2  Approach............................................................................................................. 3 
1.3  Study Area .......................................................................................................... 4 
1.4  Procedure ............................................................................................................ 5 
1.5  Outline .............................................................................................................. 10 

2 ADCIRC: MODEL DESCRIPTION ........................................................................ 11 

2.1  ADCIRC Model ................................................................................................ 11 
2.2  Tidal Propagation.............................................................................................. 17 
2.3  Bottom Stress.................................................................................................... 19 
2.4  Wind Forcing .................................................................................................... 20 

3 SLOSH...................................................................................................................... 29 

3.1  Development of SLOSH................................................................................... 29 
3.2  SLOSH Methodology ....................................................................................... 33 
3.3  SLOSH Output.................................................................................................. 34 

4 THE EMPIRICAL SIMULATION TECHNIQUE .................................................. 36 

4.1  Storm Consistency with Past Events................................................................. 38 
4.2  Storm Event Frequency .................................................................................... 40 
4.3  Risk-Based Frequency Analysis ....................................................................... 41 
4.4  Frequency-of-Occurrence Relationships .......................................................... 41 

5 PROJECT IMPLEMENTATION............................................................................. 44 

5.1  Coastline ........................................................................................................... 44          
5.2  Bathymetry........................................................................................................ 45 
5.3  Grid Generation ................................................................................................ 45 
5.4  Boundary Conditions and Model Setup............................................................ 45 
5.5  Tidal Verification.............................................................................................. 49 



 vii

                                                                                                                                        Page    

5.6  Tropical Storm Surge………………………………………………………….54                               
         5.7  Application of EST……………………………………………………………66 

6 COMPARISON WITH SLOSH ............................................................................... 73 

6.1  Methodology of Storm Atlas ............................................................................ 73 
6.2  Maximum Envelope of Waters (MEOW)......................................................... 74 
6.3  Storm Atlas for Harris/ Brazoria County.......................................................... 75 
6.4  Comparison with ADCIRC............................................................................... 77 
6.5  Alternate Approach........................................................................................... 84 
6.6  Validation.......................................................................................................... 87 

7 CONCLUSIONS....................................................................................................... 94 

REFERENCES ................................................................................................................. 97 

APPENDIX A ………………………………………………………………………….100 

APPENDIX B………………………………………..…………...…………………….116 

APPENDIX C..………………………………………..………………………………..191 

VITA………………………………………………….………………………………...202 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

 

LIST OF FIGURES 

                                                                                                                                       Page 

Fig. 1-1 Study area.............................................................................................................. 5 

Fig. 1-2 Computational domain .......................................................................................... 8 

Fig. 1-3 Bathymetry in the computational domain ............................................................. 9 

Fig. 1-4 Grid resolution in the region of interest ................................................................ 9 

Fig. 1-5 Bathymetry in the area of interest ....................................................................... 10 

Fig. 2-1 Nomograph from Jelesnianski and Taylor (1973) used to derive radius of 
maximum winds from given maximum surface winds (long term average,     
no gusts) .......................................................................................................... 23 

Fig. 2-2 Nested grid system used for hurricane wind computation .................................. 26 

Fig. 2-3 Plot of variation of wind stress for a well-developed hurricane moving      
towards Texas coast ........................................................................................ 28 

Fig. 3-1 SLOSH model basins for the East and Gulf coastlines of the U.S...................... 31 

Fig. 3-2 SLOSH model basin for Galveston Bay ............................................................. 32 

Fig. 5-1Comparison of tides at Freeport Harbor............................................................... 51 

Fig. 5-2  Comparison of tides at Pleasure Pier.................................................................. 52 

Fig. 5-3 Comparison of tides at Pleasure Pier with NOS gage......................................... 53 

Fig. 5-4 Wind speeds at Pleasure Pier .............................................................................. 53 

Fig. 5-5 Large and small scale plots of Hurricane Claudette’s track................................ 57 

Fig. 5-6 Raw surface elevation data for Hurricane Claudette at Freeport Harbor............ 59 

Fig. 5-7 Surge only surface elevation data for Hurricane Claudette................................. 60 

Fig. 5-8 Simulated-observed data for Hurricane Carla (1961) for Pleasure Pier.............. 63 

Fig. 5-9 Simulated-observed data for Hurricane Alicia (1983) for Pleasure Pier ............ 63 
 



 ix

                                                                                                                                        Page 

Fig. 5-10 Maximum surge at the approximate time of peak surge for Hurricane    
Claudette along the area of Freeport coast................................................... 64                               

Fig. 5-11 Location of points used for input to EST model ............................................... 67 

Fig. 5-12 Frequency relationship for the Freeport Harbor for 500 simulations of 200 
years. ............................................................................................................ 69 

Fig. 5-13 Mean value of surface elevation with standard deviation bounds for       
Freeport Harbor............................................................................................ 70 

Fig. 5-14 200 year storm surge values around the Freeport Levee system....................... 71 

Fig. 5-15 100 year storm surge values around the Freeport Levee system....................... 71 
 
Fig. 5-16 50 year storm surge values around the Freeport Levee system………………..72 

Fig. 6-1 MEOW for Hurricane Carla (1961) for Galveston Bay (units of elevation are     
in  feet (Jelesnianski 1992)) ............................................................................ 76 

Fig. 6-2 Comparison of ADCIRC/EST and SLOSH generated surge values for      
Pleasure Pier.................................................................................................... 79 

Fig. 6-3 Comparison of ADCIRC/EST and SLOSH generated surge values for      
Freeport Harbor............................................................................................... 80 

Fig. 6-4 Comparison of ADCIRC/EST and SLOSH generated surge values for Clear 
Lake................................................................................................................. 81 

Fig. 6-5 Frequency plot for maximum wind speeds ......................................................... 85 

Fig. 6-6 Frequency plot for pressure difference................................................................ 86 

Fig. 6-7 Category bands for Galveston Pleasure Pier ....................................................... 88 

Fig. 6-8 Category bands for Freeport Harbor ................................................................... 89 

Fig. 6-9 Category bands for Clear Lake............................................................................ 90 



 x

LIST OF TABLES 

                                                                                                                                       Page 

Table 2-1  Input data for Hurricane Claudette (2003) ...................................................... 21 

Table 5-1  List of stations used for tidal verification........................................................ 48 

Table 5-2  Tidal verification of ADCIRC along open coast............................................. 51 

Table 5-3  Tropical storms set .......................................................................................... 56 

Table 5-4   Comparison of storm surge computations with observed data measured     
from MSL........................................................................................................ 61 

Table 5-5  Hypothetical storm events ............................................................................... 65 

Table 6-1  Characteristics of hurricane database used in the study .................................. 77 

Table 6-2  Saffir Simpson scale ........................................................................................ 84 

Table 6-3  Return periods for different categories of hurricanes...................................... 87 



 1

1 INTRODUCTION1 

 
1.1 Motivation  

Storm surge is an abnormal rise of water generated by a storm, over and above the 

predicted astronomical tide. In coastal areas, storm surge causes the greatest 

concentration of death and destruction during a hurricane, more than even the powerful 

winds and the tremendous amounts of rainfall. Storm surges can be caused either by 

tropical storms or extra-tropical storms. The focus of this study is the storm surge caused 

by tropical storms or hurricanes. Since hurricanes are intense form of tropical storms they 

are discussed in this study. For a hurricane, the surge typically has duration of several 

hours and affects about 100 miles of coastline from its landfall location. In the great 

Galveston, Texas, hurricane of 1900, an estimated 6,000 people drowned when the island 

was almost completely submerged by the storm surge. Hurricane storm surges of over 20 

feet have been observed; hurricane Camille in 1969 produced a surge of approximately 

7.4 m (24 feet) in the area of Gulfport, Mississippi. The destruction caused by such 

abnormally high water is truly astounding. 

In the aftermath of other historic hurricane storm surges, areas of coast have been 

abandoned completely, as in the case of Indianola, Texas, which was deserted after a 

storm in 1875. More recently in July of 2003, hurricane Claudette caused severe damage 

in the state of Texas. The damage was estimated to be about $5 million comprising of 

damage to public as well as private properties and beach erosion. This damage resulted  

even though Claudette was not a strong Hurricane, being Category 1 on Saffir-Simpson  

                                                 
The thesis follows the style and format of Journal of Waterway, Port, Coastal and Ocean Engineering. 
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scale that is the lowest category of hurricane.  

A hurricane is a severe tropical storm that forms in the southern Atlantic Ocean, 

Caribbean Sea, and Gulf of Mexico or in the eastern Pacific Ocean. Hurricanes are also 

known as typhoons in some regions. Hurricanes need warm tropical oceans, moisture and 

light winds above them. If the right conditions last long enough, a hurricane can produce 

violent winds, incredible waves, torrential rains and floods. Hurricanes rotate in a 

counterclockwise direction around an "eye". 

Storm surges are caused by atmospheric pressure gradients and shear stresses 

acting on the surface of a body of water. Local water levels are affected day to day by 

even weak atmospheric disturbances that occur at a great distance, but the greatest impact 

certainly is from well-developed tropical storms and hurricanes that pass within the 

intermediate area. There are on average six Atlantic hurricanes each year; over a 3-year 

period, approximately five hurricanes strike the United States coastline from Texas to 

Maine (Ho 1987). 

Though strong winds from hurricanes and tropical storms often have the greatest 

influence on the level of the storm surge along a coastline, there are sometimes other 

factors, which contribute significantly to the total storm surge level. The total water level 

change experienced during a hurricane depends upon the combination of a number of 

complex influences. These influences include: 1) the storm surge, 2) astronomical tides, 

which are the normal cause of day to day water level change at the coast, 3) surface wave 

set-up, and 4) rainfall flooding. Storm surge is the combined effect on the water surface 

elevation by the reduced pressure, wind shear and wave runup. In the case of wave set-

up, in some locations as much as 50% of the total surge level can be the result of wind 
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 wave set-up (Jelesnianski and Taylor 1973). 

Two general approaches have been used to forecast hurricane storm surges: 

statistical modeling and numerical modeling. In statistical modeling, past observations of 

storm surge heights are correlated statistically to observed or forecasted hurricane 

characteristics. However, since hurricanes are relatively uncommon and are small scale in 

nature (compared to meteorological phenomena), insufficient data exist to allow such 

statistical correlations to be derived to the extent desired.  

Numerical modeling offers a viable alternative to statistical modeling for 

hurricane storm surge problem. In computer modeling of storm surge, a set of differential 

equations governing the flow of water (transport equations) are solved with relevant and 

pertinent boundary conditions to obtain storm surge. This approach, though effective fails 

to quantify storm surge value relative to the hurricane characteristics. 

Hence, a better approach as used in this study would be to utilize both of the 

above approaches. Knowing that hurricanes in the Atlantic Ocean can be assigned a 

temporal cycle, a frequency relationship can be performed. For these estimates to be 

useful, an accurate database needs to be populated with hurricane storm surge levels and 

their inherent characteristics. This study aims to provide an effective approach for 

estimating storm surge effects on an area by utilizing both numerical and statistical 

approaches for storm surge estimating. 

 
 

1.2 Approach 

Numerical modeling using the long wave model ADCIRC (Advanced Circulation 

model; Luettich, Westerlink, and Scheffner, 1992) is used to model historical hurricanes 
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that have affected the area and some of the extreme storms are perturbed to achieve the 

maximum impact in the area. The numerical simulations help in the generation of a 

database of storm characteristics like storm surge values, maximum winds, radius of 

maximum winds, eye pressure etc.  This database of storm characteristics is used in the 

statistical model EST (Empirical Simulation Technique, Scheffner et al., 1999). This 

procedure uses historic events to generate a large population of life-cycle databases that 

are post-processed to compute mean value maximum storm surge elevation frequency 

relationships with statistical error estimates.  

This study also tries to compare the results with NWS numerical model SLOSH 

(Jelesnianski et al, 1992). The model SLOSH has been used extensively to delineate 

coastal areas susceptible to hurricane storm surge flooding. 

 

1.3 Study Area 

The region of general interest within the Gulf of Mexico for this application 

consists of the Freeport area as shown in the Fig. 1-1. Freeport is an important industrial 

center and deepwater port located on the Texas coast. The community has a diversified 

source of income, but is predominantly dependent on the petro-chemical industry. The 

principal sources of income are derived from processing petroleum and petroleum by-

products. Brazoria County houses one of the world’s largest chemical complexes with the 

Dow Chemical being the principal employer. Since this area is exposed to storm surges 

resulting from tropical and extra tropical events, a levee system was constructed at 

Freeport, TX, in 1982. The levee was constructed for providing flood damage protection 

to the area and has an elevation of 6.5-7m above sea level. The levee system consists of a 

series of levees and pumping stations that protect an area of about 68 square kilometers. 
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The project was completed in 1982. The levee system is vital to protection against 

flooding of the nation’s most vital petro-chemical industry worth almost $500 billion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-1: Study area 

 

1.4 Procedure 

This study first required the development of a computational grid for the study 

area.  The ADCIRC model then used the computational grid to simulate tidal circulation 

and storm events.  The model grid was verified by comparing model-generated tide time 

series with the corresponding time series reconstructed from existing harmonic analyses 

and on-site measurements of surface elevation.  Storm event simulations were verified by 

comparing simulated results of water surface elevation with archived storm 
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measurements. Once the model was shown to be capable of reproducing historic events, 

all storms that significantly impacted the study area since 1886 were simulated. The 

beginning year 1886 is used as that is the first year in the available database maintained 

by the National Weather Service. In order to insure that the most severe events were 

included for all along the coastline, simulations included hypothetical events that could 

likely occur.   

Following the numerical simulations for all the selected storms, the database of 

computed surges and tides was used as input for the statistical procedure EST. Frequency 

computations are made at 35 locations in the Freeport area.  These stations are located at 

points of interest within the domain and help in establishing the extreme event storm 

surges along the levee system that was constructed for providing flood damage protection 

to the area. 

 

1.4.1 Computational Grid 

The modeling strategy has been to define the entire Gulf of Mexico as the 

computational domain and to refine the region of interest using the significant grid 

flexibility offered by the finite elements and the ADCIRC codes. Using the entire Gulf as 

the pertinent domain is quite convenient from a variety of perspectives. Most important, 

two well-defined open ocean boundaries of limited extent can be used to specify the 

boundary forcing functions that define the interaction between the Atlantic Ocean and the 

Caribbean Sea with the Gulf. The procedure for generation of the finite element grid 

required the following steps: 

1) Obtaining coastline to serve as boundary for our domain. 
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2) Generation of model bathymetry. 

3) Applying boundary conditions. 

4) Using grid generation software (SMS: Surface Water Modeling System) to 

generate finite element grid.    

A problem often encountered in the modeling of near-shore regions in the Gulf of 

Mexico is that the areas of interest are not well removed from the computational 

boundaries. The Gulf of Mexico being a semi-enclosed basin has numerous amphidromes 

that affect both the amplitude and phase of astronomical tide and storm surge. Circulation 

inside Gulf of Mexico is a function of wind and pressure hence computational domain for 

a hurricane surge model should encompass the whole gulf. If the model boundaries are 

placed in areas near to the coast, errors are introduced in the solution, as the large-scale 

effects as discussed above cannot be taken into account. Flow features such as resonant 

shelf edge waves, hurricane forerunners, and/or complex wind patterns associated with a 

hurricane driving the flow onto the shelf, make it desirable to define larger computational 

domains, including regions well beyond the continental shelf adjacent to the area of 

interest. The open boundary across the Strait of Florida was selected to run from Cape 

Sable in Florida to Havana, Cuba. The second open boundary stretches just south of the 

Yucatan Strait. The resulting finite element grid consists of 28,266 nodes, 52,624 

elements and is shown in Fig. 1-2. Minimum node-to-node spacing in the study is 

approximately 50 m. The bathymetry for the computational domain is shown in Fig. 1-3. 

The increased resolution of the study area is shown in Fig. 1-4. Bathymetry in the study 

area is shown in Fig. 1-5. This large domain approach to specification of boundary 
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conditions virtually eliminates contamination of model results from poorly defined 

boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-2: Computational domain 
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Bathymetry
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Fig. 1-3: Bathymetry in the computational domain 
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Fig. 1-4: Grid resolution in the region of interest 
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Fig. 1-5:  Bathymetry in the area of interest 

 

1.5 Outline 

The thesis consists of 7 sections. Section 1 consists of motivation, approach, study 

area, general procedure used in the thesis and outline. ADCIRC model and its 

components, which are related to this thesis, constitute section 2. SLOSH model, its 

history and methodology are described in section 3. Section 4 gives some insight into the 

EST method. The implementation of ADCIRC and EST to the study area is further 

described in section 5. The comparisons of ADCIRC/EST results with SLOSH model are 

given in section 6. Section 7 consists of conclusions. 
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2 ADCIRC: MODEL DESCRIPTION 

 
This section is divided into four parts. First part sheds light on ADCIRC model. 

The other three parts discuss components of the model relevant to this thesis like tidal 

forcing, bottom friction and wind forcing.  

 

2.1 ADCIRC Model 

Water-surface elevations and currents for both tides and storm events are obtained 

from the large-domain long wave hydrodynamic model ADCIRC (Advanced Circulation 

model; Luettich et al, 1992). ADCIRC is a finite element (FEM) code that makes use of 

the Generalized Wave Continuity Equation (GWCE) for improved stability and 

efficiency over other FEM hydrodynamic codes. Included within the code are features 

that allow the user to include tidal and atmospheric forcing in the computations. Wind 

can be input in a variety of different formats and could be derived from any source that 

the user has available. The model was developed as a family of two- and three-

dimensional codes with the capability of: 

a. Simulating tidal circulation and storm surge propagation over large computational 

domains while simultaneously providing high resolution in areas of complex 

shoreline and bathymetry.  The targeted areas of interest include continental 

shelves, near shore areas, and estuaries. 

b. Representing all pertinent physics of the three-dimensional equations of motion.  

These include tidal potential, Coriolis, baroclinic and all nonlinear terms of the 

governing equations. 
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c. Providing accurate and efficient computations over time periods ranging from 

months to years. 

  The 2-dimensional, Depth Integrated (2DDI) model formulation begins with the 

depth-averaged shallow-water equations for conservation of mass and momentum subject 

to incompressibility and hydrostatic pressure approximations. The Boussinesq 

approximation, where density is considered constant in all terms but the gravity term of 

the momentum equation, is also incorporated in the model.  Using the standard quadratic 

parameterization for bottom stress and omitting baroclinic terms and lateral diffusion and 

dispersion, the following set of conservation statements in primitive, non-conservative 

form and expressed in a spherical coordinate system are incorporated in the model 

(Flather 1988; Kolar et al. 1994): 

 

( cos1 [ ] 0                                                               (1)cos

tan1 1 [ U ]cos

1 [ ( )] *                                cos

UVUH
t R

U U UU V f VR Rt R
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g UHR

s s
o o
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φ λ φ
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φ λ φ

τ λ
ζ η τρ ρφ λ

∂∂ ∂+ + =∂ ∂ ∂

∂ ∂ ∂+ + − + =∂ ∂ ∂
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tan1 1 [ ]cos
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where : 

ζ                   = free surface elevation relative to the geoid, 
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U,  V             = depth-averaged horizontal velocities, 

H = ζ + h     = total depth of water column, 

h                  = bathymetric depth relative to the geoid, 

f = 2 Ω sinφ  = Coriolis force, 

Ω                 = angular speed of the Earth, 

φ                  = latitude in degrees, 

λ                 = longitude in degrees, 

Ps                  = atmospheric pressure at the free surface, 

g                   = acceleration due to gravity, 

η                   = effective Newtonian equilibrium tide potential, 

oρ                 = reference density of water, 

α             = effective Earth elasticity factor, 

,s sλ φτ τ           = applied free-surface stress, 

*τ                         = Cf (U2 + V2)1/2/H, bottom shear stress,  

fC                       = bottom friction coefficient, 

R                  = radius of Earth, 

t                    = time.  

    

    In order to overcome general stability problems encountered when finite 

element models depend upon the direct solution of these primitive forms of the governing 

equations, the ADCIRC code was developed around the Generalized Wave Continuity 

Equation (GWCE). Combining a time-differentiated form of the momentum equations 



 

 

14

yields this form of the primitive equations. With the inclusion of a simple eddy viscosity 

model for closure (Kolar and Gray 1994), the GWCE in Spherical coordinates takes the 

form: 

2
02

0 0

( ) ( cos ) tan1 1 ( )cos cos

2 sin ( ( ) )cos
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The ADCIRC-2DDI model solves the GWCE (Equation (4)) in conjunction with 

the primitive momentum equations given in Equations (2) and (3). The equations are 

solved using a FEM grid, made up of linear triangular elements (only three nodes per 

element). The model domain can be as extensive as an entire ocean basin, or more 

localized, as in the case of a small bay or estuary. The numerical solution of the 

governing equations presented above follows a two-step procedure in ADCIRC code. 

First, the GWCE (Equation (4)) is solved. The linear terms in the GWCE are discretized 

using a Galerkin weighted residual, three time level, and implicit scheme. The non-linear 

terms, along with Coriolis forcing, atmospheric forcing and tidal potential are solved 



 

 

15

explicitly (Westerink et al. 1993). The explicit formulation of these terms has the 

advantage that the solution depends only upon the previous time step. On the other hand, 

the implicit terms depend upon the solution of a system of equations, arranged in a 

banded matrix.  

The second step in the solution of the governing equations, after solving the 

GWCE, is to solve the momentum equations (Eq. (2) and (3)). Most of the terms of the 

momentum equations are handled in a Crank-Nicholson, two-time level, and implicit 

discretization scheme. The explicit terms in the momentum equations are the *τ  terms, 

the convective terms and the eddy viscosity terms.  

The available boundary conditions used in ADCIRC include: 

 specified elevation (harmonic tidal constituents or time series) 

 specified normal flow (harmonic tidal constituents or time series) 

 zero normal flow 

 slip or no slip conditions for velocity 

 external barrier overflow out of the domain 

 internal barrier overflow between sections of the domain 

 surface stress (wind and/or wave radiation stress) 

 atmospheric pressure 

 outward radiation of waves (Sommerfield condition) 

Those used in the model are described in section 5.4 

ADCIRC can be forced with: 

 elevation boundary conditions 

 normal flow boundary conditions 



 

 

16

 surface stress boundary conditions 

 earth load/self attraction tide 

A feature of ADCIRC that makes its application particularly useful in storm surge 

modeling of bays along the Texas Gulf coast is the capability of wetting and drying in the 

computational cells. Most of the coastal basins that make up the estuaries along the Texas 

Gulf coast are very shallow, with depths that are often no more than a meter. In addition 

to the shallow bay depths, the topography of coastal lands is that of flat coastal plains, 

with very gentle slopes. The barrier islands in Freeport are just a few meters above mean 

water level. During extreme meteorological events like hurricanes, it is possible that 

shallow areas may become dry from “blow down” (due to water being driven from the 

area by storm winds). On the other hand, the surge during a storm can cause extensive 

inland coastal flooding as is evident historically in all large storms affecting the Freeport 

area over the time period considered in this study. 

An element based technique for wetting/drying was developed for implementation 

in ADCIRC.  Conceptually, the algorithm assumes removable barriers exist along the 

sides of all triangular elements of the grid.  Nodes of the elements are designated as “dry” 

nodes, “interface” nodes, and “wet” nodes.  All elements connected to a dry node are 

assumed to have barriers in place such that there is no flow through the element, i.e. a dry 

element.  An element connected to all wet nodes is a wet element and is included in the 

full flow domain.  Interface nodes connect wet and dry elements.  Boundaries connecting 

interface nodes are considered as standard land boundary nodes at which the water level 

rises and falls against the element barrier. 
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2.2 Tidal Propagation 

Tidal potential forcing, which causes the normal observed periodic water level 

changes in large bodies of water, is included in ADCIRC. Other popular large-scale 

hydrodynamic models, like SLOSH and RMA2, do not include tidal potential forcing. 

ADCIRC determines the magnitude of the tidal potential η in equation (4) at each grid 

node and each model time step by the relationship:  

,

0
00

2 ( )
( , , ) ( ) ( ) cos ( )

j n

t t
t t L

T jn
B j v tjn jnj

π
η λ φ φ λ−

=
⎡ ⎤

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

∑               (5) 

where: 

j    = tidal species   

      =  0   = declinational                               

      =  1   = diurnal 

      =  2   = semidiurnal 

jnB = amplitude constant of the nth  tidal constituent of species j 

jnF = time dependent nodal factor 

jnv  =  time dependent astronomical argument 

 jL = function for species j 

        j = 0 ⇒ 2
0 3sin 1L φ= −  

        j = 1 ⇒ 1 sin(2 )L φ=  

        j = 2 ⇒ 2
2 cosL φ=  

0t   = a reference time, usually the beginning time of simulation 
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jnT = period of constituent n of species j 

The values of f  ( jnB ) and ν for the constituents used for the tidal potential computations 

are determined for the specific time that a model run begins using Le Provost database 

(Westerink, J.J. et al, 1993). LeProvost database (Le Provost et al, 1994) is an atlas of the 

main components of the tides and has been produced on the basis of a finite element 

hydrodynamic model, with the aim of offering the scientific community, using satellite 

altimetric data, a prediction of the tidal contribution to sea surface height variations under 

the ground tracks of the satellite that is totally independent of altimetric variation. Eight 

constituents, M2, S2, N2, K2, 2N2, K1, O1, and Q1 have been simulated. Five secondary 

constituents: Mu2, Nu2, L2, T2, and P1, required to insure a priori correct predictions, have 

been deduced by admittance. The admittance is assumed to be a slowly varying function 

of frequency so that the admittance of the major constituents can be used for determining 

the response at nearby frequencies for the secondary constituents.  

 The accuracy and precision of these solutions have been estimated by reference 

to the harmonic constituents’ data set available from analysis of the entire collection of 

the pelagic, plateau and coastal observations made to date, and archived. Over the deep 

oceans these solutions fit the observations to within a few centimeters for the larger 

components: M2, S2, K1, O1, and a few millimeters for the others. Over the continental 

shelves the differences are larger, because of the increase in the magnitude of the tidal 

waves, but the flexibility offered by the finite element technique to refine the 

discretization mesh of the model over the shallow seas enables detailed cotidal maps to 

be produced along the coasts. Note that tidal potential was not used during the simulation 
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of tropical storms.  Tides were combined after the simulations during the frequency 

analysis. 

 

2.3 Bottom Stress 

Bottom stress in the 2DDI version of ADCIRC is generally expressed as: 

                              *
bx Uτ τ=   and  *

by Vτ τ=  

Depending on the form used for τ* the result is either a linear, quadratic or hybrid 

function of depth-averaged velocity. For most coastal applications, quadratic friction 

should be used with a drag coefficient, Cf  ∼ 0.0025. In very shallow water, hybrid friction 

may be useful with Cfmin  ∼ 0.0025, particularly when wetting and drying is included since 

this expression becomes highly dissipative as the water depth becomes small. Linear 

friction is primarily useful for model testing or when a totally linear model run is desired. 

In this case the magnitude of τ* should be consistent (at least in order of magnitude) with 

a value that would have been computed using the quadratic friction expression and not 

with the value of Cf  that would normally be used in the quadratic expression. The 

description of formulation based on the form of τ* is given here. 

Linear friction:  τ* =  Cf   

  where  Cf = constant in time (may vary with space), read in model as input, unit    s-1 

Quadratic friction: 
( )

H
VUC f 2

1
22

*
+

≡τ  

  where Cf = constant in time (may vary with space), read in model as input 

             H = water depth  
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Hybrid friction: 
( )

H
VUC f 2

1
22

*
+

≡τ  

       where   
θ

γ
θ

⎥
⎥
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⎤

⎢
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⎣
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⎟
⎠
⎞

⎜
⎝
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H
HCC break

ff 1min  

       and Cfmin, Hbreak, ϑ, γ are constant in time and are read in as model input 

 

In the hybrid friction relationship Cf  approaches Cfmin in deep water, (H> Hbreak), 

and approaches 
γ

⎟
⎠

⎞
⎜
⎝

⎛
H

HC break
f min  in shallow water, (H < Hbreak ). The exponent ϑ 

determines how rapidly Cf approaches each asymptotic limit and γ determines how 

rapidly the friction coefficient increases as water depth decreases. If 
H

ng
C

break
f γ

2

min =  and γ 

= 1/3, where g is the gravitational constant and n is the Manning Coefficient, the hybrid 

friction will have a Manning equation frictional behavior for H < Hbreak.  

 

2.4 Wind Forcing 

In addition to the capability for tidal forcing within ADCIRC, there are provisions 

to input atmospheric and wind forcing information into the simulations. Several formats 

for the wind data are supported, including a fleet numeric and National Weather Service 

(NWS) wind file format. For this study, the Planetary Boundary Layer (PBL) model 

(Cardone et al. 1992) supplies the atmospheric forcing information. This model was 

developed to simulate hurricane generated wind fields using basic characteristics about a 

particular storm that can be easily retrieved from sources such as NWS archives of past 

hurricanes. 
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The input data to the model consists of location of the eye of the hurricane 

(latitude and longitude) in degrees, wind speed and pressure measured at the eye for 6-

hour intervals. Such data are available for all the storms. A sample input data for 

Hurricane Claudette (2003) is shown in Table 2-1. 

 

Table 2-1: Input data for Hurricane Claudette (2003) 

   Time (Day. 

Hour) 
Latitude Longitude 

Maximum 

wind speed 

(knots) 

Eye Pressure 

(mm of Hg) 

15.03 27.8 -94 70 988 

15.09 28 -95.1 75 982 

15.15 28.5 -96.1 75 983 

15.21 28.6 -97.5 65 989 

 

 

There are five simple parameters to describe the strength, size, and motion of a 

model storm; the parameters are: (1) Latitude: Normally the latitude of the storm's 

landfall; if the storm does not landfall, the latitude of a point of interest on the coast. The 

storm surge is only mildly sensitive to this parameter and varies by less than 10 percent 

between latitudes 15° and 45°, all other parameters being the same. (2) Radius of 

maximum winds: The distance from the storm center to the maximum wind of the storm. 

This distance is not dependent on storm motion, and for any given time it is assumed to 

be the same in all directions. This parameter controls the horizontal extent of the surge on 

the coast. If only the value of the peak surge on the coast is desired then the accuracy of 
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this parameter becomes unimportant, and for most purposes a rough estimate of this 

distance is sufficient. (3) Central pressure of the storm: The pressure difference from the 

center to the periphery of the storm. For an actual storm, this could be the mean of 

several differences measured along rays from the storm enter to the first anticyclonically 

turning isobar. This is the most important storm parameter; it controls the peak surge on 

the coast. For constant pressure drop, the peak surge on the coast is only weakly 

dependent on the radius of maximum wind. The pressure drop is not used directly in the 

model computations; instead it is used as an argument to arrive at a more convenient 

measure for computations, the stationary-storm-maximum-wind. (4) Speed of storm: Rate 

of motion of the storm center. With all other parameters held fixed, there is a critical 

storm speed that gives the highest peak surge on the coast. (5) Direction of storm: 

Direction of motion of the storm center. With all other parameters held fixed, there is a 

critical direction of storm motion, which gives the highest peak surge on the coast.  

This model simulates hurricane-generated wind and atmospheric pressure fields 

by solving the equations of horizontal motion that have been vertically averaged through 

the depth of the planetary boundary layer.  The PBL model requires input defining both 

the hourly location of the eye of the storm and a set of meteorological parameters 

defining the storm at various stages of development.  These parameters include latitude 

and longitude of the eye of the storm, track direction and forward speed measured at the 

eye, radius to maximum wind, central and peripheral atmospheric pressures, and an 

estimate of the geostrophic wind speed and direction.  A two-step process is used to 

generate wind fields for use by ADCIRC from the storm data. First, a program for the 

PBL model is used to determine the track of the storm as one our ‘snapshots’. These 
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snapshot data include the radius of maximum wind, which is approximated using a 

nomograph that incorporates the maximum wind speed and atmospheric pressure 

anomaly (Jelesnianski and Taylor, 1973), which is shown in Fig. 2-1. In the second step, 

the PBL model computes the wind field and pressure field of the hurricane over the 

relevant areas of the Gulf of Mexico. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-1:  Nomograph from Jelesnianski and Taylor (1973) used to derive radius of 
maximum winds from given maximum surface winds (long term average, no gusts) 
 

 

 

2.4.1 PBL 

The PBL (Planetary Boundary layer) is a method for specifying the surface wind 

field in hurricanes over the ocean by applying a dynamical-numerical model in 
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hurricanes. The method, requiring as input only a description of the surface pressure field 

and specification of storm motion and latitude, has been used to model the surface wind 

field. 

The PBL model solves for the surface wind stress and barometric pressure 

distribution. Wind speeds are computed in the model and then converted to surface wind 

stress. The PBL model solves the equations of horizontal motion that have been averaged 

through the depth of the atmospheric boundary layer, following the work of Chow (1971) 

. Written in general coordinate system fixed to the earth these equations can be expressed 

as: 

       ( ) ( )1 D
H

CdV f k V p K V V V
dt hρ

+ × = − ∇ + ∇ ⋅ ∇ −
r ur ur ur ur

                 (6) 

      where 

           VV
t
V

dt
Vd

∇⋅+
∂
∂

=                                                                                             (7) 

      and 

            V  =  vertically averaged horizontal velocity, 

             f    =  Coriolis force parameter, 

       k
r

 =  unit vector in the vertical direction, 

ρ =  mean air density, 

    p   =  barometric pressure, 

KH =  horizontal eddy viscosity coefficient, 

CD =  drag coefficient, 

 h   =  depth of the boundary layer.   
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It is assumed that the vertical advection of momentum is small compared to the 

horizontal advection and can be neglected and that shearing stress vanishes at the top of 

the PBL. In addition to the storm winds, the PBL model generates a pressure field. The 

pressure field is axisymmetric and is defined by exponential law which expresses Pc, the 

pressure at a particular location in the storm, as:  

                                              r
R

eyec

p

pePP
−

∆+=                                              (8)           

         where, 

          Peye  =  the central low pressure at the eye of the storm, 

         p∆    =  P- Peye, where P is the normal background pressure (∼ 1013 mb), 

           Rp    =  scale radius, equivalent to the radius of maximum winds, 

           r      =  radial distance from the eye. 

These equations are solved using a finite difference formulation, which utilizes a 

nested rectangular mesh for computations. The computational grid is a rectangular nested 

grid system consisting of five nests. An example of this type of mesh is shown in Fig. 

2-2, where a single quadrant of the complete numerical grid is shown. The grid moves 

with the storm, therefore the eye of the hurricane is always centered about the point 

indicated as origin. 
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Fig. 2-2: Nested grid system used for hurricane wind computation 

 
 

The PBL model produces a consistent description of the vertically integrated 

wind, the surface drag and the wind speed and direction at anemometer height in a 

moving hurricane with asymmetric horizontal wind distribution over water, with the 



 

 

27

strongest winds occurring at the right-hand side of the storm, when facing the direction of 

travel of storm. The formulation of the model includes momentum, heat, and moisture 

flux.  Equilibrium PBL theory is used to extend the surface wind description to terrain of 

specified roughness. 

The final surface wind stress output of the PBL model is determined from the 

computed wind speeds using the relationships: 

                                                 φ
φ

ρ
ρ

ρ
τ VVC

o

air
D

o

s =                                                  (9) 

 and 

                                                   λ
λ

ρ
ρ

ρ
τ VVC

o

air
D

o

s =                                              (10) 

where, 

      τφ, τλ    =    the surface stresses applied in the φ and λ directions 

      ρair/ρo  =  density ration of air and seawater (∼ 0.001293) 

      V         =  absolute magnitude of the wind velocity 

φV , λV  =  components of wind velocity in φ and λ directions 

CD       = 0.001*(0.75+0.67* V ) frictional drag coefficient 

φ, λ      = directions 

 A plot of the wind shear stress in a well-developed hurricane is shown in Fig. 

2-3, where it is shown that the greatest winds in this case occur north-east of the eye of 

this north-westerly moving storm. 
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     Fig. 2-3: Plot of variation of wind stress for a well-developed hurricane moving 

towards Texas coast 

 

The wind model is incorporated in a computer program to provide a gridded 

temporal and spatial history of the surface wind for use in surge calculation. After 

completing the computations for the wind and pressure fields at each hourly position of 

the storm, the solution from the nested rectangular grid is superimposed onto a triangular 

grid for use by ADCIRC. Therefore, when ADCIRC is run with the hurricane wind fields 

in the PBL format, it is supplied with the components of the surface stress in the φ and λ 

directions and barometric pressure at each node in the FEM grid and at every hour. 
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3 SLOSH 

 
A numerical-dynamic, tropical storm surge model, was developed for real-time 

forecasting of hurricane storm surges on continental shelves, across inland water bodies, 

along coastlines, and for inland routing of water – either from the sea or from inland 

water bodies. The most valuable application of SLOSH (Sea, Lake, and Overland Surges 

from Hurricanes) was in the design of evacuation plans for various communities.  

SLOSH is a two-dimensional finite difference code, which has been programmed 

to utilize a variety of curvilinear grid formats, such as polar, elliptical, and hyperbolic 

(Jelesnianski 1973). The full length of East coast and Gulf coast of the United States is 

broken down into several regional grids, or model “basins”. Each basin in turn is centered 

about a major bay, inlet or population center. The individual SLOSH basins that are used 

by NWS are shown in Fig. 3-1. An example of one of these model basins is shown in the 

grid no. 31 used for Galveston Bay in Fig. 3-2. The results from this grid have been used 

in this thesis for comparison purposes. 

 

3.1 Development of SLOSH 

The National Weather Service (NWS) began its efforts in hurricane storm surge 

modeling with a relatively simple model referred to as SPLASH (Special Program to List 

the Amplitude of Storm surges from Hurricanes). This model, like several other simple 

models for computing storm surge, was restricted to a continental shelf only, with the 

coastline acting as an artificial vertical wall. No flow through this wall was permitted. 

Such a model cannot consider inundation across terrain or surges across inland water 

bodies (Jelesnianski, 1972; Wanstrath and Reid, 1976). An earlier shelf model by Bodine 
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(1971) was even more restricted. His model required computations carried out on only 

one seaward line from the coast. Also the storm track was restricted to being nearly 

perpendicular to the coastline.       

The National Weather Service (NWS) embarked on an effort to develop a more 

comprehensive model to forecast storm surges, which incorporated features not possible 

with SPLASH. This follow-on model called SLOSH, uses a curvilinear grid system to 

allow greater resolution in the area of forecast interest, computes surges over bays and 

estuaries, retains some non-linear terms in the equation of motion, and allows sub-grid 

scale features such as channels, barriers, and flow of surge up the rivers. More recently 

the model has been used to delineate coastal areas susceptible to hurricane storm surge 

flooding. 

A curvilinear grid system overcomes many of the problems associated with 

specifying boundary conditions encountered with earlier models. Instead of limiting an 

invariant fine mesh to a small region or small basin, the SLOSH model’s coordinate 

system begins as fine mesh in the limited area nearest to the pole point of the grid and 

stretches continuously to a coarse mesh at distant boundaries of a large basin. The 

geographical area covered by the entire grid is large and there is detailed description over 

the fine-mesh region. Moreover, in many cases simple boundary conditions are sufficient 

(Jelesnianski et al, 1992). 
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Fig. 3-1: SLOSH model basins for the East and Gulf coastlines of the U.S. (Jelesnianski et al, 1992) 
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        Fig. 3-2: SLOSH model basin for Galveston Bay  (Jelesnianski et al, 1992)
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3.2 SLOSH Methodology 

The transport equations of motion on a Cartesian frame of reference used are: 

( ) ( )( ) ( )

( ) ( )( ) ( )
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∂ ∂ ∂
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         (11) 

where: 

                 U, V    = components of transport 

                 g          =  gravitational constant 

                 D         = depth of quiescent water relative to a common datum 

                 h          =  height of water above datum 

                 ho         =  hydrostatic water height 

                 f           =  Coriolis parameter 

                xτ,yτ      =  components of surface wind stress 

            Ar,..Br,.Ci  = bottom stress terms  

 

The SLOSH model incorporates finite amplitude effects but not advective terms 

in the equations of motion. It uses time-history bottom stress (Platzman, 1963; 

Jelesnianski, 1967), corrected for finite amplitude effects. Overtopping of barrier 

systems, levees and roads, is incorporated. Also, simply turning squares on and off as 

water inundates or recedes permits inland inundation. Astronomical tide is ignored except 

for superposition onto the computed surge; it is difficult to phase storm landfall and 

astronomical tide. A small error in time on track positions will invalidate computations 

with astronomical tide. 
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Besides the hydrodynamic model, the most significant part of SLOSH is the wind 

model that is used to generate hurricane wind fields using simple time-dependent storm 

data. The storm data required by SLOSH are storm position and central pressure at six-

hour intervals. Each model basin is calibrated separately by a single historic event 

through the use of three empirical coefficients in the model. These tuning coefficients are 

eddy viscosity, bottom friction factor, and wind drag. They are set to the same value at 

each node of the model basin, and these values are usually determined by a best-fit 

approximation. After the initial calibration of the model basin, no additional tuning is 

made for further model runs. 

 

3.3 SLOSH Output 

The final output of the SLOSH model runs gives both local information at 

selected sites in the grid, and global output for the entire modeled domain. Local, time-

dependent data are collected from as many as 60 individual stations. These time histories 

present the surge elevation, wind speed and wind direction every 10 minutes of simulated 

time. In addition to the model station output, SLOSH outputs global (values for each 

node in the grid) surge elevations. The global data is output at three-hour intervals up to 

the closest approach of the storm, and then every two hours, up until nine hours beyond 

the closest approach. 

There are other factors also that can have a significant influence on the total water 

level elevation during a storm. In coastal regions, the action of breaking waves can create 

a quasi-steady-state, long period “set-up” (if not set-down) whereby the original storm 

surge is altered. This wave action can affect bottom stress in shallow waters. Also, exotic 

effects occur such as an increase of density from suspended sand particles. Along coastal 
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regions, during passage of a tropical storm and onset of inundation, the totality of wind-

wave effects on surge is now well understood or even well observed. Many theoretical 

studies of an idealized and piecemeal nature, as well as idealized wave tank experiments, 

have been made. It is not sufficient to correct a computed surge for one or more long-

term interactions. Accordingly, the SLOSH model lumps the long-term interactions into 

an ad hoc generalized calibration to observed surge data generated by a multitude of 

historical storms: that is, the short term action from wind waves is absent but crude 

approximations for the long term effects may be present. The SLOSH model does give an 

indication of inland flooding but not the pulsating action of wind waves, such as short-

term, periodic, sheet flow over barriers (Jelesnianski et al, 1992). 
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4 THE EMPIRICAL SIMULATION TECHNIQUE 

 

The Empirical Simulation Technique (EST) is a procedure for simulating multiple 

life-cycle sequences of non-deterministic multi-parameter systems such as storm events 

and their corresponding environmental impacts. Essentially, it is a "Bootstrap" 

resampling-with-replacement, interpolation, and subsequent smoothing technique in 

which random sampling of a finite length database is used to generate a larger database 

(Borgman et al. 1992). The only assumption is that future events will be statistically 

similar in magnitude and frequency to past events. As stated above, EST is a generalized 

procedure applicable to any cyclic or frequency-related phenomena (Scheffner et al, 

1999). For example, if one can parameterize storm events as well as obtain or simulate 

corresponding historical impacts for these events, EST could be used to investigate life-

cycle scenarios of storm conditions. The EST begins with an analysis of historical events 

that have impacted a specific locale.  The selected database of events (the training set) is 

then parameterized to define the characteristics of the event. The interdependence of 

parameters is computed directly from the respective parameter interdependencies 

contained in the historic data. In this manner, probabilities are site-specific; do not 

depend on fixed parametric relationships or assumed joint probability distributions. The 

impacts of events may be known or may be simulated by other models (e.g., hurricane 

events can be characterized by parameters such as central pressure, forward speed, etc. 

and their impact may be simulated with appropriate hydrodynamic and storm wind 

models).  Parameters that describe an event, i.e., a storm in this discussion, are referred to 

as input parameters or input vectors.  Response parameters or response vectors define 

event-related impacts such as storm surge elevation, inundation, shoreline and dune 
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erosion, etc.  These input parameters and response parameters are then used as a basis for 

generating life-cycle simulations of hurricane activity with corresponding impacts.  

The descriptive characteristics of the storm event with respect to the specific 

location of interest are determined by the input parameters or input vectors. For tropical 

storms these input parameters are studied at the point when the eye of the hurricane is 

closest to the station of interest. These vectors are defined as: 

1) tidal phase during the event, with 1.0 corresponding to high water slack, 

0.0 MSL at maximum ebb, -1.0 low water slack, these represent relative 

values that are defined for each station 

2) radius of maximum wind for the hurricane when the eye is closest to the 

hurricane in nautical miles. 

3) minimum distance from the eye of the storm to the location of interest in 

nautical miles. 

4) pressure at the hurricane eye in millibars (mb) 

5) wind speed in the hurricane at the instant of eye hitting the coast, 

measured in knots. 

                  6)  direction of forward propagation of the eye of the hurricane in knots. 

7)  tidal range during the event: with spring, neap or mid tide conditions. 

The maximum storm surge elevation reached at specified gauge locations is 

defined as the response vector of the storm at that location. The specified response vector 

for this study was determined by simulating the specific storm event via the ADCIRC 

hydrodynamic model using the computational domain shown in Fig. 1-2. The output 

vector(s) represents the environmental response to the storm. This response is defined at 

location X and is a direct consequence of the storm via the storm parameter values 
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defined at the point of nearest proximity of the storm eye to point X. For the case of 

stage-frequency analyses, maximum surge is assumed to occur when the eye of the storm 

is nearest to location X. 

 

4.1 Storm Consistency with Past Events 

The first major requirement for the use of EST is that future events will be 

statistically similar to past events.  This criterion is maintained by insuring that the input 

vectors for simulated events are similar to those of past events and the input vectors have 

similar joint probabilities to those historical events of the training set.  For example, a 

hurricane with a large central pressure deficit and low maximum winds is not a realistic 

event – the two parameters are not independent although their precise dependency is 

unknown.  The simulation of realistic events is accounted for in the nearest-neighbor 

interpolation-bootstrap-resampling technique developed by Borgman (Scheffner, et al. 

1999 and Borgman, et al. 1992). By using the training set as a basis of for defining future 

events, unrealistic events are not included in the life cycle of events generated by the 

EST. Events that are output by EST are similar to those in the training set with some 

degree of variability from the historic/historically based events. This variability is a 

function of the nearest neighbor: therefore the deviation from historic conditions is 

limited to natural variability of the system.  

The basic technique can be described as follows.  Let X1, X2, X3, . . . Xa be n 

independent, identically distributed random vectors (historic storm events) each having 

two components [Xi={xi(1),xi(2)}; I =1,n].  If there are no hypothetical events, each 

event Xi has a probability pi of l/n.  If one storm event is used to generate two 

hypothetical events, then the original storm and each of the two perturbations are 
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assigned a probability of one-third of l/n.  A cumulative probability relationship can be 

developed in which each storm event of the total training set is assigned a segment of the 

total probability of 0.0 to 1.0.  Therefore each event occupies a fixed portion of the 0.0 to 

1.0 cumulative probability spaces according to the total number of events in the training 

set.  A random number from 0 to 1 is then used to identify a storm event from the total 

storm training set population.  The procedure is equivalent to drawing and replacing a 

random sample from the full storm event population. 

The EST is not simply a resampling of historical events technique, but rather an 

approach intended to simulate the vector distribution contained in the training set data 

base population.  The EST approach is to select a sample storm based on a random 

number selection from 0 to 1 and then performs a random walk from the event Xi with n 

number of response vectors to the nearest neighbor vectors.  The walk is based on 

independent uniform random numbers on (-1,1) and has the effect of simulating 

responses that are not identical to the historical events but are similar to events, which 

have historically occurred.  However it is important to point out that it is possible that the 

response value of water surface elevation (i.e. tide plus surge) may be greater than the 

greatest value in the total training set or it could be smaller than the smallest of the 

training set. 

The process can be summarized as follows. Select a specific storm event from the 

training set and proceed to the location in multidimensional input vector space 

corresponding to that event. From that location, perform a nearest neighbor random walk 

to define a new set of input vectors. This new input vector defines a new storm, similar to 

the original storm but with some variability in parameters. 
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4.2 Storm Event Frequency 

The second criteria to be satisfied is that the number of storm events selected per 

year must be statistically similar to the number of historical events that have occurred at 

the area of concern.  Given the mean frequency of storm events for a particular region, a 

Poisson distribution is used to determine the average number of expected events in a 

given year.  For example, a Poisson distribution can be written in the following form: 

                                       !);Pr( s
es

s λλλ
−

=                                                                 (12) 

for s=0,1,2,3… The probability Pr(s;λ) defines the probability of having s events per year 

where λ is the historically based number of events per year. In the present study, 

historical data were used to define λ as: 

λ = 0.2307 (27 historical events/117 years or one event every 4.33 years) 

Output from the EST program is N repetitions of T years of simulated storm event 

responses.  For this study, 500 repetitions, N, of a 200 year sequence, T, of storm activity 

are used.  It is from the responses of those 500 life cycle simulations that frequency-of-

occurrence relationships are computed. Because EST output is of the form of multiple 

time–series simulations, post processing of output yields mean value frequency 

relationships with definable error estimates. The computational procedure followed is 

based on the generation of a probability distribution function corresponding to each of the 

T-year of simulated data.  In the following section, the approach adopted for using these 

storms to develop frequency-of-occurrence relationships is given. 
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4.3 Risk-Based Frequency Analysis 

The primary justification for applying the EST to a specific project is to generate 

risk-based frequency information relating to effectiveness and cost of the project with the 

level of protection provided. The multiple life-cycle simulations produced by EST can be 

used for developing design criteria in two approaches. In the first, the actual time series 

are input to an economics based model that computes couple storm inundation, structure 

response, and associated economics. The model internally computes variability 

associated with the risk-based design. The other application is the post processing of 

multiple time-series to generate single-response frequency relationships and associated 

variability.   

 

4.4 Frequency-of-Occurrence Relationships 

Estimates of frequency-of-occurrence begin with the calculation of a probability 

distribution function (pdf) for the response vector of interest.  Let X1, X2, X3, . . . , Xn be 

n independent, identically distributed, random response variables with a cumulative pdf 

given by  

   Fx (x)  = Pr [X < x]                                                                     (13) 

where Pr[X<x] represents the probability that the random variable X is less than or equal 

to some value x, and Fx(x) is the cumulative probability density function ranging from 0.0 

to 1.0.  The problem is to estimate the value of Fx without introducing some parametric 

relationship for probability.  The following procedure is adopted because it makes use of 

the probability laws defined by the data and does not incorporate any prior assumptions 

concerning the probability relationship. 
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Assuming a set of n observations of data, the n values of x are first ranked in 

order of increasing size.  In the following analysis, the parentheses surrounding the 

subscript indicate that the data have been rank-ordered.  The value x(1) is the smallest in 

the series and x(n) represents the largest value.  Let r denote the rank of the value x(r) 

such that rank r = 1 is the smallest and rank r = n is the largest. 

An empirical estimate of Fx(x(r)), denoted by Fx(x(r)), is given by Gumbel (1954) 

(See also Borgman and Scheffner (1991) and Scheffner and Borgman (1992)) as: 

                                          )1()( )( +
= n

rxF rχ                                                     (14) 

for {x(r), r = 1, 2, 3, . . ., n}.  This form of estimate allows for future values of x to be less 

than the smallest observation x(1) with a cumulative pdf of 1/(n+1), and to be larger than 

the largest values with cumulative pdf of n/(n+1). 

The cumulative pdf as defined by Equation (14) is applied to develop stage-

frequency relationships as follows.  Consider that the cumulative probability for an n-

year return period storm can be written as 

                n
nF 11)( −=                                    (15) 

where F(n) is the simulated cumulative pdf for an event with a return period of n years.  

Frequency-of-occurrence relationships are obtained by linearly interpolating a stage from 

Equation (14) corresponding to the pdf associated with the return period calculated by 

Equation (15). 

Equations (14) and (15) are applied to each of the N-repetitions of T-years of 

storm events simulated via the EST. Therefore, there are N frequency-of-occurrence 

relationships generated.  From these results, the standard deviation is determined to 
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provide an estimate of the variability of the result.  The standard deviation is computed 

for each return period as: 

  
2(1 / ) ( ) ]

1

N
N x xnn

σ
−

∑= −
=

⎡ ⎤
⎢ ⎥⎣ ⎦                                (16)  

where x  is the mean value of x. 
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5 PROJECT IMPLEMENTATION 

 

The model as stated before required the generation of finite element grid and 

application of appropriate boundary conditions in order to simulate tides and coupling 

with the wind model PBL, to simulate hurricanes and tropical storms. The process 

required the following tasks: 

1. Obtaining Coastline 

2. Obtaining Bathymetry 

3. Grid generation 

4. Boundary conditions 

5. Tidal verification 

6. Storm verification, simulation and entry into database 

7. EST analysis 

 

5.1 Coastline 

The coastline is required to define the extents of the model domain. This will 

become the boundary of the computational mesh. The coastline around our area of 

interest as well as the ocean defines the domain. The coastline for this purpose is obtained 

in digital format from GEODAS and NOAA databases. The coastline is in the form of 

World Vector Shoreline subset at 1:1million resolution (altered) format. Since the 

obtained coastline was ragged in nature, it was smoothened  before being used for grid 

generation. 

 



  

 

                                                                                                                                                                 45 
 

5.2 Bathymetry 

The bathymetry in the Gulf of Mexico varies dramatically, as is illustrated in the 

Fig. 1-3. Bathymetric data in most of the Gulf was obtained from the grid developed by 

Scheffner et al. (2003), GeoDas (a database developed by National Oceanic and 

Atmospheric Administration, NOAA), USACE surveys, surveys conducted by Texas 

A&M University in the area of interest, and USGS terrain data. The terrain data was in 

the form of 30-meter grid digital elevation models (DEM).  These data are based on the 

USGS 7.5 minute x 7.5-minute quads maps and are interpolated from 5-foot elevation 

contours. 

 

5.3 Grid Generation 

The grid was generated as a combination of finite element grid developed by 

Scheffner et al. (2003) and modified in the area of interest with details added. The grid in 

the area of interest was developed using SMS (Surface Modeling System). To get a 

mesh/grid with density radiating from the center of the Freeport channel, size functions in 

SMS were used along with celerity and wavelength functions so that smaller elements are 

obtained closer to the shore to correctly model the area of interest. 

 

5.4 Boundary Conditions and Model Setup 

Boundary conditions are imposed on the solutions of ordinary differential 

equations and partial differential equations, to fit the solutions to the actual 

problem.There are many kinds of possible boundary conditions, depending on the 

formulation of the problem, number of variables involved, and (crucially) the 

mathematical nature of the equation. 
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The boundary conditions used within ADCIRC for this study were: 

• External boundary with no normal flow as an essential boundary condition and 

no constraint on tangential flow. This is applied by zeroing the normal boundary 

flux integral in the continuity equation and by zeroing the normal velocity in the 

momentum equations. This boundary condition should satisfy no normal flow in 

a global sense and no normal flow at each boundary node. This type of 

boundary represents a mainland boundary with a strong no normal flow 

condition and free tangential slip.  

• Internal boundary with no normal flow treated as an essential boundary 

condition and no constraint on the tangential flow. This is applied by zeroing 

the normal boundary flux integral in the continuity equation and by zeroing the 

normal velocity in the momentum equations. This boundary condition should 

satisfy no normal flow in a global sense and no normal flow at each boundary 

node. This type of boundary represents an island boundary with a strong normal 

flow condition and free tangential slip.  

• External boundary with non-zero normal flow as an essential boundary 

condition and no constraint on the tangential flow. This is applied by specifying 

the non-zero contribution to the normal boundary flux integral in the continuity 

equation and by specifying the non-zero normal velocity in the momentum 

equations. This boundary condition should correctly satisfy the flux balance in a 

global sense and the normal flux at each boundary node. This type of boundary 

represents a river inflow or open ocean boundary with a strong specified normal 

flow condition and free tangential slip.  
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There are several other boundary conditions that can be applied in ADCIRC but 

they were not needed for the present model. The model was “spun up” (started with 

progressively increasing forcing such as tides or winds) from homogeneous initial 

conditions using a time ramp to avoid problems with short period gravity modes and 

vortex modes in the sub internal frequency range. A very smooth hyperbolic tangent 

ramp function, which acts over approximately one day, was applied to both boundary 

conditions and direct forcing functions. A 6-day spin-up was determined to be more than 

adequate for all conditions of interest. 

A time step of 6 sec was used for tidal propagation and a time step of 2 seconds 

was used for storm simulation in order to accommodate the strong gradients associated 

with strong winds for storm conditions. Using higher time steps resulted in oscillations 

and long-term instabilities. The optimal time step was calculated based on Courant 

number criteria. The Courant Number criteria is usually expressed in the one-dimensional 

form as follows: 

                                    Courant number = x
tv

∆
∆

 

where: 

     ∆x = nodal spacing 

        v = average linear velocity 

      ∆t = incremental time step 

The Courant Number constraints provide the necessary conditions for the finite 

element mesh design and the selection of time steps in transport modeling. The Courant 

Number constraint requires that the distance traveled by advection during one time step is 

not larger than one spatial increment. Based on wave celerity, it ranged from 0.0025 to 
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0.82. Time weighing factors of 0.35, 0.30 and 0.35 were used in the GWCE (Generalized 

Wave Continuity Equations). The parameter τ0   was set equal to –0.005 as this signals 

ADCIRC to use 0.005 in deep water and 0.02 in shallow water, so that a balance is set 

between the primitive continuity and wave equation portions of the GWCE equation. 

 

Table 5-1: List of stations used for tidal verification 

S. No Location Longitude ° Latitude ° 

1 Corpus Christi -97.38928 27.08113 

2 Freeport Harbor -95.34277 28.95019 

3 Sabine Pass -93.83873 29.68882 

4 Galveston Bay entrance south jetty -94.69849 29.32304 

5 Round Point Galveston Bay -94.78059 29.31827 

6 Galveston Bay entrance -94.70587 29.34739 

7 Bolivar Roads -94.78388 29.34029 

8 Galveston (channel) (2) -94.78774 29.31305 

9 Galveston Pleasure Pier -94.78747 29.28495 

10 Galveston Channel -94.80136 29.31203 

11 Jamaica Beach -95.00899 29.19919 

12 Morgan Point -94.9766 29.6756 

13 Clear Lake -95.06118 29.55583 

14 Lynchburg Landing -95.09607 29.77917 

15 San Luis Pass -95.12016 29.07968 
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5.5 Tidal Verification 

Tidal water surface elevation data computed with the ADCIRC model were 

recorded at 15 locations for verification purposes. These locations are listed in Table 5-1. 

Storm surge water surface elevations were archived for 35 locations within the area of 

interest for subsequent computation of frequency-of-occurrence relationships. 

The verification of the model had to be done to ensure that grid resolution, 

bathymetry, and boundary conditions were acceptable to properly simulate conditions in 

the defined domain. For comparison of tidal simulations with observed tides, verification 

was accomplished using 8-constituents (M2, S2, N2, N1, K1, O1, Q1, and P1), as these 

constituents comprise most of the tidal energy, with tidal elevations calculated using 

software XTIDE which in turn uses published harmonic series, and NOS published tidal 

records. The use of fewer tidal constituents resulted in less accurate simulation of tides in 

the study area. 

Tidal circulation was simulated within ADCIRC by specifying a surface elevation 

time series at the Florida Strait and just south of the Yucatan Strait as shown in the 

computational grid of Fig. 1-2. This boundary condition specification is accomplished by 

reconstructing an 8-constituent tidal elevation time series at each open water boundary 

node of the grid based on amplitudes and Greenwich epoch values obtained from a 

database incorporated in the SMS software also known as LeProvost database. 

Additionally, tidal potential terms are specified at each node of the computational grid.  

The ADCIRC model has an internal harmonic analysis option in which individual 

constituent amplitudes and epochs are computed at user specified locations during the 

tidal simulation.   
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Verification of tidal circulation was made by comparing both ADCIRC computed 

harmonic constituents and ADCIRC computed time series with existing constituent data 

and reconstructed time series at each of the 15 verification locations listed in Table 5-1.  

Comparisons of ADCIRC versus published Harmonic Analysis (HA) computed 

constituent amplitudes and Greenwich epochs (G) are shown in Table 5-2 for two 

locations.  Because the Gulf of Mexico is a semi-enclosed body of water, approximately 

10 to 15 days of spin up time were required for the tide to come to a dynamic 

equilibrium, i.e. when the tides are acceptably reproduced.  The harmonic analysis used 

for the comparisons in Table 5-2 were based on a 43-day simulation of tides and during 

this time the harmonic analysis was computed for the 29-day (one lunar month) period of 

days 15 through 43. A period with little wind activity was chosen to effectively compare 

the real-time data and ADCIRC simulated time-series. In order to demonstrate a degree 

of acceptability for the constituent comparisons shown in Table 5-2, a tidal elevation time 

series for days 15 through 43 is shown in Fig. 5-1 and Fig. 5-2 at different recording 

stations.  As shown, the comparisons are quite acceptable and fully adequate for the 

statistical generation of stage-frequency relationships. The period of little wind activity is 

useful in comparisons with NOS published time series whereas in the case of comparison 

with XTIDE wind or lack of it, does not affect the comparison. This is because XTIDE 

tidal time series do not have the effect of wind. 
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Table 5-2:Tidal verification of ADCIRC along open coast 

Constituents Galveston Pleasure Pier Freeport Harbor 

 Amp – m 
Mod / HA 

G – deg 
Mod / HA 

Amp – m 
Mod / HA 

G – deg 
Mod / HA 

K1 .162/. 197 33.2/42.6 .175/. 188 18.7/26.6 

O1 .162/. 187 20.8/32.1 .167/. 178 13.2/15.9 

P1 .051/. 056 14.2/18.5 .059/. 065 17.1/21.6 

Q1 .034/. 043 11.6/16.2 .037/. 046 2.2/4.8 

N2 .025/. 037 290.2/285.1 .024/. 035 261.1/258.4 

M2 .102/. 138 317.6/295.7 .092/. 101 273.5/265.2 

S2 .024/. 040 278.9/282.6 .033/. 035 284.3/178.9 

K2 .009/. 011 271.3/282.1 .014/. 015 266.1/272.6 
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Fig. 5-1:Comparison of tides at Freeport Harbor 
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Fig. 5-2:  Comparison of tides at Pleasure Pier 

 

Comparison of tides was also made with NOS published time series. The 

comparison is not as good as the tide gages record instantaneous water surface variations, 

which includes wind waves. Fig. 5-3 shows this comparison and Fig. 5-4 shows the wind 

speeds at the same location. It can be seen that differences are observed between 

simulated and observed data whenever there is higher wind action in the region resulting 

in wind waves. This is because the model ADCIRC in this particular case does not 

account for wind. 
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Fig. 5-3: Comparison of tides at Pleasure Pier with NOS gage 
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Fig. 5-4: Wind speeds at Pleasure Pier 
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It was only necessary to show that the model acceptably reproduced water levels 

for all gauges to demonstrate approximate verification in a more global sense with 

verification efforts concentrated on the study area.  However, in order to demonstrate that 

the overall verification was acceptable, all model to reconstructed prototype tidal time 

series are presented in Appendix A.  As shown, the comparisons are acceptable and 

demonstrate that the ADCIRC model is properly reproducing tides throughout the general 

area of interest as well as in the specific study area. 

 

5.6 Tropical Storm Surge 

The PBL model was used during this study and was coupled with ADCIRC in the 

form of a wind file, which can be input to the ADCIRC model to simulate wind effects of 

the storms of interest for the study area. Peripheral atmospheric pressures were assumed 

equal to the standard atmospheric pressure of 1013 millibars (mb) and the geostrophic 

wind speeds were specified as 6 knots in the same direction as the moving eye of the 

storm.  All additional data were computed from data contained in the National Oceanic 

and Atmospheric Administration’s (NOAA) Hurricane DATabase (HURDAT) of tropical 

storm events (Jarvinen, Neumann, and Davis 1988).  This database is updated yearly and 

now contains descriptions of all hurricane, tropical storm, and severe tropical depressions 

that have impacted the east coast of the United States, Gulf of Mexico, and Caribbean 

Sea from 1886 through 2002.  The database contains latitude and longitude locations of 

the eye of the hurricane with the corresponding central pressure and maximum wind 

speeds at 6-hour intervals. The recent Hurricane Claudette (July 2003) was simulated by 

using track data from weather databases, which contain track information: latitude, 

longitude, time along with minimum pressure and maximum wind. 
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The goal of this component of the study was to compute frequency-of-occurrence 

relationships for storm surge plus tide in the Freeport area.  In order to develop these 

relationships, it was necessary to identify tropical storms that have historically impacted 

the study area.  This was accomplished by making use of the tropical storm database 

(Scheffner, et al, 1994) that was generated through simulation of 134 historically based 

storm events along the east coast, Gulf of Mexico, and Caribbean Sea.  The database uses 

the HURDAT database described above as input.  For 486 discrete locations along the 

U.S. coast, peak storm surge values corresponding to storm events, which produced a 

surge of at least 0.305 m, were archived and indexed according to event, location, and 

surge magnitude.  The database was used to select 26 storm events for the present study 

beginning with the hurricane of 1886 and extending through Hurricane Claudette (2003).  

These events, shown in Table 5-3, represent the selected historical set of storms.  An 

example plot of the storm track and location every 6 hours of Hurricane Claudette is 

shown in Fig. 5-5.  The track for each storm event of the historical training set is shown 

in Appendix B.  
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Table 5-3: Tropical storms set 

HURDAT No./Name     Date of Storm  HURDAT No./Name       Date of Storm 

1.   #5                               8/12/1886 14. #602 – Carla                 9/3/1961 

2.   #117                           8/27/1900 15. #690 – Celia                 7/31/1970  

3.   #183                           7/13/1909 16. #703 – Edith                 9/5/1971 

4.   #211                           8/5/1915 17. #704 – Fern                   9/3/1971 

5.   #232                           8/1/1918 18. #722 – Delia                 9/1/1973  

6.   #295                           6/27/1929 19. #809 – Chris                 9/9/1982 

7.   #310                           8/12/1932 20. #812 – Alicia                8/15/1983 

8.   #324                           7/25/1933 21. #841 – Bonnie              6/23/1986 

9.   #397                           8/2/1940 22. #867 – Chantal             7/30/1989  

10. #405                           9/16/1941 23. #874 – Jerry                10/12/1989 

11. #445                           8/24/1945 24. #923 – Dean                 7/28/1995 

12. #565 – Audrey           6/25/1957 25. #965 – Frances             9/8/1998 

13. #586 – Debra             7/23/1959  26. #1001 – Allison            6/5/2001 

  27. #1016 - Claudette         7/5/2003 
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Fig. 5-5: (a) Large and (b) small scale plots of Hurricane Claudette’s track 
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This set of tropical storms is verified by comparing National Ocean Survey (NOS) 

measured tide gage records taken at Pleasure Pier and Freeport Harbor. These data are 

ideal for storm event verification effort as it allows calibration of the radius of maximum 

wind that is an important input to the PBL model to optimize the model for comparison 

of the set of storms for the area of interest. Due to spin-up time of 10-15 days required for 

tidal simulations, the decision was taken to compare storm surge elevations without tidal 

forcing. Therefore, surge only time-series were constructed by removing the astronomical 

tide from the raw NOS tide gage records, and the ADCIRC surge was computed without 

tidal forcing. For example, Fig. 5-6 shows a time series of NOS data for Freeport for 

Hurricane Claudette (2003).  As is evident from Fig. 5-6, the storm surge is accurately 

captured; however, the tides are not accurately simulated due to spin-up time required for 

tidal simulation in the Gulf. In Fig. 5-7, surge-only data is shown, which is computed by 

subtracting tides and pre-storm datum from the raw signal.  
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  Fig. 5-6:  Raw surface elevation data for Hurricane Claudette at Freeport Harbor 
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        Fig. 5-7: Surge only surface elevation data for Hurricane Claudette 

 

NOS Data are available for Pleasure Pier for the period starting August 1957 

through August 2003. Data for Freeport Harbor is available only for the period starting 

March 1995 through August 2003. The data for Clear Lake is available starting August 

1991. This period represents almost a 50-year period and encompasses majority of the 

storms in the Galveston bay and Freeport. 

All storms shown in Table 5-3 were simulated using ADCIRC model without 

tide. Storm surge peak values for events before August 1957 were compared to anecdotal 

data from National Hurricane Center’s historical archives by removing tides. Storm event 

simulated hydrographs for events after August 1957 were compared to the NOS 

hydrographs at Pleasure pier, Freeport Harbor and Clear Lake gage stations. Results and 
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comparisons of peak surge values in meters relative to mean sea level for each event for 

which data are available are shown in Table 5-4. 

 

Table 5-4:  Comparison of storm surge computations with observed data measured 

from MSL 

Pleasure Pier     

(m, msl) 

Freeport Harbor 

(m, msl) 

Clear Lake shores   

(m, msl) 

Storm No. 

ADCIRC NOS ADCIRC NOS ADCIRC NOS 

1.   #5 0.796  0.880  1.068  

2.   #117 2.141  0.788  1.216  

3.   #183 1.493  0.931  1.475  

4.   #211 3.059  1.372  3.369  

5.   #232 0.780  0.576  0  

6.   #295 1.875  0.917  1.123  

7.   #310 3.040  0.612  3.9232  

8.   #324 0.689  0.687  0.688  

9.   #397 0.264  0.270  0.37  

10. #405 2.155  2.159  3.234  

11. #445 1.002  1.351  2.391  

12. #565 – Audrey 0.516  0.449  0.514  

13. #586 – Debra 1.105 0.954 0.562  2.64  

14. #602 – Carla 2.314 2.46 3.295  3.811  

15. #690 – Celia 0.952 0.91 1.525  1.466  

16. #703 – Edith 1.158 1.25 0.927  1.172  

17. #704 – Fern 1.477 1.32 1.446  2.067  

18. #722 – Delia 1.227 1.14 1.227  1.965  

19. #809 – Chris 0.434 0.401 0.409  0.553  
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Table 5-4: Continued 

Pleasure Pier            

(m, msl) 

Freeport Harbor 

(m, msl) 

Clear Lake shores  

(m, msl) 

Storm No. 

ADCIRC NOS ADCIRC NOS ADCIRC NOS 

21. #841 – Bonnie 0.431 0.69 0.327  0.511  

22 #867 - Chantal 0.593 0.682 0.325  0.459  

23. #874 – Jerry 1.39 0.997 0.967  1.869  

24. #923 – Dean 0.859 0.84 0.498  1.177 0.921 

25. #965 – Frances 0.791 0.84 0.877 0.865 1.15 1.31 

26. #1001 – Allison 0.605 0.792 0.345 0.585 0.81 0.985 

27.#1016- Claudette 1.481 1.523 1.707 1.772 1.595 1.563 

 

Fig. 5-8 shows a comparison of simulated-adjusted raw data for Hurricane Carla 

(1961) for the Freeport Harbor. A comparison of simulated-observed data for Hurricane 

Alicia (1983) is also provided in Fig. 5-9 for pleasure Pier. Hurricane Alicia represents 

the most intense storm for which the observed data are available. As shown, the model 

generated surge matches the observed data very closely with respect to maximum surge 

as well as shape. The maximum observed surge at Pleasure Pier for Hurricane Alicia was 

2.710 m and the maximum surge computed from ADCIRC was 2.334 m, giving an error 

of approximately 0.14 m. Model generated storm surge hydrographs and comparisons 

wherever available are included in Appendix B along with hurricane track plots. 
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Fig. 5-8:  Simulated-observed data for Hurricane Carla (1961) for Pleasure Pier 
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Fig. 5-9:  Simulated-observed data for Hurricane Alicia (1983) for Pleasure Pier 
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 A spatial distribution snapshot plot of the maximum surge at the approximate 

time of peak surge for Hurricane Claudette (2003) along the open coast area of Freeport 

is shown in Fig. 5-10. Model results agree very well with observed data reported from 

NOS database where storm surge of 1.3 - 2 meters above normal tides was observed and 

both the barrier islands were inundated.  

Model simulations for tidal elevations are considered to be acceptable for use in 

the frequency analysis. Additionally, model results compare well to available storm surge 

data for a variety of storm events and qualitatively compare well to post-storm visual 

surveys. The conclusion of the tidal and storm surge verification effort is that the model 

reasonably reproduces known historical events such as tide and tropical storms. 
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Fig. 5-10:  Maximum surge at the approximate time of peak surge for Hurricane   
Claudette along the area of Freeport coast 
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Although this study is based on a historical storm set, it is important to consider 

not only historical storm events but also potential storm events that could reasonably be 

expected to occur. For example it is reasonable to assume that the storm could easily have 

tracked within + one degree of the actual track. Therefore, in order to insure that the most 

severe events have been included for the area of interest, simulations include hypothetical 

events that could occur. For example, the tracks of the most intense events in the 

historical storm events are shifted along the coast such that all maximum storm surge 

events that could occur are taken into consideration. Two events were defined as 

perturbations for each of HURDAT storms 117 (August 1900), 211 (August 1915), 310 

(August 1932), Carla (September 1961) and Alicia (August 1983) to augment the 

historical storm set. Each perturbation is represented by a shift of the storm track reported 

in HURDAT database as indicated in Table 5-5. These events have been shown to be 

among the most severe storms to have impacted the study area between 1886 and 2003. 

Use of these 10 hypothetical events increases the total to 37 storms that are used as a 

“training set” for the study.  Thus the training set is comprised of 27 historical storm 

events plus the 10 perturbations. 

 

Table 5-5: Hypothetical storm events 

Storm Event Perturbation shift in degrees longitude 

  #117 August 1900        - 2 events +/- 1.0 degree longitude 

  #211 August 1915        - 2 events +/- 1.0 degree longitude 

  #310 August 1932        - 2 events +/- 1.0 degree longitude 

  Carla September 1961  - 2 events +/- 1.0 degree longitude 

  Alicia August 1983      - 2 events +/- 1.0 degree longitude 
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5.7 Application of EST 

In order to establish the training set of storms 27 historical events and 10 storm 

perturbations were used to produce a total of 37 events.  Each of the 37 storms was 

simulated without tide to produce a set of surge-only responses at the stations.  The 

storms are then assumed to have taken place at different phases of the astronomical tides: 

1) high tide, 2) mean (MSL = 0.0) tide, and 3) low tide.  It is further assumed that the 

storm could occur during the lunar cycles of: 1) spring tide, 2) between spring and neap, 

and 3) neap tide.  Input vectors representing these phases of the tide are described above.  

This combination of tide and lunar cycle produces 9 surface elevations for each of the 27 

storm events of Table 5-3 and 10 hypothetical storm events at the station locations shown 

in      

 

 Fig. 5-11.  This procedure produces a total input/response vector training set of 

333 (37*9), tide plus surge events for each station location. It is also considered that the 

mid-tide level would have twice the probability of occurrence on the MHHW or the 

MLLW. Similarly the mean tidal range would have twice the probability of occurrence as 

spring or neap tide. 
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 Fig. 5-11:  Location of points used for input to EST model 

 
 

 
The water surface elevation that is one of the response vectors for the EST 

analysis was calculated as follows.  Analysis of tidal values for the tides at Freeport 

harbor show that the approximate peak tidal elevation at spring, mid, and neap cycle is 

0.35, 0.268, and 0.20 m.  The four primary model-generated diurnal and semi-diurnal 

tidal constituents for the Freeport Harbor study area are the K1, O1, M2, and S2 with the 

amplitudes of 0.137, 0.125, 0.07, and 0.02 m respectively.  The values of spring and neap 

tides are calculated using these constituents as follows assuming that most of the tidal 

energy is contained in these constituents, using the relationship:  

GULF OF MEXICO 

BRAZOS 
RIVER 

FREEPORT 
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spring high tide                 =  K1 + O1 + M2 + S2 

mid spring/neap high tide =  K1 + O1 

neap high tide                   =  K1 - O1 + M2 + S2 

This relationship generates an acceptable approximation of 0.352, 0.261, and 

0.191 m versus 0.35, 0.268, and 0.2 m for the 9 combinations, as explained earlier, of 

astronomical and lunar tidal effects.  Therefore this relationship was used for all 

locations. Similar steps are used for Galveston Pleasure Pier and Clear Lake locations. 

The model simulations are used to generate a database of historical and 

historically based storm events for use in generating maximum surface elevation 

frequency-of-occurrence relationships at the sites as shown in Fig. 5-11. The statistical 

approach used to generate multiple life-cycle simulations of storm-activity for the study 

area and the subsequent post-processing of results to generate surge versus frequency-of-

occurrence relationships is described here. 

An example set of 500 frequency relationships and the mean value for the 

Freeport Harbor are shown in Fig. 5-12.  Fig. 5-13 shows the mean value with the +/- one 

standard deviation error bounds. The extreme event storm surge for locations around the 

Freeport levee for 200, 100 and 50-year storms are shown in Fig. 5-14 through 5-16. The 

storm surge frequency-of-occurrence tables for all the 35 locations are provided in 

Appendix C. 

Surge elevations are affected by many variables such as offshore bathymetry, 

storm/shoreline orientation, location with respect to the Gulf of Mexico, and the local 

topography.  Therefore, the frequency-indexed surge distribution varies from one end of 

the study area to the other. 
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Fig. 5-12:  Frequency relationship for the Freeport Harbor for 500 simulations of 
200 years 
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Fig. 5-13:  Mean Value of surface elevation with standard deviation bounds for 
Freeport Harbor 
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Values are in meters 

 

Fig. 5-14:  200 year storm surge values around the Freeport Levee System 

 
 
 
 

Values are in meters 

 

Fig. 5-15:  100 year storm surge values around the Freeport Levee System 
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Values are in meters 

 

 
Fig. 5-16: 50-year storm surge values around the Freeport Levee System 

 
 

The ADCIRC-EST approach can thus be used to estimate and predict life cycle storm 

surge values at any given site as shown above. These values can hence be used for design 

purposes or for evacuation and planning purposes. The model SLOSH is currently used 

by federal authorities in the United States for hurricane evacuation and planning. The 

next section presents a comparison between this approach and the SLOSH approach. 
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6 COMPARISON WITH SLOSH  

The SLOSH numerical model is used to prepare an atlas of pre-computed surges. 

On-site computations with several tracks, tropical cyclone intensities and sizes may 

require many computer runs. During a real time situation this can overload computer 

facilities and personnel, and require unacceptably time consuming analysis of the output.  

To generate a database of pre-computed atlases of storm surges for a particular 

basin with inland water bodies and complicated terrain features, recourse is made to a 

tropical cyclone climatology, which gives a broad view of the tropical cyclone types 

likely to affect a given region. Historical tropical cyclones affecting a region are stratified 

into preferred track directions, intensities, and sizes. Such families of equally spaced, 

parallel tracks for surge computations gently curve to reflect climatological data, but 

should all correspond in the vicinity of the landfall points. 

 

6.1 Methodology of Storm Atlas 

The family of tracks account for alternate landfall points for a given direction 

along a coastal area of interest (or else alternate distances from the coast for alongshore 

moving tropical cyclones). It is recognized that the generated surge normally is strongly 

dependent on the angle the track makes with the coast, several hours before and after 

landfall. Thus, the remaining track segments affect the surge only mildly. Thus, although 

the location of a tropical cyclone far out to sea and its landfall point may be significantly 

in error, the family, or families, representing the broad approach to land can be used to 

estimate the likely surge consequences. 

For simplification, it is assumed that the cyclone translation speed, central 

pressure and size remain constant along the track. Alternate values of these parameters 
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can be used for each track family to provide a more comprehensive database. The 

embedded, identical tropical cyclone model in each family of tracks also can be designed 

to alter the tropical-cyclone central pressure and size with time after landfall to represent 

any explosive filling and core changes of the tropical cyclone. 

After a study of potential surges with idealized tracks from the atlas, runs are then 

made to fine tune a surge forecast that includes relevant details from the actual cyclone. 

 

6.2 Maximum Envelope of Waters (MEOW) 

An atlas of pre-computed surges can be a bulky document and collating the 

several possible tropical cyclone conditions from the many into a composite potential of 

surges is a demanding chore. Since each computer run gives an envelope of highest 

waters in a basin for the life history of a tropical cyclone, it is a simple computer chore to 

determine the highest possible surge at all vulnerable coastal locations from a particular 

family of tracks. The resulting map is called a Maximum Envelope of Waters, or MEOW. 

Model runs are made using hypothetical tropical cyclones stratified by the 

Saffir/Simpson scale of intensity categories and sizes. To generate the MEOW, the 

maximum surge value from the entire family of cyclones at each grid square of a basin is 

saved; regardless of which cyclone was responsible. The resulting composite of peak 

surges makes up a MEOW such as that shown in Fig. 6-1. Other MEOWs can be 

developed for a range of cyclone profiles and conditions. This provides an easily 

accessible summary of the "worst case" surge scenario given the uncertainty in the 

current forecast situation. 
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6.3 Storm Atlas for Harris/ Brazoria County 

The model SLOSH was run for imaginary storms with varying intensities 

(category 1–5) and the effect of storm making landfall at a relative distance from 

Galveston channel was studied. These results were produced in the form of Maximum 

Storm Surge Penetration Maps in the Storm Atlas (College of Architecture 1994). 

There are five MEOWs, which indicate the worst case MEOWs (or MOMS, 

Maximum of MEOWs) for each category of hurricane making landfall from 87 nautical 

miles right to 70 nautical miles left of Galveston channel. For each of these landfall areas, 

a high and a low MEOW were produced. 

The high (maximum) is produced by taking all of the various MEOW movement 

directions and forward movement speeds and using the high surge elevations. The low 

(minimum) is produced by using the lowest surge elevations. As will be noticed, the 

differences between high (maximum) and low (minimum) surge estimates for the same 

category of hurricane are quite extreme. This illustrates the extreme range of possibilities 

in modeling with SLOSH as only hypothetical events are used.  
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Fig. 6-1: MEOW for Hurricane Carla (1961) for Galveston Bay (units of elevation 
are in feet (Jelesnianski et al, 1992)) 
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6.4 Comparison with ADCIRC 

For comparison of ADCIRC simulated storm surge with SLOSH predicted surges, 

the hurricanes used in the study were arranged according to the approach used in the 

storm atlas that is on the basis of the Saffir-Simpson scale category and the distance from 

Galveston ship channel as shown in Table 6-1. 

 

Table 6-1: Characteristics of hurricane database used in the study 

Storm No. Pressure 
(mb) 

Distance from 
Galveston channel  

(n-miles) 

Max Wind 
(knots) Category Radius Max 

Wind (nm) 

5 984 131.698 85 2 21.28 

117 964 17.921 115 4 41.37 

117(+1.0) 964 56.765 115 4 41.37 

117(-1.0) 964 42.596 115 4 50.83 

183 986 43.156 120 4 31.91 

211 953 35.912 125 4 50.83 

211(+1.0) 953 86.889 125 4 17.73 

211(-1.0) 953 14.758 125 4 50.83 

232 980 115.608 90 2 50.83 

295 988 56.221 75 1 40.19 

310 955 19.599 125 4 31.91 

310(+1.0) 942 80.955 125 4  
41.37 

310(-1.0) 942 40.514 125 4 41.37 

324 981 352.513 80 1 44.92 

397 973 106.709 70 1 34.28 

405 977 86.896 80 1 50.83 
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Table 6-1: Continued 

Storm No. Pressure 
(mb) 

Distance from 
Galveston channel  

(n-miles) 

Max Wind 
(knots) Category Radius Max 

Wind (nm) 

445 987 126.904 120 4 50.83 

565 – Audrey 972 88.699 125 4 50.83 

586 – Debra 989 34.993 75 1 50.83 

602 – Carla 931 171.81 145 5 49.82 

602 – Carla(+1.0) 931 246.148 145 5 49.82 

602 – Carla(-1.0) 931 97.423 145 5 49.82 

690 – Celia 950 232.38 110 3 29.55 

703 – Edith 978 249.656 140 5 28.37 

704 – Fern 979 139.846 80 1 43.73 

722 – Delia 987 56.211 60 1 50.83 

809 – Chris 994 77.112 55 1 37.82 

812 – Alicia 963 38.474 100 3 22.46 

812 – Alicia(+1.0) 963 107.395 100 3 22.46 

812 – Alicia(-1.0) 963 7.211 100 3 37.82 

841 – Bonnie 992 53.89 75 1 18.91 

867 – Chantal 984 34.603 70 1 26 

874 – Jerry 983 26.869 65 1 20.09 

923 – Dean 999 42.472 40 1 50.83 

965 – Frances 990 195.874 55 1 50.83 

1001 – Allison 1003 40.109 45 1 50.83 

1016 - Claudette 983 127.365 75 1 41.37 
 

 

MEOW charts from the storm atlas are read and the corresponding maximum and 

minimum values for a storm are read based on its distance from the Galveston ship 

channel and its category. These values are then plotted along with ADCIRC simulated 
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value in the return period frequency charts. The ADCIRC simulated surge values for 

different hurricanes are plotted on the frequency curve and the SLOSH 

maximum/minimum surge values corresponding to that category of hurricane and its 

distance from Galveston ship channel are plotted along with it. The ADCIRC value 

corresponds to ‘+’ marker, whereas the values from SLOSH are represented by ‘x’ 

marker. The comparison was made for three different locations, Pleasure Pier in 

Galveston Island, Freeport harbor and Clear Lake and is shown in Fig. 6-2, 6-3 and 6-4.  
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Fig. 6-2: Comparison of ADCIRC/EST and SLOSH generated surge values for 
Pleasure Pier 
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Fig. 6-3: Comparison of ADCIRC/EST and SLOSH generated surge values for 
Freeport Harbor 
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Fig. 6-4: Comparison of ADCIRC/EST and SLOSH generated surge values for 
Clear Lake 

 
 
As evident from the Figs, there is a large amount of scatter in the case of SLOSH 

values, especially in the case for Freeport harbor. This may be because the SLOSH runs 

with simulated hurricanes whose distances were measured from Galveston ship channel. 

The distance between Freeport Harbor and the ship channel being 80 miles, the SLOSH 

analysis is not accurate for Freeport area. In the case of storm surge at Freeport due to 

Hurricane Alicia (1983), SLOSH estimates that a hurricane of its intensity and at a 

distance of 38.45 n-miles from Galveston ship channel should produce a maximum surge 

of 3.96 m and a minimum surge of 1.2192 m. However, the ADCIRC generated surge 

due to Alicia was 1.023 m. The anecdotal surge due to Alicia (Garcia and Flor, 1984) was 

reported to be around 1 m. Thus SLOSH over-estimates the surge in this case. This is due 
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to the fact that Alicia made landfall around 50 miles to the right of Freeport looking 

landward. In the northern hemisphere due to rotation of earth, the effect of storm surge is 

more pronounced on the right side of hurricane center rather than left side. This effect is 

not taken into account in the approach used for producing the storm atlas using SLOSH. 

Hence the storm surge values from the storm atlas are accurate only for centrally located 

regions in the SLOSH grid. Also this approach assumes that all the storms of same 

category making landfall within the distance of 46 n-miles right to 23 n-miles left of a 

location will produce the same surge. This may be true for some ideal cases but imagine 

an intense hurricane of category 5 having Rmax (Radius of maximum winds) of 29 n-

miles making landfall 10 miles right of the central location. In this case areas 35-52 n-

miles from the central location will experience high values of surge of the order of 3-4 

meters but the areas on the left hand side of landfall location will experience much less 

storm surge, assuming the bathymetry around the area is similar. 

 Some of the problems associated with SLOSH are thus identified as follows: 

1. Although storm-induced flooding along the coast of the United States can be        

predicted fairly accurately using SLOSH, storm surges in bays and estuaries are often 

poorly predicted using this method because of irregular coastline and local topography. 

2. The simplification used for preparing of these atlases is that the cyclone 

translation speed, central pressure and size remain constant along the track. This 

assumption is generally not true. For example the hurricane of 1915 (7/13/1915) had its 

maximum winds (120 knots) at a distance of approximately 120 miles from its landfall 

and had winds of much lower value (85 knots) at landfall. Thus the assumption of 

constant size of storm and constant winds results in over-estimation of surges.  
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3. For the same landfall location and category storms, the storm atlas gives the 

same results. It is accepted that the peak surge on the open coast is not always 

monotonically related to the parameter, maximum wind speed of the storm. In fact, the 

peak surge may increase or decrease according to the manner in which the other storm 

parameters are affected by the change in maximum wind speed. The pressure drop, size 

scale and shape of the wind profile also have an effect on the peak surge. For example 

Hurricane Camille (1969) that was an ordinarily sized storm though it was a category 

five storm and resulted in storm surge of 6 meters in Gulfport, Mississippi. However, 

SLOSH gives prominence to maximum wind speeds during analysis. 

4. The SLOSH model’s polar grid as shown in Fig. 3-2 is generally very coarse 

compared to the ADCIRC grid. For the study area Freeport, a high-resolution grid was 

needed to effectively calculate storm surges all along the existing levee system. The 

SLOSH grid covers the whole Freeport area in just 24 squares. 

5. Since we do not completely understand the processes of hurricane formation 

and hence cannot model these accurately, using empirical relations to simulate them is 

a wrong approach. Thus the approach of using historical storms to generate database of 

storm surge and then using a return period concept to calculate maximum storm surges 

may be more reliable instead of just simulating different storms, where not all the 

storms have similar features. Using the same coefficients for all these different storms 

also is not advisable.   

6. Risk assessment by definition necessitates a probabilistic approach whereas 

SLOSH uses an event-driven approach. 

The SLOSH model results are taken manually from the contour plots provided in 

the Storm Atlas. Due to difficulties reading the SLOSH values from the contour plots, the 
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values in the table should only be considered approximate (+/- 0.5 feet) and only used for 

a broad and general comparison. 

 

6.5 Alternate Approach 

The database consisting of 37 storms, which is extended to 333 storms with 

addition of neap, spring tides, high and low tides, is used for this EST analysis. Two 

different type of analysis were done. In one case the pressure difference between the eye 

of the hurricane and ambient is used as a response vector with all other input vectors 

remaining the same as in storm surge analysis with addition of storm surge associated 

with that hurricane as an input vector. The other case is repeated with maximum wind 

speed being used as a response vector. The lower bands of pressure difference values and 

maximum wind speeds for different categories of hurricanes, based on Saffir Simpson 

scale are read from Table 6-2. These two plots are shown in Fig. 6-5 and Fig. 6-6. 

 

Table 6-2: Saffir Simpson scale 

Category Pressure Difference (mb) Maximum Wind Speed (knots) 

1 33 64 

2 33 83 

3 48 96 

4 68 114 

5 93 135 
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              Fig. 6-5: Frequency plot for maximum wind speeds 
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Fig. 6-6: Frequency plot for pressure difference 

 

From the EST curve return periods corresponding to the pressure difference and 

maximum wind speed values as in Table 6-2 are recorded and are shown in Table 6-3. 

These return periods are then used along with storm surge frequency plots in order to 

obtain bands for different category of hurricanes. These bands are marked on the plots as 

shown in Fig. 6-7, 6-8 and 6-9. The expected surge corresponding to different category of 

hurricanes can be read from these plots. In order to validate this approach some 
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hurricanes were simulated and checked for their acceptability with the return periods 

predicted.  

 

Table 6-3: Return periods for different categories of hurricanes 

Category 
Return Periods based on 

Pressure Difference, years 

Return Periods based on 

Wind speed, years 

1 - - 

2 12 32 

3 26 45 

4 52 62 

5 168 116 

 

 

6.6 Validation 

In order to validate this approach some more hypothetical hurricanes were 

simulated in addition to the existing ones. Since SLOSH model assumes that the size and 

intensity of a hurricane remain constant throughout its track, Hurricane Carla (1961) was 

manipulated to obtain medium range category 2,3,4 and 5 hurricanes. Further, the track 

of Carla was perturbed by shifting it by -1.0 and –1.5 degree longitude from its normal 

track to obtain the maximum effect around the Freeport and Galveston Bay areas 

respectively. The storm surges from these hurricanes were plotted on the categorized 

storm surge return period graphs and are shown in Figures 6-7, 6-8 and 6-9.   
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Fig. 6-7: Category bands for Galveston Pleasure Pier 
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Fig. 6-8: Category bands for Freeport Harbor 
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Fig. 6-9: Category bands for Clear Lake
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The return periods for pressure difference are used in this study, as they seem 

to be more accurate and also conform to the HURISK return periods (Neumann C.J. 

1994). The reason for this may be because maximum wind speeds are a function of 

central pressure difference and radius of maximum winds (Jelesnianski 1972), and since 

we still can not simulate Radius of maximum winds accurately, there seems to be some 

flaw in using maximum winds for calculating return periods for categories of hurricanes. 

Also, the fact that hurricane database consists of wind speeds greater than 64 knots, 

introduces some error in EST analyses for lower values of wind speeds response vector.  

The hypothetical hurricanes like Carla (-1.0) and (-1.5) longitude whose 

maximum effect occurs at the respective locations Freeport and Galveston Bay fall well 

within the bands for their category as predicted. This is because these hurricanes make 

landfall within the distance of 30-50 miles left of the respective sites. Hence these 

hurricanes produce their maximum surge at these locations. As we move away from the 

landfall location, surge will reduce. However on the right hand side of the landfall 

location due to opposing wind directions surge is also reduced. 

Let us consider the case of Hurricane #211. It was a medium range category 4 

hurricane according to the Saffir Simpson scale. It made landfall at a distance of 31.2 

miles from Galveston ship channel. It produced a surge consistent with the expected 

value read from Fig. 6-7 for Pleasure Pier. However it has a different impact at Freeport. 

It made landfall at a distance of 18 miles to the right and resulted in a surge of 1.34 

meters. This is much less than its expected value that is within range of 2.6-4.5 meters. 

This is due to its making landfall right of Freeport. Thus it had an effect of a category 2 

hurricane in the vicinity of Freeport.  
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Similarly Hurricane Alicia made landfall 33.5 miles left of ship channel and 

resulted in a storm surge of 2.7 meters and lies within its expected category in the 

frequency curves. However with respect to Freeport, it made landfall right of Freeport at 

a distance of 15 miles. Here again the frequency plots do not capture the storm surge 

associated due to it. This is again due to its making landfall right of Freeport.  

The return period bands cover a wide range of storm surge, thus in order to 

predict a value that a hurricane can result, care must be taken. Storm surge being a 

complicated process, dependent on a large number of parameters, the predicted value will 

always have some inherent errors in it. Since the EST approach tries to take into effect all 

the factors that influence storm surge, the approach is more reliable compared to other 

approaches. A hurricane belonging to a category can, still be classified further into 

weaker, modest and stronger based on the ranges. Hence a weaker hurricane would 

correspond to a lower value of storm surge in that band and so on. The effect of distance 

of the site from landfall also plays an important role in the storm surge expected at that 

site. Based on the radius of maximum winds for the hurricane, the value must be selected 

from the plots considering the fact that surge is greater at a distance of around 30-40 

miles from the landfall location. As we move away from the landfall location the storm 

surge is greatly reduced. Thus relative distance plays a very important role in storm surge 

expected due to a hurricane.  

The present prediction and forecasting techniques do not accurately capture the 

effect of relative distance. Thus a method needs to be established in order to quantify 

storm surge due to a hurricane of given intensity and size on the basis of its relative 

distance from the landfall location. The prevalent forecasting techniques do a good job in 
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estimating maximum surge that can be expected based on Saffir-Simpson scale 

category of storms. 
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7 CONCLUSIONS 

 
The results of this thesis illustrate the use of the hydrodynamic model ADCIRC in 

conjunction with statistical model EST for storm surge simulation and generation of 

frequency return curves for a location. Comparisons have been presented that show 

model output from ADCIRC and observed water level data for various hurricanes that 

have significantly impacted Texas coast during last 117 years. 

The simulated data for most of the hurricanes compares well with the measured 

data wherever available. The model was able to accurately simulate the time and duration 

of the highest storm surge level. However the model is not able to fully capture storm 

surges due to tropical storms like Allison (2001). This inadequacy most likely results 

from the simplified vortex flow representation of the wind field by the wind model PBL, 

which may not accurately model the actual hurricane wind field particularly for a tropical 

storm as a storm approaches and passes over a coastal boundary. The other cause may be 

the method used to estimate the radius of maximum winds, which is  the  nomograph    of 

Fig. 2-1. Though this nomograph in general is able to predict the radius of maximum 

winds, it is not able to do so for all storms equally as well. In this study the observed 

values of radius were used wherever available as in Hurricane Claudette (2003) resulting 

in fairly accurate storm surge simulation as shown in Fig. 5-7. Another factor may be that 

the modeled distribution of wind magnitudes along the axis of storm may not be 

representative of the actual storm, where wind speeds may not decay at the rate assumed 

by the PBL model. The approach used in this study of using the whole Gulf of Mexico as 

the computation domain takes care of the limitations of PBL model near to the shore. 

The study extends the storm surge simulation using the EST model to arrive at 

life-cycle return period curves for storm surge at a particular location. These values can 
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be used to give a realistic idea of typical ”design” storm surge values that may help 

engineers to design new structures and maintain existing structures. EST encompasses all 

the parameters that affect the storm surge at a location for an individual hurricane like 

relative distance from landfall. Thus the results give a more realistic picture of the 

damage potential to the engineers.  

This approach is also compared with the SLOSH approach used by federal 

authorities to delineate coastal areas susceptible to hurricane storm surge flooding and 

evacuation studies. The shortcomings in the model SLOSH and the storm atlas approach 

are pointed out in the study. An alternate way for estimating storm surge at a location 

based on Saffir-Simpson categorization scale of hurricanes is presented in the study. This 

method utilizes the database of historical and hypothetical storms to arrive at return 

periods for different categories of hurricane and then uses these periods for estimating 

storm surges due to different category of hurricanes.  

This approach needs to be applied for localized areas, as there are many local 

factors that may influence the storm surge. The local bathymetry may play an important 

role in the final storm surge value; hence the computational grid used for populating the 

database should have required resolution in order to capture the local bathymetry. The 

shape of the coastline also has a strong effect on the size of a storm surge. A concave 

coastline is favored for greater storm surge, as water can be funneled toward the center of 

the coastline. For example, the coast of North Carolina has many concave areas that can 

influence the size of a storm surge. For example, in 1996, Hurricane Fran made landfall 

at Cape Fear, NC and produced a storm surge of 3.2 m at Carolina Beach, NC. Hurricane 

Hazel (1954) made landfall at the border of North and South Carolina, as a rapidly 

moving hurricane. This area of North Carolina's coastline to the right of Hazel was 
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concave. Hazel was also a stronger, faster moving storm than Fran and it produced a 

peak storm surge of 5.5 m on the south facing beaches south west of Carolina Beach, 

while Carolina Beach had a peak storm surge of less than 3.0 m. Hence these coastline 

effects again call for a good resolution of the computational grid.  

There are certain improvements that can be made to the model. One is to include 

shoaling effect. This refers to water forced from deep water into shallow water, where it 

converges to the shoreline. The more shoaling that occurs, the higher the potential storm 

surge. The waves also play an important role in potential storm surge. Strong hurricane 

winds may result in high wave setups. Hence coupling of the hydrodynamic ADCIRC 

model with a wave model would be helpful in estimating these factors. Also, high rainfall 

amounts can lead to fresh water flooding, which can exacerbate the storm surge problem. 

If a hurricane makes landfall in a location where several rivers empty into the ocean, the 

runoff from the rivers can increase flooding. An example of this is Bangladesh, which is 

located in a low-lying flood plain where several rivers empty into the Indian Ocean. 

Future models may also include the effect of rainfall and river-runoffs to completely 

calculate and estimate storm surges. 

After evaluating the limitations of the present storm surge calculation and 

estimation approach, it still provides useful information about surge levels for sites, 

particularly for sites that are located to the east of a storm. The good feature of this 

approach is its relative simplicity, as it can model a storm using only the most basic 

information. Also as it is based on actual historical storm rather than possible 

hypothetical ones, it is more credible. 
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APPENDIX A 

COMPARISON OF MODEL GENERATED TIDES AND XTIDE 
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Storm #117 (8/27/1900)
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Storm 117 (+1.0) (8/27/1900)
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Storm 117 (-1.0) (8/27/1900)
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Storm #183 (7/13/1909)
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Storm 211 (8/5/1915)
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Storm 211 (+1.0) (8/5/1915)
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APPENDIX C 

STORM SURGE FREQUENCY-OF-OCCURRENCE RELATIONSHIPS 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 192

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure: Location of points used for input to EST model 
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Station 1 
Return Period, Yrs Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.97 1.16 
15 1.31 1.53 
25 1.75 2.04 
50 2.45 3.04 
100 3.56 4.73 
150 4.45 5.86 
200 4.9 6.58 
 
 
Station 2 
Return Period, Yrs Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.96 1.15 
15 1.3 1.51 
25 1.73 2.01 

50 2.42 3 
100 3.51 4.67 
150 4.39 5.78 
200 4.84 6.5 
  
 
Station 3 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.95 1.14 
15 1.29 1.5 
25 1.71 1.99 
50 2.39 2.97 

100 3.47 4.62 
150 4.35 5.73 
200 4.79 6.43 

 
 
Station 4 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.95 1.13 
15 1.28 1.48 
25 1.69 1.97 
50 2.37 2.94 

100 3.44 4.58 
150 4.31 5.68 
200 4.75 6.38 
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Station 5 
Return Period, Yrs       Max Surge (m) Max plus σ (m) 

5 0.19 0.39 
10 0.94 1.13 
15 1.27 1.47 
25 1.68 1.96 
50 2.35 2.92 

100 3.42 4.56 
150 4.29 5.65 
200 4.73 6.35 

 
 
Station 6 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.4 
10 0.94 1.12 
15 1.27 1.47 
25 1.67 1.95 
50 2.35 2.92 

100 3.42 4.56 
150 4.28 5.64 
200 4.72 6.34 

 
 
Station 7 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.4 
10 0.94 1.12 
15 1.27 1.47 
25 1.67 1.95 
50 2.35 2.92 

100 3.42 4.56 
150 4.29 5.65 
200 4.73 6.35 

 
 
Station 8 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.4 
10 0.94 1.12 
15 1.27 1.47 
25 1.67 1.95 
50 2.34 2.92 

100 3.42 4.57 
150 4.29 5.66 
200 4.73 6.36 
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Station 9 
Return Period, Yrs       Max Surge (m) Max plus σ (m) 

5 0.19 0.4 
10 0.94 1.12 
15 1.26 1.46 
25 1.67 1.94 
50 2.34 2.91 

100 3.42 4.56 
150 4.29 5.65 
200 4.72 6.35 

 
 
Station 10 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.4 
10 0.94 1.12 
15 1.26 1.46 
25 1.66 1.93 
50 2.33 2.9 

100 3.4 4.54 
150 4.27 5.63 
200 4.7 6.32 

 
 
Station 11 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.4 
10 0.94 1.12 
15 1.26 1.46 
25 1.66 1.93 
50 2.33 2.9 

100 3.4 4.54 
150 4.27 5.62 
200 4.7 6.32 

 
 
Station 12 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.4 
10 0.94 1.12 
15 1.26 1.46 
25 1.66 1.93 
50 2.33 2.89 

100 3.4 4.54 
150 4.26 5.62 
200 4.7 6.31 
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Station 13 
Return Period, Yrs       Max Surge (m) Max plus σ (m) 

5 0.19 0.39 
10 0.94 1.11 
15 1.25 1.45 
25 1.65 1.92 
50 2.31 2.88 
100 3.38 4.52 
150 4.24 5.6 
200 4.68 6.29 

 
 
Station 14 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.93 1.11 
15 1.25 1.44 
25 1.64 1.9 
50 2.29 2.85 

100 3.35 4.48 
150 4.2 5.54 
200 4.63 6.22 

 
 
Station 15 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.94 1.12 
15 1.26 1.45 
25 1.65 1.91 
50 2.3 2.87 

100 3.37 4.49 
150 4.22 5.56 
200 4.65 6.25 

 
 
Station 16 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.94 1.12 
15 1.27 1.46 
25 1.66 1.92 
50 2.32 2.89 

100 3.39 4.52 
150 4.25 5.59 
200 4.68 6.28 
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Station 17 
Return Period, Yrs       Max Surge (m) Max plus σ (m) 

5 0.19 0.39 
10 0.95 1.13 
15 1.28 1.48 
25 1.67 1.95 
50 2.34 2.91 

100 3.42 4.55 
150 4.28 5.63 
200 4.71 6.33 

 
 
Station 18 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.96 1.14 
15 1.29 1.49 
25 1.68 1.95 
50 2.35 2.93 

100 3.44 4.59 
150 4.31 5.68 
200 4.75 6.38 

 
 
Station 19 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 0.97 1.16 
15 1.31 1.52 
25 1.72 1.99 
50 2.39 2.98 

100 3.5 4.66 
150 4.38 5.78 
200 4.83 6.49 

 
 
Station 20 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.2 0.4 
10 0.98 1.16 
15 1.32 1.53 
25 1.73 2.01 
50 2.42 3.02 

100 3.55 4.73 
150 4.45 5.86 
200 4.9 6.58 
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Station 21 
Return Period, Yrs       Max Surge (m) Max plus σ (m) 

5 0.2 0.4 
10 0.98 1.17 
15 1.33 1.54 
25 1.75 2.04 
50 2.46 3.06 

100 3.6 4.79 
150 4.51 5.93 
200 4.96 6.67 

 
 
Station 22 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.19 0.39 
10 1.01 1.22 
15 1.41 1.66 
25 1.9 2.23 
50 2.63 3.21 

100 3.72 4.86 
150 4.6 5.98 
200 5.04 6.69 

 
 
Station 23 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.18 0.39 
10 1.03 1.25 
15 1.45 1.71 
25 1.97 2.31 
50 2.71 3.3 

100 3.81 4.96 
150 4.69 6.07 
200 5.14 6.78 

 
 
Station 24 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.18 0.38 
10 1.03 1.25 
15 1.46 1.73 
25 2.01 2.36 
50 2.77 3.37 

100 3.87 5.03 
150 4.77 6.17 
200 5.22 6.89 
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Station 25 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.18 0.38 
10 1.03 1.26 
15 1.47 1.75 
25 2.03 2.38 
50 2.79 3.4 

100 3.91 5.08 
150 4.81 6.23 
200 5.27 6.96 

 
 
Station 26 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.18 0.38 
10 0.97 1.17 
15 1.35 1.57 
25 1.8 2.09 
50 2.5 3.09 

100 3.64 4.89 
150 4.63 6.15 
200 5.12 6.95 

 
 
Station 27 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.15 0.33 
10 0.87 1.06 
15 1.23 1.46 
25 1.67 1.96 
50 2.33 2.86 

100 3.35 4.46 
150 4.24 5.62 
200 4.69 6.36 

 
 
Station 28 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.15 0.32 
10 0.87 1.07 
15 1.24 1.47 
25 1.68 1.96 
50 2.34 2.87 

100 3.37 4.48 
150 4.27 5.66 
200 4.72 6.39 
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Station 29 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.14 0.31 
10 0.89 1.1 
15 1.3 1.54 
25 1.76 2.05 
50 2.43 2.97 

100 3.48 4.62 
150 4.41 5.83 
200 4.87 6.6 

 
 

Station 30 
Return Period, Yrs       Max Surge (m) Max plus σ (m) 

5 0.16 0.37 
10 1.06 1.31 
15 1.55 1.84 
25 2.09 2.43 
50 2.78 3.35 

100 3.86 5.08 
150 4.85 6.37 
200 5.35 7.17 

 
 
Station 31 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.16 0.37 
10 1.07 1.32 
15 1.56 1.86 
25 2.13 2.47 
50 2.83 3.41 

100 3.92 5.14 
150 4.92 6.44 
200 5.42 7.26 

 
 
Station 32 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.16 0.36 

10 1.08 1.33 
15 1.58 1.89 
25 2.17 2.52 
50 2.9 3.47 
100 3.98 5.18 
150 4.97 6.48 
200 5.47 7.29 
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Station 33 

Return Period, Yrs       Max Surge (m) Max plus σ (m) 
5 0.18 0.38 

10 0.97 1.16 
15 1.33 1.55 
25 1.77 2.07 
50 2.5 3.12 
100 3.67 4.94 
150 4.65 6.19 
200 5.15 6.98 

 
 
 
Station 34 

Return Period, Yrs Max Surge (m) Max plus σ (m) 
5 0.19 0.39 

10 0.99 1.19 
15 1.35 1.58 
25 1.79 2.08 
50 2.52 3.13 
100 3.69 4.95 
150 4.67 6.21 
200 5.17 7.02 

 
 
 
Station 35 

Return Period, Yrs Max Surge (m) Max plus σ (m) 
5 0.18 0.39 

10 1.02 1.22 
15 1.4 1.63 
25 1.86 2.15 
50 2.57 3.18 
100 3.74 5 
150 4.73 6.28 
200 5.23 7.09 
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