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ABSTRACT 
 

Scratch Behavior of Polymers.  (August 2005) 

Goy Teck Lim, B.Eng., National University of Singapore; 

M.Eng., National University of Singapore 

Chair of Advisory Committee:  Dr. J.N. Reddy 
 
 
 

 This dissertation work is focused on the analytical and numerical examination of 

the mechanical response of polypropylene (PP) under scratch deformation by a semi-

spherical indenter.  The finite element (FE) method is employed as the analysis 

technique and ABAQUS®, a commercial FE package is adopted to perform the analysis.  

Important physical and computational considerations on the implementation of FE 

analyses for the scratch problem are reviewed.   It is shown through the discussion of the 

generated results that a good understanding can be gained on how different scratch 

conditions can affect scratch behavior of PP.  A phenomenological deduction of the 

scratch damage process and mechanisms is also established.  Considering the two main 

damage modes of polymers, shear yielding and crazing, it is shown that the two damage 

modes not only exist in the scratch deformation, and moreover, that they may compete 

against each other for dominance.  A parametric study is also performed to assess the 

influence of material and surface properties on scratch response of material.   

A secondary research effort is also made to investigate the material constitutive 

modeling of polymers.  Focusing on elastomeric or rubbery materials, a new mixed 
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network model between the Gaussian and eight-chain non-Gaussian models is proposed.  

This mixed model inherently preserves the good predictive power of these two models 

and yields better predictions over a wider range of deformation than that of the rubber 

model adopted by ABAQUS®.   
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CHAPTER I 

INTRODUCTION 

 

This study is concerned with the analytical and numerical examination of the 

mechanical response of polypropylene (PP) under scratch deformation by a semi-

spherical indenter.  The goal of this study is to apply fundamental mechanics to solicit a 

good understanding of the damage process, damage modes and their mechanisms on the 

PP substrate during a scratch process.  The finite element method (FEM) is employed as 

the analysis technique and ABAQUS®, a commercial FE analysis package is utilized to 

perform the analysis.  Using a numerical approach, parametric studies are executed to 

evaluate the importance of material and surface parameters to aid engineers in designing 

better scratch-resistant products. . 

In this chapter, introductory remarks are made to highlight the significance of 

scratch research and review its current status.  Important factors and considerations 

defining the scopes of scratch study are evaluated in detail to give an appreciation of the 

inherent complexity in research.  Finally, an outline is provided to lay out various 

research components and their arrangement in the dissertation. 

 

SIGNIFICANCE OF SCRATCH RESEARCH 

Good surface quality is a prime attribute that both manufacturers and consumers 

aspire to have in consumer products, either for the sake of functionality or mere 

                                                 
. This dissertation follows the style of the Journal of Coatings Technology Research. 
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aestheticism.  While producing a desired surface finish has its own level of difficulty, the 

sustainability of a good surface quality over its service life poses the real challenge.  

For polymer applications, the concern over surface quality can be broadly 

classified into surface aestheticism, integrity and durability.  For surface aestheticism, 

one can easily find its relevance in many products such as automotive parts, electronic 

and telecommunication devices.  For these products like car dashboards and cellular 

phones, surface scratches merely reduce the original product attractiveness while their 

intended functionality remains largely unaffected.  As for applications like food 

packaging, retaining surface integrity of packaging materials becomes an important issue.  

Scratches formed on packaging films can render them to tear, which may in turn lead to 

product damage.  On the other hand, surface durability is sought after in the coating and 

data storage industries.  In coating applications, an exposed surface may lead to 

corrosion or damage of the underlying substrate.  Hence, coatings are desired to be intact 

for as long as the product remains in its service life.  Such surface durability is also 

emphasized in the data storage industry, where unrecoverable data from scratches on 

hard disks and optical storage devices can cause companies and individuals considerable 

resources and valuable man-hours. 

Much neglected by many but probably as important is the genuine structural 

concern of scratches.  Surface scratches can act as stress concentration hotspots that 

reduce the load carrying capacity of products over time and ultimately lead to their 

premature fracture and failure. 
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REVIEW OF SCRATCH RESEARCH 

In view of the above discussion, it is evident that scratch study is important to 

many industries.  However, surface concern for polymer applications has come into 

existence only over the last few decades and is gaining its importance together with 

advances in polymer science and technology.  This trend of research interest can be 

appreciated from Figure 11, which shows the number of research publications related to 

scratch studies of polymers since the late nineteenth century.  One can see that little 

research effort was put in before the nineteen-eighties; after this time, there has been a 

surge of research interest over the last two decades.  
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Figure 1: Research publications on scratch study of polymers from 19th to 21st century. 

                                                 
1 The results presented are based on the Compendex® engineering journal database using keywords 
“scratch” and “polymer”. 
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 Unlike works on traditional materials such as metals and ceramics that enjoy a 

longer research history, the scratch study of polymers still remains in its early phases, 

which limits the amount of understanding.  Besides being a relatively new research area, 

there are several inherent issues leading to its slow progress.  Firstly, there is a lack of 

standardized test methods and equipment to administer scratch experiments on polymers.  

Testing standards for scratches have only appeared in 2003 for ASTM [1] and 1997 for 

ISO [2-3], which are themselves more suitable for ceramics and mar study, respectively.  

Due to the absence of standardized testing methods, researchers began to develop their 

own scratch testing equipment to perform experimentation.  One can refer to the paper 

by Lim et al. [4] for a compendious list of scratch equipment used by various researchers.  

As a result, the knowledge gained is specific to the test equipment, experimental 

conditions and materials.  Secondly, the way to evaluate scratches also varies with 

researchers, ranging from using the subjective human eyesight to more objective optical 

devices like scanners.  These limitations in scratch testing and evaluation unfavorably 

lead to a difficult situation for researchers where they have been unable to compare and 

verify experimental results.  This inevitably hinders the progress of scratch research. 

However probably the most important factor of all is the level of complexity 

involved in the fundamental study of scratch behavior of polymers.  To further our 

understanding of the scratch behavior of polymers, it is necessary to examine the 

underlying material science and physics (mechanics) of the problem as well as their 

inter-relationships.  To appreciate the complexity of scratch research of polymers, one 

can refer to Figure 2 that lists the important considerations and factors for this study. 
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Due to the nature of the problem, delving into the mechanics of the scratch 

response of polymers entails a rigorous treatment of several components, i.e., tribology, 

type of analysis, material damage and analysis technique.  During a scratch process, 

surface interaction between the object (indenter) and scratched material (substrate) takes 

place.  Unless perfectly smooth surfaces can be produced, surface interaction inherently 

produces friction and consequently heat.  For the tribological study of a scratch process, 

it is necessary to describe the surface roughness property and adopt a suitable friction 

model.  For now, the most straightforward approach to treat friction is to assign a 

coefficient of adhesive friction, aµ  to the interacting surfaces and obtain the frictional 

force, F  based on the Coulomb’s friction model [5] as 

 NF aµ=   (1)  

where N  is the normal force.  Tribology, the study of interacting surfaces and friction, 

has been intentionally considered separately from the types of analysis so as to highlight 

its uniqueness in the scratch study.  Shown in Figure 3, as an indenter pushes into the 

substrate by means of controlled normal force or displacement and traverses across the 

substrate, the indenter no longer just interacts with the top surface of the substrate.  With 

the exposure of underlying materials from scratch damages, the indenter also comes into 

contact with the sub-surface and core of the substrate.  This introduces additional 

complexity to the study as the coefficient of adhesive friction can no longer be used to 

describe the frictional property of the sub-surface and core.  It is to be expected that as 

the material ruptures under scratching, the surface roughness of the substrate is increased 

and so does the frictional force.  Such a unique change in the frictional response for the 
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scratch problem has hitherto not been reported or considered with importance in any 

research findings. 

 
 
 

 
Figure 3:  Various steps involved during a scratch process (load-controlled). 

 
 
 
On the analysis types for scratch research, the dimensionality of the problem 

needs to be reviewed.  Depending on the considered scratch problem, appropriate 

simplifications can be introduced to reduce the dimensionality from the challenging 

three-dimensional problem to simpler two-dimension, plane-stress, plane-strain, or other 

formulations.  Simplifications to the problem can also be in the form of reducing the 

geometrical size of the analysis domain due to the presence of axial or plane symmetry.  

Also geometrical large deformations encountered in scratched materials demands the use 

of non-linear strain measure in the analysis, instead of simpler small-strain theory. 

As PP is the material of concern in this scratch study, proper considerations must 

be made in the analysis to capture the correct mechanical response of the material.  

Depending on the types of polymers and the extent of deformation, polymers respond to 

deformation differently with time, temperature, stress state (tension or compression) and 

N 
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N 
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strain rates and may strain-harden and/or strain-soften.  Presented in Figure 4 from the 

work of Arruda et al. [6], the stress-strain response of PP is non-linear, even in the 

elastic range and varies for different strain rates.   
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Figure 4:  True compressive stress-strain curves of PP for various strain rates [6]. 

 
 
 
In view of material needs, the scopes of a scratch analysis should cover material 

non-linearity, viscoelasticity and thermo-elasticity.  As scratch deformation may occur 

beyond initial material yielding, scratch analysis should also account for plasticity or 

viscoplasticity.  For the dynamical nature of the scratch process, the inertia, stiffness and 

visco-damping of the system need to be identified.  Moreover depending on the scratch 
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speed and length, the dynamical response of the system should be assessed carefully if it 

remains as transient throughout the analysis or settles into a steady-state response at 

some point during the process. 

 The next crucial factor in the scratch mechanics is to have an adequate 

description of the material damage for polymers.  It is well-known that bulk or 

homogeneous polymers, when deformed, can yield in shear or undergo crazing/cracking, 

depending on the type and extent of deformation.  Making the damage prediction more 

challenging is the fact that the two failure modes can coexist together, even though there 

may be a dominant mechanism between the two.  In a scratch process, stress flow in a 

material can change drastically from tension to compression as the indenter plows across 

the substrate; this will be highlighted in the results presented in Chapter IV.  This may in 

turn induce a change of one failure mode to another at a material point, before and after 

the scratch deformation.  Hence to account for such failure behavior, there is a need of a 

criterion to allow the two failure mechanisms to compete for dominance.  A monitoring 

scheme should also be incorporated to follow the change of the failure mechanism and 

transfer the stress flow to neighboring material points once damage occurs at a material 

point.  The treatment of material damage becomes more challenging for polymer 

composites since the composite arrangement can be layered, e.g., coated system, or 

particulated, e.g., rubber-modified polymers.  Depending on the adhesive strength 

between the matrix and fillers, delamination or cavitation may occur locally at the 

interfaces.  The ability to identify these local failures is equally important since the 
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integrated load-carrying capability of the damaged composite may be affected and its 

overall failure mechanism may also change. 

 The final link to close the chain for the scratch mechanics is to provide a solution 

tool for analyzing the problem.  To any well-posed mechanics problem, researchers in 

general seek to furnish solutions, either by using analytical means or numerical tools.  

Analytical approaches are typically possible for simpler cases and become increasingly 

prohibitive to yield results for large and complicated problems.  A closed-form analytical 

solution has the advantage of providing valuable insights on the influence of the critical 

parameters to the problem.  Numerical techniques, on the other hand, are normally built 

on the foundations of analytical approaches and attempt to solve problems through 

approximation or discretization of geometry, domain, temporal and spatial derivatives; 

common available numerical techniques are finite difference [7] and finite element 

method [8].  More versatile than analytical approaches, numerical techniques permit one 

to formulate several physical phenomena and incorporate unique material response into a 

single analysis.  As a result of the approximation and discretization, numerical 

techniques generally possess a mathematical framework that is well-suited for large-

scale computer implementation.  With the advent of modern computers, numerical 

techniques are now often preferred by researchers.  However, there are disadvantages 

that are associated with numerical techniques.  A major drawback of adopting numerical 

techniques is the fact that the results generated are approximations to the exact solutions.  

To improve the accuracy of numerical techniques, ad-hoc remedies, such as finer 

discretization, have to be introduced.  Another short-coming is that the numerical 
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techniques are usually cumbersome for parametric studies, since a series of runs is 

needed to establish the influence of a single parameter on the problem.  These two 

disadvantages often translate into long computational times and demand excessive 

computer resources such as disk space and memory.  Regardless of the choice of an 

analytical or numerical approach, there are inherent considerations in each of these 

approaches that need special attention so that the analysis can capture the essential 

physics of the scratch problem and generate results that lead to a better understanding of 

the topic.      

 

DISSERTATION LAYOUT 

As mentioned earlier, a numerical approach is employed in this dissertation to 

understand the scratch problem and finite element method is selected as the solution tool.  

To further develop the background of scratch research, a compendious literature review 

of the topic is given in Chapter II.  An overview of research strategies adopted in the 

dissertation is also highlighted in this chapter.  In Chapter III, various physical and 

computational considerations for implementing a finite element analysis (FEA) of the 

scratch problem are carefully laid out, together with verification exercises to assess the 

correctness of the commercial software, ABAQUS®.  Based on the adopted FEA, 

numerical results generated to examine the evolution of strain and stress states during the 

scratch process are reviewed in Chapter IV.  Using the furnished numerical results, a 

phenomenological deduction of the scratch damage mechanism and the prediction of 

craze initiation is discussed.  The existence of shear yielding and crazing and their likely 
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competition in a scratch deformation is also studied in this chapter.  Next in Chapter V, a 

parametric study to examine the influence of material and surface properties on scratch 

performance of polymers is presented.  An introduction of the dual definitions of scratch 

performance is also provided in this chapter.  In Chapter VI, a formal discourse on the 

material constitutive modeling for rubbery and amorphous polymers is made.  This 

outlines a preliminary effort in providing a more realistic material law for the scratch 

analysis.  Concluding remarks to summarize scratch research findings and an 

introduction of new scratch research directions and extensions is given in Chapter VII.  

Finally in the last chapter (Chapter VIII), citation of referred literature in the dissertation 

is documented.  Derivations and results, that are non-essential but complementary to the 

chapters, are collected in the appendices of the dissertation. 
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CHAPTER II 

LITERATURE REVIEW AND RESEARCH SCOPE 
 

Over the last two decades, scratch behavior of polymers has gradually become an 

important research topic in both the academic and industrial world.  Although it is 

crucial to identify the key considerations and scopes of scratch research, it is equally 

essential to be familiar with the current state of knowledge in the field.  With this 

understanding, a more cohesive research strategy can be contrived to apply the existing 

knowledge to address the various needs of scratch research.  Hence in the next section, 

the state of scratch research is reviewed.  Subsequently, the important topics of study to 

be adopted for this dissertation are introduced accordingly. 

 

LITERATURE REVIEW 

A literature review of research activity in scratch mechanics reveals that in the 

early stages, researchers often had to rely on accumulated knowledge gained from 

indentation studies and proposed scratch research methodologies accordingly.  In the 

seminal work of Hertz [9], closed-form linear elastic solutions were developed for static 

indentation problems.  This marks the emergence of a new field in mechanics, now 

commonly known as contact mechanics.  Subsequent works have been conducted to 

extend the scope of the Hertzian indentation problem to include the action of tangential 

stress due to sliding friction [10-20] between isotropic bodies.  However, these analyses 

are still essentially linear elastic and hence cannot sufficiently describe the large 
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deformation experienced by the material during a scratch.  Moreover, the results of static 

analyses can, at most, be applied to the instant when a body is about to slide over another 

body.  Research efforts that essentially treat dynamic aspects of the scratch problem can 

be attributed to Churilov [21,22], Rahman [23] and Brock [24]; again, they are limited to 

a linear elastic study of isotropic materials.  For viscoelastic materials, Lee and Radok 

[25] and Hunter [26] considered the Hertzian indentation problem for a rigid spherical 

punch.  During a scratch process, a material may deform plastically under extensive 

straining and such plastic flow should be considered in the analysis.  Probably due to the 

inherent nonlinearity, there has been hitherto no analytical work to consider the plastic 

yielding of materials under indentation or sliding.  While the above-mentioned works are 

valuable within their own merits, it is evident that most of these works are limited in the 

material description and scope of analysis for a more comprehensive study of scratch 

behavior of polymers. 

For numerical techniques, the computational approach commonly adopted by 

researchers for the scratch problem is the finite element method (FEM) [8].  Even so, 

research efforts on this topic using FEM remain scanty and most of these works are also 

restricted to the study of indentation (see the well-compiled bibliography by Mackerle 

[27]).  Tian and Saka [28] investigated elastoplastic and plane-strain behavior of a 

layered substrate of bilinear materials under normal and tangential contact stresses using 

a commercial finite element (FE) package, ABAQUS®.  Their analysis however did not 

account for dynamic effects of the moving indenter, and contact between the indenter 

and substrate was not modeled.  Another work that utilizes ABAQUS® for analysis is by 
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Lee et al. [29], who modeled a steel ball scratching a rotating polycarbonate disk.  While 

the material law adopted for the polycarbonate substrate is more realistic, the authors 

over-simplified a three-dimensional (3-D) problem to a two-dimensional plane-strain 

problem, rendering their FE analysis (FEA) to be non-applicable to their original 

problem, as noted by Wong et al. [30].  Bucaille et al. [31] and Subhash and Zhang [32] 

executed 3-D simulations of a displacement-controlled scratch deformation by a smooth 

rigid conical indenter on an elastic-perfectly-plastic and bilinear material, respectively.  

Their 3-D FEAs are however unsuitable to study the scratch response of polymers since 

the material rheology adopted cannot capture the strain hardening and softening nature 

of polymers.   

 

RESEARCH SCOPE 

Learning from these earlier research efforts and the discussion of various 

requirements of scratch research in Chapter I, there are several attributes that the 

mechanical analysis of the scratch problem should possess for a comprehensive study.  

To begin with, it is clear from the previous section that a numerical approach is more 

suitable to perform the scratch analysis than an analytical approach.  Among different 

numerical techniques, FEM is selected for the current study due to its versatility to 

accommodate various physical phenomena like surface contact, frictional interaction, 

and atypical material responses.  In this study, the scratch problem of concern is to 

investigate the mechanical response of polypropylene (PP) under the scratching action of 
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a semi-spherical tipped indenter.  For this scratch study, the research emphasis is focused 

on: 

 understanding how different scratch conditions can affect scratch behavior of PP 

 examining phenomenological damage process and mechanism of scratches 

 predicting the initiation of crazes during a scratch process 

 assessing the influence of material and surface properties on the scratch response. 

 

To meet the research goals, it is essential to ensure that the formulation of FEA 

undertaken in the study possesses the correct attributes.  Key attributes of FEA to be 

covered in this research endeavor are summarized below. 

 
 
 

 

Figure 5: Experimental setup for scratch test. 

 
 
 

(a) 3-D Dynamic Analysis.  In the experimental setup that is to be numerically 

simulated (see Figure 5), the PP specimen is 12 cm long, 1 cm wide and 3 mm 

thick while the diameter of the indenter tip is 1 mm.  For numerical simulation, 

the analysis should remain 3-D as the analysis or computational domain is too 
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complex to allow for simplification to a 2-D, plane stress or plane strain 

formulation. To study the transient response of scratch problem, dynamic 

analysis should be executed to simulate the scratch process accordingly. 

 
(b) Contact and Frictional Interaction.  As surface contact between the indenter 

and substrate is ubiquitous during scratching, its interaction is to be featured in 

the scratch analysis.  As incorporated, the analysis needs to provide a reasonably 

accurate understanding of the influence of surface contact on the problem.  

Frictional interaction between contacting surfaces is another important 

integrated phenomenon in the scratch process.  The special case of frictionless 

contact will also be considered in this study to discern the frictional effect on the 

scratch problem. 

 
(c) Geometrical Non-linearity.  During the scratch process, the substrate material 

undergoes large geometrical changes.  For FEA, such geometrical nonlinear 

deformation can be accounted for by adopting non-linear strain measures.  As a 

result of large deformation, the FE mesh may undergo severe distortion and this 

leads to convergence problems for FEA.  To ensure numerical convergence in 

the FEA, remeshing of the computational domain is required to preserve the 

quality of the FE mesh. 

 
(d) Material Model for Polymers.  Selection of an appropriate material 

constitutive model is a key factor for the analysis of any deformation process to 

capture the true representation of the material response.  The constitutive law 
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considered for PP should take into account strain-softening, strain-hardening and 

rate-dependent characteristics of the material.  

 
(e) Damage Criterion for Polymers.  To account for plastic flow during the 

scratch process, yielding criterion and associated hardening rule need to be 

featured in the analysis.  Crazing, the other dominant damage mode of polymers, 

should also be considered in the study.  This is done by subjecting the numerical 

results to suitable criterion to predict its initiation.   

 
To implement all the above attributes in FEA, it will be a daunting research 

undertaking if each of these attributes is to be built or reinvented from ab inito.  By 

adopting a commercial FEA package like ABAQUS® which has most of the features 

incorporated, time and research effort can better be spent on executing the analysis and 

studying the numerical results.  Detailed discussion on how various scratch analysis 

attributes are being fulfilled in ABAQUS® is duly presented in Chapter III.  The scopes 

of study put forth above are in line with a key assumption made in this study, i.e., heat 

from external sources or generated due to scratching or inelastic straining has been 

neglected.  In essence, all scratch FEAs conducted in this work do not account for 

thermal effects. 

As highlighted above, a suitable constitutive model is an important key to 

predicting an appropriate material response to a mechanical deformation.  While there 

have been considerable efforts to include an appropriate material law for FEA in this 

study, the constitutive law adopted using the experimental stress-strain curves (see 
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Figure 4 in Chapter I) may be insufficient to respond to a complex mode of deformation 

like a scratch.  As presented in the later chapters, this inadequacy in the material model 

is shown through a lack of quantitative correspondence between the computed numerical 

and experimental results.  To address this issue, additional research effort is put in this 

work to look into the material constitutive modeling of polymers.  As PP is semi-

crystalline in nature and has a varying degree of crystallinity and various crystal 

structures [34], studies related to modeling the constitutive response of such complex 

materials are difficult to find in the open literature.  Since the amorphous phase of PP is 

similar to elastomeric materials in terms of their rheological structures [34], the 

secondary effort of this research is focused on elastomeric or rubbery materials.  The 

knowledge gained from this effort lays the foundation for future development of 

polymer surface study as well as material constitutive modeling of amorphous polymers 

and elastomers. 

Rubber, a common elastomer, is well understood and researched for its 

hyperelastic response.  From the open literature, there are a handful of constitutive 

theories that have been proposed, which can generally be classified into the statistical 

network theories and phenomenological theories.  Depending on the choice of 

probability density functions, statistical network theories can be further sub-divided into 

Gaussian and non-Gaussian.  Using the Gauss or normal density function [35] to 

statistically describe the spatial configuration of randomly oriented rubber chains, the 

developed constitutive theory is commonly known as the Gaussian or neo-Hookean 

model [36].  The Gaussian network model is known to have a good prediction of the 
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stress-strain behavior of vulcanized rubber under uniaxial tension, shear and biaxial 

deformation at small strains [36-38].  At large deformation, the non-Gaussian effect of 

chain stretch needs to be accounted for in order to give an accurate prediction of its 

mechanical behavior.  Of all, the non-Gaussian density function proposed by Kuhn and 

Grün [36] has been commonly adopted by several researchers [34, 39-42] to establish 

the 3-chain [39], 4-chain [40], 8-chain [41], full-chain [34] and averaged-stretch [42] 

network models for rubber.  In development of the Gaussian and non-Gaussian network 

theories, it has been assumed that the material is incompressible.  Considering the 

compressibility of elastomers in the constitutive modeling of rubbers, the work by 

Bischoff et al. [43] and Kaliske and Rothert [44] are particularly noted.  In the work of 

Bischoff et al. [43], the different ways of including the condition of compressibility in 

the formulation of constitutive theory is reviewed.  The work by Kaliske and Rothert 

[44] to model volumetric changes in a material during a deformation process has been 

adopted in ABAQUS®. 

From the independent study that is presented in Chapter VI, the incompressible 

non-Gaussian network theories generally model large strain response of rubber well but 

their predictive capabilities are not superior to those of the Gaussian model at low and 

moderate strains.  Reviewing the various rubber models, a new mixed network model 

between the Gaussian and eight-chain non-Gaussian models is proposed.  This mixed 

model inherently preserves the good predictive power of these two models and yields 

good predictions over a wide range of deformation.  It is also highlighted in this chapter 
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that the performance of the mixed model is better than the three- and eight-chain models 

as well as the rubber network model adopted by ABAQUS®. 



 22

CHAPTER III 

FINITE ELEMENT MODELING 

 

As outlined in Chapter II, there are essentially four main focuses for the 

numerical effort in modeling the scratch problem.  Based on polypropylene as the 

material of research, the four focuses are (i) to understand the influence of various 

scratch conditions on the scratch response of the material, (ii) to examine the 

phenomenological damage process and mechanisms of scratches, (iii) to predict craze 

initiation, and finally (iv) to understand the effect of material and surface properties on 

scratch performance.  Finite element method (FEM) is chosen as the numerical 

technique to handle the complicated aspects of the scratch problem while ABAQUS®, a 

commercial finite element package, is adopted to perform the required numerical 

analyses.  Using commercial software in this work helps to save precious research hours 

and manpower that may otherwise be spent in developing computer codes.  However, 

there are new challenges on the analysis implementation when adopting commercial 

software like ABAQUS®, since commercial software are mostly developed to provide a 

black-box for the convenience of end-users.  To achieve research goals outlined above, it 

is therefore important to ensure that ABAQUS® can be executed correctly to perform 

reliable and accurate finite element analysis (FEA) for the scratch problem.  A prime 

concern for all numerical modeling effort of mechanical problems is how well the 

numerical model can account for the key physical aspects of the problem, which in turn 

translates to how closely the generated solutions can represent the state of reality.  To 
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duly accommodate these modeling needs, this chapter discusses the important physical 

considerations of the scratch problem and associated computational issues.  Relevant 

numerical studies conducted to evaluate computational needs are also presented. 

 

PHYSICAL AND COMPUTATIONAL CONSIDERATIONS FOR FE 

MODELING 

When an object (indenter) makes contact and traverses across the surface of 

another material (substrate), thereby making a scratch, the entire scratch process 

necessitates consideration of several physical and material factors.  Based on contact 

mechanics for indentation [9], the shapes of the indenter (e.g., spherical, conical and 

others) result in vastly dissimilar stress fields and different surface damage modes [45].  

Size of the indenter determines the scale of damage, from nanometer to millimeter.  

Since this work focuses on mechanical response of a PP substrate that is scratched by a 

stainless steel ball indenter with a diameter of 1 mm, the deformation essentially remains 

in the millimeter range.  Besides the indenter, the geometry and shape of the substrate 

and the relative material property of the indenter and substrate directly influence the 

extent of scratch damage.  Detailed discussion is provided in the subsequent sections on 

how these factors and various computational concerns are included in the FEA. 

 

Analysis Steps of a Scratch Deformation 

To model a scratch process, it is helpful to envision how a scratch occurs in an 

actual experimental setup.  A scratch process can be separated into three mechanical 
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steps (see Figure 3); the first is the indentation step whereby the indenter makes an 

indentation onto the substrate via a specific normal load or displacement.  In the second 

scratch step, the indenter ploughs through the top surface and subsurface of the substrate 

and pushes or removes materials along the scratch path.  For the final step, the indenter, 

having come to a stop at the end of the scratch, is then lifted up from the scratch groove, 

thereby allowing elastic recovery to take place in the substrate.  This last step is 

commonly known in the metal-forming industry as spring-back.   

 

Dynamic Analysis of Scratch Step 

Due to the dynamic nature of the scratch step, a dynamic analysis is required.  An 

immediate concern of dynamic analysis is the analysis time and the resulting scratch 

speed of the indenter for a specified scratch length.  It is always ideal for simulations if 

their analysis can be performed over a time interval that mimics the actual physical 

process.  Depending on the nature of the problem, the geometry, the type and size of 

element of the FE mesh, executing a realistic FE dynamic analysis can be time 

consuming and demands large computer resources. 

In the formulation of dynamic analysis by ABAQUS® [46,47], an explicit 

scheme is employed to describe the time evolution of the independent variables.  For the 

analysis, ABAQUS® determines an appropriate time increment for every time step to 

ensure the stability of the time integration scheme.  To achieve a desired level accuracy 

of the dynamic analysis using an explicit scheme [8], it may be necessary to consider the 

use of time increments that are smaller than the stable increments.  For this purpose, a 
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numerical study is conducted to assess the need of adopting smaller time increment for 

dynamic analysis of the scratch problem.   

 

Static Analyses of the Indentation and Spring-Back Steps 

Both the indentation and spring-back steps are not controlled in terms of time and 

take a longer time scale for completion.  This is because during indentation (see Figure 

3), the loaded indenter may have seated on the specimen for a while prior to scratching 

and the analysis of the surface damage does not follow immediately after the spring-back.    

Therefore, it is more appropriate to perform static analyses for these two steps.  In this 

study, the indentation step is intended to be load-controlled, i.e., indentation is caused by 

a driving normal load acted on the indenter.  However due to the limitation of the contact 

algorithm of ABAQUS® [46], a firm contact has to be established first before a load can 

be specified correctly on the indenter.  To do this, the indentation step is further divided 

into two steps [48].  In the first step, a displacement boundary condition is specified to 

push the indenter vertically onto the substrate and the normal reaction force is noted; the 

indentation depth is changed and another static analysis is performed.  This iterative 

process repeats until it produces the desired normal reaction force.  Once the desired 

force has been achieved within an acceptable tolerance, the displacement boundary 

condition is then replaced by a normal load of the same magnitude as the reaction force 

in the second step.  For the spring-back step, it can be executed readily by prescribing a 

displacement boundary condition to move the indenter away from the surface of the 

substrate, thereby removing any contact with the substrate. 
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It is noted that in Chapter V where parametric studies are reported for the current 

scratch research, the scratch analysis performed is displacement-controlled, rather than 

the above-mentioned load-controlled.   To reduce analysis time, dynamic analysis is 

considered for all three steps: indentation, scratch and spring-back.   

 

Importing/Exporting between Static and Dynamic Analyses in ABAQUS® 

Though ABAQUS® has been structured to allow users to transfer analysis data 

between static and dynamic analysis, there are salient points from the perspective of FE 

analysis and mechanics that need attention so that the intended analysis is performed 

with a certain level of accuracy.   

 
 
 

Table 1: Files for transferring between static and dynamic analysis for ABAQUS®. 

From Static to Dynamic Analysis From Dynamic to Static Analysis 

*.mdl, *.prt, *.res, *.stt *.abq, *.pac, *.prt 

 
 
 

Firstly, the same non-linear strain measure should be used for both static and 

dynamic analysis.  To have a consistent comparison of variables across different 

analyses, the original undeformed configuration of the substrate shall be taken as the 

reference configuration and should not be updated in the new analysis.  However, 

material state variables, like the equivalent plastic strain, should be updated so that the 

plastic flow of the material remains continuous across analyses.  As required by 
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ABAQUS®, rigid surfaces and their surface interaction properties from the previous 

analysis have to be redefined if they remain applicable to the new analysis.  Hence, 

contact and boundary conditions are required to be re-established in the new analysis.  

To facilitate a successful transfer of the data and model information between analyses, 

restarting files are generated in the current analysis for exporting to the next analysis.  

Table 1 lists the types of files that are needed to transfer between static and dynamic 

analyses for ABAQUS®.   For this scratch study, ABAQUS® input files for static and 

dynamic analyses can be found in Appendices A-1 and A-2, respectively. 

 
 
 

 

Figure 6:  FE mesh (Mesh A) and the indenter surface. 
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FE Mesh: Geometry, Element Type and Boundary Conditions 

To simulate actual experimental conditions given in [49,50], dimensions of the 

FE mesh follow as closely as possible to those of experimental test specimens and are 

taken to be 50 mm by 10 mm by 3 mm.  But, compared to the test specimens, the length 

of the FE mesh has been reduced to decrease computational time.  Due to the plane of 

symmetry of the problem, one can reduce the width of the original mesh by half, as 

indicated in Figure 6.   

To perform a 3-D analysis of the scratch process, 3-D linear eight-node solid 

elements (C3D8R) with selective reduced integration and hourglass mode control 

[46,47] are utilized for their meshing simplicity.  Elements with selective reduced 

integration are chosen for a more accurate representation of the average strains in the 

elements, which is beneficial for the calculation of constitutive behavior for highly non-

linear materials like polymers.  But due to the reduced integration, hourglass mode 

control is required to numerically arrest undesirable singular hourglass modes in the 

elements due to the rank deficiency of the stiffness matrix.  The hourglass control mode 

employed by ABAQUS® follows the work by Flanagan and Belytschko [51].   

To ensure sufficient surface contact between the indenter and substrate, five 

mesh designs have been considered for a convergence study.  Shown in Figure 6 is Mesh 

A where there are 128 elements across the critical length (A-B) over which the scratch 

path lies.  The critical length (A-B) of 36 mm is measured along the length of substrate 

at 7 mm from its both ends.  Table 2 shows the detailed mesh information for the five 

different meshes (Mesh A – E).  To aid a discussion on the convergence study later in 



 29

the chapter, the table also provides the number of undeformed elements over the 

projected area of the indenter to give a perspective of a sufficient contact.  The five 

meshes are created using a mesh generator written in FORTRAN, which is documented 

in Appendix A-3. 

 
 
 

Table 2: Mesh information for FE Meshes A – E. 

Mesh No. of elements over 
the critical length No. of DOF No. of element over the 

projected area of the indenter 

A 128 64,215 ~ 10 

B 256 151,110 ~ 42 

C 384 260,550 ~ 96 

D 512 391,995 ~ 173 

E 768 689,310 ~ 363 

 
 
 
For the indenter, the diameter of its spherical tip is taken to be 1 mm.  In Figure 6, 

the indenter is shown by a cylindrical shaft with a length of 2 mm, with one end defining 

the spherical tip.  The indenter is modeled by an analytical rigid surface whose six 

degrees of motion are controlled by a reference node while the rigid surface is defined 

together with a mass element.  To isolate the inertia of the indenter from the mechanical 

response of the substrate, a small value of 5 µg is assigned to the mass of the indenter. 

 To mimic the clamping of test specimens at both ends [49, 50] (see Figure 5), all 

nodes on both 1-3 boundary planes of the FE mesh are restrained from movement in all 
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three directions; the adopted coordinate system is provided in Figure 6.  Since test 

specimens are supported to a rigid surface of the scratch machine, all nodes on the 

bottom surface are restricted from moving in the vertical 3-direction.  To impose the 

symmetry of the problem, nodes along the plane of symmetry are not allowed to 

translate in the 1-direction.  Since the original mesh has been reduced by one-half due to 

the symmetry, one should note that all load imposed along the plane of symmetry should 

be scaled accordingly. 

 

Material Law 

The material considered for the substrate is primarily PP.  Like most polymers 

that are viscoelastic in nature, the constitutive behavior of PP varies with strain rate.  As 

material input for FEA, the true compressive stress-strain curve of PP at various strain 

rates, as shown in Figure 4, has been adopted [6].  This considered rate-dependent 

material should be referred to as Material I.  To enable convergence and for purposes of 

parametric studies, two additional materials (Material II and III) are considered for the 

substrate.  The material characteristic of Material II is pure elastic while Material III is 

elastoplastic with no hardening.  As listed in Table 3, the mechanical properties adopted 

for these two materials are noted to follow closely to those of polypropylene (Material I). 

In the experimental setup of a scratch test [49,50], the indenter tip is made up of 

stainless steel, which is more than one hundred times stiffer than PP and its yielding 

stress is about ten times as much.  It is therefore equitable to treat and model the indenter 

as rigid and this assumption has been adopted for all analyses. 
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Table 3: Mechanical properties of Material Types I - III. 

Material Type E (GPa) ν σy (MPa) ρ (kg/m3) 

I                 
(Rate-Dependent) 1.65 0.40 (see Figure 4) 905 

II                
(Pure elastic) 1.65 0.40 - 905 

III 
(Elastic-fully 

plastic) 
1.65 0.40 35.0 905 

 
 
 
Plastic Yielding Criterion 

Since most polymers undergo strain softening and hardening at large plastic 

deformation, it is important to predict the onset and describe the evolution of plastic flow 

in the analysis.  To predict and monitor any plastic deformation in the FE analysis 

wherever appropriate, von Mises shear yielding criterion [52] is employed.  For the von 

Mises criterion, plastic yielding occurs whenever the second invariant of the deviatoric 

stress tensor reaches or exceeds the yield stress, as given in Eq. (2) 
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where 1σ , 2σ  and 3σ  are the principal stresses and yσ  is the axial yield stress that is a 

function of the equivalent plastic strain pl
eqε .  The equivalent plastic strain is the total 

plastic strain increment over time and defined as 
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where plε&  is the plastic strain increment tensor and the double dot denotes tensor dot 

product.  To vary the yield stress with the amount of plastic flow according to the 

material hardening and/or softening, the isotropic hardening rule is utilized [52]. 

 

Crazing, Debonding and Cracking Criterion 

For polymers, the fracture mechanisms that can lead to stress whitening are 

crazing, voiding, debonding, and cracking.  Particularly for scratch damage, crazing 

should be treated with the same importance as bulk shear yielding for several reasons.  

First of all, crazes are highly light-reflective in nature and if present, can increase scratch 

visibility on materials.  Besides being a precursor of brittle cracking and fracture, crazing 

can occur at lower stress levels than those for bulk shear yielding [53].  Depending on 

materials, the state of deformation and the operating environment, it is likely that crazing 

competes against shear yielding to become the dominant fracture mechanism.  It is 

therefore of research interest to study the possible initiation of crazes during a scratch 

process.  The criterion used for assessing craze initiation can also be relevant to evaluate 

voiding, debonding, and cracking since they involve the same type of stress/strain 

components, i.e., the critical strain and the maximum hydrostatic tension.  Of the various 

criteria for craze initiation, the critical strain criterion by Bowden and Oxborough [54] is 

adopted for its sound physical basis and ability to account for a general triaxial state of 

stress.  The criterion states that crazing occurs when the strain in any direction reaches a 
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critical value and that this critical strain depends on the hydrostatic tension [54,55]; 

mathematically, this criterion can be described as, 

 1
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where Cε  is the critical craze strain and ( )3,2,1=iiσ 2 are the principal stresses while A  

and B  are time-temperature-dependent parameters.  In this study, Cε  is treated to be 

equivalent to the maximum principal strain, 1ε . 

 

Contact Algorithm 

To establish, track and maintain contact between surfaces during scratching, the 

contact pair (master-slave) algorithm for finite sliding as provided by ABAQUS® [46] 

was selected for the study.  The analytical rigid surface of the indenter is assigned to be 

the master surface while the slave surface belongs to the top surface of the FE mesh for 

the substrate.  Though the contact pair algorithm may be robust, the FE mesh must still 

be sufficiently refined to avoid any erroneous over-closure of contact surfaces.  Mesh 

refinement is also crucial to create sufficient contact with the surface of the indenter for 

an accurate calculation of contact stresses and forces.  These two factors provide the 

motivation or need to perform the convergence study to determine the optimal mesh 

design from one of the five introduced in Table 2, for the scratch problem at a reasonable 

computational cost.  Double precision calculation is used in the FEA to alleviate any 

contact noise that may compromise the results. 

                                                 
2 The average of the three principal stresses gives the hydrostatic stress. 
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Surface Interaction 

Like any two sliding surfaces, there will be interactions between them that can be 

in the form of friction and heat generation.  As thermal effects are not considered in this 

study, heat generation between surfaces is ignored.  For the frictional interaction 

between the surfaces, the basic Coulomb friction model [5] had been incorporated in the 

FEA [46] via the definition of the coefficient of adhesive friction, aµ .  Depending on the 

scope of the FEA performed, different values of the coefficient of adhesive friction are 

taken and are specified in the respective discussion accordingly. 

 

Adaptive Remeshing 

As the scratch process involves large deformation, the FEA may encounter 

convergence problems arising from a severely distorted mesh.  To maintain a high 

quality FE mesh throughout the analysis, adaptive remeshing, available in ABAQUS® 

[46], can be employed. 

Lagrangian adaptive meshing, which is suitable for transient problem with large 

deformation, is selected to allow the adaptive mesh domain to move together with the 

material contained within.  Adaptive remeshing can be however highly computational 

intensive and hence time consuming.  To reduce computational time, only critical 

elements that are close to the scratch path are assigned for remeshing, as shown in 

Figure 7. 
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Figure 7:  FE Mesh A and its adaptive remeshing domain (with darker shading). 

 
 
 

Load Cases 

Four different load cases, Load Cases A – D, are considered for this study, as 

summarized in Table 4.  For Load Case A, the scratch process is characterized by a 

constant scratch speed v  of the semi-spherical indenter under a constant normal load P.  

As for Load Case B, the normal load of the indenter increases linearly over the scratch 

length with a constant scratch speed.  The normal load for Load Case C is kept constant 

while the scratch speed accelerates from zero to 20 m/s.  As mentioned earlier that in the 

depth-controlled indentation step, it is necessary to determine the correct indentation 

depth for producing the intended normal load and establishing firm contact.  Hence as 

would be expected, the indentation depths are different for different materials, mesh 

design and surface conditions.  The indentation depths documented in Table 4 are 
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relevant for Material I, Mesh D and a coefficient of adhesive friction of 0.3.  For the 

prediction of indentation depth for a specific normal load, one can refer to Appendices 

A-4 to A-6 for the plots and their fitted polynomial expressions of Material I – III and 

selected values for the coefficient of adhesive friction.  The last load case, Load Case D, 

is specially designed for convergence study whose results are presented later in this 

chapter, as well as for parametric study in Chapter V.  Load Case D essentially reflects a 

displacement-controlled scratch test.  Unlike the other three load cases where static 

analysis is performed for the indentation step, all the three steps for Load Case D are 

considered as dynamic analyses. 

 
 
 

Table 4: Load Cases A – D. 

 Indentation Step 

Load Case Depth-Controlled Load 
Imposition 

Scratch Step    
(t = 3 ms) 

Spring-back 
Step 

A u3 = -0.03673 mm  P* = 5 N  P = 5 – 15 N    
v = 10 m/s u3 = 3 mm 

B u3 = -0.09865 mm  P = 15 N P = 15 N       
v = 10 m/s u3 = 3 mm 

C u3 = -0.09865 mm P = 15 N P = 15 N       
v = 0 – 20 m/s u3 = 3 mm 

D u3 = -0.25 mm - u3 = -0.25 mm   
v = 10 m/s u3 = 3 mm 

*  Note that the normal load P was scaled by one-half due to the plane of symmetry. 

 
 
 

Analysis time of the scratch step in all analyses is set at 3 milli-second (ms) and 

the scratch length is 30 mm.    Though the resulting scratch speed may be fast for some 
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applications, the study intends to examine the fundamental behavior of polymers under 

different loadings and scratch conditions.  The FE results obtained should still suffice to 

a better understanding of polymer scratch behavior. 

 

CONVERGENCE STUDY 

The aim of the convergence study is to determine the optimal mesh design for 

analysis so that sufficient numerical accuracy can be attained at an acceptable 

computational cost.  Due to the lack of established analytical results in the open 

literature, this work uses Material Type II as the primary material for verification since 

full elastic recovery should be expected for pure elastic material in the wake of the 

traversing indenter.  As indicated, Load Case D was adopted for this convergence study. 
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Figure 8: Scratch depth profiles for Meshes A – E at the end of the scratch process ( 0=aµ ). 
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Presented in Figures 8 and 9 are the scratch depth profiles for Mesh A – E at the 

end of the scratch process, without and with consideration of frictional interaction, 

respectively.  The abscissa of the plots corresponds to the length PQ of the FE model 

(Figure 6).  From both figures, one can see that the scratch profiles are converging to the 

zero level as the mesh size increases from Mesh A to E.  The trend of convergence in 

these figure is indicative of the computationally intensiveness of the FE scratch analysis 

since a significantly high number of finite elements are required to achieve a reasonable 

level of recovery.  For scratch analysis with no friction, the average residual depths for 

Meshes D and E are approximately 12.7 µm and 4.6 µm, respectively.  However, the 

inclusion of frictional resistance in the scratch analysis ( 3.0=aµ ) increases the 

respective average residual depths to 17.1 µm and 11.2 µm for Meshes D and E, 

respectively.  Hence, this implies that the effect of considering frictional interaction in 

scratch analysis adds more bearing on the required number of elements to achieve full 

elastic recovery. 

While it may be ideal to add as many elements as needed for an accurate FEA, it 

is important to review the computational cost that comes with more elements.  In Figures 

10(a) and (b), the computational time3 of each mesh design for the FEA using Material 

Types II and III are plotted.  Although the results generated by Mesh E have the best 

accuracy (see Figure 8), the analysis using the same mesh design is also the most 

computationally intensive, which can be as much as twelve days of computational time 

for Material Type III with the consideration of friction!  To have a more reasonable and 

                                                 
3 FEA using ABAQUS was performed using one processor on a 32-processor IBM Regatta p690. 
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tractable computational time and yet maintain a reasonably good level of accuracy, Mesh 

D was chosen as the optimal mesh design to perform all the FEA in this study. 
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Figure 9: Scratch depth profiles for Meshes A – E at the end of the scratch process ( 3.0=aµ ). 
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Figure 10: CPU time for Material Types II and III: (a) 0=aµ ; (b) 3.0=aµ . 
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TIME INCREMENT FOR EXPLICIT TIME INTEGRATION SCHEME 

With selection of the optimal mesh design (Mesh D), it is now relevant to pose 

the question of whether the stable time increment used by ABAQUS® is sufficient to 

ensure accuracy of the results.  To examine this issue, a numerical exercise is conducted 

to evaluate the accuracy of the dynamic analysis performed by ABAQUS® using the 

stable time increment as well as a selection of smaller time increments.   
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Figure 11: Scratch depth profiles using various time steps and Mesh D ( 0=aµ ). 

 
 
 
Figure 11 shows the plots of scratch depths from FEA using different time 

increments along the length PQ of substrate (see Figure 6).  For this exercise, the 

material of concern is Material II while Load Case D is adopted for the analysis.  From 
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the figure, it is clear that there is no significant difference in scratch depth profiles based 

on the stable and other smaller time increments.  It should be indicative that even with 

the use of stable time increment, the convergence of numerical results has been attained. 
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Figure 12: von Mises stress profiles using various time steps and Mesh D ( 0=aµ ). 

 
 
 

This is further supported by the corresponding von Mises stress plots presented 

in Figure 12, where no discernible difference is again noted from various sets of results.  

Keeping the computational cost in mind, one can therefore conclude that adopting the 

stable time increment computed by ABAQUS® should be sufficient in ensuring both the 

stability and accuracy of the FEA results.  While the above conclusion may be drawn 

based on a specific set of material, loading and surface conditions, employing smaller 
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time increments than those for stable values is in general computationally more 

expensive and can become prohibitive in some cases.  In view of these, all dynamic 

analyses performed for this dissertation work shall henceforth adopt the stable time 

increment determined by ABAQUS®. 
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CHAPTER IV 

SCRATCH DAMAGE AND CRAZE INITIATION 

 

The prime objectives of performing finite element analysis (FEA) of the scratch 

problem for polymeric materials are to investigate the scratch response of such materials 

and study the damage mechanisms involved.  It has been elaborated in Chapter III as to 

how FEA can be performed at a reasonable accuracy and computational cost using 

ABAQUS® with careful regards to the physics, experimentation and computational 

aspects of the problem.  For this chapter, FEA results are presented to solicit a 

mechanistic understanding on the damage process of a scratch deformation on polymers, 

particularly for polypropylene (PP, Material I – see Table 3 in Chapter III).  Two key 

damage modes, relevant to polymers – plastic yielding and crazing, are evaluated 

carefully with the use of numerical solutions.  It is brought to the reader’s attention 

through a discussion of numerical simulation that these two damage modes of polymers, 

as commonly found in various deformation processes such as impact fracture, occur 

concurrently in a scratch deformation process and may compete against each other for 

dominance.  Several procedures on the use of various strain measures and reaction forces 

to quantify the scratch performance of polymers and predict the incipient of damage are 

introduced.  In spite of a relatively simple elasto-plastic material model for PP and other 

assumptions adopted in this work, a good qualitative agreement between FEA results 

and experimental observations is achieved and it thereby establishes the usefulness of 
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FEA in examining polymer scratch damage mechanisms for shear yielding and 

crazing/microcracking. 

 

SCRATCH WIDTH 

To assess how scratch damage varies with different loading conditions, scratch 

widths from experimental testing and FE analyses are plotted in Figure 13.  The loading 

condition considered for experimentation and numerical effort are given in Table 5. 

 
 
 

Table 5: Loading conditions for experimentation and FEA. 

Description Experiment FEA 

Increasing Normal Load/   
Constant Scratch Speed  

P = 0 – 50 N       
v = 100 mm/s Load Case A 

Constant Normal Load/     
Constant Scratch Speed 

P = 30 N          
v = 100 mm/s Load Case B 

Constant Normal Load/   
Increasing Scratch Speed 

P = 30 N          
v = 0 - 140 mm/s Load Case C 

 

 

 

To enable a consistent comparison across different types of scratch conditions, 

measurement of scratch widths are based on the definitions provided in the figure and at 

points where the normal load corresponds to 30 N and the scratch speeds are 100 mm/s 

and 10 m/s for experimental and numerical results, respectively.  Reviewing both sets of 

results for the three load types, it can be observed that a change in scratch speed 
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produces the most severe scratch damage while an increasing normal load for scratching 

yields the least damage. 

 
 
 
 

 
Figure 13: Comparison of scratch widths for different load cases. 

 
 
 
Despite the dissimilarity of the scratch speed in the experiment and FE analyses, 

this qualitative trend can be observed from both sets of results.  However, there is a 

marked quantitative difference between the two sets of data.  For the higher scratch 

speed used in the FE analyses, the analyses should have predicted a lesser amount of 

scratch damage in the polymeric material, since the mechanical behavior of polymers are 
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normally affected by strain rates and tend to be stiffer at higher strain rates.  Hence by 

relating the scratch speed to strain rate, it is concluded that the numerical effort over-

predicts the scratch damage.  The overprediction of scratch damage may be mainly 

attributed to the choice of the material constitutive model, which requires further 

refinement to correctly capture strain-rate dependent behavior. 

 

SCRATCH DAMAGE PROCESS AND ITS MECHANISM 

Under controlled laboratory conditions, it is relatively easy to reproduce 

scratches on specimens.  But without a precise and rapid video imaging capability, 

scratch tests in most experimental set-ups will occur too rapidly to capture the sequential 

formation of scratch grooves.  In this regard, FEA becomes useful as it generates a 

database of results to capture the time evolution of the scratch process that can be 

reproduced graphically to aid visualization. 

Figure 14(a–d) shows the deformation sequence of a PP substrate as the indenter 

ploughs through it.  In Figure 14, layers of the substrate over a section of concern are 

shaded differently and the indenter is moving out towards the reader.  Figure 14(a) first 

shows a relatively undeformed section of substrate that is ahead of the approaching 

indenter.  The section begins to undergo compression and is squeezed upwards as the 

indenter moves ahead as shown in Figure 14(b).  In Figure 14(c), the approaching 

indenter continues to exert its compressive action on the section while it also pushes the 

material sideways.  Once the indenter overcomes and ploughs through the materials, a 

scratch groove is formed, as illustrated by Figure 14(d).   
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Figure 14:  (a) Undeformed section; (b) section is compressed and squeezed upwards; (c)  
section is pushed to the side; (d) a scratch groove is formed. 

 
 
 
Though the sequential formation of scratch grooves can be shown through 

Figures 14, it is more insightful if the mechanical response of the material around the 

indenter tip is known, which may allow one to make further prediction on the local 

material damage or fracture.  For that, Figure 15 presents plots of the maximum 

principal stress variations along the length PQ of the FE mesh (see Figure 6) at various 

time intervals of the scratch step.  Herein, discussion is focused on the results for Load 

Case B and Material I while the coefficient of adhesive friction at the surface of the 

indenter is taken to be 0.3. 

 

 

(a) (b)

(c) (d)
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Figure 15: Maximum principal stress profiles and the positions of the indenter at various stages  

of the scratch process.  
 
 
 
The maximum principal stress plots give a good indication of the stress state of 

the material around the indenter tip.  Prior to the beginning of the scratch step (t = 0 sec) 

where the deformation remains predominantly that of an indentation, the material 

beneath the 1-mm tip, as observed in Figure 15, is under compression while the 

surrounding material is in tension.  Such a stress variation has been reported analytically 

in [12,56].  Once scratching occurs, the maximum principal stress profiles reveal that 

while the material beneath the front-section of the tip remains under compression, the 

stress state in the material under the back-section of the tip now becomes tension.  

Tensile stresses can also be observed for material that is further ahead of the indenter. 
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Figure 16: Direction of maximum principal stress in the elements around the indenter (Load 
Case B) (a) perspective in 2-3 plane; (b) perspective in 1-3 plane.  
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To make a link between the stress state of the materials around the indenter to the 

possible fracture patterns, one can review the direction at which the maximum principal 

stresses act for the elements around the indenter, as presented in Figure 16.  Arrows 

pointing outwards indicate that the maximum principal stresses are tensile while inward-

pointing arrows signify compressive stresses.  For clarity, elements with tensile 

maximum principal stress are differentiated from those with compressive stresses by 

their lighter shading. 

Figure 16(a) shows that tensile stresses are present for the elements behind and 

away from the indenter tip, which is consistent with the results shown in Figure 15.  The 

state of maximum principal stress is generally compressive for the elements right under 

the front-section of the indenter.  Also, the tensile stress vectors for the elements right 

behind the tip are generally in the 2-direction while the stress vectors in the left-most 

rows of elements are in the vertical 3-direction and with slight biases in the 2-direction.  

This suggests that as the indenter moves, the material right behind the indenter is 

stretched in the direction of the scratch.  If fracture does occur, it is likely that cracks 

form perpendicularly to the scratch direction.  As the indenter continues to plough 

forward, the same materials are now pulled outwards in the vertical direction in addition 

to being stretched in the scratch direction, possibly leading the materials to be spalled off.  

Such spallation or delamination is commonly observed during scratch testing of coated 

systems [57].  It is noted that tensile stresses are also found in the outer-most row of 

elements ahead of the indenter.  As shown in Figure 16(b), the stress vectors of these 

elements are stretched outwardly in the 1-direction, suggesting that the material in that 
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region tears apart as the indenter ploughs through, forming cracks parallel to the scratch 

direction. 

In summary, through the study of the maximum principal stress and its 

directionality in the materials beneath and around the indenter tip during a scratch, the 

phenomenological occurrence of the scratch damage mechanism can be deduced, which 

is, in turn, related to the fracture patterns of scratches.  

 

QUANTIFICATION OF PLASTIC DAMAGE 

Based on the elasto-plastic FEA as discussed earlier, it is expected that the 

maximum von Mises stress exists underneath the tip of the indenter as it traverses across 

the scratch path.  Change in the maximum von Mises stress along the scratch path 

indicates the amount of the plastic flow (hardening or softening) taking place during the 

scratch and this can indirectly be related to the extent of plastic damage that occurred 

along the scratch path.  The amount of plastic flow can also be measured by the 

magnitude of the equivalent plastic strain, which is used to describe a change of the yield 

stress for the isotropic hardening rule in Eq. (2). 

To study the plastic flow and thereby evaluate the extent of plastic damage across 

the scratch path, maximum envelopes of the von Mises stress and equivalent plastic 

strain as computed by FEA for Load Case A – C and Material I are presented in Figures 

17 and 18, respectively.  In both figures, a plot of the ultimate von Mises stress and 

equivalent plastic strain has been included accordingly.  Neglecting the numerical 

fluctuation, the maximum envelope of the von Mises stress for Load Case B reaches the 
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ultimate value the most rapidly, followed by Load Cases C and A.  The reason for such a 

trend is that among all cases, Load Case B has the most severe loading conditions right 

from the beginning of the scratch process while in Load Case A, the increasing normal 

load expectedly produces an increasing stress variation before the ultimate value is 

reached.  As modeled, the material has no additional load-carrying capacity beyond the 

ultimate value and behaves perfectly plastic, which explains why the maximum 

envelopes do not exceed the ultimate value.  
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Figure 17: Maximum envelope of von Mises stress for different load cases along the scratch 

path. 
 
 
 

For the equivalent plastic strain, similar conclusion can be reached such that the 

maximum envelope reaches the critical value that corresponds to the ultimate stress, first 
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for Load Case B and C and, finally, A.  Beyond the ultimate value, the equivalent plastic 

strain continues to raise, indictating that more plastic flow is taking place despite that no 

further hardening or softening of the material.  Another worthwhile inferrence that can 

be drawn from this discussion is that a more realistic and comprehensive damage model 

can be implemented in the FEA, together with the constitutive model.  Allowing the loss 

of material stiffness at various stages of damage in the new damage model yields a better 

representation of plastic damage at material points and thereby results in stress 

redistribution to neighboring materials. 
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Figure 18: Maximum envelope of equivalent plastic strain for different load cases along the  

scratch path. 
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ASSESSMENT OF CRAZE INITIATION 

Fracture mechanisms such as crazing, voiding, debonding, and cracking can 

cause stress whitening in polymers.  Hence, there is a need to investigate the possible 

initiation of these fracture processes prior to looking into stress whitening.  Though the 

scope of this study focuses on craze initiation, the governing criteria for craze initiation 

can nevertheless be applied to voiding, debonding, and cracking because these fracture 

processes are fundamentally similar to crazing and can be described by the same type of 

stress/strain components, i.e., the critical strain, the maximum dilatation, and the 

maximum hydrostatic tensile stresses.  Of the various criteria for craze initiation, the 

critical strain criterion by Bowden and Oxborough [54] is adopted.  Using this criterion, 

Eq. (4), the compressive stress (pressure) contour plots at four different time intervals 

are given in Figure 19(a-d) for Load Case A and Material I.  Only negative values of the 

pressure contours are presented as they correspond to hydrostatic tensile stresses.  Inset 

plots in each of the figures contain the maximum principal strain data that are limited to 

positive values.  From these figures, it is apparent that crazes are likely to form in the 

regions ahead and around the front sides of the moving indenter.  As the indenter thrusts 

forward, the crazes ahead of the indenter if they exist are ruptured based on previously 

identified scratch damage process in Figure 14.  As such, the only crazes that can 

probably be observed are along the side ridges of the scratch groove.  With regard to 

Load Case A, it can be inferred that there is a point along the scratch path where the 

maximum principal strain increases to a critical value, beyond which crazing occurs and 

stress-whitening phenomenon prevails. 
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Figure 19: Pressure and maximum principal strain contour plots at four different time intervals (a – d) (Load Case A). 

(a) (b)

(c) (d)
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PLASTIC YIELDING AND CRAZING 

It is known that shear yielding and crazing are two key damage modes for 

polymers.  From previous sections, numerical results have been reviewed for a 

phenomenological examination of the occurrence of damage in materials around the 

indenter tip and the formation of crazes during the scratch process.  Henceforth, it is of 

research interest to study the quantitative variation of plastic yielding and crazing along 

the scratch length, based on the increasing load in Load Case A. 

Presented in Figures 20 and 21 are plots of the maximum envelope of the 

equivalent plastic strain and volumetric strain along the scratch path for Material I, 

respectively.  From Figure 20, it is evident to note the large extent of plastic damage 

occurs in the material, especially towards the end of the scratch process.  Though not 

considered in the FEA, materials are likely to fracture and spall off from the scratch path 

beyond plastic strain levels of 200-300%.  The consideration of ultimate material failure 

is introduced formally as a future research scope in Chapter VII.   

For Figure 21, the use of volumetric strain allows one to correlate to the amount 

of crazing that takes place during the scratch process.  Comparing both plots and 

considering the linear load increase in Load Case A, it is interesting to note that other 

than the initial portion, the variation of equivalent plastic strain follows a linear trend 

while the volumetric strain increases in a quadratic manner.  This indicates that crazing 

may not be a dominant damage mode at the beginning of the scratch process but may 

compete with shear yielding for dominance towards the end.  Since crazing promotes the 

stress-whitening phenomenon, there is a critical point during the scratch process where 
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the volumetric strain reaches the threshold to initiate stress-whitening.  For future 

implementation, it is beneficial for the study of crazing damage if criteria for the growth 

and failure/fracture of crazes can be incorporated in the FEA.  Again, the above 

discussion reiterates the need for a more complete damage mechanism that not only 

captures the incidence of plastic yielding and crazing, but also allows competition 

between these two damage modes. 
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Figure 20:  Maximum envelope of equivalent plastic strain along the scratch path. 
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Figure 21:  Maximum envelope of volumetric strain along the scratch path. 

 
 
 

SCRATCHING COEFFICIENT OF FRICTION ( Sµ ) 

Due to the initial indentation from the applied normal load, the tangential force 

encountered by the indenter during the scratch process cannot be entirely attributed to 

the adhesive frictional interaction.  As noted in several research works [49,50,58] and 

shown in Figure 22, part of the tangential force on the indenter comes from the 

resistance of the material ahead of the indenter as the indenter ploughs forward.  As such, 

the ratio of the tangential force to the normal load, herein referred to as the scratching 

coefficient of friction, Sµ  (SCOF), has both the adhesive and ploughing components.   

 
 
 



 59

 

Figure 22: Tangential force acted on the indenter during the scratch process. 

 
 
 

(COF = 0.3)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Scratch length, L  (m)

SC
O

F 
( µ

s)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 SCOF

 Averaged SCOF

 
Figure 23: Scratching coefficient of friction along the scratch path (Load Case B). 
 
 
 
To evaluate the SCOF for PP (Material I), Load Case B was adopted as it yields a 

homogeneous state of scratch deformation.  Figure 23 shows a plot of the computed 

SCOF over the scratch length using Load Case B, whose oscillating behavior can be 

attributed to the dynamical variation and intrinsic numerical noise.  Despite the 
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numerical fluctuation, it can be observed that the plot fluctuates around a mean value.  

To demonstate this, an additional plot has been given in Figure 23 to show the averaged 

value of the SCOF across the scratch length.  Towards the end of the scratch length, the 

averaged plot converges toward a limiting value.  To seek this limiting value, an 

apparent solution is to perform FE analysis over a longer scratch length.  This option can 

however be time-consuming and impractical since the required scratch length to achieve 

convergence is unknown.  To overcome that, a Southwell plot can be created by plotting 

the scratch length ( L ) against the value of ( SL µ ).  Through the use of Southwell plot, 

the limiting value can readily be furnished from the slope of the linear fit of the 

Southwell plot.  Based on the result of Figure 24, the scratching coefficient of friction of 

polypropylene is found to be 0.589, as compared to the adhesive value ( aµ ) of 0.3.  The 

amount of deviation of Sµ  from the coefficient of adhesive friction is indicative of the 

extent of ploughing resistance.  Also for Load Case B where a constant normal load is 

imposed throughout the scratch process, the SCOF can be related to the resistance put up 

by the material against the scratching action and can hence be used to evaluate the 

scratch resistance of a material.  As discussed in Chapter V, there are two components 

for the assessment of the scratch performance of a material, which are scratch resistance 

and scratch visibility.  For materials that exhibit a same level of scratch visibility due to 

similar fracture patterns, the SCOF can then be adopted as a useful ranking parameter for 

scratch performance.   
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Figure 24: Southwell plot of the scratching coefficient of friction. 

 
 
 
CONCLUDING REMARKS 

As presented in this chapter, findings from the numerical discussion contribute to 

the current knowledge of the scratch damage of a polymer.  To assess the change in 

scratch damage due to loading conditions, it has been shown that the results furnished by 

finite element analysis (FEA) correspond qualitatively well with the experimental data.  

Changing the scratch velocity during the scratch process produces the worst scratch 

damage, as compared to keeping the scratch velocity the same or increasing the normal 

load imposed on the indenter.  Through examination of the maximum principal stress 

along the scratch path, a drastic change in the state of stress was noted in materials under 

the indenter before and after scratching.  By further reviewing the action of the 
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maximum principal stress vectors in the materials beneath the indenter, a mechanistic 

understanding on the occurrence of scratch damage and the fracture patterns is obtained. 

Numerical results from FEA were also reviewed to look into the two main 

damage modes of polymeric materials, plastic yielding and crazing.  With regards to the 

attempt to quantify plastic flow in the scratched materials, it was found that a loading 

condition of constant normal load and constant scratch speed generates the earliest 

initiation of ultimate fracture, as compared to the conditions of changing normal load or 

scratch velocity.  Such an understanding on the fracture initiation based on shear 

yielding indicates a future research need for a more realistic damage model that permits 

a loss of stiffness at material points where the ultimate stress state is attained.  The new 

damage model, if implemented in FEA, should allow a better representation of stress 

redistribution in materials near a damaged region.  Through the application of craze 

initiation criterion by Bowden and Oxborough [54] and volumetric strain measure, it is 

learned that crazing and shear yielding can coexist during a scratch deformation.  

Numerical results also suggest that these two damage modes may compete against each 

other for dominance in the scratch process.  In view of crazing, the damage model 

proposed earlier can further be enhanced in its modeling capability by incorporating 

crazing as part of the damage criterion.  In an attempt to quantify the scratch resistance 

of a material, a parameter called scratching coefficient of friction is employed in this 

study to relate the tangential force acted on the indenter to the normal load imposed 

during the scratch process. 
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CHAPTER V 

SCRATCH PARAMETRIC STUDY 

 

As part of research, parametric studies are often conducted to evaluate the 

importance of various quantities and assess the extent of their influence on a problem.  

For this scratch study, the interest of performing parametric study is particularly relevant 

to material scientists whose common aim is to design high performance scratch-resistant 

polymers.  As an obscure quantity, it is per se difficult to give a definition to the scratch 

performance of a material, let alone to make quantification.  For a systematic study on 

the topic, it is proposed that there are two key elements to scratch performance, namely, 

scratch resistance and scratch visibility.  To evaluate the dual elements of scratch 

performance, finite element analysis (FEA) of the scratch problem using ABAQUS® is 

executed.  Parametric studies using FEA are also performed to identify key mechanical 

and surface properties of a material that are important for improving scratch 

performance. 

In this chapter, a formal introduction of the dual elements or definitions of the 

scratch performance is made to serve the needs of the intended parametric study using 

FEA.  Presented thereafter are the parametric results to reveal the influence of the 

mechanical and surface properties of a material on its scratch performance.       
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SCRATCH PERFORMANCE 

Similar to steel or concrete structural designs where ultimate strength design 

must be satisfied together with serviceability requirements, scratch performance of 

materials can also be perceived with the same duality.  Herein, the dualism in scratch 

performance of materials is related to scratch resistance and scratch visibility.  Scratch 

resistance can be interpreted as the inherent material resistance to scratch deformation 

and is derived purely as a material response.  Scratch visibility, on the other hand, is the 

degree of visual perceptibility of scratch damage by human eyes and can be influenced 

by the types of surface damage and external factors such as color and lighting.  

Particularly for polymers, fracture mechanisms like brittle fracture and plastic yielding 

can play a vital role in affecting scratch visibility [4].  The need of dual definitions for 

scratch performance can be appreciated that in some cases where only minor scratch 

damages are observed on a material that are highly scratch-resistant.  However due to 

brittle facture leading to a drastic change in surface roughness, light dispersion from the 

scratches become more pronounced, making the scratches easily perceptible by 

individuals.  In other applications where product aestheticism is emphasized, reducing 

scratch visibility of a material may be weighed more importantly than improving its 

scratch resistance.  Therefore, the balance between scratch resistance and scratch 

visibility for the emphasis of scratch performance depends on the applications and 

industries.   

The first documented attempt to quantify scratch resistance of materials should 

be attributed to Mohs back in 1824.  Remaining useful until today, Mohs’ simple scale 
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ranks the scratch hardness of a material using ten different minerals with talc being the 

softest and diamond the hardest.  In a related work [59], Tabor compiled the indentation 

hardness values of the minerals by other researchers and established a relationship 

between the hardness values and Mohs numbers.  While there is no dispute over the 

relationship between indentation and scratch hardness, the physics behind the proposed 

relationship and its practical use however remain unclear.  Though the Mohs scale can 

be employed to differentiate the scratch hardness of materials, its numbers are not 

equally spaced and are limited for materials to be ranked within the same interval.  It 

was not until Williams [45] published his analytical work more than a century after 

Mohs that formal definitions for scratch and ploughing hardnesses are put in place for 

quantifying scratch resistance of materials.  After that, there are several other scratch-

related hardness quantities that have appeared in the literature, like tangential hardness 

[60,61], dynamic hardness [60] and specific grooving energy [62].  Despite the wide 

variety of hardness definitions, their physical meanings remain essentially unchanged, 

i.e., to determine the magnitude of force needed to induce a certain amount of scratch 

damage in the form of damaged area or volume.  In retrospect if the scratched area or 

volume can be controlled, the scratch hardness (resistance) of a material is simply 

reduced to none other than the forces needed to make scratches.  Such a situation does 

exist in problems where scratch depth is controlled at a constant value throughout the 

scratch process. 

To measure scratch visibility of a material, evaluation and imaging tools like 

scanners [4,55], optical and electron microscopes [4,50,63] and VIEEW® [4] are 
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commonly used.  Characterization of scratch damage can range from simple scratch 

geometry descriptions like scratch widths and depths [50] to sophisticated image 

analysis parameters like light scattering average and difference [63].  A key contributing 

factor to increased scratch visibility is the surface roughness of the scratched material.  A 

rougher scratched surface is likely to scatter light in a more pronounced manner, thereby 

increasing scratch visibility.  In line with the technique employed for parametric study in 

the present work, the use of scratch geometry should suffice to compare scratch visibility 

if the corresponding scratch damage mechanisms are the same among the material 

systems to be compared. 

 

SCHEME OF PARAMETRIC STUDY 

The objectives of the parametric exercise are to identify and understand the 

influence of mechanical and surface properties of a material on its scratch performance.  

For the parametric study, ABAQUS® is adopted to perform the required FEA and Mesh 

D and Material Type III (see Tables 2 and 3, respectively) are employed.  However, the 

FEA considered herein is different from those considered in the last chapter as scratches 

are displacement-controlled (Load Case D – see Table 4 in Chapter III), rather than load-

controlled.  Without the need of finding the right indentation depth for a specified 

normal load, this simplifies the FEA and hence reduces the total computational time.  As 

will be highlighted later, this also allows a simple assessment of the scratch resistance of 

a material.  The parameters of concern in this study are the elastic modulus, Poisson’s 

ratio, yield stress and the coefficient of adhesive friction of a material.  Table 6 outlines 
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the scheme of the parametric study and the selected parametric ranges are in general 

relevant to polypropylene. 

 
 
 

Table 6: Scheme of parametric study for scratch performance. 

Parameter Type Parametric Range Constant Input 

Elastic Modulus ( E ) 1.0 – 2.0 GPa 

ν  = 0.4          
yσ  = 35MPa 

aµ  = 0 

Poisson’s Ratio (ν ) 0.25 – 0.45 

E  = 1.65GPa 

yσ  = 35MPa 

aµ  = 0 

Yield Stress ( yσ ) 30 – 50 MPa 
E  = 1.65GPa 

ν  = 0.4          

aµ  = 0 

Coefficient of Adhesive 
Friction ( aµ ) 0 – 0.6 

E  = 1.65GPa 
ν  = 0.4          

yσ  = 35MPa 

 
 
 
PARAMETRIC STUDY: SCRATCH RESISTANCE 

Due to the complexity that is involved in the scratch deformation process, 

quantifying the scratch resistance of a polymer requires an appropriate measure.  Based 

on the constant-depth scratch analysis adopted, the scratch damaged area under the 

indenter remains fairly constant.  Hence as discussed earlier, scratch resistance of a 

material can be simply associated with the reaction forces (tangential and normal) 

experienced by the indenter during the scratch process.  A higher reaction force on the 
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indenter indicates more resistance by the material against the action of the force.  Hence 

the normal force can be related to the indentation resistance of the material while the 

tangential force can be associated to scratch resistance.  The indentation resistance as 

referred herein should not be confused with the static indentation hardness, since the 

scratch process is dynamical in nature.  

   

Mechanical Properties 

Performing the required FEA based on the scheme of the parametric study, 

averaged values of the reaction forces acted on the indenter during the scratch process 

are computed and presented with the corresponding standard deviations in Figure 25(a) – 

(c).  As a remark, the fluctuation observed in the results of in Figure 25, as indicated by 

the standard deviations, is a numerical artifact due to finite element mesh size.   

From Figure 25, one can observe that increasing the elastic modulus and yield 

stress of a material has a positive impact on its scratch resistance.  To seek an 

explanation for such an improvement, it is helpful to first appreciate the fact that the 

scratch deformation at hand is essentially a constant-strain problem since the scratch 

depth and velocity remain constant throughout the process.  With this in mind and the 

aid of the stress-strain diagram in Figure 26(a), increasing the elastic modulus while 

keeping the yield stress constant generates more internal strain energy in the system as 

indicated by the area (X).  Additional strain energy can also be observed in the area (Y) 

of Figure 26(b) when one increases the yield stress and keeps the elastic modulus the 

same.  For the conservation of energy, the additional internal strain energy must be 



 69

balanced by an increase in externally applied force, which provides the reasoning for the 

increase of tangential and normal forces when elastic modulus or yield stress is raised.   
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Figure 25: Variation of reaction forces with (a) elastic modulus; (b) yield stress; and (c)  
Poisson’s ratio. 
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Also from Figure 25(a) and 25(b), it is also interesting to observe that the 

improvement in scratch resistance by raising the elastic modulus of a material is not as 

significant as that for changes in its yield stress.  In line with those of elastic modulus 

and yield stress, raising the Poisson’s ratio of a material does improve its scratch 

resistance but only slightly, as demonstrated in Figure 25(c). 

 
 
 

 
Figure 26: Stress-strain diagram to illustrate the effect of changing (a) elastic modulus and (b) 

yield stress for change in strain energy. 
 
 
 
Surface Property 

To review the effect of surface property of a material on its scratch resistance, 

averaged reactions forces are plotted in Figure 27 for various values of the coefficient of 

adhesive friction.  From the figure, the increase in the coefficient of adhesive friction 

results in an increased tangential force, which is expected since more frictional 

resistance is generated between the contacting surfaces and additional force is thus 
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required.  However, an opposite trend of a decreasing normal force is noted when there 

is more friction between the surfaces. 
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Figure 27: Variation of reaction forces with the coefficient of adhesive friction. 

 
 
 
To gain an understanding with regards to the conflicting trends, one can review 

the forces that are acting on the indenter during the scratch process.  Figure 28 illustrates 

the interaction between the indenter and the substrate during a scratch process, with a 

free-body diagram showing the different forces acted on the indenter.  In Figure 28(a), 

the interaction between the indenter and substrate has been depicted with care, assuming 

that the material in the wake of scratch damage has undergone extensive plastic 

deformation and experiences only minor elastic recovery.  This interpretation is 

substantiated by the results that are presented in the next section.  In the free-body 

diagram, the forces, P and F, are the normal and tangential forces imposed on the 

indenter for the scratching action while the overall resistance from the material is 
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denoted by the force, R and f  is the frictional force on the indenter.  Through resolving 

and balancing of forces on the indenter, it can be readily concluded with the needed 

explanation that when there is more frictional resistance at the surface, the tangential 

force increases while the normal force is reduced accordingly. 

 
 
 

 

Figure 28: (a) Interaction between indenter and substrate and (b) forces acting on the indenter. 
 
 
 
PARAMETRIC STUDY: SCRATCH VISIBILITY 

For the quantification of scratch visibility, a simplistic approach is taken to 

examine the residual scratch depth profile at the end of the scratch process.  Herein, it is 

argued that the greater the residual scratch depth is, it is easier for the reflected light 

from the scratch groove to be scattered in a pronounced manner to cause an increase in 

scratch visibility [64]. Presented in Figure 29(a – c) are the residual scratch depth 

profiles at the end of the scratch step for various values of elastic modulus, yield stress 

and shear modulus, respectively.  From the scratch depth profiles in Figure 29, it is noted 

that there is only a small amount of elastic recovery in the material after the scratch 
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deformation. This observation substantiates the drawing in Figure 28(a) to depict the 

amount of interaction between the indenter and substrate and therefore validates the 

consideration of forces on the indenter in Figure 28(b).  It can be observed from the 

figures that increasing the elastic modulus results in a lesser elastic recovery in the 

scratched materials while raising the level of yield stress promotes elastic recovery.  Just 

like the trend for scratch resistance, varying the Poisson’s ratio of a material has no 

observable influence on the residual scratch depth or scratch visibility. 
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Figure 29: Variation of scratch depth profiles with (a) elastic modulus; (b) yield stress; and (c) 

Poisson’s ratio. 
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To understand why modifying the elastic modulus or yield stress can bring about 

a change in the residual scratch depth (scratch visibility) [64], stress-strain diagrams 

used for explaining the improved scratch resistance can again be referred to.  Due to the 

constant scratch depth imposed by the indenter during the scratch process, scratched 

materials yield and undergo plastic deformation until the strain level reaches a maximum 

value of 0ε .  Beyond that, the indenter leaves the materials and unloading occurs.  Based 

on this discussion, one can follow the progression of stress paths for different elastic 

moduli shown in Figure 30(a).  Illustrated by bold arrows in the figure, the recovery 

paths show that a higher elastic modulus yields a lesser strain recovery as compared to 

its lower counterpart.  On the other hand for the same elastic modulus, strain recovery is 

more pronounced for materials with higher yield stress, as indicated in Figure 30(b).  

With this, the mechanistic explanation is provided to reason the trend of the change in 

scratch visibility with regards to the variation of the elastic modulus and yield stress. 

  

 
Figure 30: Stress-strain diagram to illustrate the effect of changing (a) elastic modulus and (b) 

yield stress for elastic recovery. 
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CONCLUDING REMARKS 

To evaluate the scratch performance of a material, dual definitions, namely, 

scratch resistance and scratch visibility, are introduced in this chapter.  Based on these 

definitions, parametric studies are performed using finite element analysis (FEA) to 

evaluate the influence of mechanical and surface properties of the material.  To conduct 

the parametric studies using FEA, Load Case D, Mesh D and Material III are considered. 

From the discussion of results, it can be concluded that increasing the yield stress, 

as opposed to the changes in elastic modulus and Poisson’s ratio, is an effective way of 

improving the overall scratch performance of a material, from both the perspectives of 

scratch resistance and visibility.  Though a rise in the elastic modulus of a material helps 

to improve the scratch resistance, its scratch visibility however increases.  Also, 

introducing more frictional resistance between surfaces, via increasing the coefficient of 

adhesive friction, increases the tangential force on the indenter, but reduces its normal 

force. 

It should be noted that these conclusions are drawn based on the type of analysis, 

FE mesh design, the material and surface properties as well as the parametric ranges 

considered.  Further studies should be performed if materials or conditions of analysis 

are not similar to those adopted in this work.  Nevertheless, it is the author’s opinion that 

the dual definitions of scratch performance adopted in this study are useful in assisting 

material engineers to identify and evaluate critical scratch parameters in designing better 

scratch-resistant products. 
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CHAPTER VI 

RUBBER ELASTICITY 

 

Rubber can be considered as one of most researched and well understood 

polymeric materials due to its early discovery and wide range of applications.  This 

chapter considers the formulation of constitutive laws for rubbery materials.  Various 

considerations, assumptions and derivation of the Gaussian and non-Gaussian rubber 

network models are reviewed.  A new rubber elasticity model, herein referred as the 

mixed model, is proposed that combines the modeling capability of the Gaussian and 

non-Gaussian rubber network models for an enhancement of the overall prediction 

accuracy.  To be presented in this chapter, comparison of numerical results between 

various rubber network models and ABAQUS® will demonstrate that the mixed rubber 

model is a better constitutive model over a wide range of deformation.  It is envisioned 

that this material constitutive modeling work on rubbery material allows one to extend 

the effort to amorphous materials since both materials share a similar network-type 

morphological structure.  

 

RUBBER NETWORK 

To describe the elasticity of elastomeric materials, the approach commonly taken 

by researchers follows that outlined by Treloar in his well-cited monograph on rubber 

elasticity [40].  Prior to the derivation of rubber elasticity models, the conditions that 

constitute a rubber-like elasticity are first reviewed.  For a material to behave in a 
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rubber-like manner under mechanical loadings, it must exhibit the following three 

characteristics: 

(i) there must be a presence of long-chain molecules with free-rotating links; 

(ii) there are weak secondary forces between the chain molecules; 

(iii) the chain molecules are interlocked with one another at isolated locations 

along their chain length, creating a three-dimensional network. 

 
Natural rubber or poly-isoprene, like most other polymers, consists of long-chain 

macromolecules with isoprene as the repeating unit and typically has molecular weights 

in the range of 1,000,000 g/mol.  In its naturally occurring form, rubber is soft and sticky 

with a low melting temperature of approximately 30°C and has very little practical usage.  

This is because natural rubber is highly amorphous and has virtually no chemical cross-

linking between the chain molecules to provide significant resistance or rigidity against 

thermal agitation and mechanical deformation.  Rubber molecules tend to slide over one 

another and the elasticity of the material is only provided through weak van der Waal’s 

forces of attraction and physical entanglements between molecules.  Through a process 

called vulcanization where sulfur is introduced to promote chemical cross-linking, 

elastomeric properties of rubber are substantially enhanced and the network of cross-

linked molecules deforms together as a coherent body.  Figure 31 shows the chemical 

structure of a rubber molecule (poly-isoprene) and the chemical cross-linking between 

rubber molecules and sulfur as a result of vulcanization.  Relating to the above three 

elastomeric properties, it is of no surprise to realize that these properties are motivated 
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by the morphology structure and mechanical response of vulcanized rubber, the very 

first form of commercial rubber.   

 
 
 

  

 

Figure 31: Chemical structure of poly-isoprene (natural rubber) and chemical cross-linking due 
to vulcanization. 

 
 
 

Closely related to the elastomeric properties and important for the derivation of 

the constitutive theory for rubbers, the five fundamental assumptions of rubber elasticity 

are stated as [36]: 

(i) A rubber network contains N  chains per unit volume; 

(ii) The entropy of the rubber network is the sum of the entropies of each chain; 

(iii) The mean-square end-to-end distance of the network in its unstrained state 

is equal to the sum of the corresponding distance of each chain; 
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(iv) The chains move affinely with the embedded continuum during a 

deformation process; 

(v) Volume of the continuum remains unchanged under deformation. 

 
A chain referred to herein is defined as the segment of a molecule between two 

successive points of cross-linkage.  The first three assumptions are mathematical 

simplifications introduced so that the derivation of the constitutive theory remains 

tractable and conceivable.  The fourth assumption of affine deformation is, by the 

author’s opinion, the most critical of all, without which the constitutive law established 

fails to hold at the continuum level.  The last assumption is another mathematical 

simplification that is inserted to link the strain energy of the rubber network to its stress-

strain response.  It is demonstrated later in this chapter that the assumption of isochoric 

(or volume preserving) deformation can be readily relaxed for generality.  

 
 
  

 

Figure 32: Flow chart for the formulation of the constitutive relations of rubber. 

Entropy of a single chain

Strain energy of the network

Stress-strain (stretch) constitutive relations

Entropy of a network of N chains
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With that and to proceed with the derivation of the constitutive theory for rubbers, 

the approach taken follows the flow chart presented in Figure 32 where the entropy of a 

single chain is first calculated.  In accordance with the second assumption, the entropy of 

the rubber network is computed accordingly.  Within the framework of thermodynamics, 

the strain energy of the network is furnished.  Finally, the stress-strain or stress-stretch 

relation of the rubber network is established with the aid of continuum mechanics. 

 

Entropy of a Rubber Chain 

 It is quite clear from Figure 31 that a cross-linked poly-isoprene or rubber 

molecule can have an infinitely large number of conformations, taking in account that 

the single bond enjoys rotational degree of freedom under the constraint of the valence 

angle between bonds.  Furthermore for a macromolecule with high molecular weight like 

rubber, it is practically impossible to identify precisely the conformation of a molecule.  

However using statistical theory, it becomes viable to describe the probability of 

achieving a particular conformation for a molecule.  

Now considering a rubber chain with one end fixed in Cartesian space at a 

reference origin (O), as shown in Figure 33.  The other end of the molecule is free to 

occupy any location ( )zyxA ,,  in space.  To statistically describe the conformation of the 

rubber chain, probability density functions ( )zyxP ,,  can be employed.  Suppose that the 

free-end of the rubber chain can move within an infinitesimal control volume ( dV ) of 

space, as depicted by the box in Figure 33.  Therefore, the probability ( )zyxp ,,  of a 

chain with its free-end occupying a point in space can be given by 



 81

 ( ) ( ) dVzyxPzyxp ⋅= ,,,,   (5) 

For generality, the probability density function is not defined explicitly until later.  In 

retrospect, the probability of a conformation of a rubber chain computed in Eq. (5) can 

be related to the number of conformations available to the chain.  This is an important 

statement of postulation as this aptly allows the introduction of statistical 

thermodynamics into the derivation. 

 
 
 

 

Figure 33: Conformation of a rubber chain in Cartesian space. 

 
 
 

 Based on the principles of statistical thermodynamics, the entropy of a system is 

proportional to the logarithm of the number of configurations available at a particular 

state [40].  To adapt this for the possible conformations of the rubber chain, the entropy, 
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S  of a single chain whose free-end is occupying a random location ( )zyx ,,  in space can 

be described by  

 ( )[ ]dVzyxPkS ⋅= ,,ln ,  (6) 

where k  is Boltzmann’s constant. 

 

Entropy of a Rubber Network 

As outlined earlier by the first assumption of rubber elasticity, there are N  

chains in a rubber network.  One can readily compute the entropic change of a rubber 

network during a deformation with the aid of the second assumption as 

 ( )∑
=

−=
N

m
mm SSdS

1

0 ,  (7) 

where the subscript “m” and 0
mS  denote quantities and the entropy of the undeformed m-

chain, respectively, while the entropy mS   is to be calculated from Eq. (6). 

 

Strain Energy of a Rubber Network 

To relate the evolution of entropy from the conformation change of the rubber 

network during deformation, the laws of thermodynamics are called upon.  The first law 

of thermodynamics for a closed system asserts that the change in the internal energy 

( dU ) of the system must be balanced by the heat absorbed by the system ( dQ ) and the 

work done on it by external forces ( dW ) [65].  Mathematically, the first law of 

thermodynamics can be stated as  

 dWdQdU += .  (8) 
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As in the second law of thermodynamics, the entropy of a system can be related to its 

heat adsorption as  

 dSTdQ = ,  (9) 

where T  is the absolute temperature in Kelvin degree.  It has been observed by Treloar 

[36] in his experimental work with rubbers that heat evolves when the material is being 

stretched and is absorbed upon the release of the force.  Treloar further argued that 

during a deformation process, the conformation change of the rubber network and the 

heat generated only affect the entropy but constitute no changes to the internal energy 

[36].  In essence, this statement asserts that 

 0=dU .  (10) 

In view of Eqs. (8) – (10), one can arrive to  

 dSTdW −= .  (11) 

Now introducing the entropy change of the rubber network, Eq. (7) to Eq. (11),  

 ( )∑
=

−−=
N

m
mm SSTW

1

0 ,  (12) 

In Eq. (12), the work done is treated as an absolute quantity, rather than a change as 

previously stated in Eq. (11).  This treatment remains valid so long as no prior work 

done has been introduced to the system before the deformation process takes place.   

 Finally, requiring equality between the work done on the rubber network and its 

elastic stored energy or strain energy ( Π ) gives 

 ( )∑
=

−−==Π
N

m
mm SSTW

1

0 .  (13) 
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GAUSSIAN RUBBER NETWORK MODEL 

This section considers the choice of the probability density function ( )zyxP ,,  

that has hitherto not been defined since its first introduction in Eq. (5).  The choice of the 

probability density functions in general depends on the extent of elongation of the 

molecular chains [38].  At small strains, it has been shown by Treloar [36,37] in his 

experimental data that the Gaussian error function gives a good prediction of stress-

stretch response of vulcanized rubber.  In one-dimensional (1-D) form, the Gaussian 

function ( )xG , can be defined as  

 ( ) ( )22exp xbbxG −=
π

,  (14) 

where b  is a parameter to be discussed later.  The coefficient of the exponential in Eq. 

(14) is a normalizing factor such that  

 ( ) 1=∫
∞

∞−
dxxG .  (15) 

As an illustration, the Gaussian function is plotted in Figure 34 by setting the 

value of b  to 1.  By taking the product of the 1-D form of the Gaussian function in three 

dimensions, the 3-D Gaussian probability density function can be furnished as 

 ( ) ( )[ ] ( )22
3

2222
3

expexp,, rbbzyxbbzyxPG −⎟
⎠

⎞
⎜
⎝

⎛
≡++−⎟

⎠

⎞
⎜
⎝

⎛
=

ππ
,  (16) 

where the subscript “G ” denotes the Gaussian quantities and ( )222 zyxr ++=  is the 

end-to-end distance of the rubber chain, shown in Figure 33.  As shown by Treloar [36], 

b  is related to the mean-square length of the unstretched chain ( 2
0r ) as 
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 2
2

2
0 2

3 nl
b

r == ,  (17) 

where n  and l  are the number and average length of links in a rubber chain, 

respectively.  
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Figure 34: Bell-shaped curve of the Gaussian function (b = 1). 

 
 
 

After introducing the Gaussian probability density function, the focus is now on 

furnishing the strain energy of the rubber network under the rubber elasticity framework.  

To apply the assumption of affine deformation, a link between the deformation of the 

rubber chain and its continuum body needs to be established.  This link can be provided 

through the kinematical description of a position vector at both continuum and molecular 
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levels.  Suppose that a unit representative continuum cube undergoes deformation or 

stretching in the three principal directions, as shown in Figure 35. 

 

Figure 35: Stretching of the unit continuum cube. 

 
 
 
For affine deformation, a rubber chain should deform similarly with the 

continuum.  Spatial coordinates of the chain free end after deformation is updated as 

 01xx λ= , 02 yy λ= , 03zz λ= ,  (18)  

where  0x , 0y  and 0z  are coordinates of the undeformed chain end while 1λ , 2λ  and 3λ  

are the principal stretches.   

 In view of Eqs. (6), (16) and (18), the entropies of the undeformed ( 0S ) and ( S ) 

deformed rubber can be determined as 

 ( )2
0

2
0

2
0

2
0

0 ln zyxbkdVkcS ++−+= , (19a)  

 ( )2
0

2
3

2
0

2
2

2
0

2
1

2ln zyxbkdVkcS λλλ ++−+= , (19b) 

where ( )πbkc ln3= .  With the chain entropies, the strain energy of the rubber 

network can be established using Eqs. (13) and (19) as 
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( )[ ]
m

N

m

N

m
mmmmmmG dV

dVkTzyxzyxTbk ∑∑
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−++=Π

1 01

2
0

2
0

2
0

2
0

2
3

2
0

2
2

2
0

2
1

2 lnλλλ   

  ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−++= ∑ ∑∑∑

0

2
0

2
0

2
0

2
0

2
3

2
0

2
2

2
0

2
1

2 ln
dV
dVTNkzyxzyxTbk λλλ .  (20) 

Note that the summation index in Eq. (20) has been dropped for convenience and the 

summation is always taken from 1 to N, unless otherwise stated.  Note that the 

assumption of affine deformation has been applied to the summation of volumetric 

change to obtain the result in Eq. (20).  As a simplification, it is considered that 

  ∑∑∑∑ === 2
0

2
0

2
0

2
0 3

1 rzyx .  (21) 

where 2
0

2
0

2
0

2
0 zyxr ++= .  As postulated in the third assumption, the mean-square end-to-

end distance of the rubber network can be derived from the corresponding distance of 

each chain as 

 2
0

2
0 rNr =∑ .  (22) 

Combining Eqs. (20) – (22), it can be ascertained that 

 ( ) JTNkrTNkb
G ln3

3
2
3

2
2

2
1

2
0

2

−−++=Π λλλ .  (23) 

where 3210 λλλ== dVdVJ .  Next considering the relation between b  and 2
0r  in Eq. 

(17), the final form of the strain energy for the Gaussian rubber network model becomes 

  ( ) Jln3
2
1 2

3
2
2

2
1G µλλλµ −−++=Π ,  (24) 

where TNk=µ  is the initial shear modulus.  Hitherto, the assumption of isochoric 

deformation has not been applied to derive the Gaussian rubber network model.  If the 
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deformation process incurs no change in the continuum volume, i.e., 1=J , the familiar 

form of the incompressible Gaussian rubber network model is recovered as 

 ( )3
2
1ˆ 2

3
2
2

2
1 −++=Π λλλµG ,  (25) 

where the cap symbol denotes incompressible quantities.  Note that the incompressible 

Gaussian rubber network model is also sometimes referred as the neo-Hookean model. 

     

NON-GAUSSIAN RUBBER NETWORK MODELS 

 As mentioned, the applicability of the Gaussian network model is only valid at 

small strains or when the extended length of the rubber chain is significantly less than 

the maximum extended chain length [36,38], 

 lnr << .  (26) 

When r  approaches ln4.0 , the stretching behavior of rubber chains becomes 

significantly non-Gaussian [38].  Hence in such large strain (stretch) regime, it is 

necessary to adopt non-Gaussian functions.  A survey of relevant literature shows that 

the work by Kuhn and Grün [36] has been adopted extensively to establish the 3-chain 

[39], 4-chain [40], 8-chain [41], full-chain [34] and averaged-stretch [42] non-Gaussian 

network models for rubber.  The non-Gaussian probability density function proposed by 

Kuhn and Grün [36] can be stated as follows: 

 ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

β
ββ

sinh
lnexp

ln
rnCrPNG   (27) 
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where C  is a constant and the subscript “ NG ” denotes non-Gaussian quantities.  β  is 

the inverse Langevin function of λ , i.e.,  

 ( )1Lβ λ−=  (28a) 

where λ  is a stretch measure to be defined separately for each network model and the 

Langevin function is stated as  

 ( ) 1cothL x x
x

= − . (28b) 

 

Entropy and Strain Energy of Non-Gaussian Rubber Network 

 Based on the Kuhn-Grün function, one can calculate the entropy of a rubber 

chain before and after a deformation as 

 0 0 0 0
0

0

ln ln
sinh

rS kC k dV nk
nl
β β

β
⎡ ⎤⎛ ⎞

= + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (29a)  

   ln ln
sinh

rS kC k dV nk
nl
β β

β
⎡ ⎤⎛ ⎞

= + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (29b)  

With this and using Eq. (13), the strain energy of the non-Gaussian rubber network with 

N  number of chains can be established as 

 
m

N

m

N

m m
NG dV

dVkT
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rTknC ∑∑

==
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=Π

1 01

ln
sinh

lnˆ
β

ββ   

  JTNk
nl
rTNnkC ln

sinh
lnˆ −⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

β
ββ .  (30) 

where Ĉ  accounts for the conformational entropy of undeformed rubber chains. Other 

than considering isochoric deformation, it is also assumed in the derivation of Eq. (30) 
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that the entropic contribution to the strain energy is the same for every rubber chain.  To 

yield the stress-strain relation, the derivative of the strain energy is to be taken with 

respect to the principal stretch.  Hence, the constant Ĉ , can be dropped from Eq. (30) 

without any loss of generality.  Finally in view of Eq. (17), the strain energy of a general 

non-Gaussian rubber network model can be furnished as 

 J
nr

rnNG ln
sinh

ln
0

µ
β

ββµ −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Π , (31) 

and its incompressible counterpart is given by 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Π

β
ββµ

sinh
lnˆ

0 nr
rnNG . (32) 

 

Comparison between Gaussian and Kuhn-Grün Functions  

Like the Gaussian function, the formulation of the Kuhn-Grün probability density 

function is also motivated by the quest to statistically predict the end-to-end distance of 

the rubber chain.  As presented earlier, the Gaussian approach determines the chain 

length through its prediction of the most probable spatial position of the free end.  

However in the Kuhn-Grün approach, the chain length is computed with a different 

philosophy, which is based on the probability distribution of the link angles with respect 

to the length OA in Figure 33.  

Besides that, it is interesting to see how the Kuhn-Grün function performs at 

small strains, as compared to its Gaussian counterpart.  According to Kuhn and Kuhn 

[36], the Kuhn-Grün function, Eq. (27) can be expressed in a series form as 
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⎥
⎦
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ln
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ln
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ln
rCrPNG   (33) 

Substituting Eqs. (16) and (17) into Eq. (33) yields 

( ) ( )[ ] ( )[ ]
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

⎥
⎥
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⎢
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⎡
+⎟⎟

⎠
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⎛
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⎛
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42

350
171

35
221ln

5
11lnln

ln
r

ln
rrP

n
rPCrP GGNG γγ   (34) 

where ( )bπγ ln3= .  When ( )nlr  is small and ignoring higher-order terms, Eq. (34) 

reduces to 

 ( ) ( ) ( )[ ]2ln
5
1lnln γγ +−++≅ rP
n

rPCrP GGNG  

  ( )rP
n

C Gln
5
21~

⎟
⎠
⎞

⎜
⎝
⎛ −+≅

γ  (35) 

where ( )nCC 5~ 2γγ −+= .  Since b  must be less than π  from Eq. (16) and γ  must 

be always positive, it is evident from Eq. (35) that the Kuhn-Grün probability density 

function gives a lower prediction of the chain length than that of the Gaussian function at 

small strains.  This conclusion is different from that arrived by Treloar [36] that at small 

strains, the Kuhn-Grün function provides an equivalent prediction as that of the Gaussian.  

This statement is further substantiated with numerical solutions later in this chapter. 

 

3-Chain and 8-Chain Non-Gaussian Models 

Of the various non-Gaussian rubber network models, the 3-chain [39] and 8-

chain models [41] possess a simpler mathematical framework that allows easy 

computational implementation and still has a good accuracy in modeling the elastic 

response of rubbers.  The principle of these N-chain models goes one step further in the 



 92

theory of rubber elasticity by explicitly specifying the initial orientation of the N chains.  

In the idealization of the 3-chain model, all the rubber chains are initially oriented along 

the three mutually orthogonal principal directions of deformation, as shown in Figure 

36(a).  For the 8-chain model, the chains, as illustrated in Figure 36(b), are idealized to 

emanate diagonally from the center of a unit cube to each of its eight corners. 

 
 
 

 

Figure 36: (a) 3-chain rubber model; (b) 8-chain rubber model. 

 
 
 
For the 3-chain model, the deformed chain length along each principal axis ( i ) 

can be characterized as 

 0rr ii λ= .  (36) 

To compute β , the relative principal stretch ( iλ ) is given by  

 
n
i

i
λ

λ = .  (37) 
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As a discussion in [42], it may be argued that the 3-chain model should be extended to a 

6-chain model to completely represent the different quadrants in space.  However, the 

symmetry present in the 6-chain model readily reduces itself to a 3-chain model.  Hence, 

the 3-chain model is adequate to represent the chain deformation in the considered 

orthogonal directions.  Assuming that the rubber chains in the network are evenly 

distributed in the three orthogonal directions, one can furnish the strain energy for the 

compressible 3-chain rubber network from Eqs. (31), (36) and (37) as 

 Jn
i i

i
ii ln

sinh
ln

3

3

1
chain3 µ

β
β

βλµ
−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Π ∑

=
− ,   (38) 

where ( )1
i iLβ λ−= . 

For the 8-chain model shown in Figure 36(b), Beatty [42] demonstrated 

mathematically that the principal stretches in each of the eight chains are invariant or the 

same, if and only if the chains extend from the geometric center to all its corners of an 

uniform polyhedron; examples of uniform polyhedrons are cubes and tetrahedrons. With 

this and considering the direction vector of the chains, one can readily deduce that the 

deformed chain length is 

 0rr cc λ= ,  (39) 

where ( ) 32
3

2
2

2
1 λλλλ ++=c  and the relative chain stretch, 

 
n
c

c
λ

λ = ,  (40) 

In view of Eqs. (31), (39) and (40), it is surprising to obtain a relatively simpler 

mathematical expression for the strain energy of the compressible 8-chain model as 
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⎛
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where ( )1
c cLβ λ−= . 

 

Evaluation of Inverse Langevin Function 

To implement any of the above-stated non-Gaussian rubber network models, Eqs. 

(38) and (41), it is essential to be able to compute the inverse Langevin function 

accurately since there is no exact form to the function.  As compiled by Horgan and 

Saccomandi [66], there are generally two types of analytical solutions to approximate the 

inverse Langevin function, i.e., rational polynomials and series solutions.      
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Figure 37: Inverse Langevin function and its singularity at x = 1. 
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The rational polynomials for the inverse Langevin function are usually obtained 

empirically [36,67] or using Padè approximant [68] while series solutions are derived 

based on the series expansion of Eq. (28) and comparing algebraic coefficients of a 

selected number of terms for the inverse function [36,69].  As illustrated in Figure 37, 

inverse Langevin function has a singularity when x  approaches 1, of which Horgan and 

Saccomandi [66] pointed out that such a singularity can be captured more accurately 

using rational polynomials than the series solutions. 

On the approximation of inverse Langevin function by rational polynomials, 

Treloar [36] suggested the first empirical form as 

 ( ) ( )
1

2 4 63 1 1
5 5 5

3
1

xL x
x x x

− ≅
− + +

,  (42) 

and the other from another work of his [67], 

 ( ) ( )
1

2 4 63 36 108
5 175 875

3
1

xL x
x x x

− ≅
− + +

.  (43) 

Using Padè approximant, Cohen [68] proposed a simpler rational polynomial  

 ( ) ( )2
1

2

3
1

x x
L x

x
−

−
≅

−
.  (44) 

In terms of series solutions, the first eight terms of the expansion for the inverse 

Langevin function are given as 

   ( )1 3 5 7 9 119 297 1539 126117 437334393
5 175 875 67375 21896875

L x x x x x x x− ≅ + + + + +  

    K+++ 1513

9306171875
32049500904

109484375
231321177 xx   (45) 
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The first four terms of the series expansion in Eq. (45) can be attributed to Treloar 

[36,67] while Anand [69] added two more terms to the series.  The last two terms of the 

series have been independently derived in this study. 

From the suggested approximants, the form of rational polynomials Eq. (42), by 

Treloar [36] and Eq. (44), by Cohen [68] capture exactly the singularity of the inverse 

Langevin function.  To access the accuracy in the approximation of the inverse Langevin 

function, one can refer to Figure 38(a) and (b) for the comparison of percentage errors 

by the various methods.  Since there are no exact values of the inverse Langevin 

function for comparison, the errors presented are computed based on how well the 

calculated values of the inverse Langevin function can recover the original values used 

for the calculation in Eq. (28).  From Figure 38(a), one can observe that near the region 

of singularity (0.9 ≤ x  < 1), rational polynomials Eqs. (42) – (44) expectedly yield better 

accuracy than the series solutions.  Though Eq. (44) by Cohen [68] may be the most 

accurate in predicting values around the region of singularity, its accuracy over other 

regions is generally poor.  In the range of 0 ≤ x  < 0.6, it is evident from Figure 38(b) 

that the accuracy of the series solutions of using 6 or 8 terms is superior to those of 

rational polynomials.  However in terms of overall accuracy, the rational polynomial, Eq. 

(42) has the lowest percentage error over the entire domain among various methods.  For 

the purpose of implementing non-Gaussian models in this work, the rational polynomial 

of Eq. (42) is adopted for evaluating the inverse Langevin function. 
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Figure 38: Comparison of percentage error in approximation over (a) 0 ≤ x < 1; (b) 0 ≤ x ≤ 0.7. 
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STRESS-STRETCH CONSTITUTIVE EQUATIONS 

With the strain energy (Π ) of the Gaussian and non-Gaussian rubber network 

models derived, it now remains to establish the constitutive equations so as to link the 

stresses to the state of deformation, i.e., strains or stretches.  Under the framework of 

finite elasticity, it is assumed that the material of concern in this study, rubber, is 

hyperelastic, isotropic and homogeneous.  For material isotropy and hyperelasticity, it 

follows that the strain energy of the material can be expressed as [70] 

 ( )321 ,, IIIΠ=Π   (46) 

and the corresponding stress tensor (σ ) is given by [71]  

 1
110

−
−++= BBIσ χχχ ,  (47) 

where I  is the identity tensor, B  is the left Cauchy-Green deformation tensor and 
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In Eqs. (48), the principal invariants of B  can be expressed in terms of the principal 

stretches as 
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Calculation of σ  using Eqs. (47) – (49) can be cumbersome since the eigen-

principal values of B  may not be known explicitly for a general state of deformation.  

For simple deformation processes like uniaxial or biaxial extension, the axes of 

deformation are naturally aligned with the principal directions.  Hence, B  is diagonal 

and its diagonal elements are the principal values, which correspond to the square of the 

stretches, 
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However for an arbitrary state of deformation, it is necessary to first compute the eigen-

values and eigenvectors of B  before using Eq. (47) to determine the principal stresses.  

Finally, the principal stresses are to be transformed from the eigen-space back to the 

original Cartesian space based on the following transformation 

 TQσQσ ⋅⋅= P ,  (51) 

where Pσ  is the principal stress tensor and Q  is the transformation matrix whose 

columns correspond to the unit eigen-vectors of B . 

 Now suppose the deformation in Cartesian space has been transformed to or 

coincides with the eigen-space so that Eq. (50) remains valid.  Through simple algebraic 

manipulation, the principal stress ( iσ ) can be established from Eqs. (47), (48) and (50) 

as 
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Evaluating the derivative of the principal invariants in Eq. (49) with respect to the 

principal stretches yields 

 i
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Substituting Eqs. (53) into Eq. (52) readily yields the simplified form of the principal 

stress-stretch constitutive equations for homogeneous, isotropic, compressible and 

hyperelastic materials 
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For incompressible materials ( 1=J ), the principal stress-stretch relations become [71] 

 
i

ii d
dp
λ

λσ Π
⋅+=ˆ   (55) 

where p  is a parameter that is to be determined from the boundary conditions. 

From the constitutive equations in Eq. (54) and the strain energies in Eqs. (24), 

(38) and (41), material compressibility can be considered readily in the formulation, 

which indicates that the last assumption of the rubber elasticity defined in the early part 

of this chapter can be relaxed easily. 
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Stress-Stretch Constitutive Equations for Gaussian Model 

 For a general state of deformation, the principal stress-stretch constitutive 

relations for compressible Gaussian rubber network model can be derived from Eqs. (24) 

and (54) as 

 ( ) ( )12 −= iiG J
λµσ ,  (56a) 

and for its incompressible counterpart, from Eqs. (25) and (55), 

 ( ) 2ˆ iiG p λµσ += . (56b) 

For uniaxial extension where λλ =1  and λλλ 132 == , applying the stress-free 

boundary condition to ( )2ˆGσ  or ( )3ˆGσ  in Eq. (56b) arrives to 

 
λ
µ

−=p .  (57) 

For pure shear ( λλ =1 , 12 =λ  and λλ 13 = ), the stress-free boundary condition only 

holds for ( )3ˆGσ .  Hence,   

 2λ
µ

−=p .  (58) 

 

Stress-Stretch Constitutive Equations for 3-Chain Non-Gaussian Model 

For the 3-chain non-Gaussian rubber network model, the compressible principal 

stress-stretch constitutive relations can be calculated from Eqs. (28), (38) and (54) to 

give 

 ( ) ( )3
3chain3 −=− n

J iii βλµσ ,  (59a) 
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and its incompressible counterpart can be derived from Eqs. (38) and (55) as  

 ( ) ( )iii
np βλµσ

3
ˆ chain3 +=− . (59b) 

For the uniaxial extension testing, p  can be determined as 
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where ( )1 1
u n

L
λ

β −= .  Applying pure shear deformation to the incompressible 3-chain 

model yields 
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where ( )1 1
s n

L
λ

β −= . 

 

Stress-Stretch Constitutive Equations for 8-Chain Non-Gaussian Model 

Now consider the 8-chain non-Gaussian rubber network model and using Eqs. 

(41) and (54), its compressible principal stress-stretch constitutive relations are 

 ( ) ⎟⎟
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ci
i J λ
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For determining the constitutive equations of the incompressible 8-chain rubber network, 

Eqs. (41) and (54) are employed to give 
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To model uniaxial extension, the appropriate value for p  is ascertained as 
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For pure shear deformation, it follows that 
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NUMERICAL IMPLEMENTATION OF RUBBER MODELS 

With the extensive discussion and derivation of the Gaussian and non-Gaussian 

rubber network models, it is of interest to see how well these two general types of rubber 

elasticity models can describe the deformation response of rubbers.  Experimental stress-

strain data for vulcanized rubber (with 8% by weight of sulphur) tested at room 

temperature (20°C) under different types of deformation by Treloar [36,37] would be 

adopted as experimental benchmarks for the comparison study.  

Presented in Figures 39(a) and (b) are the nominal stress-stretch curves of the 

considered vulcanized rubber under uniaxial extension and shear deformation.  Also 

illustrated in these figures are the predictions of the elastic response by the Gaussian [Eq. 

(25)], 3-chain [Eq. (38)] and 8-chain [Eq. (41)] rubber network models.  Note that 

material incompressibility has been considered in the prediction.  The nominal stress, if  

used in the figure is defined as the ratio of the applied force, P  to the original area, 0A .  

Considering the x-direction in Figure 35, it can be derived that 
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where 1σ  is the Cauchy stress in the x-direction and on the the y-z plane.  For the 

uniaxial extension and pure shear deformation discussed in Eqs. (57) and (58), the 

nominal stress in x-direction is given as 

 
λ

σ1
1 =f   (66) 

 
To obtain the parameters for various models, a simple optimization program is 

used to determine the set of parameters that minimizes the error from the curve-fitting 

the experimental data for uniaxial extension. Table 7 lists the set of parameters for the 

Gaussian, 3-chain and 8-chain non-Gaussian rubber network models.  From Figure 39(a), 

it is clear that the prediction by Gaussian rubber network model at large stretches is 

notably poor, as compared to the other non-Gaussian models.  Generally, both non-

Gaussian models have very good correlation with the experimental uniaxial extension 

results over moderate and large stretches.  However, a careful examination of the results 

over small stretches reveals that those from the 3-chain and 8-chain models are 

consistently lower than the test data, which numerically supports the analytical finding 

established earlier in Eq. (35).  The same trend is again observed for the shear 

experimental data in Figure 39(b) where the Gaussian model generally performs better at 

small stretches while the non-Gaussian models have better approximations at large 

deformation.  From the shear test data, the 8-chain non-Gaussian network model shows a 

slight improvement in the prediction over its 3-chain counterpart. 
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Figure 39: Nominal stress-stretch curves of rubber under (a) uniaxial extension; (b) shear. 
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Table 7: Parameters for Gaussian, 3-chain and 8-chain rubber network models. 

Model Shear modulus, µ (MPa) n 

Gaussian 0.350 - 
3-chain 0.273 76.575 
8-chain 0.272 25.603 

 
 
 
Mixed Rubber Elasticity Model 

From the results presented in Figure 39, especially for the shear data, it is clear 

that neither the Gaussian nor non-Gaussian rubber network models is capable of 

capturing the mechanical response of rubbers at both small and large strains on its own.  

To preserve the predictive capability of both types of rubber network models, it is candid 

for one to propose that different rubber network models are used for different extent of 

deformations.  However, to simply apply different models over various domains of 

deformation may introduce kinks or slope discontinuities at the transition.  To facilitate a 

smooth transition of network models across different domains, smoothing functions may 

be employed.  Herein this study, the smoothing function adopted is  

 ( ) ( )23 61510 ξξξξ +−=f   (67) 

where ( ) ( )11 tr −−= λλξ  and trλ  is the transition stretch beyond which non-Gaussian 

models should prevail.  The smoothing function in Eq. (67) is selected for its simple 

numerical implementation and high-order of continuity.  As discussed earlier since 

rubber chains only begin to exhibit non-Gaussian response when nlr 4.0≈  [38], it is 

reasonable to assume that full non-Gaussian effect only takes place at nlr 8.0= , which 
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is less than the maximum possible chain stretch of nl .  In view of Eq. (17), the transition 

stretch is taken as 

 n8.0tr =λ   (68) 

Considering only the Gaussian and 8-chain non-Gaussian network models for the 

mixed model and for the range of stretches ( tr1 λλ ≤≤ ), the strain energy of the 

incompressible mixed model can be computed from Eqs. (32), (41) and (67) as 

 ( ) chain8GMixed
ˆˆ1ˆ

−Π⋅+Π⋅−=Π ff .  (69) 

Beyond the transition, the non-Gaussian 8-chain model is applied solely to predict the 

response of the rubbery material. 

Plotted in Figures 40(a) and (b) are the constitutive predictions by the mixed 

model for the uniaxial extension and shear deformation, together with those by the other 

two models.  From these figures, the mixed model, despite its simple formulation, shows 

significant improvements in modeling accuracy as compared to the two constituent 

models, especially for shear data.  The implementation of the mixed rubber network 

model in FORTRAN code is documented in Appendix A-7. 
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Figure 40: Prediction of stress-stretch behavior by the Gaussian, 8-chain and mixed models. 
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Material Subroutine for ABAQUS®  

 One of the most important aspects of constitutive modeling effort is to be able to 

apply newly formulated constitutive laws to real life problems.  For this, it is necessary 

to integrate constitutive equations as part of the analysis technique adopted to yield 

solutions to practical engineering problems.  Since this dissertation adopts ABAQUS® as 

the FEA tool to generate numerical results for the scratch problem at hand, it is 

compelling for one to ask if unique constitutive relations, like the rubber elasticity 

models introduced earlier, can be incorporated into the ABAQUS® analysis.  A key 

attribute of ABAQUS® is its flexibility to allow users to define material subroutines to 

analyze problems involving unique or complex materials.  As itself, ABAQUS® [46] has 

also included many commonly known material constitutive laws like the Gaussian and 

the non-Gaussian 8-chain models, in its material database for users.  To particularly 

include the mixed rubber network model in ABAQUS®, a material subroutine 

(UHPYER) has been written to define its strain energy to be used for computation and is 

documented in Appendix A-8.   

This material subroutine is written with the flexibility to allow users to select the 

types of rubber network models among the Gaussian, non-Gaussian 8-chain and mixed 

models.  To suit the inherent structure of the subroutine as required by ABAQUS® [46], 

two minor modifications have been made to the formulation.  The first modification is 

the change of the parameter (ξ ) used in the smoothing function in Eq. (67) to 

 
3ˆ
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−
−

=
I
Iξ ,  (70) 
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where 1̂I  is the first principal invariant of B  that corresponds to the transition stretch, λ̂ .  

The second modification is to adopt the formulation of ABAQUS® for material 

compressibility, based on the work of Kaliske and Rothert [44] for rubbery materials at 

finite strains.  For that, the strain energy of the rubber network model, regardless of the 

types considered, can be written generally as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+Π=Π JJ

D
ln

2
11ˆ

2

,  (71) 

where KD 2=  and K  is the bulk modulus of the material.  Though the material 

subroutine is written with the capability to account for material compressibility, the 

deformation considered for the numerical study essentially remains incompressible, i.e., 

1=J .  For this numerical study, a default value of µ20  is still taken for K , as 

recommended by ABAQUS®. 

For implementation of the non-Gaussian 8-chain model by ABAQUS®, the 5-

term series expansion in Eq. (45) is adopted for computing the inverse Langevin 

function, instead of Eq. (42) as considered in this study.  To determine the appropriate 

material parameters for the corresponding non-Gaussian 8-chain model in ABAQUS®, 

experimental data are included as inputs, which are fitted with the predicted model by 

ABAQUS®.  Using the uniaxial test data from Treloar [36,37], the material parameters 

determined by ABAQUS® are 0.291 MPa and 24.21 for µ  and n , respectively.  When 

compared to the corresponding values in Table 7, the slight disparity between the 

material parameters can be traced to the different inverse Langevin functions used for 

the rubber model.  To further illustrate the importance of the choice of inverse Langevin 



 111

function, Figures 41(a) and (b) show the prediction of the stress-stretch curves by 

ABAQUS® and the present work, Eq. (41) for uniaxial and shear deformation, 

respectively.  To generate the results in Figure 41, the set of material parameters 

determined by ABAQUS® was used.  One can refer to Appendix A-9 for the ABAQUS® 

input file to execute the necessary analysis.  In both figures, there is little or no 

difference in the predictions by both approaches at small and moderate strains.  At large 

stretches (> 500%), the error in the inverse Langevin function adopted by ABAQUS® 

becomes significant and is demonstrated by the marked difference between the results by 

ABAQUS® and those obtained by the present effort, especially for the uniaxial 

deformation.  Regardless of the choice of the inverse Langevin functions, the overall 

modeling accuracy of the eight-chain model is still reasonably good, despite its slightly 

poorer prediction at small strains for shear deformation. 

By comparison with the mixed rubber model using the 8-chain material 

parameters in Table 7, one can see from Figures 42(a) and (b) that the mixed model with 

the inverse Langevin function from Eq. (43) results in a more accurate model for 

predicting the mechanical response of rubbers than that provided by ABAQUS®. 
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Figure 41: Stress-stretch curves of 8-chain rubber model by ABAQUS® and Eq. [41] in (a) 

uniaxial and (b) shear. 
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Figure 42: Stress-stretch curves of 8-chain rubber model by ABAQUS® and the mixed model in 

(a) uniaxial and (b) shear. 
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CONCLUDING REMARKS 

This chapter details the considerations and assumptions in the formulation of 

Gaussian and non-Gaussian rubber network models.  It is shown from numerical results 

that the Gaussian rubber model is generally applicable at small strains while the non-

Gaussian models only predict well for moderate and large deformation. In particular, it 

was proven analytically that the non-Gaussian models using the Kuhn-Grün function 

under-predict the constitutive behavior of rubber at small strains, as compared to the 

Gaussian model.  A comparative study is performed to assess the accuracy of various 

forms of the inverse Langevin function available in the open literature.  To take 

advantage of the predictive powers of both the Gaussian and non-Gaussian rubber 

networks, a mixed model is proposed to accurately model the mechanical response of 

rubber over the whole range of deformation.  The formulation of the new model is 

general and can be applied readily to various rubber elasticity models for a better overall 

prediction of the constitutive response.  Implemented in a material subroutine 

(UHYPER) for ABAQUS®, numerical results show that the mixed model is a better 

constitutive model for rubbers than the 8-chain rubber model considered by ABAQUS®. 
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CHAPTER VII 

CONCLUSION AND FUTURE RESEARCH PLAN 

 

CLOSURE TO PRESENT SCRATCH RESEARCH 

This current research effort was initiated to study the scratch deformation of 

polypropylene (PP) using a numerical technique, i.e., finite element method (FEM) in 

order to obtain a better understanding of the problem.  Taking into account important 

physical and computational considerations of the scratch problem, the finite element 

analysis (FEA) performed using commercial software ABAQUS®, is shown to be 

qualitatively adequate to describe the material response of PP during a scratch process. 

Using the graphical representation of numerical results, the knowledge on the 

sequential formation of a scratch groove and phenomenological understanding of the 

mechanism occurred in the scratch deformation are gained.  Shear yielding and crazing, 

the two damage modes of polymers, are carefully reviewed and compared to assess the 

likelihood of their existence in the scratch problem.  From the quantification of plastic 

damage based on von Mises yielding criterion, ultimate material failure can occur along 

the scratch path.  On the other hand, the application of the critical strain criterion to the 

FEA solutions allows one to identify the craze initiation around the front of the indenter 

and along the sides of the scratch groove.  Not only do these two damage modes exist in 

the scratch deformation of PP, but it is indicative from these research findings that they 

may even compete against each other for dominance. 
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Parametric studies using FEA were also performed to evaluate the influence of 

mechanical and surface properties on the scratch performance of polymers.  For analysis 

simplification, the material of concern is taken as elastic-perfectly-plastic.  To improve 

the scratch performance of a material, in terms of scratch resistance and scratch visibility, 

increasing its yield stress is found to be more effective than manipulating the elastic 

modulus, Poisson’s ratio or the coefficient of adhesive friction. 

In an effort to establish a more realistic material constitutive model for PP, 

rubber network elasticity models are studied.  Though rubber or elastomeric material and 

PP may be dissimilar in their morphological structures, the network structure from the 

chemical cross-linking of rubber chains is similar to that due to the physical 

entanglement of polymers chains found in the amorphous phase of semi-crystalline PP.  

Combining the Gaussian [36] and the eight-chain non-Gaussian models [41], a new 

mixed rubber network model is proposed in this study.  Implemented using FORTRAN 

codes as well as in the ABAQUS® material subroutine, the mixed rubber model is shown 

to have an improved overall prediction of mechanical response of vulcanized rubbers 

over a wide range of deformation and have a better performance than the rubber model 

adopted by ABAQUS®. 

The research endeavor undertaken in this dissertation for the scratch behavior of 

polypropylene marks a beginning step to unravel rich knowledge while opening up new 

exciting research frontiers and possibilities in the field.  As identified in the respective 

chapters, the next section compiles these new research ideas, together with a discussion 

on their related issues and possible course of actions.       
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NEW SCRATCH RESEARCH DIRECTIONS 

By further improving the implementation of FEA like the criteria for ultimate 

material failure and craze growth, the current numerical approach for scratch analysis 

can become a powerful quantitative tool for bulk polymeric materials.  To achieve this, 

four future research goals have been identified.  

The first research goal is to develop a more representative material constitutive 

law for the analysis so that a more accurate mechanical response of the polymer under 

the complex scratch deformation can be captured.  In line with the first goal, the second 

goal is to perform the necessary experimentation to provide essential material parameters 

for constructing the material constitutive model and to validate the results generated by 

the scratch numerical analysis.  Experimental efforts are also important in the 

understanding of the damage behavior of the model systems.  For the third research goal, 

the scratch analysis is to provide a more realistic simulation of material damage.  A 

comprehensive material-dependent criterion will be proposed to allow the two important 

damage modes, i.e., shear yielding and crazing/cracking, to compete against each other 

before ultimate failure.  An appropriate damage mechanism will be put in place to 

transfer load-carrying capability from damaged materials to neighboring pristine areas.  

The fourth and final goal is to perform a more realistic and complete FEA.  Here, it shall 

be taken that FEM remains as the analysis technique and ABAQUS® continues to be 

used for conducting the analysis.  To meet this goal, a two-tier effort may be necessary.  

First of all, the scopes of scratch analysis should be re-examined for the analysis to 

include as many, if not all of essential fundamental physics involved.  A new addition to 



 118

the scopes of FEA will probably be thermo-elasticity to account for heat generated and 

its dissipation during the scratch process.  The next concurrent effort for the fourth goal 

is to introduce improvements to FEA, as a concerted effort to save computational 

resources, reduce analysis time and ultimately, perform simulations that are more 

comparable to actual experiments.  

 

First Research Goal: A More Representative Material Constitutive Law 

The first research goal exemplifies a key effort to bridge the gap between 

material science and mechanics in scratch research.  To develop constitutive models for 

bulk amorphous polymers that can accurately represent the scratch response, a 

comprehensive experimental undertaking is necessary to measure material properties, 

which are covered in the next section under the second research goal.  With the 

constitutive modeling efforts as presented in Chapter VI, the research accomplishments 

on rubber elasticity models allow an extension to amorphous polymers.  Though there 

may be similarity in the mechanism of deformation between amorphous polymers and 

rubbers, the ability of undergoing plastic deformation and crazing as well as the 

breakage and re-establishment of tie chains at points of entanglement fundamentally set 

amorphous materials apart from rubbers.  In particular, Boyce and her co-researchers 

successfully applied the non-Gaussian eight-chain rubber elasticity model [41] to the 

amorphous materials and captured their inherent strain-softening and strain-hardening 

behavior at high compressive strains [72].  But it remains to be verified if their model for 

amorphous materials can be applied to tensile, shear or other more complex modes of 
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deformation.  Once the material constitutive models can be constructed successfully, 

they have to be implemented correctly in the analysis procedure, ABAQUS®.  From the 

above, it is clear that there is much research ground to be covered to bring about 

modifications to rubber elasticity models before they can be applied to amorphous or 

semi-crystalline polymers.  

 

Second Research Goal: Experimentation 

From the perspective of materials science, the treatment of the scratch resistance 

of amorphous polymers entails several levels of investigative work and careful 

considerations.  For the benefit of numerical analysis, comprehensive material 

characterization of model materials is required.  Essential mechanical properties like 

elastic and shear moduli (static and dynamic), yield strength and ultimate strength are to 

be measured for different modes of deformation (tension/compression/biaxial), strain 

rates and temperatures.  Experiments such as creep [73] or stress relaxation tests may 

also be performed to adequately characterize the viscoelastic nature of the materials.  

Evaluation work using optical and electron microscopes may be necessary to aid the 

understanding of the damage modes unique to polymers. 

To compare and verify results from numerical analysis, scratch experimental data 

are to be collected from testing using the custom-built scratch machine, shown in Figure 

43.  Also will be beneficial to numerical analysis for its damage modeling effort, scratch 

damage mechanisms can be examined using evaluation tools like optical (OM) [74] and 

electron microscopes (SEM/TEM) and interferometer [75], as shown in Figure 44. 
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Figure 43: Scratch machine for scratch testing. 

 
 
 

    

Figure 44: (a) OM image of a scratch profile [74]; (b) SEM image of scratch damage; (c)  
interferometer image of a scratch groove [75]. 

 
 
 
Third Research Goal: Damage Criterion 

To pursue the third research goal, conscientious effort must be made to generate 

a criterion to differentiate the competition for the initiation of shear yielding and crazing.  

Also to properly characterize the extent of damage and its ultimate facture in the 

material, there should be a scheme to allow a gradual deterioration of load-carrying 

capability of the material.  To propose a competing criterion for the two damage modes, 

it is first necessary to have the criteria for each of them.  For shear yielding, one can 

(a) (b) (c)
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adopt the well-known von Mises or Tresca criteria with an appropriate hardening rule 

incorporated [52].  If there is a strong pressure dependency on the plastic deformation, 

modified von Mises or Coulomb criteria can be used [52].  To characterize crazing, Eq. 

(4) can continue to be employed as the initiation criterion.  To be implemented as a 

subroutine in ABAQUS®, the damage model can check the stress state of a material 

point against the damage criteria and thereon determine the mode of damage and the 

corresponding stress evolution for the material point.  At every analysis step, the damage 

subroutine needs to also monitor the amount of plastic deformation or crazing to 

determine the amount of stiffness loss in the material. A total loss of stiffness in the 

material occurs when the ultimate stress state is reached.  Depending on the adopted 

criteria, the measure of plastic deformation or crazing can be in the form of equivalent 

plastic strain [50] or maximum principal strain, respectively.  The incorporation of a 

gradual and total loss of material stiffness in the analysis allows a more realistic 

representation of the change in stress flow at and around the affected material points. 

As can be appreciated, establishing the above-mentioned damage model entails a 

conscientious experimental effort to adequately and correctly characterize the type and 

extent of material damage.  In addition, it should be recognized that material damage is 

closely related to its constitutive relations with regards to the stiffness change and its 

undertaking must permit proper interaction between the two for a more complete 

description of material behavior and damage.   



 122

Fourth Research Goal: To Perform a More Accurate and Complete FEA 

As discussed, the important feature of a realistic FEA is its inclusive scope of 

analysis that must encompass all of the essential physical phenomena.  In the 

preliminary results presented earlier, the heat generation and transfer during the scratch 

process have been ignored for simplification.  Relevant to the scratch problem, there are 

three different sources of heat generation.  The first heat source comes from the energy 

release due to inelastic and plastic straining; a good illustrative example of energy 

release is the presence of hysteresis due to plastic loading and elastic recovery of 

structures.  The next heat source is the frictional heat generated at the interface between 

contacts in the scratch problem.  Ambient temperature change in the environment is 

another source of heat energy for the system.  The presence of heat in a mechanical 

process can affect its analysis in two ways: one is to contribute to a dimensional change, 

i.e., expansion or contraction while the other is a change in the material response where 

a material takes on a different constitutive response at various temperature levels.  Of the 

two, the change in material rheology with temperature has a greater consequence on the 

mechanical response of polymers than the dimensional change.  Temperature 

dependency can also be applied to material damage, as mentioned in [76] particularly for 

crazing and yielding.  This again emphasizes the importance of experimental work to 

characterize material behavior at different temperatures for developing an appropriate 

temperature-dependent material law.  Also appropriate for polymers, visco-elasticity and 

visco-plasticity should be featured in the analysis accordingly. 
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Now focusing on the improvements for the accuracy of FEA, it has been 

discussed in Chapter III that the computational resources and time required for the 

analysis are quite demanding; a full analysis requires four to five days of computational 

time and approximately three gigabytes of memory.  These computational requirements 

limit the ability to perform FEA that are comparable to the experimental setup and 

thereby restricting the comparison of results to only qualitative in nature.  A way to 

overcome this difficulty is to have a more efficient mesh design for the analysis domain 

where larger elements can be used in regions with low strain gradients.  Another 

approach is to scrutinize the scratch problem further for more simplifications, such as 

applying non-linear elasticity only to areas with large deformation.  Another method is 

to adopt a global-local analysis approach, in which a coarser analysis domain is first 

used to elicit the global response.  Results of the global model are then superimposed 

onto a finer but smaller domain of interest to determine its local behavior.  Depending on 

the scopes of analysis, micromechanics modeling may be required for the local analysis 

[77].  Using this strategy, analysis can be performed more efficiently and a good 

understanding of the overall global and local responses of the problem can still be gained. 

If the proposed goals of this research endeavor can be accomplished with 

reasonable success, the collective impact on the academic and industrial worlds may be 

significant.  The end product of this research effort will be a comprehensive and versatile 

analysis tool that allows researchers to not only study scratch behavior of polymers but 

also different types of deformation (e.g., impact) and various applications (e.g., micro-

mechanical machines). 
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APPENDIX A 

 
APPENDIX A-1  
 

This appendix contains the ABAQUS® input file for the static analysis of the 

scratch problem. 

 

 
*HEADING 
 3D SCRATCH ANALYSIS OF POLYPROPYLENE WITH 1 SPHERICAL INDENTER 
** ========================================== 
** REWRITE DEFINITION 
** ========================================== 
*RESTART,WRITE,FREQUENCY=5 
** 
** ========================================== 
** NODAL DEFINITION 
** ========================================== 
*NODE, NSET=TIP 
 2000000, 0.005, 0.010, 0.0043303571429  
** 
** ========================================== 
** ELEMENT DEFINITION 
** ========================================== 
*ELEMENT,TYPE=MASS,ELSET=PMASS 
 2000000,2000000 
*MASS,ELSET=PMASS 
 5.E-06, 
*INCLUDE,INPUT=mesh.inp 
**(mesh.inp is the mesh file generated using the mesh generator – 
** see Appendix A-3) 
** 
** ========================================== 
** CONTACT BODY DEFINITION 
** ========================================== 
*SURFACE,TYPE=REVOLUTION,NAME=PUNCH 
 0.005, 0.010, 0.0035, 0.005, 0.010, 0.0055 
 START,0.0005,0.002 
 LINE, 0.0005,0. 
 CIRCL,0.,-0.0005,0.,0.  
*RIGID BODY,REF NODE=TIP, ANALYTICAL SURFACE=PUNCH 
** 
** ========================================== 
** MATERIAL DEFINITION 
** ========================================== 
*MATERIAL,NAME=PP 
*ELASTIC 
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  1.65E09,0.4 
*PLASTIC,HARDENING=ISOTROPIC 
 34.3478E06, 0.0 
 36.9565E06, 0.109362 
 36.7391E06, 0.177734 
 35.4348E06, 0.278524 
 34.4348E06, 0.379130 
 33.9130E06, 0.479447 
 33.4783E06, 0.579710 
 33.2609E06, 0.679842 
 33.3696E06, 0.779776 
 33.6957E06, 0.879578 
 34.3478E06, 0.979183 
 35.4348E06, 1.078524 
 36.5217E06, 1.177866 
 38.1739E06, 1.276864 
 40.0000E06, 1.375758 
 41.3043E06, 1.474967 
 42.6087E06, 1.574177 
 44.0000E06, 1.673333 
 45.4348E06, 1.772464 
 46.7391E06, 1.871673 
 48.0435E06, 1.936583 
*PLASTIC,HARDENING=ISOTROPIC,RATE=0.1 
 44.3478E06, 0. 
 43.9130E06, 0.173386 
 39.3478E06, 0.376153 
 36.0870E06, 0.578129 
 34.3478E06, 0.679183 
 33.3696E06, 0.779776 
 32.6087E06, 0.880237 
 32.6087E06, 0.980237 
 33.0435E06, 1.079974 
 33.6522E06, 1.179605 
 36.0870E06, 1.378129 
 39.1304E06, 1.576285 
 41.5217E06, 1.774835 
 42.3913E06, 1.874308 
*PLASTIC,HARDENING=ISOTROPIC,RATE=1.0 
 52.6956E06, 0. 
 51.5652E06, 0.168748 
 45.2174E06, 0.372596 
 39.7826E06, 0.575889 
 37.3043E06, 0.671491 
 35.4348E06, 0.778524 
 33.9130E06, 0.879447 
 33.6087E06, 0.979631 
 33.5652E06, 1.079657 
 34.1304E06, 1.179315 
 34.7826E06, 1.278920 
 35.6522E06, 1.378393 
 36.5217E06, 1.477866 
 37.6087E06, 1.577207 
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 38.6957E06, 1.676548 
 39.7826E06, 1.775889 
 40.8696E06, 1.875231 
*DENSITY 
 905, 
** 
** ========================================== 
** CONTACT DEFINITION 
** ========================================== 
*CONTACT PAIR,INTERACTION=IMP_TARG 
 TARGET,PUNCH 
*SURFACE INTERACTION,NAME=IMP_TARG 
*FRICTION 
 0.3, 
** 
** ========================================== 
** STEP 1 DEFINITION 
** (Move down the mass element) 
** ========================================== 
*STEP,NLGEOM=YES,INC=200,NAME=INDENTATION  
*STATIC 
 ,1.0 
*BOUNDARY 
  BOT, 3,3, 
 ENDS, 1,3, 
 SIDE, 1,1, 
  TIP, 1,2, 
  TIP, 4,6, 
  TIP, 3,3,-1.243206E-04 
*OUTPUT, FIELD, VARIABLE=PRESELECT 
*OUTPUT, HISTORY, VARIABLE=PRESELECT 
*END STEP 
** 
** ========================================== 
** STEP 2 DEFINITION 
** (Replace the displacement BC with the normal load BC) 
** ========================================== 
*STEP,NLGEOM=YES,INC=200,NAME=LOAD_REPLACEMENT 
*STATIC 
 ,1.0 
*BOUNDARY 
  BOT, 3,3, 
 ENDS, 1,3, 
 SIDE, 1,1, 
  TIP, 1,2, 
  TIP, 4,6, 
*CLOAD 
 TIP, 3,-5 
*END STEP 
** 
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APPENDIX A-2  
 

This appendix contains the ABAQUS® input file for the dynamic analysis of the 

scratch problem. 

 

 
*HEADING 
 3D SCRATCH ANALYSIS OF PP WITH SPHERICAL INDENTER 
** 
** ========================================== 
** IMPORT  DEFINITION 
** ========================================== 
*IMPORT,STEP=2,STATE=YES,UPDATE=NO 
 Substrate 
*IMPORT NSET 
 ENDS, BOT, SIDE, TOP, BODY, NALL 
*IMPORT ELSET 
 BOT, BODY, Substrate, ADA_REMESH, TARGET_S2 
** 
** ========================================== 
** NODAL DEFINITION 
** ========================================== 
*NODE, NSET=TIP 
2000000, 0.005, 0.010, 0.0042889169429 
** 
** ========================================== 
** ELEMENT DEFINITION 
** ========================================== 
*ELEMENT,TYPE=MASS,ELSET=PMASS 
 2000000,2000000 
*MASS,ELSET=PMASS 
 5.E-06,  
**  
** ==========================================  
** CONTACT BODY DEFINITION  
** ==========================================  
*SURFACE,TYPE=ELEMENT,NAME=TARGET  
 TARGET_S2, S2 
*SURFACE,TYPE=REVOLUTION,NAME=PUNCH 
 0.005, 0.010, 0.0034585598, 0.005, 0.010, 0.0054585598 
 START,0.0005,0.002 
 LINE, 0.0005,0. 
 CIRCL,0.,-0.0005,0.,0.  
*RIGID BODY,REF NODE=TIP, ANALYTICAL SURFACE=PUNCH 
** 
** ========================================== 
** AMPLITUDE CURVE DEFINITION 
** ========================================== 
*AMPLITUDE,NAME=S_RATE,TIME=STEP TIME 
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 0.,0.,0.75E-03,0.25,1.5E-03,0.5,2.25E-03,0.75, 
 3.E-03,1.0 
*AMPLITUDE,NAME=L_RATE,TIME=STEP TIME 
 0.,0.333333,0.75E-03,0.5,1.5E-03,0.666666,2.25E-03,0.833333, 
 3.E-03,1.0 
*AMPLITUDE,NAME=B_RATE,TIME=STEP TIME 
 0.,0.,0.25E-04,0.25,0.5E-04,0.5,0.75E-04,0.75, 
 1.E-04,1.0 
** 
** ========================================== 
** STEP 3 DEFINITION 
** (Move the mass element laterally) 
** ========================================== 
*STEP,NAME=SCRATCH 
*DYNAMIC, EXPLICIT 
 ,3.E-03 
*BOUNDARY,OP=NEW 
  BOT, 3,3, 
 ENDS, 1,3, 
 SIDE, 1,1, 
  TIP, 1,1, 
  TIP, 4,6, 
*CLOAD,AMPLITUDE=L_RATE,OP=NEW 
 TIP,3,-15 
*BOUNDARY,AMPLITUDE=S_RATE,OP=NEW 
 TIP,2,2,0.03 
*CONTACT PAIR,INTERACTION=IMP_TARG 
 TARGET,PUNCH 
*SURFACE INTERACTION,NAME=IMP_TARG 
*FRICTION 
 0.3, 
*ADAPTIVE MESH, ELSET=ADA_REMESH, MESH SWEEPS=25 
*OUTPUT, FIELD, NUMBER INTERVAL=50, VARIABLE=PRESELECT 
*OUTPUT, HISTORY, VARIABLE=PRESELECT 
*RESTART,WRITE,NUMBER INTERVAL=5,TIMEMARKS=YES 
*END STEP 
** 
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APPENDIX A-3   
 
 This appendix contains the program written in Fortran language to generate finite 

element mesh shown in Figure 6 for ABAQUS®. 

 

       
Program MESH 

C ************************************************************ 
C This program is to create mesh for ABAQUS 
C ************************************************************ 
C                                                                                
 USE DFPORT 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION X(9000000),Y(9000000),Z(9000000),AM(100000) 
      DIMENSION NOD(16) 
 CHARACTER*20 ITFILE, IHFILE, RECT 
 CHARACTER*100 INFILE 
 DATA TOL1/1.D-30/, TOL2/1.D-06/ 
 
      IT=6 
      IH=7 
C 
C This section is only applicable for inputs from file 
C 
      IN=6 
 OPEN (IN, file="meshinfo.txt",Status='Unknown') 
 REWIND (IN) 
      READ(IN,*) NELEM, NLAYER, NUNIFO, IABAQUS 
 CLOSE (IN) 
 
C File Management 
 WRITE(ITFILE,'(I5)') NELEM 
 L=6 
 DO I=1,5 
  IF(ITFILE(I:I).NE.''.AND. I.LT.L) L=I 
 ENDDO 
 ITFILE='section_'//ITFILE(L:LEN_TRIM(ITFILE)) 
 IHFILE=ITFILE(1:LEN_TRIM(ITFILE))//'.out' 
 ITFILE=ITFILE(1:LEN_TRIM(ITFILE))//'.inp' 
 
 OPEN (IT, file=ITFILE,Status='Unknown') 
 OPEN (IH, file=IHFILE,Status='Unknown') 
 REWIND (IT) 
 REWIND (IH) 
 
C Mesh Initialization Parameter 
 XMAX=5.D-03  
 YMAX=5.D-02 
 ZMAX=3.D-03 
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 YPATH=3.6D-02 
 ZTHICK=ZMAX/DBLE(NLAYER) 
 IF(NUNIFO.EQ.1) ELEN = YMAX/DBLE(NELEM) 
 IF(NUNIFO.EQ.2) THEN 
 ELEN = YPATH/DBLE(NELEM) 
 YSTART=0.5D0*(YMAX-YPATH)-((INT(3.D-03/ELEN)+1)*ELEN-3.D-03) 
 YEND=YSTART+YPATH 
 ENDIF 
 
C Node Generation 
 Print*, 'Starting...Nodal Generation' 
 
 TSTART=TIMEF() 
 INODE=1 
 NFLAG1=0 
 NFLAG2=0 
 TEMPY=0.D0 
 TEMPX=1.D-16 
 NXOVER=0 
 NXSEG=-1 
 DO WHILE (ABS(TEMPX-XMAX) .GT. ABS(TEMPX+XMAX)*TOL1 .AND. 
     +   NXOVER.EQ.0) 
 NYOVER=0 
 TEMPX=TEMPX-1.D-16 
 IF(NFLAG1.LE.2 .AND. NUNIFO .EQ. 2) THEN 
  IF(NFLAG1.EQ.2) NFLAG2=0 
  DO WHILE(ABS(YMAX-TEMPY) .GT. ABS(YMAX+TEMPY)*TOL1 .AND. 
     +     NYOVER.EQ.0) 
  X(INODE)=TEMPX 
  Y(INODE)=TEMPY 
  INODE=INODE+1 
  IF(TEMPY.LT.YSTART .AND. 
     +  ABS(TEMPY-YSTART).GT.ABS(TEMPY+YSTART)*TOL2) THEN 
  TEMPY=TEMPY+YSTART/7.D0 
 ELSEIF(TEMPY.GT.YEND .OR. 
     +  ABS(TEMPY-YEND).LT.ABS(TEMPY+YEND)*TOL2) THEN 
  TEMPY=TEMPY+(YMAX-YEND)/7.D0 
  ELSE 
  IF(NFLAG1.EQ.2) NFLAG2=NFLAG2+1 
  IF(NFLAG1.LE.1) TEMPY=TEMPY+ELEN 
  IF(NFLAG1.EQ.2) TEMPY=TEMPY+DBLE(NFLAG2)*ELEN 
  IF(NFLAG1.EQ.2 .AND. NFLAG2.EQ.3) THEN 
   TEMPY=TEMPY-2.D0*ELEN 
   NFLAG2=0 
  ENDIF 
 ENDIF 
 IF(TEMPY-YMAX.GT.(TEMPY+YMAX)*TOL2) NYOVER=1 
  ENDDO 
 NFLAG1=NFLAG1+1 
 ELSEIF(NFLAG1.EQ.3 .AND. NUNIFO .EQ. 2) THEN 
 DO WHILE(ABS(YMAX-TEMPY) .GT. ABS(YMAX+TEMPY)*TOL1 .AND. 
     + NYOVER.EQ.0) 
 X(INODE)=TEMPX 
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 Y(INODE)=TEMPY 
 INODE=INODE+1 
 IF(TEMPY.LT.YSTART .AND. 
     + ABS(TEMPY-YSTART).GT.ABS(TEMPY+YSTART)*TOL2) THEN 
 TEMPY=TEMPY+YSTART/7.D0 
 ELSEIF(TEMPY.GT.YEND .OR. 
     + ABS(TEMPY-YEND).LT.ABS(TEMPY+YEND)*TOL2) THEN 
 TEMPY=TEMPY+(YMAX-YEND)/7.D0 
 ELSE 
 TEMPY=TEMPY+2.D0*ELEN 
 ENDIF 
 IF(TEMPY-YMAX.GT.(TEMPY+YMAX)*TOL2) NYOVER=1 
 ENDDO 
 ELEN=2.D0*ELEN 
 NFLAG1=1 
 ELSEIF(NUNIFO .EQ. 1) THEN 
 DO WHILE(ABS(YMAX-TEMPY).GT. ABS(YMAX+TEMPY)*TOL1 .AND. 
     + NYOVER.EQ.0) 
 X(INODE)=TEMPX 
 Y(INODE)=TEMPY 
 INODE=INODE+1 
 TEMPY=TEMPY+ELEN 
 IF(TEMPY-YMAX.GT.(TEMPY+YMAX)*TOL2) NYOVER=1 
 ENDDO 
 ENDIF 
 TEMPY=0.D0 
 TEMPX=TEMPX+ELEN+1.D-16 
 IF(TEMPX-XMAX.GT.(TEMPX+XMAX)*TOL2) NXOVER=1 
 IF((TEMPX+ELEN)-XMAX.GT.((TEMPX+ELEN)+XMAX)*TOL2 .AND.  
     + NFLAG1.EQ.2) NXOVER=1 
 NXSEG=NXSEG+1 
 ENDDO 
 INODE=INODE-1 
 TEMPX=TEMPX-ELEN-1.D-16 
 IF(NUNIFO.EQ.1) ELEN = YMAX/DBLE(NELEM) 
 IF(NUNIFO.EQ.2) ELEN = YPATH/DBLE(NELEM) 
 IF(XMAX-TEMPX.GT.1.D-08) THEN 
 NREPEAT=INT((XMAX-TEMPX)/ELEN)+1 
 XREPEAT=(XMAX-TEMPX)/DBLE(NREPEAT) 
 NXSEG=NXSEG+NREPEAT 
 ENDIF 
 
 IF(NUNIFO.EQ.1) KK=NREPEAT*(NELEM+1) 
 IF(NUNIFO.EQ.2) KK=NREPEAT*(NELEM+15) 
 DO I=INODE,1,-1 
 X(KK+I)=X(I)+NREPEAT*XREPEAT 
 Y(KK+I)=Y(I) 
 ENDDO 
 
 II=1 
 DO I=1,NREPEAT 
 TEMPX=DBLE(I-1)*XREPEAT 
 IF(NUNIFO.EQ.1) THEN 
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  DO J=1,NELEM+1 
   X(II)=TEMPX 
   Y(II)=DBLE(J-1)*ELEN 
   II=II+1 
  ENDDO 
 ELSEIF(NUNIFO.EQ.2) THEN 
  YY=-(YSTART/7.D0) 
  DO J=1,NELEM+15 
   IF(J.LE.8) THEN 
    YY=YY+YSTART/7.D0 
   ELSEIF(J.GT.NELEM+8) THEN 
    YY=YY+(YMAX-YEND)/7.D0 
   ELSE 
    YY=YY+ELEN 
   ENDIF 
   X(II)=TEMPX 
   Y(II)=YY 
   II=II+1 
  ENDDO 
 ENDIF 
 ENDDO 
 II=II-1 
 INODE=INODE+II 
 
   1 WRITE(IT,11) 
 DO I=1,INODE 
 X(I)=XMAX-X(I) 
 IF(X(I).LT.1.D-16) X(I)=0.D0 
 WRITE(IT,12) I, X(I),Y(I),Z(I) 
 ENDDO 
 
 DO I=1,NLAYER 
 DO J=I*INODE+1, (I+1)*INODE 
  X(J)=X(J-INODE) 
  Y(J)=Y(J-INODE) 
  Z(J)=DBLE(I)*ZTHICK 
 ENDDO 
 ENDDO 
  
 WRITE(IT,16) NLAYER*INODE,ZMAX 
 WRITE(IT,18) NLAYER,INODE 
 WRITE(IT,20) 
 
 TEND=TIMEF() 
 WRITE(RECT,'(E10.3)') TEND-TSTART 
 Print*, 'Completed..Nodal Generation (Clock Time = ', 
     +RECT(1:10),' sec)' 
 
 WRITE(IH,*) 'Completed..Nodal Generation (Clock Time = ', 
     +RECT(1:10),' sec)' 
  
C Nodal Boundary Condition Imposition 
 Print*, 'Starting...Nodal Boundary Process' 
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 TSTART=TIMEF() 
 WRITE(IT,21) 
 II=0 
 DO I=1,(NLAYER+1)*INODE 
 IF (ABS(X(I)-XMAX) .LE. ABS(X(I)+XMAX)*TOL2) THEN 
  II=II+1 
  NOD(II)=I 
  IF(II.EQ.16) THEN 
   WRITE(IT,22) (NOD(J), J=1,16) 
   II=0 
  ENDIF 
 ENDIF 
 IF(I.EQ.(NLAYER+1)*INODE .AND. II.LT. 16) THEN 
  WRITE(IT,22) (NOD(J), J=1,II) 
 ENDIF  
 ENDDO 
 
 WRITE(IT,23) 
 II=0 
 DO I=1,(NLAYER+1)*INODE 
 IF (Y(I) .LE. Y(I)*TOL2) THEN 
  II=II+1 
  NOD(II)=I 
  IF(II.EQ.16) THEN 
   WRITE(IT,22) (NOD(J), J=1,16) 
   II=0 
  ENDIF 
 ENDIF 
 IF(I.EQ.(NLAYER+1)*INODE .AND. II.LT. 16) THEN 
  WRITE(IT,22) (NOD(J), J=1,II) 
 ENDIF  
 ENDDO 
 
 WRITE(IT,24) 
 II=0 
 DO I=1,(NLAYER+1)*INODE 
 IF (ABS(Y(I)-YMAX).LE. ABS(Y(I)+YMAX)*TOL2) THEN 
  II=II+1 
  NOD(II)=I 
  IF(II.EQ.16) THEN 
   WRITE(IT,22) (NOD(J), J=1,16) 
   II=0 
  ENDIF 
 ENDIF 
 IF(I.EQ.(NLAYER+1)*INODE .AND. II.LT. 16) THEN 
  WRITE(IT,22) (NOD(J), J=1,II) 
 ENDIF 
 ENDDO 
 
 WRITE(IT,25) 
 
 TEND=TIMEF() 
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 WRITE(RECT,'(E10.3)') TEND-TSTART 
 Print*, 'Completed..Nodal Boundary Imposition (Clock Time 
     + = ',RECT(1:10),' sec)' 
  
 WRITE(IH,*)'Completed..Nodal Boundary Imposition (Clock Time 
     + = ',RECT(1:10),' sec)' 
 
C Element Connectivity 
 Print*, 'Starting...Mesh Generation' 
 
 TSTART=TIMEF() 
 WRITE(IT,30) 
 NJUMP=0 
 TEMPX=XMAX 
 TEMPY=0.D0 
 IELEM=1 
 IADAPT=1 
 NOD(1)=1 
 DO WHILE (TEMPX .GT. TEMPX*TOL2) 
 NYOVER=0 
 DO WHILE (ABS(YMAX-TEMPY) .GT. ABS(YMAX+TEMPY)*TOL2 .AND. 
     +    NYOVER.EQ.0) 
  DO I=NOD(1),INODE 
   IF(ABS(X(I)-TEMPX).LE.ABS(X(I)+TEMPX)*TOL2 .AND. 
     +      ABS(Y(I)-TEMPY).LE.ABS(Y(I)+TEMPY)*TOL2) NOD(1)=I 
  ENDDO 
  NOD(2)=NOD(1)+1 
  IERR=1 
  YY=0.D0 
   2  I=NOD(2)+1 
     NOD(3)=0 
  DO WHILE (I.LE.INODE) 
   Y1=ABS(Y(I)-Y(NOD(2))-YY) 
   Y2=ABS(Y(I)+Y(NOD(2))+YY) 
   IF(Y1 .LE. Y2*TOL2 .AND. X(I).LT.X(NOD(2))) THEN 
    NOD(3)=I  
    I=INODE 
   ENDIF 
   I=I+1 
  ENDDO 
  IF(NOD(3).EQ.0) THEN 
   YY=Y(NOD(2))-Y(NOD(1)) 
   NJUMP=1 
   GOTO 2 
  ENDIF 
 
  YY=0.D0 
   3  I=NOD(2) 
  NOD(4)=0 
  DO WHILE (I.LE.INODE) 
   Y1=ABS(Y(I)-Y(NOD(1))+YY) 
   Y2=ABS(Y(I)+Y(NOD(1))-YY) 
   IF(Y1 .LE. Y2*TOL2 .AND. X(I).LT.X(NOD(1))) THEN 
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    NOD(4)=I  
    I=INODE 
   ENDIF 
   I=I+1 
  ENDDO 
  IF(NOD(4).EQ.0) THEN 
   YY=Y(NOD(2))-Y(NOD(1)) 
   GOTO 3 
  ENDIF 
 
  DO I=5,8 
   NOD(I)=NOD(I-4)+INODE 
  ENDDO 
  WRITE(IT,40) IELEM, (NOD(I),I=1,8) 
  IF(Y(NOD(2)).GE.0.7D-02 .AND. Y(NOD(2)).LE.4.3D-02) THEN 
   IF(X(NOD(3)).GE.3.D-03) THEN 
    AM(IADAPT)=IELEM 
    IADAPT=IADAPT+1 
   ENDIF 
  ENDIF 
  IF(IERR.EQ.3) WRITE(IT,50) IELEM 
  TEMPY=Y(NOD(2)) 
  IF(NJUMP.EQ.1) THEN 
   TEMPY=Y(NOD(2)+1) 
   NJUMP=0 
  ENDIF 
  IELEM=IELEM+1 
  IF(TEMPY-YMAX.GT.(TEMPY+YMAX)*TOL2) NYOVER=1 
 ENDDO 
 TEMPY=0.D0 
 TEMPX=X(NOD(3)) 
 ENDDO 
 IELEM=IELEM-1 
 IADAPT=IADAPT-1 
 DO I=2, NLAYER 
 WRITE(IT,52) (I-1)*IELEM,(I-1)*INODE 
 ENDDO 
 WRITE(IT,54) 
 WRITE(IT,60) 
 IF(IABAQUS.EQ.2) WRITE(IT,65) 
 
 TEND=TIMEF() 
 WRITE(RECT,'(E10.3)') TEND-TSTART 
 Print*, 'Completed..Mesh Generation (Clock Time =', 
     +RECT(1:10),' sec)' 
 
 WRITE(IH,*)'Completed..Mesh Generation (Clock Time =', 
     +RECT(1:10),' sec)' 
 
C Element Connectivity 
 Print*, 'Starting...Element Set Definition' 
 
 TSTART=TIMEF() 
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 JJ=0 
 WRITE(IT,70) 
 DO I=INT(0.5*NLAYER),NLAYER-1 
 DO J=1,IADAPT 
  JJ=JJ+1 
  NOD(JJ)=AM(J)+I*IELEM 
  IF(JJ.EQ.16) THEN 
   WRITE(IT,22) (NOD(K), K=1,16) 
   JJ=0 
  ELSEIF(I*J.EQ.NLAYER*IADAPT .AND. JJ.LT. 16) THEN 
   WRITE(IT,22) (NOD(K), K=1,JJ) 
  ENDIF 
 ENDDO 
 ENDDO 
 
 JJ=0 
 WRITE(IT,72) 
 DO J=1,IADAPT 
 JJ=JJ+1 
 NOD(JJ)=AM(J)+(NLAYER-1)*IELEM 
 IF(JJ.EQ.16) THEN 
  WRITE(IT,22) (NOD(K), K=1,16) 
  JJ=0 
 ELSEIF(J.EQ.IADAPT .AND. JJ.LT. 16) THEN 
  WRITE(IT,22) (NOD(K), K=1,JJ) 
 ENDIF 
 ENDDO 
 WRITE(IT,74) 
 
 TEND=TIMEF() 
 WRITE(RECT,'(E10.3)') TEND-TSTART 
 Print*, 'Completed..Element Set Definition (Clock Time =', 
     +RECT(1:10),' sec)' 
 
 WRITE(IH,*)'Completed..Element Set Definition (Clock Time =', 
     +RECT(1:10),' sec)' 
 
C To Print Mesh Configuration Summary 
 K=(NLAYER+1)*INODE 
 WRITE(*,90) IELEM*NLAYER,K,K*3,ELEN,XREPEAT,ZTHICK,ITFILE 
 WRITE(IH,90) IELEM*NLAYER,K,K*3,ELEN,XREPEAT,ZTHICK,ITFILE 
 
 CLOSE (IT) 
 CLOSE (IH) 
 
   10 FORMAT(3X,69('*'),/,3X,'*',3X, 
     +'Welcome to Mesh Generation Program for PTC Scratch '     
     +'Consortium',3X 
     +,'*',/,3X,'*',14X,'(Version 1.1 - Updated on 16 March 2005)',14X, 
     +'*', /,3X,69('*'),/) 
   11 FORMAT('*NODE, NSET=BOT') 
   12 FORMAT(I8,3(',',3X,E12.6)) 
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   14 FORMAT('*NODE, NSET=SET1') 
   16 FORMAT('*NCOPY, SHIFT, OLD SET=BOT, NEW SET=TOP, CHANGE NUMBER=' 
     +  ,I8,/,X,2(X,','),E12.6,/,2X,6(',',X)) 
   18 FORMAT('*NFILL, BIAS=1.0, NSET=BODY',/,' BOT, TOP',2(',',I6)) 
   20 FORMAT('*NSET, NSET=NALL',/,' BOT, BODY, TOP') 
   21 FORMAT('*NSET, NSET=SIDE') 
   22 FORMAT(X,I8,15(',',2X,I8)) 
   23 FORMAT('*NSET, NSET=HEAD') 
   24 FORMAT('*NSET, NSET=TAIL') 
   25 FORMAT('*NSET, NSET=ENDS',/,' HEAD, TAIL') 
   30 FORMAT('*ELEMENT, TYPE=C3D8R, ELSET=BOT') 
   40 FORMAT(I8,8(',',2X,I8)) 
   50 FORMAT(6X,'No element connectivity for Element',X,I6) 
   52 FORMAT('*ELCOPY, OLD SET=BOT, NEW SET=BODY, ELEMENT SHIFT=' 
     +  ,I8,',  SHIFT NODES=',I8) 
   54 FORMAT('*ELSET, ELSET=Substrate',/,' BOT, BODY') 
   60 FORMAT('*SOLID SECTION,ELSET=Substrate,',      
     +       'MATERIAL=PP,CONTROLS=SECT') 
   65 FORMAT('*SECTION CONTROLS,NAME=SECT,HOURGLASS=COMBINED') 
   70 FORMAT('*ELSET, ELSET=ADA_REMESH') 
   72 FORMAT('*ELSET, ELSET=TARGET_S2') 
   74 FORMAT('*Surface, type=ELEMENT, name=Target',/,' TARGET_S2, S2') 
   80 FORMAT() 
   90 FORMAT(/,68('*'),/,3X,'Type of FE element used (ABAQUS): 3D'       
     +  'Brick elements (C3D8R)',/,3X,'Number of elements created: ',I8 
     + ,/,3X,'Number of nodes created:    ',I8 
     + ,/,3X,'Total number of DOFs:     ',I10 
     + ,/,3X,'Critical Element Size:   ',2(E9.3,'m x '),E9.3,'m' 
     + ,//,3X,'Output file created: ',A20,/,68('*')) 
  888 STOP 
      END 
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APPENDIX A-4  
 

This appendix contains the plots used to predict indentation depths for different 

normal loads using Mesh D for Material I. 
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Figure 45: Indentation depths versus normal load for Mesh D and Material I ( 0=aµ ). 
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y = -4.846636E-13x6 + 6.138313E-11x5 - 2.956228E-09x4 + 6.867461E-08x3 
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Figure 46: Indentation depths versus normal load for Mesh D and Material I ( 3.0=aµ ). 
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Figure 47: Indentation depths versus normal load for Mesh D and Material I ( 6.0=aµ ). 
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APPENDIX A-5  
 

This appendix contains the plots used to predict indentation depths for different 

normal loads using Mesh D for Material II. 
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Figure 48: Indentation depths versus normal load for Mesh D and Material II ( 0=aµ ). 
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Figure 49: Indentation depths versus normal load for Mesh D and Material II ( 3.0=aµ ). 
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Figure 50: Indentation depths versus normal load for Mesh D and Material II ( 6.0=aµ ). 
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APPENDIX A-6  
 

This appendix contains the plots used to predict indentation depths for different 

normal loads using Mesh D for Material III. 
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Figure 51: Indentation depths versus normal load for Mesh D and Material III ( 0=aµ ). 
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Figure 52: Indentation depths versus normal load for Mesh D and Material III ( 3.0=aµ ). 
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Figure 53: Indentation depths versus normal load for Mesh D and Material III ( 6.0=aµ ). 
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APPENDIX A-7  
 

This appendix contains the FORTRAN program that calculates the constitutive 

response of the mixed rubber network model. 

 
      Program MIXED 
C           
C ************************************************************ 
C This program is to implement the mixed rubber network model 
C ************************************************************ 
C  
      IMPLICIT REAL*8(A-H,O-Z) 
 DOUBLE PRECISION N,MU,LAMBDA(10000) 
 DIMENSION A(10000),B(10000),S(10000) 
 CHARACTER*20 TODAY,OUFILE 
 
C Implicit Function 
 F(A)=SQRT((A*A+2.D0/A-3)**2.D0+(2.D0*A+1.D0/(A*A)-3)**2.D0) 
 G(A)=3.0*A/(1.D0-0.6D0*A*A-0.2D0*A**4.D0-0.2D0*A**6.D0) 
 H(A)=A**3.D0*(10.D0-15.D0*A+6.D0*A*A) 
 P(A)=A*A+1.D0/(A*A)-3 
 
      IT=6  
 WRITE(*,10) 

PRINT*,'Enter filename of output file without extension'      
     +        ' ("XXXX")=' 
      READ*, OUFILE 
  
 OUFILE=OUFILE(1:LEN_TRIM(OUFILE))//'.txt' 
 
 WRITE(*,20) 
      READ*, ITEST 
 
C File Management 
 OPEN (IT, file=OUFILE,Status='Unknown') 
 REWIND (IT) 
 
C Network parameters 
 SA=F(1.D0) 
 SC=F(4.04795D0) 
 
C Material Properties 
 N=25.603 
 MU=0.2719 
 AA=0.35 
 
C Calculation for the stress-strain curve 
 NFLAG1=0 
 LAMBDA(1)=1.D0 
 DO I=1,7001 
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  IF(I.GT.1) LAMBDA(I)=LAMBDA(I-1)+1.D-03 
  IF(ITEST.EQ.1) S(I)=F(LAMBDA(I)) 
  IF(ITEST.EQ.2) S(I)=P(LAMBDA(I)) 
  XX=LAMBDA(I)**2.D0 
  IF(S(I).LT.SA) THEN 
   A(I)=0.D0 
   Z=0.D0 
  ELSE 
   IF(ITEST.EQ.1) XR=SQRT((XX+2.D0/LAMBDA(I))/(3.D0*N)) 
   IF(ITEST.EQ.2) XR=SQRT((XX+1.D0/XX+1.D0)/(3.D0*N)) 
   BR=G(XR) 
   Z=(MU*BR)/(3.D0*XR) 
   IF(S(I).GE.SA .AND. S(I).LE.SC) THEN 
    A(I)=H((S(I)-SA)/(SC-SA)) 
   ELSEIF(S(I).GT.SC) THEN 
    A(I)=1.D0 
   ENDIF 
  ENDIF 
  UU=A(I)*Z*LAMBDA(I)**2.D0 
  IF(ITEST.EQ.1) VV=A(I)*Z/LAMBDA(I) 
  IF(ITEST.EQ.2) VV=A(I)*Z/XX 
  B(I)=1.D0-A(I) 
  IF(ITEST.EQ.1) WW=XX-1.D0/LAMBDA(I) 
  IF(ITEST.EQ.2) WW=XX-1.D0/XX 
  S11=B(I)*AA*WW+UU-VV 
  S11=S11/LAMBDA(I) 
  IF(I.EQ.1 .OR. MOD(I,100).EQ.0)  
     +    WRITE(IT,30)LAMBDA(I),S11,S(I)/SC 
 ENDDO 
 
   3 WRITE(*,40) 
  CALL FDATE(TODAY) 
 WRITE(IT,50) TODAY 
 WRITE(*,60) OUFILE 
 CLOSE (IN) 
 CLOSE (IT) 
 
   10 FORMAT(3X,60('*'),/,3X,'*',10X, 
     +'Welcome to Mixed Rubber Network Program',9X, 
     +'*',/,3X,'*',10X,'(Version 1.0 - Updated on 26 May 2005)',10X, 
     +'*', /,3X,60('*'),/) 
   20 FORMAT(/,X,'Select the test output data:',/, 
     +X,'(1) Extension Data',/, 
     +X,'(2) Pure Shear Data',/) 
   30 FORMAT(5(F12.6,4X)) 
   40 FORMAT(/,'End of Program') 
   50 FORMAT(/,'Program (Ver. 1.0) by G.T. Lim (',A19,')') 
   60 FORMAT(/,'Processed output data has been written to ',A20) 
  100 STOP 
      END 
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APPENDIX A-8  
 

This appendix contains the material subroutine (UHYPER) used for the mixed 

rubber network model. 

 
      SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP,NOEL,CMNAME, 
     $                  INCMPFLAG,NUMSTATEV,STATEV,NUMFIELDV, 
     $                  FIELDV,FIELDVINC,NUMPROPS,PROPS) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
      DIMENSION U(2),UI1(3),UI2(6),UI3(6),STATEV(*),FIELDV(*), 
     $          FIELDVINC(*),PROPS(*) 
      REAL*8 N,MU 
C 
C       
C     File Management 
      IT=6 
      OPEN(IT, 
     + file="/home/gtl8110/material/temp/input.txt",Status='Unknown') 
      REWIND (IT) 
 
      MU = PROPS(1) 
       N = PROPS(2)*PROPS(2) 
      D1 = PROPS(3) 
      GAU= PROPS(4) 
      IFLAG=PROPS(5) 
 
      IF(D1.EQ.0.D0) D1=1.D0/(10.D0*MU) 
 
      S=BI1*AJ**(2.D0/3.D0) 
      XR=DSQRT(S/(3.D0*N)) 
      C1=(3.D0/5.D0) 
      C2=(1.D0/5.D0) 
      C3=(1.D0/5.D0) 
      DENOM=1.D0-(C1*XR*XR+C2*XR**4.D0+C3*XR**6.D0) 
      P=1.D0/DENOM 
      DP=(2.D0*C1*XR+4.D0*C2*XR**3.D0+6.D0*C3*XR**5.D0)/DENOM**2.D0 
      BR=3.D0*XR*P 
      CN=0.8D0*N+2.D0/(0.8D0*N) 
      AA=1.D0 
      IF(IFLAG.EQ.1) THEN 
         IF(S.LE.CN) THEN 
            ZZ=(S-3.D0)/(CN-3.D0) 
            AA=ZZ**3.D0*(10.D0-15.D0*ZZ+6.D0*ZZ*ZZ) 
         ELSE 
            AA=1.D0 
         ENDIF 
      ENDIF 
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C 
      U(1)=0.5D0*(1.D0-AA)*GAU*S+AA*MU*N*(BR*XR+DLOG(BR/DSINH(BR))) 
      U(1)=U(1)+((AJ*AJ-1.D0)/2.D0-DLOG(AJ))/D1 
      WRITE(IT,*) U 
 
      UI1(1)=0.5D0*(1.D0-AA)*GAU+AA*(MU*P*AJ**(2.D0/3.D0))/2.D0 
      UI1(2)=0.D0 
      UI1(3)=(AJ-1.D0/AJ)/D1 
      WRITE(IT,*) (UI1(J),J=1,3)       
 
      UI2(1)=AA*(MU/(12.D0*N))*(DP/XR)*AJ**(4.D0/3.D0) 
      UI2(2)=0.D0 
      UI2(3)=(1.D0+1.D0/(AJ*AJ))/D1 
      UI2(4)=0.D0 
      UI2(5)=AA*(MU*P)/(3.D0*J**(1.D0/3.D0)) 
      UI2(6)=0.D0 
      WRITE(IT,*) (UI2(J),J=1,6) 
 
      UI3(1)=AA*(MU/(18.D0*N))*(DP/XR)*AJ**(1.D0/3.D0) 
      UI3(2)=0.D0 
      UI3(3)=0.D0 
      UI3(4)=-AA*(MU*P)/(9.D0*J**(4.D0/3.D0)) 
      UI3(5)=0.D0 
      UI3(6)=-2.D0/(D1*AJ**3.D0) 
      WRITE(IT,*) (UI3(J),J=1,6) 
 
      CLOSE(IT) 
      RETURN 
      END 
 

 



 157

APPENDIX A-9  
 

This appendix contains the ABAQUS® analysis input file used for uniaxial 

extension and pure shear deformation of rubber based on the mixed rubber network 

model. 

 
*HEADING 
 HYPERELASTIC TEST DATA INPUT  
 TRELOAR'S EXPERIMENTAL DATA 
 UNIAXIAL TEST DATA ONLY 
*RESTART,WRITE,FREQUENCY=5 
*NODE,NSET=ALL 
 1, 
 2,1. 
 3,1.,1., 
 4,0.,1., 
 5,0.,0.,1. 
 6,1.,0.,1. 
 7,1.,1.,1. 
 8,0.,1.,1. 
*NSET,NSET=FACE1 
 1,2,3,4 
*NSET,NSET=FACE2 
 5,6,7,8 
*NSET,NSET=FACE3 
 1,2,5,6 
*NSET,NSET=FACE4 
 2,  
*NSET,NSET=FACE42 
 3,6,7 
*NSET,NSET=FACE5 
 3,4,7,8 
*NSET,NSET=FACE6 
 4,1,8,5 
*EQUATION 
** Since the S11 output is Cauchy or true stress, we need to 
** determine the nominal stress for post-processing. 
** Nodes 3,6,7 are tied to node 2 in dof 1 so that: 
** Nominal stress (dof 1) = RF1 (@ node 2) / Original area 
** (w/c is 1 x 1 = 1) 
 2,  
 FACE42,1,1, 2,1,-1 
*ELEMENT,TYPE=C3D8RH,ELSET=ONE 
 1,1,2,3,4,5,6,7,8 
*SOLID SECTION,ELSET=ONE,MATERIAL=TREL 
*HOURGLASS STIFFNESS 
 1E01,,, 
*MATERIAL,NAME=TREL 
*HYPERELASTIC,USER,TYPE=INCOMPRESSIBLE,PROPERTIES=5 
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 0.2719E06, 5.059940711, 0., 0.35E06, 1 
**HYPERELASTIC, ARRUDA-BOYCE 
** 0.291682227E06, 4.92031012, 0. 
**HYPERELASTIC,ARRUDA-BOYCE,TEST DATA INPUT 
**UNIAXIAL TEST DATA 
** 0.0000E+00, 0 
** 1.4254E+05, 0.126 
** 2.3230E+05, 0.253 
** 3.1598E+05, 0.379 
** 4.0888E+05, 0.6 
** 5.0188E+05, 0.884 
** 5.8860E+05, 1.168 
** 6.7532E+05, 1.421 
** 8.5808E+05, 2.021 
** 1.0471E+06, 2.558 
** 1.2144E+06, 3 
** 1.5799E+06, 3.758 
** 1.9362E+06, 4.358 
** 2.2924E+06, 4.749 
** 2.6704E+06, 5.179 
** 3.0142E+06, 5.432 
** 3.3798E+06, 5.653 
** 3.7422E+06, 5.905 
** 4.0985E+06, 6.076 
** 4.4548E+06, 6.189 
** 4.8265E+06, 6.316 
** 5.1890E+06, 6.455 
** 5.5452E+06, 6.537 
** 6.2608E+06, 6.632 
*STEP,NLGEOM,INC=50 
Step 1: Uniaxial Tension 
*STATIC,DIRECT 
 .25,5. 
** .25,7. 
*BOUNDARY,OP=NEW 
** FACE1,3 
** FACE3,2 
** FACE6,1 
** FACE4,1,1,7. 
 FACE1,3 
 FACE3,2 
 FACE5,1 
 FACE6,1 
 FACE4,1,1,5. 
*OUTPUT,FIELD,FREQUENCY=1 
*ELEMENT OUTPUT 
 S, NE 
*NODE OUTPUT,NSET=ALL 
 U,RF 
*OUTPUT,HISTORY,FREQUENCY=1 
*END STEP 
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