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ABSTRACT

Threshold Analysis with Fault-Tolerant Operations for Nonbinary Quantum Error

Correcting Codes. (August 2005)

Aparna Kanungo, B.E., Anna University

Chair of Advisory Committee: Dr. Andreas Klappenecker

Quantum error correcting codes have been introduced to encode the data bits

in extra redundant bits in order to accommodate errors and correct them. However,

due to the delicate nature of the quantum states or faulty gate operations, there is

a possibility of catastrophic spread of errors which might render the error correction

techniques ineffective. Hence, in this thesis we concentrate on how various operations

can be carried out fault-tolerantly so that the errors are not propagated in the same

block. We prove universal fault-tolerance for nonbinary CSS codes. This thesis is

focussed only on nonbinary quantum codes and all the results pertain to nonbinary

codes.

Efficient error detection and correction techniques using fault-tolerant techniques

can help as long as we ensure that the gate error probability is below a certain

threshold. The calculation of this threshold is therefore important to see if quantum

computations are realizable or not, even with fault-tolerant operations. We derive an

expression to compute the gate error threshold for nonbinary quantum codes and test

this result for different classes of codes, to get codes with best threshold results.
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CHAPTER I

INTRODUCTION TO NONBINARY QUANTUM ERROR CORRECTING

CODES

A. Background

Modern day computers have grown from valve technology to VLSI logic and will soon

reach a point where the processor performance can no longer be increased by size

reduction. However, a school of thought was developed where the rules of quantum

mechanics are used to the advantage of a new kind of computing called quantum

computing. Quantum computer can basically perform all the operations that a clas-

sical computer can, and also is in some sense capable of carrying out computations in

parallel. This leads to the synthesis of quantum algorithms which provide exponential

speedup. However, quantum computing has its disadvantages too. The technology to

implement a quantum computer is currently beyond reach, and we have to develop

robust systems that are capable of detecting and correcting the errors introduced

during computation.

Quantum computers have tremendous potential. However, in order to harness

this potential to the maximum, we must ensure that the computations performed are

error free. Quantum states are very delicate since they are usually a superposition of

multiple classical states, and any measurement or interaction with the environment

leads to the decoherence of the quantum state. Hence quantum error correcting codes

have been introduced to protect the quantum states through redundancy addition.

A lot of work has already been done on binary quantum error correcting codes. This

thesis is concentrated on the nonbinary quantum error correcting codes and all the

The journal model is International Journal of Foundations of Computer Science



2

concepts discussed will pertain to the nonbinary codes. In order to understand the

error correcting techniques, we start with the discussion of some basic notions.

1. Notations and Definitions

The unit of information in nonbinary quantum systems is known as a quantum digit

or qudit. Hence, for a q-dimensional system, the quantum states can be represented

through normalized vectors in a complex Hilbert space H = Cq. We choose a fixed

orthonormal basis B of H and denote its elements by |x〉. When x is an element of

a q-ary field Fq, that is, B = {|x〉 | |x〉 ∈ Fq} where q is a prime power, a general

state of a qudit can be given by the linear combination of of these orthonormal basis

states, that is,

|ψ〉 =

q−1∑
i=0

αi |i〉 , where αi ∈ C and

q−1∑
i=0

|αi|2 = 1.

If we use a system with n qudits we obtain a quantum register whose canonical basis

states are given by the tensor product of the basis states of these n single qudits. The

computational basis of Cqn
is given by

|x1〉 ⊗ |x2〉 ⊗ . . .⊗ |xn〉 = |x1〉 |x2〉 . . . |xn〉 = |x1, x2, . . . , xn〉

where xk ∈ Fq, 1 ≤ k ≤ n. Sometimes we abbreviate |x1〉 |x2〉 . . . |xn〉 by |x〉 where x

is some vector in Fn
q

A general state of a quantum register of length n is a normalized vector is given

by

|ψ〉 =
∑
x∈Fn

q

αx |x〉 , where αx ∈ C and
∑
x∈Fn

q

|αx|2 = 1.
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2. Error Correcting Codes

Nonbinary quantum error correcting codes are defined over a finite field Fq of q

elements. The number q is necessarily a power of a prime p, that is, q = pm for some

integer m ≥ 1. The trace function tr from Fqm to Fq is defined by

tr(x) =
m−1∑
k=0

xqk

(1.1)

We have,

tr(x+ y) = tr(x) + tr(y),

tr(αx) = αtr(x),

for all x, y ∈ Fpm , α ∈ Fp. A code C is self-orthogonal for ∗, a sesquilinear form, if

for any a, b ∈ C,

a ∗ b = 0. (1.2)

There are several notions of sesquilinear forms such as the standard euclidian form,

the trace symplectic form, the hermitian form, and the trace alternating form. The

dual of a code C can be defined as follows

C⊥ = {v : v ∗ a = 0 for ∀a ∈ C}. (1.3)

3. Stabilizer Codes

Quantum error correction is based on the idea of encoding k qudits in n qudits so as

to map Cqk
into qk dimensional subspace of Cqn

.

The error correcting properties of the code depend on the subspace rather than

the mapping.These subspaces are chosen in such way that an error translates one

subspace to another subspace perpendicular to it. It is this property which helps in
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error detection.

A stabilizer code Q is a non-zero subspace of Cqn
that satisfies

Q =
⋂
E∈S

{v ∈ Cqn|Ev = v} (1.4)

for some subgroup S of Gn. The coding space is described in terms of the error

operators rather the codewords itself, that is, the code space is composed of those

states which are fixed by the error operators in the stabilizer. In other words, the

elements in the stabilizer do not have any effect on the codewords, that is, E|ψ〉 = |ψ〉
for |ψ〉 ∈ S. For example, if the quantum system is in the state |ψ〉 = α|000〉+β|111〉,
then it remains in the same state even after applying Z ⊗Z ⊗ I or Z ⊗ I ⊗Z. Hence

the operators Z ⊗ Z ⊗ I and Z ⊗ I ⊗ Z are said to stabilize the state |ψ〉, that is,

|ψ〉 = Z ⊗ Z ⊗ I|ψ〉 = Z ⊗ I ⊗ Z|ψ〉 If an error operator E is not a multiple of an

element in the stabilizer S, then

EM = λ ME

for some element M of the stabilizer. If λ �= 1 then we can detect the error E.

The set of operators that commute with all the operators in the stabilizer con-

stitute the centralizer, C(S) = {A | AM = MA for all M ∈ S} of the stabilizer code.

The elements in the centralizer transform one codeword into another. The operations

which are valid for any stabilizer code should take one codeword to another, and

hence must be within the centralizer of the stabilizer code.
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B. Motivation

A lot of work has been done on binary quantum error correcting codes. However,

the nonbinary equivalent still remains to be explored. Chapter II has been devised

to understand the basics of nonbinary error correction techniques and the operations

involved on these nonbinary codes. Because of the easy error propagation in quantum

circuits, we not only have to carry out the operations with accuracy, but we also have

to ensure that the error correction techniques do not induce more errors into the

circuit in addition to the existing ones. Such a thing would have a multiplicative

effect and completely nullify the effect of error correction. The propagation of errors

is prevented by reducing the interaction between the ’qudits’ in the same block, that

is, by carrying out the computations bitwise in a fault-tolerant way. The conditions

and requirements to be satisfied for allowing such fault-tolerance are explained in

chapter III. In spite of the fault-tolerant operations, the gate errors or the general

noise may lead to change of states during computations. Hence, we need to find the

minimum threshold for the success of a computation. The threshold theorem says

that as long as the error probability of each gate is below a certain threshold, the

quantum error correction will be successful. The details of threshold calculation and

analysis is presented in chapter IV. Comparison of various codes to find the most

efficient code with minimum threshold is given in chapter V.
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CHAPTER II

QUDIT GATES

Non-binary quantum codes are a good alternative to the binary counterparts because

of the existence of a better bound entanglement and our ability to construct bet-

ter codes. In this chapter, we study the most common gates that can be used on

nonbinary quantum codes and the basics of encoded operations.

A. Elementary Gates

Some of the most commonly used operations can be described through the following

quantum gates. Let q be a power of a prime p, q = pm with m ≥ 1. Let ω denote

the p-th root of unity. If α ∈ Fq, then the trace function tr(α) is defined as tr(α) :=∑m−1
i=0 αpi ∈ Fp. Based on these, the most common elementary operations that can

be performed on the non-binary codewords can be defined as follows

Xα :=
∑
x∈Fq

|x+ α〉 〈x| for α ∈ Fq (2.1)

Xα operation represents the addition of a fixed element α ∈ Fq. In other words, it

finds the addition modulo q in the field Fq. In the binary case X corresponds to the

Pauli σx operator. A generalization of the Pauli σz operator is given by

Zβ :=
∑
z∈Fq

ωtr(βz) |z〉 〈z| for β ∈ Fq. (2.2)

We also introduce the operator Mγ given by

Mγ :=
∑
y∈Fq

|γy〉 〈y| for γ ∈ Fq \ {0}. (2.3)

Applying Mγ is equivalent to multiplying by a fixed element γ �= 0.
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We have a two-qudit gate to swap the values of the two digits involved in the gate

operation. This can be shown as

SWx,y :=
∑

x,y∈Fq

|x〉 |y〉 〈y| 〈x| . (2.4)

Another useful gate operation for the non-binary codes is Fourier transform

FT :=
1√
q

∑
x,z∈Fq

ωtr(xz) |z〉 〈x| (2.5)

This represents the quantum Fourier transform which transforms the state |0〉 to a

superposition of all the basis states with equal amplitudes, i.e.,

FT |0〉 =
1√
q

∑
α∈Fq

|α〉 .

Fourier transform is non-binary equivalent of Hadamard transform.

Controlled-addition operation is another two-qudit gate, where the the first one acts

as the control and the second one acts as the target for addition of the two elements.

This operation is equivalent to the controlled-not operation in the binary quantum

codes.

C − X(1,2) :=
∑

x,y∈Fq

|x〉1 |x+ y〉2 〈x|1 〈y|2 (2.6)

Double-controlled-addition operation is a three-qudit operator which adds the product

of the first and second qudits to the third one based on the first two qudits acting as

the control bits. This is analogous to the Toffoli gate in the binary quantum codes

and can be used for universal reversible gate over Fq

C − C − X(1,2,3) :=
∑

a,x,b∈Fq

|a〉1 |x〉2 |ax+ b〉3 〈a|1 〈x|2 〈b|3 (2.7)
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B. Relevance to Nonbinary Quantum Stabilizer Codes

The error basis of a qudit system can be given by the following set of unitary operators

E = {XαZβ : α, β ∈ Fq}. (2.8)

These q2 operators form an orthogonal basis with respect to the inner product 〈A,B〉 =

tr(A†B). They also generate an error group G of size pq2 whose elements can be

uniquely written as ωγXαZβ where γ ∈ {0, . . . , p− 1} and α, β ∈ Fq. The commuta-

tion relation between any two elements of this group is given by

(XαZβ)(Xα′Zβ′) = ωtr(α′β−αβ′)(Xα′Zβ′)(XαZβ). (2.9)

For the n qudit system, the error basis is just an n-fold tensor product given by E⊗n

and Gn := G⊗n. Any element E of the error group Gn can uniquely be written as

E = ωγ(Xα1Zβ1) ⊗ (Xα2Zβ2) ⊗ . . .⊗ (XαnZβn) =: ωγXαZβ,

where γ ∈ {0, . . . , p − 1} and α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Fn
q . The

weight of an element XαZβ is equal to the number of non-zero components of αi and

βi. From the commutation relation 2.9, we get, for (α, β), (α′, β′) ∈ Fn
q ×Fn

q

(XαZβ)(Xα′Zβ′) = ω(α,β)∗(α′,β′)(Xα′Zβ′)(XαZβ)

where the inner product ∗ is defined by

(α, β) ∗ (α′, β′) :=
n∑

i=1

tr(α′
iβi − αiβ

′
i). (2.10)

Nonbinary stabilizer codes are based on the idea that there exists an Abelian subgroup

S such that its intersection with the center of Gn is trivial. The stabilizer code C is

defined as the common eigenspace of the operators in S.
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C. Encoding and Decoding Stabilizer Codes

1. Encoding Basic Operations

Encoding a stabilizer code refers to the process of storing k qudits of information in n

qudits where n > k. However, to carry out various operations it would be unwise to

decode, apply the gate operation and encode again. For this reason, we aim to find

encoded operations that would be equivalent to applying the original operations on

the unencoded bits.

If {g1, g2, . . . , gn−k} where gi = ωγiXαi
Zβi

with γi ∈ {0, . . . , p − 1} and (αi, βi) ∈
Fn

q ×Fn
q be a minimal set of generators for S, then the stabilizer matrix corresponding

to the stabilizer code C is a generator matrix of a (classical) linear code C ⊆ Fn
q ×Fn

q .

This matrix can be represented in the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1

α2 β2

...
...

αn−k βn−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ F (n−k)×2n
q (2.11)

The generators of the stabilizer are represented by the the rows of the stabilizer

matrix, that is, each ωγiXαi
Zβi

is represented by the row (αi|βi). We can perform a

set of elementary row and column operations on a matrix to convert it to an equivalent

form. (2.11) when converted into an equivalent form still represents the stabilizer of

the code since, interchanging the rows does not change the generator elements and

interchanging the columns just interchanges the positions of the qudits in the matrix.

The other elementary operations are also valid as long as the resultant element is part
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of the group generated by these generators elements. Hence, after a set of row and

column operations (Gaussian reductions), the matrix can be reduced to the standard

form as illustrated in [14]. Adding one row of the generator matrix with another row

is equivalent to multiplying the two generators corresponding to the two rows and

belongs to the group. Multiplying a row by a constant in Fq gives an element of the

group as long as we consider an Fq-linear code. Hence, we can multiply the rows

with α ∈ Fq such that the final addition of the rows when carried out in modulo q

arithmetic gives us the required 0 or 1 at appropriate places. Some of the reduction

steps can be shown as follows:

r{
n− k − r{

⎛
⎜⎝

r︷︸︸︷
I

n−r︷︸︸︷
A

r︷︸︸︷
B

n−r︷︸︸︷
C

0 0 D E

⎞
⎟⎠ . (2.12)

Now carrying out similar gaussian reductions on the Z part, the matrix can be

further reduced to the form

r{
n− k − r − s{

s{

⎛
⎜⎜⎜⎜⎝

r︷︸︸︷
I

n−k−r−s︷︸︸︷
A1

k+s︷︸︸︷
A2

r︷︸︸︷
B

n−k−r−s︷︸︸︷
C1

k+s︷︸︸︷
C2

0 0 0 D1 I E2

0 0 0 D2 0 0

⎞
⎟⎟⎟⎟⎠ . (2.13)

Since we require the first r generators to commute with the last s generators, we

conclude that s = 0. Hence, we can always bring any code to the following standard

form.

r{
n− k − r{

⎛
⎜⎝

r︷︸︸︷
I

n−k−r︷︸︸︷
A1

k︷︸︸︷
A2

r︷︸︸︷
B

n−k−r︷︸︸︷
C1

k︷︸︸︷
C2

0 0 0 D I E

⎞
⎟⎠ (2.14)
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The generators of the stabilizer of a particular code, expressed in the standard form

can be used to derive the Xα and Zα operators in the following way - we assume that

the k data bits form the last part of the n encoded bits, with the first n-k bits fixed

as zeros. In this case, the X operator applied to each of the k data qudits result in

an I in the X part of the Xα operator and 0 in the Z part of the Xα operator. The

procedure for derivation of the general formula for X and Z can be explained with

the following example.

Example : A general formula formula for X and Z for the binary case (q = 2),

can be derived in a systematic way from the stabilizer matrix (represented in the

standard form as shown in 2.14). If we consider an encoded operation to be of the

form [u1, u2, u3|v1, v2, v3], we can set u1 = I and v3 = 0 when this encoded operation

corresponds toX. Using the fact thatX commutes with the elements of the stabilizer,

we get

D.uT
1 + uT

2 + E = 0

In order to satisfy this equation, we take u1 = 0 and u2 = ET . Similarly checking

the commutation of this encoded operation with the first part of the stabilizer matrix

2.14, we get

I.vT
1 + A1.v

T
2 +B.uT

1 + C = 0

⇒ vT
1 + A1.v

T
2 + C = 0

We can substitute v1 = CT and v2 = 0 to satisfy the above equation. Hence the X

operator can be given as [0ET I|CT 00]. The Z operator can be derived in a similar
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fashion using the commutativity property with the generators of the stabilizer, as

[000|AT
2 0I].

Lemma 1. Xα and Zα operations can be carried out for any stabilizer code

Proof. Any Fq-linear stabilizer of any code can be transformed into the standard form

by a series of gaussian eliminations carried out on both rows and columns. Since the

Xα and Zα are directly obtained from the standard form of the stabilizer, they can

be defined for any stabilizer. The verification that these operators actually carry out

the logical X and logical Z operations on the encoded bits can be concluded from the

method of construction of these operators. That is, the existence of identity in the

X sector of the last k bits indicates that X is applied to the kth bit and this operator

commutes with the generators in the stabilizer, giving the encoded X operator. The

same argument follows for the Zα operator.

2. Other Encoded Operations

Apart from the basic Xα and Zα operators, we are interested in finding other encoded

operators in the centralizer which commute with the stabilizer and hence can be used

during error correction. However, these operators can not be directly represented in

terms of X and Z in the form of a matrix. Hence the standard form of the stabilizer

cannot be used directly for the derivation of these operators. To derive these operators

we have to use other properties of these operators. For example, if we want to

find the encoded Fourier transformation operation, we need to satisfy the property

FTα Xα FTα = Zα since FTα Xα FTα = Zα. Such properties help us derive a fault-

tolerant implementation of encoded Fourier transformation operation since we test

its effect on input gates present at each qudit and alter the stabilizer. An encoded

operation thus derived is considered a valid one if it leads to no change in the stabilizer
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or just a permutation which is equivalent to the original stabilizer. A more systematic

way to get such encoded operation is explained in the following chapter.
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CHAPTER III

FAULT-TOLERANT QUANTUM ERROR CORRECTION

A. Introduction to Fault-Tolerant Computation

Quantum error correction has stirred great hopes in developing a scalable quantum

computer for real. However, just the existence of good and efficient quantum codes

is not enough. Due to the delicate nature of quantum states, there is a possibility

of catastrophic spread of the existing errors which might render the error correction

techniques ineffective. For instance, during a controlled addition operation, the phase

error might be propagated from the target bit to the control qudit leading to two

errors from one existing error. Hence, it is necessary to perform these error correction

procedures in a fault-tolerant manner. A device that works effectively even when its

elementary components are imperfect is said to be fault-tolerant [15].

1. Transversal Operations

Transversal operations are operations in which the gate acting on the original set

of qudits is implemented digit-wise on each of the encoded qudits. For instance,

a single qudit operation that has a transversal implementation is realised by single

qudit operation on each of the qudits. The advantage of transversal computations is

that the errors can propagate between different encoded blocks instead of the same

block and hence can be corrected more easily. For example, bitwise controlled-not is

a fault-tolerant operation because it acts from one block to another leading to the

possibility of spread of errors only between corresponding qudits in different blocks.

This is illustrated by an example in Figure 1 which shows the controlled-not operation

implemented transversally on a [[5, 1, 3]]2 code. However, not all bitwise operations
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Fig. 1. CNOT implemented transversally on [[5, 1, 3]]2 code

map one codeword to another. Therefore, it is necessary that the bitwise operations

leave the stabilizer unchanged or just rearrange the code so that the operation takes

a codeword to another codeword.

2. Conjugation of Operators

Quantum circuits consist of many gate operations. Ideally we would like to perform

these operations on the encoded bits without having to decode them. But we have to

decide the operations that can be performed on these codewords. A valid operation

should leave the stabilizer unchanged or just rearrange the code so that the operation

takes codewords to other valid codewords. The operators Xα, Yα and Zα can be

performed bitwise on the encoded state because they commute with the stabilizer and

hence leave the code space unaltered. However an arbitrary unitary transformation

U, may alter the code space in which case it is not considered to be a valid operation.

In order to perform an operation on the codewords, it is necessary to study the effect
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of these operators on the elements of stabilizer, S, and the centralizer, C(S). A unitary

transformation U is considered a valid operation if the following equation is satisfied

U |ψ〉 = UM |ψ〉 = (UMU †)U |ψ〉 (3.1)

where |ψ〉 is the input state, and M is an element of the stabilizer. By applying

the operator U to |ψ〉, we transform the operator M into UMU †. Hence, for |ψ〉 to

remain a codeword U|ψ〉 must still be in the code space and UMU † must fix all the

codewords |ψ〉. Hence, to check whether a particular operation U can be carried out

fault-tolerantly or not, we need to check that we get an element of the stabilizer when

we conjugate the gate operation with Xα and Zα operators.

B. Calderbank-Shor-Steane (CSS) Codes

Calderbank-Shor-Steane (CSS) code [14] is a class of code that is derived from two

classical linear codes C1[n, k1] and C2[n, k2] such that C2 ⊂ C1. The quantum code

thus generated from these two classical codes is represented as CSS(C1/C2) (this is

read as CSS of C1 over C2) which is an [[n, k1−k2]] code encoding k1−k2 qudits into n

qudits. However, for the X sector to be exactly same as the Z sector, the two classical

codes have to be identical, and the quantum code must be derived from the classical

code that contains its dual. A punctured self-dual CSS code satisfies these properties.

Example: Consider the Hamming [7, 4, 3]2 code, C. The dual C⊥ of this code is

a [7, 3] code such that C⊥ ⊆ C. Through the above CSS code construction, we get

[[n, 2k − n]] = [[7, 1]] quantum code that can correct errors on a single logical qubit.

The stabilizer of the [[7, 1, 3]]2 quantum code is given in Table I.
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Table I. The Seven-Qubit CSS Code

M1 σx σx σx σx I I I

M2 σx σx I I σx σx I

M3 σx I σx I σx I σx

M4 σz σz σz σz I I I

M5 σz σz I I σz σz I

M6 σz I σz I σz I σz

X I I I I σx σx σx

Z I I I I σz σz σz

C. Fault-Tolerant Operations on CSS codes

1. Conjugation of Fourier Transform Operation

The action of the Fourier Transform operation on Xα is given as follows

FT−1XαFT =
1√
q

∑
i,j∈Fq

ω− tr(ij) |i〉 〈j|
∑
x∈Fq

|x+ α〉 〈x| 1√
q

∑
k,l∈Fq

ωtr(kl) |k〉 〈l|

=
1

q

∑
i,l∈Fq

∑
x∈Fq

ω− tr(i(x+α))ωtr(xl) |i〉 〈l|

=
1

q

∑
i,l∈Fq

ωtr(−iα)
∑
x∈Fq

ωtr(x(l−i)) |i〉 〈l|

=
∑
i∈Fq

ωtr(−iα) |i〉 〈i| = Z−α

Similarly, its action on Zβ can be given by
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FT−1ZβFT =
1√
q

∑
i,j∈Fq

ω− tr(ij) |i〉 〈j|
∑
z∈Fq

ωtr(βz) |z〉 〈z| 1√
q

∑
k,l∈Fq

ωtr(kl) |k〉 〈l|

=
1

q

∑
i,l∈Fq

d−1∑
j∈Fq

ω− tr(ij)ωtr(βj)ωtr(jl) |i〉 〈l|

=
1

q

∑
i,l∈Fq

∑
j∈Fq

ωtr((l−i+β)j) |i〉 〈l|

=
∑
l∈Fq

|l + β〉 〈l| = Xβ.

Lemma 2. Fourier Transformation can be performed fault-tolerantly on CSS codes

which contain their dual.

Proof. The CSS codes which contain their dual have the X and Z elements occurring

exactly at the same position [14]. Hence, if Xα belongs to the stabilizer, the Zα will

also belong to the stabilizer. Likewise if Zβ belongs to the stabilizer, then Xα will

also belong to the stabilizer. Another useful fact that can be used is that, since the

stabilizer forms a group, the inverse of every element α, i.e. −α will also be in the

group. Hence, X−α and Z−α is also an element of the stabilizer. Using these results,

we can conclude that application of the fourier transformation operation switches the

Xα to Z−α and Zβ to Xβ. Since these new elements Z−α and Xβ also belong to the

stabilizer, we find that the stabilizer remains unchanged after the application of the

Fourier transformation operation. Hence we conclude that Fourier transformation

can be performed fault-tolerantly on nonbinary CSS codes which contain their own

dual.

2. Conjugation of Multiplication Operation

The effect of Mγ on the elements of the stabilizer can be summarized as follows
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M−1
γ XαZβMγ =

∑
y∈Fq

|y〉 〈γy|
∑
x∈Fq

|x+ α〉 〈x|
∑
z∈Fq

ωtr(βz) |z〉 〈z|
∑
v∈Fq

|γv〉 〈v|

=
∑
y∈Fq

|y〉 〈γy|
∑
x∈Fq

|x+ α〉 〈x|
∑
v∈Fq

ωtr(βγv) |γv〉 〈v|

=
∑
y∈Fq

∣∣γ−1y
〉 〈y|∑

v∈Fq

ωtr(βγv) |γv + α〉 〈v|

=
∑
v∈Fq

ωtr(βγv)
∣∣v + γ−1α

〉 〈v|
=

∑
x∈Fq

∣∣x+ γ−1α
〉 〈x|∑

z∈Fq

ωtr(βγz) |z〉 〈z|

= Xγ−1αZγβ.

Hence, Mγ acts on (α, β) as Mγ :=
(

γ−1 0
0 γ

)
.

Lemma 3. Multiplication operation, Mγ, can be performed fault-tolerantly on any

CSS code.

Proof. Mγ , the multiplication operation, has the effect of switching Xα with Xγ−1α

and Zβ with Zγβ. Since Xα and Zβ are elements of the stabilizer, Xγ−1α and Zγβ

also belong to the stabilizer, since multiplication with a constant phase throughout a

since element of the stabilizer does not change the stabilizer. Hence, Multiplication

operation can also be performed fault-tolerantly on any CSS code.

3. Conjugation of Controlled-Addition Operation

The C − X(1,2) operation involves two blocks, hence, the transformations for both

the blocks combined must be considered. The action of C − X(1,2) can be tested on

the basic operations of the type Xα1 ⊗ Zβ2 and Xα1 ⊗ Zβ2 . Similarly, the results of

the C − X(1,2) operation on all basic operations can be summarized as follows. The

amplitudes are copied forward and phases are copied backward.
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(C − X(1,2))−1(Xα1 ⊗ Zβ2)C − X(1,2)

= (C − X(1,2))−1
∑

v,w∈Fq

ωtr(β2w) |v + α1〉1 |w〉2 〈v|1 〈w|2
∑

x,y∈Fq

|x〉1 |x+ y〉2 〈x|1 〈y|2

= (C − X(1,2))−1
∑

x,y∈Fq

ωtr(β2(x+y)) |x+ α1〉1 |x+ y〉2 〈x|1 〈y|2

=
∑

v,w∈Fq

|v〉1 |w〉2 〈v|1 〈v + w|2
∑

x,y∈Fq

ωtr(β2(x+y)) |x+ α1〉1 |x+ y〉2 〈x|1 〈y|2

=
∑

x,y∈Fq

ωtr(β2x)ωtr(β2y) |x+ α1〉1 |y − α1〉2 〈x|1 〈y|2

= (Xα1Zβ2) ⊗ (X−α1Zβ2).

Similarly,

(C − X(1,2))−1(Zβ1 ⊗Xα2)C − X(1,2) = Zβ1 ⊗Xα2

Lemma 4. C − X(1,2) operation can be performed fault-tolerantly on any CSS code.

Proof. Multi-qubit operations like CNOT can be performed transversally using two

blocks. To show this operation can be done for any CSS code, we see its effect on

M⊗I and I⊗M , where M is either X or Z. Since conjugating Zβ1⊗Xα2 with C − X(1,2)

does not produce any change in the stabilizer,C − X(1,2) is a valid operation. Also,

since (X−α1Zβ2) is also an element of the stabilizer, conjugating Xα1 ⊗ Zβ2 produces

an element of S x S. Hence C − X(1,2) is a valid transversal operation since it retains

the same stabilizer.

Lemma 5. Swap operation can be performed fault-tolerantly on any encoded code.

Proof. The swap function operates on two qudits and functions to swap the values

of the qudits on which it operates. As such this operation is not fault-tolerant, but
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when applied between blocks, it switches the values along with the errors.

4. Universal Operation

The Fourier Transform (FT), Multiplication operation(Mγ) and Controlled addition

operation (C − X(1,2)) are necessary to produce all the operations within the central-

izer. However, this is not enough. To make this set universal, we must be able to

perform a nonbinary analog of Toffoli gate [17], which is the C − C − X(1,2,3) opera-

tion. The action of this operation can be summarized as

|a〉 |b〉 |c〉 −C−C−X(1,2,3) → |a〉 |b〉 |c+ ab〉. (3.2)

Lemma 6. A set of gates G on k > 1 qudits in a q-ary system is said to be universal

if G ∪ {ei2πθI}real θ generates a dense subset in U(qk).[2]

The set of gates with FT,M,C − X(1,2),C − C − X(1,2,3) gives us the universal

get of gates. This result has been proposed by Peter W. Shor in the paper ”Fault-

Tolerant Quantum Computation” for the binary case. Dorit Aharonov and Ben-Or

extended this result to the nonbinary case in the paper [2]. Although, this is a well

known result used in many of the papers, a formal proof of this is hard to find.

Aharonov and Ben Or have given a proof for this statement in the paper [2]. We use

some of the lemmas that are already proved in this paper, and use them to prove the

universality property. We do not provide the proof of these lemmas here since they

can be found in [2], but use them directly in our proof.

Theorem 7. Addition of the double-controlled-addition operation C − C − X(1,2,3) to

the set FT, M, C − X(1,2) makes the set universal for quantum computation. i.e.

G = FT,M,C − X(1,2),C − C − X(1,2,3) is a universal set.

Proof. To prove this statement, we use many know results and lemmas from the
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paper [2]. We start out by generating Qi where Qi, 0 ≤ i < p, denotes one qudit

diagonal matrix which multiplies |i〉 by w, and applies identity of other basis states.

It can be proved that Qi and Q−1
i are in the subgroup generated by G on three qudits

[2, Lemma 5]. Qi can be used to generate Xi and Yi, which operate as identity

on S⊥
i , where Si is given by Si = span{|i〉,∑x∈Fq ,x �=iw

ix|x〉} [2, Lemma 6]. When

w �= ±1, or p �= 2, X ′
i and Y ′

i do not commute since X ′
iY

′
i − Y ′

iX
′
i �= 0. We also have,

for p > 3, the eigenvalues of Xi and Yi confined to Si are not integer roots of unity

[2, Lemma 7]. Since the eigenvalues are not roots of unity, we can get a dense subset

of unitary group of all subspaces of Si, from the statement that two non-commuting

matrices U1, U2 in SU(2) having their eigenvalues which are not integer roots of unity

can generate a dense subgroup in SU(2) [2, Lemma 2]. If GA, GB be dense subsets

of U(A),U(B) respectively where A,B be two non orthogonal subspaces of Cn, then

the subgroup generated by GA ∪GB is dense in U(A⊕B) [2, Lemma 3]. Using this

result and performing induction on i, we can generate a dense subgroup of U(Cq),

which represents all operations on one qudit. Since the set of gates consisting of all

one-qudit gates U(Cq) and all classical two-qudit gates generates all unitary matrices

on two qudits, U(Cq2
) [2, Lemma 4], we can guarantee the universality on two qudits.

The set with Hadamard, Phase, Controlled Not and Toffoli gate (binary equivalent of

the gates in G) generates a dense subgroup in the group of special unitary matrices

operating on m qudits, U(pm) [2, Theorem 7].This ensures that these matrices can

be used to construct all matrices on three qudits, U(p3).

5. Fault-Tolerant Implementation of C − C − X(1,2,3) Operation

We can show that the C − C − X(1,2,3) operation can be performed fault-tolerantly if

each of the above operations can be carried out in a fault-tolerant manner. This can

be done using an additional ancilla bit as follows [6]:



23

The fault-tolerant implementation of doubled-controlled addition is done by general-

izing the Toffoli gate construction given in Shor’s Paper [17]. The double-controlled

addition gate is given by

|a〉|b〉|c〉 → |a〉|b〉|c+ ab〉 . (3.3)

In addition to the data bits we also need to use three extra ancilla bits in the following

state:

|A〉 =
∑
a,b

|a〉|b〉|ab〉 . (3.4)

This state is a +1 eigenstate of the three operators

O1 = (X ⊗ I ⊗ I) C − X(2,3) , (3.5)

O2 = (I ⊗X ⊗ I) C − X(1,3) , (3.6)

O3 = (I ⊗ I ⊗ Z)P(1,2)−1 . (3.7)

C − X(i,j) is controlled-addition performed with the ith qudit as control and the

jth qudit as target. P(i,j) is the Phase gate

P|a〉|b〉 = ωab|a〉|b〉 (3.8)

performed on the ith and jth qudits. This state can be constructed through Shor’s

method where we start with |000〉 and apply fourier transform on this state to get

q−1∑
α=0

|Aα〉 =
∑
a,b,c

|a〉|b〉|c〉 (3.9)

By measuring O3 for this state, we can collapse the state into once of the states |Aα〉
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where

|Aα〉 =
∑
a,b

|a〉|b〉|ab+ α〉

and each |Aα〉 is related to |A〉 by

|Aα〉 = (I ⊗ I ⊗Xα) |A〉

Application of X−α yields the state |A〉. To construct the double-controlled addition,

we assemble the ancilla qudits in the state |A〉 and data qudits below the ancilla

qudits, and apply inverse controlled-addition from first and second ancilla qudit to

first and second data qudit respectively, and controlled-addition operation from third

data qudit to third ancilla qudit. The last three data qudits are measured in the

bases Z, Z and X respectively and appropriate corrections are applied. This leaves

the data in the first three ancilla qudits and and the last three data qudits have the

result of the controlled-addition operation.

Since each of the operations involved in the construction of double-controlled

addition can be carried out transversally, we have a fault-tolerant implementation of

double-controlled addition.
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CHAPTER IV

THRESHOLD ANALYSIS WITH FAULT-TOLERANT QUANTUM

COMPUTATION

A. Background

Large scale quantum computations will be realistic if we ensure that the the process of

error correction itself does not introduce new errors in the quantum circuits. Efficient

error detection and correction techniques using fault-tolerant techniques can help in

this as long as we ensure that the error probability is below a certain threshold. The

calculation of this threshold is therefore important to see if quantum computations

are realizable or not. The use of certain codes however may bring down this mini-

mum threshold value. Hence, we study the basics of how threshold is calculated and

compare various codes to see which one is the most efficient code.

1. Assumptions

In order to estimate the reliability of a quantum computation, we make some assump-

tions about the noise model present.

• The noise model taken into consideration assumes independent stochastic errors

among qudits so that the probability of a correct computation can be assumed

as sum of classical error probabilities.

• We assume that the error in one qudit is not related to the errors in others,

that is, we have a random error model in a depolarizing channel. Hence if p1 is

the probability of one error and p2 is the probability of another error, then the

errors are uncorrelated, and the total probability of both the errors occurring

can be given as p1p2.
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• We also assume that the noise level per qudit is independent of the total number

of qudits or gates in the system.

Given a quantum circuit, there are various type of errors possible. However, the

errors to be taken into consideration for the threshold calculation are gate errors and

storage errors. A quantum computation consists of many gate operations. Hence,

improper functioning of the gates can cause an error in the quantum states. The error

probability increases with the increase in the number of gates, especially two qudit

gates. Even when all the gates function perfectly, the surrounding noise may be such

that it may cause a change in the quantum state. Either a digit may get flipped,

or the phases might change. Hence, the storage errors depend on the number of

timesteps involved in any computation. Hence, parallelism of operations is preferred

to reduce the probability of storage errors.

Hence the threshold calculation takes four parameters into consideration [18]:

• The gate error probability, γ, and the storage error probability per qudit per

timestep, ε, are the two parameters of noise level.

• Scale up refers to the increased number of qudits needed in the quantum com-

putation after encoding. If there are K logical qudits and the number of actual

physical qudits are N , then N/K refers to the scale up involved in the com-

putation. This is the overhead which has to be tolerated for achieving better

threshold results.

• Slowdown refers to the increased number of operations after encoding is adopted,

that is, the number of gates per computational step. If K logical qudits use Q

computational steps, and the number of elementary gates used for N physical

qudits is T , then the slow down is given by T/Q.
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• The amount of parallelism refers to the ability of performing multiple gate

operations simultaneously. This feature is important for reducing the storage

errors.

The analysis of which quantum error correcting code is most efficient is based

on the above four factors. Optimizing all the four parameters is not possible, but we

can select the code based on the requirements of the computation.

2. Syndrome Calculation

Error detection and correction for a quantum code is done through syndrome calcu-

lation. The procedure adopted is similar to the one suggested by Andrew Steane in

[18]. The step by step illustration is given as follows:

• The n digit blocks to be corrected are referred to as b. For each block b, an

ancilla register, ax is prepared which consists of n qudits and another set of n

qudits are used for verification. The subscript x signifies that the ancilla block

is used for syndrome calculation for bit errors. Similarly, we use another n-qudit

block, az, for phase error correction.

• The ancilla state is a cat state represented as

|cat〉 =

q−1∑
a=0

|an〉 (4.1)

This state is a superposition of all strings of equal qudits. This state is prepared

by starting with an all zero state and using a Fourier transform on the first qudit,

then taking controlled- addition from first qudit to all other qudits. Since this

is not a fault-tolerant operation, we have to first verify that the cat state thus

created did not have any errors. This can be done by checking if the parity of
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the qudits in the state thus created is zero mod q. If the state was found to be

in error, we discard the state and start with the cat state preparation from the

beginning. However, if the state was verified to be correct, we take the Fourier

transform on each of the qudit which gives us the desired state

∑
j,j·�1=0 mod q

|j〉

which is a superposition of all states j which satisfy
∑

k jk = 0 mod q.

This process of cat state preparation can be clearly explained with the help of

the following Figure 2.

|0 > FT • • • FT

|0 > �������� FT

|0 > �������� FT

|0 > �������� FT

Fig. 2. Preparation of the cat state

• When we want to compute the i′th bit of the syndrome fault-tolerantly, we

simply have to take the inner product of the i′th row of the parity check matrix

with the codeword. This can be carried out by applying controlled-addition

operations from the block we are correcting to the cat state only on those

coordinates having a non-zero value in the i′th row of the parity check matrix,

that is, to compute the inner product for the i′th row of the parity check matrix,

hi,l, with a vector al, we need to sum
∑

l hi,lal. We thus add hi,lal to the l′th

coordinate of the ancillary state. If the parity of the ancilla state after such

operation is non-zero, then we conclude that i′th bit of the syndrome is in
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error.

• The advantage of using such a cat state for syndrome calculation is that there

is no entanglement between the qudits in block b and the qudits in the ancilla.

The controlled-additions are carried out digit-wise from the block b to the qudits

in the ancilla block ax as can be seen in the above step. Hence, we cannot

propagate more errors into block b than those existing already, from the ancilla

block. [17].

• The syndrome calculation method is repeated r number of times where r = t+1

number of times to ensure a high probability of correct syndrome calculation.

• Phase checks are carried out in the similar manner, except that the entire process

is repeated in the conjugate basis.

3. Error Model

The threshold analysis can be well understood from the error model described in this

section. The error correcting code can correct at most t errors. Hence n digits in

block b can be in error. However, we have to ensure that the ancillary block does not

introduce or propagate more than t errors into b. The errors due to single gate failure

is accounted as an error in the corresponding bit, and there is no propagation involved

in this case. However, when the controlled-addition operations are involved, there is

interaction between the digits in different blocks which can lead to propagation of

errors too. For this, we have to assume that the syndromes for amplitude errors and

phase errors are calculated alternately, so that the phase errors introduced by the error

correction procedure can be corrected in the next phase and vice versa. However, this

also requires that the first stage of syndrome calculation is more accurate than the

later stages. Hence, the error correction will fail when either there are more than t
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errors in the block b already, or the gate errors lead to more than t errors in the block

b.

If p is the probability that an error occurs in one qudit, then the probability

of an errorless computation is 1 − p. The error basis for a q − ary system can be

given by q2 operators out of which one is the identity. Since the identity operator

does not change anything, each of the other q2 − 1 operators cause the state of the

qudit to be changed, hence, each of these operations have p
q2−1

probability of an error.

The bit errors become sign errors in the conjugated basis, and hence have the same

probability in the conjugate computational basis too.

When two qudits are involved, each of the qudits can undergo q2 errors giving

totally q4 combinations. Out of these, I ⊗ I represents an error free case and other

q4 − 1 cases occur with equal probability of p
q4−1

. We assume that one of the qudit

among the two, is already in error. The probability that this error is propagated to

the second qudit depends on whether the correct qudit is the target or the control in

the two-qudit gate operation. The errors in the correct qudit may be induced due to

the error in the other qudit controlling it, or due to the faulty gate operation. Hence,

when the controlling qudit is in error, there are q2 − 1 opportunities of inducing error

in the other qudit or a faulty gate can induce q2 − 1 error operators again. Since we

are finding the error probability on the same qudit in various situations, we sum the

error opportunities to give a probability of 2q2−2
q4−1

of error in the second qudit during

a two qudit operation when one is already in error. This expression can be further

simplified as 2
q2+1

.
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B. Analysis

The assumptions and error model explained in the previous sections can be used to

estimate the threshold for gate error. We use the steps described above to compute

the number of gates used and timesteps required in syndrome calculation, which

are the key factors in the threshold calculation. If m is the number of rows in the

generator matrix of classical code giving |0E〉, and w the average weight of each

row, then the total number of gates and timesteps required for error correction can

be calculated in the following way: We need 1 step for initial fourier transform while

preparing the ancilla ax, m(w−1) steps for the controlled-addition operation between

the digits in ax, 1 step again for fourier transform for rotation, m(w + 1) controlled-

addition operations between ax and verification ancilla block, and finally m+ 1 steps

for measurement operations. A further 2n+ 1 steps required for measurement of the

two ancilla blocks. Hence, the total timesteps required is :

1 +m(w − 1) + 1 +m(w + 1) +m+ 1 + 2n+ 1 = m(2w + 1/2) + 2n+ 4 (4.2)

For CSS codes, the generator divides equally into X part and Z part. Hence, m =

(n − k)/2. So this yields (n − k)(w + 1/2) + 2n + 4 timesteps for each digit in the

codeword. There are totally n digits in the codeword. And the syndrome calculation

repetition is done r = t+1 times. Hence, the total number of storage errors are given

as

Ss = n((n− k)(w + 1/2) + 2n+ 4)r (4.3)

when the syndrome is generated in series, that is one after the other. Else

Sp = n((n− k)(w + 1/2) + 4 + 2nr) (4.4)

when syndrome is generated in parallel.
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The gate errors are directly dependant on the number of gates and the number

of interactions between the ancilla blocks and the block b. There are n opportunities

for controlled-addition operation between first ancilla ax and block b, giving rn op-

portunities (since syndrome calculation is repeated r times). The interaction between

second ancilla ax and block b gives further rn opportunities. The gates errors which

were undetected in b were due to the controlled-addition and fourier transform oper-

ations applied in the last stage giving 2rn opportunities again. Finally n correction

gates applied from the ancilla bits to the block b gives n more gate error possibilities.

Hence the total gate error opportunities is given as

g = rn+ rn+ 2rn+ n = n(4r + 1) (4.5)

An [[n, k, d]]q code can correct at most t errors. Hence, with this code, the

probability that more errors (either bit errors or sign errors) accumulate than can be

corrected when there are zero errors in the block b and we allow t errors to propagate

from the ancilla block ax is given as

P � 2

g∑
i=t+1

⎛
⎜⎝ g

i

⎞
⎟⎠( 2

q2 + 1
γ +

s

g

2

q2 + 1
ε

)i

(4.6)

This expression basically means that when we have an [[n, k, d]]q code which t error

correcting capabilities, then the presence of t + 1, t + 2, . . . , g errors lead to the

failure of error correction procedure. Hence we have the summation of all of these

error probabilities. Also, the presence of say t+ 1 errors can be in any of the g gates.

So we get to choose t+1 of these g values and assuming independent error probability

between different qudits, we have a product of the error (both gate and storage errors)

of each of these t+ 1 errors.

For serial syndrome repetition, we take nε = γ/2 and for parallel syndrome
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repetition, we have nε = 2γ [18]. For a computation with Q steps and K logical

qudits to be successful, we require that P < η/KQ, where η is the average number

of computational steps per correction of the whole computer. Factorizing a 430 digit

number using Shor’s algorithm requires approximately K � 5 × 430 = 2150 encoded

qubits and approximately 109 double controlled-addition operations [4] which requires

20 fault-tolerant operations. Hence, Q = 20× 109 which gives P < 2× 10−14η. Using

different nonbinary codes may require different number of encoded operations and

computations. However, to compare the threshold with various codes, we would

rather consider a generic application requiring the same number of computations

and encoded operations as that illustrated by Shor. Hence, we would compare the

threshold got from various codes for P < 2×10−14η. we Hence, we can solve equation

(4.6) to find the maximum value of γ such that this expression is satisfied.

Also, this procedure of error correction produces extra overheads such as the

scale up of the bits (i.e. extra bits required for error correction) and slowdown (given

by the number of gates per computational step) which can be given by

N

K
=

⎧⎪⎨
⎪⎩

n+ 2(n+ 1) ancilla syndromes calculated in a serial manner

n+ 2r(n+ 1) ancilla syndromes calculated parallelly
,(4.7)

T

Q
= ((n− 1)w + 5n) 2rK/η. (4.8)

As the code size increases, the scale up and slowdown overheads increase with

it. Hence, the threshold analysis should be carried out on various codes to strike a

balance between the threshold results and overheads incurred.
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CHAPTER V

THRESHOLD RESULTS

Fault-Tolerant computation aims at prevention of spread of errors which causes the

quantum error correction to fail. However, fault-tolerance is achieved by adding re-

dundant qudits and extra gates, which also increases the probability of error. Hence,

we require the quantum circuits to perform the computation with an arbitrary ac-

curacy, as long as the component gates have the error probability below a certain

threshold. It is important to find the range of this threshold estimate, in order to

check the feasibility of computations. Using the threshold analysis done in Chapter

4, we can test various classes of codes to derive the threshold value. In this chapter,

we will first review the various classes of codes that we can use, and find the most

efficient ones through this threshold analysis.

A. Codes Families

1. Quantum q-ary Hamming Code

The q − ary Hamming code is an example of a doubly even CSS codes, where each

column of the parity check matrix H consists of one non-zero vector from each vector

subspace of dimension 1 of Fq
r denoted by Ham(r,q). Ham(r,q) is a single error

correcting code with constant distance 3, and it can be given as:

H = [[(qm − 1)/(q − 1), (qm − 1)/(q − 1) − 2m, 3]]q (5.1)

The parity check matrix of this Hamming code has m rows and n columns. This

can be got into the standard form where the first part of the matrix is the identity.
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m{
( m︷︸︸︷

I

n−m︷︸︸︷
A

)
(5.2)

The identity matrix on the left ensures that there is only one non-zero element

in that portion of each row. The other part indicated as A on the right can have both

zero or non-zero entries. As the size of the matrix increases, this portion becomes

more and more dense. Hence, for worse case, we can take all the entries in this matrix

to be non-zero which gives us the average weight of each row to be n−m+1. This is

the value w required in the calculation of the probability of successful error correction

given in (4.6). Lower the value of w, higher is the probability or error correction, since

number of gates during syndrome calculation i.e. no. of interaction between qudits

is directly proportional to w.

Thus, equation (4.6) is used to find the success rate of an application which

requires 1/KQ = 2 × 10−14 for both serial and parallel syndrome calculation. The

results of this analysis are presented in the Table II.

2. BCH Codes

Bose-Chaudhuri-Hocquenghem codes (BCH codes) [9] is an important class of error

correcting codes constructed from a generating polynomial g(X), a monic polynomial

over Fq of smallest degree that has δ − 1 numbers ωb, ωb+1, . . . , ωb+δ−2 among its

zeroes. Therefore,

g(X) = lcm{mb(X),mb+1(X), . . . ,mb+δ−2(X)} (5.3)

where mi(X) is the minimal polynomial of ωi, and we require b ≥ 0 and δ ≥ 1.

Self-orthogonal classical BCH codes can be used to construct quantum BCH
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Table II. Threshold Analysis for Quantum q − ary Hamming Codes

[[n, k, d]]q codes Units γp εp γs εs

[[7, 1, 3]]2 10−9 1.86 0.53 3.15 0.22

[[4, 0, 3]]3 10−9 7.03 3.51 1.17 0.14

[[13, 7, 3]]3 10−9 1.94 0.29 3.30 0.12

[[5, 1, 3]]4 10−9 9.57 3.82 1.59 0.15

[[21, 15, 3]]4 10−9 2.01 0.19 3.43 0.08

[[6, 2, 3]]5 10−8 1.22 0.40 2.03 0.16

[[31, 25, 3]]5 10−9 2.07 0.13 3.53 0.05

[[7, 3, 3]]6 10−8 1.44 0.41 2.48 0.17

[[43, 37, 3]]6 10−7 4.59 0.21 6.80 0.07
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codes. Let C = [n, k, d] be such a classical BCH code used in the construction of the

quantum BCH code. If Zc denotes the zero set of C over field Fq2 , then the generator

polynomial of C is given by

g(X) =
∏
z∈Zc

(X − αz)

The generator polynomial of the dual code is given by

h(X) =
∏

z∈Zn\Zc

(X − α−qz)

Quantum BCH codes can also be constructed from the extension field E = Fq2m which

is the extension of the base field Fq2 . BCH codes can be constructed by expanding

over the hermitian self-dual basis denoted by E/F [10]. Given a vector x in En, we

denote by xE the expansion of x with respect to the basis E, i.e.

x =

(∑
b∈E

xbkb

)
k∈N

We can follow the similar procedure to construct DE given by DE = {xE|x ∈ D}
where D is an additive code of length n over E.

A few simple constructions of BCH codes are summarized in the paper [1] which

can be used to derive the quantum BCH codes used in our analysis. Restating the

two formulae given in this paper:

Construction Method 1: [1]

If q is a power of a prime, and m and δ are integers such that m ≥ 2 and 2 ≤ d ≤
q�m/2� − 1 − (q − 2) [m odd], then there exists a quantum code with parameters

[[qm − 1, qm − 1 − 2m�(d− 1)(1 − 1/q)�,≥ d]]q
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Table III. List of Quantum BCH Codes

[[n, k, d]]q codes Details

[[8, 6, 2]]3, [[10, 2, 3]]3, [[10, 6, 2]]3

[[13, 7, 3]]3, [[7, 1, 3]]4, [[9, 1, 3]]4 Codes taken from

[[9, 3, 2]]4, [[9, 7, 2]]4, [[17, 9, 3]]4 [9]

[[80, 72, 4]]3, [[80, 60, 8]]3, [[255, 243, 4]]4

[[255, 211, 15]]4, [[624, 612, 4]]5, [[624, 592, 23]]5 Construction Method 1

[[26, 14, 3]]3, [[26, 2, 7]]3, [[63, 51, 3]]4

[[63, 15, 13]]4, [[124, 112, 3]]5, [[124, 28, 21]]5 Construction Method 2

that is pure up to δ.

Construction Method 2: [1]

If q is a power of a prime, and m is a positive integer and 2 ≤ d ≤ qm − 1 then there

exists a quantum code with parameters

[[q2m − 1, q2m − 1 − 2m�(d− 1)(1 − 1/q)�,≥ d]]q

that is pure up to δ.2

Using these construction methods, we derive the following codes in Table III.

The threshold results on some of these codes is summarized in Table IV.

3. Generalized Reed-Muller Codes

Tadao Kasami in [8] has generalized the Reed-Muller codes to get primitive Reed-

Muller codes. These codes have been used to construct a series of stabilizer codes
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Table IV. Threshold Analysis for Quantum BCH Codes

[[n, k, d]]q codes Units γp εp γs εs

[[10, 2, 3]]3 10−9 2.40 0.48 4.11 0.20

[[16, 6, 4]]3 10−9 1.34 0.16 2.33 0.07

[[40, 26, 5]]3 10−8 9.94 0.49 14.3 0.17

[[7, 1, 3]]4 10−9 6.34 1.81 10.7 0.76

[[9, 1, 3]]4 10−9 4.59 1.02 7.85 0.43

[[17, 9, 3]]4 10−9 2.28 0.26 3.94 0.11

[[25, 3, 5]]4 10−7 2.54 0.20 3.64 0.07

[[26, 14, 3]]3 10−10 7.35 0.56 12.9 0.24

[[26, 2, 7]]3 10−6 2.18 0.16 2.70 0.05

[[63, 51, 3]]4 10−10 4.84 0.15 8.60 0.06

[[63, 15, 13]]4 10−5 3.84 0.12 3.16 0.02

[[80, 60, 8]]4 10−6 1.08 0.02 1.31 0.008
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from generalized Reed-Muller codes using the CSS code construction.

Let (P1, . . . , Pn) denote an enumeration of all points in Fm
q with n = qm. We

denote by Lm(v) the subspace of Fq[x1, . . . , xm] that is generated by polynomials of

degree v or less. Let v denote an integer in the range 0 ≤ v < m(q− 1). The classical

generalized Reed-Muller code Rq(v,m) of order v is defined as

Rq(v,m) = {(f(P1), . . . , f(Pn))|f ∈ Lm(v)} (5.4)

The dimension k(v) of the code Rq(v,m) equals

k =
m∑

j=0

(−1)j
(

m
j

) (
m+v−jq
v−jq

)
(5.5)

The minimum distance of this code is given by

d = (R + 1)qQ (5.6)

where m(q− 1)− v = (q− 1)Q+R and 0 ≤ R < q− 1. The dual code of Rq(v,m) is

again a generalized Reed-Muller code given by

Rq(v,m)⊥ = R(v⊥,m) with v⊥ = m(q − 1) − 1 − v. (5.7)

This classical generalized Reed-Muller codes can be used to derive quantum reed-

Muller codes through CSS construction i.e. if C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be

linear codes over Fq with C1 ⊆ C2. Furthermore, let d = MinWt{(C2 \ C1) ∪ (C⊥
1 \

C⊥
2 )} if C1 ⊂ C2 and d = MinWt{(C1) ∪ (C⊥

1 )} if C1 = C2. Then there exists an

[[n, k2 − k1, d]]q quantum code [16].

Kasami gives examples of some of the generalized Reed-Muller codes in his paper

[8]. We use these codes to tabulate the threshold values. The result of the runs on

these codes is tabulated in Table V.
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Table V. Threshold Analysis for Quantum GRM Codes

[[n, k, d]]q codes Units γs εs γp εp

[[7, 4, 3]]2 10−9 2.09 0.59 3.47 0.24

[[15, 11, 3]]2 10−10 9.41 1.25 1.57 0.05

[[15, 5, 7]]2 10−6 2.40 0.32 3.19 0.10

[[31, 26, 3]]2 10−10 4.22 0.27 7.13 0.11

[[8, 3, 5]]3 10−7 7.03 1.75 1.04 0.06

[[26, 17, 5]]3 10−7 1.81 0.13 2.66 0.05

[[26, 10, 8]]3 10−6 2.35 0.18 2.98 0.05

[[15, 10, 3]]4 10−9 2.97 0.39 5.01 0.16

[[15, 3, 11]4 10−4 1.19 0.15 1.39 0.04

[[63, 54, 3]]4 10−10 5.55 0.17 9.69 0.07

[[63, 44, 7]]4 10−6 1.42 0.04 1.73 0.01

[[24, 19, 3]]5 10−9 2.83 0.23 4.79 0.09

[[24, 15, 4]]5 10−9 2.30 0.19 4.00 0.08

[[24, 10, 9]]5 10−5 3.57 0.29 4.21 0.08

[[24, 6, 14]]5 10−4 2.24 0.18 2.30 0.04

[[48, 43, 3]]7 10−9 2.72 0.11 4.60 0.04

[[48, 39, 4]]7 10−9 2.15 0.08 3.76 0.03

[[48, 34, 5]]7 10−7 4.09 0.17 5.88 0.06

[[48, 28, 6]]7 10−7 3.51 0.02 5.007 0.05

[[63, 58, 3]]8 10−9 2.70 0.08 4.56 0.03

[[63, 54, 4]]8 10−9 2.12 0.06 3.70 0.02

[[63, 49, 5]]8 10−7 3.99 0.12 5.73 0.04

[[63, 36, 7]]8 10−7 3.99 0.12 55.4 0.43
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B. Interpretation of Results

Equation 4.6 was solved in mathematica, substituting various [[n, k, d]]q codes. How-

ever, since the order of the polynomial was large and increasing with the code size,

the solution set consisted of many positive and negative real and imaginary values.

The tables above have been tabulated based on the positive real solution having the

worst precision (the negative numbers were disregarded since probability cannot be

negative). To study the variance of this threshold with various factors such as size of

the code, distance of the code, the number of nonbinary levels etc, we plot the gate

error probabilities against each of these factors. The relation of the threshold value

with the type of code considered can be determined from the graphs plotted.

First we try to find the relation between the threshold value and the number

of alphabets in the nonbinary system. Hence, we plot a graph with γ vs q for the

Hamming codes. We find that as we move to higher nonbinary levels, higher is

the threshold estimate. In other words, the nonbinary codes with higher q values

can tolerate more gate errors than those with smaller q levels. Hence, it is more

advantageous to use nonbinary codes over binary error correcting codes. This relation

is illustrated through Figure 3

We can also see the correlation between the size of the code used and the threshold

results. This is done by keeping a constant value of q, and taking bigger codes for

a particular value of q. If we consider bigger codes having the same error correcting

capability, then the threshold decreases. This can be illustrated from Figure 4.

The variance of the threshold with respect the codes having increasing error

correcting capability can be shown in Figure 5. In this graph, we consider codes with

a particular value of n for a particular value of k and varying value of d. In this case

too, we find improving threshold results with codes correcting having better error
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Fig. 3. Variance of γ with q
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Fig. 4. Variance of γ with n− k for codes with constant d
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Fig. 5. Variance of γ with n− k for codes with constant n

correction capability.

From Figures 4 and 5, we can conclude that it is more advantageous to use bigger

nonbinary codes with higher error correcting capability, to have a higher estimate for

gate error threshold.
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CHAPTER VI

FUTURE WORK

Chapter III gives us a set of fault-tolerant encoded operations that can be used

for universal computation only on CSS codes. However, there are a lot of different

operations that can be used to generate the universal set. Hence, we can try to

find different classes of codes which support different set of universal transversal

operations, other than those mentioned in chapter III. This might lead us to better

error correction techniques based on the classes of codes considered, which in turn,

might give us a better threshold result.

Chapter IV gives the threshold analysis based on the assumption that all the

errors can be classified as either gate errors or storage errors. We also assume that

errors occur in the block b, only after propagation of t + 1 or more errors. In other

words, there was no error in this block b from the encoding process. This might not be

the case. There might be errors in the codeword which might be due to the encoding

gates or due to the noise level in the surrounding atmosphere. Hence, if the channel

and noise properties are better known, then we can prepare a more accurate error

model. We also assume the standard form of encoding for the various nonbinary

codes. However, this might not be the best way of encoding requiring minimum

number of gates. Hence, we can also try to find other efficient encoding techniques

that require minimum gate operations.

Also, we have performed the threshold analysis for various classes of codes in

chapter V. The comparison of different classes is difficult when represented in the

nonbinary form, because we do not have an accurate estimate for the amount of

encoding done at various levels, and their relation to the threshold. The actual

computations on a quantum computation would also probably be in terms of binary
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values. Hence, in order to have an accurate comparison between various classes of

codes, we need to bring everything in terms of the binary codes. This can be done in

two ways

• We can try to reduce the nonbinary codes to equivalent binary codes and com-

pute the threshold.

• Another way to have a fair comparison is to represent the nonbinary gate op-

erations in terms of the binary gates.

The introduction of these changes might lead to a better interpretation and

evaluation of the threshold results. One might also consider different approaches for

threshold evaluation such as those considered in [12].
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CHAPTER VII

CONCLUSION

This thesis covers the area of fault-tolerance for non-binary quantum error correcting

codes. We have given a universal set of fault-tolerant operations valid for CSS codes.

This ensures that the already existing errors do not propagate while computations

are performed. When this is the case, the major source of errors can be the error

correcting circuit itself, where the errors can propagate from the syndrome ancilla

bits to the data bits, hence corrupting the information bits. Fault-Tolerance is a big

leap in the quantum world and is needed to make computations feasible. Even with

fault-tolerant operations, there is a probability of failure of the computations because

of the error introduction and propagation from the gate interaction between the data

qudits and the detection and correction circuit. Hence, we have also performed the

threshold analysis to check the probability of success of computations. This analysis

summarizes how the gate failure affects the reliability of the computations and fixes an

upper bound of the threshold for the gate error probability. However, this threshold

is calculated for a benchmark application (the factorization of a 430 digit number)

and depends on the parameters of the code used. So we compute the threshold for

various families of codes and compare these values to find which one is more efficient.

The analysis performed on threshold suggests that the upper bound on allowable

gate error improves as the number of nonbinary levels increases. It is also directly pro-

portional to the size of the code i.e. bigger the code, higher is the value of threshold

we get. For a particular value of encoding done (i.e particular n value in an [[n, k, d]]q

code), better gate error probability bounds are achieved for codes with higher error

correcting capability (i.e bigger d value) than those encoding more number of in-

formation bits, k. Hence, we need to use bigger nonbinary codes with higher error
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correcting capability to get a higher value of gate error threshold.
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APPENDIX A

IMPLEMENTATION DETAILS

(************************************************************************)

(* Threshold calculation for Various codes *)

(************************************************************************)

(* Input: n,k,d,q,w values *)

(* Output: The various values for γ *)

(* Benchmark for computation is factorization of a 130 digit number. *)

(* For a computation involving Q sets and K logical qudits to be *)

(* successful, we require P < η/KQ. *)

(* The program calculates the gate error threshold required to perform *)

(* computations with K=2150 encoded qudits and Q = 2 × 1010 *)

(* computational steps. The program is repeated to test the performance *)

(* of serial syndrome calculation with parallel syndrome calculation. *)

(* We assume nε = γ/2 for serial syndrome repetition and *)

(* nε = 2γ for parallel syndrome calculation. *)

(************************************************************************)

(* We input the values n,k,d based on the [[n,k,d]] code *)

n=7

k=1

d=3
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(* Based on the distance d, the number of errors that can be corrected is given as *)

t=(d-1)/2

(* r refers to the number of times the syndrome calculation is repeated *)

r = t+ 1

(* w refers to the average number of non-zero elements in each row of the parity

check matrix. The number of controlled-addition operation and hence the possibility

of error propagation depends on w *)

w = 4

(* s is the number of storage errors. When syndrome calculation is done serially,

s = n((n− k)(w + 0.5) + (2n) + 3)r. And when syndrome calculation is done paral-

lely, s = n((n− k)(w + 0.5) + 3 + 2nr). *)

s = n((n− k)(w + 0.5) + (2n) + 3)r

(* q is the number of levels in the non-binary system. It is usually taken as a prime

power. *)

q = 2

(* g refers to the gate error opportunities *)

g = n(4r + 1)

(* 1/KQ is taken as 2(10(−14)) which is sufficiently long computation *)

p = 2(10(−14))
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(* e refers to the value of ε which refers to the probability of storage error per qudit

per timestep. ε = γ/(2n) for serial syndrome calculation and ε = 2γ/n for parallel

syndrome calculation. *)

e = gam/(2n)

(* Probability that error is introduced in the second qudit during a 2-qudit interac-

tion when one qudit is in error *)

frac= (2)/(q(2) + 1)

(* Probability that an error cannot be corrected is given by the expression in equation

(4.6) *)

r = 2Sum[((Factorial[g]/(Factorial[i]Factorial[g−i]))(((frac)gam)+((frac)(s/g)e))i), {i, t+
1, g}]

(* Computation is successful when P < η/KQ. Hence, we solve for P = η/KQ and

take the maximum positive value of γ to be the gate error threshold. *)

Solve[p == r]



56

VITA

Name : Aparna Kanungo

Educational Background : B.E. Computer Science - Anna University

Permanent Address : A-3 Income Tax Colony, Peddar Road, Mumbai - 400026, India


