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ABSTRACT 
 

Resilient Modulus and Permanent Deformation Testing of Unbound Granular Materials. 

(August 2004) 

Anuroopa Kancherla, B.S., Osmania University, India 

Chair of Advisory Committee: Dr. Amy Epps Martin 

 

Numerous research efforts have been devoted to characterizing the behavior of granular 

materials, which is one of the main concerns of pavement engineers. For better 

understanding of this behavior, laboratory tests where in-situ stress conditions and traffic 

loads are adequately simulated are needed. This study makes use of an expanded test 

protocol called a performance test that includes resilient modulus as well as permanent 

deformation testing. This test protocol determines three nonlinear resilient modulus 

parameters (k1, k2, k3) and two permanent deformation parameters (α,µ). The resilient 

modulus test results are required inputs in the Level 1 analysis of the proposed American 

Association of State Highway and Transportation Officials (AASHTO) Pavement 

Design Guide. In addition, both resilient modulus and permanent deformation test results 

provide material property inputs to pavement performance prediction models. 

 This study also evaluated the within laboratory repeatability of the performance 

test and developed a within laboratory precision statement. Further, a statistical analysis 

was conducted on the test results to estimate the number of test specimens required for 

testing for specific reliability levels. Two test specimens are required for a reliability 
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level of 15%.  A within laboratory study was also conducted to investigate the influence 

of specimen size on test results. The specimen height was reduced from 12 in. (304 mm) 

to 8 in. (203 mm), and there was no difference in test results at a confidence level of 

95%. 

The performance test was further used successfully in subsequent studies to 

evaluate the behavior of granular materials and the influence of various factors on their 

behavior. As fines content increased, the resilient modulus values decreased and 

permanent deformation increased. As the moisture content increased, the resilient 

modulus value decreased and the resistance to permanent deformation decreased.  

 A simplified laboratory measurement tool that is repeatable, relatively cheap and 

easy to perform might prompt the use of laboratory measured values of resilient modulus 

in pavement design and facilitate correlation of these values to field measured values on 

a large scale. Use of measured data for the base properties rather than estimates would 

insure improved pavement designs and, in many cases, would save money in 

construction costs. 
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CHAPTER I 

INTRODUCTION 

 

OVERVIEW 

 

The successful and economic design of new pavements and prediction of remaining life 

of existing pavements depend on proper characterization of pavement materials. A 

conventional flexible pavement consists of a surface layer of hotmix asphalt, base layer 

of granular materials and subgrade as shown in Figure 1. 

 

 

 

 

 

 

 

 

FIGURE 1   Flexible pavement system. 
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Numerous research efforts have been devoted to characterizing the behavior of 

granular materials (1), which is one of the main concerns of pavement engineers. The 

major structural function of a granular base layer is to contribute to the distribution of 

stresses applied to the pavement surface by traffic loading. These stresses must be 

reduced to levels that do not overstress the underlying base, subbase, and subgrade. 

Overstressing unbound granular material can produce unacceptable levels of resilient 

pavement deflections under moving wheel loads or can cause accumulation excessive 

amounts of permanent deformation, ultimately affecting the pavement performance (2). 

Thus, better understanding of this behavior of base materials by laboratory tests where 

in-situ stress conditions and traffic loads are adequately simulated are needed. The 

repeated load triaxial test, also known as the resilient modulus test, is one such method 

wherein the stiffness characteristics of the material as well as the ability to withstand the 

accumulation of permanent deformation during repeated loading are evaluated (3).  

 

PROBLEM STATEMENT 

 

There has been a significant amount of research in the determination of resilient 

properties of base materials (1). Several agencies have specified different test methods 

for resilient modulus testing, and some agencies modified the current American 

Association of State Highway Transportation Officials (AASHTO) test protocol to their 

need and convenience. Also, different testing equipment is being used at different places 

for the resilient modulus test. Hence, there is a need to develop a unified test method 
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which would also represent field conditions. The NCHRP project 1-28A “Harmonized 

Test Methods for Laboratory Determination of Resilient Modulus for Flexible Pavement 

Design” was initiated to combine the best features of the resilient modulus testing 

procedures in current usage (4). 

The literature suggests that the SHRP-46 protocol is one of the methods which 

closely represents the field stress state conditions (5, 6). This SHRP-46 protocol for 

resilient modulus testing has been deleted from the AASHTO standard specification due 

to lack of use. The standard test protocol for the resilient modulus test, AASHTO T307, 

measures only the resilient modulus. The present study will make use of an expanded 

test protocol including resilient modulus as well as permanent deformation testing. 

Henceforth, this test will be referred to as performance test. 

For a laboratory test method, the variability of experimental responses is one 

feature that is inherent in the test procedure. In the practical interpretation of the test 

data, this inherent variability has to be taken into account as the factors that may 

influence the outcome of the test cannot all be controlled (7). In general, the existence of 

minimum variability of test results from the "true" value or the accepted reference value 

is defined as accuracy. To be of practical value, standard procedures are required for 

determining the accuracy of a test method. This is the motivation for this research 

wherein the main objective is to establish the accuracy of the proposed performance test 

in terms of its precision and bias in a within laboratory study. 
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SCOPE 

 

The present study will make use of an expanded test protocol which will include 

measurement of nonlinear resilient modulus parameters (k1, k2, k3) and permanent 

deformation parameters (α,µ). The proposed research will evaluate the repeatability of 

the proposed performance test and evaluate the influence of sample size and level of 

compaction on test results. The resilient modulus test result is a required input in the 

level 1 analysis or most sophisticated analysis of the newly proposed 2002 design guide 

to be released soon. Also, both resilient modulus and permanent deformation test results 

provide material property input to the VESYS 5 computer model used to predict 

pavement performance. 

A simplified laboratory measurement tool that is repeatable, relatively cheap and 

easy to perform might prompt the use of laboratory measured values of resilient modulus 

in pavement design and facilitate correlation of these values to field measured values on 

a large scale. These measured values of resilient modulus and permanent deformation 

could then account for variations in moisture and load that would be encountered in the 

field. Use of measured data for the base properties rather than estimates would insure 

improved pavement designs and, in many cases, would save money in construction 

costs. 
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RESEARCH OBJECTIVES 

 

It is critical to conduct a rigorous evaluation of the permanent deformation and resilient 

modulus test (proposed performance test) procedure to facilitate Texas Department of 

Transportation's (TxDOT) implementation efforts of the new 2002 design procedure. In 

this study the following will be investigated: 

1. The precision and bias of the test method: A within laboratory study is 

conducted to compute the minimum number of samples necessary to test for a 

reliable level of accuracy. 

2. The influence of specimen size on test results: TxDOT wishes to use a 6 in. 

(152 mm) diameter and 8 in. (203 mm) high samples rather than the 

recommended 6 in. (152 mm) diameter and 12 in. (304 mm) high samples by 

the standard procedure. The variation in the test results with the two different 

specimen sizes will be evaluated. 

 

THESIS ORGANIZATION 

 

The first chapter introduces the reader to the role of granular materials in pavement 

performance and the necessity for proper characterization of granular bases. It describes 

the research problem and the research objectives of this study. 

The second chapter consists of a literature review of the repeated loading 

properties of the granular base materials. The resilient modulus and the permanent 
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deformation properties are defined and the factors influencing them are discussed 

briefly. Further, some test procedures which are widely used are described. 

Subsequently, the models used for the determination of resilient modulus and permanent 

deformation properties are presented. 

The third chapter discusses the research methodology that is followed in the 

present study. It consists of a brief explanation of the test matrix and the tests conducted 

on the granular material. It consists of a detailed description of the performance test 

procedure. This includes the test apparatus and the test specimen preparation. Salient 

features that are included in this test sequence are documented. 

The fourth chapter presents the performance test results and a discussion of the 

test results. Further, this chapter presents a statistical analysis conducted on the test 

results. A within laboratory precision and bias statement has been documented in this 

chapter. Further, the analysis on the influence of sample size and method of compaction 

are described. 

The fifth chapter consists of a description of case studies of successful 

applications of performance test procedure. The investigation of various factors 

influencing the resilient modulus and permanent deformation properties of the granular 

materials by performance test is documented. Further, case studies of the evaluation of 

the behavior of granular materials by performance test are described. 

The sixth chapter consists of a summary of the research findings. Also, 

conclusions derived from the study are documented. Recommendations for future 

research are presented. 
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CHAPTER II 

BACKGROUND 

 

INTRODUCTION 

 

This chapter consists of a literature review conducted on the behavior of granular 

materials under repeated loading. The repeated loading properties, resilient modulus, and 

permanent deformation properties are discussed. Further, the factors affecting the 

determination of these properties are presented. The laboratory determination of these 

properties and the recent developments in test procedures are described subsequently. 

The models that are widely used are also documented, and a summary of the literature 

review is presented at the end of this chapter. 

 

REPEATED LOADING PROPERTIES OF GRANULAR MATERIALS 

 

Granular materials experience some non-recoverable deformation after each load 

application. After the first few load applications, the resilient (recoverable) deformation 

increases more than the non-recoverable deformation. If the load is small compared to 

the strength of the material and is repeated for a large number of times, the deformation 

under each application is nearly completely recoverable and proportional to the load and 

can be considered elastic (8). This behavior of granular materials is characterized by 

resilient modulus. The term ‘resilient’ refers to that portion of the energy that is put into 
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a material while it is being loaded, which is recovered when it is unloaded.  The rest of 

the energy that is not recovered when loaded is capable of doing work on the material. 

This work results in the accumulation of permanent strain on repeated loading and 

unloading. This accumulated permanent strain in an aggregate base causes rutting.  

The deformational response of granular layers under traffic loading is 

characterized by a recoverable (resilient) deformation and a residual (permanent) 

deformation, which is illustrated in Figure 2. 

 

 

 

 

 

 

 

 

 

 

FIGURE 2   Strains in granular materials during one load cycle. 

 

Research conducted previously indicates that repeated loading properties of 

granular materials like resilient modulus and permanent deformation accumulation are 

major factors that influence the structural response and performance of conventional 
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flexible pavements. These parameters are typically determined in a repeated load triaxial 

test. This test is performed by placing a specimen in a triaxial cell and applying repeated 

axial load. After subjecting the specimen to a confining pressure, measurements are 

taken of the recoverable axial deformation and the applied load. Both resilient 

(recoverable) and permanent axial deformation responses of the specimen are recorded 

and used to calculate the resilient modulus and the permanent deformation, respectively.  

 

Resilient Modulus 

 

The resilient response of granular materials is usually characterized by the resilient 

modulus. For repeated load triaxial tests with constant confining stress, the resilient 

modulus is defined as the ratio of the peak axial repeated deviator stress to the peak 

recoverable axial strain of the specimen. 

The resilient modulus (Mr) is expressed as (1): 

( )
1

31

ε
σσ −

=rM                                                   (1)                         

where  

Mr = resilient Modulus, 

σ1 = major principal or axial stress, 

σ3 = minor principal or confining stress, and 

ε1 = major principal or axial resilient strain 
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Permanent Deformation 

 

Permanent deformation (PD) is the unrecovered deformation during unloading. It 

accumulates on repeated loading and unloading. The permanent deformation is 

represented as: 

PPD ε=                 (2)
                            
where 

εp = permanent axial strain. 

 

There are many factors that affect the repeated loading properties of the material 

determined by the repeated load triaxial test. A comprehensive literature review was 

conducted on the resilient and permanent deformation properties of granular materials 

and is presented in the following section. 

 

FACTORS AFFECTING REPEATED LOADING PROPERTIES 

 

Many factors simultaneously affect both the resilient modulus and permanent 

deformation properties of granular materials. However, their influence on resilient 

modulus was not the same as on permanent deformation properties. In this section a brief 

overview of the factors influencing both the resilient modulus and permanent 

deformation is presented. Also, the variation in the influence of these properties is 

described.  
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Aggregate Type and Particle Shape 

 

Heydinger et al. (1) showed that gravel had a higher resilient modulus than crushed 

limestone. However, many researchers (9, 10, 11, 12, 13) have reported that crushed 

aggregate, having angular to subangular shaped particles, provides better load spreading 

properties and a higher resilient modulus than uncrushed gravel with subrounded or 

rounded particles. A rough particle is also said to result in a higher resilient modulus (1). 

Allen (10) argued that angular materials, such as crushed stone undergo smaller 

plastic deformations compared to materials with rounded particles (5). This behavior 

was said to be a result of a higher angle of shear resistance in angular materials due to 

better particle interlock. Barksdale and Itani (13) investigated the influence of aggregate 

shape and surface characteristics on aggregate rutting. They concluded that blade shaped 

crushed aggregate is slightly more susceptible to rutting than other types of crushed 

aggregate. Moreover, cube-shaped, rounded river gravel with smooth surfaces is much 

more susceptible to rutting than crushed aggregates (5). 

 

Compaction Method  

 

Seed et al. (14) recommended the use of two compaction methods for the preparation of 

test specimens: 1) Kneading or Impact, and 2) Static. The resilient modulus is directly 

related to the stiffness, which increases with an increase in compactive effort. This 

increase in stiffness varies with different materials and depends on the water content at 
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which the sample was molded (6, 14).  Magnusdottir et al. (15) reported that there was 

an increase in stiffness of about 80% when going from standard Proctor energy (593 

Kj/m3) up to a modified Proctor compaction energy (92693 KJ/m3). Compactive effort 

(C.E) is calculated by using the following equation (16): 

V
NNWH

EC ld ⋅⋅⋅
=.                          (3) 

where 

H = height of drop in ft,  

W = weight of hammer in lb, 

Nd = number of drops, 

Nl = number of layers, and 

V = volume of mold in cubic inch. 

 

TxDOT uses a compactive effort of 13.26 lb-ft/in3 (10752 KJ/m3), while the 

proposed test sequence uses a compactive effort of 32.36 lb-ft/in3 (26238 KJ/ m3) as 

recommended by AASHTO (16, 17). 

 

Confining Pressure 

 

The resilient modulus increases considerably with an increase in confining pressure and 

sum of principal stresses (1).  Monismith et al. (18) reported an increase as great as 

500% in resilient modulus for a change in confining pressure from 2.9 psi (20 kPa) to 29 

psi (200 kPa). An increase of about 50% in resilient modulus was observed by Smith and 
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Nair (19) when the sum of principal stresses increased from 10 psi (70 kPa) to 20.3 psi 

(140 kPa). Allen and Thompson (11) compared the test results obtained from both 

constant confining pressure tests (CCP) and variable confining pressure tests (VCP). 

They reported higher values of resilient modulus computed from the CCP test data. They 

showed that the CCP tests resulted in larger lateral deformations. Figure 3 illustrates a 

typical result of their study 

 
FIGURE 3   Triaxial test results with CCP and VCP (11). 
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Brown and Hyde (20) suggested later that VCP and CCP tests yield the same 

values of resilient modulus provided that the confining pressure in the CCP test is equal 

to the mean value of the pressure used in the VCP test. 

 

Dry Density 

 

Hicks and Monismith (9) found the effect of density to be greater for partially crushed 

than for fully crushed aggregates. They found that the resilient modulus increased with 

relative density for the partially crushed aggregate tested, whereas it remained almost 

unchanged when the aggregate was fully crushed. They further reported that the 

significance of changes in density decreased as the fines content of the granular material 

increased. 

Barksdale and Itani (13) reported that the resilient modulus increased markedly 

with increasing density only at low values of mean normal stress. At high stress levels, 

the effect of density was found to be less pronounced. Vuong (1) reported test results 

showing that at densities above the optimum value, the resilient modulus is not very 

sensitive to density. 

Resistance to permanent deformation in granular materials under repetitive 

loading appears to be highly improved as a result of increased density. Barksdale (21) 

studied the behavior of several granular materials and observed an average of 185% 

more permanent axial strain when the material was compacted at 95% instead of 100% 
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of maximum compaction density. Allen (10) reported an 80% reduction in total plastic 

strain in crushed limestone and a 22% reduction in gravel as the specimen density was 

increased from Proctor to modified Proctor density. For rounded aggregates, this 

decrease in strain with increasing density is not considered to be significant, as these 

aggregates are initially of a higher relative density than angular aggregates for the same 

compactive effort (2). 

 

Fines Content 

 

Studies demonstrating the variation in response of granular materials subjected to 

repeated axial stresses indicate that the fines content (percent passing No.200 sieve) can 

also affect the resilient behavior (22). Hicks and Monismith (9) observed some reduction 

in resilient modulus with increasing fines content for the partially crushed aggregates 

tested, whereas the effect was reported to be the opposite when the aggregates were fully 

crushed. The variation of fines content in the range of 2-10% was reported by Hicks to 

have a minor influence on resilient modulus (22). Yet, a dramatic drop of about 60% in 

resilient modulus was noted by Barksdale and Itani (13), when the amount of fines 

increased from 0 to 10%. Jorenby and Hicks (1) showed in a study an initially increasing 

stiffness and then a considerable reduction as clayey fines were added to a crushed 

aggregate. 
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The effect of fines content was investigated by Barksdale (2, 21) and Thom and 

Brown (12), who concluded that permanent deformation resistance deformation in 

granular materials is reduced as the fines content increases. 

 

Gradation and Grain Size 

 

Kolisoja (23) showed that for aggregates with similar grain size distribution and the 

same fines content, the resilient modulus increased with increasing maximum particle 

size. As the size of the particle increases, the particle to particle contact decreases 

resulting in less total deformation and consequently higher stiffness. Thom and Brown 

(12) concluded that uniformly graded aggregates were only slightly stiffer than well-

graded aggregates. They further indicated that the influence of gradation on the 

permanent deformation depends on the level of compaction. This is illustrated in     

Figure 4 (12). 
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FIGURE 4   Effect of grading and compaction on plastic strain (12). 
 

Dawson et al. (2) argued that the effect of gradation on permanent deformation 

was more significant then the degree of compaction, with the highest plastic strain 

resistance for the densest mix. 
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Load Duration and Frequency 

 

The load duration and frequency have very little effect on the resilient behavior of 

granular materials. Seed et al. (1) reported a study in which the resilient modulus of 

sands increased only slightly (from 8700 psi (60 MPa)  to 27557 psi (190 MPa)) as the 

duration of load decreased form 20 min to 0.3 s. Hicks (22) conducted tests at stress 

durations of 0.1, 0.15, and 0.25 s and found no change in the resilient modulus. 

 

Moisture Content 

 

The moisture content of most untreated granular materials has been found to affect the 

resilient response characteristics of the material in both laboratory and in situ conditions. 

Researchers who studied the behavior of granular materials at high degrees of saturation 

have all reported a notable dependence of resilient modulus on moisture content, with 

the modulus decreasing with growing saturation level (1).  

Research has shown that the effect of moisture also depends on the analysis. 

Hicks (22) stated that a decrease in the resilient modulus due to saturation is obtained 

only if the analysis is based on total stresses. Similarly, Pappin (1) observed that if the 

test results are analyzed on the basis of effective stresses, the resilient modulus remains 

approximately unchanged. 

Dawson et al. (1) studied a range of well-graded unbound aggregates and found 

that below the optimum moisture content stiffness tends to increase with increasing 
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moisture level, apparently due to development of suction. Beyond the optimum moisture 

content, as the material becomes more saturated and excess pore water pressure is 

developed, the effect changes to the opposite and stiffness starts to decline fairly rapidly. 

As moisture content increases and saturation is approached, positive pore 

pressure may develop under rapid applied loads. Excessive pore pressure reduces the 

effective stress, resulting in diminishing permanent deformation resistance of the 

material. Literature available suggests that the combination of a high degree of saturation 

and low permeability due to poor drainage leads to high pore pressure, low effective 

stress, and consequently, low stiffness and low deformation resistance (2). 

In a study conducted by Haynes and Yoder (24), the total permanent axial strain 

rose by more than 100% as the degree of saturation increased from 60 to 80%. Barksdale 

(21) observed up to 68% greater permanent axial strain in soaked samples compared 

with those tested in a partially soaked condition. 

Thompson (9) reported results of repeated load triaxial tests on the crushed stone 

from the AASHTO Road Test at varying degrees of saturation. In all cases, the samples 

experienced a substantial increase in permanent deformation after soaking. It was 

suggested that one reason for the observed increase was development of transient pore 

pressures in the soaked samples.  
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Specimen Size 

 

AASHTO specifies that the diameter of the specimen is a function of the maximum size 

of the aggregate used in the base material. Further, it specifies that the diameter to height 

ratio is 1:2 (17). Thus, according to this for a maximum aggregate size of 1 in.           

(25.4 mm), the size of the specimen is 6 in. (152 mm) in diameter with a height of 12 in. 

(304 mm). There are practical problems involved in molding 12 in. (304 mm) height 

samples and setting up these samples in the triaxial cell due to lack of availability of 

equipment.  

Experimental work done by Taylor indicates that reliable results could be 

obtained with soil specimens having regular ends provided the slenderness (height to 

diameter ratio, l/d) is in the range of 1.5 to 3.0 (1). According to Lee (25) this study 

established the standard that the slenderness (l/d) of triaxial specimens for soil be limited 

to 2.0 to 2.5 for tests with regular ends. Since then, many researchers have studied end 

restraint effects on the shear strength of soils and concluded that sample slenderness can 

be reduced to 1.0 if frictionless platens are used (25).  Adu-Osei et al. (25) studied the 

effect of specimen size. They changed the specimen size from a l/d ratio of 2:1 to 1:1. 

They found that specimens with a l/d ratio of 1:1 gave reliable results when the end 

platens were lubricated (25). These specimens were also more stable and practical. 
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Stress State 

 

Previous investigations and studies show that stress level has the most significant impact 

on the resilient properties of granular materials (1, 2). Many studies indicated a high 

degree of dependence on confining pressure and the first stress invariant (sum of 

principal stresses) for the resilient modulus of untreated granular materials. The resilient 

modulus is said to increase considerably with an increase in confining pressure and the 

sum of principal stresses, while the permanent deformation decreases with an increase in 

confining pressure. Compared to confining pressure, deviator or shear stress is said to be 

much less influential on resilient modulus of the material. In laboratory triaxial testing, 

both constant confining pressure and variable confining pressure are used. Brown and 

Hyde (20) suggested that variable confining pressure and constant confining pressure 

tests yield the same values of resilient modulus, provided that the confining pressure in 

the constant confining pressure test is equal to the mean value of the pressure used in the 

variable confining pressure test.  

The accumulation of axial permanent strain is directly related to deviator stress 

and inversely related to confining pressure. Several researchers have reported that 

permanent deformation in granular materials is principally governed by some form of 

stress ratio consisting of both deviator and confining stresses (2). 

Lekarp and Dawson (26) argued that failure in granular materials under repeated 

loading is a gradual process and not a sudden collapse as in static failure tests. Therefore, 
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ultimate shear strength and stress levels that cause sudden failure are of no great interest 

for analysis of material behavior when the increase in permanent strain is incremental. 

 

Stress History 

 

Studies have indicated that stress history may have some impact on the resilient behavior 

of granular materials. Boyce et al. (27) carried out repeated load triaxial tests on samples 

of a well-graded crushed limestone, all compacted to the same density in a dry state. The 

results showed that the material was subjected to stress history effects, but these could be 

reduced by preloading with a few cycles of the current loading regime and avoiding high 

stress ratios in tests for resilient response (1). 

Hicks (22) reported that the effect of stress history is almost eliminated, and a 

steady and stable resilient response is achieved after the application of approximately 

100 cycles of the same stress amplitude. Allen (10) suggested that specimens should be 

conditioned for approximately 1,000 cycles prior to repeated load resilient tests. Other 

researchers (20) reported that resilient characteristics of unbound granular materials are 

basically insensitive to stress history, provided the applied stresses are kept low enough 

to prevent substantial permanent deformation in the material. Therefore, large numbers 

of resilient tests can be carried out sequentially on the specimen to determine the 

resilient parameters of the material (1). 

Permanent deformation behavior of granular materials is directly related to the 

stress history. Brown and Hyde (20) showed that the higher the stress level higher is the 
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permanent deformation as shown in Figure 5. They also indicated that the permanent 

strain resulting from a successive increase in the stress level is considerably smaller than 

the strain that occurs when the highest stress is applied immediately. 

 

 

 FIGURE 5   Effect of stress history on permanent strain (20). 

 

ANISOTROPY OF GRANULAR MATERIALS 

 

The behavior of granular materials, like most geologic materials, depends on particle 

arrangement which is usually determined by aggregate characteristics, construction 
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methods, and loading conditions. An apparent anisotropy is induced in an unbound 

granular layer in a pavement system during construction, becoming stiffer in the vertical 

direction than in the horizontal direction even before traffic loads impose further 

anisotropy. Barksdale and Itani (13) observed that linear cross-anisotropy is equal to or 

better than a more complicated nonlinear isotropic model for predicting unbound 

granular layer response to traffic loads.  

Adu-Osei et al. (25, 28) developed a system identification method to determine 

the cross-anisotropic elastic properties of unbound aggregates. They found that vertical 

resilient modulus was higher than the horizontal resilient modulus for the materials that 

they tested. Also, the horizontal Poisson's ratio always remained greater than the vertical 

Poisson's ratio. They stated that molding moisture, gradation, and aggregate type have a 

significant effect on the anisotropic properties. Further, the tensile stresses predicted by 

the layered linear elastic model within the base layer were reversed and drastically 

reduced by the nonlinear anisotropic elastic model (28). 

At present test procedures for the determination of repeated loading properties of 

granular materials mainly focus on resilient modulus. The determination of anisotropic 

properties of granular materials is not included in the standards. The following section 

provides a brief description of the test procedures widely used. 
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TEST PROCEDURES FOR DETERMINATION OF RESILIENT MODULUS 

AND PERMANENT DEFORMATION 

 

This section consists of a brief description of the test procedures used to determine the 

repeated loading properties of granular materials. The AASHTO protocol, European 

Protocol, ICAR protocol, and the recently released Harmonized protocol are briefly 

described. This section thus provides an introduction to the testing procedures and the 

main features of the test protocols. The description focuses only on the test procedures 

followed for the base materials, and it does not include the description for any other 

materials which may have been described in the standard protocols. 

 

AASHTO T307 Protocol 

 

AASHTO T307 protocol describes the test procedure for the determination of resilient 

modulus. A repeated axial cyclic stress of fixed magnitude, load duration (0.1 s), and 

cycle duration (1.0 s) is applied to a cylindrical test specimen. During testing, the 

specimen is subjected to a dynamic cyclic stress and a static-confining stress provided by 

means of a triaxial pressure chamber. The total resilient (recoverable) axial deformation 

response of the specimen is measured and used to calculate the resilient modulus. 

The test is begun by applying a minimum of 500 repetitions of a load equivalent 

to a maximum axial stress of 15 psi (103.4 kPa) and corresponding cyclic axial stress of  

13.5 psi (93.1 kPa) using a haversine shaped load pulse. The confining pressure is set to 
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15 psi (103.4 kPa). If the sample is still decreasing in height at the end of the 

conditioning period, stress cycling shall be continued up to 1000 repetitions prior to 

testing. This is followed by a sequence of loading with varying confining pressure and 

deviator stress. The confining pressure is set constant, and the deviator stress is 

increased. Subsequently, the confining pressure is increased, and the deviator stress 

varied. The resilient modulus values are reported at specified deviator stress and 

confining pressure values. The stress sequences followed and the detailed procedure can 

be found in the AASHTO T-307 Protocol (17). 

 

European Protocol 

 

A repeated load triaxial test is used to measure material susceptibility to permanent 

deformation and for assessing the resilient properties. A draft Comité Européen de 

Normalisation (CEN), Standard (29) describes both procedures which use the same 

repeated load triaxial apparatus.  

The draft specifies two procedures, one for the variable confining pressure 

known as Method A and the other for constant confining pressure known as Method B. 

In general, test specimens are prepared to the required density and moisture content 

conditions required.  

Test specimens are subjected to a preconditioning test of 20,000 cycles involving 

an applied loading of mean normal stress (p) = 43.5 psi (300 kPa) and deviatoric stress 

(q) = 87 psi (600 kPa) (or σ1 = 101.5 psi (700 kPa) and σ3 = 14.5 psi (100 kPa)).   
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Resilient Modulus Stress Stage Test 

 

Following the preconditioning test, the material specimens are subjected to a stress stage 

resilient modulus test of 100 cycles per stage, with a range of applied loading sequenced 

according to the CEN procedure with stress ratio loading paths of q/p = 0, 0.5, 1.0, 1.5, 

2.0, and 2.5 performed in sequence. 

CEN test method B (constant confining pressure) follows a separate set of stress 

levels compared to Method A, but they are applied to the same specimen. These stress 

levels are much reduced in magnitude compared to those of Method A, in keeping with 

material placed in the lower levels of a pavement structure. 

In order to directly compare the resilient modulus of different materials, a 

‘characteristic’ stress level has been chosen at which to report the elastic 3D Hooke Law 

modulus. This stress level of applied loading is p = 36.3 psi (250 kPa) and q = 72.5 psi 

(500 kPa) (or σ1 = 84.5 psi (583 kPa) and σ3 = 12 psi (83 kPa)). The detailed procedure 

can be found in the CEN standard (29) 

 

ICAR Test Protocol 

 

The ICAR test protocol takes into account the anisotropy of granular materials. The 

stresses used in the triaxial testing were chosen to represent the stress conditions induced 

in a typical base layer of a flexible pavement by traffic loads. The testing protocol itself 

involves a programmed loading sequence employing ten static stress states. At each 
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static stress state, small dynamic changes in stresses are applied to obtain three triaxial 

stress regimes such that the net stress changes represent triaxial compression, triaxial 

shear, and triaxial extension. The resilient axial and radial strains are determined for 

each stress regime and implemented in the system identification scheme to back 

calculate the five anisotropic elastic properties at that particular stress state. The loading 

sequence is outlined in the following steps: 

1. A mounted sample is loaded to a static stress state (axial stress σy, and confining 

stress σx). The confining stress is then kept constant while the axial stress is 

given a small dynamic stress increment of ∆σy, shown as triaxial compression. 

The increment loading is applied for 25 repetitions until a stable resilient strain is 

achieved. A cycle of loading consists of 1.5 seconds loading followed by 1.5 

seconds rest period. Since, the RaTT (rapid triaxial test) cell uses air for 

confinement, the loading cycle was selected to allow for easy application for 

variable confinement. 

2. At the same static stress state (σx, σy) as in step 1, the axial stress is changed by a 

small dynamic stress increment of ∆σy for 25 repetitions as before, while the 

radial stress is reduced by ∆σx such that the change in the first stress invariant 

(∆I1) is zero in each load cycle. This is shown as triaxial shear. 

3. At the same controlled static stress state (σx, σy) as in step 1, the axial stress is 

reduced by a small amount, ∆σy, while the radial stress is increased by ∆σx. 

Thus, the net change in stress state is in an extension mode, but the principal 

stresses are not reversed. The dynamic stresses are applied for 25 repetitions as 
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before until stable resilient strains are achieved. This is shown as triaxial 

extension. 

4. These steps are repeated for ten different stress states. The measured axial and 

radial strains at each stress state are used as input to the system identification 

scheme. A computer program systematically back calculates the five anisotropic 

elastic properties based on the SID method (25). 

 

Permanent Deformation Testing 

 

The permanent deformation behavior of the materials was studied at four stress         

levels (25). At each stress level, static confining stresses were applied to the samples, 

and deviator stresses were axially cycled 10,000 times. Strains measured are separated 

into resilient and plastic strains. Plastic strains are then used to characterize the 

permanent deformation behavior of the material. The deviator stress consists of a 

haversine pulse-load applied for 0.1 seconds with a 0.9 seconds rest at a frequency of 1 

cycle per second. This load cycle was used for permanent deformation testing because 

the confining pressure was not cycled. 

 

Harmonized Protocol (NCHRP 1-37 A) 

 

The NCHRP project 1-37 A aims at combining the best features of the repeated loading 

test procedures. However, it can be used for the determination of resilient modulus only. 
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The test specimen is compacted at optimum moisture content to the required density. 

The preconditioning of the specimen is carried at 15 psi (103.4 kPa) confining pressure 

and 18 psi (124.1 kPa) deviator stress and 200 repetitions. If the sample is still 

decreasing in height at the end of the conditioning process, stress cycling should be 

continued up to 1000 repetitions prior to testing. If the vertical permanent strain reaches 

5% during conditioning then the conditioning process is terminated.  

The test is conducted by applying both cyclic and confining stress at a constant 

stress ratio. Both the cyclic and confining stresses are increased to maintain a constant 

stress ratio. The stress ratio is then increased. The resilient modulus value is reported at a 

specified deviator stress and confining pressure. The detailed procedure can be found in 

the NCHRP 1-37 A report (4). 

The parameters obtained from the above test procedures are used within the 

appropriate regression models to determine the regression parameters, ki, and the 

resilient and permanent deformation parameters to be used in the pavement performance 

prediction tools and software. The following section presents an extensive literature on 

the models used for prediction of these repeated loading properties. 

 

MODELS 

 

A constitutive relationship needs to be established for accurate prediction of long-term 

behavior of granular materials. A great majority of the models found in the literature are 
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based on simple curve fitting procedures, using the data from laboratory triaxial testing. 

Some of the modeling techniques found in the literature are presented. 

 

Models for Resilient Modulus 

 

Seed et al. (1) suggested the following relationship for resilient modulus: 

2
31

k
r kM σ=                                                             (4) 

where 

σ3 = confining pressure. 

 

Hicks (22) suggested the following simple hyperbolic relationship commonly 

known as the K-θ model: 

2
1

k
r kM θ=                                       (5) 

where  

θ = sum of stresses or bulk stress, and 

k1,k2 = regression coefficients. 

 

This model assumes a constant Poisson’s ratio, while research has proved that the 

Poisson’s ratio varies with applied stresses. Another drawback is that the effect of stress 

on resilient modulus is accounted for solely by the sum of principal stresses 
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Uzan (30) included deviator stress into the K-θ model and expressed the 

relationship as follows: 
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where  

θ = bulk stress, 

Po = atmospheric pressure, 

q = deviatoric stress, and 

k1, k2, k3 = regression coefficients. 

 

In the three dimensional case, the deviator stress in the Uzan model is replaced 

by the octahedral stress as follows: 
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where 

θ = bulk stress, 

Po = atmospheric pressure, 

τoct = octahedral shear stress, and 

k1, k2, k3 = regression coefficients. 
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This model is further modified by adding a “+1” term to avoid the absurd 

calculation of modulus when the τoct tends to zero (the modulus value tends to zero when 

τoct tends to zero): 
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This model was proposed for the determination of resilient modulus by NCHRP project 

1-37 “Development of the 2002 Guide for the Design of New and Rehabilitated 

Pavement Structures (31). 

Kolisoja (23) included the effect of material density in both the K-θ and Uzan 

models. He expressed the following modified formulations: 
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where  

n = porosity of the aggregate, and 

A = constant. 

 

The recently completed NCHRP 1-37 A project proposed a model with the best 

overall goodness of fit statistics based on their study on the development of a 

harmonized protocol for the determination of resilient modulus (4):  
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where 

x, y = pair of stress parameters equal to either (σ3, σcyc) or (θ, τoct).  

in which σ3 is the confining stress and σcyc is the cyclic deviator stress.  

k6 is a material property related to the capillary suction in partially saturated 

unbound materials 

k7 is the material parameter and all other terms are as defined previously. 

 

Models for Permanent Deformation 

 

Barksdale (21) performed a comprehensive study of the behavior of different base 

course materials using repeated load triaxial tests with 105 load applications. For a given 

stress condition, the accumulation of permanent axial strain was shown to be 

proportional to the algorithm of the number of load cycles, and the results could be 

expressed by a log-normal expression of the form: 

)log(Nbap •+=ε              (11) 

where 

εp = total permanent axial strain, 

N = number of load cycles, and 

a, b = constants for a given level of deviator stress and confining pressure. 

 

The long-term behavior of granular materials was also investigated by        

Sweere (32). After applying 106 load cycles in repeated load triaxial tests, Sweere 
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observed that the log-normal approach did not fit his test results. He then suggested that 

for large numbers of load repetitions a log-log approach should be employed and 

expressed the results by: 

b
p Na •=ε               (12) 

where 

a, b = regression parameters.  

The applicability of this log-log model was later questioned by Wolff and Visser 

(33) who performed full-scale Heavy Vehicle Simulator (HVS) testing with several 

million load applications. They suggested a different model given by: 

)1()( bN
p eaNC −−•+•=ε             (13) 

where 

 a, b, c = regression parameters. 

 

Kenis (34) developed the VESYS model where he considered that the permanent 

strain is proportional to resilient strain: 

( ) αµεε −= NN rp /              (14) 

[ ] ( ) Nrp log11/loglog ααµεε −+−=  

where 

s=1-α.  
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Another model that is used was developed at Ohio state and is known as the Ohio 

state model developed by Khedr (2): 

b
p ANN −=/ε              (15) 

 

Tseng and Lytton developed a three parameter model using a sigmoidal curve 

fitting and is expressed as: 

[ ]βρεε Noa /exp −=              (16) 

Where 

εa = permanent axial strain, and 

εo,  β, ρ = three material parameters. 

 

Lekarp and Dawson (26) observed that there was a relationship between 

accumulated permanent axial strain, the maximum shear-normal stress ratio, qmax/pmax, 

and the length of the stress path in p-q space applied to reach this maximum value. A 

consistent pattern was observed when the ratio of permanent strain at a given number of 

cycles to the stress path length was plotted against the maximum shear normal stress 

ratio. The relationship was given by the following expression of the form: 
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where 

ε1, p(Nref) = accumulated permanent axial strain after Nref number of cycles, 
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Nref = any given number of load cycles greater than 100, 

L = length of stress path, 

Po = reference stress (e.g. 1 kPa) introduced to ensure non-dimensionality of the 

equation, 

(q/p)max = maximum shear to normal stress ratio, and 

a, b = regression parameters. 

This equation is applicable for any given number of load cycles greater than 100. 

The NCHRP project 1-37 “Development of the 2002 Guide for the Design of 

New and Rehabilitated Pavement Structures” proposed the following model for the 

determination of permanent deformation (31). 

δa = βs1 εv h (ε0/εr) [e-(ρ/N)β]                                  (18) 

where 

δa = permanent strain in unbound aggregate base, 

βs1 = field calibration factor, 

εv = average vertical resilient strain obtained from software, 

h = layer thickness,  

ε0, ρ, β = regression constants, 

εr = resilient strain imposed in lab testing, and 

ε0/ εr = ratio combined to represent a material property. 

 

Apart from the test procedures, the choice of models also induces variation in the 

test results. A best fit of the appropriate test procedures and the models would enable 
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determination of the values of the resilient modulus and permanent deformation close to 

those measured in the field. However, allowance is to be made for variability induced 

due to the test procedures or the operators and other such factors. Hence, it is necessary 

to specify the required level of accuracy of measurements which is included as a 

precision and bias statement in the test procedures. The following section provides a 

brief discussion on precision and bias. 

 

PRECISION AND BIAS 

 

Apart from the factors mentioned in the previous sections, there is inherent variability 

within the test method. Many different factors contribute to the variability in the 

application of a test method. These include: 1) the operator, 2) equipment used,               

3) calibration of the equipment, and 4) environment (temperature, humidity, air pollution 

etc) (7).  

Precision is expressed in terms of two measurement concepts, repeatability and 

reproducibility (7). In this research only repeatability conditions are considered wherein 

the same operator conducts the tests under identical environmental conditions using the 

same equipment. Precision is usually expressed as the standard deviation or some 

multiple of the standard deviation. A statement on precision provides guidelines for the 

kind of variability that can be expected between test results when the test method is 

correctly used for the conditions specified (35). A statement of precision allows users of 

a test method to assess in general terms the test method’s usefulness with respect to 
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variability in proposed applications. A statement on precision is not intended to contain 

values that can be exactly duplicated in every user’s laboratory. Instead, the statement 

provides guidelines as to the kind of variability that can be expected between test results 

when the method is used in one or more reasonably competent laboratories (36). 

Bias is a systematic error that contributes to the difference between the mean of a 

large number of test results and an accepted reference value (7). In determining the bias, 

the effect of the imprecision is averaged out by taking the average of a large set of test 

results. This average minus the accepted reference value is an estimate of the bias of the 

test method. For the present study if an accepted reference value is not available, the bias 

cannot be established. A statement on bias furnishes guidelines on the relationship 

between a set of typical test results produced by the test method under specific test 

conditions and a related set of accepted reference values (36). 

 

SUMMARY 

 

From the literature review it is evident that the characterization of base materials based 

on repeated loading testing is quite complex. Several researchers have used the repeated 

loading triaxial test for the determination of the resilient modulus and the permanent 

deformation properties. Extensive research has been conducted on the factors that affect 

these properties. Of these the stress state had the most effect on these properties. Hence, 

these values are reported at a specified stress state as is observed in the test procedures. 

However, different test procedures in usage at different locations have made it difficult 
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to ascertain a common classification of the base materials based on resilient and 

permanent deformation properties. The recently completed NCHRP project takes a big 

step forward toward a unified test procedure.  The harmonized protocol has been 

developed under the NCHRP project to standardize a testing procedure for the 

determination of resilient modulus which also includes a model with the best statistical 

accuracy. 

Though permanent deformation properties are important for characterizing the 

behavior of base material, limited research has been conducted in this area (37).Of the 

test methods described in the literature review based on frequency of use, it is evident 

that only the ICAR test protocol includes the determination of permanent deformation 

properties. Furthermore, there was no precision or bias statement for these existing test 

procedures, which is very important for their standardization. 
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CHAPTER III 

RESEARCH METHODOLOGY 

 

INTRODUCTION 

 

This chapter consists of a description of the research methodology including the 

experimental setup and test matrix. The tests conducted are briefly described with a 

sample test result. A new test procedure for the determination of resilient modulus and 

permanent deformation properties of granular materials is proposed. Further, the salient 

features of this test procedure are discussed. A description of this procedure is provided 

in the following sections including the test apparatus and the test specimen preparation.  

 

EXPERIMENTAL DESIGN 

 

A within–laboratory study was conducted for the evaluation of the proposed test 

procedure. For any test method it is necessary that the inherent variability in the test 

procedure be minimized. Specimens were compacted to two different sizes: 1) 6 in.   

(152 mm) diameter by 12 in. (305 mm) height and 2) 6 in. (152 mm) diameter by 8 in. 

(203 mm) height to be used in the proposed performance test. The present study 

evaluates the variability between independent test results obtained within a single 

laboratory in the shortest practical period of time by a single operator with a specific test 

apparatus using test specimens (or test units) taken at random from a single quantity of 
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homogeneous material obtained or prepared for the study. The repeatability of the test 

method with the above specified conditions is evaluated. Further, the influence of 

reducing the specimen height from 12 in. (305 mm) to 8 in. (203 mm) is investigated.  

 

MATERIALS 

 

For the following study, crushed granite that has demonstrated good field performance 

as a base material was used. The source of the material is Spicewood springs, and it is 

used on interstate highway I-30 in Oklahoma. It was necessary to conduct a preliminary 

assessment of the mechanical properties of the materials such as the gradation, dry 

density and moisture content which influence the compaction and specimen preparation 

characteristics for the proposed performance test. 

 

PRELIMINARY TESTING 

 

Preliminary testing of the material was conducted and the mechanical properties were 

determined according to the Texas manual of testing procedures (38). After completion 

of the preliminary tests, the gradation and optimum moisture content results were used in 

the preparation and compaction of test specimens. The preliminary tests that were 

conducted are the particle size analysis, determination of liquid limit, determination of 

plastic limit and determination of plasticity index, and determination of moisture density 

relationship. The results of these tests are provided in Table 1. 
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TABLE 1   Preliminary Tests Results 

Test TxDOT Specification Property measured 

Particle size analysis Tex-101-E Gradation 

Determination of Liquid limit Tex-104-E Liquid Limit – 19 

Determination of Plastic Limit Tex-105-E Plastic Limit – 16 

Determination of Plasticity Index Tex-106-E Plastic Limit – 16 

Laboratory Compaction 
Characteristics and Moisture-
Density Relationship of Base 
Materials 

Tex-113 E Moisture Density 
Relationship 

 
 

Sieve Analysis  

 

Dry and wet sieve analysis was performed on the spicewood material.  Sieving of 

approximately 772 lb (350 kg) of aggregate was accomplished in several batches.  Each 

batch was oven-dried at 110 ºC for 24 hours before being sieved, and the materials 

retained on each sieve were stored separately in buckets.  Following completion of the 

sieving process, the total weight of each size fraction was measured, and the master 

gradation was produced. For the wet sieve analysis, a representative sample of 7.7 lb 

(3.5 kg) of the material was washed with distilled water for separate size fractions. The 

washed material was dried at 110 oC until all the material was dry, and the retained 

material on each sieve size was weighed. Figure 6 shows the gradation of the sample and 

that of the TxDOT specifications.  
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FIGURE 6   Gradation of sample. 
 
 

The dry and wet sieve analysis show that the gradation was within the 

specification limits for TxDOT. As expected the fines content was more with the wet 

sieve analysis than the dry sieve analysis. The dry sieve analysis is used as the master 

gradation for reconstituting the specimens as both the gradations obtained from dry sieve 

and wet sieve analysis are within the specification limits for TxDOT.  

 

Moisture Density Relationship 

 

Based on dry sieve analysis, four replicate specimens of unbound granular base material 

were prepared for moisture-density testing using distilled water.  A different amount of 

water was added to each sample, and the moistened aggregate samples were each 
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compacted in four equal lifts inside a cylindrical metal mold to a finished height of about 

6 in. (152 mm).  Each layer was compacted with 50 blows of a 10 lb (4.5 kg) hammer 

dropped from a height of 8 in. (203 mm).  The molding and compacting equipment is 

shown in Figure 7.  

 

  
 

FIGURE 7   Molding and compacting equipment. 
 

The weights and dimensions of the specimens were measured, and after drying in 

an oven at 110 ºC, the dry densities corresponding to the different moisture contents 

were computed.  These results are shown in Figure 8.  The optimum moisture content 

was determined to be 5.6 percent with a corresponding maximum dry density of       

146.8 lb/ft3 (2352.6 kg/m3). 
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 FIGURE 8   Moisture density relationship. 
 
 

Following determination of the dry weight of aggregate necessary for 

construction of a single cylindrical specimen, the aggregate was recombined into the 

required number of replicate samples, based on the master gradation.   

 

PERFORMANCE TEST SEQUENCE 

 

After the completion of the preliminary testing of the material, the proposed 

performance test was conducted. The proposed performance test sequence is described 

in detail in this section including the test apparatus, test specimen preparation, and the 

test sequence. 
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Proposed Performance Test 

 

Previous research studies focused on the determination of resilient modulus, and 

relatively little research has been conducted on the determination of permanent 

deformation properties of granular materials. NCHRP 1-37 A “Development of the 2002 

guide for the design of new and rehabilitated pavement structures” also requires the 

resilient modulus value as an input for level 1 design. It further recommends AASHTO 

T307 specification for the determination of resilient modulus value which does not 

include the determination of permanent deformation properties. The proposed 

performance test procedure integrates the determination of permanent deformation 

properties along with the determination of resilient modulus values of unbound granular 

materials. 

The test sequence is adapted from the standard test methods given by the VESYS 

user manual, NCHRP1-28 A report and AASHTO T307, TP46 (17,34, 39,40). The data 

acquisition system is completely automated. The stress sequence follows the 

recommendations by NCHRP 1-28 A project which is a more rational approach than the 

stress sequences followed by current standards (17, 39) that maintains a constant stress 

ratio( ratio of maximum axial stress to confining pressure, σ1/σ3 )  by increasing both the 

principal stresses simultaneously. Since the sequence starts with the minimum stress 

ratio, the probability of failing the sample is minimized. Then, a similar sequence is 

performed at a higher stress ratio, producing a higher probability of failure. The method 

is illustrated in Figure 9 that indicates the sequence of the confining pressure and the 
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deviatoric stress applied. Both the confining pressure and the deviatoric stress should be 

varied such that increasing stress levels are applied on the specimen while keeping the 

stress ratio constant. This would prevent the premature failure of the specimen as the 

specimen is not subjected to high stress ratios in the earlier sequences. Also, this enables 

for testing the specimen beyond the line of failure and studying the behavior of material 

as the stress levels increase beyond the line of failure  

 

 

FIGURE 9   Stress sequence compared for granular materials. 
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Test Apparatus 

 

The test apparatus consists of a triaxial chamber, loading device, response measuring 

equipment and data acquisition system. The triaxial pressure chamber is used to contain 

the test specimen and the confining fluid during the test as shown in Figure 10. Air is 

used in the triaxial chamber as the confining fluid for all testing. The axial deformation 

is measured internally, directly on the specimen using normal gauges with rubber bands 

(shown in Figure 11), non-contact sensors and clamps.  

 

 

 

FIGURE 10   Test setup for resilient modulus. 
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FIGURE 11   Specimen prepared for testing. 
 
 

The loading device consists of a top loading, closed-loop electro-hydraulic 

testing machine capable of applying repeated cycles of a haversine shaped load pulse 

(0.1 sec loading and 0.9 sec unloading).  

The axial load measuring device is an electronic load cell, which is located inside 

the triaxial cell. Axial deformation is measured over approximately the middle ½ of the 

specimen. Axial deformation is measured at a minimum of two locations 180o apart (in 

plan view), and a pair of spring loaded LVDTs are placed on the specimen at the 1/4 

point. Spring loaded LVDTs are used to maintain a positive contact between the LVDTs 

and the surface on which the tips of the transducers rest. The distance between the 

LVDTs is the gauge length used to compute strain. Table 2 summarizes the positioning 

of spring loaded LVDTs for the two specimen sizes. 
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 TABLE 2   Positioning of Axial LVDTs 
 

Material/ Specimen Size Distance between 
the LVDTs 

6 in. diameter, 12 in. 
height 6 in 

Aggregate Base 6 in. diameter, 12 in. 
height 4 in 

 

The data acquisition system is completely automated. The test apparatus complies with 

the specifications of AASHTO T307 (17).  

 

Test Specimen Preparation 

 

Preparation of the specimens included dry mechanical sieving into various size fractions, 

determining the optimum moisture content and maximum dry density, recombining the 

aggregate into replicate samples, and compaction.   

The standard method of sample preparation given in AASHTO T307 was 

followed for the sample preparation (17). The optimum moisture content and maximum 

dry density results are used for the compaction of the specimen for the performance test. 

The required amount of material is mixed with the optimum amount of water and 

compacted to the specified dimensions. In this study, the specimen dimensions used are: 

6 in. (152 mm) diameter with 12 in. (305 mm) height and 6 in. (152 mm) diameter with 

8 in. (203 mm) height. The compaction and molding equipment is shown in Figure 7. 

After compaction of the specimen, it was extruded from the compaction mold as shown 

in Figure 12. 
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FIGURE 12   Extrusion of specimen from the compaction mold. 

 
 

The specimen was placed on a porous stone/base after extrusion from the 

compaction mold. The membrane was placed on a membrane stretcher, and a vacuum 

was applied to the stretcher. The membrane was then carefully placed on the specimen. 

The membrane stretcher was removed from the membrane by cutting off the vacuum. 
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After placing the rubber membrane around the specimen, it was kept in the humidity 

chamber for approximately 16 hours or overnight, to allow for the uniform distribution 

of the water within the specimen. After preparation of the test specimen, it was subjected 

to repeated triaxial testing. The compacted specimen was prepared for testing by placing 

a rubber membrane around it. The membrane was sealed to the top and bottom platens 

with rubber “O” rings as shown in Figure 13.  

 

 

FIGURE 13   Test specimen prepared for testing. 
 

Test Sequence 

 

After the preparation of the test specimen, the following testing sequence was used. The 

stress sequence follows the recommendations by NCHRP 1-28 A for base/subbase 
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materials that maintains a constant stress ratio by increasing both the principal stresses 

simultaneously. The test sequence consisted of three stages: 

1. Preliminary conditioning 

2. Permanent deformation test 

3. Resilient modulus test 

 

Conditioning 

 

The specimen was preconditioned before testing by applying 100 repetitions of a load 

equivalent to a maximum axial stress of 6 psi (41.4 kPa) and a corresponding cyclic 

stress of 3 psi (20.7 kPa) using a haversine shaped 0.1 second load pulse followed by a 

0.9 second rest period.  A confining pressure of 15 psi (103.5 kPa) was applied to the 

test specimen. A schematic representation of the load and the placement of Linear 

Vertical Displacement Transducers (LVDT) are shown in Figure 14. σd is the axial 

deviatoric stress, and σ3 is the confining pressure. LVDTs 1 and 2 measure the axial 

displacement, and LVDTs 3 and 4 measure the radial displacement. 
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FIGURE 14   Representation of load and position of LVDTs on      
specimen. 

 

Permanent Deformation Test 

 

A haversine load equivalent to a maximum axial stress of 33 psi (of 227.7 kPa) and a 

corresponding cyclic stress of 30 psi (207 kPa) with a 0.1 second load pulse followed by 

a 0.9 second rest period was continued until 10,000 load applications or until the vertical 

permanent strain reached 3% during the testing, whichever comes first.  During load 

applications, the load applied and the axial deformation measured from two LVDTs 

through the data acquisition system was recorded.  In order to save storage space during 

data acquisition, the data was recorded at specified intervals shown in Table 3. 
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TABLE 3    Suggested Data Collection for Permanent Deformation Test 
 

Data Collection During Cycles 
 

1-15 450 1300 4000 
20 500 1400 4500 
30 550 1500 5000 
40 600 1600 5500 
60 650 1700 6000 
80 700 1800 6500 

100 750 1900 7000 
130 800 2000 7500 
160 850 2200 8000 
200 900 2400 8500 
250 950 2600 9000 
300 1000 2800 9500 
350 1100 3000 10000 
400 1200 3500  
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Resilient Modulus Test  

 

The same specimen was used to perform the resilient modulus test if the vertical 

permanent strain did not reach 3%.  Otherwise, a new specimen was molded, and the 

permanent deformation test was performed with the load repetitions reduced to 5,000 

from 10,000.  If the sample again reached 3% total permanent strain, the test was 

terminated.  If not, the resilient modulus test was performed by initially decreasing the 

axial stress to 2.1 psi (14.5 kPa) and setting the confining pressure to 3 psi (20.7 kPa).  

The test was performed by following the sequence of loading at regular intervals shown 

in Table 4 which was recommended in NCHRP project 1-28 A (4). 

The test was stopped when the total permanent strain of the sample exceeded 3%, 

and the result was reported.  After the completion of the test, the confining pressure was 

reduced to zero and the specimen was removed from triaxial chamber.  The moisture 

content of the specimen was determined at the end of the test using AASHTO T265-93 

(41).  The testing sequence is shown schematically in Figure 15. 
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  TABLE 4   Permanent Deformation and Resilient Modulus Test Sequence for Granular Base 

Confining Pressure Contact Stress Cyclic Stress Maximum Stress 
Sequence 

kPa psi kPa psi kPa psi kPa Psi 
Nrep 

Preconditioning 

 103.5 15.0 20.7 3.0 20.7 3.0 41.4 6.0 100 

Permanent Deformation 

 103.5 7.0 20.7 3.0 193.0 28.0 213.7 31.0 10000 

Resilient Modulus 

1 20.7 3.0 4.1 0.6 10.4 1.5 14.5 2.1 100 

2 41.4 6.0 8.3 1.2 20.7 3.0 29.0 4.2 100 

3 69.0 10.0 13.8 2.0 34.5 5.0 48.3 7.0 100 

4 103.5 15.0 20.7 3.0 51.8 7.5 72.5 10.5 100 

5 138.0 20.0 27.6 4.0 69.0 10.0 96.6 14.0 100 

6 20.7 3.0 4.1 0.6 20.7 3.0 24.8 3.6 100 

7 41.4 6.0 8.3 1.2 41.4 6.0 49.7 7.2 100 

8 69.0 10.0 13.8 2.0 69 10.0 82.8 12.0 100 

9 103.5 15.0 20.7 3.0 103.5 15.0 124.2 18.0 100 

10 138.0 20.0 27.6 4.0 138 20.0 165.6 24.0 100 

11 20.7 3.0 4.1 0.6 41.4 6.0 45.5 6.6 100 

12 41.4 6.0 8.3 1.2 82.8 12.0 91.1 13.2 100 

13 69.0 10.0 13.8 2.0 138 20.0 151.8 22.0 100 
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       TABLE 4   continued 

Confining Pressure Contact Stress Cyclic Stress Maximum Stress 
Sequence 

kPa psi kPa psi kPa psi kPa Psi 
Nrep 

Resilient Modulus 

14 103.5 15.0 20.7 3.0 207 30.0 227.7 33.0 100 

15 138.0 20.0 27.6 4.0 276 40.0 303.6 44.0 100 

16 20.7 3.0 4.1 0.6 62.1 9.0 66.2 9.6 100 

17 41.4 6.0 8.3 1.2 124.4 18.0 132.5 19.2 100 

18 69.0 10.0 13.8 2.0 207 30.0 220.8 32.0 100 

19 103.5 15.0 20.7 3.0 310.5 45.0 331.2 48.0 100 

20 138.0 20.0 27.6 4.0 414.0 60.0 441.6 64.0 100 

21 20.7 3.0 4.1 0.6 103.5 15.0 107.6 15.6 100 

22 41.4 6.0 8.3 1.2 207 30.0 215.3 31.2 100 

23 69.0 10.0 13.8 2.0 345.0 50.0 358.8 52.0 100 

24 103.5 15.0 20.7 3.0 517.5 75.0 538.2 78.0 100 

25 138.0 20.0 27.6 4.0 690.0 100.0 717.6 104.0 100 

26 20.7 3.0 4.1 0.6 144.9 21.0 149.0 21.6 100 

27 41.4 6.0 8.3 1.2 289.8 42.0 298.1 43.2 100 

28 69.0 10.0 13.8 2.0 483.0 70.0 496.8 72.0 100 

29 103.5 15.0 20.7 3.0 724.5 105.0 745.2 108.0 100 

30 138.0 20.0 27.6 4.0 966.0 140.0 993.6 144.0 100 
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  Preparation of Test Specimen

Preconditioning:
100 load repetitions 

Permanent Deformation Test:
Load repetitions until 10,000 cycles or 
Vertical permanent strain reaches 3% 

Resilient Modulus Test: 
Loading sequence continued until 

vertical permanent strain exceeds 3% 

A new specimen is 
molded and permanent 

deformation test 
conducted for 5,000 

repetitions 

3% total vertical 
permanent strain 

reached 

End the test 

No

Yes 

10,000 load 
repetitions 

5% vertical permanent 
strain reached 

 

 FIGURE 15   Flowchart of the test procedure for permanent deformation and 
resilient modulus. 
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Calculations 

 

The following results are computed from the test: 

Permanent deformation properties 

• Average axial deformation is determined for each specimen by averaging the 

readings from the two axial LVDTs. The total axial strain is determined by dividing 

by the gauge length (L). Cumulative axial permanent strain and resilient strain at the 

500th load repetition are calculated.  

• A graph is plotted between the cumulative axial permanent strain and the number of 

loading cycles in log space (shown in Figure 16). The permanent deformation 

parameters, intercept (a) and slope (b), are determined from the linear portion of the 

permanent strain curve (log-log scale), which is also demonstrated in Figure 16. 

• Rutting parameters α and µ are determined using the following equations as 

shown in equation (14): 

b1−=α    

r

ba
ε
×

=µ    

 

Resilient Modulus parameter 

• The resilient modulus values are computed from each of the last 5 cycles of each 

load sequence which are then averaged.  
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• The data obtained from the applied procedure is fit to the following resilient 

modulus model using nonlinear regression techniques as shown in Figure 17.  

 
The resilient modulus is calculated by the following equation (7) which is being adapted 

in NCHRP 1-37A project (2002 design guide): 

32 k
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Where: 

 k1, k2 ≥ 0, 

 k3 ≤ 0, 

 MR = resilient modulus, 

 τoct = octahedral shear stress ( ) ( ) ( )2
32

2
31

2
213

1 σσσσσσ −+−+−= , 

 θ = bulk stress = σ1 + σ2 + σ3 , 

 σ1, σ2, σ3 = principal stresses, 

 ki  = regression constants, and 

 Pa = atmospheric pressure. 
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500th cycle's resilient strain=0.00058, Mr = 50.78 ksi
Alpha = 0.921  Gnu = 1.271

y = 0.0094x0.0788
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FIGURE 16   Sample plot of permanent strain versus number of load cycles. 
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FIGURE 17   Sample regression plot of measured versus predicted values. 

 

 The permanent deformation properties were determined at a confining pressure of 

7 psi (49.2 kPa) and a deviatoric stress of 28 psi (193 kPa). The resilient modulus values 

were reported at 5 psi (34.4 kPa) confining pressure and 15 psi (103.4 kPa) deviatoric 

stress. 

 

PRECISION AND BIAS OF TEST METHOD 

 

Seven specimens were compacted for the determination of resilient modulus and 

permanent deformation using the proposed performance test. The within laboratory 



 

                                                                                                                                          65
                                                                       
                                                                                                                                          

      
 
variability analysis was performed on the test results. Based on this analysis the within 

laboratory precision and bias of the test method is estimated. The precision and bias of 

test methods was discussed in detail in Chapter II.  

 

INFLUENCE OF SPECIMEN SIZE 

 

The influence of preparing samples with a specimen height of 8 in. (203 mm) instead of 

the 12 in. (305 mm) height in the proposed performance test is investigated. For the 6 in. 

(152 mm) by 12 in. (305 mm) (diameter by height) specimens, the gauge length for 

measuring the axial strains is 6 in. (152 mm). The length to diameter ratio and the length 

to gauge length ratio used were in accordance with the standard practices (17, 39). 

However, for the use of an 8 in (203 mm) height specimen, the gauge length should also 

be changed. A gauge length ratio of 0.5 or lower is recommended by researchers (6). 

Hence, for the 8 in. (203 mm) high specimen, a gauge length of 4 in. (102 mm) was 

used. This enables the placement of the LVDTs and the measurement of the axial 

deformations at a distance considerably far from the end platens. Measuring the axial 

deformations closer to the end platens will result in an overestimation of the modulus 

value of the material. Conversely, measuring the axial deformations closer to the center 

of the specimen will lead to accurate estimation of the stiffness parameters (6). Hence, 

the configuration of an 8 in specimen with a gauge length of 4 in. (102 mm) is 
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reasonable for the determination of modulus values. Figure 18 shows the specimen with 

height 8 in. (203 mm) after testing. 

 

     FIGURE 18   Specimen after testing. 

 

SUMMARY 

 

This chapter discusses the research methodology of the present study. The proposed 

performance test sequence is discussed in detail including the test apparatus, test 

specimen preparation and the stress sequence applied during the test. Replicate 

specimens were prepared to determine the sample size required for testing. The 

following were the objectives of the experimental design: 

• Evaluate the variability of the test results determined from the test  
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• Estimate the number of test specimens required for a given tolerance level of the 

test results 

• Investigate the influence of changing the specimen size from 6 in. (152 mm) 

diameter by 12 in. (305 mm) height to 6 in. (152 mm) diameter by 8 in.           

(203 mm) height on the test results. 

 
This thesis aims to determine the precision and bias of the proposed testing 

procedure, which is a combination of several test procedures. This test procedure 

includes the determination of both resilient modulus and permanent deformation 

properties. It should give a measure of accuracy for the determination of the resilient and 

permanent deformation properties in the within laboratory conditions and their 

appropriate use in the field. Also, the influence of sample size and method of 

compaction on the test results is studied. 
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CHAPTER IV 

TEST RESULTS AND ANALYSIS 

 

INTRODUCTION 

 

This chapter consists of the description of the results of the performance test conducted 

in this study. The permanent deformation and resilient modulus results are presented. An 

analysis on the influence of stress ratios on the test results is conducted. The within 

laboratory variability of the test results is evaluated. Also, the number of test specimens 

required for desired reliability of this test method is estimated. Further, the within 

laboratory precision of the test method is established. Subsequently, the influence of 

specimen size on test results is investigated. 

 

PERFORMANCE TEST RESULTS 

 

As discussed in Chapter III, the performance test results determine the permanent 

deformation properties and the resilient modulus values. In this section, the permanent 

deformation properties are presented followed by the resilient modulus parameters for a 

6 in. (152 mm) diameter and 12 in. (305 mm) height (6 in. by 12 in.) specimen. 
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Permanent Deformation Properties 

 

The accumulation of permanent deformation with number of load cycles is indicated by 

the graph plotted on a logarithmic scale with permanent strain on the y axis and number 

of load cycles on the x axis.  A typical plot is shown in Figure 19 that indicates that as 

the number of load cycles increases, the permanent strain increases. The graph shows a 

linear relationship between the εp and number of load cycles on the logarithmic scale. 

From the graph, permanent deformation parameters α and µ of the VESYS model are 

determined. The VESYS model is expressed as follows (34): 

( ) αµεε −= NN rp /                                                                                                          (18)                            

The permanent deformation increases at a higher rate for the initial load cycles 

and at a lower rate as the number of load cycles increases. Thus, the relationship 

between permanent deformation and number of load cycles is an expression of the form: 

Y = a x b               (19) 

From this expression, the permanent deformation parameters µ and α are determined 

using the following expressions: 

r

ba
ε

µ •
=  

where   

εr = resilient strain, and 

α = 1-b.
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500th cycle's resilient strain=0.000485, Mr = 59.73 ksi
Alpha = 0.925  Gnu = 0.799

y = 0.0052x0.0752
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FIGURE 19   Plot of permanent strain versus number of load cycles. 
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The individual plots for all the specimens tested are presented in Appendix A. Table 5 

provide a summary of the test results of the permanent deformation parameters. 

Thompson stated that for reasonable stress states, the “b” term in equation (19) for soils 

and granular materials is generally within the range of 0.12 to 0.2. The lower values are 

for the soils. He also indicated that the “a” term was quite variable and is dependent on 

material type, repeated stress state and factors influencing material shear strength (42). 

  

TABLE 5   Permanent Deformation Test Result for Specimen Size 6 in. 
by 12 in. 

 

µ α
1 0.000546 54.18 1.478 0.860
2 0.000485 59.73 0.799 0.925
3 0.000580 50.78 1.271 0.921
4 0.000619 48.71 1.280 0.912
5 0.000641 45.51 1.470 0.911
6 0.000687 43.33 0.844 0.933
7 0.000589 50.07 1.544 0.926

Specimen Mr (ksi)

Rutting parametersε  r at 500th 

load cycle

 
 

From Table 5, the µ values range from 0.79 to 1.5, and α values range from 0.86 

to 0.93. Also, the resilient strain at the 500th repetition is used to compute the resilient 

modulus values at 7 psi (48 kPa) confining pressure and 28 psi (193 kPa) deviator stress.  
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Bonaquist and Witzack (43) indicated that the typical values of α and µ range 

between 0.85 to 0.95 and 0.1 to 0.4, respectively. The higher the value of α, the lower 

the slope of the curve and the lower the rate of accumulated strain. The values of µ are 

high compared to the values reported by Bonaquist and Witzack (43). This is due to the 

high stress level at which the testing was conducted. These properties depend on the 

ratio of maximum axial stress to the confining pressure (σ1/σ3), termed the stress ratio. 

The higher the stress ratio, the higher is the accumulation of permanent strain.  

Figure 20 shows the relationship between the ratio of permanent strain to 

resilient strain (εp/εr) and the number of load cycles for all specimens. The results 

indicate a linear relationship. Thus as the number of load cycles increases, the ratio εp/εr 

increased. 
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εp/εr Vs No of load cycles
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         FIGURE 20   Plot of εp/εr with number of load cycles. 
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Resilient Modulus Test Results 

 

The resilient modulus value is computed from the model described in Chapter II. The 

model with k1, k2 and k3 parameters is chosen for the determination of the resilient 

modulus. This would also provide input parameters for the characterization of unbound 

granular base material in the proposed 2002 design guide (31).  The measured resilient 

modulus values are compared to the predicted values, and the parameters are determined 

by regression analysis. 

The resilient modulus is calculated by the following equation (7) which is being 

adapted in NCHRP 1-37A (31): 

32 k
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oct
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PP
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⎞
⎜⎜
⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛ θ
=  

The regression parameters k1, k2, and k3 computed by this model for each of the 

specimen are presented in Table 6. These parameters are used to calculate the resilient 

modulus value at a specific confining pressure and deviatoric stress. Here, the resilient 

modulus value at 5 psi (34.5 kPa) confining pressure and 15 psi (103.4 kPa) deviatoric 

stress are computed for comparison. The individual regression plots for each of the 

seven specimens are provided in Appendix B. 
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  TABLE 6   Resilient Modulus Test Results for Specimen Size 6 in. by 12 in. at       
5 psi Confining Pressure and 15 psi Deviatoric Stress 

 

Specimen k1 k2 k3 Mr (ksi)

1 1699.49 0.71 0.04 42.15

2 2424.13 1.13 -0.99 54.21

3 2591.25 1.02 -0.98 53.63

4 2406.69 0.81 -0.55 50.73

5 2321.15 1.05 -0.83 51.97

6 2002.96 0.74 -0.45 41.94

7 2057.65 1.25 -1.26 45.02
 

 

The results of Table 6 are used to estimate the precision and bias of the test 

method which will be discussed subsequently.  

From Table 6, the average resilient modulus value was 48.5 ksi (334.4 MPa), 

which is typical of a good unbound granular base material. Figure 21 shows the resilient 

modulus values for each of the seven specimens tested. It indicates that there is not much 

variation among the results for resilient modulus values. 
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FIGURE 21   Resilient modulus value at 5 psi confining pressure and 15 psi      
deviatoric stress. 
 

EFFECT OF STRESS STATE ON TEST RESULTS 

 

The resilient modulus value at any specified confining pressure and deviatoric stress can 

be calculated from the regression parameters k1, k2, and k3. The resilient modulus values 

are reported at a confining pressure of 5 psi (34.5 kPa) and a deviatoric stress of 15 psi 

(103.4 kPa), while the permanent deformation properties are computed at confining 

pressure of 7 psi (48.3 kPa) and a deviatoric stress of 28 psi (193 kPa) or (σ1/σ3 = 5). 

Here, the resilient modulus values are computed at a confining pressure of 7 psi (48.3 

kPa) and a deviatoric stress of 28 psi (193 kPa) to compare the effect of higher stress 

levels on the resilient modulus values. The resilient modulus values computed at a 
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confining pressure of 7 psi (48.3 kPa) and a deviatoric stress of 28 psi (193 kPa) are 

shown in Table 7. 

 

  TABLE 7   Resilient Modulus Values for a 6 in. by 12 in. at 7 psi Confining 
Pressure and 28 psi Deviatoric Stress 

 

Specimen k1 k2 k3 Mr (ksi)

1 1699.49 0.71 0.04 60.25747272

2 2424.13 1.13 -0.99 73.66015037

3 2591.25 1.02 -0.98 69.41480562

4 2406.69 0.81 -0.55 65.95037353

5 2321.15 1.05 -0.83 70.96983963

6 2002.96 0.74 -0.45 53.78925249

7 2057.65 1.25 -1.26 60.76577268  

 

The resilient modulus values obtained from Table 6 and Table 7 are plotted as 

shown in Figure 22. It indicates that as the stress level increases, the resilient modulus 

value increases. This result reaffirms the stress dependency of the resilient modulus 

values.  
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    FIGURE 22   Resilient modulus values for different stress levels. 
 

Also, from the resilient modulus test data, the induced εp is calculated for the 

different combinations of confining pressure and deviatoric stress. A graph is plotted 

between induced εp and confining pressure for the different stress ratios (1.5, 2.0, 3.0, 

4.0, 6.0, and 8.0). The graph indicates that induced εp increases with increasing stress 

levels for the same stress ratios (σ1/σ3). For example, the stress ratio of 1.5 may have 

stress levels of 1.5 psi (10.3 kPa) deviatoric stress and 3 psi (20.6 kPa) confining 

pressure and 3 psi (20.6 kPa) deviatoric stress and 6 psi confining pressure. Hence, the 

induced permanent deformation values are computed at various stress levels for each of 

the stress ratios at which measurements were made during testing. There was no 

apparent increase in the induced εp for stress ratios 1.5, 2, 3, 4. For these stress ratios, 

there was no apparent change in induced εp for increasing stress levels. However, when 
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the stress ratio increased, induced εp increased with increasing stress levels. The higher 

the stress ratio, higher was the rate of increase in induced εp for increasing stress levels. 

It should be noted here that the increase in induced εp was not due to increase in 

confining pressure but mainly due to the increase in deviatoric stresses. The same pattern 

was noticed for all of the specimens tested. Figure 23 shows a typical plot of induced εp 

versus confining pressure at different stress ratios. 

Similarly, the resilient modulus values are plotted for different stress ratios as 

shown in Figure 24. It should be noted here that the graphs in Figure 23 and Figure 24 

are plotted with confining pressure for clarity while the modulus values depicted are for 

a combination of confining pressure and deviatoric stresses. Figure 24 indicates that 

higher the stress level, higher is the modulus value. The same result was also 

demonstrated by Figure 22. The resilient modulus increases linearly with stress level for 

the same stress ratios. However, at higher stress ratios of 6 and 8, the modulus values 

decrease at higher stress levels. This may be due to the high stress levels causing the 

dilation of the material. Also, this may be due to the stress levels exceeding the failure 

line of the specimen at higher stress levels under repeated loading. Figure 24 shows that 

the difference in resilient modulus values for different stress ratios was not significant. It 

was the increase in deviatoric stress which resulted in increased resilient modulus values. 
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FIGURE 23   Plot of induced permanent strain during resilient modulus sequence at different stress ratios. 
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FIGURE 24   Resilient modulus for different stress ratios.
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STATISTICAL ANALYSIS OF TEST RESULTS 

 

Analysis of the test results obtained from the seven replicate specimens is presented in 

this section. As the present study was completed in a single laboratory, the precision 

statement is expressed in terms of the repeatability within the laboratory. Repeatability 

concerns the variability between independent test results obtained within a single 

laboratory, in the shortest practical period of time, by a single operator, with a specific 

set of test apparatus using test specimens (or test units) taken at random from a single 

quantity of homogeneous material obtained or prepared for the laboratory study (36). 

Seven replicate specimens were prepared and tested with the same equipment by the 

same operator. The repeatability is expressed in terms of the standard deviation of test 

results (7). These values for the test results are shown in Table 8. From these values the 

variability within the test results is estimated. 

From standard practice ASTM E 691, the repeatability limit for the result is 

calculated as 2.8 times the standard deviation for a confidence level of 95% in test 

results. Thus, the repeatability limits for the results for resilient modulus and permanent 

deformation are as shown below in Table 9. 
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                TABLE 8   Average and Standard Deviations of Test Results 
 

1 42.15 0.01873

2 54.21 0.01800

3 53.63 0.01830

4 50.73 0.01910

5 51.97 0.02200

6 41.94 0.01790

7 45.02 0.02300

Average 48.52 0.01958

Std Dev 5.34 0.00206

coeff of var 11.02 10.52349

Specimen Resilient 
Modulus (ksi)

Permanent Strain at 
5000 cycles

 
 

 

    

  TABLE 9    Repeatability Limits for Resilient Modulus and Permanent Strain 

Test property Average Standard deviation 

(std dev) 

95% repeatability 

limit= 2.8* std dev 

Resilient 
Modulus 

48.52 ksi 5.345 
 

15 ksi 

Permanent Strain 0.01958 0.00206 0.0057 
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Sample Size Calculations 

 

Statistical methods were used to estimate the number of specimens required for a desired 

tolerance level in the test results. The number of observations to be included in the 

sample will be a compromise between the desired accuracy of the sample statistic as an 

estimate of the population parameter and the required time and cost to achieve this 

degree of accuracy. There are two considerations in determining the appropriate sample 

size for estimating an average using a confidence interval. First, the tolerable error 

establishes the desired width of the interval. The second consideration is the desired 

level of confidence (35). The tolerable error is the width of the confidence interval from 

the average value which is also expressed as percentage error (% error). 

The sample size is determined by the following equation (35): 

( )
2

22
2/

E
z

n
σα=              (20) 

Where 

n= sample size, 

Zα/2 = Z value used for a desired confidence level, 

σ = standard deviation, and 

E = half of the width of the confidence interval. 
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At a confidence level of 95%, the Z value is 1.96 from a statistical table of 

standard normal curve areas (35). The standard deviation values are obtained from  

Table 8. The sample size calculations are made for different tolerable errors from the 

mean of the resilient modulus values and the permanent deformation values which are 

shown in Tables 10 and Table 11, respectively. Graphs plotted between the sample size 

and the % errors of the results are presented in Figure 25 and Figure 26.  

 

TABLE 10   Sample Size Calculation Based on Resilient 
Modulus Values 

 

Error (Mr) No of Samples

8% 7.28

9% 5.75

10% 4.66

11% 3.85

12% 3.24

13% 2.76

14% 2.38

15% 2.07

16% 1.82
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TABLE 11   Sample Size Calculation Based on Permanent 
Strain at 5000th Load Cycle 

 
Error (PD) No of Samples

8% 6.65

9% 5.25

10% 4.25

11% 3.52

12% 2.95

13% 2.52

14% 2.17

15% 1.89

16% 1.66
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FIGURE 25    Plot of number of samples versus % error of resilient modulus value. 
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FIGURE 26   Plot of number of samples versus % error of permanent deformation 
values. 

 

Table 10, Table 11, Figure 25 and Figure 26 indicate that for the determination of 

the resilient modulus and the permanent deformation properties using the proposed 

performance test requires a sample size of 3 for a tolerance level of 12%.  

 

PRECISION 

 

The precision of a test method is expressed as the standard deviation (7).The precision 

information given below is for average resilient modulus (ksi) for the comparison of two 

test results, each of which is the average of seven test results.  

Figure 27 shows a statement of within laboratory precision expressed according 

to the ASTM E 177. 
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FIGURE 27   Within laboratory precision statement. 

 

INFLUENCE OF SPECIMEN SIZE ON TEST RESULTS 

 

The number of specimens for a tolerance level of 12% is three from Table 10 and Table 

11. Thus, three specimens were tested with a specimen size of 6 in. (152 mm) diameter 

and 8 in. (203 mm) height. The results of permanent deformation properties and resilient 

modulus values are shown in Table 12, Table 13 and Figure 28. 

 

             TABLE 12  Permanent Deformation Test Results for 6 in. by 8 in. 

 
Rutting parameters 

Specimen ε r Mr µ α 

1 0.000525 55.2381 0.5750 0.8560 
2 0.000527 55.0285 1.2459 0.9294 
3 0.000535 54.2056 0.8401 0.6337 

 

 

 

Average test value: 
 
Resilient Modulus = 48.52 ksi 
 
95% repeatability limit = 2.8* std dev = 2.8* 5.3 = 15 ksi 
 
Permanent Deformation = 0.0198 in 
 
95% repeatability limit = 2.8* std dev = 2.8* 0.00206 = 0.00576 in 
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 TABLE 13   Resilient Modulus Test Results for 6 in. by 8 in. 

 

Specimen k1 k2 k3 Mr (ksi)

1 2740.55 0.97 -0.67 61.59

2 1880.56 0.98 -0.38 47.86

3 2377.63 0.82 -0.42 53.38
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  FIGURE 28   Resilient modulus values for 6 in. by 8 in. 
 

 

The maximum aggregate size is 1-2 in. (25 – 50 mm) requiring a large specimen 

size of at least 6 in. (152 mm) to maintain a 1: 6 ratio of maximum aggregate size to 
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diameter of specimen as recommended by NCHRP 1-37 A. Further, a diameter to height 

ratio of 1: 2 is recommended by literature to reduce the end effects on the deformation 

measurements made on the full length of the sample (44).  

A statistical analysis of the test results was conducted to determine the influence 

of the specimen size. The student’s t test was used to compare the test results and to 

estimate the difference between the test results with different specimen sizes. The 

following assumptions are made for this test: 

• The data is normally distributed 

• The samples are independent. That is the testing of one specimen size does not 

affect the testing of the other specimen size. 

• The two populations, specimen height 12 in. (304 mm) and specimen height 8 in. 

(203 mm) have the same population standard deviation. 

Since it was assumed that the standard deviations of the populations are the 

same, the sample standard deviations are pooled using the formula: 

( ) ( )
2

11

21

2
22

2
11

−+
−+−

=
nn

snsnS p            (21) 

where 

Sp = pooled standard deviation, 

n1 = sample size of population one, 

n2 = sample size of population two, 

s1 = standard deviation for population one, and 

s2 = standard deviation for population two. 
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The null hypothesis for the comparison between the two specimen sizes is that 

there is no difference between the test results when the specimen height is reduced to      

8 in. (152 mm) from 12 in. (304 mm) 

The test statistic for the above hypothesis testing is: 

21

21

11

0

nn
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yy
t

p +
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⎠
⎞

⎜
⎝
⎛ −

=

−−

             (22) 

where 

−

1y = sample mean of population one (specimen height 12 in.), 

2

−

y = sample mean of population two (specimen height 8 in.), 

n1 = sample size of population one (specimen height 12 in.), and 

n2 = sample size of population two (specimen height 8 in.). 

For a level α, Type I error rate and with degrees of freedom df, the hypothesis is 

rejected if 2/αtt ≥  . 

where  

tα/2 is determined from a table of critical values for the student’s t distribution 

(35). 

Sample sizes and standard deviations for the two populations for the calculation 

of the pooled standard deviation based on resilient modulus and permanent deformation 

values are shown in Table 14 and Table 15. Using the average and standard deviation 

values of the samples from Table 8, the t statistic is calculated.  
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TABLE 14  Calculation of Pooled Standard Deviation for 
Resilient Modulus Values 

 

n1 7 n2 3
y1 48.52 y2 54.28
s1 5.345 s2 6.9
s1

2 28.56903 s2
2 47.61

Sp

df

t`

population one, 
height 12 in.

population two, height 
8 in.

8

5.773150678

1.445836679  
 

 

TABLE 15   Calculation of Pooled Standard Deviation for 
Permanent Deformation Values at 5000 Load Cycles 

 

n1 7 n2 3
y1 0.000592 y2 0.0048
s1 0.000066 s2 8.27E-05
s1

2 4.356E-09 s2
2 6.84E-09

SP

df

t`

0.008377052

0.727937626

8

population one, 
height 12 in.

population two, 
height 8 in.
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For an α value of 5 % and df = 8, the tα/2 determined from table of critical values 

for the student’s t distribution is 2.3. Since 2/αtt ≤  , for both the permanent deformation 

and resilient modulus values the null hypothesis cannot be rejected. Thus, it can be 

concluded that there is no difference in the test results when the specimen size is reduced 

to 8 in. (203 mm) from 12 in. (304 mm) for the resilient modulus value. 

 

SUMMARY 

 

This chapter described the determination of the resilient modulus and permanent 

deformation test results.  The 6 in. (152 mm) diameter with 12 in. (304 mm) height 

specimen was tested to evaluate the test procedure. Further, the influence of stress ratios 

on these properties is discussed. Statistical procedures were followed to estimate the 

number of test specimens necessary for a desired level of tolerance. After the estimation 

of the samples size, it was found that for a tolerance level of 12% three replicate 

specimens are required to be tested. Based on this three specimens of 6 in. (152 mm) 

diameter and 8 in. (304 mm) height specimens were prepared for conducting the 

performance test. The Student’s t test was conducted to investigate the influence of the 

specimen size on the test results. It was found that there was no statistically significant 

difference for a confidence level of 95% between the test results for both resilient 

modulus and permanent deformation properties. 
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CHAPTER V 

APPLICATIONS OF PERFORMANCE TEST 

 

INTRODUCTION 

 

This chapter consists of a documentation of studies wherein the performance test was 

applied successfully for the evaluation of unbound granular base materials. This test was 

applied to evaluate the behavior of granular materials based on the resilient modulus and 

permanent deformation properties. Further, this test was also used for the investigation 

of influence of fines content and the moisture content on the resilient modulus and 

permanent deformation properties. The results of these studies are presented in this 

chapter. Further, case studies of materials tested using the performance test are 

documented. 

 

INFLUENCE OF FINES CONTENT 

 

The performance test was applied to investigate the influence of fines content on the 

permanent deformation and resilient modulus values of Texas crushed stone material. 

The details of this study are in research report 4358-2, “Impact of Aggregate Gradation 

on Base Material Performance” (45). The gradation of the material was within the 

specifications for granular base materials.  
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Test specimens were prepared to three different fines content, 5 percent, 10 

percent and 17 percent. The performance test was conducted at varying fines content to 

determine their influence on the permanent deformation and resilient modulus properties 

of the material. The results of the performance test are provided in Table 16. 

 

      TABLE 16   Performance Test Results for Varying Fines Content 

5% 76.63 0.0006195 0.9005 0.5125

10% 64.055 0.0006845 0.838 1.435

17% 56.862 0.0004428 0.8388 0.9792

gnu (m)Fines Content
Resilient 

Modulus (ksi)
Resilient strain at 
500th load cycle alpha (a)

 

 

Figure 29 presents the resilient modulus values obtained at the varying fines content. 
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Resilient Modulus Vs Fines Content
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     FIGURE 29   Resilient modulus values at varying fines content. 

 

 Figure 30 shows the permanent deformation at 5000 load cycles. It indicates that 

the sample with 5 percent fines content had better tendency to recover the deformation it 

underwent under the load. While, the samples with 10 percent and 17 percent fines had 

more permanent deformation. Also, the alpha value decreased as the fines content 

increased. As the alpha value is reduced, the resistance to permanent deformation also 

reduces. It should be noted here that though the difference in alpha values is less for the 

three fines content, this value is an exponent when used in the equation. Thus, small 

variances in alpha value result in larger variances in the permanent deformation values.  
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Permanent Deformation Vs Fines Content
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FIGURE 30   Plot of permanent deformation at varying fines content. 

 

 Thus, from this study they concluded that as the fines content decreases, the 

resilient modulus value and the resistance to permanent deformation increases. The 

higher the fines content, higher is the permanent deformation which causes rutting, 

ultimately affecting the performance of the pavement. 

 

INFLUENCE OF MOISTURE CONTENT ON TEST RESULTS 

 

A study was conducted by the performance test on the influence of the moisture content 

on the granular material behavior. A flex base material from Interstate 35 was tested at 

optimum moisture content, 1% below optimum moisture content and 1% above optimum 

moisture content. The optimum moisture content and the maximum dry density values 
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were 7.7 % and 134.8 lb/ft3 (2159 kg/m3). Test specimens were prepared at optimum 

moisture content, 1% below optimum moisture content and 1% above the optimum 

moisture content. The results of the performance test are provided in Figure 31 and 

Figure 32. 

The results indicate that as the moisture content decreased, the resilient modulus 

value increased. Further, the permanent deformation increased as the moisture content 

increased. For the material compacted at 1 % above the optimum moisture content, the 

resilient modulus test sequence could not be completed as the material was too wet and 

excessive deformation occurred which could not be measured. 
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FIGURE 31   Comparison of resilient modulus with varying moisture content



 

                                                                                                                                     
                                                                                                                     
                                                                                                                                    
                                                                                                                                     

99
 

Permanent Strain Vs Number of load cycles
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FIGURE 32   Comparison of permanent strain with varying moisture content. 
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Another study was conducted to evaluate New York base material by the 

performance test at two different moisture contents, at optimum moisture content and at 

moisture content reached at the end of the tube suction test (TST) (46). TST is used to 

assessing the moisture susceptibility of granular base materials (46). The gradation and 

the moisture content results are provided in Appendix C. The specimens were compacted 

at optimum moisture content. When the performance test sequence was applied on this 

material, it deformed excessively. Hence, only a resilient modulus stress sequence was 

applied on the test specimen. The results of the resilient modulus values for the two 

specimens tested are shown in Table 17. 

 

TABLE 17   Resilient Modulus Test Results 

 

Specimen 
Resilient Modulus 

(ksi) 
K1 K2 K3 

New York Base 

Type 1- Specimen #2 

(4.3% wc) 

30.75 1381.41 .65 -.12 

New York Base 

Type 1- Specimen #1 

(5.9 % wc) 

20.62 1063.62 .55 -.29 

 

 



 

 

101

From Table 17, the modulus value at optimum moisture content was lower than 

the moisture content at the end of TST. TST shows the maximum moisture that can be 

imbibed under favorable conditions in the field (46). Figure 33 shows that the material 

had a better resilient modulus value at the moisture content at the end of TST than at 

optimum moisture content. This further enunciates the adverse effect of increasing 

moisture content on resilient modulus. 
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FIGURE 33  Resilient modulus at OMC and at end of TST. 

 

Figure 34 and Figure 35 show the specimens at the end of testing. These figures 

indicate that the specimens deformed excessively during testing and the LVDTs went 

out of range. That is, the LVDTs were not calibrated to such deformation 
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FIGURE 34   Type 1 specimen #1 at 5.9 % water content at the end of 
testing. 

 
 
 
 

 

  FIGURE 35   Type 1 specimen # 2 at 4.3 % water content at the end 
of testing. 
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The resilient modulus value obtained at the two moisture contents as discussed 

earlier indicate that the value at optimum moisture content results in under-predicting the 

modulus. Hence, conducting the test at the moisture content at the end of TST may give 

a better representation of the resilient modulus value.  

This study draws our attention to a major concern of sample preparation for 

resilient modulus testing. The moisture content at which the test is conducted needs to be 

reviewed. The inclusion of the testing at the moisture content at the end of TST may help 

in better predicting the resilient modulus value.  

 

EVALUATION OF GRANULAR BASE MATERIALS 

 

Two samples of base course aggregates from different locations; State Highway 6 (SH 6) 

at Waco, US 59 at Lufkin were tested to evaluate their engineering properties. 

Performance test is conducted on these materials to determine the permanent 

deformation properties and the resilient modulus based on stress dependency. The 

gradation and moisture content test results for both these samples are provided in 

Appendix D. Two test specimens were prepared for each sample of material at optimum 

moisture content for conducting the performance test. The results of the resilient 

modulus and permanent deformation test are presented in Table 18. The rutting 

parameters µ and α are also shown. 
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TABLE 18   Results of Resilient Modulus and Permanent Deformation Test 

 
Rutting 

parameters 

Specimen 

Water 

content

% 

Resilient 

Modulus 

(ksi) 

Permanent 

Deformation ε r µ α 

Highway6 7.9 68.44 0.0337 0.000815 1.0133 0.9667

US 59 7.8 50.97 0.0061 0.000455 0.4234 0.9493

 

 

The Aggregate US 59 had more permanent deformation than the sample 

Highway 6. Based on the permanent deformation values it can be concluded that base 

material US 59 was the better of the two materials. Also, the resilient modulus value for 

US 59 and SH 6 were 50.97 ksi and 68.44 ksi, typical for a granular base material. Here, 

this test provides for comparison of the two base materials. It should be noted that while 

US 59 material was better in terms of resistance to permanent deformation while SH 6 

was  better in terms of the resilient modulus values. However, both these materials 

should prove to be good base materials based on their permanent deformation and 

resilient modulus values, to be used in Texas where problems due to frost susceptibility 

are considerably less.  
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SUMMARY 

 

This chapter provides a description of the application of the performance test for the 

evaluation of granular base materials. Case studies were documented which applied the 

performance test to investigate the influence of factors like moisture content and 

aggregate gradation on the behavior of granular materials. It was found that the fines 

content and the moisture content had an adverse affect on the resilient modulus and 

resistance to permanent deformation properties. Further, a study conducted to evaluate 

the effect of the moisture content at which the specimen was compacted on the test 

results. A comparative study on two base materials by using the performance test was 

also documented. 
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CHAPTER VI 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

 

SUMMARY 

 

This thesis presents an integrated test procedure which determines both the resilient 

modulus and permanent deformation properties of unbound granular materials. Testing 

was conducted on a specimen of 6 in. (152 mm) diameter and 12 in. (304 mm) height.  

The sample size was estimated for determining the permanent deformation and the 

resilient modulus properties for different reliability levels of the test results. The 

following parameters were obtained from the test: 

• The permanent deformation parameters α and µ of the VESYS model  

• The resilient modulus value and the parameters k1,k2 and k3 for use in level 1 

analysis of the 2002 design guide 

The results obtained were documented, and an analysis was made of the 

influence of the stress levels on the test results. Granular material is stress sensitive, and 

it was confirmed that as the stress level increased both the permanent deformation and 

the resilient modulus values increased. 

A statistical analysis of the test procedure was carried out to estimate the sample 

size required for a desired tolerance level. A of 6 in. (152 mm) diameter and 12 in.     

(304 mm) height specimen was used for this testing. The variability of the test results 

was estimated, and the repeatability limits were specified for the within laboratory 
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conditions. Based on this analysis, a sample of 3 specimens was chosen with a specimen 

size of 6 in. (152 mm) diameter and 8 in. (203 mm) height. A student’s t -test was 

conducted on the test results for the two specimen sizes to estimate the influence of 

specimen size on the test results. It was found that there was no difference in the test 

results for the two specimen sizes. Further, case studies of application of performance 

test for the evaluation of granular material behavior was documented. Further, studies 

wherein the performance test was used to investigate the factors influencing the resilient 

modulus and permanent deformation properties of granular materials are described. 

 

CONCLUSIONS 

 

The following are the conclusions of the work that is presented in this thesis: 

• It presented an integrated test procedure for the determination of both resilient 

modulus and permanent deformation properties of unbound granular materials. 

Both properties were determined by testing one specimen.  

• The proposed performance test was repeatable, and the variability of individual 

results for different reliability levels was estimated. 

• The stress sequence for the resilient modulus testing was such that the material is 

subjected to stresses above the line of failure. 

• The stress levels may be high for the permanent deformation testing and the 

sequence may be carried out at a lower stress ratio which would prevent the 

premature failure of specimens. 
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• The permanent deformation and resilient modulus test results were stress 

sensitive. The variation of these results depended on the stress level. A higher 

stress level resulted in the estimation of higher values for resilient modulus and 

permanent deformation properties.  

• It was proved statistically that the determination of both the resilient modulus 

and the permanent deformation properties required a sample size of three for a 

tolerance level of 12% for the testing of granular materials.  

• A within laboratory precision statement was given for the within laboratory 

conditions at which the study was conducted. 

• It was found that there was no influence on the test results when the specimen 

height was reduced from 12 in. (305 mm) to 8in. (152 mm) at a confidence level 

of 95%. Thus, a 6 in. (152 mm) diameter by 8 in. (203 mm) height specimen can 

be used for testing using the proposed performance test procedure.  

 

FUTURE RESEARCH 

 

The following recommendations are made for future research and continuation of the 

present study: 

• Investigate the influence of method of compaction on test procedure 

• Study the influence of the permanent deformation testing of specimens prior to 

resilient modulus testing, if any 
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• Evaluation of the models for the permanent deformation properties for obtaining 

statistically accurate results 

• Improvement of the specimen preparation procedure by introducing gyratory 

preparation of specimens 
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SPECIMEN # 1 

 

500th cycle's resilient strain=0.000546, Mr = 54.18 ksi
Alpha = 0.86  Gnu = 1.478

y = 0.0058x0.1397
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Figure A- 1   Permanent deformation result for specimen #1 
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Figure A- 2    εp/εr Vs Number of load cycles for specimen #1 
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SPECIMEN # 2 

 

500th cycle's resilient strain=0.000485, Mr = 59.73 ksi
Alpha = 0.925  Gnu = 0.799

y = 0.0052x0.0752
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Figure A- 3   Permanent deformation result for specimen #2 
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Figure A- 4   εp/εr Vs Number of load cycles for specimen #2 
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SPECIMEN # 3 

 

500th cycle's resilient strain=0.00058, Mr = 50.78 ksi
Alpha = 0.921  Gnu = 1.271

y = 0.0094x0.0788
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Figure A- 5   Permanent deformation result for specimen #3 



 

 

123

εp/εr Vs N 

y = 2.6475x0.3533

R2 = 0.9857

1

10

100

1 10 100 1000 10000

Number of Load Cycles (N)

ε p
/ ε

r

 
Figure A- 6   εp/εr Vs Number of load cycles for specimen #3 
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SPECIMEN # 4 

 

500th cycle's resilient strain=0.000619, Mr = 48.71 ksi
Alpha = 0.912  Gnu = 1.28

y = 0.009x0.0883
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Figure A- 7   Permanent deformation result for specimen #4 
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Figure A- 8   εp/εr Vs Number of load cycles for specimen #4 
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SPECIMEN # 5 

 

500th cycle's resilient strain=0.000641, Mr = 45.51 ksi
Alpha = 0.911  Gnu = 1.47

y = 0.0106x0.0889
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Figure A- 9   Permanent deformation result for specimen #5 



 

 

127

εp/εr Vs N

y = 2.9521x0.3454

R2 = 0.964

1

10

100

1 10 100 1000 10000

Number of Load Cycles (N)

ε p
/ ε

r

 
Figure A- 10   εp/εr Vs Number of load cycles for specimen #5 
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SPECIMEN # 6 

 

500th cycle's resilient strain=0.000687, Mr = 44.33 ksi
Alpha = 0.933  Gnu = 0.844

y = 0.0087x0.0665
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Figure A- 11   Permanent deformation result for specimen #6 
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Figure A- 12   εp/εr Vs Number of load cycles for specimen #6 
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SPECIMEN # 7 

 

500th cycle's resilient strain=0.000589, Mr = 50.07 ksi
Alpha = 0.926  Gnu = 1.544

y = 0.0122x0.0745
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Figure A- 13   Permanent deformation result for specimen #7 
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Figure A- 14   εp/εr Vs Number of load cycles for specimen #7 
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SPECIMEN # 1 
 
 
2002 Design Guide, Granular Base Resilient Modulus Mr-v, for Level I analysis 
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Figure B- 1   Regression plot of resilient modulus results for specimen #1 
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SPECIMEN # 2 
 
 
2002 Design Guide, Granular Base Resilient Modulus Mr-v, for Level I analysis 
 
Regression Equation: 
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 Figure B- 2   Regression plot of resilient modulus results for specimen #2 
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SPECIMEN # 3 
 
2002 Design Guide, Granular Base Resilient Modulus Mr-v, for Level I analysis 
 
Regression Equation:  
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 Figure B- 3   Regression plot of resilient modulus results for specimen #3 
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SPECIMEN # 4 
 
 
2002 Design Guide, Granular Base Resilient Modulus Mr-v, for Level I analysis 
 
Regression Equation:  
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 Figure B- 4   Regression plot of resilient modulus results for specimen #4 
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SPECIMEN # 5 
 
 
2002 Design Guide, Granular Base Resilient Modulus Mr-v, for Level I analysis 
 
Regression Equation:  
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Resilient Vertical Modulus at Confining Pressure=5 psi and Deviator Stress =15 psi 
 
Mr-v=51.97 ksi 
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 Figure B- 5   Regression plot of resilient modulus results for specimen #5 
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SPECIMEN # 6 
 
 
2002 Design Guide, Granular Base Resilient Modulus Mr-v, for Level I analysis 
 
Regression Equation:  
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Resilient Vertical Modulus at Confining Pressure=5 psi and Deviator Stress =15 psi 
 
Mr-v=41.94 ksi 
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 Figure B- 6   Regression plot of resilient modulus results for specimen #6 
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SPECIMEN # 7 
 
 
2002 Design Guide, Granular Base Resilient Modulus Mr-v, for Level I analysis 
 
Regression Equation:  
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Figure B- 7   Regression plot of resilient modulus results for specimen #7
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    APPENDIX C 

NEW YORK BASE MATERIAL PROPERTIES 
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Gradation (wash) for New York Type 1

Date: 12/18/2003
Initial Wt: 4000

        Sieve Size
Standard Metric Weight Retained % Passing % Retained

1 1/4 31.75 431 89.23 10.78
7/8 22.225 628 73.53 15.70
5/8 15.875 149 69.80 3.73
3/8 9.525 394 59.95 9.85
#4 4.76 402 49.90 10.05
#10 2 329 41.68 8.23
#40 0.42 936 18.28 23.40
#200 0.074 328 10.08 8.20
-200 < 0.075 403 0.00 10.08

100.00

Total: 4000
Dust: 0

Gradation (wash) for New York Type 1
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Figure C- 1   Gradation plots for New York base 
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MDD-OMC for New York Type 1
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Figure C- 2   Moisture density relationship for specimen compacted with proctor 
compaction 
 
 
 

MDD-OMC (modified proctor method) for New York 
Type 1

130.00

132.00

134.00

136.00

138.00

140.00

142.00

144.00

0 2 4 6 8 10 12

Moisture Content

D
ry

 D
en

si
ty

 
 
Figure C- 3   Moisture density relationship for specimen compacted with modified 
proctor compaction 
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    APPENDIX D 

HIGHWAY 6 AND US 59 MATERIAL PROPERTIES 
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Gradation on Highway 6 and US 59 
 

 Gradation on Highway 6 (Dry Sieve)
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    Figure D- 1   Dry sieve analysis on Highway 6 
 
 

Gradation on Highway 6 (Wet Sieve)
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    Figure D- 2   Wet sieve analysis on Highway 6 
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Gradation on US 59 (Dry Sieve)
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    Figure D- 3   Dry sieve analysis on US 59 
 
 
 
 

Gradation on US 59 (Wet Sieve)
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    Figure D- 4   Wet sieve analysis on US 59 
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Table D- 1   Primary Properties of the Highway 6 and US 59 Base 
Materials 

 

Test Result Highway 6 US 59 

Linear Shrinkage 2 2 

Liquid limit 18 17 

Plastic limit 16 12 

Plasticity Index 2 4 

% percent of fines 2.57 7.34 
Optimum Moisture 
Content 7.9 7.8 
Maximum Dry 
Density 137.33 137.59 
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