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ABSTRACT 

Assessing the Influence of Diagenesis on Reservoir Quality: 

Happy Spraberry Field, Garza County, Texas. (May 2004) 

Vincent Philippe Guillaume Mazingue-Desailly, Dip., Ecole des Mines de Paris 

Chair of Advisory Committee: Dr. Wayne M. Ahr 

 
 
 

In the Permian Basin, strata of Leonardian age typically consist of interbedded 

carbonates and siliciclastics interpreted to be turbidite deposits. Happy Spraberry Field 

produces from a 100-foot thick carbonate section in the Lower Clear Fork Formation 

(Lower Leonardian) on the Eastern Shelf of the Midland Basin. Reservoir facies include 

oolitic- to-skeletal grainstones and packstones, rudstones and in situ Tubiphytes 

bindstones. Depositional environments vary from open marine reefs to shallow marine 

oolitic shoal mounds. Best reservoir rocks are found in the oolitic-skeletal packstones. 

Diagenesis occurred in several phases and includes (1) micritization, (2) 

stabilization of skeletal fragments, (3) recrystallization of lime mud, (4) intense and 

selective dissolution, (5) precipitation of four different stages of calcite cement, (6) 

mechanical compaction, (7) late formation of anhydrite and (8) saddle dolomite and (9) 

replacement by chalcedony. Oomoldic porosity is the dominant pore type in oolitic 

grainstones and packstones. Incomplete dissolution of some ooids left ring-shaped 

structures that indicate ooids were originally bi-mineralic. Bacterial sulfate reduction is 

suggested by the presence of (1) dissolved anhydrite, (2) saddle dolomite, (3) late-stage 

coarse-calcite cement and (4) small clusters of pyrite. 

Diagenetic overprinting on depositional porosity is clearly evident in all reservoir 

facies and is especially important in the less-cemented parts of the oolitic grainstones 

where partially-dissolved ooids were subjected to mechanical compaction resulting in 

“eggshell” remnants. Pore filling by late anhydrite is most extensive in zones where 

dissolution and compaction were intense. 
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Finally, a porosity-permeability model was constructed to present variations in 

oolitic packstone- rudstone-bindstone reservoir rocks. The poroperm model could not be 

applied to oolitic grainstone intervals because no consistent trends in the spatial 

distribution of porosity and permeability were identified. Routine core analysis did not 

produce any reliable value of water saturation (Sw). An attempt to take advantage of 

wireline log data indicates that the saturation exponent (n) may be variable in this 

reservoir.
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_______________ 
 
This thesis follows the style and format of the American Association of Petroleum 
Geologists Bulletin. 

INTRODUCTION 

Estimates of hydrocarbon recovery over time depend on accurate knowledge of 

three main reservoir parameters: porosity, permeability and hydrocarbon saturation. 

Estimates of ultimate recovery follow directly from assessments of reservoir quality. In 

this study, reservoir quality is defined as the combined value of porosity and 

permeability; good reservoir quality corresponds to good values of both porosity and 

permeability and low reservoir quality to pour values of both porosity and permeability. 

Field development requires accurate models of porosity, permeability and oil saturation 

throughout the reservoir. Construction of such models is a difficult task because 

predictions must be interpolated from small samples of the reservoir. Cores are usually 

rare or they may not be available; consequently, many of the reservoir quality estimates 

must be made from well logs. Although well logs provide a fairly reliable estimate of 

porosity, they are less reliable as indicators of permeability. Permeability estimates from 

well logs can be improved by understanding primary and diagenetic mechanisms that 

control reservoir properties observed in core. This allows an evaluation of the degree and 

type of relationship between porosity and permeability. If there is a strong correlation 

between these parameters, then permeability can be estimated from log- derived 

porosity. 

Unlike sandstone reservoir quality, which generally depends on the depositional 

distribution of grain size and only secondarily on pore-reducing diagenetic changes (e.g., 

physical compaction and cementation), limestone reservoirs are mineralogically unstable 

and mechanically less durable. Limestones can undergo many different types of 

diagenetic changes both soon after deposition and during longer term burial (Tucker, 

1990; Moore, 2001). The effect of diagenesis on reservoir quality can be dramatic, 

completely overprinting depositional textures and fabrics. 
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Diagenetic overprints on depositional porosity are pronounced in the Clear Fork 

carbonates of the study area. (figure 1). This study is aimed at understanding how those 

diagenetic processes affected depositional reservoir characteristics in order to construct a 

poroperm model of the Happy Spraberry reservoir. 

 
 
 
 
 
 
 

 
 
 
 

Figure 1. Field location map (modified after Atchley et al, 1999). 
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Field location and history 

Happy Spraberry Field is located on the Eastern Shelf of the Permian Basin in 

Section 19, Block 2, T. & N.O.R.R. Co. Survey, Garza County, Texas. It produces from 

an interval about 100 feet thick at a depth of 5,000 feet. Though “Spraberry” is included 

in the field name, it does not produce from the Spraberry Formation, but from the Lower 

Clear Fork Formation of Lower Leonardian (Early Permian) age (figure 2). The field is 

about 0.6 square miles (1.6 square kilometers) and is penetrated by 15 wells (figure 3) 

that produce from oolitic skeletal grainstones, packstones, rudstones and bindstones. 

Happy Spraberry Field was discovered in 1988 by Bennett Petroleum and field 

development began in 1989 under a joint venture with Torch Energy. Torch Operating 

Company has produced the field alone since 1991. A water flood program began in April 

1992, but only small increases in both oil and water production rates were obtained. 

These low rates and volumes of recovered fluids do not account for the much larger 

volumes of injected water nor do they explain why the reservoir pressure has remained 

relatively static over time. This unexpected behavior suggests that a lack of 

communication exists between individual flow units and thus Happy Spraberry Field is a 

true compartmentalized reservoir. 
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Figure 2. Stratigraphic column for the Eastern Shelf and Midland Basin during 
Leonardian time. 
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Figure 3. Base map of Happy Spraberry Field. 
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REGIONAL GEOLOGIC SETTINGS 

Structure 

The Permian Basin is an asymmetrical structural depression in the Precambrian 

basement of the North American plate. It covers about 115,000 square miles (300,000 

square kilometers) in parts of West Texas and Southeastern New Mexico. The 

paleogeographic evolution of the Permian Basin is closely related to the breakup of the 

supercontinent Pangaea and subsequent late Paleozoic continental reassembly (Hills, 

1985). Passive marginal structural elements formed in the early Paleozoic were 

reactivated as a series of foreland uplifts and intervening grabens during the late 

Paleozoic Marathon-Ouachita collision (Ross, 1986; Ward et al., 1986). The Midland 

Basin is bounded to the West by the Central Basin Platform, the main high of the 

Permian Basin, and to the East by the Chadbourne Fault zone. This fault zone 

corresponds to the transition from marine platform facies of the Eastern Shelf to the 

basinal facies of Midland Basin. The area marks the inflexion point of the shelf margin 

(Yang and Dorobek, 1994). Since Early Permian time, there has been little deformation 

of the Permian Basin (Mazzullo 1995) other than tilting along its edge during the 

Triassic (Ward et al., 1986; Mazzullo, 1995). 

During Leonardian time, the Midland Basin was inundated by a tropical ocean. 

(Guevera, 1988). Depositional facies on the shelf included both siliciclastics and 

carbonates. Siliciclastic turbidites and density currents derived from the top of the shelf 

bypassed the shelf margin and passed into the basin (Ward et al., 1986). The Eastern 

Shelf of the Midland Basin was a distally-steepened ramp rather than a rimmed or open 

shelf. Happy Spraberry Field carbonates were deposited just inboard of this distally 

steepened margin (Hammel, 1996). 
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Stratigraphy 

During Early Pennsylvanian time there was little input of terrigenous clastic 

sediment to Midland Basin and reef-like buildups developed. Some of these buildups, 

such as the Horseshoe Atoll, became major hydrocarbon reservoirs (Adams et al., 1951). 

Late Pennsylvanian time was a period of intense tectonic activity during the Ouachita-

Marathon orogeny and widespread siliciclastic sedimentation (Yang and Dorobek, 

1994). During Early Permian time, carbonate platforms developed around the edges of 

Midland Basin. By Early Leonardian time, reefs and mounds had formed along the 

western edge of the Eastern Shelf that were bypassed by siliciclastic turbidites being 

shed into the basin (Ward et al., 1986). As a result of this bypass sedimentation, Lower 

Clear Fork strata commonly consist of mixed, isolated biohermal buildups, oolitic 

sandbodies, discontinuous fluvial-deltaic arkosic sandstones and marine shales 

(Montgomery and Dixon, 1998). The Lower Clear Fork Formation (see figure 4) is 

considered to be time equivalent to the Dean Formation of Midland Basin (Handford, 

1981). 

Influx of siliciclastics into Midland Basin increased throughout Upper 

Leonardian times. Well established carbonate deposition along the platform margin of 

the Eastern Shelf continued to prograde westward. By the end of Leonardian times the 

Eastern Shelf had prograded as much as 24 km into Midland Basin (Mazzullo and Reid, 

1989). 

Middle and Upper Permian strata contain a sequence of, from base to top, 

carbonates, evaporites, and very fine arkosic sandstones and siltstones that are the 

fluvial, deltaic and lacustrine deposits of the Triassic Dockum Group and the Neogene 

Ogallala Formation (Stueber et al., 1998). 

Stratigraphic correlation between units on the Eastern Shelf and those in Midland 

Basin strata is difficult because vertical relief between coeval beds on the platform top 

and the basin floor is on the order of 2,000 feet. The difficulty is exacerbated by facies  
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Figure 4. Generalized stratigraphic cross section of the Midland Basin-Eastern Shelf 
transition. The star marks the approximate location of Happy Spraberry Field (after 
Layman, 2002). 
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changes that occurred during sedimentation on the platform and in the basin (Handford, 

1981). 

Originally, the reservoir at Happy Spraberry Field was interpreted to be part of 

the Spraberry Formation (figure 5) but recently seismic correlations confirmed that it 

was part of the Clear Fork Formation (Layman, 2002). Oolitic grainstones, packstones, 

and skeletal bindstones that exhibit some mound segments in growth position also 

confirm that the environment of deposition of Happy Spraberry Field reservoir rocks 

was tropical, normal marine, and moderately agitated by waves and currents. 

Traditionally this environment is called a “shallow marine platform” setting. Because the 

location of Happy Spraberry Field does not coincide with the Strawn reef trend along the 

Eastern Shelf, but rather to the sloping surface of the distally-steepened ramp, previous 

workers had interpreted Happy Spraberry reservoir rocks as re-sedimented debrites and 

grainflow deposits. This study, following Hammel (1996) identified biogenic structures 

in growth position and crossbedded grainstones in normal attitude suggesting that the 

Happy Spraberry reservoir depositional succession is in its original orientation. 
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METHODS 

Happy Spraberry Field has been of special interest at Texas A&M University 

because an exceptional amount of data has been available for study. Several theses have 

already been completed on this field (see for example Hammel 1996 or Laymann, 2002), 

but none have answered fundamental questions about the influence of diagenesis on 

reservoir quality.  

Previous work 

Hammel (1996) developed a reservoir-quality classification based on combined 

values of porosity and permeability from whole core analyses. He compared his quality 

ranked intervals with petrographic descriptions of thin sections in order to find a 

relationship between petrographic characteristics and reservoir quality. Finally, he 

generated “slice maps” (maps of successive 10-foot intervals) of the reservoir to portray 

three-dimensional relationships between depositional facies and poroperm-based 

reservoir quality. Although the stratigraphic setting, depositional environment, and 

general architecture of the reservoir body are known (Hammel 1996, Ahr and Hammel 

1999), controls on variations in reservoir quality within the field remained poorly 

understood, at least in part because previous petrographic studies did not focus enough 

on diagenetic alteration of depositional attributes. 

Available data 

Fourteen of the fifteen wells drilled in the John F. Lott lease were cored and in 

most cases, whole core analyses were done on these cores. Five of the cores were 

carefully examined by Hammel (1996) and sampled to obtain 125 thin sections for 

petrographic study. The thin sections were stained with Alizarin Red S to detect 

dolomite. Only thin sections from the principal reservoir facies were examined for this 
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study. After initial study, the wells for this study were chosen depending on the 

following criteria: (1) wells that penetrated mainly carbonates, (2) wells that were cored 

in the carbonate intervals, (3) cores that underwent laboratory measurements and (4) 

cores from which thin sections had already been cut. This resulted in the selection of the 

three wells summarized in Table 1. 

 
 
 

Table 1. Data available in the studied wells. 

Cored depth Whole core analysis
Well 

from [ft] to [ft] from [ft] to [ft] 
Thin 

sections 
4910 4951 4910 4950 ft 19-4 
4956 5016 4956 4963 

21 

4963 4999 19-7 4963 5053 5011 5013 21 

4916 4928 4916 4928 
19-8 

4976 5036 4976 4998 
15 

 
 
 

The reservoir facies are represented in all of the selected wells. Borehole logs 

were available for each of the wells. In the laboratory, whole core samples were 

measured for (1) maximum horizontal permeability and horizontal permeability at 90° 

from the previous direction, (2) vertical permeability, (3) density, (4) porosity, (5) water 

saturation and (6) oil saturation. Cores were slabbed and half of each core was kept for 

description and further sampling. The other half was cut in pieces about one foot in 

length. Whole core analyses were performed on these slabs rather than on standard 1-

inch plugs; therefore the values in the core analyses represent average values on one foot 

intervals. Fluid losses from handling the cores and from environmental differences 

between surface and reservoir conditions are important. For example, total saturation 

values from the core analyses ranged from 40 to 80%, far less than the expected 100%. 
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Nature of this study 

Interpreting diagenetic influence on reservoir quality depends on petrologic and 

petrographic observations. Although petrographic descriptions of Happy Spraberry Field 

thin sections are reported in Hammel (1996), detailed interpretations of diagenetic 

variations have not been closely related to variations in reservoir quality. This study 

focuses on those relationships. Cores were described and compared with existing 

descriptions to ensure consistency. Thin sections were examined in detail under the 

petrographic microscope to identify depositional and diagenetic characteristics. 

Ultimately the petrographic characteristics of good, intermediate, and poor reservoir 

zones were identified to generate a geological model that explains the origin and degree 

of connectivity of reservoir zone types. 

Depositional and diagenetic textures, mineralogical composition, and fabrics 

were distinguished and classified separately for each thin section. Subsequently, 

formative process such as ordinary detrital or biogenic deposition, diagenetic 

cementation, replacement, recrystallization, compaction, and dissolution were identified 

in order to establish relationships between current and original rock properties for each 

reservoir quality category. Care was taken to track relationships between types of 

diagenetic events and the relative timing of each event during burial history. 

Although Hammel (1996) attempted to build a porosity-permeability model for 

the Happy Spraberry Field reservoir, the results of his work did not clearly identify 

cause-effect relationships between diagenesis and pore characteristics. This study 

focuses on how porosity relates with permeability in the reservoir in order to identify 

patterns of pore types and diagenetic processes/events. 
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LITHOFACIES AND DEPOSITIONAL ENVIRONMENT 

Lithofacies were identified by describing rock composition, texture and 

sedimentary structures in cores and thin sections. Most of this work had already been 

done by Hammel (1996); therefore, the main task to be done in this study was to 

evaluate Hammel’s work and confirm his identifications and descriptions before doing 

more specific evaluations of the effect of diagenesis on reservoir quality.  

Lithofacies 

Six main lithofacies were identified. They are described in the following 

paragraphs. Complete description of the cores is available in Hammel (1996). 

Oolitic skeletal packstones and grainstones 

Oolitic-skeletal packstones and grainstones are the main reservoir rock at Happy 

Spraberry Field (figure 6). They are present in all producing wells and range from 15 to 

70 feet thick. In cores, they typically are pale to light gray but darker brown where oil 

stained. Most of the ooids and skeletal fragments are partly or completely dissolved and 

as a result, moldic porosity is important. This lithofacies, particularly in the grainstones, 

underwent the greatest dissolution of all lithofacies in this reservoir. The average grain 

size in oolitic grainstones is 0.3 mm and is slightly less in packstones. The other grains 

consist of skeletal fragments of crinoids, bryozoans, brachiopods, mollusks, ostracods 

and foraminifera. Ooids comprise more than 75% of all grains in the grainstones and are 

the dominant constituent of packstones as well. In packstones, ooids are spherical and 

well rounded; consequently they readily reveal any deformation and fractures. Faint 

crossbeding is rarely visible. 

Lime mud is absent in grainstones but is found as a matrix comprising 5% of the 

packstones. This matrix consists of both siliciclastic silt and lime mud. 
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Alternations of oolitic grainstone and packstone beds are present on the upper 

part of the limestone sequence. Theses beds lie on the top of the paleostructure and are 

flanked by rudstones and siltstones. Oolitic packstones can be found interfingering with 

the rudstones. In this case, if the ooid content is less than 50%, the facies are considered 

as rudstones. Oolitic grainstones and oolitic packstones were to be deposited in a 

moderately agitated, shallow marine, tropical environment. Ooids are absent in modern 

temperate environments and are generally interpreted to be indicators of tropical climate 

in ancient settings as well. 

 
 
 
 

 
 
 
 

Figure 6. Core photo of oolitic grainstone at 4933 feet, well Lott 19-4. Note well 
developed skeletal-moldic porosity. 

1 cm
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An uncommon feature not described in previous studies on Happy Spraberry 

Field, is that ooids are bi-mineralic. Most modern marine ooids are composed of 

aragonite and have a tangential fabric. High-Mg calcite ooids have not been observed to 

form in modern seas. Mixed calcitic-aragonitic ooids are presently forming in the hyper-

hypo saline Baffin Bay, Texas and are common in the rock record. They show radial 

cortical layers of high-Mg calcite and tangential and micritic coatings of aragonite (Land 

et al., 1979). Although the factors that influence ooid mineralogy in Baffin Bay are 

unknown, Tucker (1984) suggests that these bi-mineralic ooids reflected geochemical 

changes within this partially isolated bay. Precipitation conditions would change 

dramatically as a result of storms or rapid continental run-off. Chow and James (1987) 

examined bi-mineralic ooids from the Middle and Upper Cambrian platform carbonates 

in western Newfoundland, Canada. They suspect more widespread organic and chemical 

control. Heydari et al. (1993) observed two-phase ooids in the Pitkin Formation, North-

Central Kansas. They suggested that bi-mineralic ooids were precipitated at the 

transition between two paleoenvironments, one precipitating aragonitic ooids and the 

other one precipitating calcitic ooids. Pratt (2001) suspects cyclic variations in the 

maximum depth range of the aragonite compensation depth in warm water based on his 

study of the Helena Formation, western North America. 

Most of the ooids in the Happy Spraberry Field are partially or completely 

dissolved. Some ooids show selective dissolution that left only a ring-shaped structure as 

a partial grain mold (figure 7). High-Mg calcite segments of the ooids appear to be 

removed by dissolution, whereas the aragonite that stabilized to calcite prior to 

dissolution remains. This selective dissolution is interpreted as evidence that the ooids 

are bi-mineralic. The rare occurrence of two ring-shape concentric structures in the same 

mold suggests that environments favorable to dissolution, stabilization, and precipitation 

were cyclical.  

Better reservoir rock properties are found in the oolitic packstones, which exhibit 

higher porosity and permeability than the oolitic grainstones. This may seem to counter-

intuitive and will be discussed below. 
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Figure 7. Ring shaped structures left by selective dissolution within ooids. A) Single ring 
shaped structure from a sample at 4919.3 feet, well Lott 19-4. B) Double ring shaped 
structure from a sample at 4957.5 feet, well Lott 19-4. 

A 
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Floatstones and Rudstones 

Hammel’s subsurface correlations indicate that floatstones and rudstones are 

time-equivalent to the oolites (figure 8). Rudstones have grains that range in size up to 

10 cm and are mainly clast-supported rocks. Floatstones have much more lime-mud 

matrix and smaller clasts (maximum 5cm). Clasts consist in oolitic facies and skeletal 

fragment. Skeletal fragments are larger and better preserved in the rudstones, probably 

because they underwent less transport. Rudstones are adjacent to the oolitic grainstones; 

floatstones are farther away. Shale laminations of about 1 mm thick are occasionally 

observed in rudstones. Oolites may be interbedded with rudstones, but the proportion of 

ooids is always less than 50% of total grain content. Siliciclastics may be common in the 

rudstones and floatstones. Pores in the rudstones are usually large vugs that, depending 

on connectivity in the vuggy pores, can be medium-quality reservoir rocks. Floatstones 

are so muddy that they exhibit very little porosity. Instead, they make good seals. Both 

floatstones and rudstones are stylolitized, although no study has been done to assess the 

influence of stylolites on reservoir connectivity at Happy Spraberry Field. 

Bindstones 

The bindstone facies were first observed by Hammel (1996) in wells 19-4 and 

19-7, adjacent to floatstone and rudstone facies. Organisms are found grouped together 

in growth position forming bindstones rich in bryozoans, mollusks, crinoids and 

Tubyphytes. Nowhere in the cores available could these bindstones be found as clasts; 

they are interpreted as reef material or in situ biogenic buildup (figure 9). Tubiphyte is an 

encrusting alga that commonly develops in association with Archeolithoporella and 

builds skeletal biotic communities during the Permian (Sano et al., 1990). It is 

commonly observed in several places in the world among which southern Alps, southern 

Tunisia, central Texas, west Texas and New Mexico. 
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Figure 8. Core photo of rudstones and floatstones. A) Rudstone at 4963 feet, well Lott 
19-4. B) Floatstone at 4981 feet, well Lott 19-4. 
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Figure 9. Core photo of Tubiphytes bindstones. Core sample is from 4971 feet, well Lott 
19-4. The bindstone, or reefy material is located in the right portion of the photo adjacent 
to floatstone clasts. 
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Siliciclastics 

Siliciclastics are either shaly siltstones or very fine-grain sandstones (figure 10). 

They are light gray to medium brown in color. Quartz silt is, by far, the main element of 

these rock types. The same skeletal fragments observed in the other facies are present 

here but in smaller proportions. The rest of the matrix consists of clays and lime mud. 

Laminations with shales, ripples and soft sediment deformation were observed. 

 
 
 
 
 

 
 
 
 

Figure 10. Core photo of siliciclastics. Core sample is from 4975 feet, well Lott 19-4. 
Note wavy ripples (black) near center of photo. 
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These facies are non-reservoir facies because the abundance of matrix and to an 

extent, carbonate cementation has prevented the development of permeability. High 

shale-content or extensively cemented silts are a seal for the field. 

Depositional environment 

Depositional environments were identified from core description and thin-section 

petrography. A depositional model was derived using previous work done by Hammel 

(1996). 

Siltstones, fine-grain sandstones and shales are found at the stratigraphic base of 

the field. These inferred slope sediments provided the paleotopography for the later 

deposition of shallow-water carbonate buildups and grainstone shoals. Fine grain size, 

high clay content and planar bedding suggest that these siliciclastics were deposited in a 

low energy environment and at water depths greater than 50 meters. 

Bindstones developed on paleotopographic highs to localized skeletal banks that 

mainly grew by aggradation. These framework building organisms required a tropical, 

shallow water environment with warm water within the euphotic zone. Adjacent to 

topographic highs are rudstones and floatstones formed from eroded material from the 

buildups by waves, storms and normal breakdown. 

Packstones and grainstones are located on top of the buildups where they 

interfinger with the skeletal bank deposits. The presence of well sorted coated grains and 

skeletal fragments suggests agitated shallow water within fair-weather wave base. 

Field geometry and well location 

Field geometry is difficult to establish without seismic data. The field is consists 

roughly of two pods, one in the South and one in the North (figure 11). These two pods 

rely on local tops of the paleotopography of the late Pennsylvanian siliciclastics. On 

these tops, reef bindstones developed surrounded and overlain by rudstones. The 
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floatstones are found further away. On top and interfingering with the rudstones, are the 

oolitic-skeletal packstones overlain by the oolitic grainstones.  

In the south part of the field, well Lott 19-7 carbonates are mainly bindstones (30 

feet) and rudstones (30 feet) that interfinger with some packstones (10 feet). In the 

northern part of the field, wells Lott 19-4 and Lott 19-8 are located on a pod composed 

of a thin bindstone layer overlain by rudstones and thick oolites made of both oolitic-

skeletal packstones and oolitic grainstones. Well Lott 19-4 shows fewer rudstones but a 

thick and large shoal mound in which intervals of purely oolitic grainstones with no mud 

can be found among packstones. On the edge of this pod, well Lott 19-8 shows more 

mixed facies. It exhibits rudstones with high ooid content and oolitic packstones that are 

mixed with many skeletal fragments. The continuity of the shoal mound from well 19-4 

to well 19-8 is certain. Laymann (2002) suggests continuity between the northern mound 

and the southern one, but there is no conclusive evidence of this. 

Laboratory measurements were only performed in producing intervals. In well 

Lott 19-7, porosity and permeability values are available in the bindstone, rudstone and 

oolitic packstone facies. Rudstones and oolitic packstones undergone measurements in 

well Lott 19-8. In well Lott 19-4, the producing interval is composed of oolitic 

grainstones with some oolitic packstones and very few rudstones. 

 



 

 

24

 
 
 
 

 
 
 
 

Figure 11. Structure map on top of the Happy Field carbonates. 
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DIAGENESIS 

Interpretation of diagenetic changes and sequences of diagenetic events is based 

on thin section petrographic study. Diagenetic features were described and located and 

timing of diagenetic events in chronostratigraphic sequence was done by studying cross-

cutting relationship between different diagenetic features. 

Description of the diagenetic features 

The diagenetic history of the Happy Spraberry Field is complex and occurred in 

different environments. The processes described below happened approximately in 

chronological order. Only one paragraph is dedicated to dissolution but it occurred in 

several phases. Almost all grains and cements exhibit dissolution features. 

Shallow marine diagenesis 

Micritic envelopes 

In the oolitic grainstones and packstones, some of the ooids and skeletal 

fragments show a micritic envelope (figure 12), a thin and black coating around the 

grains. In some cases the grain has been dissolved and the micritic envelope is still 

visible. It is not present on all grains and its recognition can be difficult where there is 

isopachous cement. The micritic envelope is also observed around skeletal fragments in 

rudstones and floatstones. 

Skeletal debris and ooids lying on the sea floor are attacked by boring organisms 

such as algae, cyanobacteria and fungi. When left by the organism, these small bores 

(few microns to tens of microns) are filled with micritic cement and eventually form an 

envelope (Tucker and Wright, 1990). 
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Figure 12. Thin section photograph showing isopachous circumgranular calcite cement 
colored by Alizarin Red S stain. Stained calcite is surrounded by poikilotopic anhydrite. 
Note the relict micrite rims just beneath the rim cement (arrows). Photo is from a sample 
at 4930.1 feet, well Lott 19-4. 
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Isopachous cement 

Circumgranular isopachous calcite cement with bladed rind is always found in 

the oolitic grainstones either directly on the ooid or on its micritic envelope (figure 12). 

This cement often shows dissolution either on the grain side or on the outer side. This 

isopachous cement is less common in oolitic packstones and is rare in rudstone facies, 

and if present, dissolution was significant. Rudstone and bindstone facies form in low 

energy environments where wave energy is not sufficient to make water pass through the 

sediment and precipitate its dissolved elements. Oolitic grainstone form in environments 

higher in energy and there is more cementation through seawater pumping (Tucker and 

Wright, 1990). 

Other early processes 

In the shallow marine environment, two of the very first diagenetic events are (1) 

the stabilization of skeletal fragments from aragonite or high-Mg calcite to low-Mg 

calcite and (2) the recrystallization of lime mud to neomorphic microspar (Tucker and 

Wright, 1990). 

Shallow burial diagenesis 

Calcite cement I 

In oolitic grainstones, drusy calcite cement precipitated directly on the 

isopachous cement (figure 13). This cement either completely filled intergranular 

porosity or left some remnant porosity. In case of moldic-enhanced porosity, it can show 

some dissolution on the ooid side. This cement is also common in packstones and is 

rarely seen in rudstones. Spatial variability of this cement in the oolitic grainstones is 

strong and important. In some samples it extensively filled the depositional pore system; 

in others it is rarely observed. 
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Figure 13. Circumgranular isopachous cement and calcite cement I broken by 
compaction, from a sample at 4919.3 feet, well Lott 19-4. Drusy calcite cement I is well 
seen in intergranular porosity. 
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Dissolution 

Dissolution produced most of the effective porosity. Moldic porosity is usually 

more pronounced than intergranular porosity. It occurred in several phases and all facies 

and cements were affected. Most of the ooids in oolitic grainstones and packstones were 

affected by an early and selective dissolution phase. This dissolution can be incomplete, 

complete or enhanced. Ooid dissolution phase was the most intense of all but even 

though, its effects throughout the oolitic grainstones are variable. In the oolitic 

packstones, ooids are less affected than in the oolitic grainstones and some muddy 

samples were well protected. 

Ooids are partly or completely dissolved in the other facies. Dissolution of 

skeletal fragments produced less systematic vuggy porosity. 

Compaction 

The effect of compaction on oolitic grainstones and packstones is variable. In 

oolitic grainstones compaction affected molds generated during the previous dissolution 

phase. It can break isopachous cement and calcite cement I connecting adjacent molds. 

Where calcite cement I is absent or sparse, compaction distorted mold structure 

connecting adjacent molds. Where dissolution of the ooids was less intense or where 

calcite cement I more completely filled intergranular pore space, well rounded ooid 

molds are preserved (figure 14). In oolitic packstones, effect of compaction is less 

obvious and most oolitic molds are well rounded. 

In rudstones, effects of compaction are much less evident because the original 

structure is not easy to recognize. Many skeletal fragments are undeformed. On cores, 

some stylolites are observed. 
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Figure 14. Effect of compaction from a sample at 4926.9 feet, well Lott 19-4. In the 
middle of the photograph, connectivity between molds has been enhanced by 
compaction where cements were less widespread. 
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Deep burial diagenesis 

Calcite cement II 

Another phase of calcite cement, calcite cement II, is coarser, blocky and clearly 

post-compaction (figure 15). In oolitic grainstones and packstones, this cement is 

common and can be found in the remnant extra-granular porosity or even ooid molds. In 

rudstones and bindstones, calcite cement II is observed in large vugs. Interfaces between 

calcite cement I and calcite cement II shows no dissolution features. Crystal size is 

typically in the order of 100 µm. 

Calcite cement III 

Calcite cement III represents a small volume in the overall rock. It is very coarse 

(crystals are commonly around 500 µm in size and even larger in some samples) and can 

completely fill vuggy porosity found in rudstones and bindstones (figure 16). It was 

rarely found in the oolitic grainstones and packstones. 

Anhydrite 

Anhydrite occurs as a poikilotopic cement that extensively fills the inter-granular 

porosity and some molds (figure 17) in the oolitic grainstones. Its repartition is variable 

and when present it is an important porosity reducer. Anhydrite has been affected by late 

stage dissolution. Where dissolution has been intense, molds filled with anhydrite can 

have parallel extinction even where no continuity of the anhydrite is observed in the 

plane of the thin section. Anhydrite is abundant in oolitic grainstones of well Lott 19-4, 

and is rarer in facies of wells Lott 19-7 and Lott 19-8. Anhydrite was clearly precipitated 

after the beginning of compaction but before complete fracturing of dissolved ooid 

pores. Origin of anhydrite is not known. Above Clear Fork Formation, the San Andres 

formation (Lower Guadalupian) shows dolomite plugged with anhydrite. The latter 

comes from the overlaying Yates Formation (Upper Guadalupian) which is a mix of  
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Figure 15. Calcite cement II from a sample at 4919.3 feet, well Lott 19-4. Arrow shows 
calcite cement II crystals filling remnant intergranular porosity. 



 

 

33

 
 
 
 
 
 
 
 

 
 
 
 

Figure 16. Calcite cement III from a sample at 4981.5 feet, well Lott 19-8. Calcite 
cement III extensively fills vuggy porosity in rudstones. 
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Figure 17. Anhydrite from a sample at 4933.1 feet, well Lott 19-4. Poikilotopic 
anhydrite fills extensive intergranular porosity and part of the moldic porosity. 
Anhydrite precipitation started after the beginning of mechanical compaction. 
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clastics and evaporites (Ward et al, 1986). These formations are possible sources of 

anhydrite for the Lower Clear Fork formation. 

Saddle dolomite 

Saddle dolomite can be identified by its undulose extinction, curved boundaries 

and a cloudy appearance (figure 18). All occurrences of saddle dolomite in this study 

showed signs of dissolution, mainly corroded crystal boundaries. The rhombs are among 

the biggest crystals (in the order of 500 µm); they usually fill cavities such as dissolved 

ooids or vugs. Saddle dolomite is found mainly in rudstones and bindstones and is less 

common in oolitic packstones where the skeletal-fragment content is high. Saddle 

dolomite was rarely observed where there is anhydrite cement. It usually represents no 

more than 5% of the thin section, except in well Lott 19-7 where it is abundant. 

Pyrite 

Few small clusters of pyrite were observed sporadically in the facies. 

Chalcedony 

Chalcedony replaces calcite shells and cements in all facies including sandstones 

(figure 19). It always shows a spherulitic arrangement. Chalcedony is unimportant in 

volume. 

Effect of diagenesis on porosity 

The succession (1) circumgranular isopachous cement, (2) calcite cement I, (3) 

dissolution of ooids, (4) compaction, (5) calcite cement II, is clearly identified in the 

oolitic grainstones and packstones by cross-cutting relationships. Precipitation of 

anhydrite, saddle dolomite and chalcedony happened after that, in unclear chronological 

order. Diagenetic events are summarized in figure 20. 

Diagenesis has been selective. Among all grains, ooids show the most intense 

dissolution. A large majority of them are dissolved in the oolitic-skeletal grainstones and  
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Figure 18. Saddle dolomite from a sample at 4960.6 feet, well Lott 19-4. The photograph 
is taken using the crossed Nicols. Saddle dolomite is clearly identified in the large 
skeletal mold by undulose extinction, cloudy appearance and curved crystal boundaries. 
It also shows dissolution. Gray crystal that shows a single extinction on the left of the 
mold is anhydrite. 
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Figure 19. Chalcedony replacement from a sample at 4982.2 feet, well Lott 19-8. A) 
Plain light photograph that shows chalcedony replacement in a skeletal fragment. B) 
Same view with the cross Nichols. Note that the chalcedony exhibits spherulitic 
microstructure. 
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packstones. Ooids are also well dissolved in rudstones. The skeletal fragments were also 

affected by dissolution, but not as much as the ooids. 

Diagenesis has been intense. Dissolution, especially of ooids, was important. 

Moldic porosity overprints depositional porosity in packstones and grainstones. 

Diagenesis has been variable. Grainstones underwent the most intense 

diagenesis. Packstones also were strongly affected, but not as much as grainstones. 

Rudstones and bindstones, because of their pour ooid content, underwent less 

dissolution. Diagenesis has also been variable within grainstones. In these facies, the 

relationship between (1) calcite cement I, (2) dissolution and (3) compaction controls 

reservoir quality in association with (4) anhydrite pore filling. Calcite cement I 

occurrence is variable with zones of extensive filling of intergranular porosity and zones 

of little cementation. Because of dissolution, compaction fractured the molds were 

calcite cement I was not extensive enough to hold the structure. This breakage reduced 

porosity and increased connectivity between the molds. Where calcite cement I is 

widespread, molds are still well-rounded and unfractured; they are not connected. After 

compaction and only in sparse samples, anhydrite filled the intergranular pores and some 

of the molds. In such cases, little porosity and no connectivity are left. In the packstones, 

neomorphozed mud prevented any breakage of the molds and connectivity is pour; some 

fracturing are observed, but never complete collapses of molds. 

In rudstones and bindstones, porosity was mainly intergranular (sometimes 

enhanced by dissolution) between clasts or vugs within the framework. Neomorphozed 

mud was present and dissolution has been less intense. All cements are found in various 

proportions. The ooids in rudstones can be completely dissolved, but they show little 

compaction because they were mechanically protected by the other grains. 

Thermosulfate reduction 

The origin of saddle dolomite in Happy Spraberry Field samples is not clear. 

Collins and Smith (1975) suggested that saddle dolomite formation coincided with the 
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submergence of previously exposed rocks to depths below normal sea level. Asserto and 

Folk (1980) suggested that saddle dolomite formed after invasion of freshwater into a 

hypersaline environment. Morrow et al. (1986) suggested that saddle dolomite formed 

during any of three episodes: (1) freshwater-seawater mixing, (2) thermal convection of 

brines that dissolved underlying evaporites, and (3) a regional groundwater flow system. 

According to Machel (1987) there is no conclusive evidence of a low-temperature, low-

salinity origin of saddle dolomite. 

Machel (2001) discussed bacterial and thermochemical sulfate reduction. 

Dissolved sulfates and hydrocarbons are thermodynamically unstable at temperatures 

below 200°C. Sulfate is reduced by hydrocarbons either bacterially (bacterial sulfate 

reduction) or thermally (thermal sulfate reduction). Both processes form H2S, coarse 

calcite cement and, if magnesium is available, saddle dolomite. The reaction rate is 

controlled by the dissolution rate of anhydrite. The effect on porosity is difficult to 

predict. Pore space increases where anhydrite is dissolved, but porosity decreases where 

calcite and saddle dolomite form. 

There is no decisive evidence that sulfate reduction occurred in the carbonates of 

the Happy Spraberry Field. If it did, because of the relatively shallow depth (1,500 

metes) and low temperature (110°F) only a bacterially controlled process could have 

happen (Machel, 2001). Calcite cement III could be the coarse calcite cement which is a 

by-product of sulfate reduction. The fact that saddle dolomite is mainly observed in 

rudstones and bindstones where many skeletal fragments could have been dissolved to 

bring magnesium (stylolites in rudstones and bindstones), is consistent with Machel’s 

theory. Such a phenomenon could explain the presence of pyrite clusters if Fe is 

available (Machel, 2001). Dissolved anhydrite and oil, which are the reactants, are 

present in the field. If bacterial sulfate reduction occurred, the reaction would have 

stopped on its own because the involved bacteria poison their own environment with 

H2S in a closed system. In volume, the importance of biodegradation on oil is unknown. 
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Eggshell diagenesis 

The early dissolution and subsequent compaction of the ooids in Happy 

Spraberry Field can be compared to “eggshell diagenesis” described by Wilkinson and 

Landing (1978) in the Jurassic Twin Creek Formation of northwestern Wyoming. They 

observed that the dissolution of the aragonitic nuclei happened early during diagenesis. 

After loading, the resulting hollow cortical sheaths exhibit distinct fracture shapes in 

bedding plane and in vertical plane. Aragonite was dissolved and calcitic coatings 

remained. Nuclei of calcite were not dissolved. Their study shows that micritization of 

ooid nuclei and cortical coatings by microendolithic organisms both preceded and 

accompanied ooid formation. Highly micritized ooids with aragonitic nuclei show no 

fracturing and little deformation due to compaction. This indicates the development of a 

rigid framework of microcrystalline calcite within and between endolith borings in 

aragonite grains. 

Ooid dissolution in Happy Spraberry Field rarely left an outer hollow sheath. The 

surrounding cements or mud hold the structure of the mold or are fractured by 

compaction. Diagenesis in Happy Spraberry Field can not be called “eggshell 

diagenesis”. The relationship between early micritization and rigidity described by 

Wilkinson and Landing could explain the preservation of thin ring-shaped structures in 

Happy Spraberry Field. On figure 7, the remnant cortical layers seem to be fragile. In 

many cases, the ring-shaped structure is broken within the mold, even if the mold itself 

is not fractured, but it is common to observe preserved structures. Early micritization 

could help holding these ring-shaped structures. 

Analog studies 

On the side of the Midland Basin that faces Happy Spraberry Field is the 

Southwest Andrews area that comprises Deep Rock, Parker and Andrews oilfields. 

Stueber et al. (1998) studied the brines origin and migration through their composition in 
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the series from Devonian to Wolfcampian (Early Permian). Dickson et al. (2001) 

discussed the diagenesis of carbonates in the Canyon (Missourian), Cisco (Virgilian) and 

Wolfcamp (Wolfcampian) formations (figure 21). His findings are discussed below. 

Description of the cements 

During Pennsylvanian and Early Permian time, the structural histories of the eastern and 

western sides of Midland Basin were very similar and facies in both areas consisted of 

shelf carbonates. In the Southwest Andrews area, the Canyon, Cisco and Wolfcamp 

formations have a thickness of about 250 meters and are composed of about 70 

sedimentary cycles that formed in response to glacio-eustatic fluctuations of sea level. 

The middle Wolfcamp Formation, which is the closest in age to the Lower Clear Fork 

Formation, consists of reef material (Dickson et al., 2001). The formations underwent a 

four stage cementation. These stages are not regarded as synchronous, but each sample 

passed through a similar succession of diagenetic environments: (1) stage 1 cements 

occurs in intergranular pores and is abundant in rocks that were relatively uncompacted. 

Where mechanical compaction is pronounced, stage 1 cements are fractured, (2) stage 2 

cement also formed pre-compaction, overlies stage 1 cement, and occurs in early moldic 

porosity, (3) stage 3 cement is post-compaction, and (4) stage 4 cement is a late cement 

that is distributed sporadically throughout the interval. Stage 1 and 2 cements are of 

marine or meteoric origin; stage 3 and 4 cements are precipitated at depth. Saddle 

dolomite that postdates stage 3 is present in all the formations. 

Even if the interval studied by Dickson et al. (2001) is older than the Lower 

Clear Fork Formation, and is at greater depth (about 3 kilometers), the description of the 

four-stage cementation is similar to the four calcite cements observed in the Happy 

Spraberry Field (circumgranular isopachous cement and calcite cements I, II and III). 

Isotopes studies performed on Southwest Andrews rocks and δ13C values in saddle 

dolomite are the same as the host limestone. This indicates that dissolving fluids 

exhibited little cross-formational flow before precipitation; saddle dolomite was  



 

 

43

 
 
 
 
 
 
 
 

 
 
 
 

Figure 21. Study of the Southwest Andrews area. A) Map view locating the Southwest 
Andrews area and the Happy Spraberry Field in the Permian Basin (modified after 
Stueber et al., 1998). B) Stratigraphy, lithology and hydrogeological units in the 
Southwest Andrews area. Stratigraphic units from which formation-water samples were 
produced are shaded (after Stueber et al., 1998). 
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Figure 21 (continued). 
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precipitated from formerly dissolved host materials. This is consistent with our 

observation that in the Happy Spraberry Field saddle dolomite is only present where the 

skeletal fragment content is high. 

Dickson et al. (2001) invoked brine reflux as the main mechanism for the 

precipitation of saddle dolomite. They mention sulfate reduction in the reef material of 

the Wolfcampian Formation as an alternative to explain presence of pyrite. 

Origin of brines and anhydrite 

Stueber et al. (1998) studied formation waters in five formations of Devonian, 

Pennsylvanian and Early Permian in the Southwest Andrews area. The San Andres-

Grayburg Formation (Lower Guadalupian) was deposited on top of the Clear Fork 

Formation. Its fluids exhibit moderate salinity (29-59 g/L). Fluids from the Wolfcampian 

Formation have much higher salinities ( 70-215 g/L) which is consistent with the salinity 

value in the Happy Spraberry Field ( 200 g/L from estimates from resistivity logs). 

Geochemical data demonstrate that brines in Pennsylvanian-Wolfcampian shelf 

limestones in the Southwest Andrews area have undergone halite precipitation, 

indicating that these highly saline brines have descended more than 1000 meters as a 

result of fluid density differences (figure 22). The brines moved around or through strata 

that latter acted as seals. Because the same depositional configuration occurred in the 

Happy Spraberry Field, similar dissolution-precipitation processes could have happened 

in order to explain the presence of both anhydrite and the high brine salinity. 

In the Southwest Andrews area, a much younger flow of low-salinity meteoric 

water from the Pecos River mixes with the high salinity brine (Stueber et al., 1998). This 

is shown by isotopic analyses on hydrogen and oxygen, and by a wide range of brine 

salinity. The formations are suspected to be highly compartmented because some parts 

are affected by the mix of brines and exhibit relatively low values of salinity, but other 

parts are not affected and exhibit high values of salinity. The homogeneous salinities 

measured in the wells of the Happy Spraberry Field do not indicate such a mixing. 
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Figure 22. Highly schematic west-east cross sections throughout the Delaware and 
Midland Basins. A) Cross section during Salado deposition (Late Permian) showing 
descent of halite saturated brine that entered Pennsylvanian and Wolfcampian shelf 
limestones on the Central Basin platform. (B) Cross section showing suggested 
migration of brines of meteoric origin that began 5–10 m.y. ago and has reached 
Permian–Devonian carbonate strata on the Central Basin platform. (Modified after 
Stueber et al., 1998). 
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Figure 22 (continued). 
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POROSITY, PERMEABILITY AND WATER SATURATION 

Porosity-permeability correlations 

Hammel (1996) defined flow units of homogeneous porosity and permeability 

pair values in the Happy Spraberry Field but did not find a correlation between porosity 

and permeability. Laymann (2002) failed to find a correlation when considering all 

measurements without any classification in well 19-4. 

Diagenesis was facies selective (dissolution) and its intensity varied between 

facies and within individual facies (especially in the oolitic grainstones). Thin section 

observation shows that depositional porosity in the oolitic grainstones was strongly 

modified during burial. Facies porosity and permeability are controlled not by 

depositional processes but by diagenesis, which shows a great variability. The same 

phenomena occurred in the oolitic packstones, which had lower compaction. A 

correlation between porosity and permeability may be easier to identify where diagenesis 

did not modify the pore system so much, as for example in the rudstones and bindstones. 

Rudstones, bindstones and oolitic packstones 

Cores from wells Lott 19-7 and Lott 19-8 exhibit thick intervals of rudstones and 

bindstones. The Lott 19-7 core consists mainly of mixed bindstones and rudstones with 

some oolitic packstones at the top. The core in Lott 19-8 is mainly rudstones interbedded 

with oolitic packstones. The ooid content in the rudstones is higher in Lott 19-8 than in 

Lott 19-7. As ooids are the most affected grains by diagenesis, a porosity-permeability 

correlation was experienced for the Lott 19-7 data first. 

Non reservoir (shaly) intervals were identified on cores, thin sections, and logs. 

Permeability was plotted against porosity (figure 23). In the rudstones and bindstones 

there is a clear trend on the semi-log plot and the coefficient of determination is good 

(R2 = 0.62). This type of correlation is well know and is expected in carbonates (Lucia, 
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1995). The oolitic packstones are on the same trend. The trend on the plot was computed 

using all reservoir facies. 

Facies in the Lott 19-8 well have more ooids than in the Lott 19-7 well, but the 

ooid content is never above 50%. Shaly intervals were excluded and all other 

measurements were plotted on a semi-log graph (figure 24). A trend is also clearly 

identified (R2 = 0.65) and it is very similar to the one in the Lott 19-7 well. Four 

measurements are clearly below the trend and are close to the shale group. A thin section 

cut from one of these samples is a more silty facies. 

Oolitic grainstones and packstones 

In the Lott 19-4 well laboratory measurements of porosity and permeability are 

available in oolitic grainstones/ packstones and rudstones. Plotting all measurements on 

the same graph shows that generally, permeability increases with porosity (Laymann, 

2001). But a trend computed from the rudstone, packstone and grainstone facies would 

have a very coefficient of determination (R2 = 0.06). Finer distinctions within facies 

have to be identified first. 

Figure 25 shows a semi-log plot of permeability against porosity in well Lott 19-

4. In the oolitic packstones and in the rudstones, the same trend (R2 = 0.66) as in wells 

Lott 19-7 and Lott 19-8 is observed. In the oolitic grainstones, no trend can be identified 

but most of the samples exhibit permeability in the 1-15 mD range. An attempt to find a 

trend in the diagenetically deeply modified facies was done, but thin sections were not 

numerous enough to be conclusive on the existence of such a correlation. 

Several thin sections in samples of oolitic grainstones were available, five of 

them in the 1-3 mD range. Two had high porosity (over 25%) and three had low porosity 

(below 20%). The high-porosity low-permeability samples are well cemented. Calcite 

cement is widespread in intergranular porosity, and compaction had little effect on 

porosity but molds are little connected and permeability is low. On the contrary, the low-

porosity low-permeability samples contain well-connected fractured molds plugged by  
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Figure 23. Well 19-7. Porosity-permeability semi-log cross plot. The trend is derived 
from the rudstone, bindstone and oolitic packstone facies. Samples where thin sections 
were cut are outlined in white. 
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Figure 24. Well 19-8. Porosity-permeability semi-log cross plot. The trend is derived 
from the rudstone, bindstone and oolitic packstone facies. Samples where thin sections 
were cut are outlined in white. 
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Figure 25. Well 19-4. Porosity-permeability semi-log cross plot. The trend is derived 
from the rudstone and oolitic packstone facies. Samples where thin sections were cut are 
outlined in white. 
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anhydrite Some of the facies interpreted as oolitic grainstones on cores are still on the 

trend defined from the other facies. 

Discussion 

In rudstones, bindstones and oolitic packstones (well Lott 19-7), a fair correlation 

exists between porosity and permeability. If the ooid content is increased in the 

rudstones (well Lott 19-8), porosity and permeability are still on the same trend. But in 

oolitic grainstones no trend was identified. Values of porosity and permeability in the 

oolitic grainstones are smaller that in the oolitic packstones that are the best reservoir 

rocks. 

All the different facies at Happy Spraberry Field underwent the same sequences 

of diagenetic events, but the intensity of the phases was not the same in all reservoir 

zones. Grainstones and packstones were more affected by selective dissolution. In the 

grainstones, variability of calcite cement I precipitation induced a variability in 

compaction effects. The amount of anhydrite pore filling varies greatly in grainstones; 

therefore, diagenesis has been so intense and variable in the grainstones that depositional 

porosity is completely overprinted and no trend was identified on the porosity-

permeability plot. In the other facies, where diagenesis was less intense and less 

variable, the correlation between porosity and permeability is still reliable. Because 

diagenetic boundaries follow facies boundaries, a lithofacies map can serve as a proxy 

for a depositional porosity map. 

Even if original depositional porosity must have been greater in the oolitic 

grainstones, the complexity of diagenesis reduced their reservoir quality. In the oolitic 

packstones, neomorphozed mud protected moldic porosity from important collapses and 

anhydrite plugging. 

In the rudstones, bindstones and oolitic packstones, the correlation show in figure 

26 should be used for well-log analysis and permeability prediction. Permeability in the 

oolitic grainstones can not be derived from porosity. 
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Figure 26. Porosity-permeability semi-log cross plot that groups all rudstone, bindstone 
and oolitic packstone facies of wells Lott 19-4, Lott 19-7 and Lott 19-8. 
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Previous studies by Hammel (1996) and Layman (2002) did not emphasize 

diagenesis and treated it as if all diagenetic alterations had a uniform effect on reservoir 

characteristics at Happy Spraberry Field. Their work did not focus on thin section study 

of diagenetic characteristics or the sequence of diagenetic events and how these 

characteristics influenced reservoir quality. For example, according to Layman (2002) 

“at Happy Field […] a close correlation of porosity and permeability is non-existent”. 

The present study clearly shows that diagenesis has arguably had the most significant 

geological impact on reservoir quality at Happy Spraberry Field. Because diagenesis is 

also facies-selective, it is comparatively easy to identify boundaries of diagenetic 

influence because those influences follow depositional facies boundaries. 

Saturation exponent and fluids saturation 

Citing industry sources, Hammel (1996) notes that the original oil in place at 

Happy Spraberry Field is 17.2 MMBO. The present study utilized wireline logs for 

stratigraphic correlation but no attempts were made to calculate Sw to compute OOIP for 

comparison with Hammel’s figures. However, saturation calculations were at first 

attempted to determine whether calculated Sw values could be used in making such 

comparisons. Sw calculations are based on the Archie equation: 

t

w
m

n
w R

RaS ⋅
Φ

=  

Where Sw is the initial water saturation, n is the saturation exponent, a is the 

tortuosity factor, Φ is the porosity, Rw is the formation water resistivity and Rt is the true 

formation resistivity. 
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Tortuosity and cementation factors 

The tortuosity factor varies around 1 and does not have a strong influence on 

water saturation (Ahr, course notes). The commonly used value of 1 was then accepted 

in this study. 

The cementation exponent has greater impact in Archie’s formula because it is 

the exponent of the porosity. Moreover it varies over range of 1 to 5. Figure 27 from 

Focke and Munn (1987) was used to determine this parameter. Oolitic grainstones have 

an average porosity in the 20-25% range and most of it is well connected. Oolitic 

skeletal packstones exhibit lower porosities (15-20%) but are less connected (maximum 

30% of porosity is not connected). Porosity in the rudstones and bindstones is wide in 

range but always well connected. An average cementation exponent was estimated to be 

2, which is a classic value. Moreover, the variations in pore type in the oolitic 

grainstones are shorter-scale than the resolution of the logging tool. What is recorded is 

more an average medium connected moldic porosity. 

Water resistivity 

Wells Lott 19-4 and Lott 19-8 were drilled using a fresh water mud and 

resistivities were measured using a dual induction tool (medium and deep) and a 

laterolog (short guard). In case of a high resistivity mud, it is better to compute an 

“apparent formation water resistivity” (Rwa) in a water bearing zone than to use the SP 

signal to derive it. The Lott 19-7 well was drilled with a salt gel and log using a dual 

laterolog-MSFL tool. For consistency, the same method was used in well Lott 19-7 to 

compute the formation water resistivity. The laterolog short guard was corrected for 

borehole effect and the MSFL for the mudcake effect. 

Results are summarized in Table 2 and give consistent values in the three wells 

which correspond to a salinity of about 170,000-200,000 ppm or 190-230 g/L. 
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Figure 27. Effect of separate vug porosity on Archie “m”, or cementation exponent (after 
Focke and Munn, 1987). 

 
 
 
 

Table 2. Apparent water resistivity computed in wells Lott 19-4, Lott 19-7 and Lott 19-8. 

Well Depth Rwa 
  [ft] ohm·m 

Lott 19-4 5052 0.03 
Lott 19-7 5055 0.038 
Lott 19-8 5055 0.034 

 
 
 

Saturation exponent 

In the producing interval, porosity values used in Archie’s formula were from 

laboratory measurements; if such a measurement did not exist, porosity was derived 

from the spectral density and neutron logs. This study considered that the deep induction 

or the deep laterolog gave good estimates of the true formation resistivity. 
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The choice of the saturation exponent is critical because of its importance in 

Archie’s formula. A commonly accepted range is 1.2-3.0 (Ahr, course notes) but much 

higher values are reported such as 25 in strongly oil-wet reservoir rocks (Hamada et al., 

2001). It is suspected that the saturation exponent decreases when water saturation 

decreases. This saturation exponent can be derived if the water saturation is measured in 

a core of the oil bearing zone. When it is not known, usually a value of 2 is used. 

As previously noted, none of the fluid saturations measured in the cores of 

Happy Spraberry Field were considered to be realistic representations. Because the 

saturation exponent could not be derived a value of 2 could have been used but the 

porosity-permeability model shows us that the oolitic grainstones have different 

petrophysical characteristics than the other facies. It is probable that they also had 

different saturation exponents. 

Rather than computing initial water saturation, a range for the saturation 

exponent was derived using a probable initial water saturation of 10-15% in all facies. 

This was done in the three wells at different depths which were chosen in clear rudstones 

or bindstones without ooids, in oolitic grainstones and in oolitic packstones. Results are 

show in table 3. 

First almost all values are within the usually accepted range of 1.2-3. Some 

values are slightly lower in the rudstones and bindstones, but initial water saturation 

might be higher than 10% there. Second, the facies in the Happy Spraberry Field seem to 

exhibit different saturation exponent values following the same classification as for the 

porosity-permeability model. Bindstones/rudstones/oolitic packstones have a probable 

saturation exponent between 1.2 and 2. Oolitic grainstones have higher exponents 

between 2 and 3. 

These computations do not give the value of the saturation exponent, neither the 

value of the initial water saturation. They only show that regarding n and Sw, two 

different behaviors exist depending on the facies (oolitic grainstones or oolitic 

packstones/ rudstones/bindstones). 
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CONCLUSIONS 

1. Happy Spraberry Field produces from shallow-shelf oolitic grainstones/packstones 

and rudstones/bindstones of the Lower Clear Fork Formation trapped by siltstones 

and shales. The depositional environment was a shallow-marine distally-steepened 

ramp under tropical conditions. 

2. Diagenesis includes four stages of calcite cementation, several occurrences of 

dissolution, mechanical compaction, anhydrite and saddle dolomite precipitation and 

chalcedony replacement. Bacterial sulfate reduction of the oil is suspected. 

3. Diagenesis has been selective (dissolution of the ooid grains), intense (moldic 

porosity) and variable. Grainstones are the most affected facies where depositional 

porosity is overprinted by diagenesis. 

4. A porosity-permeability correlation was derived with a good coefficient of 

determination (R2 = 0.62) on semi-log plot in the rudstone, bindstone and oolitic 

packstone facies. No trend was observed in the oolitic grainstones. 

5. The impact of diagenesis on depositional porosity can be variable. Previous workers 

on Happy Spraberry Field (Hammel, 1996; Layman, 2002) considered that the 

overprint of diagenesis on reservoir rocks was too strong to find a fair correlation 

between porosity and permeability. This study shows that a closer look on diagenetic 

processes and variability allows identifying reservoir zones where a correlation is still 

available. 

6. Oolitic grainstones may have different saturation exponent than the other facies. 
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APPENDIX 

Three spreadsheets will be found in this annex. They show the repartition of the 

diagenetic features in the thin sections. Occurrences were not accurately counted but 

visually estimated. The following abbreviations are used:T = traces, R = rare, C = 

common, A = abundant, OGST = oolitic grainstone, OPST = oolitic grainstone, RDST = 

rudstone, BDST = bindstone, FLST = floatstone, ShSST = shaly sandstone, SiST = 

Siltstone. 



 

 

66

 



 

 

67

 



 

 

68

 



 

 

69

VITA 

Name: 

 Vincent Philippe Guillaume MAZINGUE-DESAILLY 

Permanent Address: 

 32 rue Clemenceau 

 76 130 Mont Saint Aignan, FRANCE 

Education: 

 Ingénieur des Mines, 2002 

 Ecole Nationale Supérieure des Mines de Paris 

 Paris, FRANCE 

 M.S., Geology, 2004 

 Texas A&M University 

 College Station, Texas 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


