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ABSTRACT 

 

Seasonal and Interannual Differences in Surface Chlorophyll and Integrated Water 

Column Chlorophyll Stocks in the Northeastern Gulf of Mexico. (August 2004) 

William W. Fletcher, B.A., Kenyon College 

Co-Chairs of Advisory Committee:  Dr.  Douglas Biggs 
                                             Dr. Norman Guinasso Jr. 

 

 During the Northeastern Gulf of Mexico Chemical and Hydrography study 

(NEGOM-COH), nine oceanographic cruises were fielded during the spring, summer 

and fall seasons from November 1997 to August 2000.  Surface chlorophyll-α 

fluorescence, salinity, and temperature data were logged once a minute from the R/V 

Gyre and subsurface chlorophyll-α fluorescence, salinity, temperature, and nutrients 

were profiled when the ship stopped to make stations.  Each cruise occupied 94-98 

stations, partitioned among 11 cross-margin transects of water depths between 10 m to 

1000 m. 

Overall chlorophyll-α abundance within the study area is forced by the amount of 

freshwater discharge.  Seasonal and interannual differences are largely determined by 

the monthly mean streamflow for the major rivers within the NEGOM area, particularly 

the Mississippi River.  However, an important forcing function for transport of river 

water to the outer continental shelf and slope is the periodic presence of anticyclonic 

slope eddies.  Especially when these slope eddies were centered south and east of the 

Mississippi River delta, they entrained and so redistributed low salinity green water to a 

wider area within the NEGOM region than could be predicted by mean monthly 

streamflow alone.  The mean surface chlorophyll-α concentrations, and in particular the 

distribution of relatively high surface chlorophyll-α concentrations off-shelf, were 

strongly dependent upon entrainment of freshwater by these slope eddies, especially 

during the three summer cruises.  Interannual variability in the summertime entrainment 

of low salinity green water was driven by summer-to-summer differences in sea surface 

height (SSH) of the slope eddy(s), and in how far they extended on margin. 

 



 iv

Satellite observations of ocean color showed that freshwater entrainment by 

anticyclonic eddies persisted for a temporal scale of several weeks each summer.  

Satellite-derived surface chlorophyll-α concentrations were positively correlated with in 

situ measurements of surface chlorophyll-α, with greatest agreement between satellite 

and ship measurements of surface chlorophyll-α at concentrations <1.5 mg/m3.  Because 

subsurface chlorophyll-α concentrations were often elevated at depths greater than the 

first optical depth, satellite measurements of chlorophyll-α concentration generally 

underestimated integrated chlorophyll-α standing stocks within the euphotic zone. 
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CHAPTER I 

GENERAL INTRODUCTION  

 

 Hydrographic data analyzed for this MS thesis were collected during the 

Northeastern Gulf of Mexico Physical Oceanography Program (NEGOM): Chemical 

Oceanography and Hydrography Study (NEGOM-COH).  This program was funded 

through the Minerals Management Service (MMS) of the U.S. Department of the 

Interior as research contract 1435-01-97-CT-30851 to Dr. W.D. Nowlin and co-

investigators from the Department of Oceanography at Texas A&M University 

(TAMU). 

The NEGOM-COH project design was to make a series of oceanographic cruises 

that would be able to characterize chemical oceanography and hydrographic parameters 

with fine scale spatial resolution, and with temporal resolution sufficient to observe 

seasonal variations in these parameters.  While the primary emphasis of the NEGOM-

COH program was on chemical oceanography and hydrography, additional 

measurements of opportunity taken during each of the 9 cruises allow the fine scale 

analyses of chlorophyll-α (chl-α) standing stocks in x, y, z space, within the study 

region.  Analyses of these chl-α standing stocks are the basis for this thesis, using ship 

measurements of chl-α fluorescence collected during the NEGOM program which have 

been supplemented with measurements from satellites in earth orbit. 

The NEGOM fieldwork consisted of nine oceanographic cruises aboard R/V 

Gyre from November 1997 to August 2000.  Cruises were fielded every 3-6 months, so 

that one fall/winter cruise, one spring cruise and one summer cruise were done in each of 

the study years.  Each cruise took measurements at 94-98 stations spaced along 11 cross-

shelf transects from the Mississippi River outflow to Tampa Bay.  Figure 1 shows the 

location of CTD stations for the NEGOM cruise tracks.  Each of these transects begins 

in a water depth of 10 meters and continues to the 1000 meter isobath.  Vertical profiles  

                                                 
  This thesis follows the style and format of the Journal of Geophysical Research. 
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were taken with a CTD rosette multi-sampler outfitted with a Chelsea Designs 

Aquatrakka submersible fluorometer, from just below surface to the ocean bottom. 

The NEGOM project involved a wide variety of data collection techniques.  

Comprehensive descriptions of all NEGOM-COH data parameters and techniques can be 

found in Jochens et al. [2002].  The primary field measurements used for this thesis are 

vertical salinity profiles, surface chl-α extractions, vertical fluorometry profiles, and 

vertical photosynthetically available radiance (PAR) profiles.  The vertical salinity 

profiles were used to calculate the volume of freshwater (<35psu) at each station.  

Surface chl-α extractions were used to calibrate surface fluorescence that was logged 

every 1 minute while underway and every 0.5 meters vertically at each CTD station so 

that fluorescence could be used as a proxy for chl-α concentrations.  Vertical 

fluorometry profiles were used in turn to calculate total integrated water column chl-α.  

The vertical PAR profiles were used to calculate the integration depths based upon the 

percentage of surface light penetration to depth. 

 The secondary data source for this thesis is that of the remotely sensed data for 

surface chl-α concentration, collected by the SeaWiFS satellite.  These data are broken 

into week-long averages for each of the CTD stations throughout the period of the 

NEGOM study.  These data include both periods during research cruises and all periods 

in between research cruises.  The SeaWiFS data were collated and provided by 

Chuanmin Hu and Bisman Nababan of the University of South Florida. 

 The principal objective of this thesis is to describe the spatial, seasonal and 

interannual variation in freshwater abundance and chl-α abundance within the 

northeastern region of the Gulf of Mexico.  The first step was to calculate the amount of 

freshwater at each sampling station for each of the nine of the NEGOM cruises.  

Freshwater inflow into the NEGOM region is important because it carries elevated 

phytoplankton biomass seaward on to the coastal margin during inflows of river water.  

This freshwater can also stimulate in situ primary productivity in the surface waters 

when and where the river water retains measurable dissolved inorganic nitrate and 

phosphate concentrations [Gonzalez-Rodas, 1999; Belabbassi, 2001].  Thus, the relative 
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abundance of freshwater can create high chl-α concentrations in what would otherwise 

be considered the oligotrophic waters of the outer shelf and continental slope [Lohrenz et 

al., 1999].  Freshwater abundance is the subject of the second chapter of this thesis due 

to this ability to contribute to chl-α abundance.  This adds particular relevance to the 

high variability in the abundance of freshwater within the NEGOM region and the 

factors that determine freshwater abundance. 

The third chapter of the thesis is a comparison of chl-α abundance based upon 

season, year and hydrographic regime.  This comparison of chl-α abundance uses two 

separate methods; 1) the measurements of surface chl-α and 2) calculation of total 

integrated chl-α through the water column to differing depths based upon salinity and 

light penetration.  These integration depths are the 35 psu halocline (where applicable), 

the 36.8% surface light penetration depth (1st optical depth), the 18% surface light 

penetration depth (secchi disc depth), and the 1% surface light penetration depth (herein 

assumed to be the net photosynthesis compensation depth). 

The purpose of the depth integrated chl-α calculations is to determine how 

representative the surface chl-α concentrations are of the overall chl-α abundance 

through the water column.  Due to the varying hydrographic regimes found within the 

study area, there are several different vertical profiles of chl-α concentrations [Wawrik et 

al., 2003].  For example, surface chl-α concentrations at some stations may be more or 

less representative of the overall chl-α abundance integrated to differing depths, while at 

others where a deep chl-α maximum (DCM) is prominent the surface concentrations 

alone will underestimate total integrated chl-α mass.  This variability in how well surface 

chl-α measurements predict overall chl-α abundance will of course influence how well 

satellite measurements of surface chl-α predict overall chl-α abundance through the 

water column. 

The fourth chapter of this thesis analyzes the correlation between surface chl-α 

concentration and integrated chl-α abundance according to separate hydrographic 

regimes.  This is done with the expectation that surface chl-α measurements will be more 

representative of total chl-α abundance under some hydrographic regimes compared to 
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others.  This, in turn, permits the determination at which conditions satellite 

measurements of surface chl-α concentrations are most applicable and appropriate. 

Chapter IVof this thesis has two separate components, both of which are based 

upon satellite measurements of surface chl-α.  The initial portion of the satellite analysis 

(part one: ship and satellite comparisons) presents the comparison of ship-based data 

with satellite measurements taken during the same study periods.  The purpose of this 

aspect of the study is to verify that satellite measurements accurately reflect ship-based 

measurements for the differing hydrographic regimes that are found throughout the study 

area.  This stage of the analysis also permits the matching of river water to high chl-α 

concentrations within the study area.  The area of these high chl-α freshwater intrusions 

have been outlined in the false color images of surface chl-α concentration.  This 

allowed the tracking of the freshwater through the study area as well as the 

determination of the frequency and relative intensity of freshwater intrusions into the 

NEGOM region. 

The other portion of the satellite analysis (chapter IV, part two: correlations and 

climatology) involves the observation of surface chl-α distribution both during the cruise 

periods and during the periods when cruises were not conducted.  The advantages of 

satellite observation are that it can provide relatively high resolution data over a large 

study area and these data can be collected frequently.  The satellite advantage of near 

continual coverage through time allows us to determine whether our cruise snapshot is 

representative of the entire season or whether the conditions encountered during a cruise 

are atypical compared the majority of the season or year of study.  It is this advantage of 

satellites that is the primary basis for the integration of satellite methods with the 

NEGOM cruise data.  The satellite surface chl-α data are being used to gauge how 

representative the data from each cruise are of the overall seasonal conditions of surface 

chl-α concentration. 

Chapter V presents an overall synthesis of the previous chapters, and chapter VI 

summarizes the principal conclusions.  Appendix A presents correlation analyses derived 
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from the statistical package SAS, and appendix B archives some additional 

methodological, cruise-by-cruise presentations of metadata files. 
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CHAPTER II   

FRESHWATER INPUTS AND FRESHWATER REDISTRIBUTION 

 

2.1.  Introduction 
 

2.1.1. Overall Circulation Patterns 

 The circulation patterns within the NEGOM region are very complicated and it is 

difficult to fully describe them on a seasonal basis.  The complicated pattern for this 

circulation is based upon a number of different factors.  The first of these factors is the 

presence of eddies over the continental slope.  Furthermore, the presence of these eddies 

is not constant in time nor does it necessarily coincide with any particular season.  

Second, while there is an overall seasonal pattern in wind direction within the NEGOM 

region, there is a great deal of interannual variability with these winds.  There are also 

high frequency shifts in wind directions within the same season, which leads to rapid 

shifts in current speeds and directions [Jochens et al., 2002]. 

 The overall patterns of circulation are highly variable at interannual as well as at 

relatively short time spans.  However, when eddies are present over the continental slope 

they have a significant effect on the overall circulation within the NEGOM area and are 

frequently the dominant force in defining the circulation patterns. 

 
 
2.1.2. River Influences 

 A total of seventeen rivers discharge into the NEGOM study area.  The mean 

daily discharge rates are summarized in Table 1.  Maximum mean discharge rates for the 

rivers typically occur during the spring.  The minimum mean discharge rates occur 

during the early winter period.  There is significant river discharge through the summer 

period as well.  There is also a great deal of variability in river discharge on an 

interannual and seasonal basis.  It is also important to acknowledge that maximum river 

discharges are generally in short term pulses of high flow rates based upon flooding 

events.  The dominant river outflow into the NEGOM region is from the Mississippi 
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River.  The other significant rivers eastward of this primarily only influence nearshore 

and inner shelf areas [Jochens et al., 2002].  A comparison of the daily mean 

streamflows of the Mississippi River and the combined streamflow of the other regional 

rivers is given in Figure 2. 

 

Table 1.  Summary list of rivers draining into the NEGOM region with mean daily 
discharge rates from USGS records.  Data provided by the U.S Geological Survey. 
 

River Mean Daily Discharge (km3/day) 
 Mississippi River at Tarbert’s Landing, LA      1.18 
 Suwannee River at Branford, FL              0.017 
 Steinhatchee River near Cross City, FL     <0.001 
 Fenholloway River near Foley, FL        <0.001 
 Econfina River near Perry, FL                <0.001 
 Aucilla River near Scanlon, FL                      .001 
 Ochlockonee River near Bloxham, FL            .004 
 Apalachicola River near Sumatra, FL              .063 
 Choctawhatchee River near Bruce, FL            .017 
 Yellow River at Milligan, FL                        .003 
 Blackwater River near Baker, Fl                  <0.001 
 Escambia River near Molino, Fl                     .018 
 Perdido River at Barrineau Park, FL            .002 
 Alabama River at Millers Ferry, AL             .079 
 Tombigbee River at Demopolis,AL                     .073 
 Pascagoula River at Graham Ferry,MS          .026 
 Pearl River near Monticello, MS                      .017 

 

 

In addition to analyzing the discharge of freshwater into the study area, it is also 

important to note spatial variations in the freshwater content.  The amount of freshwater 

within the study area is strongly influenced by entrainment of surface waters by slope 

eddies, which are highly variable in their location, duration and strength [Sturges and 

Leben, 2000].  As a result, the distribution of freshwater may be highly variable while 

the overall freshwater content in the study area is the same. 

 River discharges into the area introduce low salinity, high nutrient waters into the 

ocean surface region.  This introduction of high nutrient water into the surface waters 

can significantly increase phytoplankton production.  There are also effects on the 

circulation of water within the NEGOM region based upon the added buoyancy from the 

river water [Jochens et al., 2002]. 
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2.1.3. Loop Current Eddies 

 When the Loop Current moves northward towards the NEGOM study area, 

mesoscale anticyclonic eddies are often shed from the Loop Current.  The presence of 

these slope eddies adjacent to the Mississippi River plume can entrain freshwater and 

redistribute this into the NEGOM region in a periodic fashion on a relatively small time 

scale [Muller-Karger et al., 1991].  These slope eddies are shed at an average rate of one 

every 11 months, but the process is stochastic and does not follow a specific seasonal 

pattern [Sturges, 1994].  Due to the significance of Loop Current eddies in determining 

how much river water enters the NEGOM region, the overall pattern of freshwater 

abundance may not follow the seasonal pattern of freshwater flow from the Mississippi 

River. 

 

2.1.4. Purpose of Research 

 As freshwater flow into the NEGOM region is an important source of nutrients to 

the surface waters of the outer shelf and slope, it is important to determine the factors 

that determine freshwater abundance and distribution.  It is expected that river flow into 

the NEGOM region is the major factor determining the abundance of freshwater within 

the NEGOM region.  However, the presence of Loop Current eddies interacting with the 

Mississippi River outflow can potentially have a strong influence on the distribution of 

freshwater into the region.  I have hypothesized that the interaction of Loop Current 

eddies with the Mississippi River outflow is a major factor in determining the abundance 

and distribution of freshwater in the NEGOM region. 

 This question is tested by comparing estimates of the relative volume of 

freshwater in the NEGOM region with the total streamflow into the NEGOM region 

during the cruise period.  The relative volume of freshwater within the study area is 

estimated by integrating the freshwater volume through the water column.  This should 

give a more accurate gauge of the total volume of freshwater compared to analysis based 

solely on the subsurface depth for a particular halopleth (e.g. depth of 35 psu as per 

Belabbassi [2001]), or based upon surface salinity alone.  This section also addresses the  
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question of how well surface salinity predicts the associated integrated freshwater 

volume beneath the ocean surface.  This potentially allows for estimates of integrated 

freshwater volume based upon surface salinity measurements that were logged once per 

minute along the track of each NEGOM cruise and so are much more readily available 

than full water column data. 

 

 
2.2. Methods 

 

2.2.1. Instruments 

 The primary source of data for this section was from continuous vertical profiling 

using a Sea-Bird 911+ pumped CTD system that was attached horizontally to the lower 

part of the frame of a General Oceanics 12-place rosette with 10 liter Niskin bottles.  

Continuous vertical profiles of salinity were taken for all CTD stations of each cruise, 

with data being logged at 0.5 meter intervals.  Because the CTD was mounted at the base 

of the rosette frame and because the surface bottle was generally tripped when the top of 

the rosette was submerged to a depth of about 1 meter, the CTD data generally begin at a 

depth between 2-4 meters deep for each station.  In addition, a thermosalinograph logged 

measurements once a minute from a depth of 3.5 meters while underway. 

 

2.2.2. Data Sources Used 

 For this section of the study, sea surface salinity was estimated from the 

shallowest CTD measurement of salinity.  In the majority of stations this depth was 

shallower than the 3.5 meter deep intake of the continuous thermosalinograph.  The 

salinity at the shallowest CTD measurement (3.0 meter average depth) was used as a 

proxy for the actual sea surface salinity for the sake of freshwater integration 

calculations.  The depth of the 35 psu halocline was determined from the CTD data for 

each station.  The first depth at which the salinity was 35 psu or greater was used as the 

depth of the 35 psu halocline. 
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 River discharge rates were based upon data provided by the U.S. Geological 

Survey and the U.S Army Corps of Engineers.  The calculations for the Mississippi 

River discharge rates for each cruise were taken from the Tarbert’s Landing gauging 

station.  River discharge rates were also used for six other regional rivers eastward of the 

Mississippi River outflow.  These rivers and their mean flow rates are summarized in 

Table 2. 

 

Table 2.  Select rivers used to calculate freshwater flow into the NEGOM study area.  
Data provided by the U.S. Geological Survey. 
 

River Discharge Rate (m3/sec) Length of Record (years) 

Mississippi 13,549 64 

Alabama 952 22 

Tombigbee 856 37 

Pascagoula 340 5 

Pearl 194 60 

Apalachicola 771 21 

Suwanee 201 67 

 
 
2.2.3. Freshwater Calculations 

 To estimate the amount of freshwater being discharged into the NEGOM study 

area during the individual cruises, calculations were made based upon the data from the 

U.S. Geological Survey and the U.S Army Corps of Engineers.  Daily mean stream flow 

data was averaged for a time period encompassing one week previous to and during the 

first week of each cruise.  The mean stream flow for this two week period is used as a 

relative estimate for comparing the freshwater discharge entering the NEGOM area 

based upon the different cruise periods. 

 The calculation of total integrated water column freshwater content was made 

using the CTD salinity measurements at discrete 0.5 meter intervals.  The volume of 
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zero psu freshwater for each 0.5 meter depth bin was calculated according to the simple 

equation below: 

 

 

V0 = ((35-S)Vί)/35 

                                       Where V0 = Volume of zero psu water (m3) 
                                           And Vί = Volume of integration layer = 0.5 m3 

 

This equation was applied to each 0.5 meter depth bin which had salinity less than 35 

psu.  Next, all depth bins for that CTD station were summed according to the following 

equation: 

 

 

                                                                      n  
                                                         V(X)      Σ  (35-Sί)Vί
                                                                    ί=1 
                   Where V(X) = Total volume of zero psu water for that station (m3) per surface                
    area of ocean (m2) 
                    and      Sί    = salinity in bin ί at depth X 
                    and     Vί    = volume in integration bin ί (0.5 m3) 
                    and      n     = the number of integrations for depth X 
 

 

As noted above, actual sea surface salinity was estimated from the shallowest CTD 

measurement taken for any given CTD station.  For the depth bins shallower than this 

measurement (3.0 meter average depth) the salinity for the shallowest CTD 

measurement was extended to the surface.  While this may underestimate the total 

volume of zero psu water for each station, the consistency of this technique allows for 

relative comparisons between stations and cruises. 

 

2.2.4. Regional Designation Criteria 

 The separation of stations according to hydrographic region is an important 

component in the analyses within this chapter and the following chapters.  As a result, it 
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is necessary to define the designated hydrographic regions used in this study and to 

explain the criteria used to assign them within each category.  The three designations are 

“freshwater” stations, “bluewater” stations and “coastal” stations. 

 Freshwater stations are categorized according to the amount of freshwater found 

in the water column, and to a lesser extent the surface chl-α concentrations.  The primary 

criteria used is the total integrated freshwater abundance for these stations.  Any station 

with more than 0.33 m3/m2 of freshwater within the water column was categorized as 

being a freshwater station.  This set amount (0.33 m3/m2) was decided upon by 

observing the behavior of the surface waters in conjunction with freshwater abundance.  

It was decided that the stations that had this threshold amount of integrated freshwater 

were strongly influenced by the amount of freshwater in terms of surface chl-α and light 

extinction.  The freshwater designation is made without any consideration made to the 

overall depth of the station or location. 

 Bluewater stations are those characterized by having relatively low surface chl-α 

concentrations, relatively low light extinction coefficients and the presence of deep chl-α 

maximums.  In this study, the bluewater stations were effectively the default category for 

all stations.  If the stations were not dominated by freshwater influences and were not 

categorized as coastal stations, they were designated as bluewater stations. 

 Coastal stations were those located in water depths of 50 meters or less, were not 

dominated by freshwater influences and had a euphotic zone that extended to within 10 

meters of the ocean bottom.  These stations typically had relatively high surface chl 

concentrations, relatively high chl-α concentrations through the water column and 

frequently had high chl-α concentrations near the bottom. 

 All correlation calculations are done using the Pearson correlation test through 

SAS or Minitab, and comparisons of mean values are done using ANOVA with the same 

software. 
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2.3. Results 

 

2.3.1. Seasonal Trends in Freshwater Distribution and Abundance 

 This section describes the seasonal patterns of distribution and abundance of 

freshwater, as defined by water of salinity < 35 psu, within the NEGOM survey area.  

The focus of this section is on the nearshore distribution of freshwater within the study 

area as well as on the total vertically integrated water column freshwater content.  

Freshwater data for the nine separate cruises are summarized in Table 3. 

 

 
Table 3.  Summary of freshwater parameters for NEGOM cruises.  Mean 35 psu depth is 
calculated using only stations with surface salinity <35 psu. 
 

Cruise 
# of 
Stations 

# of 
Freshwater 
Stations 

River 
Flow 

(m^3/sec) 

Integrated 
Freshwater 
(m^3/m^2) 

Max. 
Surface 
Salinity 

Min. 
Surface 
Salinity 

Mean 
Surface 
Salinity 

Mean 
35 psu 
Depth 

NEGOM1 94 10 7705 10.06 36.18 30.85 35.31 17.87
NEGOM2 98 42 29,408 52.01 36.43 20.40 33.51 12.84
NEGOM3 98 76 12,967 105.28 35.78 24.72 31.52 14.43
NEGOM4 98 10 12,339 10.72 36.27 15.24 35.17 14.09
NEGOM5 98 32 23,681 36.55 36.38 16.19 33.71 14.02
NEGOM6 98 72 7447 86.82 36.38 21.75 31.86 14.56
NEGOM7 98 3 4856 3.02 36.44 31.33 35.70 11.50
NEGOM8 98 7 17,779 7.97 36.50 27.38 35.83 12.46
NEGOM9 98 39 8752 38.20 36.84 25.62 33.70 11.98

 

 

River discharge rates averaged from the week previous to and the first week of 

each cruise are given for comparison.  Individual river discharge data for the cruise 

periods are summarized in Table 2.  The primary sources of data are shipboard 

measurements of underway salinity at z=3.5 m combined with CTD stations at which 

salinity was measured through the water column.  River discharge rates are provided by 

the U.S. Geological Survey and the U.S Army Corps of Engineers. 
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2.3.1.1. Spatial Freshwater Distribution for Winter Cruises (NEGOM1, NEGOM4 

and NEGOM7) 

 

 For all three of the winter cruises, freshwater distribution within the NEGOM 

region was spatially limited.  There were only 10, 10, and 3 stations, respectively, at 

which the upper water column had >0.33 m3/m2 of integrated zero psu freshwater.  Most 

of these stations were relatively nearshore stations near river outflows, but they also 

included the 200, 500 and 1000m stations in line 2 of NEGOM cruise 1.  In 1997 these 

line 2 stations show a tongue of freshwater extending eastward and offshore from the 

Birdsfoot Delta.  Surface salinity contour plots for the winter cruises are given in Figure 

3. 

During the winter cruises, the distribution of freshwater was associated with the 

proximity to individual river outflow areas.  Each of these freshwater pockets was 

separated from the others based upon river location.  The stations that have freshwater 

present during these cruises are isolated to specific near river outflow areas.  This 

isolation of freshwater areas indicates little or no mixing of freshwater between different 

river sources within the study area for these three cruises.  Lateral transport of freshwater 

during these three cruise periods was apparently low, based upon weak wind 

measurements and current measurements taken during the cruise period (Jochens et al. 

2002). 

 At stations which had >0.33 m3 of integrated freshwater, the depth of the 35 psu 

halocline varied between 7 meters and 35 meters, following the general trend of 

increasing depth with increasing distance from freshwater source due to vertical mixing 

and dilution. 
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2.3.1.2. Spatial Freshwater Distribution for Spring Cruises (NEGOM2, NEGOM5 

and NEGOM8) 

 

 Freshwater distribution within the NEGOM region was generally more extensive 

among the spring cruises than for the winter cruises.  There were 42, 32, and 7 stations, 

respectively, at which the upper water column had >0.33 m3/m2 of integrated zero psu 

freshwater.  Most of these stations were relatively nearshore stations, with some 

exceptions.  For both the spring, 1998 (N2) and spring, 1999 (N5) cruises, freshwater 

was found extending far offshore for lines 2 and 3.  There was an area encompassing the 

nearshore stations of lines 1 through 3 that had surface freshwater present for all three of 

the spring cruises.  Surface salinity contour plots for the spring cruises are given in 

Figure 4. 

 For the time periods during these cruises, the overall spatial distribution of 

freshwater near the separate river outflow areas appears to mirror the relative outflow of 

the associated river.  The freshwater distribution for spring, 1998 (N2) includes all of the 

nearshore stations extending westward to include all lines of the cruise track.  This 

pattern was most likely caused by river discharge rates that were significantly higher in 

1998 than mean discharge rates for that time of year, particularly for the Mississippi, 

Apalachicola and Suwannee rivers.  Similarly, the limited distribution of freshwater for 

the spring, 2000 (N8) cruise period is a reflection of significantly low mean discharge 

rates in 2000 for that time of year for all of the major rivers flowing into the NEGOM 

study area.  At stations which had >0.33 m3 of integrated freshwater, the depth of the 35 

psu halocline varied between 4 meters and 30 meters.  There is no discernable trend 

between the 35 psu halocline depth and any other parameters of freshwater distribution 

for the spring cruises. 
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Figure 3.  Sea surface salinity contour plots during the winter cruises.  NEGOM1:  Nov. 
16-26, 1997.  NEGOM4:  Nov. 12-25, 1998.  NEGOM7:  Nov. 12-23, 1999.  Figures 
from Jochens et al., 2002. 
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Figure 4.  Sea surface salinity contour plots during the spring cruises.  NEGOM2:  May. 
4-15, 1998.  NEGOM5:  May. 15-28, 1999.  NEGOM8:  Apr. 14-16, 2000.  Figures 
from Jochens et al., 2002. 
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2.3.1.3. Spatial Freshwater Distribution for Summer Cruises (NEGOM3, NEGOM6 

and NEGOM9) 

 

 Freshwater within the NEGOM region was most widely distributed during the 

summer cruises.  There were 76, 72, and 39 stations, respectively, at which the upper 

water column had >0.33 m3 of freshwater present.  Freshwater was found to extend far 

offshore as well as showing far eastward distribution for all three of the summer cruises, 

though the extent of eastward expansion varies interannually between cruises.  

Freshwater did not, however, dominate in the majority of the nearshore stations 

extending from line 5 eastward through line 11.  Surface salinity contour plots for the 

summer cruises are given in Figure 5. 

For the time periods during these cruises, distribution of freshwater was 

primarily based upon entrainment of water from the Mississippi River into the NEGOM 

study area by the presence of anticyclonic (clockwise) slope eddies.  The presence of 

these eddies is established by sea surface height (SSH) (Figure 6) and Acoustic Doppler 

Current Profiler (ADCP) measurements (Figure 7).  These two methods allowed for 

accurate placement of eddies and their relative strength to be determined.  This 

entrainment of Mississippi River water is the most dominant presence of freshwater in 

the study area during these cruises.  The outflow areas of the other major rivers were 

either enveloped by the entrained Mississippi River water or did not exhibit the presence 

of significant amounts of freshwater.  The dominance of Mississippi River water 

entrainment is further supported by the relative amounts of freshwater found within the 

study area seasonally compared to the overall river outflow for the associated season 

(Figure 8). 
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Figure 5.  Sea surface salinity contour plots during the summer cruises.  NEGOM3:  Jul. 
25-Aug. 9, 1998.  NEGOM6:  Aug. 15-28, 1999.  NEGOM9:  Jul. 28-Aug. 5, 2000.  
Figures from Jochens et al., 2002. 
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The extent to which the Mississippi River water is transported eastward depends 

upon the relative strength and placement of the anticyclonic eddy in the region.  While 

all three summer cruises had anticyclonic eddies within the study area, they were not 

positioned identically, nor were their current fields of equal intensity and strength.  As a 

result, the eastward extent of freshwater entrainment in the NEGOM area is primarily 

dependent upon the presence, intensity and positioning of anyticyclonic eddies to the 

Mississippi River plume. 

At stations which had >0.33 m3 of integrated freshwater, the depth of the 35 psu 

halocline varied between 4 meters and 27.5 meters, following a general trend of 

increasing depth with increase in vertically integrated freshwater. 

 

2.3.1.4. Freshwater Abundance for Winter Cruises (NEGOM1, NEGOM4 and 

NEGOM7) 

 

The three winter cruises measured the least amount of freshwater within the 

study area for all three years of data recorded.  The relative amount of freshwater within 

the study area during the winter months were as low as one fifth of the following spring 

and as low as one tenth of the following summer (Figure 8).  The low amounts of  
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Figure 6.  Sea surface height for the summer NEGOM cruises from satellite altimeter 
data.  Units are in +cm SSH for solid lines and –cm SSH for dashed lines.  Top figure is 
NEGOM3, middle figure is NEGOM6, and bottom figure is NEGOM9.  Figures from 
Belabbassi (2001). 
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Figure 7.  Acoustic Doppler Current Profiler measurements for the NEGOM summer 
cruises.  Top figure is NEGOM3, middle figure is NEGOM6, and bottom figure is 
NEGOM9.  Figures from Belabbassi (2001). 
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freshwater within the study area during the winter period are due to seasonally low river 

flow from all rivers within the study area (Table. 3). 

 

2.3.1.5. Freshwater Abundance for Spring Cruises (NEGOM2, NEGOM5 and 

NEGOM8) 

 

The spring cruises had greater freshwater abundance than the winter cruises of 

the respective year, but lower freshwater abundance than the associated summer cruises.  

The relative abundance of freshwater within the study area between the spring cruises is 

correlated to the river flow for that respective cruise period.  The river flows during the  

spring cruises were the highest recorded for all of the cruises (Fig. 8).  While the river 

flow was highest during the spring cruises, this did not translate to the highest abundance 

of freshwater within the study area.  This is due to the lack of lateral transport of river 

water, particularly from the Mississippi River outflow area. 

 

2.3.1.6. Freshwater Abundance for Summer Cruises (NEGOM3, NEGOM6 and 

NEGOM9) 

 

The summer cruises had the highest abundance of freshwater within the study 

area for each respective year.  This is the case in spite of the fact that the spring cruise 

periods had river discharge values that were on average twice the flow of the summer 

cruises (Figure  8).  In the case of the summer cruises, the abundance of freshwater 

within the study area is caused by the presence of anticyclonic eddies over the slope to 

the south and southeast of the Birdsfoot Delta (Figure 7).  These eddies drive the 

eastward entrainment of Mississippi River water into the NEGOM study area.  This 

entrainment not only affects nearshore stations, but also strongly affects offshore stations 

and extends as far eastward as 84oW longitude.  There is no direct correlation between 

river flow and freshwater abundance within the study area for the summer cruises.  

Summer, 1999 (N6) has a lower river flow rate for the cruise period compared to 
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summer, 2000 (N9), but the abundance of freshwater in the study area for summer, 1999 

(N6) is twice that of summer, 2000 (N9).  It is evident that the amount of freshwater 

within the study area during the summer cruises is dependent upon the presence of slope 

eddies.  The position of these eddies as well as the strength of these features determines 

how freshwater is redistributed within the study area. 

 

 

 

2.3.2. Correlation and Conservation of Physical Parameters of Freshwater 

 Comparison between several parameters of freshwater distribution demonstrate 

some overall correlations.   Minitab documented a weak yet significant  (-0.132, p<0.05) 

correlation found between the measured surface salinity and the depth of the 35 psu 

halocline for all of the combined cruise data (Figure 9). 
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Figure 9.  Comparison of surface salinity with depth of 35 psu halocline for all stations 
of all cruises. 
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 There was slightly stronger significant (0.464, p<0.05) positive correlation 

between integrated freshwater abundance and the depth of the 35 psu halocline for all of 

the combined cruise data (Figure 10).  There was a robust negative correlation (-0.872, 

p<0.05) between the measured surface salinity and the integrated freshwater abundance 

for all cruises combined (Figure 11).  The three winter cruises had only 23 stations with 

>0.33 m3/m2, but the correlation is still robust (-0.928, p<0.05) despite the small number 

of data points (Figure 12). 
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Figure 10.  Comparison of integrated freshwater with depth of 35 psu halocline for all 
stations of all cruises. 
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Figure 11.  Comparison of integrated freshwater with surface salinity of all stations for 
all cruises. 

y = -0.1837x + 6.5899
R2 = 0.8619

0

0.5

1

1.5

2

2.5

3

3.5

4

15 20 25 30 35

Surface Salinity (psu)

In
te

gr
at

ed
 F

re
sh

w
at

er
 (m

^3
/m

^2
)

 

Figure 12.  Comparison of integrated freshwater with surface salinity of all stations for 
all winter cruises. 
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2.4. Discussion 
 

 The abundance of freshwater in the NEGOM area is dependent upon both the 

amount of river outflow into the region and the incidence of river water entrainment by 

off shelf circulation, particularly by slope eddies.  The overall importance of river 

discharge in determining the abundance of freshwater is governed by the interannual 

variation in both of these parameters.  Figure 8 shows the relationship between river 

outflow and total integrated freshwater within the study area.  All three years show a 

decrease in freshwater abundance summed for all 94-98 stations as mean streamflow 

decreases according to season. 

 The importance of river water entrainment by slope eddies is shown by the 

comparison of different seasons from the same year.  For all three years of the study, the 

summer periods show the highest total integrated freshwater, despite that mean 

streamflow is highest during the spring cruises (Figure8).  The relative strengths and 

placement of slope eddies during the three summer cruises (NEGOM 3, 6 and 9) are 

described by Belabbassi [2001].  That freshwater abundance is strongly influenced by 

eastward entrainment of Mississippi River water by anticyclonic eddies has also been 

reported previous to NEGOM-COH fieldwork [Kelly, 1991; Hamilton et al., 1997; 

Wiseman and Sturges, 1999; Biggs et al., 2000]. 

When considering the relative importance of slope eddies in determining the 

abundance of freshwater in the NEGOM region, it is important to address their 

periodicity.  Eddies are shed from the Loop Current on an average of every 11 months, 

but the process is stochastic [Sturges, 1994].  For this study, all three summers had 

anticyclonic eddies near the Mississippi River plume, while these features were absent in 

the cruises conducted during other seasons.  Slope eddies may in fact be typical 

summertime features in the NEGOM region, for they have also been documented by 

ship surveys and remote sensing in subsequent summers [Biggs et al., 2002]. 

Slope eddies likely impact upon the secondary productivity of the NEGOM 

region [Biggs and Ressler, 2001].  Moreover, the periodic introduction of high nutrient 

river water into an area that is usually considered to be oligotrophic can lead to increased 
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fisheries yield [Deegan et al., 1986].  Such biological productivity is likely driven by 

stochastic processes, rather than simply by seasonal patterns based upon the frequency 

and timing of river water entrainment into the NEGOM region. 

The high variation in the depth of the 35 psu halocline reflects both the relative 

abundance of freshwater at each particular station as well as the distance from the 

freshwater source.  Stations which were isolated from the Mississippi River outflow but 

had freshwater present generally showed small quantities of integrated freshwater and 

shallow 35 psu haloclines.  Stations that were distant from the Mississippi River outflow 

but clearly had their freshwater source from the Mississippi River had high integrated 

water column freshwater and deep 35 psu haloclines.  Stations that were near major 

freshwater sources and had high abundance of freshwater generally had relatively 

shallow 35 psu haloclines, but had very sharp and sudden salinity profiles.   

This indicates that the depth of the 35 psu halocline is dependent upon both the 

total integrated freshwater abundance and the length of time that the freshwater has had 

to mix with the underlying saltwater.  This is important in explaining the weak negative 

correlation between surface salinity and depth of the 35 psu halocline as well as the 

weak correlation between total integrated freshwater and the depth of the 35 psu 

halocline. 

The strongest correlation between the parameters of integrated freshwater, 

surface salinity and depth of the 35 psu halocline was the correlation between surface 

salinity and integrated freshwater abundance (Figure 11).  This strong negative 

correlation between increasing freshwater abundance with decreasing salinity can allow 

surface salinity to be used as a proxy for the total integrated freshwater in the water 

column. 

Not only is this correlation statistically significant (-0.872, p<0.05), a regression 

analysis shows high enough R2 values (R2>0.7, see Figure 11) to use surface salinity as a 

reasonable predictor of water column integrated freshwater abundance.  This could allow 

for reasonable calculations of freshwater abundance using continuous flow through 

salinity measurements.  Using surface salinity as a proxy for integrated water column 
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freshwater allows for faster, less expensive and more comprehensive coverage of a study 

area.  Given a high enough resolution measurement of surface salinities in an area, it 

would be possible to make a reasonable estimate of total freshwater volume in a given 

study area.  With an absolute volume of freshwater within a study area, the total mass of 

nutrients introduced by the freshwater could be estimated based upon nutrient 

concentrations at the river mouth. 
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CHAPTER III   

SURFACE AND VERTICALLY-INTEGRATED CHLOROPHYLL STOCKS 

 
3.1. Introduction 

 

3.1.1. In Situ Surface Chlorophyll Measurements 

 The measurement of surface chl-α is widely used as a means of estimating the 

overall phytoplankton biomass in the oceans.  The time rate of change of surface chl-α is 

a proxy for the rate of primary production, which is an indicator of the overall biological 

productivity of a marine ecosystem [Qian et al., 2003].  This chapter will examine the 

overall surface chl-α patterns within the NEGOM study and their differences by season 

and hydrographic region.  The subsurface chl-α profile to several irradiance levels within 

the euphotic zone will also be analyzed so that comparisons may be made between chl-α 

dynamics at near surface waters and chl-α dynamics at deeper waters that are still within 

the euphotic zone. 

 Studies based upon satellite color data have documented seasonal changes in chl-

α abundance over large areas of the Gulf of Mexico, including the NEGOM study region 

[Muller-Karger et al., 1991; Melo-Gonzalez et al., 2000].  These changes in overall chl-α 

abundance can be characterized as a minimum level of surface chl-α during the 

spring/summer months followed by elevated chl-α abundance during the fall/winter 

months.  This cycle is driven by low surface nutrient concentrations during the summer, 

caused by high stability and strong stratification of the water column.  The cooling of the 

surface waters, coupled with stronger winds during the winter period, allows for better 

mixing of deeper nutrient rich waters which in turn allows for higher phytoplankton 

standing stocks [Belabbassi, 2001]. 

 While this seasonal cycle is prominent over the off-shelf waters, it is not strictly 

the case for continental shelf waters and the inner slope regions, especially in the 

NEGOM study area.  These regions within the NEGOM study area are subject to 

periodic upwelling events as well as on-shelf flow from deeper slope waters which bring 

nutrients into the euphotic zone.  These periodic nutrient enrichments of the continental 
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slope and nearshelf waters are driven by shelf circulation and eddy interactions [Gilbes 

et al., 1996; Belabbassi, 2001; Biggs et al., 2002; Belabbassi et al., 2004 in review]. 

 Further influencing the shelf and upper slope waters of the NEGOM study area is 

the presence of several freshwater sources, most notably the Mississippi River.  These 

rivers input large amounts of nutrient-rich freshwater onto the inner continental shelf.  

However, and as shown in Chapter II of this thesis, Loop Current derived slope eddies 

can entrain large amounts of freshwater and input this water to outer shelf and upper 

slope regions of the NEGOM study area (see also Hamilton et al., [1997]). 

 The interaction of all of these factors results in a wide variety of hydrographic 

regions and ecosystems.  Furthermore, these hydrographic regions are not static in time 

or space; they may persist for limited amounts of time and they may move about in 

and/or through the NEGOM region.  This is particularly true of slope eddies and the 

freshwater entrainment that they can cause when they interact with the Mississippi 

River.  These factors make the NEGOM study area a highly dynamic region of the ocean 

and makes studying the surface chl-α within the region both challenging and particularly 

interesting. 

 

3.1.2. In Situ Water Column Chlorophyll 

 In addition to the surface chl-α being highly variable in space and time within the 

study area, the chl-α concentrations through the water column may vary considerably 

based upon the local conditions of the water, physiological state of the phytoplankton, 

and the depth rate of change in irradiance [Cullen, 1998; Jochens et al., 2002; Qian et al., 

2003].  As such, the surface chl-α concentrations are seldom representative of the overall 

chl-α abundance within the water column, or overall productivity within the system.  As 

a result, it is useful to determine if surface chl-α concentrations are representative of 

overall chl-α abundance through the water column. 

The NEGOM program of study is a particularly good candidate for this analysis 

as it contains a large number of sampling stations that encompass a variety of 

hydrographic conditions.  This allows us to observe changes in water column chl-α 
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abundance according to a wide variety of factors, including depth, light profile, nutrient 

abundance, and freshwater abundance.  This comparison between surface chl-α and 

water column chl-α is also important in relation to the use of remote sensing techniques 

to measure chl-α abundance.  These techniques are limited to the upper reaches of the 

water column and cannot infer the abundance of chl-α beyond the first optical depth. 

 The first section of analysis simply compares the variability of surface chl-α 

concentrations by season and by hydrographic region.  As mentioned above, the 

hydrographic regions may shift and change from one sampling period to another, and so 

the cruise by cruise designations for the hydrographic regions described in the previous 

chapter will be applied to this chapter as well. 

The second analysis of this chapter examines the changes in chl-α concentration 

through the water column to a series of discrete depths based upon surface light 

penetration.  These depths were selected because they represent intervals that are 

relevant to the other aspects of this study, i.e. the 1st optical depth, secchi disc depth and 

the estimated bottom of the euphotic zone.  The integrated chl-α mass will be compared 

with the surface chl-α concentrations to determine when and where surface chl-α 

concentrations can be used to predict overall chl-α abundance through the water column. 

 

3.1.3. Purpose of Research 

 Because previous studies of seasonal cycle in chl-α  in the Gulf of 

Mexico [i.e. Muller-Karger et al., 1991] had primary emphasis on the outer slope and 

deepwater regions of the Gulf of Mexico, they did not emphasize regions that have large 

freshwater inflow.  Clearly the proximity of the Mississippi River and other freshwater 

sources within the NEGOM study area introduce another factor that should influence the 

observed cycle in surface chl-α concentrations.  Because I hypothesized that the seasonal 

cycle of chl-α concentrations within the NEGOM study area differs from that found in 

previous studies, in this chapter comparisons are made between mean surface chl-α 

concentrations of each season and compared to those of the previous study. 
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 Because I further hypothesize that the relationship between surface chl-α 

concentrations and water column chl-α mass varies based upon the integration depth 

used and the hydrographic regime present, this chapter also presents station by station 

comparisons of surface chl-α concentrations with vertically integrated chl-α mass to 

distinct integration depths.  These comparisons are analyzed according to hydrographic 

region. 

 

 

3.2. Methods 

 

Subsurface profiles of chlorophyll-α fluorescence were taken at all CTD stations 

of each cruise, with data being logged at 0.5 meter intervals, using a Chelsea Aquatrakka 

fluorometer.   Continuous profiles of downwelling PAR were measured at those stations 

occupied during the daytime using a Biospherical Instruments, Inc., Model QSP-200L 

sensor.  Underway measurements of near surface fluorescence were logged once a 

minute using a continuous-flow Turner Designs model 10 fluorometer.  Additional 

instrument information and sampling methods for chl-α extractions are given in Jochens 

and Nowlin [1998]. 

Vertical profiles of PAR were used to calculate the depth of 36.8% surface light 

penetration (1st optical depth), 18% surface light penetration (traditional secchi depth) 

and the depth of 1% surface light penetration (assumed compensation depth).  Because 

data logging for the vertical profiles did not always begin at the surface (average depth 

of 2.5 meters), it was necessary to calculate the inferred surface PAR using the light 

extinction coefficient (k) for the surface waters.  This was done on a station-by-station 

basis. 

 Chl-α concentrations at depth were estimated from the fluorescence values 

(volts) measured by the Chelsea fluorometer based upon the calibration samples 

collected from water drawn from the hull depth of 3.5m that was pumped into the ship’s 

lab to the continuous flow fluorometer.  Surface chl-α concentrations, as determined 

 



 37

from fluorescence values for the continuous flow fluorometer, were plotted against the 

voltage values for the Chelsea fluorometer at the depth of 3.5 meters and an exponential 

regression line was drawn for this relationship.  Separate regression calculations were 

done for high chl-α (freshwater influenced) and low chl-α (freshwater absent) regimes.  

Separate calculations were also done for each individual cruise.  An example of the 

regression equation is given below, representing the summer, 2000 (N9) high chl-α 

regression equation and Figure 13 shows the regression curve. 

 

 

Y=0.0075e3.5946X

                 Where Y equals the estimated chl-α concentration in mg/m3, and  
X equals the measured Chelsea voltage. 

 

 

This equation was applied to the Chelsea voltage of each 0.5 meter depth bin of the 

vertical profile.  This allowed the estimation of chl-α concentration for each 0.5 meter 

depth bin through the water column to the appropriate depth.  Next, the mass of chl-α of 

all depth bins for that CTD station were summed according to the following equation: 

 

 

                                                                n  
                                               Mchl-α       Σ  Cί Vί
                                                              ί=1 
               Where Mchl-α = Total mass of chl-α in the water column for that station (mg/m2) 
               and         Cί    = Concentration of chl-α in mg/m3

               and         Vί    = Volume in integration bin ί (0.5 m3) 
               and          n     = the number of integrations for depth X 

 

 

 The surface (z=0) PAR value had to be inferred for all CTD stations due to the 

fact that data logging began at depths significantly deeper than the sea surface (average 
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of 2.5 meters).  To avoid underestimating the integration depths it was necessary to 

extrapolate the true surface PAR values based upon the shallowest PAR measurements 
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Figure 13.  Sample regression curve used to estimate chlorophyll-α concentrations at 
depth according to CTD fluorometry profiles.  Note that the Chelsea fluorometer 
functions on a logarithmic scale, resulting in the exponential relationship between 
fluorometer voltage and extracted surface chlorophyll-α concentrations.  This regression 
is from the high chlorophyll-α waters of the summer, 2000 (N9) cruise. 
 

 

 

and the light extinction coefficient (k) of the surface waters.  Light extinction 

coefficients (k) were calculated separately for each daytime CTD station that had 

sufficient light levels by plotting the vertical profiles of PAR on a logarithmic scale.  

Each of these k values was then used to back-calculate the approximate surface PAR 

values for each individual station according to the following equation: 
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Log10 (I0) = ((k*X)+Log Ix) 
                    Where k = the light extinction coefficient  
                        and X = the depth of the shallowest PAR measurement available 
 

 

 The PAR calculations for the 36.8%, 18%, and 1% light penetration depths were 

done by simply multiplying the inferred surface PAR with 0.368, 0.18 or 0.01 as 

appropriate.  The chl-α mass integration calculations were done to the depth that 

corresponded with this calculated subsurface PAR for each CTD station. 

 

 

3.3. Results 

 

3.3.1. Seasonal Trends in Surface Chlorophyll Concentrations and Distribution 

 This section describes the seasonal patterns of distribution and abundance of chl-

α within the NEGOM study area.  The emphasis of this section is the description of 

seasonal patterns of surface chl-α concentration and the seasonal patterns of overall chl-

α abundance through the water column.  Contour plots of surface chl-α concentrations 

for each cruise are given in Figure 18. 

The integrated chl-α calculations are measured to the 36.8% surface PAR depth 

(1st optical depth), 18% surface PAR depth (traditional secchi disc depth) and the 1% 

surface PAR depth (compensation depth).  These depths were chosen as being 

representative of the water depth measured by remote sensing techniques (36.8%), 

overall phytoplankton abundance in the surface waters (18%) and of the total abundance 

of photosynthetic plankton through the water column (1%). 

 The depth to which these integrations are calculated is also given analysis in this 

section, as this both determines the overall mass of integrated chl-α in the water column 

and is itself determined by the concentrations of chl-α and other particulates in the 

surface waters.  Attention is also given to the variations in the vertical profiles of chl-α 

concentrations based upon the three different hydrographic regimes described previously 
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(freshwater, bluewater and coastal).  Each of these hydrographic regimes shows distinct 

trends in the vertical profile of chl-α concentration, particularly the placement of the 

depth of chl-α maximum.  These differences in the vertical chl-α concentration profiles 

can influence the total integrated chl-α abundance values depending upon the depth of 

integration and the placement of the chl-α maximum depth. 

 

3.3.1.1. Surface Chlorophyll Distribution for Winter Cruises (NEGOM1, NEGOM4 

and NEGOM7) 

 

The mean surface chl-α concentrations for the all cruises are summarized in Table 4.  

The mean surface chl-α concentrations for the winter cruises were generally lower than 

in the other seasons, with the exception of spring, 2000 (N8).  The winter mean surface 

chl-α concentrations were significantly lower (ANOVA, p<0.01) than each of the 

summer cruise periods.  In spring and summer, the majority of stations within the study 

area had chl-α concentrations >0.5 mg/m3, which reflects both the existence of localized 

areas of relatively high chl-α concentrations that were restricted to coastal areas and the 

redistribution of freshwater by slope eddies. 
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Table 4.  Summary of surface chl-α data for the nine NEGOM cruises.  Integrated 
freshwater units are m3/m2 for 98 stations combined.  All chl-α units are in mg/m3. 
 

CRUISE Season 
Integrated 
Freshwater 

Mean 
Surface CHL 
(all) 

Mean 
Surface CHL 
(Freshwater)

Mean Surface 
CHL 
(Bluewater) 

Mean Surface 
CHL (Coastal) 

NEGOM1 winter 10.05 0.50 0.66 0.25 0.22
NEGOM4 winter 10.72 0.42 1.20 0.29 0.79
NEGOM7 winter 3.01 0.38 1.09 0.34 0.48
NEGOM2 spring 52.01 0.84 1.64 0.26 0.70
NEGOM5 spring 36.87 0.64 1.34 0.21 0.81
NEGOM8 spring 7.97 0.25 0.97 0.18 0.30
NEGOM3 summer 105.28 0.90 1.02 0.31 0.99
NEGOM6 summer 87.13 0.88 1.03 0.22 0.63
NEGOM9 summer 38.20 0.89 1.59 0.37 0.67

 
 

Because both the amount of river flow and the intensity and location of slope 

eddies varied in the 1997-2000 period, there is variable placement of these high surface 

chl-α concentration areas on an interannual basis.  In winters though, the high surface 

chl-α concentrations are primarily restricted to the areas directly adjacent to the river 

outflow areas.  The distribution of these regions can be seen in the surface chl-α contour 

plots for the winter cruises (Figure 14) and the false color satellite images of surface chl-

α concentration for the winter months (Figure 15). 
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Figure 15.  SeaWiFS false color satellite images of surface chlorophyll-α concentrations 
for the winter NEGOM cruises.  Top image is NEGOM1, middle image is NEGOM4, 
and bottom image is NEGOM7.  Images and data processing courtesy of Bisman 
Nababan and Chuanmin Hu of the University of South Florida. 
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3.3.1.2. Surface Chlorophyll Distribution for Spring Cruises (NEGOM2, NEGOM5 

The mean Surface chl-α concentrations for the spring cruises are summarized in 

 

 

surface chl-α 

concen ajor 

n in 

.3.1.3. Surface Chlorophyll Distribution for Summer Cruises (NEGOM3, 

The mean surface chl-α concentrations for the summer cruises are summarized in 

 cruises.  

ater 

 

ver  

and NEGOM8) 

 

 

Table 4.  The overall surface chl-α concentrations for the spring cruises were higher than

the winter cruises, except for spring, 2000 (N8) which had significantly lower overall 

surface chl-α concentrations than the two other spring cruises.  The majority of stations

for the spring cruises had surface chl-α concentrations <0.5 mg/m3. 

As was the case for the winter cruises, the regions of highest 

trations are generally restricted to the regions adjacent to the mouths of the m

freshwater sources in the region.  However, these regions, in general, extend further 

offshore compared to the winter cruises.  The distribution of these regions can be see

the surface chl-α contour plots for the winter cruises (Figure 14) and the false color 

satellite images of surface chl-α concentration for the spring months (Figure 16). 

 

3

NEGOM6 and NEGOM9) 

 

 

Table 4.  Overall, surface chl-α concentrations for the summer cruises were the highest 

for all of the nine cruises.  These surface chl-α concentrations were significantly higher 

than those of the winter cruises and of the spring, 2000 (N8) cruise.  The reason for this 

high overall surface chl-α concentrations within the study area is due to the 

redistribution of freshwater within the study area for all three of the summer

The placement of areas with high surface chl-α concentrations are also distinctly 

different from the winter and spring cruises due to the manner by which the freshw

was introduced into the study area.  The presence of large amounts of freshwater within

the study area during the three summer cruises is due to the presence of slope eddies 

south and southeast of the Birdsfoot Delta.  These slope eddies entrain Mississippi Ri

 



 45

Figure 16.  SeaWiFS false color satellite images of surface chlorophyll-α concentrations 
for the spring NEGOM cruises.  Top image is NEGOM2, middle image is NEGOM5, 
and bottom image is NEGOM8.  Images and data processing courtesy of Bisman 
Nababan and Chuanmin Hu of the University of South Florida. 
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Figure 17.  SeaWiFS false color satellite images of surface chlorophyll-α concentrations 
for the summer NEGOM cruises.  Top image is NEGOM3, middle image is NEGOM6, 
and bottom image is NEGOM9.  Images and data processing courtesy of Bisman 
Nababan and Chuanmin Hu of the University of South Florida. 
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water and they transport that water within the study area.  The extent of the freshwater 

entrainment and the resulting high surface chl-α regions are clearly seen from the false 

color satellite images for the summer cruise periods (Figure 17) and in the surface chl-α 

contour plots for the summer cruises (Figure 14).  That substantial amounts of this 

entrained water get transported into the outer shelf and continental slope areas is evident, 

nearly half of the stations on each summer cruise had surface chl-α concentrations >0.5 

mg/m3.  Many of these stations with high surface chl-α concentration are found far 

offshore and extending far to the east of the source of entrained water. 

 

 

Table 5.  Summary of chl-α integration data for the nine NEGOM cruises.  Integrated 

freshwater units are m3/m2 and integrated chl-α units are mg/m2. 

 

 

3.3.1.4. Integrated Chlorophyll Abundance at 36.8% Surface Light Penetration 

Depth for Winter Cruises (NEGOM1, NEGOM4 and NEGOM7) 

 
2

 

om 

0.75 mg/m -11.07 mg/m , with a mean of 2.50 mg/m .  As an overall trend, coastal 

CRUISE Season Integrated 
Freshwater 

Mean 
36.8% Light 
Depth (m) 

Mean 
18% 
Light 
Depth 

(m) 

Mean 
1% Light 

Depth 
(m) 

Mean 
Integrated 

CHL at 
36.8% 

Mean 
Integrated 

CHL at 
18% 

Mean 
Integrated 
CHL at 1% 

NEGOM1 winter 10.05 6.20 12.26 42.65 2.80 5.27 19.60
NEGOM4 winter 10.72 6.80 14.93 55.88 2.14 4.42 17.50
NEGOM7 winter 3.01 6.51 16.38 57.31 2.00 4.96 17.82
NEGOM2 spring 52.01 6.25 12.10 48.60 2.30 3.87 19.3
NEGOM5 spring 36.87 7.29 15.27 47.08 1.76 4.33 17.30
NEGOM8 spring 7.97 6.91 16.91 50.56 1.18 2.88 8.83
NEGOM3 summer 105.28 5.39 8.54 35.86 4.33 6.64 21.30
NEGOM6 summer 87.13 5.10 8.65 34.31 3.02 6.71 19.92
NEGOM9 summer 38.20 5.12 9.78 36.32 2.86 4.98 17.00

The last 3 columns of table 5 summarize the mean integrated chl-α (mg/m ) from 

the surface to the 36.8%, 18%, and 1% light penetration depth.  The vertically integrated

chl-α (mg/m2) to the 36.8% light penetration depth for the winter cruises ranged fr
2 2 2
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stations and freshwater stations had greater integrated chl-α mass than bluewater 

The vertically integrated chl-α (mg/m2) to the 36.8% light penetration depth for 

e spring cruises ranged from 0.39 mg/m2-9.30 mg/m2, with a mean of 1.70 mg/m2.  

nd low integrated chl-

α stations within each of the three hydrographic regimes.  However, most of the spring 

s in t e f  ch r g p  

shallower stations with high surface chl-α concentrations as opposed to stations with 

te n dept  lowe ace  concentrations.  Among ring

pr 000 (N  a mu we n in ed c o the 1 ical 

p o the pring es, like  to t wer am  of 

r  the stu ea du his .  is a r t (>0.7 <0.05

o  be urfac α concentrations and total integrated chl-α m

op pth  18).  rela hip nserv r all t

hydrographic regimes, though the correlation value is lowest for the bluewater stations. 

 

 

stations.  There is a robust (>0.700, p<0.05) positive correlation between surface chl-α 

concentrations and vertically integrated chl-α to the 1st optical depth (Figure 18).  This 

relationship is statistically significant in all three hydrographic regimes, although the 

correlation is lowest for the bluewater stations. 

 

3.3.1.5. Integrated Chlorophyll Abundance at 36.8% Surface Light Penetration 

Depth for Spring Cruises (NEGOM2, NEGOM5 and NEGOM8) 

 

 

th

There is no discernable overall trend in the distribution of stations with high and low 

integrated chl-α mass.  There is a fairly even distribution of high a

tations he high r range o integrated l-α fo this inte ration de th are the

deeper in gratio hs and r surf  chl-α  the sp  
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3.3.1.6. Integrated Chlorophyll Abundance at 36.8% Surface Light Penetration

Depth for Summer Cruises (NEGOM3, NEGOM6 and NEGOM9) 

 

 The vertically integrated chl-α (mg/m

 

.  

s that fell within the higher range of 

integrated chl-α.  The higher range of integrated chl-α stations for this integration depth 

s 

ions.  There is a 

bust (>0.600, p<0.05) positive correlation between surface chl-α concentrations and 

e 

n 

 

 

e 

ime 

enetration depth for the freshwater and coastal stations (Figure 19). 

2) to the 36.8% light penetration depth for 

the summer cruises ranged from 0.40 mg/m2-20.50 mg/m2, with a mean of 3.30 mg/m2

The freshwater region had the majority of station

are dominated by stations with shallower integration depths, particularly those station

from the freshwater region that had very high surface chl-α concentrat

ro

vertically integrated chl-α to the 1st optical depth (Figure 18).  This relationship is 

statistically significant in all three hydrographic regimes, although the correlation valu

is lowest for the bluewater stations.  The relative weakness of the bluewater correlatio

is most likely due to the limited number of stations as well as the limited range of values

for these stations as opposed to a weak relationship between surface chl-α and integrated

chl-α mass for this integration depth.   

 

3.3.1.7. Integrated Chlorophyll Abundance at 18% Surface Light Penetration 

Depth for Winter Cruises (NEGOM1, NEGOM4 and NEGOM7) 

  

The vertically integrated chl-α (mg/m2) at the 18% light penetration depth for th

winter cruises ranged from 0.50 mg/m2-17.60 mg/m2, with a mean of 4.80 mg/m2.  In 

general, there are robust (>0.700, p<0.05) positive correlations between wintert

surface chl-α concentrations and wintertime vertically integrated chl-α at the 18% light 

p
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Figure 18.  Comparison of surface chlorophyll-α concentration with integrated 
chlorophyll-α to the 1st optical depth for all cruises.  Top figure is winter cruises, middle 
figure is spring cruises, and bottom figure is summer cruises. 
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3.3.1.8. Integrated Chlorophyll Abundance at 18% Surface Light Penetration 

Depth for Spring Cruises (NEGOM2, NEGOM5 and NEGOM8) 

 

 The vertically integrated chl-α (mg/m2) at the 18% light penetration depth for the 

spring cruises ranged from 0.53 mg/m2-30.10 mg/m2, with a mean of 3.70 mg/m2.  

Spring, 2000 (N8) had a much lower average integrated chl-α compared to the other 

spring cruises.  The lower values for vertically integrated chl-α for the spring, 2000 (N8) 

cruise, compared to the other spring cruises, are due to lower chl-α concentrations at the 

surface and at depth.  The integration depths for spring, 2000 (N8) are deeper that the 

other spring cruises, giving lower values for integrated chl-α is due to a lower volume of 

water being sampled. 

For the spring cruises there is a robust (>0.800, p<0.05) positive correlation 

between surface chl-α concentrations and vertically integrated chl-α mass at the 18% 

light penetration depth for the freshwater and coastal stations (Figure 19).  The highest 

values of total integrated chl-α at the 18% light penetration depth are found at the 

stations that have the highest abundance of freshwater, regardless of integration depth.  

The lower values of total integrated chl-α at the 18% light penetration depth are 

generally the stations on the outer shelf slope, regardless of integration depth. 

 

3.3.1.9. Integrated Chlorophyll Abundance at 18% Surface Light Penetration 

Depth for Summer Cruises (NEGOM3, NEGOM6 and NEGOM9) 

 

 The vertically integrated chl-α (mg/m2) at the 18% light penetration depth for the 

summer cruises ranged from 0.63 mg/m2-26.93 mg/m2, with a mean of 6.20 mg/m2.   

There is a robust (>0.800, p<0.05) positive correlation between surface chl-α 

concentrations and vertically integrated chl-α mass at the 18% light penetration depth for 

the freshwater and coastal stations (Figure 19).  This correlation does not hold true for 

 the highest values of total  

the bluewater stations, of which there are very few and among which there are large 

variations in the integration depth.  As with the spring cruises,
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Figure 19.  Comparison of surface chlorophyll-α concentration with integrated 
chlorophyll-α to the secchi disc depth for all cruises.  Top figure is winter cruises, 
middle figure is spring cruises, and bottom figure is summer cruises. 
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integrated chl-α at the 18% light penetration depth are found at the stations that have the 

highest abundance of freshwater, regardless of integration depth.  Also similar with the 

spring cruises, the lower values of total integrated chl-α mass at the 18% light 

penetration depth are generally the stations on the outer shelf slope that do not have 

freshwater, regardless of integration depth. 

 

3.3.1.10. Integrated Chlorophyll Abundance at 1% Surface Light Penetration 

Depth for Winter Cruises (NEGOM1, NEGOM4 and NEGOM7) 

 

 The vertically integrated chl-α (mg/m2) at the 1% light penetration depth for the 

winter cruises ranged from 3.84 mg/m2-47.07 mg/m2, with a mean of 18.00 mg/m2.  As 

an overall trend in the distribution of high values of integrated chl-α, the higher values of 

integrated chl-α were found at nearshore stations that had high surface chl-α 

concentrations or at outer shelf slope stations that had deeper integration depths.  The 

majority of the stations had integrated chl-α values that are near the mean value of 18.00 

mg/m2.  There is a weak (>0.500, p<0.05) correlation between surface chl-α 

concentrations and vertically integrated chl-α to the 1% light penetration depth for the 

freshwater and coastal stations (Figure 20). 

 

3.3.1.11. Integrated Chlorophyll Abundance at 1% Surface Light Penetration 

Depth for spring Cruises (NEGOM2, NEGOM5 and NEGOM8) 

 

 The vertically integrated chl-α (mg/m2) to the 1% light penetration depth for the 

spring cruises ranged from 3.59 mg/m2-34.45 mg/m2, with a mean of 15.00 mg/m2.  The 

spring, 2000 (N8) cruise showed distinctly different overall values for the vertically 

integrated chl-α at the 1% light penetration depth compared to the other spring cruises.  

ns 

g, 2000 (N8) has 

The mean vertically integrated chl-α is much lower for the spring, 2000 (N8) statio

compared to the other spring cruises.  This is despite the fact that sprin
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deeper integration depths than the other spring cruises.  The surface chl-α concentrations 

rea 

integrated chl-α at the 1% light penetration 

depth for spring, 1998 (N2) and spring, 1999 (N5) are found at the nearshore stations 

few 

vely deep 

tegration depths and have integrated chl-α mass values that are consistently near the 

ean v

 (mg/m2) at the 1% light penetration depth 

r the summer cruises ranged from 3.80 mg/m2-51.96 mg/m2, with a mean of 19.00 

-α  

tration depth for 

e coastal and freshwater stations (Figure 20).  It should be noted, however, that several 

α 

and the chl-α concentrations at depth are much lower, as a whole, than those found 

during the other spring cruises.  The reason for the low overall integrated chl-α mass in 

spring, 2000 (N8) is due to the relative absence of freshwater within the study a

compared to the other spring cruises. 

 The highest values for the vertically 

that have a high abundance of freshwater.  Aside from these high values found at a 

stations, the majority of the stations from these two cruises have relati

in

m alue of 18.00 mg/m2 for the two cruises.  The comparison of surface chl-α with 

vertically integrated chl-α to the 1% light penetration depth (Figure 20) shows a weak 

(>0.300, p<0.05) positive correlation between the two parameters for the stations from 

all three hydrographic regions. 

  

3.3.1.12. Integrated Chlorophyll Abundance at 1% Surface Light Penetration 

Depth for summer Cruises (NEGOM3, NEGOM6 and NEGOM9) 

 

 The vertically integrated chl-α

fo

mg/m2.  There is a robust (>0.700, p<0.05) positive correlation between surface chl

concentrations and the vertically integrated chl-α at the 1% light pene

th

stations do not follow this trend due to special circumstances.  Several of the coastal 

stations had relatively low surface chl-α concentrations with high vertically integrated 

chl-α to the 1% light penetration depth.  These particular stations have very high chl-

concentrations at or near the ocean floor.  These near bottom chl-α layers are not 

predicted based upon the surface chl-α concentrations for these stations.  At these 

stations, the unpredicted high total integrated chl-α at the 1% light penetration depth is 
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due to the very high near bottom chl-α concentrations that are not included in the 36.8 % 

and 18% light penetration depth integrations.  The lowest values of vertically integr

chl-α were found at the stations that had little or no freshwater present and had low 

surface chl-α concentrations.  These stations were generally on the outer shelf slope

did not contain entrained freshwater fo

ated 

 and 

rm the Mississippi River. 

ller-Karger et al., 1991; Conkright et al., 2000; Psarra et 

., 2000].  In contrast, mean surface chl-α concentrations on the NEGOM cruises were 

r surface waters 

f the NEGOM area reflect both the input and the redistribution of low salinity green 

water.  all th

 

 

 

3.4. Discussion 
 

 The overall seasonal cycle for surface chl-α concentrations in the NEGOM 

region is atypical for what is expected to be an oligotrophic open ocean system.  The 

general seasonal trend in surface chl-α concentrations expected for oligotrophic waters 

of a subtropical continental margin is a minima during summer periods and maximum 

during spring [Cullen, 1982; Mu

al

highest during the summer months (Table 4). 

As shown here and in Chapter II, chl-α concentrations in the nea

o

 In ree of the summer NEGOM cruises, there were anticyclonic slope eddies 

south and southeast of the Mississippi River delta that resulted in entrainment of low 

salinity green water eastward and offshore [Qian et al., 2003; Bellabbassi et al., 2004 in

review; Nababan et al., 2004 in review].  So the high surface chl-α concentrations 

observed during these summer cruises is directly linked to the amount of freshwater 

being redistributed within the NEGOM area. 
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Figure 20.  Comparison of surface chlorophyll-α concentration with integrated 
chlorophyll-α to the estimated depth of the base of the euphotic zone for all NEGOM 
cruises.  Top figure is winter cruises, middle figure is spring cruises, and bottom figure 
is summer cruises. 

y = 6.6537x + 9.5695
R2 = 0.324

y =

20

25

30

35

40

45

50

In
te

gr
at

ed
 C

H
L 

to
 1

%
 L

ig
ht

 P
en

et
ra

tio
 19.203x + 5.0957

R2 = 0.6813

0

5

10

15

0 0.5 1 3

Surface CHL (mg/m^3)

n
D

ep
th

 (m
g)

1.5 2 2.5

Freshwater
Blue Water
Coastal
Linear (Freshwater)
Linear (Coastal)

y = 3.0882x + 14.968
R2 = 0.1404

y = 2.7296x + 9.99
R2 = 0.1777

5

10

15

20

25

30

35

40

In
te

gr
at

ed
 C

H
L 

to
 1

%
 L

ig
ht

 P
en

et
ra

tio

0
0 1 2 3 4 5 6

Surface CHL (mg/m^3)

n
D

ep
th

 (m
g)

Freshwater

Blue Water

Coastal

Linear
(Freshwater)
Linear (Coastal)

y = 6.4835x + 14.658
R2 = 0.5148

y = 5.9366x + 9.8288
R2 = 0.5282

20

30

40

50

60

In
te

gr
at

ed
 C

H
L 

to
 1

%
 L

ig
ht

 P
en

et
ra

tio

0

10

0 1 2 3 4 5 6

Surface CHL (mg/m^3)

n
D

ep
th

 (m
g)

Freshwater

Blue Water

Coastal

Linear
(Freshwater)
Linear (Coastal)

 



 57

The study by Muller-Karger et al. [1991] reported the mean surface chl-α 

concentrations for an area encompassing the entire Gulf of Mexico.  By averaging the 

entire Gulf of Mexico surface, that study emphasized conditions in the offslope, deep 

water regions because these account for the majority of area of the Gulf of Mexico.  Had 

a reversed seasonal cycle (i.e. high surface chl-α in summer and low surface chl-α in 

winter) been present in the NEGOM region, during the period (1978-1985) covered by 

Muller-Karger et al. [1991], that cycle would likely have been overshadowed by the off-

shelf seasonal cycle which dominates the Gulf of Mexico surface area. 

The determination of integrated water column chl-α to the three depths described 

is strongly determined by the depth of integration (Table 5).  On a cruise by cruise basis 

there are large amplitudes in the variation of these integration depths, particularly that of 

the 1% light penetration depth.  This is especially true when the integration depths are 

calculated separately for each of the three hydrographic regimes, as can be seen by the 

correlation analyses in appendix A and the figures in appendix B. 

For example, a comparison of the integration depths with the associated 

integrated chl-α mass demonstrates the importance of water depth (Appendix A, Figures 

A1-A8).  One of the most notable trends is that freshwater stations in depths shallower 

that 100m have no correlation between integration depth and integrated chl-α mass to 

any of the depths.  In contrast, the freshwater stations in depths exceeding 100m have 

significant (p<0.05) positive correlation between integration depth and integrated chl-α 

mass to the 1st optical depth and the secchi disc depth.  Such lack of correlation in water 

depths <100 m could be caused by several factors associated with the freshwater 

outflow.  The shallower stations will typically be closer to the freshwater source, which 

can have two separate effects.  First is that the closer to the freshwater source the higher 

the turbidity will be, thus decreasing the light penetration and integration depth.  

Similarly, the surface chl-α concentrations should be highest near the freshwater source.  

This condition could lead to very shallow integration depths with simultaneously very 

high water column chl-α mass in the shallower integration depths. 
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The river water stations have consistently shallower integration depths than

other hydrographic regimes, but there is high variation in the integration depths betwee

different stations that are considered to be river water stations.  The stations that have t

shallowest of integration depths are consistently those that are directly adjacent to river 

outflow areas, particularly the Mississippi River outflow.  Light penetration in these 

specific stations is particularly shallow (approximate mean of 6 meters) due to a 

combination of plankton biomass, CDOM and suspended sediments [Nababan et al., in 

review 2004].  While these stations are characterized by very high surfa

 the 

n 

he 

ce chl-α 

concen

r 

o freshwater stations 

closer t d from 

s 

he 

ation 

tration 

 as that of a station 

that is integrated to a depth of 80m, but the two will have very different total integrated 

trations (>5mg/m3) they frequently had relatively low vertically integrated chl-α 

abundance compared to fresh water stations with lower surface chl-α  concentrations. 

At stations with freshwater abundance >0.33m3 that were relatively distant (outer 

shelf) from the freshwater sources showed surface chl-α concentrations that were highe

by an order of magnitude than adjacent blue water stations.  Yet frequently these off-

margin freshwater stations had deep integration depths compared t

o shore.  In these cases, the relatively high chl-α concentrations were foun

the surface through much of the water column, which gave these stations the highest 

integrated water column chl-α values compared to the majority of other stations for all 

cruises. This is due to deep integration depth compared to nearshore freshwater station

with much higher surface chl-α values and much higher chl-α concentrations through t

water column than blue water stations that have much deeper integration depths.  As 

such, the stations with the highest overall integrated chl-α values were the freshwater 

stations that were far enough from freshwater sources to allow deeper light penetr

yet still maintained high chl-α concentrations in surface waters and at depth. 

The bluewater stations for all cruises showed very high variability in the 

integration depths, particularly at the 18% surface light and 1% surface light pene

depths.  This wide range of integration depths led to a wide range of integrated chl-α 

mass totals for the blue water stations.  For example, a bluewater station that is 

integrated to a 30m depth may have a similar chl-α and light profile
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chl-α m

that 

ration 

 

 

occasio
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d 

ke 

 

ere any 

stations les.  

 

ass.  If at both stations the full euphotic zone has similar chl-α concentrations 

through depth, the amount of water column chl-α mass is nevertheless greatly affected 

by the shallow versus deep depth of water column. 

In the case of most of these bluewater stations the deep chl-α maximum was 

included in the 1% surface PAR integration depth.  This remains true for the stations 

had relatively shallow integration depths as well as those that had very deep integ

depths.  This further supports the likelihood that these depths were fully representative 

of the full euphotic depth, regardless of variations between the integration depths

between stations. 

The inclusion of the deep chl-α maximum for the bluewater stations limited the

ns on which there was significant correlation between surface chl-α 

concentrations and integrated chl-α mass to the compensation depth.  This was true for 

both shallower bluewater stations (<100m) and deeper stations.  There was very stron

correlation between surface chl-α concentrations and integrated chl-α mass to the 1st 

optical depth and the secchi disc depth for bluewater stations of any depth.  This 

indicates that, under conditions where freshwater is not present and surface chl-α 

concentrations are low (as bluewater stations are defined in this study), surface 

measurements will not wholly reflect the overall chl-α mass through the euphotic zone. 

Care was taken to exclude stations that might affect integration depth due to 

factors other than light absorption within the water column.  Stations that were sample

during early morning and late afternoon frequently had insufficient surface PAR to ma

effective calculations of integration depth, particularly at the deeper integration depths. 

As such, these stations were excluded from the chl-α integration analysis, as w

 that had strikingly different downcast versus upcast light extinction profi

Excluded stations generally accounted for one third of the total daytime stations per 

cruise. 

An example would be a station where the light profile shows the typical 

exponential decrease in PAR with depth, and then has a sudden increase of PAR at 

depth.  This could be caused by the shadow of the ship intersecting the path of the sensor
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package, or by sudden changes in the surface PAR, such as cloud cover changing the 

amount of light striking the ocean surface during the CTD deployment.  Any stations 

which had unreliable light profiles were removed from the analysis, so those that were 

include us 

nsor’s sensitivity.  In these cases, that particular depth integration was 

exclude

ng to deeper 

of 

l 

et al., 

particu  are 

d 

α mass 

measur  at 

d in the analysis are assumed to be accurate profiles of light extinction and th

accurate measurements of the appropriate integration depth. 

Similar steps were also taken to exclude integration depths that were found at 

light levels that were beyond the reliable range of sensor measurements.  In many cases 

the surface PAR was such that the 1% PAR value was below the signal-to-noise 

threshold of the se

d from the analysis.   

Another methods variable that may become important when integrati

depths, particularly for the bluewater stations, is the fact that chl-α concentration is not 

always an accurate gauge of phytoplankton biomass or overall primary productivity.  

The relative concentration of chl-α within phytoplankton cells can vary with the type 

phytoplankton, the ambient light intensity, nutrient concentrations, and the overal

physiological health of the shade-adapted organism [Cullen, 1982; Muller-Karger 

1991; Qian et al.,2003; Wawrik et al., 2003]. 

This variability between phytoplankton biomass and chl-α concentrations is 

larly prominent at lower light intensities where increased chl-α concentrations

needed to effectively utilize all available light [Cullen, 1982].  This is quite likely the 

case for the chl-α maximum at the bluewater stations, which is almost exclusively found 

at the lower boundary of the euphotic zone for these stations.  As such, the inclusion of 

these chl-α maximum depth bins may cause the overall measurements of total integrate

chl-α mass to overestimate phytoplankton biomass (and overall productivity) through 

this integration depth. 

The coastal stations for all cruises had a wide variety of integrated chl-

ements caused by several different factors.  First is different bottom depth

these coastal stations.  In many cases at the bottom depth, light intensities generally 

exceeded the 1% and sometimes even 18% of surface PAR intensities.  In these cases the 
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chl-α mass totals were integrated to the bottom depth of the station.  As some inner 

stations were at water depths of 10-20 m, this resulted in low total integrated chl-α ma

when compared with adjacent stations in middle-shelf water depths, especially if both 

had high chl-α concentrations through the entire water column. 

Another factor that increased the variability in total in

ss 

tegrated chl-α mass at the 

coastal

l 

ases in chl-α concentration within a depth interval of only 

a few m

f the bluewater stations, the nature of these 

near bo  the 

 

 

e 

entrations per phytoplankton biomass.  It seems apparent that 

these n

e 

r 

 stations was the geographically variable presence of near bottom high chl-α 

layers.  These near bottom high chl-α layers were typically found on the west Florida 

shelf in depths ranging from 20m to 30m, but they were also found at other coasta

stations of different locations and depths.  These near bottom high chl-α layers were 

characterized by sudden incre

eters off bottom.  This was often a chl-α increase of up to three times the 

concentrations found a few meters higher in the water column.  Such near bottom high 

chl-α concentrations frequently doubled the 18% surface PAR and 1% surface PAR 

integrated chl-α masses, compared to integrations at adjacent stations lacking such near 

bottom high chl-α concentrations. 

While these near bottom chl-α layers have a similar effect upon the integrated 

chl-α mass as does the deep chl-α maximum o

ttom chl-α concentrations is likely different from the deep chl-α maximum in

bluewater stations.  The deep chl-α maximum of the bluewater stations is typically found 

at the lower reaches of the euphotic zone and as such it is most likely representative of

increase chl-α concentration per phytoplankton biomass [Cullen, 1982; Cullen and 

Lewis, 1995].  However, the near bottom high chl-α layers within the coastal stations are

typically found at light intensities greater than those that contain the lower limits of the 

euphotic zone.  As a result, it is not likely that the increase in chl-α concentration is du

to increased chl-α conc

ear bottom chl-α layers represent actual increases in phytoplankton biomass at 

depths that are not included in the shallower integration depths.  Furthermore, if thes

depths are not measured by remote sensing techniques, then estimates of coastal wate
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column productivity based upon satellite measurements may underestimate producti

because of the exclusion of these near bottom chl-α layers. 

Chl-α stocks integrated to the 36.8% surface light depth correlated best with 

surface chl-α concentrations.  This was true for all three hydrogr

vity 

aphic regimes, 

regardl

al or 

es 

 

ith very high light extinction coefficients in the upper 

water c

 

ce 

s.  

 

concentrations.  Upon closer examination, these stations were found to be those that had 

ess of season.  However, the correlation between vertically integrated chl-α and 

surface chl-α concentrations was less robust for the bluewater stations than for coast

freshwater stations, in all of the seasons.  A weak correlation at the bluewater stations 

may arise from the limited number of bluewater stations, particularly the summer 

cruises. 

Another factor that might limit the degree of correlation between these two 

parameters for the bluewater stations is the relatively small dynamic range of valu

found within the bluewater data values compared to the other two hydrographic regimes.   

A rather unexpected consequence of using the 36.8% surface light integration

depth was found during the initial processing of the data.  This limitation involved the 

integration of freshwater stations w

olumn.  These stations were typically those nearest the major sources of 

freshwater.  Because data logging for PAR frequently did not begin until the sensors 

were deeper than 2.5 meters, PAR measurements were not available for these very 

shallow waters.  While this was not an issue for the majority of stations, at some stations 

the calculated 36.8% surface light integration depths computed to be shallower than the

shallowest data point available.  In these cases, the 36.8% surface light depth is 

doubtless underestimated. 

Chl-α stocks integrated to the 18% surface light depth were in general positively 

correlated with the surface chl-α concentrations for all of the seasons and for all 

hydrographic regions other than the bluewater stations.  The correlation between surfa

chl-α and vertically integrated chl-α was in general strongest for the freshwater station

The correlation was weakened somewhat for the coastal stations, especially at stations 

that had uncharacteristically large integrated chl-α masses compared to the surface chl-α
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near bottom chl-α maxima shallower than the 18% surface light depths.  Such near 

bottom high chl-α layers were responsible for these stations deviating from the trend 

establis

ith 

r 

 of 

hl-α concentrations, largely depending on how much of the deep chl-α 

maxim

 

 

 

hed by the other coastal stations. 

Chl-α stocks integrated to the 1% surface light depth correlated poorly w

surface chl-α concentrations, for all of the hydrographic regimes.  The coastal stations, 

as above, had several cases where near bottom high chl-α layers gave stations very high 

integrated chl-α masses compared to the low surface chl-α concentrations.  At bluewate

stations, a wide range of vertically integrated chl-α occurred for a very small range

surface c

um was included in the integration. 
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CHAPTER IV   

REMOTE SENSING OF OCEAN COLOR 

 

 

r 

ng 

a series than can be practically accomplished 

y other methods.  All these advantages make remote sensing technologies an invaluable 

ol for analyzing how well ships, with their limited temporal and spatial sampling, 

present the overall conditions within a study area. 

Moreover, because most ship based measurements cover a period no longer than 

 few weeks, rapidly forming or rapidly moving mesoscale features can be missed 

ompletely, or in contrast, they may dominate the study area during the period of the 

ruise.  The use of satellite imagery aids in determining whether the cruise conditions are 

dicative of the overall area of study as well as the overall seasonal conditions within 

e study area.  The emphasis of this chapter will be to describe the mean condition of 

urface chl-α abundance based upon satellite ocean color measurements.  In chapter V, I 

ill discuss how representative cruise conditions are of overall seasonal conditions 

etween cruise periods. 

.1.2. SeaWiFS Satellite Imagery 

The remote sensing data used in this study were obtained from the Institute of 

arine Remote Sensing at the University of South Florida (USF), which is a regional 

ata center for ocean color data collected by the Sea-viewing Wide Field-of-View 

ensor (SeaWiFS).  At USF, chl-α values are routinely computed from the SeaWiFS 

cean color data for the eastern Gulf of Mexico region, within the area from 24o-310N, 

4.1. Introduction 

4.1.1. Remote Sensing Data 

 The availability of remote sensing technologies allows for a more complete and 

synoptic coverage of the study area than is practical using ship based measurements.  

Remote sensing techniques allow for high resolution data collection over a much large

area than is possible from ship based data collection.  Furthermore, remote sensi

techniques allow for a more continuous dat

b

to
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a

c
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w
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91o-85oW.  For this thesis, I have rev ata from this area for a four year 

period (Oct 1997-Sep 2001) in order to include all nine of the NEGOM cruises, along 

with the periods between cruises and a subsequent 12 months of data post summer, 2000 

9).  This allows for a comparison of cruise conditions with the ocean conditions 

s, both spatially and temporally. 

 

re or 

eraging satellite data so that it has 

the hig

while 

ing 

ons.  High CDOM concentrations may also contribute to 

verestimation of surface chl-α as measured by the SeaWiFS satellite.  This is 

ed by relatively undiluted river runoff, which thus 

 

 

iewed SeaWiFS d

(N

outside of the cruise boundarie

 Now that the advantages of remote sensing have been summarized, however, it is

useful to list some of the limitations of using the SeaWiFS data.  The first of these 

limitations is that of temporally overlapping satellite measurements with those of in situ 

measurements.  This problem arises primarily from the need to average data over a 

period of time so as to reduce loss of spatial coverage due to cloud cover and to reduce 

noise [Hu et al., 2000].  Thus, a cruise which may cover a study area over a two week 

period may have some collection sites represented by satellite data several days befo

after ship sampling.  This presents the quandary of av

hest possible temporal resolution, while maximizing the spatial coverage.  These 

two aspects must be balanced to gain the most accurate image of ocean conditions, 

simultaneously being able to have a comprehensive spatial image of the study area. 

 A second limitation of the SeaWiFS technology is represented by discrepancies 

between in situ chl-α measurements and those measured by the satellite.  These 

discrepancies are most often encountered in inshore waters and those areas with high 

colored dissolved organic matter (CDOM).  Bottom reflectance from shallow waters 

may affect measurements taken by the SeaWiFS sensor, thus potentially overestimat

surface chl-α concentrati

o

particularly relevant for areas affect

carry highest concentrations of CDOM.  River water typically also contains chl-α 

concentrations higher than the coastal waters into which it flows.  This complicates the

interpretation of high chl-α measurements by satellite imagery, as it is potentially 

difficult to distinguish how much of the chl-α signal is due to CDOM or actual chl-α. 
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For both of these issues, correction algorithms have been proposed to help reduce 

inaccuracies in satellite measurements [Carder et al., 1999 and Hu et al., 2000]. 

 

4.1.3. Correlation of Satellite Measurements with Ship Data 

 While the above mentioned limitations of the satellite measurements must be 

et al. 

l. 

h 

ements 

face 

mination 

nced 

e 

 each 

 

addressed, there was generally strong agreement between in situ chl-α measurements and 

those of the SeaWiFS sensor, particularly at low concentrations (<1.5 mg/m3).  Hu 

[2000] report mean relative error (MRE) of the satellite chl-α measurements averaged < 

±35% for the winter cruises and < ±50% for the spring and summer cruises.  Hu et a

[2003] further showed that with the application of an appropriate bio-optical algorithm, 

the MRE for the spring and summer cruises could generally be reduced to < ±39%. Suc

MRE values permit good estimates of surface chl-α concentrations under most 

conditions for the study area.  Hu et al.’s [2003] summary of this study’s comparison 

between satellite measured surface chl-α and in situ surface chl-α for the first six 

NEGOM cruises is shown as Figure 21. 

 

4.1.4. Purpose of Research 

 All of the aforementioned complications associated with satellite measur

of surface chl-α concentrations bring into question the reliability of these satellite 

measurements under certain conditions.  Because eddies can redistribute freshwater 

inflow within the NEGOM regions, this contributes to the difficulty in accurately 

measuring surface chl-α concentrations by satellite.  The convergence of in situ sur

chl-α measurements and satellite surface chl-α measurements allows for a deter

of how accurate the satellite measurements are by an in situ method.  I have 

hypothesized that the satellite measured surface chl-α concentrations will be influe

by the hydrographic region of each station.  This hypothesis was tested by comparing th

mean satellite measured chl-α with ship-measured surface chl-α concentrations for

of hydrographic regions. 
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Figure 21.  Comparison of satellite measured surface chl-α concentrations with in situ 
measured surface chl-α concentrations for six of the NEGOM cruises.  Solid lines 
represent in situ measurements while “x”’s represent satellite measurements.  Figure 
from Hu et al., [2003]. 
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4.2. Methods 
 

4.2.1. Data Processing 

  At USF, the ocean color algorithm OC2, (O’Reilly et al., 1998) was used to filter 

remote sensing reflectance data at 490 nm and 555 nm, to estimate surface chl-a 

concentrations from the ocean color backscatter data.  For a further expansion of the 

SeaWiFS sensor methods used, refer to Hu et al. [2000].  SeaWiFS data were averaged 

for one week periods to reduce the loss of spatial coverage due to cloud cover.  Each 

data point represented a weekly average chlorophyll-a value for a 5x5 km square 

centered upon each of the 98 NEGOM CTD stations.  These data points include all nine 

NEGOM cruises in addition to the periods between each cruise, for a total time period of 

over 4 years.  All of the data processing was done by Dr. Chuanmin Hu and his graduate 

student, Bisman Nababan, at the University of South Florida. 

 

 
4.3. Results 

 

4.3.1. Mean Chlorophyll Concentrations 

 This section overviews the mean satellite surface chlorophyll-a concentrations.  

The first analysis comprises the mean remotely sensed with ship measured surface chl-α 

values for each cruise, inclusive of all stations regardless of hydrographic regime.  For 

the second analysis within this section, the mean surface chl-α values for each cruise are 

partitioned by hydrographic regime. 

 

.3.1.1. Mean Surface Chlorophyll by Cruise 

pearman rank order comparison between the mean satellite measurements and the mean 

 situ measurements shows a positive relationship (rs=0.82) between the mean 

4

 

The overall mean satellite measured surface chl-α for each cruise is shown 

compared to the overall mean in situ measured surface chl-α in Figure 22.  Using a 

S

in
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measurements from the two methods.  The data used for this analysis include a large 

ariation in surface chl-α concentrations, ranging from 0.3 mg/m3 to as much as 28 

also include water from all three of the previously described 

liers.  

e stations from all three of 

e previously designated hydrographic regimes. 

ars 
represent one standard deviation. 

v

mg/m3.  These averages 

hydrographic regions.  To limit the impact of this variation on the overall means, high 

surface chl-α measurements at inshore stations were subsequently removed as out

A more specific explanation of this process is given in the following discussion. 

 

4.3.1.2. Weekly Mean Surface Chlorophyll 

 

 Figure 23 shows the weekly overall surface chl-α means for the study area for a 

four year period.  A general trend can be observed of low surface chl-α in the fall/winter 

period, with increasing surface chl-α through the spring and chl-α peaks being reached 

during the summer months.  These weekly mean values includ

th

 

6

Figure 22.  Mean satellite and ship measured surface chlorophyll-α concentrations for all 
nine NEGOM cruises.  Each cruise is composed of 94-98 data points and error b
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4.3.1.3. Mean Surface Chlorophyll by Region 

 

 The mean surface chl-α concentrations averaged higher at the fresh water stations 

than at bluewater stations (Figure 24).  This difference is statistically significant 

(ANOVA, p<0.05) for all cruises except summer, 1998 (N3), for which there were too 

few blue water stations to allow meaningful testing. 

 The fresh water stations (Figure 24) also had significantly (ANOVA, p<0.05) 

higher surface chl-α concentrations than the coastal stations (Figure 24) for all of the 

winter cruises (NEGOM1, 4, 7) as well as spring, 2000 (N8) and summer, 2000 (N9).  

Spring, 1998 (N3) was again an exception in the trend of freshwater stations having 

higher mean surface chl-α than the coastal stations, though there was no statistical 

difference between these two means.  Spring, 1998 (N3) is also notable as having the 

Fig. 23.  Mean weekly satellite surface chlorophyll-α measurements throughout the 
study area for a four year period.  Each data point

lowest mean surface chl-α at the fresh water stations for all of the cruises (Figure 24). 
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 The coastal stations (Figure24) had higher surface chl-α means compared to the 

blue water stations (Figure 24) for all nine of the cruises.  This difference was 

statistically significant (ANOVA, p<0.05) for all winter cruises (NEGOM1, 4, 7) as well 

as spring, 1999 (N5), summer, 1999 (N6) and summer, 2000 (N9) cruises. 

 
 

4.3.2. Comparison of Chlorophyll Distribution 

 The grand mean analysis of satellite measured surface chl-α is limited by the 

large variation in measurements within each data set.  This variation is a combination of 

different hydrographic regimes influencing surface chl-α concentrations as well as by 

potential overestimation of surface chl-α concentrations by the satellite methods. 

The following section discusses the satellite data based upon the distribution of 

different chl-α concentration intervals.  Three intervals are used for this analysis; low 

5 

.3.2.1. Surface Chlorophyll Differences by Season 

ns is an 

r 

uises have fewer stations falling 

 

chl-α concentrations (chl-α <1 mg/m3), high chl-α concentrations (1 mg/m3< chl-α <

mg/m3) and very high chl-α concentrations (chl-α > 5 mg/m3).   

 

 

4

 

 The overall seasonal trend in satellite measured surface chl-α concentratio

increase in the number of high (1 mg/m3< chl-α <5 mg/m3) chl-α stations for the summe

cruises compared to the other seasons.  The winter cr

under the very high (chl-α > 5 mg/m3) chl-α range compared to spring and summer.  

These trends are summarized in Appendix B, Figures B1-B3 and Figures B4-B12 show

graphical representations of the surface chl-α distribution for the all cruises. 
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Figure 24.  Mean satellite m
N

easured surface chlorophyll-α concentrations for each 
EGOM cruise separated by hydrographic regions.  Error bars represent one standard 

deviation.  Top figure is freshwater stations, middle figure is bluewater stations, and 
bottom figure is coastal stations. 
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4.3.2.2. Surface Chlorophyll Differences by Region 

 

 Surface chl-α distributions are similar within the freshwater regions for the 

winter and spring seasons.  Summer cruises have a higher proportion of low (chl-α <1 

mg/m3) chl-α freshwater stations compared to the other seasons.  These trends are 

summarized in Appendix B, Figures B13-B15 and Figures B4-B6 show graphical 

representations of the surface chl-α distribution for winter cruises.  

 The surface chl-α distributions for the bluewater regions follow a similar trend 

for all three seasons.  For all cruises the majority of the bluewater stations fell under the 

w (chl-α <1 mg/m3) chl-α designation, as would be expected of blue water stations.  

However, some of these stations have satellite measured surface chl-α concentrations in 

the high and very high ranges.  Stations are categorized based upon in situ measured 

properties, and as such bluewater stations should by definition not have surface chl-α 

concentrations in the high and very high ranges.  The presence of these high and very 

high surface chl-α concentrations at designated bluewater stations is addressed in the 

following discussion.  These trends are summarized in Appendix B, Figures B16-B18 

and Figures B7-B9 show graphical representations of the surface chlorophyll-α 

distribution for the winter cruises. 

 Coastal stations for all cruises contain a combination of low surface chl-α 

stations and high surface chl-α stations with an absence of very high surface chl-α 

stations.  These trends are summarized in Appendix B, Figures B19-B21 and Figures 

B10-B12 which show graphical representations of the surface chlorophyll-α distribution 

for the winter cruises. 

 

4.3.3. In Situ Chlorophyll and Satellite Chlorophyll 

 This final section of results compares ship measurements with SeaWiFS 

measurements of surface chl-α. The first comparison utilizes the overall mean surface 

tions 

lo

chl-α for each of the nine cruises.  Further comparison is done by separating the sta

according to hydrographic regime and season. 
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4.3.3.1. Mean in Situ Chlorophyll and Mean Satellite Chlorophyll 

 

, an 

α 

 22 

α concentrations.  

 

e 

n 

), 

dition of chl-α concentration values for the winter 

 more 

een 

. 

 
 
 

 

 As shown by Spearman rank test of the means for the 9 cruises, in Figure 22

overall correlation exists between the between the mean satellite measured surface chl-

concentrations and the mean in situ surface chl-α concentrations.  However, Figure

also shows that satellite measurements tend to overestimate mean surface chl-α 

concentrations compared to the in situ measurements of surface chl-

Further comparisons of these same parameters (Appendix B, Figures B22-B24), when 

partitioned cruise-by-cruise by hydrographic regime, indicate that on most cruises the 

bluewater means chl-α values are all relatively low compared to the coastal means, and

the coastal means are low compared to the freshwater means.  However, the more 

stations representing each hydrographic regime, the higher was the overall impact on 

mean surface chl-α concentrations as measured by either ship or SeaWiFS.  That is, th

higher the proportion of freshwater stations that are present, the higher will be the mea

surface chl-α concentrations for the entire study area. 

 The winter cruises have the overall strongest positive correlation (>0.500, 

p<0.05) between ship and satellite chl-α measurements (Appendix B, Figure B25

reflecting the mostly bluewater con

cruises.  The cruises from the other seasons (Appendix B, Figures B26-B27) show

scatter, but they all show significant (0.300-0.600, p<0.05) positive correlation betw

satellite measured surface chl-α concentrations and in situ surface chl-α concentrations
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4.4. Discussion 
 

 The use of mean surface chl-α concentration per cruise in assessing overall trends 

-α data.  Each 

ruise encompasses a large area over a variety of depths extending from inshore stations 

 mean 

 

 

 

ry 

 

ce chl-α concentrations 

nty 

t 

easurements, a series of criteria were used.  First, stations were dropped from the data 

analysis if they were unreliable outliers.  The first of these considerations was only used 

when the station was shallower than the first optical depth, based upon the light profile 

for that individual station.  This represented e fewest number of data points removed as 

most shallow water stations with very high chl-α were more likely to be removed 

according to the second criteria.  The second criteria was applied to stations that were 

in surface chl-α is greatly hindered by the large variation in surface chl

c

to the outer slope which introduces a wide variety of hydrographic regimes.  This, 

compounded with the influences of inputs and redistributions of fresh water into the 

study area at different times, makes an overall analysis of the surface chl-α 

concentrations within the study area particularly difficult.  For an analysis of the

satellite measured surface chl-α to be relevant, it must be carried out on a scale smaller

than that of the entire NEGOM study area. 

 The mean satellite measured surface chl-α of all stations for each cruise tends to

be higher in summer but shows no marked differences with season or year.  This reflects

the high variation within the data of each cruise, most notably from stations with ve

high satellite-measured surface chl-α. 

Most of this variation can be pinpointed to the four most inshore stations of Line

1, i.e. those closest to the Mississippi River birdsfoot belta.  During several of the 

cruises, these four stations had satellite measured surfa
3apparently greater than 20 mg/m .  These measured chl-α concentrations were twe

times those of the surface chl-α concentrations for over half of the total stations.  No

only does the presence of such stations skew the mean chl-α value for the entire study 

area, but this also drastically increases the variance of the mean, making any relevant 

statistical analysis difficult. 

To cull these stations that occasionally have very high surface chl-α 

m

th
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likely to have a strong CDOM signal, i.e. those with significant fresh water abundance.  

he final criteria for the removal of a data point was whether the measurements were 

suspected of being asynchronous wi ments as might occur because 

atellite data are formed from one week averages, with the chronology of the weeks not 

s 

ations and 

s.  The relatively low number of low surface 

hl-α s

vance to satellite measurements of surface chl-α 

concen

ts 

s the 

 

o 

e can observe surface chl-α concentration cycles through 

interan les in mind, 

T

th in situ measure

s

necessarily coinciding exactly with that of the cruise dates. 

If a station passed one of these criteria for eligibility, it was then analyzed 

according to a second parameter to confirm the removal of the data point from the 

analysis.  This final parameter was a comparison of the satellite chl-α measurement

with that of the in situ chl-α measurements.  After removal of outliers, a useful 

comparison between the number of stations with high surface chl-α concentr

the number of stations with low surface chl-α concentrations could be made.  This 

difference is most notable in the summer season where the number of low surface chl-α 

stations is by far the lowest of all the season

c tations for the summer cruises can be attributed to the widespread redistribution 

of fresh water within the study area, particularly at the outer slope stations. 

 The influence that slope eddies have on the redistribution of freshwater within 

the NEGOM region is of particular rele

trations.  Occurrence of these entrainment events can be on a time scale that 

would be easily missed by ship based measurements, making satellite measuremen

particularly useful.  One of the greatest advantages of remote sensing methods i

large spatial covered and comprehensive temporal coverage possible.  With these 

advantages in mind, it is possible to observe the frequency, location and persistence of

freshwater redistributions within the NEGOM study area. 

 By taking several sample stations that are representative of conditions typical t

each hydrographic regime, w

nual and seasonal cycles.  This can also be done with shorter time sca

particularly the time scales associated with mesoscale features and their influences.  By 

observing the trends at these representative stations, we can make some observations 
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about how strongly these features affect the state of these locations and for what 

proportion of a season or year that these effects persist. 

 To examine the temporal variation in the local conditions for each of the three 

hydrographic regions, a sample of four “typical” stations for each region were taken an

the weekly mean satellite measurements of surface chl-α concentrations were plotted

each station.  From temporal patterns in the surface chl-α concentrations we can make 

inferences in the timing of mesoscale influences and the rela

d 

 for 

tive importance of these 

influen lots 

he 

er 

f a 

se 

me 

iation 

 

erved. 

h 

ces for each region.  These weekly means satellite measured surface chl-α p

are given in Figure 25. 

 Figure 25 shows that the different hydrographic regions are influenced to 

different extents by factors such as streamflow and freshwater redistribution.  T

freshwater stations are most strongly impacted by the streamflow from the adjacent 

rivers, which results in frequent and persistent levels of very high surface chl-α 

concentrations.  In contrast, the bluewater stations do not show a trend of frequent 

increases in surface chl-α concentrations.  The influence of the freshwater redistribution 

by the slope eddies of the summer NEGOM cruises is plainly seen in the three high 

surface chl-α spikes for the sample bluewater stations.  These three freshwat

redistribution events cause a fourfold increase in the satellite measured surface chl-α 

concentrations for these bluewater stations. 

These increases in surface chl-α concentrations only persist on a time scale o

few weeks.  This implies that either the high surface chl-α waters move away from the

stations during this time or that the chl-α is removed from the surface waters at this ti

scale.  This large increase in surface chl-α concentrations is only observed in assoc

with the redistribution of freshwater by the slope eddies and that these periods represent

a small proportion of the overall number of days being obs

The coastal stations tend to show a more consistent level of surface chl-α 

concentrations compared to the other two hydrographic regions.  The incidences of hig

surface chl-α concentrations are not as frequent as the freshwater stations nor as drastic 

as the bluewater stations.  However, local areas of high streamflow can strongly 
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influence nearby coastal waters as is shown by the spike in surface chl-α concentration

in the first spring of the data series.  This spike in surface chl-α concentrations co

with abnormally high (greater than one standard deviatio

s 

incides 

n above the mean) streamflows 

for the Apalachicola and Suwannee Rivers during this period.  The stations that area 

closest to these river mouths show the highest increase in surface chl-α concentrations 

while the more distant coastal stations show little effect. 
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Figure 25.  Weekly mean satellite measured surface chl-α concentrations for sample 
stations from each hydrographic region.  Top figure is four freshwater stations, middle 
figure is four bluewater stations, and bottom figure is four coastal stations. 
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CHAPTER V  

SYNTHESIS 

 
5.1. Introduction 

 

5.1.1. Synthesis of Parameters 

 This chapter is a synthesis and comparison of parameters addressed within the 

previous three chapters.  Input and redistribution of fresh water within the study area 

determines the localized surface chl-α concentrations as well as the regional surface chl-

α abundance.  In Chapter II, freshwater was inventoried according to both surface 

salinity and total integrated freshwater at each station.  In this chapter, these parameters 

are compared to the in situ surface chl-α measurements as well as the integrated water 

column chl-α values at varying depths.  Freshwater is particularly important in analyzing 

satellite surface chl-α estimates, as it is a major source of CDOM and other pigments 

that may affect the satellite measured signal [Cullen and Lewis, 1995;Warwik et al., 

2003; Nababan et al., in review 2004].  In this chapter, a follow-on analysis has been 

made to look at effects of surface salininty and total integrated freshwater upon the 

integration depths used in the chl-α analysis. 

 

5.1.2. Comparing in Situ Chlorophyll with Satellite Chlorophyll 

 The second section of this chapter involves the comparison of in situ measured 

chl-α parameters with the measurements derived from the SeaWiFS satellite.  Because 

the presence of freshwater can have a major effect upon the satellite measurement of 

surface chl-α, comparisons of in situ measurements with satellite measurements are 

necessary to ground-truth the satellite data as well as to refine the algorithms used in 

interpreting ocean color [Hu et al., 2003].  In addition to this, different sources of 

freshwater can have different compositions of pigments, making regional analysis of the 

freshwater effects upon satellite measurements important [Nababan et al., in review 

2004]. 
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 Chapter IV commented on the differences between in situ measurements of chl-α 

with satellite measurements.  In this chapter, satellite data are employed to analyze the 

overall trends in surface chl-α abundance within the study area.  While the NEGOM 

ruises represented a repeated thoro e study area, the actual periods of 

e total days from the beginning of the program to the 

 

., 

ace 

tion of pre-existing chl-α from the river 

ater or by new production caused by the influx of nutrients.  It is clear that freshwater 

centrations, but the 

r 

xing 

 that 

 satellite measurements of surface chl-α.  I have hypothesized that satellite 

c ugh sampling of th

sampling are a small number of th

end.  We have only nine snapshots of the study area in 3 years, each of which is only a 

two week window of time.  However, the satellite data for this period are continuous 

through the entire length of the NEGOM program and so allow us to determine how 

representative each of the NEGOM cruises was of the entire season in which it took

place.  This is particularly important due to the effects of mesoscale influences, such as 

slope eddies which can have effects that persist on a scale of a few weeks (Jochens et al

2002). 

  

5.1.3. Purpose of Research 

 The periodic introduction of nutrient rich river water into the NEGOM region 

contributes to increased surface chl-α concentrations.  However, this increase in surf

chl-α concentrations may be through introduc

w

within the NEGOM region is linked with increased surface chl-α con

origins of this chl-α need further study.  Is the chl-α derived from new production 

growth based on the availability of nutrients, or is it imported within the freshwater?  

This question can be addressed in part by observing the nutrients within the freshwate

as it gets entrained farther from the source.  Should the chl-α follow conservative mi

patterns within the freshwater, it would follow that no new production is occurring 

within the freshwater.  Conversely, if nutrients are quickly depleted it would follow

no new production is taking place.   

 The presence of freshwater within the study also presents a challenge for 

accurate
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m ed surface chl-α will have weaker correlation with in situ measured surface chl-α 

within freshwater and coastal regions, compared to the bluewater region. 

 
 

5.2. Results 
 

5.2.1. Freshwater and in Situ Chlorophyll 

 This section details the influences that freshwater abundance have upon in situ

measurements of chl-α within the NEGOM study area.  The first analysis compares 

surface salinity with surface chl-α concentration by season.  This is followed by a 

comparison of surface salinity with the vertically integrated chl-α stocks, for each of the

three integration depths, and finally by a comparison of surface salinity with integration 

depth fo

easur

 

 

r each of the intervals.  Each of these analyses is done separately by season, so 

at seasonal effects can be partitioned. 

n 

 

nt characteristics.  One group was represented by 

 and 

yers 

that had mixed with the saltwater beneath.  The former generally had much higher 

th

 

5.2.1.1. Surface Salinity and Surface Chlorophyll 

 

 There is a strong and significant (>-0.600, p<0.05) negative correlation betwee

surface salinity and the in situ measured surface chl-α concentration for the winter 

cruises (Figure 26).  This correlation is weaker for the spring cruises (Figure 26), but is 

still significant (>-0.550, p<0.05).  The summer cruises show a slightly weaker 

significant (>-0.500, p<0.05) negative correlation between surface salinity and surface

chl-α concentration compared to the winter cruises (Figure 26).  In summer there was a 

large amount of variation of surface chl-α concentrations within the freshwater stations.  

Several stations had particularly high surface chl-α concentrations.  Upon a closer 

examination of these freshwater stations, it was observed there were two groups of 

freshwater stations, each with differe

the shallower water stations of the continental shelf.  These had relatively shallow

intensely stratified freshwater layers.  Others farther offshore had deep freshwater la
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surface chl-α concentrations than the latter.  This is evident from partitioning the data 

from Figure 26 by depth range (Figure 27). 

 

5.2.1.2. Surface Salinity and Integrated Chlorophyll 

500, p<0.05) correlation between surface 

ing 

 

 surface salinity and vertically integrated chl-α 

 the 18% surface light penetration depth for the any of the seasons (Appendix B, 

n the depths for the 18% surface 

ght penetration level, and this leads to a wide variation in integrated chl-α. 

 

 There was a negative significant (>-0.

salinity and vertically integrated chl-α to the 36.8% surface light penetration depth for 

the winter cruises (Appendix B, Figure B25).  This trend did not hold true for the spr

cruises, for which there was no discernable correlation between these parameters 

(Appendix B, Figure B26).  But again for summer cruises there was a weak negative 

significant (>-0.500, p<0.05) correlation between surface salinity and vertically 

integrated chl-α to the 36.8% surface light penetration depth (Appendix B, Figure B27).

 There was no correlation between

to

Figures B28-B30).  In fact, there was great variation i

li
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Figure 26.  Comparison of surface salinity with in situ measured surface chl-α 
concentrations for each cruise separated by season.  Top figure is winter cruises, middle 
figure is spring cruises, and bottom figure is summer cruises. 
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Figure 27.  Comparison of surface salinity with in situ measured surface chl-α 
concentration for all NEGOM cruises separated by season.  Top figure is winter cruises, 

hallower middle figure is spring cruises, and bottom figure is summer cruises.  Stations s
than 100 m depth (in pink) have been removed from statistical analysis 
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 Nor was there a correlation with vertically integrated chl-α to the 1% surface 

light penetration depth (Appendix B, Figures B31-B33).  Once again, there was a wide 

variation in integration depth that was responsible for the variation in vertically 

integrated chl-α. 

 

5.2.1.3. Surface Salinity and Integration Depth 

 

 Figure 28 shows surface salinity plotted against the integration depths to the 

36.8% surface light penetration.  A general trend of increasing depth with increasing 

salinity can be observed for all seasons, though the correlations are not significant for the 

final three cruises of the study (NEGOM7, 8 and 9).  The data also show the general 

trend that the deepest integration depths are found exclusively at stations that have very 

high salinity, which are typically outer slope, bluewater stations.  Very similar trends are 

observed for the 18% surface light penetration depth intervals (Figure 29) and the 1% 

surface light penetration depth intervals (Figure 30), showing an increase in integration 

depth with increasing salinity.  Again, the deepest integration depths are found at highest  
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Figure 28.  Comparison of surface salinity with integration depth to the 1st optical depth 
for all NEGOM cruises separated by season.  Top figure is winter cruises, middle figure 
is spring cruises, and bottom figure is summer cruises. 
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Figure 29.  Comparison of surface salinity with integration depth to the secchi disc depth
for all NEGOM cruises separated by season.  Top figure is winter cruises, middle figure 
is spring cruises, and bottom figure is summer cruises. 
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Figure 30.  Comparison of surface salinity with integration depth to the estimated 
euphotic depth for all NEGOM cruises separated by season.  Top figure is winter
cruises, middle figure is spring cruises, and bottom figu
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salinity stations.  The summer cruises show greater scatter than the other seasons for all 

three of the depths.  This seems to be due to a combination of more overall freshwater 

stations, as well as most of the freshwater stations being located far from the freshwater 

sources and mixing with the ocean water underneath. 

 

5.2.1.4. Integrated Freshwater and Surface Chlorophyll 

 

 There were no evident trends when comparing vertically integrated freshwater 

with surface chl-α concentrations.  In all three seasons (Appendix B, Figures B34-B36), 

re was no distinct correlation between the two parameters.  However, the winter 

cruises showed a smaller range of surface chl-α values as well as having a much smaller 

number of overall freshwater stations. 

 

5.2.1.5. Total Freshwater and Mean Satellite Chlorophyll 

 

 Mean satellite measured chl-α is positively correlated with vertically integrated 

freshwater (Figure 31).  This correlation holds true on a cruise by cruise basis, as well as 

seasonally. 

 

the
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Figure 31.  Comparison of total integrated freshwater within the NEGOM study area and 
mean satellite measured surface chl-α for the NEGOM study area. 
 

 

5.2.1.6. Surface Salinity and Satellite Chlorophyll 

 

 The winter cruises show a robust significant (>-0.600, p<0.05) negative 

correlation between increasing satellite measured surface chl-α concentrations and 

decreasing surface salinity (Figure 32).  The spring cruises (Figure 32) also show 

significant (>-0.500, p<0.05) negative correlation between the surface salinity and the 

satellite measured surface chl-α concentrations.  The summer cruises (Figure 32), 

owever, showed weak significant (>-0.300, p<0.05) negative correlations due to the 

 low surface chl-α 

oncentrations, particularly the Spring, 1998 (N3) cruise which had no significant 

h

number of stations that have relatively low surface salinity and

c

correlation (-0.007, p>0.05).  The majority of these stations are found on the outer shelf 

at some distance from the freshwater sources. 
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5.2.1.7. Integrated Freshwater and Satellite Chlorophyll 

 

 In none of the three seasons was there a strong correlation between integrated 

freshwater and satellite measured surface chl-α concentrations (Appendix B, Figures 

B37-B39).  One of the variables that may be masking a correlation are coastal stations 

with a small amount of integrated freshwater but with very high surface chl-α 

concentrations.  Such coastal stations are evident in the winter and spring cruises, for 

they have high surface chl-α concentrations but little vertically integrated freshwater. 

 

5.2.1.8. Satellite Chlorophyll and in situ Chlorophyll by region 

 

 When ship versus satellite comparisons were done using only the freshwater 

water stations had the 

rgest dynamic range of surface chl-α concentration values as well as the greatest 

ariation of these values for either method of chl-α concentration measurement.  

re the only cruises that do not have  

ignificant (p>0.05) correlation between the two measurements due to their low number 

sured 

ch had 

stations, the correlations between these two parameters were generally weak (Appendix 

B, Figures B40-B42).  This was not surprising, though, as the fresh

la

v

NEGOM cruises 7 and 8 are noteworthy in that they a

s

of freshwater stations. 

 At  bluewater stations, there was in general a wide range of scatter for the 

satellite measured surface chl-α compared to the more limited range of in situ mea

surface chl-α values for all three seasons (Appendix B, Figures B43-B45).  The best 

overall agreement between ship and satellite means was during winter cruises, whi

both the largest number of bluewater stations as well as the lowest range of satellite 

surface chl-α measurements. 
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Figure 32.  Comparison of surface salinity and satellite measured surface chl-α 
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 Coastal stations showed the highest overall positive correlation between ship and 

satellite chl-α measurement methods (Appendix B, Figures B46-B48).  On all cruises, at 

coastal stations there was a strong significant (>0.500, p<0.05) correlation between 

satellite measured surface chl-α concentrations and in situ measured surface chl-α 

concentrations.  On the other hand, the coastal stations were generally the minority of 

the total number of stations on any cruise, with the majority being either freshwater 

stations or bluewater stations.  The relatively low dynamic range of surface chl-α values 

is likely responsible for much of the improved overall correlation for these cruises. 

 

 
5.3. Discussion 

 

 Direct comparisons of surface salinity and surface chl-α concentration over the 

entire NEGOM region are difficult to make without separating these stations according 

to their hydrographic region.  Stations that have low salinity tend to have a respectively 

high surface chl-α concentration, and this is the case for the majority of the freshwater 

stations.  However, the presence of numerous shallow water coastal stations within the 

NEGOM study frequently leads to many stations having high surface chl-α 

concentrations at high surface salinities. 

 Belabbassi [2001] showed that in the freshwater region nutrients were very 

quickly depleted by the time the freshwater reached the outer slope.  This is shown 

particularly well by Qian et al. [2003] in a comparison of surface salinity and surface 

nutrients (Figure 33).  Both studies indicate that any new production derived from 

riverine input of nutrients takes place very close to the mouth of the Mississippi River 

and that high surface chl-α concentrations in the freshwater that reaches the outer slope 

are an artifact of this initial production. 

 The strong negative correlation observed between surface salinity and the 

ted due 

 surface chl-α 

integrated chl-α mass to the 36.8% surface light penetration depth is to be expec

to the similar correlation between surface chl-α and surface salinity.  This integration 

epth is typically so shallow that it is highly representative ofd
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concentrations and will typically parallel the surface chl-α concentration.  The only 

exceptions to this trend are the stations that are very near sources of freshwater or those 

that have very low light extinction coefficients in the surface waters.  The former typ

station frequently have 36.8% surface light penetration depths that are shallower th

first data logged by the instrument, making these stations difficult to measure.  The latt

type of station has deep enough light penetration that the overall volume of water is 

enough to skew the integrated chl-α mass compared to other bluewater stations. 

 

e of 

an the 

er 

 
Figure 33.  Property plot between surface salinity and near surface nitrate 
concentrations, showing depletion of surface nitrate at salinity >27 psu.  Figure is from 
Qian et al. [2003]. 

 

This is not the case for the 18% surface light penetration and the 1% surface

penetration depth, which are subject to a number of influences that increase the 

variability of the integrated chl-α mass.  The most critical of these factors is the wide 

variations in the depth at which the 18% surface light penetration and 1% surface li

penetration depths are reached.  Bluewater stations in particular may have very deep 

integration depths and the sheer volume of water being integrated skews the total chl-α 

mass despite low chl-α concentrations th

 light 

ght 

rough the water column.  Another factor that 

m adds to the variability in the integrated chl-α mass is the presence of the near botto

high chl-α layers that were mentioned earlier.  In some coastal stations these layers 

accounted for less than a fifth of the total water column, yet were responsible for two 

thirds of the total integrated chl-α mass in the water column. 
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While surface salinity cannot be used to precisely estimate the integration dep

for light penetration, it is possible to make some useful generalizations on integration 

depth based upon surface salinity.  The overall trend of decreasing integration depth with 

decreasing salinity holds true for the different seasons and hydrographic regions, but the 

reverse is not necessarily the case.  A number of high salinity stations have very shallow 

integration depths due to high surface chl-α concentrations or shallow bottom depth a

these stations do not fit the expected curve of decreasing integration depth with 

th 

nd 

ecreasing salinity.  Another generalization that can be made is that the extremes of 

integration depth will be found at the extremes of surface salinity.  The shallowest 

integration stations will be those with a great deal of freshwater, as these stations have 

the most suspended sediments, chl-α and other pigments.  The deepest stations will be 

found in the outer slope regions where light extinction coefficients are the lowest.  It is 

also important to note that the relationship between surface salinity and integration depth 

is not a linear relationship.  This is most likely an artifact of the integration depths being 

based upon light extinction profiles that follow a logarithmic decrease in light intensity 

freshwater abundance due to differences in the dispersion rates of the chl-α and the 

freshw

cean 

al 

ts 

n 

ost 

d

with depth. 

Surface chl-α concentrations are not good predictors of total integrated 

ater.  Surface chl-α will generally decrease over a much shorter time than it takes 

for freshwater to disperse through the water column and horizontally along the o

surface [Wawrik et al., 2003].  While the surface chl-α concentrations may decrease 

rather quickly due to consumption, settling, or other influences, total integrated 

freshwater is a more strongly conserved property and can only be reduced by horizont

movement or dispersion of freshwater and by the process of evaporation. 

When satellite surface chl-α measurements are compared to in situ measuremen

on a station by station basis according to season alone, it is clear that the winter seaso

shows the most consistent and strongest agreement in these two methods.  This is m

likely due to the lower amount of freshwater within the study area during the winter 

season compared to the spring and summer seasons. 
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The fact that all three summer NEGOM cruises coincided with slope eddy 

entrainment events may skew interpretation of what are “typical” summer conditions 

within the study area.  Satellite chl-α maps of the NEGOM study area for the entire 

summer period for each of the three summers, show that the conditions during NEGOM 

3, 6 and 9 were atypical of the majority of the summer period.  The large amount of 

obvious green water being entrained into the NEGOM area was only observed for an 

approximately 3 week period each summer, which happened to coincide with eac

summer NEGOM cruises.  This is shown most plainly seen in the central panel of Fig

25 which shows drastic, short lived elevations in satellite measured surface chl-α w

occur during the three summer cruises. 

The correlations between the surface chl-α measurements on a station by station

basis are much weaker when the analyses are done separately according to hydrographic

regime.  This indicates that the overall mean chl-α is strongly determined by the number 

of stations representing the different hydrographic regimes.  The greater the number of 

freshwater stations, the greater the overall mean surface chl-α for the entire study area.  

At this large

h of the 

ure 

hich 

 

 

 scale of analysis the satellite measurements agree well with the in situ 

measur

ion 

.  These 

cruises

e 

e.  Should in situ measurements be 

ements of surface chl-α concentration.  The fact that the overall satellite 

measurements agree with the mean in situ measurements and that the individual stat

comparisons do not agree, indicates that there may be time lag between the in situ 

measurements and the satellite measurements.  This is further complicated by the fact 

that the satellite data are weekly averages and that these weekly periods do not 

necessarily coincide with the exact cruise dates. 

The timing discrepancy between the satellite measurements and the in situ 

measurements is of particular concern during the summer NEGOM cruises

 each had freshwater entrained into the study area by slope eddies interacting with 

the Mississippi River.  This entrained water had current speeds exceeding 1 knot in som

cases, indicating that the conditions in a single location could change very quickly.  

When in situ data are collected during a ten day cruise, the conditions at any given 

station may change drastically over that period of tim
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taken a

d 

hat 

).  

 

t a station before entrained freshwater reaches that station, the in situ 

measurements will be typically low.  With the current speeds measured in the entraine

water, a time differential in measurements of only a few days could indicate drastic 

changes in the conditions for a given station.  This was particularly clear when 

examining the distribution of very high satellite measured surface chl-α stations in w

in situ measurements categorized as bluewater stations (Appendix B, Figures B43-B45

As such, any conclusions made about typical summer conditions from the summer 

NEGOM cruises must take into account the presence of the slope eddies and their 

influences. 
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CHAPTER VI 
 

SUMMARY AND PRINCIPAL CONCLUSIONS 
 

 The overall patterns of chl-α abundance within the NEGOM study area a

strongly affected by the occurrence of freshwater redistribution.  This influence is 

dependent upon volume of flow from freshwater sources, as well as upon the 

entrainment of river water by slope eddies is also important in determining the amo

of freshwater redistributed eastward into the NEGOM region. 

 The 

re 

unt 

effect of freshwater upon overall surface chl-α distributions can be seen at 

both annual scales and seasonal scales.  Furthermore, satellite observations indicate that 

the freshwater entrainment can change the overall chl-α abundance in the study area on a 

scale of several weeks. 

 The characteristic Gulf of Mexico seasonal chl-α cycle of annual highs in 

November-February and annual lows from May-August that were described by Muller-

Karger et al. [1991] were in each summer of the present study (1998-2000) 

overshadowed by the summertime high chl-α ent by 

slope eddies.  The magnitude of entrainment denended on the strength and location of 

the slope eddies, but usually extended far eastward of the Mississippi River delta, often 

to 840W longitude. 

 Surface chl-α may be used as a gauge of overall water column chl-α abundance 

only under certain conditions.  Correlation was generally good to the shallowest 

integration depth (1st optical depth) and to the secchi disc depth as well.  However, such 

estimates must be done on a station-by-station basis and quality assurance/quality 

control is important, for especially at inner and middle shelf stations single point, near 

bottom high chl-α concentrations may greatly influence vertical integration calculations. 

 Tremendous variability in the integration depths for the euphotic zone greatly 

restricted my ability to forecast vertically integrated chl-α based upon surface chl-α.  In 

fact, the depth of the 1% irradiance level varied widely between stations that were 

djacent and seemingly shared the same water properties. 

 cycle reflecting freshwater entrainm

a
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 Satellite measurements of su seful for large scale analysis of 

ocean conditions, patial scales.  

his is particularly true for a continental margin like that in the NEGOM, that contains 

esosc

rge 

patial 

 NEGOM area should be 

 

rface chl-α were u

but they have limitations when used on fine time and s

T

m ale eddies that can drastically redistribute surface chl-α in short time spans. 

 Cause and effect comparisons between different parameters within such a la

and diverse study area were difficult to reliably apply.  This reflects the large s

scales involved in the NEGOM study, as well as the diversity of station types.  Future 

research on freshwater forcing of high summertime chl-α in the

restricted in scope to smaller spatial scales, so that all stations are occupied as 

synoptically as possible. 
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APPENDIX B 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B1:  Numerical distribution of stations with different surface chlorophyll concentration ranges for 
the winter cruises. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B2:  Numerical distribution of stations with different surface chlorophyll concentration ranges for 
the spring cruises. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B3:  Numerical distribution of stations with different surface chlorophyll concentration ranges for 
the summer cruises. 
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igure B4.  Graphical representation of surface chlorophyll distributions for winter, 1997cruise (N1).  

 
 
 
 
 
 

, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
 
 
 
 
 
 
 
 

l representation of surface chlorophyll distributions for winter, 1999 cruise (N7).  
lue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 

 
 
 
 
 
 
 
 
 
 
 
 
F
Blue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
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Figure B5.  Graphical representation of surface chlorophyll distributions for winter, 1998 cruise (N4).  
Blue box is CHL<1
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Figure B7.  Graphical representation of surface chlorophyll distributions for spring, 1998 cruise (N2).  
Blue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
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Figure B8.  Graphical representation of surface chlorophyll distributions for spring, 1999 cruise (N5).  
Blue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
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Figure B9.  Graphical representation of surface chlorophyll distributions for spring, 2000 cruise (N8).  
Blue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
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Figure B10.  Graphical representation of surface chlorophyll distributions for summer, 1998 cruise (N3)
Blue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
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Figure B11.  Graphical representation of surface chlorophyll distributions for summer, 1999 cruise (N6)
Blue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
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Figure B12.  Graphical representation of surface chlorophyll distributions for summer, 2000 cruise (N9)
Blue box is CHL<1, Red box is 1<CHL<5 and Yellow box is 5<CHL. 
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Figure B13.  Numerical distribution of freshwater stations with different surface 

igure B14.  Numerical distribution of freshwater stations with different surface 

igure B15.  Numerical distribution of freshwater stations with different surface 

chlorophyll concentration ranges for the winter cruises. 

F
chlorophyll concentration ranges for the spring cruises. 
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Figure B16.  Numerical distribution of bluewater stations with different surface 
chlorophyll concentration ranges for the winter cruises. 
 

s with different surface 
chlorophyll concentration ranges for the spring cruises. 
Figure B17.  Numerical distribution of bluewater station
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Figure B18.  Numerical distribution of bluewater stations with different surface 
chlorophyll concentration ranges for the summer cruises. 
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Figure B19.  Numerical distribution of coastal stations with different surface chlo
concentration ranges for the winter cruises. 
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erical distribution of coastal stations with different surface chlorophyll 
concentration ranges for the spring cruises. 
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Figure B22.  Comparison of mean in situ chl-α concentration with mean satellite measured surface chl-α 
for all freshwater stations.  

Figure B23.  Comparison of mean in situ chl-α concentration with mean satellite measured surface chl-α 
for all bluewater stations. 
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Figure B24.  Comparison of mean in situ chl-α concentration with mean satellite measured surface chl-α 
for all coastal stations. 
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Figure B25.  Com

Figure B26.  Com

Figure B27.  Com
depth for the sum

parison of surface salinity and integrated chl-α to the 36.8% surface light penetration 
depth for the winter cruises. 
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Figure B28.  Com
ises.  

Figure B29.  Comparison of surface salinity and integrated chl-α to the 18% surface light penetration 
depth for the spring cruises. 

Figure B30.  Comparison of surface salinity and integrated chl-α to the 18% surface light penetration 
depth for the summer cruises. 
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Figure B31.  Comparison of surface salinity and integrated chl-α to the 1% surface light penetration dep
r the winter cruises. 
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Figure B33.  Comparison of surface salinity and integrated chl-α to the 1% surface light penetration depth 
for the summer cruises. 
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Figure B32.  Comparison of surface salinity and integrated chl-α to the 1% surface light penetration dep
for the spring cruises. 
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Figure B34.  Comparison of vertically integrated freshwater and in situ measured surface 
chl-α concentration for the winter cruises. 
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Figure B35.  Comparison of vertically integrated freshwater and in situ measured surf
chl-α concentration for the spring cruises. 
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Figure B36.  Comparison of vertically integrated freshwater and in situ measured surface 
chl-α concentration for the summer cruises. 
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Figure B37.  Comparison of vertically integrated freshwater and satellite measured surface chl-α 

Figure B38.  Comparison of vertically integrated freshwater and satellite measured surface chl-α 

Figure B39.  Comparison of vertically integrated freshwater and satellite measured surface chl-α 
concentration for the summer cruises. 
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Figure B40.  Comparison of in situ measured surface chl-α concentration and satellite measured surface 
chl-α concentration for freshwater stations of winter cruises. 
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Figure B41.  Comparison of in situ measured surface chl-α concentration and satellite measured surface 
chl-α concentration for freshwater stations of spring
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Figure B42.  Comparison of in situ measured surface chl-α concentration and satellite measured surface 
chl-α concentration for freshwater stations of summ
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Figure B43.  Comparison of in situ measured surface chl-α concentration and satellite measured surface 
chl-α concentration for bluewater stations of winter cruises. 
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Figure B45.  Comparison of in situ measured surface chl-α concentration and satellite measured surface 
chl-α concentration for bluewater stations of summer cruises. 
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Figure B44.  Comparison of in situ measured surface chl-α concentration and satellite measured su
chl-α concentration for bluewater stations of spring cruises. 
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Figure B46.  Comparison of in situ measured surface chl-α concentration and satellite measured su
chl-α concentration for coastal station
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Figure B48.  Comparison of in situ measured surface chl-α concentration and satellite measured surface 
chl-α concentration for coastal stations of summer cruises. 
 

y = 2.3743x - 0.2507
R2 = 0.8238

y = 1.4516x + 0.3749
R2 = 0.6942

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5

Surface Chlorophyll Concentration (mg/m^3)

Sa
te

lli
te

 M
ea

su
re

d 
Su

rf
ac

e 
C

hl
or

op
hy

ll 
C

on
ce

nt
ra

tio
n 

(m
g/

m
^3

)
NEGOM1
NEGOM4
NEGOM7
Linear (NEGOM4)
Linear (NEGOM7)

y = 3.9608x + 0.0183
R2 = 0.4153

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

Surface Chlorophyll Concentration (mg/m^3)

Sa
te

lli
te

 S
ur

fa
ce

 C
hl

or
op

hy
ll 

C
on

ce
nt

ra
tio

n 
(m

g/
m

^3
)

NEGOM2

NEGOM5

NEGOM8

Linear (NEGOM8)

Figure B47.  Comparison of in situ measured surface chl-α concentration and satellite measured su
chl-α concentration for coastal stations of spring cruises. 
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