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ABSTRACT

Essays on Empirical Analysis of Multi-unit Auctions

– Impacts of Financial Transmission Rights on the Restructured Electricity

Industry. (August 2005)

Hailing Zang, B.S., Fudan University

Chair of Advisory Committee: Dr. Steven L. Puller

This dissertation uses recently developed empirical methodologies for the study

of multi-unit auctions to test the impacts of Financial Transmission Rights (FTRs)

on the competitiveness of restructured electricity markets. FTRs are a special type

of financial option that hedge against volatility in the cost of transporting electricity

over the grid. Policy makers seek to use the prices of FTRs as market signals to

incentivize efficient investment and utilization of transmission capacity. However,

prices will not send the correct signals if market participants strategically use FTRs.

This dissertation uses data from the Texas electricity market to test whether the

prices of FTRs are efficient to achieve such goals. The auctions studied are multi-

unit, uniform-price, sealed-bid auctions.

The first part of the dissertation studies the auctions on the spot market of the

wholesale electricity industry. I derive structural empirical models to test theoretical

predictions as to whether bidders fully internalize the effect of FTRs on profits into

their bidding decisions. I find that bidders are learning as to how to optimally bid

above marginal cost for their inframarginal capacities. The bidders also learn to bid

to include FTRs into their profit maximization problem during the course of the first

year. But starting from the second year, they deviated from optimal bidding that

includes FTRs in the profit maximization problems. Counterfactual analysis show
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that the primary effect of FTRs on market outcomes is changing the level of prices

rather than production efficiency. Finally, I find that in most months, the current

allocations of FTRs are statistically equivalent to the optimal allocations.

The second part of the dissertation studies the bidding behavior in the FTR

auctions. I find that FTRs’ strategic impact on the FTR purchasing behavior is

significant for large bidders – firms exercising market power in the FTR auctions.

Second, trader forecasts future FTR credit very accurately while large generators’

forecasts of future FTR credit tends to be biased upward. Finally, The bid shad-

ing patterns are consistent with theoretical predictions and support the existence of

common values.
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Take joy, my King, in what You see.

To my parents
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CHAPTER I

INTRODUCTION

In the 1980s, several countries initiated electricity industry reforms. The U.S. elec-

tricity industry also experiences the transformation from the one that builds upon

regulated vertically integrated monopolies to the one that promotes efficient whole-

sale and retail competition. Most of the restructuring involves the disintegration of

generation, transmission and distribution ownership and require open access to the

transmission grid. There are several landmarks of policy orders during this transition

that is worth mentioning. In 1978, the Public Utility Regulatory Policy Act (PURPA)

stimulated independent power plants coming into the sector if they meet certain cri-

teria. The Energy Policy Act of 1992 (EPAct92) further removed some barriers that

prevents the entry of independent power plants and initiated the development of an

open access regime of the transmission grid. Federal Energy Regulatory Commis-

sion (FERC) issued Order 888 in 1996 that implements the open access regime and

encourages the formation of Independent System Operators (ISOs) to manage the

transmission grid. Paul Joskow concludes the essences of Order 888 as the following:

“transmission owners must provide access to third parties to use their transmission

networks at cost-based maximum prices, make their best efforts to increase transmis-

sion capacity in response to requests by third parties willing to pay for the associated

costs, and shall behave effectively as if they are not vertically integrated when they use

their transmission systems to support wholesale market power transactions, treating

third party transaction schedules on their networks that are supported by firm trans-

The journal model is Journal of Econometrics.
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mission agreements equivalently to their own use of their transmission network.”1 In

December 1999, The Commission’s Order 2000 promotes the formation of Regional

Transmission Organizations (RTOs) over larger regions and ask that transmission

owners yield the operation of their transmission to the RTOs. Due to the slow pace

of implementation of Order 2000, in June 2002, FERC proposed “Standard Market

Design (SMD)” which further emphasized independent transmission provision.

Open access to transmission is a crucial component in the restructuring of the

electricity industry. However, how to incentivize transmission investment to relieve

bottle-neck constraints on the electricity market is still under discussion. On both the

wholesale and retail side of the electricity market, market signals – market prices, are

introduced to incentivize investment and consumption. The returns from investment

on the wholesale and retail side are mostly decided by “market rates”. However,

the transmission network typically remians a regulated monopoly until recently and

transmission investment is regulated through a regulated rate of return. Following

the restructuring of the wholesale market, transmission policies are currently under

hot debate as to whether transmission investment decisions should be regulated or

be market driven. By using market signals, we allow merchant transmission investors

to build capacity based on market incentivized returns. But if we use market-driven

forces, the signals provided by the market should be accurate to reflect the actual

scarcity or abundance of transmission resources. Otherwise, a biased signal will in-

centivized over- or under-investment.

Researchers (Hogan (1992, 2002), Bushnell & Stoft (1996, 1997)) as well as pol-

icy makers (for example, FERC’s July 2002 Standard Market Design) propose to

use Financial Transmission Rights (FTRs) to help market participants hedge against

1See Joskow (forthcoming 2005).
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price volatilities due to transmission congestions on the wholesale electricity mar-

ket. Interested market participants can buy FTRs through auctions conducted by

grid operators. Brunekreeft (2003) summarized several ways to incentivize merchant

transmission investment, one of these is to award the FTR auction revenue to mer-

chant transmission investors. There are already some active merchant transmission

investments in the United States market2 and the investors rely on the FTR auction

revenue to justify the benefit of the new transmission investment or the upgrade of

the transmission line even if they are not awarded FTR revenues.

Since FTR auction revenue is a market signal to merchant transmission investors,

This signal can only be efficient when there is no failure in the markets where FTRs

are involved. If FTRs can be strategically employed by market participants to en-

hance their market power on the wholesale market, then FTR prices (or FTR auction

revenues) are not purely reflective of the true valuation of transmission capacity. Fol-

lowing the proposal of FTRs, a lot of discussion has been going on as to whether FTRs

would have any impacts on the competitiveness of the wholesale electricity market and

whether FTR prices would be efficient in conveying the valuation of marginal trans-

mission capacity. Bushnell(1999), Stoft (1999), Joskow and Tirole (2000, forthcoming

2005) discuss theoretically the impacts of FTRs that would have on the wholesale elec-

tricity market. Gilbert, Neuhoff and Newbery (forthcoming) study efficient auction

designs for selling FTRs. This dissertation serves to empirically address the question

as to whether FTRs are strategically manipulated by market participants who own

FTRs and whether FTR prices are affected by such strategic manipulation. These

empirical results help policy makers have a better knowledge of FTRs’ impact in the

real world and use FTRs as a better policy instrument.

2The most active one is the transmission interconnection between PJM (Pennsyl-
vania, Maryland and New Jersey) and New York City and Long Island.
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The difficulties in studying FTRs’ impacts originate from the difficulties in the

empirical study of multi-unit auctions. Different from single unit auction, where bid-

ders submit to the auctioneer one price bid, the bids submitted by each bidders in

multi-unit auctions are composed of multiple price-quantity pairs. Consequently in

multi-unit auctions, the strategy space is much larger than that in single unit auc-

tions. The major difficulty becomes how to handle such large strategy space. Further,

there are different formats for multi-unit auctions. One form of multi-unit auction

is uniform-price auction where the bidders pay the market clearing price for all the

bids awarded; the other form is called discriminatory-price auction, where bidders

pay their own awarded bids. An original theory paper by Wilson(1979) collapses all

the uncertainties into the uncertainty of market clearing price. Following Wilson,

more theory paper about properties of multi-unit auctions emerge, including revenue

equivalence comparison (see Back and Zender (1993)) between different formats of

multi-unit auctions, equilibrium strategies under different assumptions of valuation

distribution structures (see Ausubel and Cramton (2002)), etc. The surging of em-

pirical study of multi-unit auctions starts in late 1990s due to the more frequent

practice of multi-unit auctions, for example the spectrum auction, the auctions in

the electricity market and Treasury Bill auctions. Wolfram (1998) studies the bids

on England and Wales electricity market to test whether two largest suppliers are

exercising market power. Hortaçsu (forthcoming) studies the multi-unit auction in

Turkish Treasury Bill auction and structurally backs out bidders’ valuation by impos-

ing valuation independence. He then use those backed-out valuation to empirically

compare revenues under uniform-price and discriminatory-price auctions. Hortaçsu

and Puller (2004) use bids on the Texas electricity market to test bidders’ bidding

behavior and is the closest paper to my first part of the dissertation.

This dissertation is composed of two major parts. In order to test whether
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FTR prices are affected by strategic considerations, first we need to ask the ques-

tion as to whether FTRs are strategically used by market participants. The first

part is to empirically test FTRs’ impacts on the owners’ strategic behavior on the

wholesale market. More specifically, since market participants supply power in the

deregulated wholesale electricity market through auctions, I ask whether FTRs affect

firms’ bidding decisions. The wholesale market auction is in the format of multiunit,

uniform-price, sealed bid auction. To date, virtually no empirical work has tested

the existence and extent of such an issue on the wholesale electricity market. I also

conduct counterfactual studies which give policy makers quantitative evidence as to

whether the current allocations of FTRs are optimal.

Several researchers (as mentioned above) have made theoretic predictions that

the allocation of FTRs can have important effects on the efficiency of the electricity

market. Since FTR owners collect FTR revenue when positive congestion costs occur,

the FTR revenue comes into the profit maximization decision of the FTR owners. In

its simplest form, unit FTR credit3 equals Pimport −Pexport, where Pimport is the price

in the import-constrained market4 and Pexport is the price in the export-constrained

market. A local monopoly owning FTRs in the import-constrained market will have

additional incentives to raise the price (Pimport) in its regional market to increase the

unit FTR credit; similarly, a local monopoly owning FTRs in the export-constrained

market will have incentives to lower the price (Pexport) in its own market to increase

the FTR credit, ceteris paribus.

3Unit FTR credit is the “rebate” that the grid operator will pay to the FTR owners
on the wholesale market when positive congestion costs occur.

4By import-constrained, I mean that the regional market cannot import any more
of the electricity due to the binding transmission constraint. Similarly, by export-
constrained, I mean that the regional market cannot export any more of the electricity
due to the binding transmission constraint.
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Based on newly developed empirical methodologies to analyze multi-unit auc-

tions, I derive structural empirical models to test these theory predictions. The

empirical methodology is an application of the Wilson (1979) share auction model

and the supply function equilibrium model of Klemperer and Meyer (1989). This

paper extends the work of Hortaçsu & Puller (2004). By making assumptions on

the structure of the bid functions, the empirical models incorporate bidders’ beliefs

regarding uncertainties during the auctions. Using rich firm-level bidding data and

plant-level costs from the Texas electricity market, I test whether bidders fully inter-

nalize the effect of FTRs on profits in their bidding or use FTRs merely as hedging

instruments against volatile transportation costs. The empirical models give several

testable hypothesis on firms’ bidding strategies regarding FTRs. I find bidding be-

haviors converge towards theoretical equilibrium predictions over time with respect to

firms’ physical inframarginal capacity. With respect to FTRs, bidding strategies are

converging towards optimal bidding during the course of the first year, but deviated

from optimal bidding starting from the last period of the sample.

In terms of efficiency effects, in theory, when firms are net buyers in an import-

constrained market, FTRs will improve market efficiency by eroding firms’ local

monopsony market power. When firms are net sellers in an import-constrained mar-

ket, FTRs will distort market efficiency by enhancing firms’ local monopoly market

power. In the counterfactual study, I construct optimal bids that fully internal-

ize FTRs in firms’ bidding decisions to test the ”worst/best case scenario” in the

market. Counterfactual market outcomes reveal that even if firms fully internalize

FTRs in their bidding, the marginal production efficiency is not affected much and

that the effects of FTRs are mostly reflected in price level changes. I also conduct

counterfactual studies to determine the optimal allocations of FTRs to major firms.

Considering demand uncertainty, I find that in most months, the actual allocations of
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FTRs are statistically equivalent to optimal allocations of FTRs in the improvement

of wholesale market price signal efficiency.

The second part of the dissertation serves to empirically answer the question as

to what the prices of FTRs are composed of, how we interpret market participants’

purchasing behavior and what the magnitude of different components that constitute

the price of FTRs are, for example, will market power effect be significant in the price

of FTRs? In this part, the choice of the number of FTRs is endogenously decided

during the bidding for FTRs, and I study the auctions for FTRs by integrating

the FTR auction with the consequent wholesale market competition together. By

integrating the two games together, I am able to test how FTR prices are affected

by bidders’ market power on the second-stage competition. Also the model I have

facilitates testing the existence of bid shading5 in the bid schedule they submit –

another form of market power in the auctions when the bidders are buyers.

The types of bidders in the FTR auctions are different from those on the wholesale

electricity market. In the wholesale electricity market real-time auctions, the bidders

are power generation firms6. In the FTR auction, however, the bidders include not

only power generation firms, but also traders and customer serving entities. For

traders, they do not have any power generating facilities and do not serve customers,

but they make profit in the electricity market by arbitraging price differences, for

example trading electricity among different locations due to price differences. Traders

also need FTRs to hedge against price volatility in their electricity transactions on the

5Bid shading refers to the gap that is between the bidder’s true valuation and the
bidder’s bid price corresponding to each quantity level.

6In some market in the U.S., for example, the New York market, traders are
allowed in the bidding to sell electricity on the wholesale electricity market. Such
bidding is called ”virtue bidding”, meaning that even if the participant does not own
any generation, it still can bid into the wholesale market. But virtue bidding was not
introduced in the Texas market in the sample period I have for this dissertation.
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wholesale market if they have trading positions on the wholesale market. The major

reason for generators to buy FTRs is to protect themselves against price volatilities

on the wholesale electricity market which I will explain in the next chapter. As

was explained in the earlier part, FTRs can have some strategic impacts on the

wholesale market competition, such impacts, in theory, should be transmitted to the

price of FTRs as well. I derive empirical models that test the bidding strategies

individually for traders and generators. Theory implies: Aside from hedging reasons,

since generators have market power that’s affected by the ownership of FTRs, the

generators should include in their valuation the market power effect – additional

benefit by using FTRs in the wholesale market competition. My empirical models

test whether the market power effects are significant.

The FTR auctions are also in the format of multiple unit, uniform price, sealed-

bid auctions. The empirical model for the FTR auction tests whether the bid sched-

ules are consistent with equilibrium bidding strategies implied by theory. However,

due to the limitations of the data, I am not able to use a fully structural model

to back out bidders’ true valuation, but rather, I use a reduced form model to test

the essences of theory implications. I construct different measures of the expected

future unit FTR credit and find that traders are forecasting future unit FTR credit

very accurately; Large bidders who are generators forecast future unit FTR credit

systematically higher than actual unit FTR credit while small generators’ prediction

on future unit FTR credit is very noisy. For the market power effect: Large bidders

significantly included FTRs’ impacts on market power into their bidding decisions

while small bidders bidding strategy does not reflect such an concern. Different as-

sumptions of value structures would lead to different empirical predictions and the

empirical reduced form model used in this part of the dissertation represents a gen-

eral model which allows value affiliation among the bidders. The empirical findings
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strongly supports the existence of a common value component in the value structure

and the bid shading patterns for traders and large generators are consistent with

multi-unit uniform-price theory implications.
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CHAPTER II

THE TEXAS ELECTRICITY MARKET

The grid operator in Texas is called the Electric Reliability Council of Texas (ER-

COT). The restructuring of the electricity market in Texas took place in August 2001.

By the end of year 2001, the Texas market had 70,000 megawatts (MW) of installed

generation, 37,000 miles of transmission and 57,600 megawatt hours (MWh) of peak

demand.

A. How Electricity Is Traded in ERCOT

Unlike many the deregulated markets elsewhere in the United States where there are

centralized power exchanges, or power is dispatched purely through auctions, 95% of

power in the Texas electricity market is based on bilateral trading between buyers

and sellers, i.e., the power transactions are settled by contracts between buyers and

sellers. The remaining 5% is traded in the real-time market, also called Balancing

Energy Service market where power is balanced between suppliers and consumers in

the real time. In the real-time market, consumers do not respond to price, making

demand perfectly inelastic. Congestion and congestion cost1 are determined through

this real-time market.

To supply electricity, firms operating in Texas must first give ERCOT information

about their generation schedule one day ahead. No auction mechanism is involved

in the one day ahead report. Then at the real time, firms can choose to bid into

the spot market to provide balancing energy service so that in the real time, actual

1ERCOT uses a linear programming software to solve for the unit congestion
cost called “shadow prices”(similar to a Lagrangian Multiplier) on each congested
transmission line. Detailed calculation shadow price can be referred in Appendix A.
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demand meets actual supply. The real-time market can be regarded as a residual

market conditional on the scheduled supply one day ahead. In the real-time market

(or the balancing market or the spot market: the names for this market will be used

exchangeably but refer to the same market), a uniform-price, multi-unit, sealed-bid

auction is conducted. It is hoped that through the market mechanism in the real-time,

efficiency can be achieved if firms are perfectly competitive. This analysis focuses on

the real-time market to test whether the spot market’s price signal is further distorted

by the ownership of FTRs if firms are already exercising local monopoly power.

Firms submit their bids to ERCOT no later than one hour ahead of the real

time. Then the real-time market clears 20 minutes ahead for every following 15-

minute interval. Although the time periods are divided into 15-minute intervals, the

bid stack is fixed for each hour. Firms submit an hourly bid schedule for each regional

market. Balancing bids are capped at $999/MWh.

B. Transmission Management and FTRs in ERCOT

When transmission lines are not congested2, the ERCOT market can be regarded

as integrated because the transportation cost is zero, or the marginal value of an

additional transmission capacity is zero3. When the transmission lines are congested,

the entire ERCOT market is separated into sub-markets with different prices known

as zones. The price differences among the markets constitute the transportation cost

(or congestion cost) for using the transmission line between two markets (Or you can

2Although the cause of congestion is complicated in engineering terminology, we
can simply regard congestion as the case when the power flow along the transmission
line reaches its upper-limit capacity of the transmission line.

3We can envision this “congestion cost” as a shadow price (a Lagrangian multi-
plier) attached to a binding constraint (the transmission capacity) when we solve a
constrained optimization problem. When the constraint is not binding, the shadow
price (the Lagrangian multiplier) is zero.
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think of them as arbitrage costs). If we think of the transmission line as a “bridge”,

then without the rights, the merchant who wants to ship power across the “bridge”

needs to pay “tolls”. However, with transmission rights, he does not need to pay

the “toll”. The “toll” is the transportation cost, or congestion cost. Without FTRs,

a firm cannot secure a stable profit stream since the congestion costs, which are

determined by the real-time markets, are volatile. Owning FTRs allows the firm to

use the transmission line for “free” so that the profit is more stable.

Transmission constraints are most likely to bind between zones and we call such

congestion “zonal congestions”. Within each zone, there are infrequent and random

congestions called “local congestions”. In the year 2001, there were three zones –

South, North and West, and two major transmission constrains (South → North,

and West → North). In 2002, a fourth zone was added - the Houston zone and

there were four major transmission constraints: South → North, West → North,

South → Houston and North → West. In 2003, the North → West constraint was

dropped. Table I is a list of congestion frequency among most significantly constrained

transmission interfaces from 2002 to 2003.

FTR program began in Texas on February 15, 20024. There is no centralized

Table I. Frequency of Congestion on Major Transmission Constraints

(Jan. 2002 - May 2003, all hours)

S → N W → N S → H N → W

2002 26.6% 25.9% 26.7% 3.3%

2003 7.3% 7.3% 7.3% –

4This date coincides with the direct assignment of congestion cost.
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secondary market for FTRs5, but FTRs can be traded bilaterally between market

participants6. ERCOT auctions both monthly and annual FTRs. The annual auction

distributes 60% of total FTRs with the remaining 40% distributed among each month.

The FTRs awarded in the annual auction can be used for the entire year, while the

monthly auctioned FTRs can only be used for the month specified. Once the bidders

are awarded FTRs in the annual auction, the FTRs can be applied to any hours

within the year. If the FTRs are awarded through monthly auctions, then the FTRs

can only be applied to hours within the month specified. In view of possible market

power effect, the rule stipulates that the individual can only holds no more than 25%

of the entire stock of FTRs.

The FTR auction format in 2002 is uniform-price sealed-bid multi-unit auction.

The bidders need to bid for each type of FTRs separately. In year 2003, the format

for the FTR auction changed to multi-unit combinatorial auctions, i.e., the bidders

buy different types of FTRs together as a bundle. Since both theory and empirical

study for combinatorial auction, especially for multi-unit combinatorial auction are

almost non-existent to my best knowledge, this study focuses on the FTR auctions

in 2002. The auction for N → W FTR did not have many market participants in

year 2002 and consequently this directional FTR is eliminated in the year 2003. In

this research, I ignore the auction for this type of FTRs. In year 2002, on average

there around 15 bidders in each auction (except N → W direction, which has less

than 10 bidders in each round) with the annual auction has the largest number of

participation.

5ERCOT does not monitor the secondary transactions.
6The bilateral trading is not registered with ERCOT and I do not have the infor-

mation. Conversations with ERCOT staff members and industry practitioners reveal
that the secondary trading is not liquid.
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Once the bidder is awarded the FTRs, she needs to pay to the grid operator

an amount that equals the FTR price times the FTR amount times the total time

period in which the FTRs can be used. For example, if the bidder is awarded 10

units of S → N FTRs in the March FTR auction and the auction clearing price is

$5, she needs to pay a total amount of $5× 10× 31days× 24hours = $37200. On the

second-stage wholesale electricity market, she can then collect FTR credits whenever

congestion happens in the direction of S → N in March. In year 2002, the FTR

revenue from the FTR auction totaled $91 million, exceeded ex-post FTR credit by

$62.4 million; in year 2003, the FTR revenue totalled $27 million, while the ex-post

FTR credit was $30.5 million; in year 2004, total FTR revenue was $34.5 million, and

the realized FTR credit was $43.9 million. Summer months always have the highest

FTR prices and the FTR prices decrease from year 2002 to year 2003. This may be

partially due to the changing of auction format which is beyond the discussion of this

dissertation, and also reflect to some degree the learning of the bidders.

For this research, I look only at the first interval in the hour 18 (i.e. 18:00 -

18:15). Aggregate demand for electricity rises to peak demand around 1pm and stays

stable till 8pm on an average day. In hour 18, firms usually have ample time to

increase or decrease a unit’s output so that there are only minimal inter-temporal

adjustment costs in this hour.
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CHAPTER III

THE IMPACT OF FTRS ON STRATEGIC BIDDINGS ON THE WHOLESALE

ELECTRICITY MARKET

A. Theories

Wilson (1979)’s seminal paper on multi-unit auction offers a direction in performing

empirical structural analysis on multi-unit auctions. Wilson collapses all the uncer-

tainties that bidders have into the uncertainty of market clearing prices. Klemperer

& Meyer (1989) explore the supply function equilibrium where the choice variable

is upward sloping supply functions with multiple price and quantity pairs. Green

& Newbery (1992) first applied the supply function concept in the study of the UK

electricity market. Wolfram (1998) empirically studied multi-unit auctions with unit-

specific bids in the England and Wales electricity market. Hortaçsu & Puller (2004)

developed a structural method to analyze multi-unit uniform price auctions with port-

folio bids in ERCOT. My paper extends their analysis to situations where the market

is congested.

In most deregulated electricity markets, firms sign contracts with their customers

at a fixed price PCit and a fixed quantity. A firm can over/under-schedule in one day

ahead from its actual total contract quantity, with the over/under-scheduled amount

QCit sold/bought in the real-time market. Total actual contracted quantity is then

the sum of day-ahead scheduled quantity qDA
it and QCit. A positive QCit means that

the supplier is net short on its total contract volume in the real time and needs to buy

back from the real-time market to supply its customer; a negative QCit means that

the supplier is net long on its contract in the real-time market and needs to sell to

the real-time market. Usually the residual contract quantity (QCit) in the real-time
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market is covered by a financial contract fixing the customers’ price at the contract

price (PCit) if the customer gets QCit from the real-time market1. According to

the financial contract, if the real-time market price is higher than the contract price,

then the supplier needs to pay its customer the difference for the contract quantity

delivered in the real time and vice versa. Then the revenue from residual contract

position (QCit) in the real-time market is then (PCit−pc
t)QCit if pc

t is the spot market

price.

In the real-time market, a firm faces its own residual demand which is constructed

by taking the aggregate real-time demand and subtracting the firm’s competitors’

supply. Below equation shows a firm’s profit under the static setting without any

uncertainty, i.e., a firm knows exactly the realization of its residual demand during a

congestion period:

πit = (Sit(p
c
t)−QCit)p

c
t +SP (pc

t , p̃t)FTRit +PCit(q
DA
it +QCit)−Cit(Sit +qDA

it ) (3.1)

where Sit(p
c
t) is the supply function (the bid function) in the real-time and pc

t is the

real-time market clearing price. Cit is firm i ’s cost, p̃t represents prices in the other

regional markets at time t, FTRit represents the number of FTRs owned by firm

i on a directional congested line at time t and SP (pc
t , p̃t) is the corresponding unit

congestion cost as a function of prices in each separated market.

The first term in the profit function is the revenue in the real-time market; the

second term is the revenue from FTR payments; the third term is the revenue from

selling the contract quantity and Cit is the cost of production. I ignore the sunk cost

of purchasing FTRs in the profit function without any harm to the following analysis.

Unit congestion cost (SP (pc
t , p̃t)) is the marginal value for an additional unit

1These kinds of contracts are called Contract for Differences (CfD).
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of transmission capacity, and is also the unit FTR credit payment. It is calculated

as a linear function of regional prices with the coefficients decided by the line “shift

factors”. The shift factors indicate the impacts of power flow through one transmission

line on the other transmission lines. When a generator send power through one

transmission line, there will be part of the electricity “shifted” to other transmission

lines. (The detailed calculation of the unit shadow price can be found in the Appendix

A.) In its simplest form, the shadow price for a certain congested transmission line

can be written as:

SP (P ) = α1PN + α2PS + α3PW + α4PH (3.2)

PN PS, PW , and PH are prices in the North, South, West and Houston region respec-

tively. When the transmission lines are congested, prices in each market differ. αis

are constants from combinations of monthly average shift factors.

In all auction analysis, we need to model players’ beliefs regarding the distribu-

tion of market outcome. In a multi-unit auction, Wilson (1979) uses H(p, Sit(p)) as

players’ beliefs of the distribution of market clearing price given their own submitted

supply functions. More specifically, we can write:

H(p, Sit(p)) = Pr(pc
t ≤ p|Sit(p)) = Pr(Sit(p) +

N∑
j 6=i

Sjt(p) ≥ D̃(p)|Sit(p)) (3.3)

where D̃(p) is the demand with a random noise. H(p, Sit(p)) is the probability that

the market clearing price is lower than the bid price or the probability that there are

excess supply on the market. Based on uncertainty about the market clearing price,

the optimization is on the expected profit:

max
Sit(pt)

Π =
∫ p̄

0
πitdH(p, Sit(pt)) (3.4)
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where π is defined in equation (3.1).

By first order condition, we have2:

pt − C ′
it(Sit + qDA

it ) = (Sit(pt)−QCit + SP ′(pt, p̃t)FTRit)
HS

Hp

(3.5)

The left hand side (LHS) of equation (3.5) is the market clearing price-cost markup.

Inside the parenthesis of the right hand side (RHS) of equation (3.5) are the quantities

composed of real-time market clearing quantity Sit(pt), the net contract position in

the real-time market QCit and FTR quantity adjusted by shift factors. Sit(pt)−QCit

is the net real-time market sales. For example, if a firm sells 100 MW into the

balancing market, but it still has contract obligation of 50 MW not scheduled day

ahead, then it needs to buy back 50 MW from the real-time market, resulting in net

selling 50 MW (100 MW - 50 MW) in the real-time market. There can also be cases

where a firm is a net buyer (Sit(pt)−QCit < 0) in the real-time market.

In the import-constrained market, the shift factor adjustment (SP ′(pt, p̃t)) is

positive. Then based on equation (3.5), FTRs give the firm a “pseudo” additional

capacity as if the firm were able to ship power from a lower priced market without any

cost and sell it at a higher local price, receiving the arbitrage revenue. However the

firm does not need to physically ship power across transmission lines because FTRs

are financial instruments. This is intuitively the reason why FTRs create additional

incentives to exercise market power: the firm has more “pseudo imported capacity”

to enhance its market power in its own location. Same logic applies to firms holding

FTRs in the export market where the shift factor adjustment is negative. Then FTRs

act as if the firm ships power to other higher-priced markets so that it has less capacity

in its own market. In this case FTRs serve as “pseudo exported capacity” to reduce

2The derivation can be found in Appendix B.
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the firm’s local market power. But since this capacity is “pseudo”, an interesting

empirical question is whether the firm realizes its “pseudo capacity” in the market.

HS

Hp
is the ratio of densities. Let us imagine that the horizonal axis repre-

sents quantity and the vertical axis represents price, then HS is the changing in

the H(p, Sit(p)) distribution due to a leftward/rightward shift of bid curve (holding

bid prices being constant). The higher the amount that the bidder supplies at a given

price, the higher the probability that there is excess supply, HS is therefore positive.

Hp is the changing in H(p, Sit(p)) distribution due to an upward/downward shift of

bid curve (holding bid quantities being constant). As bid quantities are fixed, the

higher the price that the bidder requests to be paid, the higher the probability that

the price is greater than the market clearing price, and this term is therefore also

positive. Then the whole term HS

Hp
is positive, an element that affects the markup

amount through uncertainty.

To explore the uncertainties in detail, I group the uncertainties into two cate-

gories: 1), firm’s private information, and 2), randomness in the aggregate demand.

In equation (3.5), there are two pieces of firm’s private information that adds to

uncertainties in the market: The first is the net contract positions (QCit) in the real-

time market and the second is the FTR ownership. I assume that bidders’ private

information (the net contract position on the balancing market and FTRs) are addi-

tively separable to its bid slope in their bid schedule. More specifically, we can write

the bidder’s supply schedule as Si(p, QCi, FTRi) = αi(p) + βi(QCit, FTRi)
3. αi(·)

and βi(·) are flexible functional forms. Intuitively, This assumption serves to ensure

3Notice that in the function of βi(.), we do not know how FTRi affects QCit

(because FTRs are determined before the decision of QCit). But if FTRs affect QCit,
that effect is on the one day ahead and not on the balancing market. By conditioning
on QCit, we are able to detect the FTR’s effect on the real-time market participants’
behavior.



20

that bidder’s private information only add noises to the bid function horizontally but

won’t change the shape of the bids. This assumption is similar to the assumption

in Klemperer & Meyer (1989)’s derivation of supply function equilibrium where they

assume that in a short time period, noises only translate demand horizontally but do

not pivot demand. From a firm’s perspective, locally it faces its own residual demand

which is the perfect inelastic aggregate demand minus its rival’s supply. Since the

private information are all additive noises, the residual demand will also be translated

horizontally without being pivoted by the private information.

Second, the aggregate demand (D̃(pt)) itself contains some randomness. I assume

that there are idiosyncratic additive errors to the expected demand (D̄(pt)), i.e.,

D̃(pt) = D̄(pt) + εt, where εt is random noises independent of private information

and D̄(pt) is the expectation of future demand. Under the above assumptions, the

first-order condition in equation (3.5) can be reduced to4:

pc
t − C ′

it(Sit + qDA
it ) =

(Sit(p
c
t)−QCit + SP ′(pc

t)FTRit)

−RD
′
it(p

c
t)

(3.6)

From equation (3.6), all the uncertainties can be captured by residual demand slope

RD
′
it(p

c
t) at every price level. Rather than simulating the H(p, Sit(p)) distribution

each time period, which requires tremendous computational burden, I can now only

focus on the estimation of residual demand slope at each price level to measure the

uncertainty component in the auction. The above analysis also carries through with

the same results when the bidder is risk averse. The proof for a risk averse bidder

can be found in Appendix D. My structural estimation is based on equation (3.6).

4detailed derivation can be found in the Appendix C
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B. Empirical Model

1. Structural Estimation Equation

Based on equation (3.6), I can test whether or not the term SP ′(pt)FTRit is significant

in equation (3.6). If the parameter before SP ′(pc
t)FTRit is statistically equivalent to

one, then firms fully internalized FTRs into their bidding strategies: treating FTRs

the same as their net physical balancing market sales. If the parameter is statistically

insignificant, then FTRs are merely hedging instruments. The parameters will also

reveal the magnitude of deviation from optimal behavior. The empirical structural

model can be written as the following:

pc
t − C ′

it(Sit + qDA
it ) = β1

Sit(p
c
t)−QCit + β2SP ′(pc

t)FTRit

−RD
′
it(p

c
t)

+ εit (3.7)

where the LHS is the price cost markup at the market clearing point. On the RHS,

Sit(p
c
t) − QCit is the net power supplied in the real-time market; SP ′(pc

t)FTRit is

the FTR quantity adjusted by shift factors and RD
′
it(p

c
t) is the slope of the residual

demand at the market clearing point. β1 reflects a firm’s bidding strategy with regard

to its inframarginal capacities. β2 reflects the effect of FTRs – the “pseudo capacity”

– on the firm’s bidding strategy and can be treated as the weight a firm puts on FTRs

relative to its net balancing market physical sales in the bidding.

Denoting β1 × β2 as γ1, we can rewrite our previous equation (3.7) as:

pc
t − C ′

it(Sit + qDA
it ) = β1

Sit(p
c
t)−QCit

−RD
′
it(p

c
t)

+ γ1
SP ′(pc

t)FTRit

−RD
′
it(p

c
t)

+ εit (3.8)

Based on equation (3.8), β2 can be recovered by β2 = γ1

β1
and we can test the following

sequence of hypothesis:

H0: β2 = β1 = 0 perfect competitive case – the bidder is perfectly competitive not

only with regard to net physical balancing market sales but also to FTRs, the
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pseudo quantity.

H1: β2 = β1 = 1 optimal strategic equilibrium bidding – the bidder is optimally ex-

ercising market power unilaterally not only with regard to its net physical bal-

ancing market sales, but also to FTRs’ pseudo quantity.

Relaxing the above joint hypothesis, I can further test:

H2: γ2 = β1 relaxing the constraint that β1 = 1, the bidder internalize FTRs identi-

cally as its own net physical balancing market sales.

H3: β1 = 1 Optimal strategic bidding only with regard to net balancing market phys-

ical sales.

2. Data

Based on equation (3.8), I need information on bid, cost, demand and FTRs. My

data set includes the real-time market bid stack, hourly generation data, unit cost

information, real-time balancing market demand data and FTR auction results. All

the data are confined to weekdays.

• Balancing bid data: each bidder’s hourly bids into each zone.

• Hourly generation data: whether a unit is available and operating during each

hour, the location, the day-ahead scheduled amount of generation per unit and

the real time actual amount of generation per unit. This data set also consists

of a unit’s engineering characteristics such as the minimum and maximum gen-

eration capacity available in each time period. These information are used to

construct the marginal cost curves.

• Unit cost data: the marginal fuel cost of each unit is estimated using the direct

fuel (gas or coal) costs and the unit’s generation efficiency (heat rate). The
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marginal cost of each unit is also composed of environmental cost (SO2 and

NOx permit price) and variable operation and maintenance (O & M) costs.

Each unit has a constant marginal cost reflecting the above elements until it

reaches its capacity. The marginal cost for each unit is assumed to be infinite

after a unit’s generation capacity is reached. I measure each unit’s marginal

cost with methods that are standard in the electricity economics literature. I

use the same data as Hortaçsu and Puller (2004) and the detail of the cost

measurement can be found in the appendix of Hortaçsu and Puller (2004).

• Demand data: the 15-minute real-time market clearing price and the zonal

amount of electricity demanded in the real-time.

I confine my study to “local monopolies” since the theory applies to firms with local

monopoly power. I focus on TXU in the North zone and Reliant in the Houston zone.

Reliant owns around 55% of total generation in the Houston zone and TXU owns

around 60% of total generation in the North zone. If we compare Reliant and TXU

with other firms in the balancing market from August 2001 - July 2002, Reliant and

TXU combined realized almost 65% of total sales in the real-time market. TXU and

Reliant are also important because they were active purchasers of FTRs throughout

my sample period.

3. Measurement of Each Variable

Variables needed for the estimation of equation (3.8) are measured as the followings:

Residual Demand Slopes (RD
′
it(p

c
t)) In the auctions, bid functions take the form

of step functions. Since the residual demand is derived by subtracting the rival’s

supply function (bids) from the aggregate demand (which is perfectly inelastic in

the real-time), the residual demand is also a step function. For a step function,
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the slope for each point is either 0 or ∞. A firm should have some prior on the

shape of a relatively smooth residual demand to choose its bid schedule. To get

a smoother residual demand, I use non-parametric kernel estimation to smooth

out the residual demand without assuming any functional forms. I estimate the

residual demand function using the following kernel regression:

pc
t(RD) =

∑N
n=1 pnK(RD−RDn

h
)∑N

n=1 K(RD−RDn

h
)

(3.9)

where n is the bid steps, N is the total bid steps for a single bid function, h is

the smoothing parameter, and K(·) is the kernel function. In this estimation I

use a normal kernel, with

K(
RD −RDn

h
) =

1

(2π)1/2
exp−

(
RD−RDn

h
)2

2 (3.10)

The residual demand slope can be measured by taking derivatives of equation

(3.9). h is selected according to the ad-hoc rule, where:

h = std(RDn)n− 1
5 (3.11)

std(RDn) is the standard deviation within the sample at each time period, and

n is the sample size. Due to large dimensionality of the data set, the ad-hoc

method quickens the computing speed without losing much accuracy.

Market Clearing Price and Quantity The market clearing price (pc
t) and quan-

tity (S(pc
t))is at the intersection of firm i ’s bid schedule and the realization of

its residual demand RDit. Sit(p
c
t) − QCit is then the net physical balancing

market sales for firm i at the market clearing price.

Residual Cost To construct a marginal cost curve, I first need to get each unit’s

flexible capacity on the balancing market. Most units cannot decrease their
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output down to zero. There are two measures in the data that give a hint of the

minimum amount of output that needs to be sustained for each unit: 20% of

the unit’s maximum capacity (which is used in Hortaçsu and Puller (2004))and

the reported minimum unit capacity. I define the maximum of the above two

measures as the minimum required capacity to be running for each unit. The

flexible capacity for each unit is then the difference between its maximum gen-

eration capacity and the minimum required capacity for operating derived as

above. To construct the marginal cost curve, I stack the units with their flexible

capacities according to an ascending cost rule. Since I am studying the balanc-

ing market (or the residual market), I re-center the origin to the day-ahead

scheduled amount of generation because any increase or decrease of production

in the real-time originates from this day-ahead scheduled production. To avoid

the start-up cost adjustment problem, I only focus on units that are already

operating during previous hours.

Markup Once the market clearing price and quantity is found, I calculate C ′
it(Sit(p

c
t))

– the marginal cost of supplying the market clearing quantity. The markup is

measured as pc
t − C ′

it(Sit).

4. Recover Private Information: Net Contract Position (QCit)

I have in data one piece of private information – the FTR ownership, but I do not

have data on firm’s net contract position QCit in the real-time market. To measure

contract quantities (QCit) that have gone into the balancing market, Hortaçsu &

Puller (2004) recover QCit by finding the intersection point between the bid function

and the marginal cost function, such as point A in Figure 1 where P(Q) is the bid

function and MC is the marginal cost function. The intuition is that a firm will bid
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Fig. 1. QC When No Congestion

higher than marginal cost when it is a net seller on the balancing market, and bid

lower than marginal cost when it is a net buyer on the balancing market to save

its own production cost. In my case, however, the observed intersection point

QCit,obs is composed of the true QCit (QCit,true) and FTRs. To understand this, we

can rewrite our equation (3.7) as

pc
t − C ′

it(Sit + qDA
it ) = β1

(Sit(p
c
t)− (QCit,true − β2SP ′(pc

t)FTRit))

−RD
′
it(p

c
t)

+ εit, (3.12)

and let

QCit,obs = QCit,true − β2SP ′(pc
t)FTRit (3.13)

Intuitively, if QCit,true > 0, the firm must buy the residual contract quantity (QCit,true)

from the real-time market but the FTRs allow it to import the FTR quantity for

“free”. Such a pseudo import quantity reduce the residual contract quantity to
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QCit,obs in the real-time market so that the firm has more flexible capacities and

market power is increased.

According to equation (3.13), I can still use the intersection point to identify

QCit,obs(the quantity combined of QCit,true and FTRs), but I cannot separately iden-

tify QCit,true from FTRs without further assumptions to recover the QCit,true. Fur-

thermore, the congestion status I observe is the ex-post realization, I need to have

a metric that indicates the probability that the ex-post realized congestion is ex-

ante forecasted. Only when a firm forecasts future congestion, it will bid to include

FTRs. Notice that during non-congestion intervals (or a firm forecasts a future non-

congestion), firms’ profit functions do not include FTR credit revenue since congestion

cost is zero, and hence the intersection of bids with cost curves reflects QCit,true
5. In

order to measure the true contract quantity on the balancing market when a firm

perceives future congestion and bids accordingly, we need to know the indicators of

future congestion and the stable factor in the contracts6 through time so that non-

congestion and congestion periods can be related.

Sample Selection To determine how probable congestion will be, I construct a

variable called “frequency of congestion (freqoc)” as the rough probability of

5There might be questions as to whether a firm has the ability to affect the conges-
tion outcome. Since the balancing service market is only a residual market, the bids
on the balancing market mostly affect the price on the market, but not the congestion
outcome. If a firms’ schedule one day ahead is the major source of congestion, then it
can show willingness or unwillingness to relieve congestion through its bids. But usu-
ally balancing bids alone cannot cause congestion. Bids on the balancing market are
finalized one hour ahead, so firms know the current market condition such as weather,
market aggregate demand, etc., which is quite stable around hour 18:00 and conges-
tion is well expected. This paper assumes that because congestion is exogenous on
the balancing market and firms expect future market congestion outcome with some
confidence since the “future” is not far away, they can update their information and
change their bids accordingly. For example, from August 2002 - December 2002,
Reliant and TXU on average change their bids three times before the finalizing stage.

6The elements that are related with contracts are: real total contract quantity,
day-ahead scheduled quantity and real-time residual contract obligations.
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congestion for time period 18:00 - 18:15. This index is measured by dividing the

total number of congestions intervals during 13:00 - 17:00 by the total number

of intervals during that time period7. From January 2002 - May 2003, 72% of

total congestion occurred when the frequency of congestion in the afternoon was

greater than 50% and 87% of total non-congestion occurred when the frequency

of congestion in the afternoon was less than 50%. These numbers indicate that

freqoc is an accurate predictor of congestion. For this study, I focus on time

intervals 18:00 - 18:15 when freqoc was greater than 50%. This means that my

selected sample include some congested intervals, but also some non-congestion

intervals with perceived congestion.

Stable Factor I regard the total contract quantity as the most stable element related

with contracts over time (at least within one week). We can observe a firm’s

day-ahead scheduled quantity, but we do not know whether it under- or over-

scheduled in the day ahead. As was mentioned before, during time periods when

a firm perceives a future non-congestion and bid accordingly, the intersection of

bid curve with cost curve gives the net true contract position on the real-time

market. Combined with day-ahead scheduled quantity, I can back out a firm’s

actual total contract quantity (QCT
it ) during that time interval by QCT

it = qDA
it +

QCit. I restrict to samples with very low freqoc (freqoc < 20%) and back out

the true total contract quantity (QCT
it ) using the above methods. The variation

within a week for the backed-out contract quantity is mostly less than 10% and

sometimes even less than 1%. I calculate the average of the contract quantity

(Q̄CT ) for each week and assume that this is the actual contract quantity that

7Bids need to be finalized an hour ahead (i.e., 17:00 for the bidding for hour 18:00
- 19:00).
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the firm needs to deliver to its customer each day during the week at this time

interval.

Measure QCit,true After finding the actual total contract quantity (Q̄CT ), I can re-

cover QCit,true by relating the total contract quantity (Q̄CT ) to its day-ahead

schedule (qDA
it ) during my selected sample periods: QCit,true is then recov-

ered by subtracting the day-ahead schedule from the total contract quantity

(QCit,true = Q̄CT
it − qDA). Table II shows the summary statistics of the QCs

as measured above in both “mostly likely” congestion and non-congestion peri-

ods for Reliant and TXU. QCobs (the actual intersection point of bid and cost

curves without adjusting for FTRs) during most likely congestion periods are

also listed in the third row for each firm. For comparison purpose, the absolute

magnitude of the market clearing quantity Sit(p
c
t) are given in the fourth row

for each firm.

On average, residual contract positions (QCtrue) during congestion periods are larger

than the numbers during non-congestion periods. If a firm strategically deploys its

contract quantities into day-ahead (qDA)and real-time (QC), then QCs should reflect

such behavioral difference but is beyond the scope of the analysis in this dissertation.

5. Apply to the Notion of Supply Functions

Klemperer & Meyer (1989)’s supply function is derived by assuming additive noises

to the residual demand. They argue that firms submit multi-unit bids because of

uncertainty in the location of residual demand. If a firm knows for sure where the

residual demand lies, it can do as well by just bid only one point to equalize marginal

revenue with marginal cost and maximize its profit. The authors argue that when
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Table II. Comparison of QCs in Different Scenarios

Feb. 2002 - May 2003; 18:00 - 18:15; freqoc > 0.5

mean s.e. min max

Reliant congestion (QCtrue) 761.68 1137.31 -1691.75 3254

non-congestion (QCtrue) 210.88 351.07 -400 1601

congestion (QCobs) 492.27 575.47 -1000 2619

Sit(p
c
t) (congestion) 350.42 364.46 0 1400

TXU congestion (QCtrue) 624.79 1242.12 -3092 3407

non-congestion (QCtrue) 444.91 533.22 -1750 2320

congestion (QCobs) 400 493.95 -250 2380

Sit(p
c
t) (congestion) 332.19 465.22 0 2017

Note: “congestion” refers to intervals with freqoc> 0.5;“non-congestion” refers to intervals with freqoc < 0.5.
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demand is translated horizontally by uncertainty, firms have a positively sloped supply

function, rather than a vertical Cournot supply function or a horizontal Bertrand

supply function8. My assumption of private information serving to affect the residual

demand position but not the slope is in compliance with the conditions for an upward

sloping supply function.

In this structural estimation, I add noises to the ex-post realized residual demand

curve to simulate demand uncertainty. Theory indicates that if a firm is optimizing,

it should do so along each bid point. I shift residual demand horizontally by adding

noises randomly drawn from a normal distribution with a standard deviation of 300

MW9. If the clearing point is the same as the previous shifting (either the clearing

price or the quantity), I drop that observation since it is redundant. Hence the

resulting clearing points from the shifting of residual demand should be reflective of

the bid points “supposedly” be cleared on a single bid curve each day. In this way,

my estimation results show the optimality of the entire bid schedule.

C. Estimation

Table III gives summary statistics of the variables in equation (3.8). All numbers are

in absolute values10. Both Reliant and TXU are in the import zone with variable

importing FTRs through time. Both Reliant and TXU on average price differently

from marginal costs, but their markups vary substantially over time.

To detect the evolution of strategies over time, I divide the sample into three

8By vertical, I mean that the horizontal axis is quantity while the vertical axis is
price.

9The standard deviation of daily demand is around 250MW and the stand devia-
tion of weekly demand during the hour 18 is around 400MW.

10When firms are decreasing their supply in the real time, the markup and the
market sales are negative.
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Table III. Summary Statistics for Reliant (Houston) and TXU (North)

Feb 2002 - May 2003; 18:00 - 18:15; freqoc > 0.5

Reliant (Houston) mean s.d. obs

Markup 28.90 115.74 78

Net Market Sale (S - QCtrue) 533.03 629.25 78

FTR (S → H) 140.56 54.40 78

TXU (North) mean s.d. obs

Markup 26.82 92.33 78

Net Market Sale (S - QCtrue) 1035.74 793.97 78

FTR (S → N) 117.63 39.79 78

FTR (W → N) 100.01 57.54 78

periods: Period 1: February-June 2002; Period 2: July-December 2002; Period 3:

January-May 2003. Historically, period 2 shows more congestion since summer peak

demands are within the sample. Period 1 and Period 3 are off-peak and shoulder

months, but for the month of March, April, October and November, generation and

transmission outages are often in ERCOT.

1. Metrics of Optimality

This section provides several qualitative metrics in the testing of optimality with

FTRs in the bids.

a. Distance From Actual Bids to Optimal Bids

First I check how far apart the actual bids are from the “optimal” ones. FTRs are

acting as “pseudo quantities” that shifts the bid curve: “QCtrue” is shifted leftward
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Table IV. Closeness to “Optimal” Bids: Ŝ(pt)− S∗(pt)

(Feb 2002-May 2003, 18:00 - 18:15, freqoc > 0.5)

Period mean (mw) s.d. obs.

Reliant

1 695.22 892.66 30

2 -155.23 937.87 31

3 229.514 483.98 17

TXU

1 719.29 1166.32 30

2 66.67 639.69 31

3 -64.22 529.69 17

Note: Ŝ(pt): actual bids; S∗(pt): optimal bids.

(reduced) by FTRs to “QCobs” according to equation (3.13). To get the bids that

fully internalize FTRs, I keep the original bid shape so that β1 is not affected, and

shift the bid in a way that it crosses the marginal cost curve at the “optimal” point

where β2 = 1 in equation (3.13) (QCit,obs = QCit,true − SP ′FTRit). I measure the

quantity deviation between actual and optimal bids at the same price level to assess

the optimality with FTRs in the actual bids. Table IV gives the summary statistics

of the distance deviations.

If β2 = 0, or the firm does not internalize FTRs into its bidding decision, the

bid curve should lie to the right (the bid curve is not shifted) of the “optimal” bid

curve, i.e., corresponding to each price level the actual quantity bids should have a

larger quantity than the optimal quantity bids. Note that in Period 2, the mean for

Reliant is negative, meaning that Reliant shifted the bid curve so much that it is to
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the left of the “optimal” bids. The absolute magnitude of the closeness of actual bid

curve to the “optimal” bid is smaller for Reliant during Periods 2 and 3 than Period

1, with period 3’s variance being the smallest. These statistics indicate qualitatively

that Reliant is bidding better through time. For TXU, the absolute magnitude is

also drastically smaller during Period 2 and 3 than Period 1, showing a degree of

behavioral improvement.

b. Measurement of β2s

β2 can be measured day-by-day from equation (3.13) and in theory, β2 should equal

1. The measurement of β2 uses the intersection of the bid curve with the cost curve

(QCit,obs). The drawbacks of looking at this intersection point alone is that we ignore

the entire bid schedule. Each bid point informs us about the bidding strategy under

other possible realizations of residual demand. By looking only at the information

conveyed by the intersection point, we might ignore the optimality at other bid points.

Nevertheless this is an important piece of information. Table V gives the measurement

results. The consistency with Table 4 is that Reliant in the second period and TXU

in the last period shifted their bid curves too much that β2 is greater than one.

Again, starting from Period 2, both players are showing significant improvement in

the bidding strategy with regard to FTRs. The following histograms in Figure 2 and

Figure 3 give a clearer picture of the distribution of β2 over time. The histograms

reflect the overall precision of the β2 during each sample period.

The numbers and the histograms show that for both Reliant and TXU during

Period 2, the means of β2s are closer to 1 and the distributions have thinner tails.
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Table V. Test of Optimal Shifting – β2

(Feb 2002-May 2003, 18:00 - 18:15,freqoc > 0.5)

Period β2 s.d. min max obs.

Reliant

1 -.69 1.75 -3.31 2.50 23

2 1.25 1.71 -3.25 4.41 30

3 -.03 1.76 -3.46 3.31 17

TXU

1 -.57 2.47 -5.32 3.73 24

2 .75 1.16 -1.89 3.24 29

3 1.41 2.37 -2.46 6.93 17

Note: β2 is measured by QCit,obs = QCit,true − β2SP ′(pc
t )FTRit
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Fig. 2. Reliant β2 Histogram
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Fig. 3. TXU β2 Histogram
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Table VI. Estimation Results

(Feb. 2002-May 2003, LHS variable: pc
t − C ′(S(pc

t))

Period β1 s.e. β2 s.e. γ1 s.e. H0 H1 H2 H3 obs.

Reliant

1 .17 .13 .31 .28 .05 .08 R R R R 264

2 .10 .06 2.29* .51 .23 .18 R R A R 350

3 .82* .15 .34* .14 .28* .13 R R R A 80

TXU

1 .10* .03 -.46 .69 -.05 .06 R R R R 303

2 .14* .05 .57 .44 .08 .08 R R A R 343

3 1.01* .44 1.96* .32 1.99* .86 R R R A 86

Note: R stands for reject, A stands for accept; * indicates significant differently from zero at 5% significance level;
Hypothesis tests use 90% confidence interval; Standard errors are robust.

2. Estimation Results

Previous sections give qualitative measures of bidding optimality regarding FTRs.

This section quantitatively estimates FTRs’ impacts on bidding decisions. Rather

than looking at one point on the bid curve (such as the intersection point Qobs),

estimation equation (3.8) checks bid points on the entire bid schedule by allowing

residual demand to shift by random noises. Table VI reports the estimation results11.

For both firms, the perfect competitive and optimal strategic bidding test was

rejected. However, the equivalent treatment of net physical balancing market sales

and FTR “pseudo” capacity is not rejected in some periods and we see some learning

11In the estimations, due to possible stronger correlation within each bid curve, the
errors are robust to the extend that the intra-day correlations are corrected.
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pattern for the bidders.

Strategic Bidding on Inframarginal Capacity (β1) Neither firm shows optimal-

ity with regard to physical inframarginal capacity except in the last period –

Period 3. All the estimates for β1 are very significant for TXU. However for

Reliant, the β1 estimates are very noisy until Period 3. A learning pattern is

shown by the fact that β1 converges towards 1 for both firms through time.

Strategic Weights on FTRs (β2) Reliant significantly increased the weight on FTRs

during Period 2, but seems to revert to the bidding behavior with regard to

FTRs in period 1 during Period 3. The difference between Period 1 and Period

3 for Reliant is that in Period 3, the bidding strategies with regard to FTRs

becomes more consistent in Period 3 (the standard error is much smaller in

Period 3). TXU increased the weight on FTRs during Period 2, and continues

to internalize FTRs effects during Period 3. But obviously for TXU, the weight

being put on FTRs is greater than the optimal weight (β2 = 1) during Period

3. These estimates also explains our first qualitative measure of the distance

deviation from actual bid curve to the optimal bid curve: Since Reliant over-

weighted FTRs in its bidding during Period 2, it shifted the bid curve to the

left of the optimal bid curve, resulting in the distance being negative. Also due

to the over-weighting of FTRs during Period 3, TXU’s actual bids lie to the left

of optimal bids. These observations agree with each other: both Reliant and

TXU added weights to FTRs significantly more starting Period 2, but deviated

from optimal in Period 3. Based on our estimates from different perspectives,

the estimation results are fairly robust.
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3. Explanation of Results

The estimation results show that both firms began to strategically internalize FTRs

into their bidding decisions in Period 2. But some deviations from optimal behavior

require us to explore the data in more detail. I group the possible explanations

into two broad categories: 1), firms’ learning from the market, and 2), unit specific

characteristics that constraint or affect the optimization behavior.

a. Learning

The sample I study is the first one and a half years that FTRs are distributed to

the market participants. This time period also correspond to the beginning of the

second half of the first year that the Texas wholesale electricity market was opened.

The estimations show a significant trend of firms’ learning from the market: β1 is

significant and converging towards optimal bidding through time and β2 becomes

significant for both Periods 2 and 3. During the third sample period (Period 3),

both Reliant and TXU reached the optimal β1 as theory predicts. Statistical tests

for β2 show that FTRs are fully internalized into Reliant’s bidding strategies during

Period 2 (β1 = γ1). Although both Reliant and TXU showed deviation from optimal

internalization of FTRs during Period 3, FTRs’ effects are statistically significant in

their markup decision.

To give further evidence for firm’s learning behavior, there are other metrics that

reflect the increasing of sophistication of firms bidding strategies. In theory, a perfect

competitive firm should not consider demand elasticity and just bid according to its

generation units’ marginal costs. A more sophisticated bidder should bid reflecting

its beliefs of all possible realizations of residual demand in the market and the bid

points on a single bid schedule need not be a one-to-one correspondence to its power
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Table VII. Summary Statistics of Number of Bid Points on a Single Bid Schedule

(Feb 2002-May 2003,

18:00 - 18:15, all intervals)

Period mean s.d. min max

Reliant

1 18.25 5.85 8 28

2 18.09 1.78 12 22

3 12.03 2.27 6 22

TXU

1 12.81 4.69 8 24

2 12.88 1.81 7 20

3 14.29 2.86 8 30

plants. The more sophisticated the bidder is, the more bid points should be on a

single bid schedule to maximize the likelihood of profit maximization given possible

realizations of residual demand. I check how many bid points there are on a single

bid curve through time 12. Table VII gives the summary statistics of the number of

bid points on a single bid schedule.

For TXU at the mean, there’s an increasing trend for the number of bid points

on a single bid schedule. In Period 3, not only the mean is larger than Period 1, but

the distribution is tighter around the mean than Period 1. For Reliant at the mean,

the increase of the bid points is not significant. But for Period 2, although the mean

of bid points is less than that in Period 1, the distribution of the total number of bid

12ERCOT confine the maximum number of bid points to be 20 on the increasing
and decreasing bids respectively.
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points is much tighter around the mean during Period 2 than Period 1. However, in

Period 3, Reliant’s average bid points on a single bid schedule decreased significantly.

b. Unit Specifics

Unit specific characteristics will lead to constraints on the actual bids or marginal

cost curve. This section assesses those impacts on the optimal behavior.

One important unit specific characteristic is the ramp rate. Ramp rate indicates

the maximum speed at which a supplier can provide additional energy. For example,

if the market needs 100 MW of additional supply during a certain 15-minute interval

and a supplier informs ERCOT that it can provide 100 MW at a ramp rate of 10

MW per minute. Then the generator can provide 100 MW of its offer during the first

10-minute interval if the unit is called; but if the ramp rate is only 3 MW per minute,

it can only produce 45 MW during the entire 15-minute interval so that it cannot

meet the 100 MW need. The larger the ramp rate, the more flexible the unit is on

the real-time market. Based on the unit-specific ramp rates, ERCOT will invalidate

some bids due to the infeasibility caused by ramp rate constraints. After invalidating

some bids, ERCOT has to move to the next available higher bids, resulting in actual

market clearing prices being higher than my simulated prices. I do not observe those

invalidated bids on the bid curve. One metric that can be used to assess the degree of

bias in my estimation is the comparison between the simulated market clearing price

and the actual clearing price. The comparison in Table VIII gives a possible error

range as to how often the bids I observe are the actual bids used by ERCOT. The

error is large for TXU, almost 10%. Reliant is around 5%. I also list the comparison

during non-congestion intervals using the same market price simulation methods. It

is obvious that during congestion periods when the transmission lines are constrained,

the regional market is less flexible than the integrated ERCOT-wide market and hence
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Table VIII. Comparison of Actual Market Clearing Price and Simulated Market Clear-

ing Price

(Feb 2002-May 2003, 18:00 - 18:15)

Actual price Simulated price

Congestion intervals

Reliant 42.60 40.84

TXU 39.79 35.86

Non-congestion intervals

Reliant 26.45 26.48

TXU 26.45 26.43

Note: the congestion and non-congestion intervals are ex-post realizations.

the ramp rate constraints are more severe.

The above bias is between the observed bid stack and actual bid stack and the

bias is caused by all the firms on the market. To check the impact of this constraint

on Reliant and TXU’s cost side, I check for each firm their marginal units that have

lower than average ramp rate. Marginal units refer to those units that is most likely

to be called on the balancing market to increase or decrease production. For Reliant,

among the 5 marginal generation units in the Houston zone, 2 units have below

average ramp rates. For TXU, among the 4 marginal generation units in the North

zone, 1 unit has below average ramp rates. Overall, these units with low ramp rates

do not compose the majority of marginal unit and the constraints’ impact on the cost

side is minimum. Combine the above two factors, it is likely that the LHS is biased

downward with the possible bias range of 10% for TXU and 5% for Reliant. The

estimation coefficient is correspondingly biased downward within that range.
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c. Behavioral Stickiness

Hortaçsu & Puller (2004)’s study about bidders’ strategic behavior in year 2002 shows

that Reliant is bidding close to optimal and TXU is bidding higher than the optimal

bidding strategy. Although Hortaçsu & Puller (2004) do not calculate explicitly the

β1s, the implication from their paper is that Reliant’s β1 is close to 1 in year 2002

while TXU’s β1 is significantly higher than 1 in year 2002. These are different results

from this research, where both Reliant and TXU’s β1 are significantly lower than 1

in year 2002.

The sample in Hortaçsu & Puller (2004) is non-congestion hours while the sample

in this paper is most likely congestion hours (mostly are ex-post congestion hours).

The data shows significant bidders’ behavioral stickiness that attributes to the be-

havioral differences between the two researches. In non-congestion hours, the residual

demand is the system-wide residual demand that includes all four zones in the Texas

market. In congestion hours, however, the residual demand is only composed of zonal

residual demand because of the binding transmission constraints. Due to fewer play-

ers in the zonal market, the shape of the residual demand slope within each zone is

different from the aggregate residual demand – the potential to exercise market power

is greater in import-constrained zonal markets. However, the data show that although

the residual demand changes from system-wide market to zonal market, bidders’ bid

slopes are sticky from the earlier time period, in that in congestion hours, the bid

slopes do not rise in a manner that captures the potential to exercise market power in

an import-constrained market. Table IX is the comparison of the curvature changes

for residual demand and bids. The curvatures are slope estimates from simple least

square regressions between the price and quantity. I examine the residual demand

slope at different prices ranges serving to “magnify” the residual demand slope at
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Table IX. Comparison of Residual Demand Slope and Bid Slope Changes

Period RD250 RD100 RDall RD500 bid slope

1

Reliant 22.61 10.12 20.20 14.47 0.97

TXU 5.73 6.22 6.85 8.14 1.36

2

Reliant 11.21 10.11 12.60 9.93 1.02

TXU 6.78 7.17 6.66 9.07 1.38

specific price ranges. The statistics listed in the table for residual demand are the

ratios of zonal residual demand slope at time t to system-wide residual demand slope

at t-1. For example, “RD250” indicates the ratio of zonal residual demand slope at

time t to the aggregate residual demand slope at time t-1 within the price range of

$-250 to $+250. The statistics for the bid slopes are the ratio of zonal bid slope at

time t to the system-wide bid slope at time t-1. Time t is the ex-post congestion

hours at hour 18 while time t-1 is the ex-post non-congestion hours one day earlier

at hour 18.

The comparison shows that the zonal residual demand in an import-constrained

zonal market is much steeper than the aggregate residual demand in the common

market, but the bid slopes do not seem to change from the last time period, which

is what I refer to as “behavioral stickiness”. Based on those statistics, the reason

for the discrepancy of the β1 between this research and Hortaçsu & Puller (2004) is

due to the behavioral stickiness: the bidders did not increase their bid slopes enough

during the congested time periods to capture their increased market power reflected

in their steeper zonal residual demand.
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D. Counterfactual Studies

Based on structural estimation equation (3.6), I can construct counterfactual bid

curves assuming that firms are optimizing with FTRs in their bidding decisions to

study the “best/worst case” scenario. To study the effect of FTRs only, I keep the

original bid shape assuming that firms still make the same bidding decisions with

respect to their net physical balancing market sales, but I shift the bid curves so that

the “weight” being put on FTRs is 1. The counterfactual optimal bid curves further

allow me to calculate the optimal allocation of the FTRs. I can then compare the

current allocation with the optimal ones to detect the efficiency effect of the current

allocation of FTRs.

1. Price and Cost Effect

By intersecting the counterfactual bids with the realized residual demand, I am able

to find the counterfactual market clearing points and the corresponding marginal pro-

duction costs. Table X and Table XI show the comparison of price and cost under

current allocation of FTRs and also the counterfactual scenario when there are no

FTRs owned. Since Reliant and TXU are major players in their own regional mar-

ket, the statistics are reflective of the overall market in the following two ways: first,

the market clearing price constructed for Reliant and TXU should also be the zonal

market clearing price, and second, since TXU and Reliant are major suppliers and

also marginal on the balancing market, their marginal cost should roughly reflect the

overall market’s marginal production cost.

By fully internalizing FTRs, the market clearing prices are strictly higher

than without the ownership of FTRs based on the ex-post realized residual demand.

The comparison for market marginal production costs under counterfactual scenarios
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Table X. Comparison Between Counterfactual Market Clearing Prices

Reliant (Houston) TXU (North)

Month p∗ p∗noFTR p∗ p∗noFTR

2002 Feb 14.6 9.5 20.54 19.75

Mar 30.5 18 59.00 40

Apr 51.25 40.1 38.62 30.50

May 43.94 43.67 33 33

June 26.37 23.02 32.98 25.74

July 25.76 22.88 28.35 18.99

Aug 32.22 27.97 34.13 25.24

Sept 49.10 20.81 34.87 23.28

Oct 69.65 41 37.88 25.88

2003 Jan 67.50 35 20.75 10.5

Mar 107.14 32.67 39.95 30.50

Apr 53.01 34.94 26.08 19.04

May 166.00 151.5 195.68 132.62

Note: p∗ is the market clearing price when current ownership of FTRs are fully internalized into firm’s bidding;
p∗noFTR is the market clearing price when no FTRs are owned by the firms.
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shows that the ownership of FTRs leads to lower marginal production costs, but such

changes are not significant compared to price changes. Most of FTRs’ impacts on the

bidding is reflected by higher market clearing prices in the counterfactual scenarios.

For some months, the average market clearing prices are lower than the average

marginal cost, meaning that the firm is mostly cleared on the market as a net buyer.

For a net buyer, FTRs erodes its monopsony power and can lead to an improvement

in the price signal efficiency. The next section explores the price signal improvement

by the ownership of FTRs and hence an optimal allocation of FTRs.

2. Optimal Allocations of FTRs.

An important policy question is: how many FTRs should be assigned to the ma-

jor firms with market power. If we regard FTRs as a form of contract, then their

assignment can be used to optimize the contract quantity that enters the balancing

market. Such an optimality can be achieved through forcing the intersection of bids

and marginal cost curve (the combined effect of true net contract position and FTRs)

as close to the market clearing point for the firm as possible. The market-clearing

price could then be closely reflective of marginal production cost. If the firm is cleared

as a net seller, then no FTRs would be optimal since any FTRs on the increasing

supply side would cause “QCobs” to be smaller and a firm’s market power on the

balancing market would be higher due to greater capacity flexibility. However, if the

firm is cleared as a net buyer, then increasing the ownership of FTRs essentially de-

creases the firm’s available decreasing capacity and hence erode its monopsony power.

Figure 4 illustrates the price efficiency gain when a market participant is a net buyer

in the balancing market. For this counterfactual study, I assume that firms fully
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Table XI. Comparison Between Counterfactual Marginal Production Costs

Reliant (Houston) TXU (North)

Month c∗ c∗noFTR c∗ c∗noFTR

2002 Feb 18.08 19.37 21.57 21.70

Mar 28.08 28.08 24.30 24.30

Apr 32.84 32.84 37.51 38.37

May 34.66 34.66 35.10 35.10

June 35.98 36.41 36.58 37.53

July 32.89 32.94 33.53 36.41

Aug 31.99 32.16 37.09 37.87

Sept 32.96 35.70 39.13 39.79

Oct 43.18 44.07 39.53 41.00

2003 Jan 16.59 17.12 52.13 52.34

Mar 44.39 60.84 27.12 27.32

Apr 49.12 50.90 25.90 32.52

May 56.05 56.44 62.79 63.54

Note: c∗ is the marginal cost when current ownership of FTRs are fully internalized into firm’s bidding; c∗noFTR is
the marginal cost when no FTRs are owned by the firms.
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Fig. 4. Optimal FTRs – Erode Monopsony Power
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internalize FTRs into their bidding by letting β2 = 113. I search on the entire range

of FTRs with a grid of 20 FTRs14. For each level of FTRs, I calculate the markups

using the ex-post realized residual demand. Then the daily markups are averaged

to the monthly level. The optimal assignment of FTRs should result in the smallest

monthly average markup to effectively curbing market power.

For Reliant in the Houston zone, only the South-to-Houston FTRs are involved.

For TXU in the North zone, there are two types of FTRs involved: South-to-North

FTRs and West-to-North FTRs. Since there are no good rules of weights to be put on

each FTR, I only consider the optimal allocation of South-to-North FTRs 15. Table

XII lists the comparison of optimal assignment of FTRs and the actual assignment

of FTRs. Due to confidentiality, these numbers are inflated but the orders are kept

the same.

Based on ex-post realization of residual demand, the optimal allocation of FTRs

in most months differ greatly from the actual allocations. Table XIII reports the av-

erage markups under optimal, actual and no allocations of FTRs.

Using ex-post realizations of residual demands, we see that the optimal alloca-

tion of FTRs lead to market price efficiency in terms of lowering firms mark down

abilities. Also the comparisons show that under current allocations, however, there

are months that the market price signal is less accurate than without the ownership

of FTRs.

13From my estimation results, we notice that firms are doing better through time,
or they are more aware of FTRs when congestion is more often. The only relevant
parameter for β2 in the counterfactual study is the optimal level since this is the only
equilibrium point that’s stable in a firm’s best response.

14Since the total FTRs are on a magnitude of over 400 each month, I regard the
grid of being 20 as fine enough.

15TXU also owns generation in the West zone so that the West-to-North FTRs are
internal to TXU (TXU cannot control price in the South zone but it can in the West
zone).
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Table XII. Optimal Assignment of FTRs

month Reliant TXU

optimal actual optimal actual

2002 Feb 460 488.5 190 242.5

Mar 340 361 370 538

Apr 580 328 670 454

May 190 361 160 454

June 430 361 460 454

July 580 391 190 454

Aug 1180 328 580 454

Sept 670 328 700 529

Oct 250 328 190 454

2004 Jan 100 205 460 398.27

Mar 100 205 610 285.59

Apr 130 205 370 285.59

May 370 205 100 285.59

Note: numbers in bold represent large differences between optimal allocations and actual allocations in the
magnitude of greater than 100 FTRs.
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Table XIII. Markups Under Optimal, Actual and No Assignment of FTRs

month Reliant TXU

optimal actual no FTRs optimal actual no FTRs

2002 Feb 3.38 4.89 5.08 6.43 7.04 7.71

Mar 0 4.57 6.43 15.85 34.70 15.70

Apr 9.88 20.08 22.02 22.89 25.53 34.51

May 9.61 10.12 9.75 73.81 75.15 73.81

June 9.93 13.51 17.39 12.58 15.47 16.61

July 8.33 10.07 13.58 14.93 23.63 16.96

Aug 1.65 5.62 7.74 2.45 6.44 11.87

Sept 6.94 36.7 24.68 4.47 10.18 20.34

Oct 6.97 28.12 7.66 4.94 6.93 15.13

2004 Jan 20.90 50.91 17.88 16.54 31.59 20.34

Mar 69.58 79.51 69.58 14.99 17.35 17.2

Apr 22.57 30.53 28.2 4.83 7.13 18.58

May 121.61 132.53 147.48 84.26 134.91 84.26

Note: Numbers in bold indicate that under the current allocations of FTRs, the market price efficiency is adversely
impacted by FTRs comparing to no ownership of FTRs; residual demand is the ex-post realization.
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The tables report the results under the ex-post realization of FTRs. If demand is

uncertain, then it is the average effect of FTRs under all possible demand realizations

that matters. By considering demand uncertainty, I can also statistically compare the

actual allocations of FTRs with the optimal ones. To assess demand uncertainty, I

constructed two metrics: 1) daily demand variation and, 2) weekly demand variation.

The first is constructed using standard deviations of demand levels in a single day

from 1pm to 8pm. The second metric is constructed using standard deviations of de-

mand levels for the interval 18:00-18:15 only within the same week. All the demand

variations are then averaged to a monthly level. The demand uncertainty (standard

deviation) is in the range of 250 MW daily and 400 MW weekly for both North

and Houston zones. To allow demand uncertainty to be within a larger range, I use

randomly generated numbers from a normal distribution with weekly demand varia-

tion16. I generate demand uncertainty 100 times for each time period. I report the

mean, the 5% percentile, the median and the 95% percentile for the monthly distribu-

tion of markup differences (|markupit,actual| − |markupit,opt|) between the ownership

of optimal level of FTRs and the actual level under possible realizations of residual

demands, see Table XIV.

The improvements are determined looking at the mean and the median17. If

both the mean and the median is strictly positive – meaning that the markup under

actual allocation is greater than under the optimal allocation – then the optimal allo-

cation improves price signal efficiency in the wholesale market. Considering demand

uncertainty, the improvement by optimal allocations of FTRs is limited. For Reliant,

16I also used random draws from a normal distribution with daily demand variation.
The results are quite similar.

17In case of extreme distributions, the median is a better statistics than the mean
in explaining the average.
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Table XIV. Statistics for Markup Difference:|markupactual| − |markupopt|

month Reliant TXU

mean 5% median 95% mean 5% median 95%

2002 Feb .24 -1.07 0 2.93 -.06 -8 0 8.24

Mar -.17 -3.22 0 2 43.75 -12 32.71 54.08

Apr 19.02 -17.42 0 29 6.14 -19.09 0.51 33.93

May 1.22 -1.78 0 7.5 0 -16.62 0 2.47

Jun .65 -7.68 0 10.75 2.02 -11.69 0 12.39

Jul 1.14 -22.54 1 13 2.5 -6.18 0 20

Aug 1.67 -22.57 2.52 23.44 -3.49 -18.68 1.75 12.12

Sept -2.21 -254.82 2.11 252.73 5.39 -17.16 1.71 25.86

Oct 13.66 -5.33 5 50 -0.61 -11 0 4.11

Jan 24.46 -0.2 5.01 199 20.6 -12.01 18.41 38.59

Mar 14.48 -54.83 -1.18 199 2.08 -91.81 -1.02 16.79

Apr -.55 -29.99 -4.03 104 0.06 -2.01 0 10

May 2.66 -99 0 31.3 98.31 -8.32 0 223.02

Note: Numbers in bold indicate improvement by optimal allocations of FTRs – both at the mean and at the
median, the absolute magnitude of markup under actual ownership of FTRs is larger than under the optimal
ownership of FTRs.
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the improvements from actual allocations can only be made at July, August, October

in 2002 and January in 2003. For TXU, the improvements from actual allocations

can only be made at March, April, September in 2002 and January in 2003. In most

months, the actual allocations of FTRs are statistically equivalent to optimal ones.

An immediate question is that whether we should assign FTRs to market partic-

ipants when demand is uncertain. Table XV lists the markup differences under the

optimal allocations of FTRs and no ownership of FTRs.

Only when both the mean and the median are strictly negative that I regard

the optimal allocations of FTRs as having an improvement on the price efficiency.

For both Reliant and TXU, 7 out of 13 months in the study has a significant improve-

ment by the optimal allocations of FTRs under uncertain demand. This counterfac-

tual study indicates that if FTRs are allocated optimally and players fully internalize

FTRs into their bidding, the market has an efficiency improvement in the spot market

price signal.

Since this counterfactual study only involves the optimal allocation of FTRs and

not the designing of FTR auction, the numbers in Table XI indicate that if any firm

wish to own FTRs and the FTRs are assigned by the grid operator, then the grid

operator can optimize in the assignment FTRs. Another direction of research is to give

a firm incentive to acquire not only the individually optimal amount of FTRs but also

the socially optimal (or sub-optimal) amount of FTRs from the FTR auction. Similar

literature can be found in the designing of contract where information is asymmetric.

But this auction mechanism design is beyond the scope of this dissertation.
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Table XV. Statistics for Markup Difference:|markupopt| − |markupnoFTR|

month Reliant TXU

mean 5% median 95% mean 5% median 95%

2002 Feb -1.62 -10.42 -1 4 -.58 -10.5 0 9.01

Mar -3.12 -10.03 -4 2.23 2.24 -32.7 -0.01 35.07

Apr -29.34 -20 0 18.21 -9.84 -34.25 -12.56 11

May 2.69 -0.96 0 17.31 1.17 0 0 10

Jun -11.02 -27.49 -1.13 14.31 -3.21 -23.5 -3.16 16

Jul -29.90 -27.96 -4.23 22.3 1.88 -23.3 0 18.8

Aug -5.62 -28.78 -5.75 21.44 -1.12 -14 -6.06 16.49

Sept -2.24 -205 -7.54 249.3 -8.69 -33.72 -11.03 12.4

Oct 17.63 -14.38 3.76 95 -6.13 -12.63 -9.04 7.95

Jan -6.42 -7.81 -5.01 1.05 -55.81 -618.72 -30.27 30.29

Mar 0 0 0 0 13.70 -22.56 0 83.99

Apr -4.56 -22.11 0 25.81 -3.13 -28.57 -2.8 30.55

May 34.70 -51.88 -13.77 224 0 0 0 0

Note: Numbers in bold indicate improvement by optimal allocations of FTRs – both at the mean and at the median,
the absolute magnitude of markup under optimal ownership of FTRs is smaller than under no ownership of FTRs.
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CHAPTER IV

FTR AUCTIONS

A. Theories

This section derives value functions for different types of bidders in the FTR auction.

Then equilibrium bidding strategies are presented. The equilibrium bidding strategies

include not only the independent private value (IPV) case, but also the affiliated

valuation (AV) case.

The time line for the entire games is: first participants purchase FTRs in the

FTR auction, then use FTRs on the wholesale market. In this chapter, I call the

wholesale market competition as the second stage game and the FTR auction itself

as the first stage game. In the following subsections, I first study the wholesale market

competition to derive the marginal valuation of FTRs for different types of bidders.

Then given those valuations, I derive equilibrium bidding in the FTR auctions.

1. Generator’s Valuation of FTRs

At the second stage, with the ownership of a certain amount of FTRs that’s awarded

from the FTR auctions, the generators bid into the energy market to supply electricity

as was described in the previous chapter. In all the following analysis, I assume that

the bidders are competing in a Cournot Nash-in-quantity game 1 on the wholesale

electricity market, and that there are no dynamics of the game (that players are not

1In an ideal set up, the strategy should follow a supply function equilibrium game
where the choice variable is not a single quantity point q, but rather a supply function
S(p). However, in most cases, it is not possible to derive an analytical closed form
solution to the supply function equilibrium unless we impose some functional form
restrictions on the supply function. For ease of illustration, I use the Cournot game in
this theory section without loss of the essence of the important aspects of the results.
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colluding). The first two sub-sections are valuation analysis for generators. The third

sub-section discusses a trader’s valuation.

a. Risk Neutral Bidders

First for simplicity, I assume that bidders are risk neutral, in that their utility func-

tions are linear in their profit2. My following analysis focuses on the bidders in the

import-constrained market. We only need to reverse the signs for the cases of export-

constrained bidders without any complexity. For a bidder in an import-constrained

market, her profit on the wholesale market is given by:

πit = PM,tqit − Cit(qit) + (PM,t − PX,t)kit (4.1)

Where PM,t is the spot price in the import-constrained region at time t, PX,t is the

spot price in the export-constrained region at time t. Cit is the generator’s cost at

time t when supplying qit quantity of electricity. kit is the number of FTRs the

generator has at time t. In the above profit function, the only variables that are

exogenous to the firms at this stage are PX,t and kit
3 if the firm only has generation

in the import-constrained region. The first term in the profit function is the revenue

from sales on the spot market, the second term is the production cost and the last

term is the FTR revenue4. By assumptions, in a Cournot game the generator chooses

qit to maximize profit. The following example shows how the number of FTRs plays

a role in the profit maximization problem.

2The assumption of risk neutral is not convincing for generators who wish to
purchase FTRs. The purpose of this section is to illustrate major components in
the value structure from the easiest case and I will relax this assumption in the next
subsection.

3The number of FTRs is pre-determined in the first stage game.
4For detailed discussion of FTR revenue, please refer to Chapter III theory section.
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Suppose that there are n symmetric generators in the import-constrained region,

the demand function is linear: PM,t = 1 − (Qt + Kt). Qt indicates the total energy

supplied in that region and Kt is the total amount of imports, which at the time of

congestion is the maximum transmission line capacity. Suppose that each generator’s

cost function is linear in output: Cit = citqit, then using equation (4.1), we can get

the equilibrium Cournot quantities and prices as being:

qit = 1
n+1

(1−Kt +
∑

j 6=i cjt +
∑

j 6=i kjt − n(kit + cit))

PM,t = 1
n+1

(1−Kt +
∑

j 6=i kjt + kit +
∑

i cit)

Qt = 1
n+1

(n− nKt −
∑

j 6=i kjt − kit −
∑

i cit)

The above equilibrium solutions show that the output is partially decided by the

number of FTRs that’s given to the firm exogenously at the second stage. As I have

shown in the previous chapter that by studying bidder’s bid schedules on this second

stage, I find that FTRs have strategic effects on bidders’ bidding strategy on the

wholesale electricity market. The above solutions are examples that FTRs will enter

the decision of the choice variables in the second stage electricity supply.

More interestingly, if we put those equilibrium solutions back into the profit

function of the individual player as a function of the FTRs, we will get a profit

function that only consists of the number of FTRs and the total line capacity – which

are exogenous to the firm on that stage. Taking derivative with respect to the number

of FTRs, we get the “marginal valuation of FTR” as:

∂πit

∂kit

= Vkit
= (PM.t − PX,t) +

1

n + 1
(qit + kit) + (− n

n + 1
)(PM,t − cit) (4.2)

The first term is the per unit FTR credit5; the second term is the marginal profit

5Description about unit FTR credit can be found in Chapter III.



61

increase due to the importer’s ability to increase price by the ownership of FTRs,

the third term is the marginal profit decrease due to the withholding of supply. The

economic intuition underlying the above equation is quite clear: the valuation of FTRs

for the importer is not only decided by the unit FTR credit, but is also affected by

the marginal profit change due to FTRs’ impacts on market power.

The above solution is specific to our assumptions of cost function and market de-

mand function. In the real world, the market demand function might not be strictly

linear as it is in the example, and the cost functions vary among market participants.

Further, when the market demand and cost functions become more complex for mar-

ket participants, we will have difficulty deriving analytically the market equilibrium.

However based on the above intuition, we can write the FTR value function for the

individual player as:

Vkit
= (PM.t − PX,t) +

∂PM,t

∂kit

(qit + kit) +
∂qit

∂kit

(PM,t − C ′
it) (4.3)

Since the valuations are decided ex-ante before the real-time competition, the valua-

tions should be made with expectations. We can re-write our valuation in an ex-ante

format as:

Vkit
= E(PM.t − PX,t) + E(

∂PM,t

∂kit

(qit + kit)) + E(
∂qit

∂kit

(PM,t − C ′
it)) (4.4)

where E(·) represents expectations. The first term is FTRs’ contribution to the

marginal revenue of FTR credits – the unit FTR credit, the second and the third

term are FTRs’ contribution to additional profit change due to the affected market

power on the wholesale market.
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b. Risk Averse Bidders

Part of the reason for designing FTRs is to provide market participants with some

hedging instruments against the volatile transmission cost. A more reasonable set

up is to model bidders as being risk averse. Suppose that a risk averse firm has the

following utility function6:

U(π̃it) = −e−γπ̃it (4.5)

With the profit π̃it defined the same way as was in equation (4.1) except that the

profit is now uncertain which is denoted by a tilde. γ is the Arrow-Pratt coefficient

of absolute risk aversion. The higher the γ, the more risk averse the bidder is. The

bidder maximizes on her expected utility which is E(U(π̃it)). When the noises are

distributed normal, the expected utility can be re-written as:

E(−e−rπ̃) = −e−r(E(π̃)− γ
2
var(π̃)) (4.6)

And the certainty equivalent CE(π̃) of the random π̃ is equal to E(π̃) − γ
2
var(π̃).

Since the utility function is an increasing function in the certainty equivalent, we can

focus only on CE(π̃) alone without any loss of the analysis.

Following the same logic from the last sub-section, we need to find out the

marginal valuation of FTRs when bidders are risk averse. As is shown in the earlier

example, in equilibrium, the equilibrium prices and quantities are all functions of

FTRs, i.e. PM,t = PM,t(kit) and qit = qit(kit), then the marginal valuation of FTRs

are decided by:

∂CE(π̃)
∂kit

= Vkit
= E((PM,t − PX,t))

+E(
∂PM,t

∂kit

(qit + kit)) + E(
∂qit

∂kit

(PM,t − C ′
it))−

γ

2
· ∂V ar(π̃)

∂kit

(4.7)

6In this chapter I assume that the bidder’s risk aversion is CARA (Constant Ab-
solute Risk Aversion).
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Different from previous risk neutral case, a risk averse bidder is willing to pay risk

premiums if FTRs can decrease their profit volatility (∂V ar(π̃)
∂kit

≤ 0).

2. Trader’s Valuation of FTRs

Traders are defined as those entities that neither represent generation side nor repre-

sent consumer service side. They enter this market to maximize their profits through

various means of arbitrage behaviors. Since FTRs are purely financial in nature,

traders can buy FTRs to obtain arbitrage revenue through the differences between

FTR auction payments and ex-post FTR credits. Traders can also sell FTRs on the

secondary market. We can write a trader’s profit on the wholesale market as:

πtrader
it = πwholesale trading,it + (PM,t − PX,t)kit (4.8)

The first term is the profit the trader get from trading on the wholesale market and

the second term is the FTR revenue. Notice that both the PM,t and the PX,t are not

functions of kit: The trader cannot participant in the real-time market so that it does

not have any influence on the wholesale market price7. Given the profit function and

if we regard traders as being risk neutral, by taking derivative of the profit function

with respect to the amount of FTRs, their true valuations for FTRs are the future

expected unit FTR credit. In its simplest form, the unit FTR credit is the price spread

between two markets with different prices separated by a constrained transmission

7There can be arguments that the amount of FTRs a trader own would affect the
leftover amount of FTRs that generators would own, so that traders can indirectly
affect the wholesale market price. But the set up here on the second stage is for
the FTRs that’s already awarded. Given that a trader hold kit amount of FTRs, it
cannot affect the real-time market price but it can make forecasts of the difference
between PM,t and PX,t. The reason apply the same way in our later study of bidding
equilibrium: given a certain amount of FTRs the trader would bid, the trader can
make forecast of the future market price spread based on the leftover amount that
the generators would own, but it cannot affect the future market price spread given
the amount of FTRs already owned.
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interface. Written in the ex-ante form, we have:

Vit = E(PM,t − PX,t) (4.9)

However, if the traders’ purpose of purchasing FTRs is also to hedge against the

volatility of congestion cost incurred in the second stage game, a trader should also

be risk averse. In the same logic as the analysis for the generators, the traders’

marginal valuation of FTRs can also include the risk premium that a trader is willing

to pay to reduce the volatility in the transaction, and can be written down as:

Vit = E(PM,t − PX,t)−
δ

2
· ∂V ar(π̃trader

it )

∂kit

(4.10)

In the following analysis for traders, I will use equation (4.10).

3. Equilibrium Bidding

Our previous section derives different value functions. In the bidding for FTRs,

auction theory implies that the bidders should shade their bids below their true value

in the uniform-price auction. The below analysis gives equilibrium bidding strategies

in the FTR auction given that the valuation of FTRs are privately known for each

bidders. Their valuations are denoted as Vit, keeping in mind that different bidders

have different Vit. The following analysis again adopt notations from Wilson (1979)

where he collapses all the uncertainties in the multi-unit auction into the uncertainty

of market clearing prices, and is denoted by the “H(·)” function.

Generally, the bidder in the FTR auction tries to maximize the following expected

utility conditional on her own private signal:

Uit = E(Vkit
− p(kit)|si) =

∫ ∞

0

∫ k(p)

0
[Es−i|p,si

(Vkit
)− k−1(kit)]dkdH(p, kit(p, si))

(4.11)
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where si denote the signals that bidder i has. k−1(kit) is the inverse function of the

bids where kit = k(pit). H(p, k(p, si)) is the probability of the market clearing price

being p:

H(p, kit(p, sit)) = Prob(kit(p, sit) ≤ K −∑N
j 6=i kjt(p, sjt)) = Prob(pc ≤ p|kit(p, sit))

The above model does not make any explicit restriction on whether the valuation is

independent or affiliated, neither does it put on any restrictions as to whether the

bidders are ex-ante symmetric or asymmetric. The above model is also general in

terms of the auction format – can be applied to both discriminatory- and uniform-

price auction. However, different assumptions would make our model predictions

being different, which are shown in the following subsections.

a. An Independent Private Value (IPV) Uniform-Price Auction Model

Let us first consider an independent private value case. When the values are assumed

to be independent, we are saying that the loser will not envy the winner, in that there

is no common value component in the goods being auctioned. Put in the context of

the FTR auction, an independent private value indicates that bidders value FTRs

differently due to their differences in market power. As we have seen in the theory

section, when the player has market power different from her rivals and can use the

FTRs strategically to manipulate the wholesale market clearing price, the privately

expected market power effect will be different for different players.

After we made those assumptions, equation (4.11) can be reduced to:

Uit =
∫ ∞

0
([

∫ k(pc)

0
V (kit(p), si)dk]− k(p)p)dH(pc, k(pc, si)) (4.12)

A major distinction from equation (4.11) is that the bidder’s own signal does not

depend on other player’s signal, but only on its own.
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Using the variation approach, we get the necessary condition for maximizing the

above utility function8:

V (kit(p), si) = pit + kit
−Hk

Hp

(4.13)

This Euler equation shows that valuation is shaded by a factor kit
−Hk

Hp
. Hk is the

change in the probability of there being excess supply when the bidder submits an-

other quantity, holding bid price being fixed. The intuition is that the higher quantity

the bidder request the amount to be awarded at a given price, the lower the proba-

bility that the quantity is inframarginal, and hence the lower the probability of there

being excess supply: so Hk is negative. Hp is the change in the probability of the

bid price being higher than the market clearing price when the bidder bids another

price, holding the bid quantity being fixed. Since the bid quantity is fixed, the higher

the price that the bidder is willing to pay, the higher the probability that the price is

higher than the market clearing price: so Hp is positive. Then the entire term k−Hk

Hp

is positive, which is the bid shading amount.

Intuitively, the bid shading in the multi-unit uniform price auction is similar

to demand reduction for a monopsony buyer. The greater the quantity the buyer

demands, the lower the price the monopsony would pay by exercising its monopsony

market power. In the case of multiple unit demand auction, the buyers are able to

shade their bids in a similar way to extract surplus from the auction. The greater the

quantity they demand, the greater they can shade (or the lower they would bid) from

their marginal valuation of the goods since the marginal price they pay applies to all

inframarginal quantities awarded in a uniform price auction. In this sense, when we

say that a bidder has market power, we are essentially saying that the bidder is able

to shade her bids from her own marginal valuation of the good.

8Detailed derivation can be found in the appendix
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b. An Affiliated Value (AV) Uniform-Price Auction Model

This subsection discusses the case where the valuations have a common value com-

ponent, in other words, the bidder’s valuation is affiliated with the other bidders’

valuation. In this case, we cannot say that the loser will not envy the winner since

there is a common component in their valuation. In the case of FTR auction, the

common value might be the expected unit FTR credit.

Given the above intuitions, and suppose that the bidders’ valuation are affiliated

through the “shadow price” of FTRs that partially decides the FTR valuation, then

we can reduce equation (4.11) to:

Uit =
∫ ∞

0
[
∫ k(pc)

0
V (kit(p), si, p)dk]− k(p)pdH(pc, k(pc, si) (4.14)

The only difference in the above equation is that valuation is now affiliated through

a common factor p, or the market clearing price, which is partially reflective of the

possible ex-post unit FTR credit.

Using variation approach, we can get the necessary condition as:

V (kit(p), si, p) = pit + kit
−Hk

Hp

+
Hk

Hp

∫ k(pc)

0

∂V (kit(p), si, p)

∂p
dk (4.15)

In addition to the RHS of the necessary condition for IPV model, there’s an extra

term Hk

Hp

∫ k(pc)
0

∂V (kit(p),si,p)
∂p

dk which makes the bid shading decisions being different

from the IPV model. If we assume that in the independent private value case, the

individual valuation is purely dependent on the bidder’s own signal sit, we can write

the value function as a function of sit only9. According to equation (4.15), the last

term should be zero because there’s no common component p in it. If the valuation

9In our earlier sections, the sit can be regarded as the individual market power,
based on the individual market power, the bidder can make future price difference
predictions and so forth.
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is affiliated among each other, and the auction clearing price is an indication of the

common value, then we can write down the value function as a function of both sit

and pt and the last term for value affiliation will appear.

The additional value shading has two implications: First, due to the common

value existence, “winner’s curse” arises. Different from IPV, where a winner should

not worry about whether her own valuation is too high upon winning, in an affiliated

value auction, the winner is worried about valuating the object higher than the actual

value and the additional value shading captures the avoidance of the “winner’s curse”

effect. In addition to the original shading in the IPV case, the bidder wishes to shade

even lower to avoid the “winner’s curse”. Second, in the presence of a common value,

the larger the variance in the supported uncertainty distribution, the more the bidder

is willing to shade. For example, if a bidder knows for certain that a certain quantity

is worth $5, it might bid $4 if the optimal shading is $1 in an affiliated value auction;

but if the value can go up or down around the mean of $5 with 20%, then the bidder

is not willing to bid $4, rather she would bid some amount less than $4 because of

the “winner’s curse” problem – she is more uncertain of the common value and will

worry whether her draw from the uncertainty distribution is too high. In an IPV

case, however, even if the uncertainty goes up, the bidder can still bid $4 because her

mean valuation is $5, independent of how the other bidder would value the object.

Notice that the above analysis for IPV and AV bidding strategy carries through

with a risk averse bidder, as is proved in Appendix D for multi-unit auctions.

B. Theory Implications

In this section I derive equilibrium bidding models in the FTR auction and give theory

implications for empirical testing of bidding strategies in the auction for FTRs.
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1. IPV Case

For generators, their full model of bidding is the following:

V (kit(p), si) = pg
it + kit

−Hk

Hp

⇒

E((PM.t−PX,t))+E(
∂PM,t

∂kit

(qit+kit))+E(
∂qit

∂kit

(PM,t−C ′
it))−

γ

2
·∂V ar(π̃)

∂kit

= pg
it+kit

−Hk

Hp

(4.16)

for traders, their full model of bidding is the following:

V (kit(p), si) = pt
it + kit

−Hk

Hp

⇒

E((PM.t − PX,t))−
δ

2
· ∂V ar(π̃)

∂kit

= pt
it + kit

−Hk

Hp

(4.17)

2. AV Case

For generators, their full model of bidding is the following:

Vit = pg
it + kit

−Hk

Hp
+ Hk

Hp

∫ k(pc)
0

∂V (kit(p),si,p)
∂p

dk

⇒

E((PM.t − PX,t)) + E(
∂PM,t

∂kit
(qit + kit)) + E( ∂qit

∂kit
(PM,t − C ′

it))− γ
2
· ∂V ar(π̃)

∂kit

= pg
it + kit

−Hk

Hp

+
Hk

Hp

∫ k(pc)

0

∂V (kit(p), si, p)

∂p
dk (4.18)

for traders, their full model of bidding is the following:

V (kit(p), si) = pt
it + kit

−Hk

Hp
+ Hk

Hp

∫ k(pc)
0

∂V (kit(p),si,p)
∂p

dk

⇒

E((PM.t − PX,t))− δ
2
· ∂V ar(π̃)

∂kit

= pt
it + kit

−Hk

Hp

+
Hk

Hp

∫ k(pc)

0

∂V (kit(p), si, p)

∂p
dk (4.19)
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3. Empirical Predictions

The models yield testable predictions about bidding behaviors for generators and

traders:

1. The bidders’ bids are positively correlated with expected FTR shadow price.

Ideally, the correlation should be one.

2. A generator with market power should take into account FTRs’ effect on the ex-

ercising of market power. However, the effect can be both positive and negative

depending on the market demand functions and firm’s cost functions10.

3. A bidder is willing to pay risk premiums if she is risk averse. However, in an

affiliated value model, since the higher the variation in the value of the FTR

credit, the more the bidder is willing to shade or pay less. Then the combined

effect of the uncertainty is ambiguous. If we get a positive effect regarding

the uncertainty payment, we cannot separate out the risk premium from the

bid shading; if we get a negative effect regarding the uncertainty payment, we

can conclude with confidence that valuations are affiliated and the bid shading

dominates the risk premium payment.

10In equation (4.7), the market power effect is the combination of the second and
third term. Although we can predict the sign for the second and third term, the
combined effect is ambiguous.
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C. Empirical Models

1. Model of Trader’s Bidding

The empirical model of traders’ bidding is the following11:

pjt = β1E(SP )jt + β2E(var)jt + β3FTRjt + β4 + β5annual + ζj + εjt (4.20)

The LHS is the bid price for FTRs. The first term on the RHS is the expected unit

FTR credit – the shadow price (SP) of the transmission line; the second term is the

volatility of congestion cost approximated by the variance of the unit FTR credit;

FTR is the amount of FTRs the bidder wishes to purchase corresponding to that

price bid – this term is supposed to pick up the bid shading amount that’s existent

in both the IPV case and in the AV case. “annual” is a dummy controlling for the

fact that the auction is annual auction. Since the annual auction auctions off 60%

of the total FTRs, I put a dummy here to capture any unobserved effects that I did

not measure for the annual auction. ζj is the different FTR specific type effect, εjt is

assumed to be i.i.d. random errors. The coefficients convey the following implications:

• β1: According to theory, equilibrium bidding implies β1 = 1

• β2: This term reflects the combination of the bidders’ risk premium payment

and the bid shading due to uncertainty. The sign of the coefficient is ambiguous

depending on which term dominates.

• β3: This term reflects the bid shading component corresponding to each FTR

amount bid. This coefficient is predicted to be negative.

11Since there is only one trader in the FTR auction in Texas, there is no need for
trader specific fixed effects.
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2. Model of Generator’s Bidding

Based on (4.18), we can test whether the ex-post market power effect is significant in

the generators’ bidding strategy. The simplest empirical model is:

pijt = β1E(SP )jt + β2E(var)jt + β3E(Market Power)ijt + β4FTRijt + β5 + ζj + εjt

(4.21)

Our earlier models are based on the assumption that the generators only own gen-

eration in one regional market. In my data, however, there are generators who own

generation in multiple regions. We need to modify our model in the following ways:

• Generation locates in regions with the same direction of flow constraints.

If a generator has generation in market A and market B all import-constrained,

then we can write the profit function as12:

πit = PMA,tqA,it + PMB,tqB,it − CA,it(qA,it)− CB,it(qB,it)

+(PMA,t − PX,t)kA,it + (PMB,t − PX,t)kB,it (4.22)

Solving for optimal output choices qA,it and qB,it, they are functions of their

own regional FTRs, i.e. qA,it = qA,it(kA,it) and qB,it = qB,it(kB,it). The optimal

bidding solution is the same as in earlier models.

• Generation locates in regions with different direction of flow constraints.

Suppose these two regions A and B are adjacent and the power flow is from B

to A, then the profit function can be re-written as:

πit = PMA,tqA,it+PXB,tqB,it−CA,it(qA,it)−CB,it(qB,it)+(PMA,t−PXB,t)kit (4.23)

12In the profit function, I assume that the cost is additively separable in different
regions.
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Now the optimal solution of qA,it and qB,it are both functions of kit. Deriving

the marginal valuation of FTRs, we have:

Vit = ∂πit

∂kit
= (PMA,t − PXB,t) +

∂PMA,t

∂kit
(qA,it + kit) +

∂PXB,t

∂kit
(qB,it + kit)

+
∂qA,it

∂kit
(PMA,t − C ′

it) +
∂qB,it

∂kit
(PXB,t − C ′

it)

In this case, we have extra terms for the marginal value of FTRs if the owner

of FTRs have generation on the two sides of the transmission line.

Based on the institutions, I modify the empirical model in the following way:

pijt = β1E(SP )jt + β2E(var)jt + β3E(Market Power)ijt,imp

+β4E(Market Power)ijt,exp + β5FTRijt + β6 + β7annual + µi + ζj + εijt (4.24)

Bid price is on the LHS. There are three additional terms in this estimation equation

for generators: the term “Market Power” is to test whether FTRs’ strategic effect

on profit is significant in the bid price. As is discussed in earlier section, such an

effect can be both positive and negative. For generators only have generation in one

regional market or in multiple regional markets with the same direction of power flow

constraints, the Market Powerijt,imp is simply the own regional market power. For

generators have generation in multiple zones with opposite direction of power flow

constraints, this market power term is composed of two parts: Market Powerijt,imp

is the market power in the import-constrained market and Market Powerijt,exp is

the market power in the export-constrained market. The term µi is to control for

individual firm specific effects that the econometrician cannot observe.

3. Data

This section describes the measurement of each RHS variable from the data set. Since

the terms on RHS are in expectations, I take the average within the FTR defined time
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period as an approximation to the expectation. I focus in this paper on 5 generators

and a trader. These generators are active in the FTR auction and participated in

the the wholesale spot market, but their generation capacity as well as spot market

sale varies a lot which can be observed from the summary statistics about the bidders

after the descriptions of the measurements.

Expected Unit FTR Credit In measuring the expected unit FTR credit, we need

to average the realized shadow price over all time periods, not only congested

time periods. The reason is that when the bidder pays for the awarded amount

of FTRs, she is paying for all the time periods within the FTR defined time

length. So the expectation should also take into account the probability of

future congestion. For example, if the average anticipated shadow price is $10,

but congestion only occurs half of the entire period, the bidder should pay no

more than $5. Also we need to know how would bidders form their expectation.

In the following, I have two ways of measuring expected unit FTR credit, or

the shadow price:

• Measure 1: The expected shadow price is measured by the ex-post realized

shadow price of the corresponding transmission line averaged over all time

periods. If we find that bidders are hedging against this number, then they

perfectly forecast the future shadow price as well as the future probability

of congestion.

• Measure 2: The first measure assumes that the bidders are perfectly ra-

tional in that they can perfectly predict the future outcome given their

behavior on the first stage. A less-than-rational setting would be adapted

expectation in that the bidders use ex-ante information to infer the ex-

post realizations. The second measure use the ex-ante information on the
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wholesale electricity market. The expected shadow price is measured by

the ex-ante shadow price averaged over all periods in the earlier year or

month. For the annual auction, I use shadow price averaged over all time

periods in earlier year13. For the monthly auction, I use the realized shadow

price averaged over all time periods in the previous month.

Shadow Price Volatility There are 2 measures of volatility in shadow price corre-

sponding to the 2 measures of the expected shadow price. Namely, for the first

measure, I use the variance of shadow price in all the ex-post periods; for the

second measure, I use the variance of shadow price in all the ex-ante periods.

Market Power An ideal measurement of the market power based on equation (4.18)

would be to estimate both the price-cost margin and the dispatched quantity on

the wholesale real-time market. However, we should notice that since market

price is a function of the dispatched quantity, we can just measure the amount of

dispatched quantity on the balancing market as an approximate to the market

power effect. Also notice that since we combine the two FTR effects together,

the sign for the market power will be ambiguous. A perfect rational bidder

should base her expectation on the future amount of dispatched quantity on

the balancing market. If the bidder is less than rational, then a rough estimate

of her market power should be positively correlated with the ex-post dispatched

quantity on the balancing market. In my data, such a rough correlated measure

can be measured as the total metered generation on the wholesale electricity

13For the South to Houston shadow price, since in year 2001 there is no Houston
zone, I construct the annual South to Houston expected shadow price by using the
realization in January 2002, and discount by 20%: because in 2002, January is the
month with the most frequency of congestion and the summer months’ frequency of
congestion is only around 80% of the January one.
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market. To summarize, I have the following measures for measuring market

power:

• Balancing Market Sale (BMS): The measure here uses the ex-post mea-

sures. The balancing market sales include physical balancing power supply,

fulfilment of contract obligation on the balancing market and FTR owner-

ship. The physical balancing power supply q is measured by intersecting

bidder’s own bids on the wholesale balancing market with her residual

demand. The combination of contract obligation and FTR ownership is

measured by the intersection of bidder’s own bids with her marginal cost

curve. The intersection point is called QCobs
14. q−QCobs then can be used

as the total flexible quantity on the spot market.

• Metered Generation (MG): I use the ex-post measure of the average me-

tered generation across all time periods in hour 18 corresponding to the

FTR defined time length as an approximation to the market power.

Table XVI and Table XVII give summary statistics of some of the RHS variables of

equation (4.24).

Table XVII also reflects the fact that the two measures of market power are

positively correlated with each other.

In all the estimations, I study only the clearing bid point. The clearing bid

is constructed by intersecting the bidder’s own bid with her residual supply curve.

The residual supply curve is constructed by taking the aggregate supply (which is a

perfectly inelastic supply of the total available amount of FTRs), and subtract the

bidder’s rivals’ aggregate demand bid curve. The rationale to check the clearing bid

14Detailed measurement of q −QCobs can be found in Chapter III.



77

Table XVI. Summary Statistics of Monthly Unit FTR Credit Volatility

Shadow Price Volatility

mean s.d. mean s.d.

South → Houston 3.79 3.33 1479.73 2682.02

South → North 4.00 5.64 2927.91 4710.33

West → North 2.02 4.23 1021.06 1419.88

Table XVII. Summary Statistics of Market Power Measures

North South West Houston

BMS MG BMS M.G. BMS MG BMS MG

s.d. s.d. s.d. s.d. s.d. s.d. s.d. s.d.

Bidder 1 51 1489 – – – – 759 5101

41 75 – – – – 242 1777

Bidder 2 362 6860 64 303 239 816 – –

124 1398 113 40 96 251 – –

Bidder 3 157 742 – – – – – –

42 119 – – – – – –

Bidder 4 120 96 – – – – – –

22 1 – – – – – –

Bidder 5 – – 45 176 – – – –

– – 27 61 – – – –
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is that on the RHS, the ex-post measures are corresponding to the awarded FTRs,

so the clearing bid point is the relevant bid point to check.

D. Estimation Results

In all the tables that report my estimation results, I use I, II to represent the two

measurements of the expected unit FTR credit (the shadow price) and corresponding

variance in the shadow price.

1. Trader’s Bidding Strategy

As a summary statistics, the trader in average holds 13% of the total available FTRs.

The trader wins over 70% of the entire time in the South-Houston and West-North

FTR auctions and wins over 50% of the time in the South-North FTR auctions.

The trader also participates in over 50% of the auctions. In view of these statistics,

the trader is very active in the FTR auctions. Table XVIII reports the estimates of

trader’s bidding strategy.

Expectation on Future Shadow Price By using different measures of expecta-

tions on future shadow price, it is clear that the trader very accurately forecasts

the future shadow price by using the first measure. The expectation is not

adapted from the earlier period. The coefficient for this measure is very signif-

icant and statistically equal to one. This result reflects the fact that the trader

is rational in making expectations on future shadow price of the transmission

line. For the second measure, not only the coefficient is very noisy, but the

mean of the coefficient is not even close to one, indicating that this measure is

irrelevant to the trader.

Future Shadow Price Uncertainty As was discussed in the theory sections, the
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Table XVIII. Traders Bidding Strategy

LHS variable: clearing bid

number of observations: 20

I II

coef. s.e. coef. s.e.

unit FTR credit 1.169* 0.328 0.301 0.279

Var(SP) -0.001* 0.000 0.000 0.000

FTR -0.025* 0.008 -0.021* 0.009

* indicates significance at 5% significance level.

future shadow price uncertainty will have two different impacts on the bidding

strategy. The first impact is in the value function – a risk averse player is willing

to pay risk premium if the uncertainty is high. On the other hand, the precision

of the uncertainty distribution will have impact on the bid shading strategy if

the valuation is affiliated: the higher the uncertainty, the more the bidder is

willing to shade her bids to avoid “winner’s curse” problem. In view of this, if

the coefficients are shown to be negative, we can say with confidence that the

valuations are affiliated among the bidders and the bid shading effects dominate

the risk premium amount. From our estimation results, we see that using the

first measure, the coefficient for uncertainty is significantly negative, indicating

that the bid shading due to value affiliation dominates risk premium. Again

the second measure is irrelevant to the trader’s bidding strategy.

Bid Shading The normal bid shading effect (in both IPV and AV models) is re-

flected in the coefficient with “FTR”. The estimation result for the first measure
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reveals that the bid shading component is significant. This is consistent with

theory predictions that a large buyer with market power can shade her bids and

affect the market clearing price in the uniform price auction.

From the estimation results, we see that the trader is perfectly forecasting the future

shadow price of the transmission constraints and exercises market power. Through

the estimation results, we see that the valuations are affiliated among the bidders so

that the trader is shading more when it is more uncertain of the exact value of the

future shadow price of the transmission constraints. In all the auctions, the trader is

willing to pay more in the annual auctions holding everything else constant.

2. Generator’s Bidding Strategy

a. Pooling Large and Small Bidders

Table XIX and Table XX report the estimation results for generators’ bidding strat-

egy.

The estimation pools large and small bidders altogether. My following discus-

sion will be focusing on the fixed effect estimation results if the estimates from fixed

effect estimations are different from OLS estimations.

Expectation on Future Shadow Price The OLS as well as the fixed effects re-

gression reflect that the first measure of the future shadow price fits better with

theory predictions. The coefficient for the first measure is very significant and

statistically equal to one. This coefficient indicates that at the mean, the bid-

ders are forecasting quite well of the future shadow price. Similar to the trader’s

estimation results, the second measure is not significant at 5% significance level.

Future Shadow Price Uncertainty Using the first measure, both the OLS and

fixed effects regressions reveal that the bid shading effect statistically dominates
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Table XIX. Generator’s Bidding Strategy (Market power uses q −QC)

LHS: clear bid, 62 obs.

I II

OLS F.E. OLS F.E.

coef. coef. coef. coef.

s.e s.e s.e s.e

unit FTR credit 1.311* 1.254* 0.218 -0.016

0.547 0.480 0.195 0.228

Var(SP) -0.001* -0.001* 0.000 0.000

0.000 0.000 0.000 0.000

Market Powerimp 0.004* 0.003 0.006* 0.001

0.002 0.003 0.002 0.003

Market Powerexp -0.011* -0.002 -0.012 0.007

0.005 0.010 0.008 0.010

FTR -0.001 -0.020 0.004 -0.020

0.014 0.013 0.012 0.013

* indicates significance at 5% significance level, ** indicates significance at 10% significance level.
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Table XX. Generator’s Bidding Strategy (Market power uses metergen)

LHS: clearing bid, 71 obs.

I II

OLS F.E. OLS F.E.

coef. coef. coef. coef.

s.e s.e s.e s.e

unit FTR credit 1.341* 1.435* 0.274** 0.082

0.481 0.405 0.162 0.194

Var(SP) -0.001* -0.001* 0.000 0.000

0.000 0.000 0.000 0.000

Market Powerimp 0.001* 0.000 0.001* 0.001**

0.000 0.000 0.000 0.000

Market Powerexp -0.006* -0.001 -0.009* -0.003

0.002 0.003 0.003 0.003

FTR 0.001 -0.018 0.005 -0.011

0.014 0.013 0.011 0.012

* indicates significance at 5% significance level, ** indicates significance at 10% significance level.
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the risk premium payment. This again confirms that the valuations are affiliated

among the bidders.

Market Power In all the fixed effect estimations, the market power effect is not

significant in all the measures. In the following subsection, I will test the ro-

bustness of this result including the examination of the endogeneity problem

for the estimations.

Bid Shading By pooling all the bidders, the bid shading effect is not significant in

the fixed effect estimates – indicating that bidders are not exercising market

power. However, since we are pooling large and small bidders together, there

might be the case that the insignificant shading effect is dominated by small

bidders who do not have much market power in the FTR auction. I will check

the robustness of this result again in the following subsection.

In all the estimates, the bidders are willing to pay more in the annual auction.

b. Robustness

For a robustness check, I re-group the bidders so that their bidding behaviors can be

observed more closely. Table XXI collects several statistics that reveal the hetero-

geneity among the bidders.

From Table XXI, we see that there are a lot of heterogeneity among the bidders:

some bidders hold large percentage of the entire amount of FTRs (almost reach the

percentage limit which is 25%) while some bidders hold on average no more than

1% of the total amount of FTRs. In terms of participation, some bidders participate

almost in every round of auctions while some bidders participate no more than one

third of the entire auctions. In view of this, I re-group the bidders so that the bidding

strategies can be similar within each group. I categorize the bidders into large bidders
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Table XXI. Bidders Participation Statistics

LHS: clearing bid, 71 obs.

I II III IV

Bidder1 S-N 0.023 0.167 0 0.462

Bidder1 W-N 0.141 0.667 1 0.462

Bidder1 S-H 0.235 0.778 1 0.692

Bidder2 S-N 0.234 0.500 1 0.769

Bidder2 W-N 0.233 0.500 1 0.615

Bidder2 S-H 0.233 0.857 1 0.538

Bidder3 S-N 0.013 0.333 0 0.692

Bidder3 W-N 0.068 0.444 1 0.692

Bidder4 S-N 0.014 0.600 0 0.385

Bidder4 W-N 0.002 0.333 0 0.231

Bidder5 S-N 0.004 0.400 0 0.385

I: amount of FTR owned as a percentage of total available FTRs = FTRit
totalF TRi

II: percentage of time that is awarded the FTRs = (number of times awarded FTR)/(total number of times
participated)

III: 1 indicates the ownership of annual FTR, 0 otherwise
IV: percentage of time that the bidder participated in the auctions = (total number of times participated)/(total

number of times FTRs are auctioned)
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with the following criteria: 1) ownership of FTRs is over 20% of the total FTRs; 2)

the percentage of time that the bidder wins the auction is over 50% of the time that

she participates; 3) owns annual FTRs, and 4) participation in the FTR auction is

over 50% of the total rounds of auctions conducted by the grid operator. “Bidder1

S-H”, “Bidder2 S-N”, “Bidder2 W-N” and “Bidder2 S-H” are grouped into this “large

bidder” group. The others are grouped into the “small bidder” group. Table XXII

and Table XXIII report the estimation results about large bidders.

Comparing the large bidders’ bidding strategy with our earlier estimation re-

sults, we see that the majority of the findings are very consistent:

• the bidders are forecasting future expected shadow price using the first measure;

• the bidders are shading significantly not only in the regular terms (which is

reflected in the coefficient with FTR), but they also shade more due to more

uncertainty of the future shadow price.

• The significant coefficient associated with FTR reveals that large bidders are

able to exercise market power in the FTR auctions by shading from their valu-

ation.

• Again using both measures, the market power term is not significant,

A major significant change from our earlier results (Table XIX and Table XX) is that

large bidders “over-pay” on the expected future shadow price using the first measure,

in that the coefficient now is far above the theory implication of one. This means

that the bidders are expecting too high on future shadow price. The result is also

consistent with the fact that in the first year, the bidders are paying above the ex-post

realized shadow price for the FTRs. Conditioning on other factors, large bidders are

expecting too high on future unit FTR credit.
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Table XXII. Large Bidders’ Bidding Strategy (Market power uses q −QC)

LHS: clearing bid, 29 obs.

I II

OLS F.E. OLS F.E.

coef. coef. coef. coef.

s.e s.e s.e s.e

unit FTR credit 1.532* 2.115* 0.228 0.121

0.635 0.495 0.343 0.323

Var(SP) -0.001* -0.002* 0.000 0.000

0.000 0.000 0.000 0.000

Market Powerimp 0.004 0.000 0.004 -0.002

0.003 0.004 0.003 0.006

Market Powerexp -0.010** -0.008 -0.017** 0.014

0.006 0.011 0.009 0.013

FTR -0.015 -0.045* -0.007 -0.033

0.017 0.016 0.016 0.021

* indicates significance at 5% significance level, ** indicates significance at 10% significance level.



87

Table XXIII. Large Bidders’ Bidding Strategy (Market power uses metergen)

LHS: clearing bid, 32 obs.

I II

OLS F.E. OLS F.E.

coef. coef. coef. coef.

s.e s.e s.e s.e

unit FTR credit 1.692* 2.458* 0.443 0.324

0.554 0.450 0.287 0.282

Var(SP) -0.001* -0.002* 0.000 0.000

0.000 0.000 0.000 0.000

Market Powerimp 0.001** -0.001 0.001** 0.001

0.000 0.001 0.000 0.001

Market Powerexp -0.005** 0.004 -0.008* -0.08

0.002 0.005 0.003 0.006

FTR -0.010 -0.051* -0.001 -0.022

0.017 0.015 0.015 0.020

* indicates significance at 5% significance level, ** indicates significance at 10% significance level.
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Table XXIV. Small Bidders’ Bidding Strategy (Market power uses q −QC)

LHS: clearing bid, 33 obs.

I II

OLS F.E. OLS F.E.

coef. coef. coef. coef.

s.e s.e s.e s.e

unit FTR credit 1.076 -0.547 0.126 0.029

0.893 0.942 0.256 0.252

Var(SP) -0.001 0.000 0.000 0.000

0.001 0.001 0.000 0.000

Market Power 0.018 0.020 0.014 0.017

0.010 0.018 0.009 0.014

FTR 0.036 -0.008 0.025 -0.005

0.019 0.032 0.016 0.025

* indicates significance at 5% significance level, ** indicates significance at 10% significance level.

Table XXIV and Table XXV report the estimation results about small bidders.

The estimation for small bidders are very noisy, indicating that the small bidders

are not able to either forecast future price systematically or exercise market power.

This also reveals that the smaller magnitude of the first coefficient estimate in Table

XIX and Table XX than the estimate in Table XXII and XXIII for large bidders

is because the dilution by the noisy strategies from the small bidders. Also the

insignificance results of bid shading in Table XIX and Table XX are due to the

inability of small bidders to exercise market power.
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Table XXV. Small Bidder’s Bidding Strategy (Market power uses metergen)

LHS: clearing bid, 39 obs.

I II

OLS F.E. OLS F.E.

coef. coef. coef. coef.

s.e s.e s.e s.e

unit FTR credit 0.936 0.132 0.116 -0.007

0.828 0.766 0.222 0.195

Var(SP) -0.001 0.000 0.000* 0.000*

0.001 0.001 0.000 0.000

Market Power 0.001 0.008 0.001 0.008

0.001 0.006 0.001 0.005

FTR 0.013 0.008 0.001 -0.001

0.020 0.028 0.018 0.022

* indicates significance at 5% significance level, ** indicates significance at 10% significance level.
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Another concern about the robustness of the estimation result is that if the

bidders are able to exercising market power on the subsequent power market, then

the choice of FTRs and the consequent supply and market price will all be endogenous

to the firm rather than exogenously given. The endogenous variables can be the ex-

post shadow price measure, the ex-post quantity on the balancing market and the

amount of FTR chosen. To test for the endogeneity issue, I selected the following

variables as exogenous instruments to the system:

• Shadow price t−1. This is under the assumption that the shadow price realized

in the earlier period is not controlled by the firm at current time t, or the current

market condition does not cause earlier market outcome. This is essentially the

second measure of the shadow price.

• Number of total FTRs to be auctioned. This is public information that every

bidder knows before she goes to the auction and is exogenous to the auction

strategies.

• Frequency of outage. In ERCOT’s study, in the months of March, April, Oc-

tober and November, there are more frequent transmission and generation out-

ages. I use a dummy equal to one indicating those months. I also dummy the

month of July and August as one because they are summer peak months.

• Number of bidders in the auction. Total number of bidders are not known to

the auction participants before the auction. However, I use this statistic as an

exogenous variable to approximate the intensity of the auction. The bidders

should have some beliefs as to whether the auction will receive more attention

or not and such exogenous factor will affect the bidders’ bidding behavior.
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By using the above instruments, the Durbin-Wu-Hausman statistics report that ac-

tually for the trader and small bidders, there are no endogeneity problems for earlier

estimations15. For large bidders, statistics strongly support that endogeneity exists.

This is not a surprise because for trader and small bidders, they do not have much

influence on the wholesale market outcome, so that their expectation of market out-

come should be exogenous to them, in that they are not able to “choose” a particular

outcome. For large bidders, due to their market power, they can expect particular

market outcome that they can “choose”, or in other words, endogenous to them.

Table XXVI reports the IV estimation results using the above instruments for large

bidders. Since their market powers are mostly reflected in the balancing market bid-

ding, I include here only the variable measuring “market power” using the ex-post

balancing market outcome instrumented by the above instruments. The price mea-

sure is using the ex-post shadow price again instrumented by the above instruments.

Also the FTR amount is assumed to be endogenous and instrumented by the above

instruments. The estimation uses panel level fixed effect and corrects for panel-wise

heteroscedasticity.

A striking result is that after controlling for the endogeneity, FTRs’ impact on

market power becomes significant in the bidding strategy. Another distinction is that

the expectation on future unit FTR credit is biased upward greater than our previous

estimates for large bidders. Again the valuation structure is revealed to be affiliated

because the bid shading effect from uncertainty dominates risk premium payment.

Large bidders are able to exercise market power in the FTR auction which is reflected

by the significant shading factor attached to the FTR amount in their bids.

15The Durbin-Wu-Hausman statistic for the trader’s estimation is 1.17, which con-
firms the null hypothesis that OLS is consistent with a Chi-square distribution with
2 degrees of freedom. For the small bidders, the statistic is 4.32. Under a Chi-square
distribution with 3 degrees of freedom, the null hypothesis is again confirmed.
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Table XXVI. Large Bidders’ Bidding Strategy (IV estimates) (Market power uses

q −QC)

LHS: clearing bid, 32 obs.

coef. s.e

unit FTR credit 7.709* 2.310

Var(SP) -.006* .002

Market Powerimp .026* .013

Market Powerexp -.185 .121

FTR -.105* .036

* indicates significance at 5% significance level, ** indicates significance at 10% significance level.
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CHAPTER V

CONCLUSIONS

This research empirically addresses the question on the electricity market as to what

the FTR price tells us. To answer this question, I empirically study FTRs’ impacts on

bidders’ strategic behaviors as well as such strategic behaviors’ impact on FTR prices.

This research also contributes to the recently developed literature of empirical study

of multi-unit auctions and uniform-price auctions in particular. By using rich data

on the electricity market, I am able to test some of the major empirical implications

from multi-unit auction theories.

The first part of this dissertation empirically examines the impact of FTRs on

firm’s bidding strategies on the wholesale electricity market in Texas. I focus on the

two largest players in the Texas electricity market – Reliant in the Houston zone and

TXU in the North zone. I find bidding behaviors converge towards theoretical equi-

librium predictions over time with respect to firms’ physical inframarginal capacity.

With respect to FTRs, bidding strategies are converging towards optimal bidding

during the course of the first year, but deviated from optimal bidding starting from

the last period of the sample. Quantitatively, during my sample periods when FTRs

are statistically significant (β2 is significant) in players’ bidding strategy, Reliant’s

markup is marginally affected by FTRs around 23 cents and 28 cents in Period 2 and

Period 3 respectively, while TXU around $1.99 in Period 3. Counterfactual studies

show that the FTR effects are mostly reflected through market price level changes

rather than production efficiency. Considering demand uncertainty, the current al-

location of FTRs is not statistically different from optimal FTR allocation in most

months. If the market is mostly cleared at the decreasing production side, then the

allocation of FTRs would improve market price signal efficiency. Compared with
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counterfactual scenarios where no FTRs are allocated, optimal allocations of FTRs

statistically increase spot market price signal efficiency for most of the months on the

wholesale electricity market.

The second part of the dissertation studies bidding strategies in the FTR auctions

and serves to detect whether FTRs’ strategic impacts on the wholesale market would

be reflected in the FTR prices. I prescribe a methodology that tests bidders’ bidding

behavior and price components in FTRs by studying the year 2002 FTR auctions.

Theory implies that the difference in bidding between traders and generators can

be explained by generator’s market power. By integrating bidders ex-post wholesale

market auction behavior with the FTR auction together, I develop empirical models

that allows the testings of theory predictions.

My empirical results for the bidding strategy in the FTR auctions show that

the trader can very accurately forecast future shadow price and is able to exercising

market power by shading its bids from its marginal valuation of FTRs. The estimation

of generators’ bidding strategies concludes that generators also bid on the expected

future shadow price and such expectations are not adapted from earlier periods.

For large bidders, their forecasts of future unit FTR credit biased upward, but the

correlation with realized shadow price is still positive and very significant. For small

bidders, they are not able to accurately forecast future shadow price consistently and

the estimates for bids’ correlation with realized shadow price is very noisy. In terms

of market power in FTR auctions, large bidders are able to exercise market power by

shading their bids from their marginal value of FTRs. Small bidders are not able to

exercise market power and the coefficient estimates are again very noisy.

The valuation structure are revealed to be affiliated among the bidders in the

FTR auctions. In all the estimation results for traders and large bidders, the bid

shading effect resulted from value affiliation dominates the risk premium payment.
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The more uncertain the future shadow price is, the more the bidders wish to shade

down from their valuation.

After correcting endogeneity issues in the bidding strategy, the FTRs’ market

power effect is significant in the bids for large bidders but not for small bidders. In

Chapter III, I find that firms significantly included FTRs into their bidding strategy

starting the second half of the year. Such an effect is significantly reflected through

the bidding strategy in the FTR auction for those large bidders and hence the FTR

prices are affected by the market power on the wholesale market.
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APPENDIX A

ERCOT SHADOW PRICE CALCULATION



MCPEsystem

SPSN

SPSH

SPWN


=



1 −SFN,SN −SFN,SH −SFN,WN

1 −SFS,SN −SFS,SH −SFS,WN

1 −SFW,SN −SFW,SH −SFW,WN

1 −SFH,SN −SFH,SH −SFH,WN



−1

×



MCPEN

MCPES

MCPEW

MCPEH


(A.1)

Note: SP stands for Shadow Price, SF stands for Shift Factor, subscripts represent zones. MCPE represents Market
Clearing Price for Electricity. For example: SPSN represents shadow price for transmission line from south to north;
SFN,SN represents shift factor in the north zone on the directional transmission line from south to north.



100

APPENDIX B

DERIVATION OF FOC FROM EQUATION (3.4)

Integration by parts, we have

∫ p̄

0
πitdH(p, Sit(pt)) = πitH(p, Sit(p, Sit)|p̄0 −

∫ p̄

0
H(p, yit(p, sit))

dπit

dp
dp (B.1)

Notice that

dπit

dp
= pS ′

it + Sit − C ′
itS

′
it (B.2)

Equation (B.1) can be re-written as

∫ p̄

0
πitdH(p, Sit(pt)) = πitH(p, Sit(p, Sit)|p̄0 −

∫ p̄

0
H(p, yit(p, sit))(pS

′
it + Sit − C ′

itS
′
it)dp

(B.3)

The first part in equation (B.3) is a constant so that we ignore that part in the

derivation of first order condition. Define

F = H(p, yit(p, sit))(pS
′
it + Sit − C ′

itS
′
it), (B.4)

the integrand, the Euler equation is given by

FS =
dFS′

dp
(B.5)

using equation (B.4), FS = HS(pS ′
it + Sit − C ′

itS
′
it) + H, FS′ = H(p− C ′

it) ⇒
dFS′
dp

=

Hp(p− C ′
it) + HS′S(p− C ′

it) + H. Then our first order condition of equation (3.5) is

derived by applying the Euler equation (B.5).
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APPENDIX C

SIMPLIFICATION OF HS

HP

Proof:

H(p, s(p)) = Pr(pc < p|S(p)) (C.1)

⇒

H(p, s(p)) = Pr(S(p) > D̃(p)|Si(p)) (C.2)

⇒

H(p, s(p)) = Pr(Si + S−i > D̃(p)|Si(p)) (C.3)

If we assume that Si(p, QCi, FTRi) = αi(p) + βi(QCi, FTRi) ∀i, then

H(p, s(p)) = Pr(αi(p) + βi(QCi, FTRi) + α−i(p) + β−i(QC−i, FTR−i)

> D̄(p) + ε|Si(p)) (C.4)

⇒

H(p, s(p)) = Pr(β−i(QC−i, FTR−i)− ε > D̄(p)− Si − α−i(p)) (C.5)

Based on the above H function, we can deriv Hs and Hp. Let F (D̄(p)− Si − α−i(p))

be the cumulative distribution, then H(p, s(p)) = 1−F (D̄(p)− Si −α−i(p)); let f(·)

be the corresponding density function.

Hs(·) = ∂H
∂S

= ∂(1−F (D̄(p)−Si−α−i(p)))
∂S

= −f(D̄(p)Si − α−i(p))
∂(D̄(p)− Si − α−i(p))

∂Si

(C.6)

Hp(·) = ∂H
∂p

= ∂(1−F (D̄(p)−Si−α−i(p))
∂p

= −f(D̄(p)− Si − α−i(p))
∂(D̄(p)− Si − α−i(p))

∂p
(C.7)
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Notice that ∂(D̄(p)−Si−α−i(p))
∂Si

= −1 and ∂(D̄(p)−Si−α−i(p))
∂p

= D̄′(p) − α′
−i(p) = RD′(p).

Combine the above equations (C.6) and (C.7) together, we get

HS

Hp

= − 1

RD′(p)
(C.8)

Q.E.D.
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APPENDIX D

RISK AVERSE

Assume that the utility function of a risk averse bidder is1

u(πit) = −e−γπit (D.1)

The expected utility maximization problem becomes:

max
Sit(pc

t )
Uπit

=
∫ p̄

0
u(πit)dH(p, Sit(pt)) =

∫ p̄

0
−e−γπitdH(p, Sit(pt)) (D.2)

Integration by parts, we get

∫ p̄

0
u(πit)dH(p, Sit(pt)) = u(πit)H(p, Sit(p, Sit)|p̄0 −

∫ p̄

0
H(p, yit(p, sit)

du(πit)

dp
dp (D.3)

Again the first term is a constant, and the second term can be re-written as

−
∫ p̄
0 H(p, yit(p, sit))− re−γπit dπ

dp
dp

=
∫ p̄

0
H(p, yit(p, sit))re

−γπit(pS ′
it + Sit − C ′

itS
′
it)dp (D.4)

Let

F = H(p, yit(p, sit))re
−γπit(p′Sit + Sit − C ′

itS
′
it), (D.5)

then

FS = HSre−γπit(pS ′
it +Sit−C ′

itS
′
it)−Hr2e−γπit(pS ′

it +Sit−C ′
itS

′
it)(p−C ′)+Hre−γπit ,

(D.6)

FS′ = Hre−γπit(p− C ′) (D.7)

⇒

1The utility function used is just for illustration purpose in this exercise. The
result applies to any risk averse utility functional forms.
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dFS′
dp

= Hpre
−γπit(p− C ′) + HSS ′re−γπit(p− C ′)

−Hr2e−γπit(pS ′
it + Sit − C ′

itS
′
it)(p− C ′) + Hre−γπit (D.8)

By applying Euler equation FS = dFS′
dp

for first order condition, we get exactly the

same first order condition as is in equation (3.5)
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APPENDIX E

DERIVATION OF EQUATION (4.11) FOR IPV MODEL

Our equation (4.5) can be written as: Uit =
∫∞
0 πitdH(p, kit(p, sit), with the profit π

being:

π =
∫ k(p)
0 V (kit(p), si)dk − k(p)p

Integral by parts, we get:

∫ ∞

0
πitdH(p, kit(p, sit) = πitH(p, kit(p, sit)|∞0 −

∫ k(p)

0
H(p, kit(p, sit)

dπit

dp
dp (E.1)

Notice that

∂π
∂p

=
∫ k(p)
0 (dV (kit(p), si)/dp)dk + V (kit(p), si)k

′(p)− k(p)− k′(p)p

= V (kit(p), si)k
′(p)− k(p)− k′(p)p = (V (k(p), si)− p)k′(p)− k(p) (E.2)

Equation (E.1) can be re-written as:

∫ ∞

0
πitdH(p, kit(p, sit) = −

∫ ∞

0
H(p, kit(p, sit)[(V (k(p), si))− p)k′(p)− k(p)]dp (E.3)

Let F = H(p, kit(p, sit)[(V (k(p), si) − p)k′(p) − k(p)], the integrand, then the Euler

equation is given by

Fk =
dFk′(p)

dp
(E.4)

By using equation (E.4), we get our necessary condition for optimality which is

V (k(p), si) = p + k
−Hk

Hp

(E.5)

Q.E.D
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APPENDIX F

DERIVATION OF EQUATION (4.13) FOR AV MODE

In AV model,

Uit =
∫ ∞

0
[
∫ k(pc)

0
V (kit(p), si, p)dk]− k(p)pdH(pc, k(pc, si) (F.1)

Similar as we have in the previous proof, the static profit can be written as πit =

[
∫ k(pc)
0 V (kit(p), si, p)dk]− k(p)p, Integral by parts, we get:

∫ ∞

0
πitdH(p, kit(p, sit) = πitH(p, kit(p, sit)|∞0 −

∫ k(p)

0
H(p, kit(p, sit)

dπit

dp
dp (F.2)

Notice that this time,

∂π
∂p

=
∫ k(p)
0 (dV (kit(p), si)/dp)dk + V (kit(p), si)k

′(p)− k(p)− k′(p)p

= V (kit(p), si)k
′(p)− k(p)− k′(p)p

=
∫ k(p)

0
(dV (kit(p), si)/dp)dk + (V (k(p), si)− p)k′(p)− k(p) (F.3)

So that our utility function Uit can be reduced to :

−
∫ k(p)

0
H(p, kit(p, sit)[

∫ k(p)

0
(dV (kit(p), si)/dp)dk + (V (k(p), si)− p)k′(p)− k(p)]dp

(F.4)

Again let F = H(p, kit(p, sit)[
∫ k(p)
0 (dV (kit(p), si)/dp)dk+(V (k(p), si)−p)k′(p)−k(p)],

use the Euler equation, we can get the necessary condition as:

V (kit(p), si, p) = p + k
−Hk

Hp

+
Hk

Hp

∫ k(pc)

0

∂V (kit(p), si, p)

∂p
dk (F.5)

Q.E.D
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