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ABSTRACT

Testing for Spatial Correlation and Semiparametric Spatial Modeling of Binary

Outcomes with Application to Aberrant Crypt Foci in Colon Carcinogenesis

Experiments. (August 2004)

Tatiyana V. Apanasovich, Dipl., Belarusian State University

Chair of Advisory Committee: Dr. Raymond J. Carroll

In an experiment to understand colon carcinogenesis, all animals were exposed

to a carcinogen while half the animals were also exposed to radiation. Spatially,

we measured the existence of aberrant crypt foci (ACF), namely morphologically

changed colonic crypts that are known to be precursors of colon cancer development.

The biological question of interest is whether the locations of these ACFs are spa-

tially correlated: if so, this indicates that damage to the colon due to carcinogens

and radiation is localized. Statistically, the data take the form of binary outcomes

(corresponding to the existence of an ACF) on a regular grid. We develop score–type

methods based upon the Matern and conditionally autoregression (CAR) correlation

models to test for the spatial correlation in such data, while allowing for nonstation-

arity. Because of a technical peculiarity of the score–type test, we also develop robust

versions of the method. The methods are compared to a generalization of Moran’s

test for continuous outcomes, and are shown via simulation to have the potential for

increased power. When applied to our data, the methods indicate the existence of

spatial correlation, and hence indicate localization of damage. Assuming that there

are correlations in the locations of the ACF, the questions are how great are these

correlations, and whether the correlation structures differ when an animal is exposed

to radiation. To understand the extent of the correlation, we cast the problem as a

spatial binary regression, where binary responses arise from an underlying Gaussian
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latent process. We model these marginal probabilities of ACF semiparametrically, us-

ing fixed-knot penalized regression splines and single-index models. We fit the models

using pairwise pseudolikelihood methods. Assuming that the underlying latent pro-

cess is strongly mixing, known to be the case for many Gaussian processes, we prove

asymptotic normality of the methods. The penalized regression splines have penalty

parameters that must converge to zero asymptotically: we derive rates for these pa-

rameters that do and do not lead to an asymptotic bias, and we derive the optimal

rate of convergence for them. Finally, we apply the methods to the data from our

experiment.
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CHAPTER I

INTRODUCTION

The first part of the dissertation is concerned with testing for spatial correlation

when the outcomes are binary. The problem arises naturally from an important

question in colon carcinogenesis. In our experiments, the colon can be thought of

as a cylindrical tube, which is cut lengthwise into two pieces. One piece is used

for other experiments, while the other is laid out flat onto a slide, see Figure 1.

Animals are exposed to a carcinogen, with half of them also exposed to radiation.

They are then sacrificed, and images of the colon are obtained by various staining

devices. A typical image is given in Figure 2: a color version of this is given at

http://stat.tamu.edu/∼carroll/techreports.html. Here we see three types of struc-

tures:

1. The grayish region is lymphatic tissue, called Peyer’s Patches.

2. The small white dots are normal colonic crypts, whose function is to produce

cells that line the colon. More details accessible by a statistical audience on the

role of colonic crypts are given in Morris, et al. (2001, 2002, 2003).

3. The larger dark and distended regions are aberrant crypt foci, or ACF for short,

which are crypts that have been changed morphologically by the carcinogen and

radiation. For technical reasons, it is not possible to determine accurately the

existence of an ACF within lymphatic tissue (Peyer’s Patches). See Bird (1995)

and Bird and Good (2000) for the importance of ACF in colon carcinogenesis.

The journal model is Biometrics.
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Figure 1. A drawing showing the process of laying the colon onto a slide.
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Figure 2. A colon laid lengthwise, showing a Peyer’s Patch (gray region), normal

colon crypts (white dots) and aberrant crypt foci (dark distended shapes).
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Because the Peyer’s Patches are physically different tissue, we believe that it is

only sensible to treat the responses in that tissue as missing complete at random. Our

interest is in the aberrant crypt foci, which we denote by ACF. These are precursors

to colon cancer, and hence almost everything about them are of biological relevance.

The data are clearly naturally spatial. By any measure, they are also nonsta-

tionary, as the proximal (front) and distal (back) regions of the colon behave far

differently in terms of the likelihood of ACF formation. It is not feasible in practice

to measure the locations of ACF, so we formed a rectangular grid of locations and

recorded (by hand) the existence of an ACF within each location, see Figure 3 for

an illustration. Thus the data available to us are the grid of locations along with the

binary indicator of an ACF.

Here we consider a particular problem, namely testing whether the existence of

an ACF at one location is predictive of an ACF at neighboring locations. Hence,

we want to test for spatial dependence, using the binary outcome of the existence

of an ACF. Such spatial dependence, if it exists, is interesting because it suggests

that damage to the colon is localized regionally, and thus that there may be areas in

which greater levels of damage in response to an insult could lead to focused areas

of inflammatory responses, or an alteration in the release of signaling molecules that

could then affect the regulation of homeostatic mechanisms in colonocytes in adjacent

crypts. This localization may help explain why tumors develop from particular ACF,

but not from all ACF formed in response to a carcinogen insult.

Thus, testing for the spatial dependence is of biological interest in itself, and as

such it is not merely testing for a nuisance parameter.

One way to test for such spatial dependence is to build a spatial regression model

that includes independence as a special case, and then to test for this special case.
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Figure 3. A gridded plot of a rat #263. Dots are coded for ACFs indicators and

shaded areas are Peyer’s Patches.
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We instead develop simpler methods that avoid the need to fit any particular

spatial model, while still allowing for the nonstationarity in the mean that is inherent

in our problem. Hence the method developed has the potential to be widely applicable

in practice.

One of the methods we develop is the binary version of Moran’s test (Moran,

1948) that allows for spatial nonstationarity. However, our primary focus is on a test

motivated by score testing ideas, and robust versions of this test that ensure that

one or two neighboring pairs of ACFs will not in themselves lead to a declaration of

spatial dependence.

An outline of the second chapter is as follows. In Section B, we describe Moran’s

test and derive the score–type test, which is based upon the Matern and conditionally

autoregression (CAR) correlation models. In Section B we describe in detail the main

robustness issue with the score–type test and derive robust alternatives to this test.

Section C describes a set of simulations that suggest that the score test and its robust

modifications can be more powerful than Moran’s test, as well as having test level

closer to the nominal. Section D returns to the Aberrant Crypt Foci data in detail

and shows some evidence of spatial correlation, and hence localization of damage to

the colon. The last Chapter has concluding remarks. All technical details are given

in an Appendix A.

The main purpose of the second part of the dissertation is to develop methods for

semiparametric regression using regression splines in correlated binary data problems,

especially longitudinal and spatial data. Along with the methods, we develop an

asymptotic theory that encompasses smoothing parameter estimation.

Having shown dependence, two questions immediately arise: the extent of the

dependence and the nature of the rate of ACF formation depending on the location

within the colon. Our hope in this experiment is to identify regions of high ACF
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formation, and then to see whether regions of high ACF formation are also the regions

of high tumor formation.

To solve this problem, we propose a binary mixed model that incorporates fairly

general forms of dependence. The fixed effects structure we study includes partially

linear models, single index model and 2-function additive models as special cases,

using the technology of fixed knot regression splines with penalties (Ruppert, et al.,

2003).

An outline of the third chapter is as follows. In Section A we describe the general

class of models to which our results apply: these include a combination of partially

linear and single-index models. Section B describe the basic methods of estimation,

while Section D gives our algorithms for smoothing parameter estimation. The state-

ment of asymptotic results is given in Section C, while standard error estimation is

discussed in Section E. A small simulation study is presented in Section F, followed

by the analysis of the ACF experiment in Section G. Discussion and extensions are

given in the last Chapter. All proofs are Appendix B.
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CHAPTER II

TESTING FOR SPATIAL CORRELATION IN NONSTATIONARY BINARY

DATA

A. Methods

Generalized linear mixed models are widely used models for spatially dependent bi-

nary data (Breslow and Clayton, 1993; Diggle et. al 1997). These models are conve-

nient for modeling the dependence of a response variable, Yi, measured at i = 1, ..., n

sites, as well as on measured covariates, Xi. We use a multivariate probit model to

model spatial dependence and nonstationarity. Let I(·) be the indicator function.

Let the εi for i = 1, ..., n be independent and normally distributed with mean 0 and

variance 1. Let λi denote random effects responsible for possible spatial dependence.

For a parameter ρ and a correlation matrix Ω(ρ), the λs are assumed to be nor-

mally distributed with mean 0 and covariance matrix σ2
λΩ(ρ). Let µi be systematic

effects incorporating nonstationarity. Then the multivariate probit model is defined

as Yi = I(µi + λi + εi > 0), so that

pr(Yi = 1 | λi, µi) = Φ(µi + λi), (2.1)

where Φ(•) is the univariate standard normal distribution function. We are interested

in assessing whether ρ = 0, in which case Ω(0) is the identity matrix.

The rest of this section is taken up with defining the two methods we use.

1. Moran’s Test

Moran’s test for spatial dependence (Moran, 1948) was developed for stationary data.

For stationary data µi = µ(Xi) ≡ µ, and the test is as follows. Let Zvec be the vector
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of observations Y minus their sample mean. Let Wmat be an n×n matrix with (i, j)

element equal to 1 if sites (i, j), i 6= j are neighbors and equal 0 otherwise. Moran’s

test statistic is (up to a constant of proportionality) (Zvec)TWmatZvec/(Zvec)TZvec.

Note that Moran’s test statistic takes on the classic form of any autocorrelation

coefficient: the numerator term is a measure of covariance and the denominator term

is a measure of variance. Its values are compared to a non-trivial expression, see Cliff

and Ord (1981, Chapter 1, pp. 19-21).

For nonstationary numerical data, Moran’s test is usually modified (Cliff and

Ord, 1981) by subtracting predicted values from the observations rather than the

mean.

For our case of nonstationary binary data, we modify Moran’s test in the usual

way, namely by letting Zvec be the vector of standardized residuals from an ordinary

Probit regression of the Y s on the Xs: (Yi − Ŷi)/{Ŷi(1− Ŷi)}1/2.

2. Score Test

Rao’s score statistic (Rao, 1973) is a standard tool for carrying out hypothesis testing.

In many situations it has the advantage over likelihood ratio and Wald tests because

all calculations are carried out under the hypothesis, except the derivation of the

test statistic itself. In our context of a multivariate probit model, it does not appear

possible to derive such an explicit formula for the score test for an arbitrary correlation

function.

We instead take a different approach, one that yields a readily computed test

statistic. Our idea is to look at pairs of observations, and derive a score test statistic

for correlation using such pairs when the correlation is of the Matern class (Stein,

1999). We will then combine this test statistic over many pairs. As we show in

the Appendix, it turns out that the resulting test is the same as the score test for a
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particular version of the conditionally autoregressive (CAR) correlation model (Besag,

1974; Richardson, at al., 1992).

a. Score Statistic for Pairs

We first compute the joint probability distribution of any two binary responses Yi and

Yj. Let Φ(•) and φ(•) be the univariate standard normal distribution and density

functions, respectively. Let Φ2(µ1, µ2, ρ) be the bivariate standard normal probability

of being below µ1 and µ2 when the correlation is ρ. Define µ∗i = µi/(1+σ2
λ)

1/2. Then

pr(Yi = 1|µi) = Φ(µ∗i ); (2.2)

pr(Yi = 1, Yj = 1|µi, µj) = Φ2{µ∗i , µ∗j , σ2
λΩij(ρ)/(1 + σ2

λ)}.

We will calculate the score–type test based on k = 1, ..., N pairs. Consider the

kth pair (Y1k = i, Y2k = j), where we write pr(Y1k = 1) = Φ(µ∗1k) and pr(Y2k = 1) =

Φ(µ∗2k). Also define pr(Y1k = i, Y2k = j) = πijk(ρ, σ2
λ) = πijk, so that pr(Y1k = i) = πi·k

and pr(Y2k = j) = π·jk, where the “dots” indicate summation. A useful fact is that

π11k(ρ = 0, σ2
λ) = Φ(µ∗1k)Φ(µ∗2k). (2.3)

If we define Zijk = I(Y1k = i, Y2k = j), then the loglikelihood is

logL(ρ) =
∑

k

{Z00klog(π00k) + Z01klog(π01k) + Z10klog(π10k) + Z11klog(π11k)} . (2.4)

Formal differentiation of (2.4) and evaluated at the null hypothesis ρ = 0 would yield

the essential part of the score statistic. Let dk be the Euclidean distance between the

members of the kth pair. Recent literature (e.g. Stein, 1999, p.31–33) advocates the

use of the Matern family, for which the covariance functions have general form

CM(dk) =
σ2

S

2ν−1Γ(ν)
(dk/ρ)νKν(dk/ρ), σ2

S, ρ, ν > 0, (2.5)



11

where Kν is the modified Bessel function of order ν, which do not have a closed

form for general ν. If ν = m + 1
2

for m = 0, 1, 2, ..., then (2.5) has a simple form.

However, as we show in the Appendix, there is a difficulty with this approach. When

we use as the correlation function a member of the Matern class with ν = m + 1
2
, the

score evaluated at ρ = 0 is identically 0, so that nothing useful results. As we show

in the Appendix, our approach is to focus only on those pairs that are exactly the

same distance apart, in which case the score becomes a non–trivial statistic times a

common constant that equals 0 when ρ = 0. Removing this common constant leads

to a score equal to

Gk(µ
∗
1k, µ

∗
2k) =

(Y1k − π1·k)(Y2k − π·1k)φ(µ∗1k)φ(µ∗2k)

π1·k(1− π1·k)π·1k(1− π·1k)
. (2.6)

In practice, we implement our score–type test as follows. Recall model (3.1), and

let the µs depend on covariates X and a parameter β∗, i.e., µ(X, β∗) with the property

that for any constant c, cµ(X, β∗) = µ(X, β∗∗) for some β∗∗. As seen in (2.2), under the

null hypothesis the Y s are independent and pr(Y = 1|X) = Φ{µ(X, β∗)/(1+σ2
λ)

1/2} =

Φ{µ(X, β)}, say. Thus, we can estimate β consistently under both the null and

alternative models via a probit regression with probability function pr(Y = 1|X) =

Φ{µ(X, β)}. Call the estimate β̂. Modify (2.6) appropriately by defining

Hk(β) =
[Y1k − Φ{µ(X1k, β)}][Y2k − Φ{µ(X2k, β)}]φ{µ(X1k, β)}φ{µ(X2k, β)}

Φ{µ(X1k, β)}[1− Φ{µ(X1k, β)}]Φ{µ(X2k, β)}[1− Φ{µ(X2k, β)}] . (2.7)

The variance of (2.7) under the hypothesis of no spatial correlation is clearly

Vk(β) =
[φ{µ(X1k, β)}φ{µ(X2k, β)}]2

Φ{µ(X1k, β)}[1− Φ{µ(X1k, β)}]Φ{µ(X2k, β)}[1− Φ{µ(X2k, β)}] . (2.8)

Our test statistic then is

∑
kHk(β̂)

{∑k Vk(β̂)}1/2
. (2.9)
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We show in the Appendix that under the hypothesis of no spatial correlation, (2.9)

is asymptotically standard normal and hence the hypothesis of no spatial correlation

can be tested by referring (2.9) to standard normal quantiles. Notice that the terms in

the test statistic’s numerator are not independent, though they are uncorrelated. The

method of Commenges and Jacqmin-Gadda (1997) can be used to prove asymptotic

normality under the assumption that µ(X, β) and its first two derivatives in β are

bounded. The result is asymptotic in the number of pairs, with the same scale of grid

and the same spatial scale of autocorrelation.

Terms similar to (2.6) and the numerator of (2.9) were derived in a different

context by le Cessie and van Houwelingen (1994). They considered the case of classical

clustered and not spatial data, and this context is crucial because in our problem,

the number of pairs within each animal/colon is large. Even taking this difference of

context into account, there still remain important differences with our work. They

considered the case, in effect, that the correlation matrix Ω(ρ) has common correlation

for all elements, something not likely to hold for spatial data. Their sum in (2.9) would

thus be over all pairs, and not just pairs of neighbors. In addition, they required

multiple clusters (animals), and because of their different context were not led (a) to

notice the problem raised above with straightforward use of the Matern class; and (b)

to show that under the null hypothesis of no spatial correlation, for a single animal and

a large number of locations, the denominator of (2.9) is a consistent estimator of the

standard deviation of the numerator under the hypothesis of no spatial correlation,

taking into account the estimation of β.

Also somewhat similar to our test is work of Jacqmin-Gadda, et al. (1997),

with their version of (2.7) having elements of the form [Y1k − Φ{µ(X1k, β)}][Y2k −
Φ{µ(X2k, β)}]w(X1k, X2k) across all pairs (not just necessarily neighbors) and for an

arbitrary function w(•). Their motivation and actual test statistics are however very
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different: in place of our (3.1) they start from a logistic family with a correlation

model for the λ-terms that is fixed in advance. In contrast, our work and that of le

Cessie and van Houwelingen is based on somewhat more standard spatial correlation

models involving a free parameter: Matern and CAR in our case, and equicorrelated

for le Cessie and van Houwelingen.

3. Selecting the Pairs

There are many ways to organize all observations into pairs, bearing in mind that

our score–type test is based on the idea that observations in all pairs should be the

same distance apart. What we do is the following. Each observation is paired with

its closest neighbors in any vertical and horizontal direction, so that each observation

will make as many pairs as it has neighbors. Hence, interior observations will have

four pairs, ones on edges will have three pairs and ones in corners will have two pairs.

4. Conditional Autoregressive Models (CAR)

A simple version of the conditionally autoregressive (CAR) correlation model (Besag,

1974; Richardson, et al., 1992) is that the λs have covariance matrix σ2
λ(I − ρC)−1,

where C is chosen to be a neighborhood matrix whose (i, j)th element is equal to 1 if

region i and region j (i 6= j) are neighbors and I is an identity matrix of appropriate

dimension. As we show in the Appendix, Section ??, our test (2.9) is the same as the

score test for this model, and in this regard is more general than simply the Matern

class.
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B. Robust Score Tests

If the event rates are rare, then one would not expect to have two neighboring

pairs of observations for which both Y s equal 1, unless the correlations are rea-

sonably high. Because of this, one would expect that any score-type test would

have the property that when the event rates are small, a pair of neighboring Y s

equal 1 would lead to the rejection of the hypothesis of no spatial correlation. Our

test does indeed have this property. In fact, if Y1k = Y2k = 1, then (2.7) be-

comes φ{µ(X1k, β)}φ{µ(X2k, β)}/[Φ{µ(X1k, β)}Φ{µ(X2k, β)}], which is unbounded

as µ(X1k, β) → −∞ and µ(X2k, β) → −∞. On the other hand, the variance contri-

bution in (2.8) is bounded in such a circumstance, in fact converges to 0. This means

that with such a single pair, the test statistic (2.9) converges to ∞, as intuition

suggests.

The above fact may be looked upon as a strength of the score–type test, but it

may also be a flaw. In a particular data set, there may be little evidence of spatial

correlation except for a single pair, and this would make one wary of claiming such a

correlation.

In this section, we propose a simple modification of our score–type test that limits

the influence of any one pair on the value of the score–type test, while still allowing

for considerable power. The method is based on ideas from robustness theory.

To develop this method, rewrite (2.7) as follows:

Hk(β) = [Y1k − Φ{µ(X1k, β)}][Y2k − Φ{µ(X2k, β)}]R(X1k, X2k, β); (2.10)

R(X1k, X2k, β) =
φ{µ(X1k, β)}φ{µ(X2k, β)}

Φ{µ(X1k, β)}[1− Φ{µ(X1k, β)}]Φ{µ(X2k, β)}[1− Φ{µ(X2k, β)}] .

It is the function R(•) that is unbounded, and hence in the terminology of robustness,

(2.10) is a statistic with unbounded influence. Note that R(•) does not depend on
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the responses, and in this respect acts in a fashion similar to that of a design matrix

in linear regression.

Methods to bound the influence of “design” points in logistic and linear regression

have been investigated by Carroll and Pederson (1993) and by Simpson, et al. (1992),

respectively. The idea is to redefine the test statistic (2.10) as

Hk,robust(β) = [Y1k − Φ{µ(X1k, β)}][Y2k − Φ{µ(X2k, β)}]H {R(X1k, X2k, β)} ,

for an arbitrary function H(•), and to redefine its variance as

Vk,robust(β) = Φ{µ(X1k, β)}[1− Φ{µ(X1k, β)}]

×Φ{µ(X2k, β)}[1− Φ{µ(X2k, β)}]H2 {R(X1k, X2k, β)} .

We now define two classes of weight functions. The first follows Carroll and

Pederson (1993). Let σR be thge median of the terms R(X1k, X2k, β). Define Lk =

R(X1k, X2k, β)/σR and for a constant bcp, define Hcp{R(X1k, X2k, β)} = R(X1k, X2k, β)

{1 − (Lk/bcp)
2}3I(Lk ≤ bcp). If bcp = ∞, we of course get the score–type test, while

smaller values of bcp bound the influence. We experimented with some simulated

data, and finally choose bcp = 3.

The method of Simpson, et al. is similar, namely Hsimpson{R(X1k, X2k, β)} =

R(X1k, X2k, β) min{1, (bsimpson/Lk)
α/2}. We took (bsimpson = 1, α = 1) and (bsimpson =

2, α = 2).

C. Simulations

We performed simulations under two scenarios with the number of replications equal

to 1000. In both cases, we took the test level to be 0.05.

In Scenario #1, we took data from a rat labeled as #263 in our experiment. Let
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X be the horizontal distance from the distal part of the colon, let Z be the vertical

distance, and let D be the Euclidean distance to the nearest Peyer’s Patch. We fit a

probit model to these data with probability function

Φ(β0 + β1X + β2X
2 + β3Z + β4D). (2.11)

The original grid was of size 100 × 8. For the simulations we used half of that

grid, 50 × 8. Data were generated from the ordinary probit fit to this model, with

β0 = −1.83, β1 = 6.96, β2 = −7.34, β3 = −3.12, β4 = −3.46. We generated

correlated data with σ2
λ = 1 via the Matern correlation function with index 3/2:

Ωij(ρ) = corr(λi, λj) = exp(−dij/ρ) (1 + dij/ρ).

In Scenario #2, data were generated from the model with the following probabil-

ity function Φ(β0+β1X+β2X
2) with β0 = −4.5, β1 = 12.03, β2 = −8, X ∈ [0.0186, 1].

The grid was taken to be of size 54 × 8. We generated correlated data with σ2
λ = 1

via the Matern correlation function with index 3/2.

Since we select pairs that are of the same distance apart, all Ωij are equal to,

say, Ω. Define ψ = σ2
λ/(1+σ2

λ)Ω, see the Appendix. For power comparison purposes,

we vary ψ.

In addition to the test statistics described previously, we also computed the level

and power for the test statistic based on (2.10) but with the function R(•) ≡ 1. The

motivation for this comes from logistic regression. If in (2.10) the normal distribution

function Φ(•) and its density φ(•) were replaced by the logistic distribution and

density functions, then R(•) ≡ 1. Given estimates of β the test would formally have

bounded influence, and it is one of the tests evaluated in the simulation study done

by Jacqmin-Gadda, et al. (1997). The results are given in Table 1.



17

Table 1.

Results of the simulations. Comparison of Test performance under different

scenarios

Simulation Scenario #1
ψ = 0.00 0.10 0.15 0.20 0.25 0.30 0.40
score 0.05 0.13 0.28 0.46 0.63 0.73 0.82
moran 0.06 0.14 0.26 0.42 0.60 0.66 0.75
adj.moran 0.05 0.11 0.20 0.36 0.55 0.61 0.72
scorecp 0.05 0.13 0.28 0.46 0.63 0.73 0.82
scores1 0.05 0.13 0.28 0.46 0.63 0.73 0.82
scores2 0.05 0.13 0.28 0.46 0.63 0.73 0.82
scoreJG 0.05 0.13 0.28 0.46 0.63 0.73 0.82

Simulation Scenario #2
ψ = 0.00 0.10 0.15 0.20 0.25 0.30 0.40
score 0.05 0.22 0.48 0.73 0.89 0.95 0.98
moran 0.07 0.24 0.45 0.68 0.83 0.90 0.91
adj. moran 0.05 0.21 0.42 0.65 0.81 0.88 0.90
scorecp 0.05 0.22 0.48 0.73 0.89 0.95 0.98
scores1 0.05 0.22 0.48 0.73 0.89 0.95 0.98
scores2 0.05 0.22 0.48 0.73 0.89 0.95 0.98
scoresJG 0.05 0.22 0.48 0.73 0.89 0.95 0.98

The number of replications is 1000. The parameter ψ = σ2
λ/(1+σ2

λ)Ω indicates the strength
of the spatial correlation, with ψ = 0 being the case of no spatial dependence. Hence, the
column ψ = 0.00 is the level of the test, while the other columns are the powers. Scenario
#1 and Scenario #2 are described in the text. The tests are as follows. “score” refers to the
usual score test, “moran” to Moran’s test, “scorecp” to the robust score test with Carroll
and Pederson’s weight function, “scores1” to Simpson’s weight function with b = 3, α = 1,
“scores2” to Simpson’s weight function with b = 4 and α = 2 and “scoreJG” to Score test
similar to Jacqmin-Gadda, et al. (1997). “adj. moran” refers to Moran’s test adjusted to
have level exactly 0.05.
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We observed in a variety of simulations that Moran’s test had a tendency to be

anticonservative and fail to maintain the level of 0.05. Because of this, we also display

results when Moran’s test was adjusted to have exact level 0.05. This was done by

running the null case of no spatial correlation many times, computing Moran’s test

statistic, and then choosing as the rejection point that value that gave exact null

level 0.05. For both scenarios all the score tests came reasonably close to maintaining

the nominal level. In addition, the power of the robust score tests and the Original

Score Test are nearly the same. In both scenarios score tests have greater power than

Moran’s Test, when the latter was adjusted to have correct level. The test discussed

above in which R(•) ≡ 1 does quite well in terms of power in these simulations.

However, we have done other simulations where we do see some loss of power with

this choice.

D. Aberrant Crypt Foci (ACF) Experiment

The introduction describes the ACF experiment, but here we make a few additional

remarks about the data collection. The typical rat colon was approximately 10cm-

12cm long when laid out on a slide. This is far larger than can be read in one go

from a microscope. Instead, what was done was to first start with a piece of paper,

somewhat like that given in Figure 2, but without the grid lines superimposed. We

then simply physically moved the slide, horizontally and vertically, starting from the

proximal part of the colon, through the microscope, noting approximately how far

along we were in physical (slide) distance. As we observed ACFs and Peyer’s Patches,

we made small notations in pencil on the piece of paper.

The image in Figure 1 is approximately 1/5–1/6 square centimeters, and thus

takes up approximately 9 grid boxes. This, by the way, is the only image that
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was recorded, and then primarily for the purpose in this paper of illustrating ACFs.

One can see multiple (7) ACFs, along with a small Peyer’s Patch: in other sections

everything seen in the microscope was a Peyer’s Patch, as illustrated in Figure 2.

What was recorded then was the approximate location of this square image, as well

as the existence of ACFs and Peyer’s Patches.

Since the work was done manually, the locations of the ACFs and Peyer’s Patches

as marked on the paper are not exact. The first and last authors observed the process

numerous times, and on this basis and in collaboration with our colleagues decided

to use the gridding as displayed in Figure 2. We felt that any finer grid would have

led to far too much misclassification of location.

All rats were exposed to a chemical carcinogen. One half of the rats were also

exposed to radiation. Rats were sacrificed at 4, 6 and 8 weeks, and their colons

removed and assayed. There were thus 6 rat groups, and 7 were in each group.

Using model (2.11), we first computed our score tests on an animal by animal

basis. We then combined the results as follows. For rat r = 1, ..., 7 in rat group

g = 1, ..., 6, each test statistic can be written as Trg/Srg, where T is the numerator of

the test statistic and S is its denominator. Since the rats are independent, a simple

way to combine the data in a group is to compute the “combined” test statistic

7∑

r=1

Trg/(
7∑

r=1

S2
rg)

1/2. (2.12)

The results are given in Tables 2–3. At 4 weeks after administration of the carcinogen,

there is little evidence of strong spatial correlation, with only 1 animal in the irradiated

and non–irradiated groups having evidence of correlation, and the combined test being

thoroughly not statistically significant.
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Table 2.

Significance levels for irradiated rats

rat score moran scorecp scores1 scores2 scoreJG
141 0.00 0.01 0.00 0.00 0.00 0.00
142 0.67 0.73 0.66 0.66 0.66 0.66
143 0.49 0.45 0.49 0.50 0.50 0.48
144 0.59 0.75 0.60 0.60 0.60 0.62
145 0.20 0.13 0.20 0.20 0.20 0.22
146 0.27 0.11 0.28 0.27 0.27 0.37
147 0.21 0.12 0.22 0.21 0.21 0.24

Combined 0.29 0.53 0.24 0.29 0.29 0.19
161 0.04 0.07 0.04 0.04 0.04 0.04
162 0.98 0.86 0.97 0.98 0.98 0.91
163 0.00 0.00 0.00 0.00 0.00 0.00
164 0.05 0.00 0.05 0.05 0.05 0.09
165 0.40 0.79 0.39 0.40 0.40 0.31
166 0.00 0.00 0.00 0.00 0.00 0.00
167 0.86 0.73 0.86 0.86 0.86 0.86

Combined 0.00 0.00 0.00 0.00 0.00 0.00
181 0.28 0.59 0.27 0.28 0.28 0.18
182 0.91 0.86 0.91 0.91 0.91 0.96
183 0.05 0.05 0.05 0.05 0.05 0.05
184 0.80 0.54 0.81 0.80 0.80 0.87
185 0.28 0.25 0.28 0.28 0.28 0.27
186 0.13 0.11 0.13 0.13 0.13 0.14
187 0.89 0.99 0.88 0.89 0.89 0.89

Combined 0.02 0.02 0.02 0.02 0.02 0.02

The tests are defined in Table 1. “Combined” is the combined test statistic. The first
leading digit in the rat number indicates the animals were irradiated, the second number is
the time of sacrifice and the third is the rat number in its group. The tests are as follows.
“score” refers to the usual score test, “moran” to Moran’s test, “scorecp” to the robust score
test with Carroll and Pederson’s weight function, “scores1” to Simpson’s weight function
with b = 3, α = 1, “scores2” to Simpson’s weight function with b = 4 and α = 2 and
“scoreJG” to Score test similar to Jacqmin-Gadda, et al. (1997). “adj. moran” refers to
Moran’s test adjusted to have level exactly 0.05.
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Table 3.

Significance levels for non–irradiated rats

rat score moran scorecp scores1 scores2 scoreJG
241 0.64 0.39 0.64 0.64 0.64 0.71
242 0.00 0.00 0.00 0.00 0.00 0.00
243 0.52 0.72 0.46 0.51 0.52 0.44
244 0.89 0.82 0.89 0.89 0.89 0.90
245 0.78 0.40 0.77 0.78 0.78 0.92
246 0.46 0.51 0.45 0.46 0.46 0.44
247 0.51 0.45 0.51 0.51 0.51 0.56

Combined 0.38 0.12 0.38 0.38 0.38 0.47
261 0.00 0.00 0.00 0.00 0.00 0.00
262 0.02 0.00 0.04 0.02 0.02 0.12
263 0.06 0.06 0.06 0.06 0.06 0.06
264 0.25 0.23 0.25 0.25 0.25 0.32
265 0.03 0.00 0.03 0.03 0.03 0.05
266 0.52 0.67 0.53 0.52 0.52 0.44
267 0.68 0.47 0.69 0.68 0.68 0.75

Combined 0.00 0.00 0.00 0.00 0.00 0.00
281 0.03 0.00 0.03 0.03 0.03 0.06
282 0.34 0.46 0.33 0.34 0.34 0.30
283 0.67 0.31 0.66 0.67 0.67 0.83
284 0.78 0.86 0.76 0.78 0.78 0.65
285 0.81 0.61 0.82 0.81 0.81 0.91
286 0.98 0.52 0.97 0.98 0.98 0.65
287 0.00 0.00 0.00 0.00 0.00 0.00

Combined 0.00 0.00 0.00 0.00 0.00 0.00

The tests are defined in Table 1. “Combined” is the combined test statistic. The first leading
digit in the rat number indicates the animals were not irradiated, the second number is the
time of sacrifice and the third is the rat number in its group. The tests are as follows. “score”
refers to the usual score test, “moran” to Moran’s test, “scorecp” to the robust score test
with Carroll and Pederson’s weight function, “scores1” to Simpson’s weight function with
b = 3, α = 1, “scores2” to Simpson’s weight function with b = 4 and α = 2 and “scoreJG”
to Score test similar to Jacqmin-Gadda, et al. (1997). “adj. moran” refers to Moran’s test
adjusted to have level exactly 0.05.
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However, at 6 and 8 weeks there are many more ACFs. This is perhaps not un-

expected, since it takes some time after an insult via carcinogen or radiation before

ACFs form. As seen in Tables 2–3, the combined tests are highly statistically signifi-

cant at these time points, and 10 of the 28 individual rats show individual evidence of

spatial correlation. It seems to us, then, that the evidence is fairly strong for spatial

correlation at the 6–8 week time period. See McLellan, et al. (1991) for discussion of

the role of time in developing ACF.

There is an interesting feature in Table 2. Although no p-value for the “18”

group (irradiated rats at 8 weeks) was less than 0.05, the overall p-value using the

combined test (2.12) was 0.02. This phenomenon can be explained as follows. It

turns out that for these animals, the denominators S2
rg of (2.12) for rat r in group

g were on average over the rats approximately equal to 14. Suppose we know that

the numerators, of (2.12), Trg for r = 1, ..., 7 are Normal{µ, (14.76)2}. Then each

individual test has little power for testing H0 : µ = 0, but the mean of the T s has

much more power. In other words, we might expect the situation for the “18” rats

to be the rule, rather than the exception. Indeed, if we set µ equal to 13.14, the

mean of the numerators of (2.12), the combined test (2.12) has power 66%, while the

univariate tests have power 14%.

The choice of weights R(•) ≡ 1 mentioned by Jacqmin–Gadda, et al. (1997)

sometimes has quite different (higher) p–values from the score tests, with changes in

statistical significance at the rat level, note for example rat 164. One might expect

this to happen if the data were actually generated by a CAR model, for example.
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CHAPTER III

SEMIPARAMETRIC SPATIAL MODELING OF BINARY OUTCOMES

A. Models

1. Binary Mixed Model and General Fixed Effects Structure

Our models are semiparametric forms of binary generalized linear mixed models,

where a binary response variable {Dri : i ∈ Z2} is measured in a possibly irregular

shaped set Snr ⊂ Z2 with |Snr | = nr, where | • | is the cardinality of s set, for subjects

r = 1, ..., R. We also measure covariates, X̃ri = (Xri1, Xri2), where Xri2 is scalar. In

the ACF experiment, which is essentially longitudinal, Xri2 is the horizontal distance

of the location from the distal part of the colon. For the binary model, let εri be

independent and normally distributed with mean 0 and variance 1. Let λri denote

random effects responsible for possible spatial dependence. For a parameter ρ and a

correlation matrix Ωr(ρ), the {λri} are assumed to be normally distributed with mean

0 and covariance matrix σ2
λΩr(ρ). Let µri be systematic effects possibly incorporating

nonstationarity. Then the model is defined as Dri = I(µri + λri + εri > 0), so that

pr(Dri = 1 | λri, µri) = Φ(µri + λri), (3.1)

where Φ(•) is the univariate standard normal distribution function. Notice that

marginally responses come from the probit model. The primary difficulty in im-

plementing full likelihood inference for such models is that the likelihood function is

intractable numerically. In the rest of this section, we describe the general fixed effects

structure on the µri (Section 2). Since our models are semiparametric in structure,

we also describe (Section 3) the class of fixed-knot regression splines that form the

basis for our modeling. The general random effects structure Ωr(ρ) is introduced in
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Section 4.

2. General Fixed Effects Structure

In our case, in its most general form we will allow for flexible semiparametric models

both for the fixed effects µri as well as the correlation matrix Ωr(ρ). Specifically,

for unknown functions Λr1(•) and Λr2(•), a known function Υ(•) and an unknown

parameter ζr0, we model the fixed effects structure as

µri = Λr1{ζT
r0Υ(Xri1)}+ Λr2(Xri2). (3.2)

Model (3.2) is a combination of partially linear models, additive models and single in-

dex models: (a) partially linear models obtain when Λr1(•) is known to be the identity

function; (b) single index models obtain when Λr2(•) ≡ 0; and (c) additive models

have Xri1 scalar and ζr0 = 1 known. If Λr1(•) is unknown, then for identifiability we

set ‖ζr0‖ = 1 and insist that the first element of ζr0 is positive.

3. Regression Splines and Penalization

In our work, we model an unknown function Λrj(•) as a fixed-knot regression spline,

which has the representation Λrj(x) = B̃T
j (x)ηrj0, where B̃T

r (x) = {Br1(x), ..., Brk(x)}.
For example, B̃r(x) might be the Bspline basis functions (Eilers and Marx, 1996)

or the truncated power series basis (Ruppert, et al., 2003) of order q with K knots

x1, ..., xK given as B̃T
r (x) = (1, x, ..., xq, |x−x1|q+, ..., |x−xK |q+), where the subscripted

plus sign is the positive part function.

Regression splines with a fixed number of knots have become an increasingly

popular means of semiparametric inference, see Ruppert, et al. (2003) and references

therein. Generally, not many knots are required to capture most fixed effects struc-

tures (Ruppert, 2002), and in any case for binary data in particular capturing the
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type of very complex structure that cannot be captured by a low-order basis represen-

tation is unlikely to be practical. Of course some sort of smoothing is required. This

is generally done either by knot selection devices to greatly lower the dimensionality,

or by penalization to achieve smoothness. In this paper, we use the latter device, see

Section D for details.

4. General Random Effects Structure

In this section we discuss general approach to modeling the covariance function of the

spatial process {λri}. We will consider a single possibility here, although we believe

that our methods and theoretical techniques apply more generally.

Let dr(i, j) be the Euclidian distance between sites i and j in subject r. The

simplest type of correlation structure is stationary, e.g., the Mátern family. Thus,

the (i, j) element of Ωr(ρ) can be written as Ωrij(ρ) = M{dr(i, j), ρ}, where M(•)
is a known function with unknown parameter ρ. Given the paucity of information in

binary data, stationarity is clearly the default option.

There are many ways to weaken the assumption of stationarity. One approach

is similar to that of Fuentes (2002), with the difference that because of the lack

of information in binary data, we do not allow the variance of the latent random

{λri} to vary with location. Let K(•) be a known symmetric density function, let

h be an unknown bandwidth and define Kh(u) = K(u/h). Define a set of locations

as χ0, ..., χS: generally, S is small. The proposed method requires that for each site

there is at least one location χs, s = 1, ..., S such that Kh{dr(i, χs)} > 0 which defines

a lower bound on h. Let %0 = 0 and let %s, s = 1, ..., S be unknown parameters. Then

our model is

Ωrij(%) = S−1
S∑

s=0

ϕ{dr(i, χs)}ϕ{dr(j, χs)}M{dr(i, j), %s}, (3.3)
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ϕ{dr(i, χs)} =
Kh{dr(i, χs)}

[maxx
∑S

t=1 K2
h{dr(x, χt)}]1/2

, s = 1, ..., S,

and where ϕ{dr(i, χ0)} = [1−∑S
s=1 ϕ2{dr(i, χs)}]1/2. Other types of parametrization

are possible, the main constraint so that (3.3) is a correlation matrix being that

∑S
s=0 ϕ2{dr(i, χ0)} = 1 for any i.

Somewhat more generally, we can allow the correlation parameters (%1, ..., %S) to

depend smoothly on covariates, so that %s = F{Λ3(X̃χs)}, where F (•) is a known

function, e.g., F (v) = exp(v). Although very general structures are possible, in our

theory we restrict ourselves to the case that Λ3(•) has only one additive term and a

scalar smoothing parameter.

B. Penalized Regression Spline Methodology

In this section, we describe the basic fitting methods. Smoothing parameter selection

is discussed in Section D. In cases such as ours that computation of a likelihood

estimator is infeasible, or at least extremely difficult, it is common to use a composite

likelihood formed by adding together individual component loglikelihoods, each of

which corresponds to a valid marginal or conditional loglikelihood (Lindsay, 1988).

This approach has been used in many problems for correlated binary response data,

for example in spatial models (Heagerty and Lele, 1998).

In this section we will discuss penalized composite likelihood estimators for our

problem. We assume that each subject has its own mean function but that subjects

share the same covariance function. Our asymptotics are as nr →∞ for r = 1, ..., R

with R fixed, as is appropriate for our example.

Looking first at individual observations, and defining µ∗ri = µri/(1 + σ2
λ)

1/2, the

univariate marginal probability satisfies pr(Dri = 1|µ∗ri, σ
2
λ) = Φ(µ∗ri). We define the

composite loglikelihood of the first order as a sum of the marginal loglikelihoods pre-
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tending that the data are independent. These terms of course give no information

about the correlation structure. Thus we use pairs of observations to define a compos-

ite likelihood. Let Φ2(µ1, µ2, ρ) be the bivariate standard normal probability of being

below µ1 and µ2 when the correlation is ρ. Then, pairwise marginal probabilities can

be expressed as

pr(Dri = 1, Drj = 1|µ∗ri, µ
∗
rj, σ

2
λ, ρ) = Φ2{µ∗ri, µ

∗
rj, σ

2
λΩrij(ρ)/(1 + σ2

λ)}. (3.4)

Define Z
(kl)
rij = I(Dri = k, Drj = l), π

(kl)
rij = E(Z

(kl)
rij |µ∗ri, µ

∗
rj, σ

2
λ, ρ), π

(1·)
rij = pr(Dri =

1|µ∗ri) and π
(·1)
rij = pr(Drj = 1|µ∗rj). The composite likelihood of the second order is de-

fined as a sum of loglikelihoods of the second order based on the pairwise distribution

of the responses. At least in principle, both the correlation function and the variance

of the random effects can be estimated from the pairwise component likelihoods.

Because µri and µ∗ri are multiples of one another, in what follows, for notational

simplicity, we will simply use the former. We now turn to three general approached

based on these ideas.

1. Penalized Composite Likelihood Estimators of the First Order

Recall from (3.2) that the fixed effects for the rth function depend on ζr0 and the two

regression splines written as Λrj(x) = B̃T
rj(x)ηrj0 for j = 1, 2. In order to handle the

constraint that ‖ζr0‖ = 1 and that its first component is positive, we parameterize

to ξr0, where if ζr0 has qrζ components, then ξr0 has qrζ − 1 components and ζr0 =

{(1− ‖ξr0‖2)1/2, ξT
r0}T.

Let βr be the collection of the parameters (ηT
r1, η

T
r2, ξ

T
r ), with true value βr0, and

write µri = µri(βr). Then pretending that the data are independent, the composite
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loglikelihood of first order at the ith location is

LI
r,i(βr) = log{LI

r,i(βr)} = Dri log[Φ{µri(βr)}] + (1−Dri) log[1− Φ{µri(βr)}].

If we sum over the locations for the rth function then we get a composite likelihood

function. We need to penalize this function to account for the nonparametric regres-

sion, which we do with two smoothing parameters (κr1, κr2) and two penalty matrices

(G1,G2). The penalty matrices (G1,G2) depend on the basis functions used. For ex-

ample (Ruppert, et al., 2003), for the truncated polynomial series basis of order q and

K knots defined in Section 3, Gj = diag(0Iqj
, IKj

), where Iq is the identity matrix of

size q. Of course, an interesting subcase is when all functions have the same penalties

across rats, i.e., κrj ≡ κj.

For fixed smoothing parameters (κr1, κr2), the composite likelihood estimator of

the first order is denoted by β̂I
r (κr1, κr2) = β̂I

r and is obtained by maximizing

L̃I
r(βr, κr1, κr2) = n−1

r

nr∑

i=1

LI
r,i(βr)− (1/2)

2∑

j=1

κrjη
T
rjGjηrj. (3.5)

2. Penalized Composite Likelihood Estimators of the Second Order

In order to estimate the correlation function, we must at least use pairs of observa-

tions. We described the models used for the correlation structure in Section 4, which

are independent of the function and depend on a bandwidth h and a parameter, η3,

possibly although not necessarily via a spline. Let θ denote the unknown parameters

among (σ2
λ, h, η3) and let θ0 denote its true value.

We make the assumption that the covariance structure within a group of animals

does not depend on the animal. Let BT = (βT
1 , ..., βT

r ) with true value B0. Define Θ as

the collection of all parameters to be estimated, and let Θ0 be its true value. Organize

Θ as Θ = (ηT
11, ..., η

T
R1, η

T
12, ..., η

T
R2, ξ

T
1 , ..., ξT

R, θT)T. Using the pairwise probabilities
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(3.4), we can write the likelihood at locations (i, j) for function r as

LII
r,ij(Θ) =

1∑

k,`=0

Z
(k`)
r,ij log{π(k`)

r,ij (βr, θ)}.

We propose to maximize a weighted penalized composite likelihood. Let wrij be

weights, e.g., the indicator that locations (i, j) are less then specified value apart, a

choice that is useful to cut down on the size of the summations and also one that is

convenient for later theoretical calculations. Let Wr =
∑nr

i,j wrij and let W =
∑

rWr.

Let κ̃j = (κ1j, ..., κRj) and define M II(κ̃1, κ̃2, κ3) = diag(κ11G11, ..., κR1GR1, κ12G12, ...,

κR2GR2, 0Iq∗ , 0I2, κ3G∗3), where q∗ =
∑

r qrζ −R and G∗3 is diagonal with the penalty

matrix for η3 placed appropriately. For fixed smoothing parameters, the compos-

ite likelihood estimator of the second order is denoted by Θ̂ = Θ̂(κ̃1, κ̃2, κ3) and is

obtained by maximizing

L̃II(Θ, κ̃1, κ̃2, κ3) = W−1
R∑

r=1

nr∑

i,j

{wrijLII
r,ij(Θ)} − (1/2)ΘTM II(κ̃1, κ̃2, κ3)Θ. (3.6)

An interesting special case is to have the functions within a group of animals have

the same penalty parameters κrk ≡ κk. If the correlation function has no spline

component, then κ3 = 0.

3. Two-Stage Penalized Estimation of Mean and Association

Maximization of (3.6) can be challenging numerically. This suggests a simple two-

stage method. Let β̂r be the fixed effect parameters obtained from the first order

composite likelihood method (3.5) for r = 1, ..., R, and let B̂ be their collection. Define

M II∗(κ3) = diag(0I2, κ3G∗3). Then for fixed smoothing parameter κ3 the two stage

estimator θ̂II∗(κ3) = θ̂II∗ is obtained by maximizing in θ the penalized loglikelihood

L̃II∗(θ, κr3) = W−1
R∑

r=1

nr∑

i,j

{wrijLII
r,ij(β̂r, θ)} − (1/2)θT M II∗(κ3)θ. (3.7)
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C. Asymptotic Results

In this section, we state the main results. All proofs are given in the appendix.

Because many of the expressions are lengthy, they too are given in the appendix.

We are using an increasing domain asymptotics meaning the the number of sites

(grid cells), is increasing asymptotically and the distance between two sites is always

greater then some positive number.

We express dependence by means of a model-free mixing coefficient (Guyon,

1995). Define

αu,v(k) = sup{|pr(AB)− pr(A)pr(B)|, A ∈ F(Λ1), B ∈ F(Λ2), |Λ1| ≤ u, |Λ2| ≤ v,

d(Λ1, Λ2) ≥ k},

where Λj ⊂ Z2, F(Λj) is the σ- field generated by {Di, i ∈ Λj}, j = 1, 2, and

d(Λ1, Λ2) is the distance between index sets defined as d(A,B) = inf{max |ai − bi| :

a = (a1, a2) ∈ A, b = (b1, b2) ∈ B}. Define α(k) = α∞,∞(k). Throughout, we make

the following assumptions.

Assumption 1: For each method, the relevant parameters take values within a

compact set, and their true values lie in the interior of that set.

Assumption 2: Define the covariates in the model such as in (3.2) as X̃ri. The

X̃ri are assumed to take on values in a compact set, and as nr → ∞ their empirical

distribution function is assumed to converge uniformly to a distribution function.

Assumption 3: For each r = 1, ..., R, the random effects {λr,i}∞i=1 are α-mixing of

size −2 (Gallant, 1987) meaning that the mixing coefficient α∞,∞(k) = o(k−2).

Assumption 4: The parameters are uniquely identified. Thus for every βr

(4a) E{L̃I
r(βr, 0, 0)} → Sr(βr) having a unique maximum at the true value

βr0,
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and for every Θ = (B, θ),

(4b) E{L̃II(Θ, 0, 0, 0)} → S(Θ) having a unique maximum at the true value

(Θ0).

Assumption 5: The covariance matrix of the estimating functions are positive def-

inite. Thus,

(5a) For every r, as nr →∞, n−1
r

∑nr
i=1 cov{∂LI

r,i(βr0)/∂βr0},
(5b) As minr nr → ∞, W−1 ∑R

r=1

∑nr
i,j cov{wrij∂LII

r,ij(Θ0)/∂Θ} are positive

definite.

Assumptions 1 and 2 are technical assumptions enabling us to apply certain

uniform convergence results. It can be proved that Assumption 3 is satisfied for the

Mátern (Stein, 1999) correlation family by exploiting the results of Theorems 1 and

2 of Kolmogorov and Rozanov (1960). Assumption 4 assures us that the parameters

are identified. Assumptions 5 is needed to compute asymptotic standard errors.

1. Asymptotic Properties of the First Order Method

We state the result here in some detail because we will need it when we give esti-

mates of the asymptotic covariance matrix. Recall that the fixed effects are given as

µri(βr). Define Zr,i(βr) = Dri−Φ{µri(βr)}. Let Yri(βr) = φ{µri(βr)}(Φ{µri(βr)}[1−
Φ{µri(βr)}])−1. Write ∂µri(βr)/∂βr = Vri(βr), and write vr,i(βr) = Vri(βr)Yri(βr).

The first derivative of LI
r,i(βr) is AI

r,i(βr) = vr,i(βr)Zr,i(βr). The derivative of AI
r,i(βr)

with respect to βr and evaluated at βr0 is easily seen to have expectation Nri =

−φ{µr(βr0, X̃r,i)Yr(βr0, X̃ri)Vr(βr0, X̃ri)VT
r (βr0, X̃ri), which is minus the covariance

matrix of AI
r,i(βr0).

Theorem 1: Under Assumptions 1-3, 4(a) and 5(a), if for j = 1, 2 the smoothing pa-

rameters κrj = o(1), then the first order penalized composite likelihood score equation

has a solution β̂I
r that is a consistent estimator of βr0. In addition, if the smoothing pa-



32

rameters κrj = crjn
−ν
r , where crj is finite and ν ≥ 1/2, then for the consistent solution

of composite likelihood equation, β̂I
r , (ΣI

n,r)
−1/2n1/2

r (β̂I
r−βr0)+∆I

n,rβr0 → Normal(0, I)

in distribution, where ∆I
n,r = O(n−ν+1/2

r ), ∆I
n,r is defined in the appendix in (B.5)

and ΣI
n,r = (ΣI

nr,0)
−1(ΣI

nr,0 + ΣI
nr,c)(Σ

I
nr,0)

−1, where ΣI
nr,0 and ΣI

nr,c are defined in the

Appendix at (??) and (??).

2. Asymptotic Properties of the Second Order Method

Theorem 2: Assume that the limit of maxr nr/ minr nr is finite, as is maxrWr/

minrWr. Make assumptions 1-3, 4(b), and 5(b). If all smoothing parameters are

of order o(1), then the composite likelihood equation has a solution Θ̂II that is a

consistent estimator of the true value Θ0. Assume also that the smoothing parameters

κrj = crjW−ν
r and κ3 = c3W−ν , where the c’s are finite and ν ≥ 1/2. Then for the

consistent solution of composite likelihood equation, Θ̂II , (ΣII
W)−1/2W1/2(Θ̂II −Θ0)+

∆II
WΘ0 → Normal(0, I) in distribution, where ∆II

W = O(W−ν+1/2) and the following

are defined in the appendix: ΣII
W is defined in (B.7) and ∆II

W is defined in (B.8).

3. Asymptotic Properties of the Two-Stage Method

Theorem 3: Under the assumptions of Theorems 1 and 2, assuming that maxr(Wr/nr)

is finite, there is a solution θ̂II∗ that is a strongly consistent estimator of θ0. In

addition, if the smoothing parameters κrj = crjn
−ν
r , ν ≥ 1/2 for finite crj, and

if κ3 = c3W−νθ , where c3 is finite and νθ ≥ 1/2, then the consistent solution

satisfies (ΣII∗
W )−1/2W1/2(θ̂II∗ − θ0) + ∆II∗

W Θ0 → Normal(0, I) in distribution, where

∆II∗
W = O(W−νθ+1/2) + O{(minr nr)

−ν+1/2} and the following are defined in the ap-

pendix: ΣII∗
W is defined in (B.9) and ∆II∗

W is defined in (B.10).
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D. Smoothing Parameter Estimation

It is well-known that with dependent data, standard approaches to smoothing pa-

rameter selection, such as cross-validation, lead to undersmoothing, see for example

Opsomer, et al. (2001) for discussion and extensive references. The usual device

for numerical response data is either to attempt to select the smoothing parameter

in such a way as to minimize asymptotic average mean squared error, or more gen-

erally to treat the smoothing parameter as a variance component and maximize a

resulting mixed model likelihood. Given in our case that the correlated responses are

binary and that a likelihood estimate with or without an extra variance component

is extremely difficult to compute, at best, it is useful to explore different approaches.

In our problem we estimate parameters by maximizing a composite loglikelihood

function rather then minimizing the average squared distance between two curves. Let

Θ denote all the parameters, let Θ0 be their true value and let CL(Θ) be a composite

loglikelihood without smoothing, as in (3.5)-(3.7). Our approach is to adapt the idea

of Kullback-Leibler distance (Kullback and Leibler, 1951) to estimate the smoothing

parameters. Define

KL(Θ, Θ0) = EΘ0{CL(Θ0)− CL(Θ)},

where the subscript Θ0 means that the expectation is taken at the distribution induced

by Θ0. It is technically convenient to work with a symmetrized version of this distance,

namely

SKL(Θ, Θ0) = KL(Θ, Θ0) + KL(Θ0, Θ).

It is easy to see that SKL(Θ, Θ0) is always non-negative and equals zero when Θ = Θ0.

If we plug in an estimated Θ̂κ into this expression we get a random variable, whose
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expectation we then take to find

MASKL(Θ̂κ) = EΘ0{SKL(Θ̂κ, Θ0)}. (3.8)

Our goal is to estimate the smoothing parameter so as to minimize (3.8). More

precisely, we will find an asymptotically equivalent version of Θ̂κ, replace it in (3.8)

and minimize.

The key to the analysis is that in our problem formulation, SKL(Θ, Θ0) can be

computed analytically. We cannot of course compute (3.8) analytically, but we do

show how to compute an asymptotically equivalent version of it, and this allows us to

estimate the smoothing parameters. Generally, we must separate the case when the

true function is a polynomial of degree q−1 or less. We will show that the smoothing

parameter associated with such function minimizes the selected criterion when equals

to ∞. For other functions, the optimal smoothing parameter is of order O(n−1). This

is important because it means that there is no asymptotic bias in estimation, i.e., in

Theorems 1-3 the terms such as ∆I
n,r = 0.

1. Composite Likelihood of the First Order

For composite likelihood of the first order defined in Section 1, recall that the pa-

rameters are βr = (ηT
r1, η

T
r2, ξ

T
r , )T, with true value βr0. Let the estimate of βr0 be

β̂I
r (κr1, κr2) With a slight abuse of notation, the fixed effects are µri(βr). It is easily

checked that

SKL{β̂I
r (κr1, κr2), βr0} = n−1

r

nr∑

i=1

(Φ{µri(βr0)} − Φ[µri{β̂I
r (κr1, κr2)}]) (3.9)

×[$1,ri(βr0)−$1,ri{β̂I
r (κr1, κr2)}],
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where $2,ri(β) = − log[1 − Φ{µri(β)}] and $1,ri(β) = $2,ri(β) + log[Φ{µri(β)}]. In

the appendix, we sketch an argument indicating that with this definition of SKL(•),
the minimizer of (3.8) when ηrj0 = 0, j = 1, 2 equals ∞ and in more the general case,

the minimizer of (3.8) can be derived as follows. Write κ̃(r) = (κr1, κr2)
T. Specifically,

let Σr be the asymptotic variance of β̂I
r as in Theorem 1. Then there is a 2×2 matrix

Hr(κ̃
(r), βr0, Σ

I
n,r) and a 2× 1 vector Jr(κ̃

(r), βr0, Σ
I
n,r), both of order O(1), such that

to terms of order o(n−1
r ), κ̃(r) = n−1

r H−1
r (κ̃(r), βr0, Σ

I
n,r)Jr(κ̃

(r), βr0, Σ
I
n,r).

Obviously, the question is how to estimate ΣI
n,r. We take this issue up in detail in

Section E. In general, however, estimation of ΣI
n,r requires simultaneous estimation

of the variance parameters θ0 through the two-stage method, see Section 3.

2. Composite Likelihood of the Second Order

Let Θ0 be the true parameter and let Θ̂II(κ̃1, κ̃2, κ3) be the estimator. The, again

with a slight abuse of notation, for composite likelihood of the second order, we have

that

SKL{Θ̂II(κ̃1, κ̃2, κ3)} = W−1
R∑

r=1

nr∑

i,j=1

1∑

k,`=0

wrij[π
(k`)
r,ij (Θ0)− π

(k`)
r,ij {Θ̂II(κ̃1, κ̃2, κ3)}]

×(log{π(k`)
r,ij (Θ0)} − log[π

(k`)
r,ij {Θ̂II(κ̃1, κ̃2, κ3)}]).

Since in Theorem 2 we have assumed that the sample sizes for each function are

proportional, we will write n0 to be the mean of the sample sizes. In the appendix, we

sketch an argument indicating that with this definition of SKL(•), the minimizer of

(3.8) when ηrj0 ≡ 0, j = 1, 2, 3 equals to ∞ and in more general case, the minimizer

of (3.8) is of order O(n−1
0 ). An algorithm similar to that in Section 1 can be defined.

Finally, the minimizer of asymptotic MASKL(κ3) is the solution of the following

equation κ̃3 = W−1{HII∗
W (κ̃3,B0, Σ

II∗
W )}−1J II∗

W (κ̃3,B0, Σ
II∗
W ), where the coefficients are
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similar to ones derived before and are given in appendix.

E. Estimation of Asymptotic Covariance Matrices

In this section we will discuss estimation of the asymptotic covariance matrices. Infer-

ence and testing are important parts of any data analysis and require an estimation

of variance for estimators. Although standard error can be obtained analytically

and numerically using multivariate integration, computation is extremely intense and

the total number of such calculations can be high. Resampling, bootstrapping and

jackknife techniques have been used when direct calculation can be impractical. The-

oretical properties of these approaches have been studied for stationary processes,

however the form of non-stationarity we have in our case rules out the direct use of

mentioned above methods.

In our approach, we will exploit the idea of asymptotic independence: observa-

tions that are sufficiently widely separate in space are approximately independent.

We will demonstrate the basic idea on standard error estimation for PCL of the first

order: the other methods follow with changes of notation. Referring to Theorem 1, it

is easy to see that ΣI
nr,0 can be consistently estimated by −n−1

r

∑nr
i=1Nri(β̂r). Next we

will discuss the estimation of ΣI
nr,0 + ΣI

nr,c. We are going to exploit the fact that the

colon is much longer then wide assuming that asymptotically the domain increases

only in horizontal direction. Let us define ix as a horizontal coordinate of site i,

i = 1, ..., nr. Define

M{βr, xmax(nr)} = n−1
r [

∑

i

AI
r,i(βr){AI

r,i(βr)}T +
xmax(nr)∑

dx=1

qdx,xmax(nr)

∑

i,j:|ix−jx|=dx

AI
r,i(βr)× {AI

r,j(βr)}T ],

where the weights qdx,xmax(nr) are bounded, for any fixed dx, limxmax(•)→∞ qdx,xmax(•) = 1
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and xmax(nr) → ∞ as n → ∞. The weights are introduced to assure that the

estimator is positive definite. For our study we will use Bartlett weights qd,x =

1 − d/(x + 1), which is the simplest choice proven to guarantee positivity (Gallant,

1987, page 533). Using Theorem 3 of Gallant (1987, page 534), we have that

|cov{n−1/2
r

∑

j

AI
r,j(βr,0)} − E{M(βr,0)}| ≤ cx−1

max(nr)

pr(|M(βr,0)− E{M(βr,0)}| > ε) ≤ (c/ε2)x4
max(nr)/nr.

Therefore for a root-n consistent estimate β̂r, it follows that

M(β̂r, xmax(nr))− (ΣI
nr,0 + ΣI

nr,c) = Op(n
−1/2
r ) + Op{x4

max(nr)/nr}+ Op{x−1
max(nr)},

c > 0.

Note that the optimal rate of convergence for xmax(nr) is O(n1/5
r ) in which case

M(β̂r) − (ΣI
nr,0 + ΣI

nr,c) = Op(n
−1/5
r ). For our numerical work we choose xmax(nr) =

[n1/5], where [•] is an integer part of the real number.

F. Simulation Study

We performed a small simulation study to understand in part the properties of our

methods, patterning the study after the analysis of the ACF data that will be pre-

sented in Section G. We used the two-stage estimate in this simulation.

In the ACF data, the only covariate is the direction on the grid, Xri2, which we

normalize to the unit interval. This means that in (3.2), µri = Λr2(Xri1). In addition,

instead of the general form (3.3) of the covariance structure, we fit a Mátern corre-

lation model with index 5/2 (Stein, 1999), such that Ωrij(ρ) = exp(−d/ρ){1 + d/ρ +

(d/ρ)2/3}, where d is the Euclidian distance between sites i and j. Let ψ = σ2/(1+σ2).

We run simulations under two different scenarios with correlation parameters chosen
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such that (ψ = 0.5, Ω(ρ) = 0.5) and (ψ = 0.6, Ω(ρ) = 0.8) thus reflecting moderate

dependence of the type found in the ACF data and stronger dependence, respectively.

Mimicking the ACF data, we set nr = 800, reflecting a 100 × 8 grid. The function

chosen was 0.5[sin{2π(Xri1−0.5)}−1]. For each correlation, we performed 1000 sim-

ulations. In this example we used 14-knot cubic splines with truncated polynomial

series basis.

There is one smoothing parameter here, κr2. The algorithm we used was as

follows. For each value of κr2, we solved for the parameters βr0 via Fisher scoring.

We then updated θ̂ via Fisher scoring given κr2 and β̂r. Finally, we solved to get an

updated κr2. We iterated until convergence.

Here we study the performance of the algorithm and compare two methods of

smoothing parameter selection: the proposed method based on MASKL criterion

(Section D) and the traditional one based on cross-validation (CV, Ruppert et.al.

2003). The integrated mean squared errors and squared bias of the probability func-

tion for both methods are given in Table 4. Effectively, we see that for estimating

the function, both methods are roughly unbiased, but our method has much smaller

mean squared errors, with mean squared error efficiencies being roughly 200%. The

reason for this is that CV undersmooths the function, leading to increased variability

which shows up in individual data sets.

Of course, our algorithm allows us to estimate the correlation along with the

mean function, see Table 5.

Included in this table are the mean estimates of ψ = σ2/(1+σ2) and Ω(ρ), along

with the 2.5th and 97.5th percentiles over the simulated data sets.



39

Table 4.

Results of the simulation. Comparison of estimator performance for different

amounts of dependency

ψ = 0.5, Ω(ρ) = 0.5
method ISB(10−2) IMSE (10−2)
MASKL-I 0.003 0.316
MASKL-II 0.008 0.257
CV 0.005 0.553

ψ = 0.8, Ω(ρ) = 0.6
method ISB(10−2) IMSE (10−2)
MASKL-I 0.002 0.689
MASKL-II 0.004 0.490
CV 0.003 1.425

The methods are as follows: ’MASKL’ refers to the method based on minimization of
MASKL, criterion described in Section D, ’I’ and ’II’ are one and two-stage algorithms
respectively, ’CV’ refers to the method based on cross-validation. ’ISB’ is integrated squared
bias and ’IMSE’ is integrated mean squared error.
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Table 5.

Results of the simulation. Comparison of proposed algorithm performance when

estimating correlation for different amounts of dependency

ψ = 0.5, Ω(ρ) = 0.5
method ψ̂ ψ̂.025 ψ̂.975 Ω̂(ρ) Ω̂(ρ).025 Ω̂(ρ).975

MASKL-I 0.440 0.190 0.751 0.570 0.252 0.956
MASKL-II 0.507 0.389 0.598 0.441 0.229 0.581

ψ = 0.8, Ω(ρ) = 0.6
method ψ̂ ψ̂.025 ψ̂.975 Ω̂(ρ) Ω̂(ρ).025 Ω̂(ρ).975

MASKL-I 0.764 0.664 0.972 0.562 0.354 0.858
MASKL-II 0.797 0.728 0.861 0.558 0.465 0.646

The first column is the method: ’MASKL’ refers to the method based on minimization of
MASKL, criterion described in Section D, while ’I’ and ’II’ are one and two-stage algorithms
respectively. Columns 2-4 and 5-7 are mean, 2.5th, 97.5th percentiles for ψ and Ω(ρ)
respectively
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G. Analysis of the ACF Experiment

The introduction mentions the aberrant crypt foci experiment. The details on data

collection of the aberrant crypt foci experiment can be found in Apanasovich et.

al. (2003). In this study we used r = 1, ..., 7 rats in groups of irradiated and non-

irradiated animals that were sacrificed at 6 weeks. The only covariate we used was the

horizontal distance from the distal part of the colon normalized to the unit interval.

In this study we did not use the general random effects structure described in Section

D, but fit a Mátern correlation model with index 5/2 (Stein, 1999). We formed the

composite likelihood using all pairs of sites less than three units apart, with the choice

based on computational feasibility, as well as the fact that even for a relatively high

correlation of 0.5 between neatest neighbors, the correlation between sites of more

then 3 units apart for the chosen correlation structure is less than 0.02. The rats were

allowed their own smoothing parameters. Figure 4 shows the estimated probability of

ACF formation as a function of normalized distance from the distal part of the colon

for each of the two groups. This figure suggests three important possible conclusions.

First, the shapes are complex, and certainly neither constant nor linear. Second,

overall the irradiated and non-irradiated groups are different in their ACF formation,

with the former having higher ACF formation overall. A simple t-test confirms this

finding. Of most potential importance is the finding that ACF formation is not

uniform across the colon, and indeed seems greatest at approximately 0.5cm and

0.7cm along the distal colon for the non-irradiated and irradiated rats, respectively.

This was initially surprising to us, because we expected that in rats who were allowed

to live longer, most tumors would be found in the distal region, rather than roughly

in the middle. We went back to other data and confirmed this: there are more tumors

roughly where our results suggest most of the ACF occur.



42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

X

Pr
ob

 o
f A

C
F 

Fo
rm

at
io

n

Irradiated
Non−irradiated

Figure 4. Estimated probabilities of ACF formation. The solid line corresponds to

the irradiated group and the dashed line corresponds to the non-irradiated group.
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H. Discussion and Extensions

Summarizing briefly, we have described an important experiment in colon carcino-

genesis that motivated the study. The responses are binary, they fall into a spatial

alignment with marginal probabilities of disease depending strongly on the location

within the colon. To handle data like this, we proposed models that have two forms of

semiparametrics: (a) one for marginal probabilities, where we studied a combination

of partially linear and single index models; and (b) one for the correlation func-

tion, where we also proposed a semiparametric model. In all cases, semiparametric

modeling of functions was via fixed-knot penalized regression splines with smoothing

parameters.

The penalized regression splines have penalty parameters that must converge to

zero asymptotically: we derived rates for these parameters that do not lead to an

asymptotic bias. We also adapted the idea of Kullback-Leibler distance and derived

the optimal rate of convergence for them based on built criteria and proposed a data

driven methods to select a proper amount of smoothing. Simulation evidence was

positive: even for modeling the mean function our methods did much better than

those based on cross-validation.

Finally, we applied the methods to the data from our experiment. We identified

regions of high ACF formation that were initially surprising to us but that upon

examination of other data actually correspond to regions of high tumor formation.

Biologically, this provides a quantification of the localization of ACF formation as

precursors to tumors.
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CHAPTER IV

CONCLUSION

We have described an important experiment in colon carcinogenesis, where the re-

sponses are binary and fall into a spatial alignment, with clear nonstationarity. One

key question of interest is whether there is any spatial correlation: its existence would

suggest that the response of interest, aberrant crypt foci, are localized in the colon,

and thus that regions are affected by radiation and a carcinogen. Our analysis of

the aberrant crypt foci experiment suggests that spatial correlation is present at 6–8

weeks after administration of the carcinogen and with or without radiation.

We developed a score–type test for this problem. The original motivation was the

Matern class of correlation functions, although we also derived the same test using a

particular form of the CAR model. The score–type test method requires no modeling

of the correlation per se and is easily computed. We also developed robust score–type

tests that bound the influence of a few observations on the score test. The methods

are shown via simulation to have test level near the nominal, and also to have in some

circumstances more power than a modification of Moran’s test.

Assuming that there is correlation, two questions addressed in this study were:

the extent of the dependance and the nature of the rate of ACF formation depending

on the location within the colon. We proposed a binary mixed model that incor-

porates a general form of dependency. We assumes that underlying latent process is

nonstationary, and we modeled this based on the convolution of latent stationary pro-

cesses. The dependency of the correlation function on location was also proposed to

approximate semiparametrically. We modeled marginal probabilities of ACF forma-

tion semiparametrically, using fixed-knot penalized regression splines and single-index

models.
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We fit the models using pairwise pseudolikelihood methods. Assuming that the

underlying latent process is strongly mixing, known to be the case for many Gaussian

processes, we proved asymptotic normality of the methods. The penalized regres-

sion splines have penalty parameters that must converge to zero asymptotically: we

derived rates for these parameters that do not lead to an asymptotic bias. We also

adapted the idea of Kullback-Leibler distance and derived the optimal rate of conver-

gence for them based on built criteria and proposed a data driven methods to select

a proper amount of smoothing. The method is shown via simulations to produce

unbiased estimators. It was demonstrated that they are less variable than estimators

obtained by using cross-validation for the smoothing parameter selection.

Finally, we applied the methods to the data from our experiment. We identified

regions of high ACF formation that actually correspond to regions of high tumor

formation. This provides some more evidence that ACF are precursor lesions of

experimental colon cancer. From a practical point of view, ACF are in fact early

biomarkers of cancer risk and should be used in innervation studies aimed at identi-

fying agents able to reduce the incidence of colorectal carcinoma. Thus it is useful

to look for ACF in colons in order to shed some light on the earliest evens of colon

carcinogenesis and to test measures to prevent colorectal cancer.
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APPENDIX A

Recall that there are k = 1, ..., N pairs of responses (Y1k, Y2k), and that Zijk = I(Y1k =

i, Y2k = j). Note that E(Zijk) = πijk. Also, π01k = π·1k − π11k, π10k = π1·k − π11k,

π00k = 1 − π01k − π10k − π11k = 1 − π·1k − π1·k + π11k. In addition, it follows that

∂π00k/∂ρ = ∂π11k/∂ρ, ∂π01k/∂ρ = −∂π11k/∂ρ and ∂π10k/∂ρ = −∂π11k/∂ρ. Then the

differentiation of the loglikelihood with respect to ρ leads to

∂logL(ρ)

∂ρ
=

∑

k

(
Z00k

π00k

− Z01k

π01k

− Z10k

π10k

+
Z11k

π11k

)
∂π11k

∂ρ
.

The information can be shown to equal

E

{
−∂2logL(ρ)

∂ρ2

}
=

∑

k

(
1

π00k

+
1

π01k

+
1

π10k

+
1

π11k

) (
∂π11k

∂ρ

)2

.

Recall that ψ = σ2
λ/(1 + σ2

λ)Ω. If π11k = Φ2{µ∗1k, µ
∗
2k, ψk(ρ)}, then

∂π11k

∂ρ
=

∂π11k

∂ψk

∂ψk

∂ρ
= φ2{µ∗1k, µ

∗
2k, ψk(ρ)}∂ψk

∂ρ
,

where φ2{µ∗1k, µ
∗
2k, ψk(ρ)} is a bivariate standard normal density function with corre-

lation ψk(ρ), evaluated at (µ∗1k, µ
∗
2k). Therefore the score is

(
Z00k

π00k

− Z01k

π01k

− Z10k

π10k

+
Z11k

π11k

)
φ2{µ∗1k, µ

∗
2k, ψk(ρ)}∂ψk

∂ρ

When we use as the correlation function, Ωk(ρ), a member of the Matern class with

ν = m + 1
2
, the correlation function is of the form exp(−dk/ρ) times a polynomial

in −dk/ρ degree m (Abramowitz and Stegun 1965, 10.2.15). The derivative of such

correlation function is of the form exp(−dk/ρ) times a polynomial in −dk/ρ degree

m + 2. Using L’Hospital’s rule one can prove that exp(−dk/ρ)(−dk/ρ)l → 0 as
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ρ → 0 for l ≥ 0. Hence ∂ψk(ρ)/∂ρ = σ2
λ/(1 + σ2

λ)∂Ωk(ρ)/∂ρ → 0 as ρ → 0 and

as the result the score evaluated at ρ = 0 goes to 0 as well. The solution to that

technical difficulty we propose is to focus on pairs that are exactly the same distance

apart, in which case ψk(ρ) is going to be the same for all k. We reparameterize

ψ1(ρ) = ψ2(ρ) = ... = ψN(ρ) = ψ. Notice that ψ = 0 if and only if ρ = 0. So

we can reformulate the null hypothesis of no spatial correlation in terms of a new

parameter, H0 : ψ = 0. The new score that will be used in constructing the test is

also recalculated in terms of a new parameter ψ

sk(µ
∗
1k, µ

∗
2k, ψ) =

(
Z00k

π00k

− Z01k

π01k

− Z10k

π10k

+
Z11k

π11k

)
φ2{µ∗1k, µ

∗
2k, ψ} (A.1)

This shows that the reparametrization allows us to eliminate the term ∂ψk/∂ρ which

is equal to 0 when ρ = 0. Notice that πijk|ψ=0 = (−1)i+j(1 − i − π1·k)(1 − j − π·1k)

and φ2{µ∗1k, µ
∗
2k, 0} = φ(µ∗1k)φ(µ∗1k). Hence the score evaluated at ψ = 0

Gk(µ
∗
1k, µ

∗
2k) = sk(µ

∗
1k, µ

∗
2k, 0) =

(Y1k − π1·k)(Y2k − π·1k)φ(µ∗1k)φ(µ∗2k)

π1·k(1− π1·k)π·1k(1− π·1k)
.

The variance of Gk(µ
∗
1k, µ

∗
2k) under the null hypothesis is

var{Gk(µ
∗
1k, µ

∗
2k)} =

{φ(µ∗1k)φ(µ∗2k)}2

π1·k(1− π1·k)π·1k(1− π·1k)
.

Let the µs depend on covariates X and a parameter β∗, i.e., µ(X, β∗) with the property

that for any constant c, cµ(X, β∗) = µ(X, β∗∗) for some β∗∗. Recall that under the null

hypothesis the Y s are independent and pr(Y = 1|X) = Φ{µ(X, β∗)/(1 + σ2
λ)

1/2} =

Φ{µ(X, β)}. Then the score can be written as

Hk(β) =
[Y1k − Φ{µ(X1k, β)}][Y2k − Φ{µ(X2k, β)}]φ{µ(X1k, β)}φ{µ(X2k, β)}

Φ{µ(X1k, β)}[1− Φ{µ(X1k, β)}]Φ{µ(X2k, β)}[1− Φ{µ(X2k, β)}] .
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The variance of Hk(β) under the hypothesis of no spatial correlation is

Vk(β) =
[φ{µ(X1k, β)}φ{µ(X2k, β)}]2

Φ{µ(X1k, β)}[1− Φ{µ(X1k, β)}]Φ{µ(X2k, β)}[1− Φ{µ(X2k, β)}] .

Then our test statistic is

∑
kHk(β)

{∑k Vk(β)}1/2
. (A.2)

There is an important subtlety in (A.2), namely that while not independent, under the

null hypothesis the terms Hk(β) are mutually uncorrelated, and hence (A.2) indeed

has mean 0 and variance 1.

That (A.2) is asymptotically normally distributed with mean zero and variance

one under the null hypothesis of independence follows from a result of Commenges

and Jacqmin–Gadda (1997), under conditions that govern the behavior of the terms

µ(X, β).

Of course, β is not known. The result of Commenges and Jacqmin–Gadda (1997)

can be used to show that when a
√

n–consistent estimate β̂ is substituted into the

test statistic in place of the true value β, the limit distribution of the test statistic is

unaffected. Because of page limits we do not provide details, but the essential point is

the orthogonality of the numerator of the test to β, i.e., it may be shown that under

the null hypothesis of independence,

E

{
∂Hk(β)

∂β

}
|ψ=0 = 0.

Therefore our test statistic

∑
kHk(β̂)

{∑k Vk(β̂)}1/2

is asymptotically standard normal under the null hypothesis of independence. We now

show that our score test is also the score test for the conditional autoregressive model
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(CAR), see Besag (1974) and Richardson, et al. (1992). Let λ̃ be the vector of the λs.

For the Gaussian CAR model, λ = Normal{0, σ2
λB(ρ)}, where B(ρ) = (I − ρC)−1,

where C is chosen to be a neighborhood matrix whose (i, j)th element is equal to 1 if

region i and region j (i 6= j) are neighbors. Let assume that for the set of locations

(1, ..., n) we observe a binary vector (Y1, Y2, ..., Yn). Define the likelihood function

L(ρ) = pr(Y1 = y1, Y2 = y2, ..., Yn = yn) =
∫

...
∫

φ{x1, x2, ..., xn; I + σ2
λB(ρ)}

dx1, dx2, ..., dxn,

where φ(x1, x2, ..., xn; V ) is the n–variate normal density with mean 0 and covariance

matrix V , the integral with respect to xi is from −∞ to µi if Yi = 1 and from µi to

∞ if Yi = 0.

Let the elements of B(ρ) be Bij(ρ). Make the change of variables zi = xi/{1 +

σ2
λBii(ρ)}1/2, so that L(ρ) = pr(Y1 = y1, Y2 = y2, ..., Yn = yn) =

∫
...

∫
φ{z1, z2, ..., zn;

Σ(ρ)} dz1, dz2, ..., dzn, where Σ has elements Σij, with Σii = 1 and Σij(ρ) = σ2
λBij(ρ)/

[{1 + σ2
λBii(ρ)}{1 + σ2

λBjj(ρ)}]1/2, and the integral with respect to zi is from −∞ to

µ∗i if Yi = 1 and from µ∗i to ∞ if Yi = 0, where µ∗i = µi/{1 + σ2
λBii(ρ)}1/2. The first

derivative of the loglikelihood with respect to ρ is

∂logL(ρ)

∂ρ
=

1

L(ρ)

∂L(ρ)

∂ρ
=

1

L(ρ)


∑

i<j

∂L(ρ)

∂Σij

∂Σij

∂ρ
+

∑

i

∂L(ρ)

∂µ∗i

∂µ∗i
∂ρ




=
1

L(ρ)

∑

i<j

(2Yi − 1)(2Yj − 1)
∫

...
∫

φ{z1, ..., µ
∗
i , ..., µ

∗
j , ..., zn; Σ(ρ)}

× ∏

k 6=i,j

dzk
∂Σij

∂ρ
− 1

L(ρ)

∑

i

∂L(ρ)

∂µ∗i

µi

2{1 + σ2
λBii(ρ)}3/2

σ2
λ

(
∂B

∂ρ

)

ii

.

Now note that when ρ = 0, B = I. Also, ∂B(ρ)/∂ρ|ρ=0 = C, with diagonal elements

equal to 0. This means that

∂Σij

∂ρ
|ρ=0 =

σ2
λCij

1 + σ2
λ

.
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Now note that Σ(ρ = 0) = I, the identity matrix. Using the previous results, it

follows that

1

L(ρ)

∂L(ρ)

∂Σij

|ρ=0 =
(2Yi − 1)(2Yj − 1)φ(µ∗i )φ(µ∗j)

∏
k 6=i,j pr(Yk = yk)∏

k pr(Yk = yk)

=
(2Yi − 1)(2Yj − 1)φ(µ∗i )φ(µ∗j)

pr(Yi = yi)pr(Yj = yj)
=

(Yi − πi)(Yi − πi)φ(µ∗i )φ(µ∗j)

πi(1− πi)πj(1− πj)
.

Hence

∂logL(ρ)

∂ρ
|ρ=0 =

∑

i<j:Cij 6=0

(Yi − πi)(Yi − πi)φ(µ∗i )φ(µ∗j)

πi(1− πi)πj(1− πj)

σ2
λ

(1 + σ2
λ)

.

The common term σ2
λ/(1 + σ2

λ) can be omitted from the Score Test statistic, leading

to our test, as claimed.
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APPENDIX B

Definition: Two norms that are going to be used are defined as follows: if X =

{Xi}k
i=1 is a k-vector valued random variable, mapping a probability space (Ω,A, P)

into Rk, then

||X||r =

{
k∑

i=1

∫

Ω
|Xi(ω)|rdP (ω)

}1/r

;

||X|| =

(
k∑

i=1

X2
i

)1/2

.

Definition: For two random sequencies Xn and Yn, Xn = op(Yn) means Xn/Yn

converges to 0 in probability, Xn = Op(Yn) means the sequence {Xn/Yn}∞n=1 is tight,

for any ε > 0 there exists a constant M > 0 such that pr(|Xn/Yn| ≤ M) ≥ 1− ε.

All definitions below are from Gallant (1987).

Definition: A sequence {αm}∞m=1 of nonnegative real numbers is said to be of size

−q if αm = O(mΘ) for some Θ < −q

Definition: A measure of dependence between two σ-algebras F and G is

α(F ,G) = sup
F∈F ,G∈G

|pr(FG)− pr(F )pr(G)|.

Let {Vt}∞t=−∞ be a sequence of random variables defined on the complete probability

space (Ω,A, P) described above, and let

Fn
m = σ(Vm, Vm+1, ..., Vn)

denote the smallest complete (with respect to P) sub-σ-algebra such t hat the random
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variables Vt for t = m,m + 1, ..., n are measurable. Define

αm = sup
t

α(F t
−∞,F∞

t+m).

{Vt}∞t=−∞ is strong mixing or α-mixing if αm → 0 as m →∞.

Definition: Another measure of dependence between two σ-algebras F and G is

ρ(F ,G) = sup
F∈F ,G∈G

|correlation(F,G)|.

Let {Vt}∞t=−∞ be a sequence of random variables defined on the complete probability

space (Ω,A, P) described above, and let

Fn
m = σ(Vm, Vm+1, ..., Vn)

denote the smallest complete (with respect to P) sub-σ-algebra such that the random

variables Vt for t = m,m + 1, ..., n are measurable. Define

ρm = sup
t

ρ(F t
−∞,F∞

t+m).

{Vt}∞t=−∞ is ρ - mixing if ρm → 0 as m →∞.

Definition: Let {Vt}∞t=−∞ be a sequence of vector valued random variables defined

on the complete probability space (Ω,A, P ), and let Fn
m denote the smallest complete

sub-σ-algebra such that the random variables Vt for t = m,m+1, ..., n are measurable.

Let Wt = Wt(V∞) for t = 0, 1, ... denote a sequence of Borel measurable functions

with range in Rk that depend (possibly) on infinitely many of the coordinates of the

vector V∞ = (..., V−1, V0, V1, ...). Let {gnt(wt)} for n = 1, 2, ... and t = 0, 1, 2, ... be a

doubly indexed sequence of real valued, Borel measurable functions each of which is

defined over Rk. The doubly indexed sequence {gnr(Wt)} is said to be near epoch
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dependent of size −q if

vm = sup
n

sup
t
||gnr(Wt)− E{gnt(Wt)|F t+m

t−m}||2

is of size −q.

Note that if Wt depends on only a finite number of the Vt, Wt = Wt(Vt±M), M < ∞
then any sequence gnt(wt) will be near epoch dependent, because

||gnt(Wt)− E{gnt(Wt)|F t+m
t−m}||2 = 0.

Definition: Let {Wt}∞t=0 be a sequence of random variables defined on the probability

space (Ω,A, P), each with range in Rkt . A sequence of functions {gt(Wt, γ)} defined

over a metric space (Γ, ρ) is A-smooth if for each γ in Γ there is a constant δ > 0

such that ||γ − γ0|| ≤ δ implies

|gt(Wt, γ)− gt(Wt, γ0)| ≤ Bt(Wt)h{ρ(γ, γ0)}

except on some set E ∈ Ω with pr(E) = 0 where Bt : Rkt → R+ and h : R+ → R+

are nonrandom functions such that Bt(wt) is Borel measurable,

1

n

n∑

t=1

E{Bt(Wt)} ≤ ∆ < ∞ for all n

and h(x) → h(0) = 0 as x → 0; δ, Bt(•) and may h(•) depend on γ0.

Definition: Let {Xnt : n = 1, 2, ...; t = 1, 2, ...} be a doubly indexed sequence of

real valued random variables in L2(Ω,A, P), and let F t
−∞ be an increasing sequence

of sub-σ-algebras. Then (Xnt,F t
−∞) is a mixingale if for sequences of nonnegative

constants {cnt} and {ψm} with limm→∞ ψm = 0 we have for all t ≥ 1, n ≥ 1, and

m ≥ 0 that

||E(Xnt|F t−m
−∞ )||2 ≤ ψmcnt;



58

||Xnt − E(Xnt|F t+m
−∞ )||2 ≤ ψm+1cnt.

In what follows, we will need a central limit theorem. We use a result due to

Wooldridge (1986), cited by Andrews (1991, Proposition 1) and similar to an approach

of Withers (1981).

Central Limit Theorem Let V∞ = {V }∞i=−∞ be a sequence of vector-valued ran-

dom variables that are strong mixing of size −2q/(q − 2) for some q > 2. Let

Wi = Wi(V∞) denote a sequence of functions with range in Rki , that depends on

finitely many of the coordinates of the V ’s. Let {gni(Wi)}∞i=1 be a sequence of real-

valued functions with var{n−1/2 ∑n
i=1 gni(Wi)} = σ2

n and supi E|gni(Wi)|r < ∞
(a) if limn→∞ σ2

n = σ2 < ∞, then (nσ2)−1/2 ∑n
i=1[gni(Wi) − E{gni(Wi)}] con-

verges in distribution to Normal(0, 1).

(b) if lim infn→∞ λmin(σ
2
n) > 0, where λmin is the smallest eigenvalue then

(nσ2
n)−1/2 ∑n

i=1 [gni(Wi)− E{gni(Wi)}] converges in distribution to Normal(0, 1).

Refer to the statement of Theorem 1 for definitions. From Assumption 2, let the

limit of the empirical distribution function of the covariates X̃ri be FGr(x̃). Define

M(κr1, κr2) = diag(κr1Gr1, κr2Gr2, 0Iqζ−1). The first derivative of L̃I
r,i(βr) is

n−1
r

nr∑

i=1

AI
r,i(βr)−M(κr1, κr2)βr. (B.1)

Proof of Theorem 1:

Using the Uniform Law of Large Numbers (Gallant, 1987, page 515, Theo-

rem 1), and using Assumptions 1 and 2 and the fact that the response are bi-

nary and hence bounded, it is readily verified that limnr→∞ supβr∈B |n−1
r

∑
j LI

r,i(βr)−
n−1

r

∑
j E{LI

r,i(βr)}| = 0 almost surely. Moreover, once again remembering the com-
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pactness assumptions 1 and 2, it then follows that

lim
nr→∞

sup
βr∈B

|n−1
r

nr∑

i=1

(LI
r,i(βr)− LI

r,i(βr0)− [E{LI
r,i(βr)} − E{LI

r,i(βr0)}])| = 0

almost surely. It is clear that E[LI
r,i(βr)/L

I
r,i(βr0)] = 1. Since logarithm is a strictly

concave function, therefore by Jensen’s inequality

sup
βr

[E{LI
r,i(βr)} − E{LI

r,i(βr0)}] = sup
βr

E[log{Lr,i(βr)/Lr,i(βr0)}]

≤ sup
βr

log[E{Lr,i(βr)/Lr,i(βr0)}] = 0.

Hence supβr
E[n−1

r {∑nr
i=1 LI

r,i(βr) − LI
r,i(βr0)}] ≤ 0. By Assumption 4a and the Uni-

form Law of Large Numbers result, this means that almost surely as nr → ∞,

n−1
r

∑nr
i=1 L̃I

r,i(βr, κr1, κr2) < n−1
r

∑nr
i=1 L̃I

r,i(βr0, κr1, κr2) when βr 6= βr0. Therefore for

arbitrary ε > 0, and for large nr, n−1
r

∑nr
i=1 L̃I

r,i(βr0, κr1, κr2) will exceed n−1
r

∑nr
i=1 L̃I

r,i

(βr0±ε, κr1, κr2). By continuity of n−1
r

∑nr
i=1 L̃I

r,i(βr, κr1, κr2) there must be a local max-

imum of this function in the interval (βr0− ε, βr0 + ε). Since n−1
r

∑nr
i=1 L̃I

r,i(βr, κr1, κr2)

is differentiable, its derivative has to be equal 0 at this point. Since ε is arbitrary

there must be a root of PCL score equation which is consistent for βr0.

We now apply the Central Limit Theorem to the functions n−1/2
r

∑nr
i=1AI

r,i(βr0).

Therefore, in our notation, gi(Wi) is Ar,i(βr0), Vi is λri and Wi is Dri. All the

conditions of the Central Limit Theorem are easily verified except the convergence of

the variances. To see such convergence, note that

var{n−1/2
r

nr∑

i=1

AI
r,i(βr0)} = var{n−1/2

r

nr∑

i=1

vr,i(βr0)Zr,i(βr0)} = ΣI
nr,0 + ΣI

nr,c;

ΣI
nr,0 = n−1

r

nr∑

i=1

vr,i(βr0)var{Zr,i(βr0)}vT
r,i(βr0)

ΣI
nr,c = n−1

r

nr∑

i=1

∑

j 6=i

vr,i(βr0)cov{Zr,i(βr0),Zr,j(βr0)}vT
r,j(βr0).
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Using Assumptions 1 and 2 it is easy to see that ΣI
nr,0 converges to ΣI

r0 defined as

ΣI
r0 =

∫

x̃
φ{µr(βr0, x̃)Yr(βr0, x̃)Vr(βr0, x̃)VT

r (βr0, x̃)dFG,r(x̃), (B.2)

where in (B.2) we are using the notation such as µri(βr0) = µr(βr0, X̃ri). The limit

exists because the arguments in the integral are continuous and bounded in x̃. By

Assumption 5, ΣI
r0 is positive definite. Hence ΣI

nr,0 + ΣI
nr,c ≥ c1I, where c1 > 0. Thus

we can apply the CLT to conclude that (ΣI
nr,0 +ΣI

nr,c)
−1/2n−1/2

r

∑
iAI

r,i(βr0) converges

in distribution to Normal(0, I).

Moreover, using Assumption 5 and results of White (1984, p.47, Theorem 3.49)

and Kolmogorov and Rozanov (1960, Theorems 1 and 2), it follows that for any i 6= j,

cov{Zr,i(βr0),Zr,j(βr0)} = O{|i − j|−M}, where M > 1. Thus, for some c2 < ∞, for

any i

∑

j 6=i

vr,i(βr0)cov{Zr,i(βr0),Zr,j(βr0)}vT
r,j(βr0) < c2 < ∞.

Hence var{n−1/2
r

∑nr
i=1Ar,i(βr0)} < ∞ and ΣI

nr,c is defined as

ΣI
nr,c = n−1

r

nr∑

i=1

nr∑

j 6=i

Hr,2(X̃ri, X̃rj, βr0), (B.3)

where

Hr,2(x̃1, x̃2, βr0) = Yri(βr0)Yrj(βr0){Vr(βr0, x̃1)}TVr(βr0, x̃2)

×[Φ2{µr(βr0, x̃1), µr(βr0, x̃2), σ
2
λΩr12(ρ)/(1 + σ2

λ)} − Φ{µr(βr0, x̃1)}Φ{µr(βr0, x̃2)}],

where Ωr12(ρ) is the correlation for the locations x̃1 and x̃2.

Now remember that in Theorem 1, κrj = crjn
−ν
r where ν ≥ 1/2. By a Taylor

expansion,

0 = n−1/2
r

nr∑

i=1

AI
r,i(β̂

I
r )− n−ν+1/2

r M(cr1, cr2)β̂
I
r
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= n−1/2
r

nr∑

i=1

AI
r,i(βr0)− n−ν+1/2

r M(cr1, cr2)βr0

+{n−1
r

nr∑

i=1

∂AI
r,i(β̃r)

∂βr

− n−ν
r M(cr1, cr2)}n1/2

r (β̂I
r − βr0) + op(1), (B.4)

where β̃r lies between β̂I
r and βr0. Note that β̃r is consistent for βr0. using this fact, the

uniform law of large numbers and the fact that the first order composite loglikelihood

for an individual observation is a legitimate marginal likelihood, it follows that

−{n−1
r

nr∑

i=1

∂AI
r,i(β̃r)

∂βr

− n−ν
r M(cr1, cr2)} − (ΣI

nr,0) = op(1),

and hence that

ΣI
nr,0n

1/2
r (β̂I

r − βr0) = n−1/2
r

nr∑

i=1

AI
r,i(βr0)− n−ν+1/2

r M(cr1, cr2)βr0 + op(1),

from which Theorem 1 follows immediately with

∆I
nr = n−ν+1/2

r (ΣI
nr,0 + ΣI

nr,c)
−1M(cr1, cr2); (B.5)

ΣI
nr = (ΣI

nr,0)
−1(ΣI

nr,0 + ΣI
nr,c)(Σ

I
nr,0)

−1. (B.6)

The proof of Theorem 2 is much the same as that for Theorem 1, and we will

not repeat the details. See Section 2 for the definitions of Θ and M II(κ̃1, κ̃2, κ3).

Define Yr,ij = (Z
(0,0)
r,ij , Z

(0,1)
r,ij , Z

(1,0)
r,ij , Z

(1,1)
r,ij )T and U(X̃ri, X̃rj, Θ) = ∂[log{π0,0

r,ij(Θ)},
log{π0,1

r,ij(Θ)}, log{π1,0
r,ij(Θ)}, log{π1,1

r,ij(Θ)}]/∂Θ. Then we can write the derivative of

the score as ∂LII
r,ij(Θ)/∂Θ = U(X̃ri, X̃rj, Θ)Yr,ij. Let N = minr nr. In this notation,

the estimator Θ̂ satisfies

0 = W−1
R∑

r=1

nr∑

i,j=1

wrijU(X̃ri, X̃rj, Θ)Yr,ij −W−νM II(c̃1, c̃2, c3)Θ.

For (i, j) 6= (k, `), cov(Yr,ij, Yr,k`) = Σy2(X̃ri, X̃rj, X̃rk, X̃r`, Θ), and also write cov(Yr,ij) =
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Σy1(X̃ri, X̃rj, Θ). The analogue to (B.2) is

ΣII
W,0 = W−1

R∑

r=1

nr∑

i,j=1

w2
rijU(X̃ri, X̃rj, Θ0)Σy1(X̃ri, X̃rj, Θ0)U(X̃ri, X̃rj, Θ0)

T.

The analogue to (B.3) is

ΣII
W,c = W−1

R∑

r=1

nr∑

(i,j) 6=(k,`)=1

wrijwrk`U(X̃ri, X̃rj, Θ0)Σy2(X̃ri, X̃rj, X̃rk, X̃r`, Θ0)

×U(X̃rk, X̃r`, Θ0).

Then

ΣII
W = (ΣII

W,0)
−1(ΣII

W,0 + ΣII
W,c)(Σ

II
W0)

−1. (B.7)

In addition, it follows that

∆II
W = W−ν+1/2(ΣII

W,0 + ΣII
W,c)

−1M II(c̃1, c̃2, c3). (B.8)

We showed that

(ΣI
nr,0)W−1/2(β̂I

r − βr0) = (nr/W)1/2n−1/2
r

nr∑

i=1

AI
r(X̃ri, βr0) + op(1).

Let u(X̃ri, X̃rj, Θ) be a vector of partial derivatives of log{πkl
r,ij(Θ)} with respect to

θ. Then the two-stage estimator of θ, θ̂II∗, satisfies

0 = W−1
R∑

r=1

nr∑

i,j=1

wriju(X̃ri, X̃rj, B̂, θ)Yr,ij −W−νθM II∗(c3)θ

Let Σyz(X̃ri, X̃rj, X̃rk, Θ) = cov(Yr,ij,Zr,k). Matrix ΣII
W,0 can be partitioned as follows




ΣII,B
W,0 (ΣII,θB

W,0 )T

ΣII,θB
W,0 ΣII,θ

W,0




according to parameters (B, θ). Matrix ΣII
W,c can be partitioned similarly on ΣII,B

W,c ,
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ΣII,θB
W,c and ΣII,θ

W,c. The analogue to (B.2) is the part of ΣII
W,0 corresponding to covariance

parameters θ, ΣII,θ
W,0. The analogue to (B.3) is the sum of ΣII,θ

W,c and ΣII∗
W,c, where ΣII∗

W,c

equals to

ΣII∗
W,c =

R∑

r=1

{ΣII,θβr

W,0 ΣI
n,r − ΣII,I

W,r(Σ
I
nr,0)

−1}(ΣII,θβr

W,0 )T ,

where ΣII,θβr

W,0 is part of the further partitioned matrix ΣII,θB
W,0 = [ΣII,θβ1

W,0 , ..., ΣII,θβr

W,0 ]

and

ΣII,I
W,r = W−1

nr∑

i,j=1

nr∑

k=1

wriju(X̃ri, X̃rj, Θ0)Σyz(X̃ri, X̃rj, X̃rk, Θ0){vr,k(βr0)}T .

Then

ΣII∗
W = (ΣII,θ

W,0)
−1(ΣII,θ

W,0 + ΣII,θ
W,c + ΣII∗

W,c)(Σ
II,θ
W,0)

−1. (B.9)

In addition if follows that

∆II∗
W = (ΣII,θ

W,0)
−1[−

R∑

r=1

ΣII,θβr∆r

W,0 ,W−νθ+1/2M II∗(c3)]. (B.10)

The main purpose of this section is to show that smoothing parameters should

be of order O(n−1
r ), and to sketch the basic algebra to obtain these smoothing pa-

rameters. We describe the results only for the composite likelihood of the first

order and for the two-stage method: the composite likelihood of the second or-

der is similar but more algebraically intense. It is worth remembering our nota-

tion. Define Zr,i(βr) = Dri − Φ{µri(βr)}. Let Yri(βr) = φ{µri(βr)}(Φ{µri(βr)}[1 −
Φ{µri(βr)}])−1. Write ∂µri(βr)/∂βr = Vri(βr), and write vr,i(βr) = Vri(βr)Yri(βr).

The first derivative of LI
r,i(βr) is AI

r,i(βr) = vr,i(βr)Zr,i(βr). The derivative of AI
r,i(βr)

with respect to βr and evaluated at βr0 is easily seen to have expectation Nri =

−φ{µr(βr0, X̃r,i)Yr(βr0, X̃ri)Vr(βr0, X̃ri)VT
r (βr0, X̃ri), which is minus the covariance

of AI
r,i(βr0). Also, let $2,ri(β) = − ln[1 − Φ{µri(β)}] and $1,ri(β) = $2,ri(β) +
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ln[Φ{µri(β)}].
Define T (κ1, κ2, β) = M(κ1, κ2, β)β, where as before M(κr1, κr2) = diag(κr1Gr1,

κr2Gr2, 0Iqζ−1).

Recall that the smoothing parameters in Theorem 1 defined as κrj = n−ν
r crj,

j = 1, 2 . Assume that ν ≥ 1/2, then by Theorem 1 (β̂r − βr) = Op(n
−1/2
r ). Thus by

the Taylor expansion,

Φ{µri(β̂r)} = Φ{µri(βr0)}+ φ{µri(βr0)}VT
ri(βr0)(β̂r − βr0) + Op(n

−1
r );

$1,ri(β̂r) = $1,rj(βr) + Yri(βr0)VT
ri(βr0)(β̂r − βr0) + Op(n

−1
r ).

DefineQri = [φ{µri(βr0)}Yri(βr0)]
1/2Vri(βr0). Thus SKL = n−1

r

∑nr
i=1QT

ri(β̂r−βr0)(β̂r−
βr0)

TQri + Op(n
−3/2
r ), where It is easy to see that SKL = n−1

r

∑
j QT

rj(β̂
∗
r − βr0)(β̂

∗
r −

βr0)
TQrj + Op(n

−3/2
r ), where β̂∗r = βr0 + {ΣI

r0 + M(κr1, κr2)}−1{n−1
r

∑
j Ar,j(βr) −

T (κr1, κr2, βr)}. The associated with SKL is its expected value in this asymptotically

equivalent version of β̂r, namely

MASKL = n−1
r

∑

j

QT
rjE{(β̂∗r − βr)(β̂

∗
r − βr)

T}Qrj + E{Op(n
−3/2
r )}.

Note that n−1
r

∑nr
i=1QriQT

ri = ΣI
nr,0 + Op(n

−1/2
r ). Define R(κr1, κr2) = {ΣI

nr,0 +

M(κr1, κr2)}−1, S(κr1, κr2) = n−1
r Vr + T (κr1, κr2, βr0)T T(κr1, κr2, βr0) and Vr = cov

{n−1/2
r

∑
iAr,i(βr0)}. Then we have that the asymptotically equivalent version is

˜MASKL(κr1, κr2) = trace{R(κr1, κr2)S(κr1, κr2)R(κr1, κr2)Σ
I
nr,0}. (B.11)

It is evident by inspection that in order to minimize (B.11), we must have (κr1, κr2) =

O(n−1
r ) as claimed. The minimizer of (B.11) solves ∂ ˜MASKL(κr1, κr2)/∂(κr1, κr2).

Then there is a 2 × 2 matrix Hr(κ̃
(r), βr0, Σn,r) and a 2 × 1 vector Jr(κ̃

(r), βr0, Σn,r),

both of order O(1), such that to terms of order o(n−1
r ), the nontrivial equation for
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κ(r) is κ̃(r) = n−1
r H−1

r (κ̃(r), βr0, Σn,r)Jr(κ̃
(r), βr0, Σn,r)=0. The later equation can be

solved iteratively. However, to terms of first order, the minimizer of (B.11) solves

0 =

{
∂ ˜MASKL(0, 0)

∂(κr1, κr2)T

}
+

{
∂2 ˜MASKL(0, 0)

∂(κr1, κr2)T∂(κr1, κr2)

}
(κr1, κr2)

T,

which leads to a linear question κ̃(r) = n−1
r H̃−1

r (βr0, Σn,r)J̃r(βr0, Σn,r). All terms

mentioned above are straightforward to compute and estimate. In the case that one

sets all the smoothing parameters equal for r = 1, .., R, one simply replace (B.11) by

its sum over R.

Similar to the previous results, the expected value of SKL using asymptotically

equivalent version of θ̂, equals to

MASKLII∗ = W−1
∑
r

∑

i,j

(QII∗
rij )TE{(θ̂∗ − θ)(θ̂∗ − θ)T}QII∗

rij + E{Op(W−3/2)},

where W−1 ∑
r

∑
i,j QII∗

rij (QII∗
rij )T = ΣII,θ

W,0 + Op(W
−1/2). Define RII∗(κ3) = {ΣII,θ

W,0 +

M II∗(κ3)}−1, SII∗(κ3) = W−1V II∗+T II∗(κ3, θ0){T II∗(κ3, θ0)}T, where T II∗(κ3, θ0) =

M II∗(κ3)θ0 and V II∗ = cov{W−1/2 ∑
r

∑
ij ∂LII

r,ij(β̂r, θ0)/∂θ}. Then the asymptoti-

cally equivalent version of MASKLII∗ is

˜MASKL
II∗

(κ3) = trace{RII∗(κ3)S
II∗(κ3)R

II∗(κ3)Σ
II,θ
W,0}. (B.12)

It is clear that κ3 = O(W−1) as claimed. To terms of first order, the minimizer of

(B.12) solves

0 =





∂ ˜MASKL
II∗

(0)

∂κT
3



 +





∂2 ˜MASKL
II∗

(0)

∂κT
3 ∂κ3



 κT

3 .

These terms are straightforward to compute and estimate.
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