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ABSTRACT

Effect of Turbulent Transport Models and Grid Spacing

on PANS Calculations of a Lid-Driven Cavity. (August 2004)

Aditya Murthi, B. En., Amrita Institute of Technology and Science

Chair of Advisory Committee: Dr. Sharath S. Girimaji

The three-dimensional lid-driven cavity flow is investigated at Reynolds Number

(Re)=10,000 for a wide range of spanwise aspect-ratios of 3:1:1,1:1:1 and 0.5:1:1,

using the PANS (Partially Averaged Navier-Stokes) turbulence closure model. The

PANS method is a variable resolution turbulence closure model, where the unresolved-

to-total ratios of kinetic energy (fk) and dissipation (fε), serve as resolution control

parameters. This study focuses on two main aspects of the PANS: first, the evaluation

of Turbulent Transport models and second, the effect of grid spacing on accuracy of

the numerical solution. The PANS calculations are tested against the LES and ex-

perimental results of Jordan (1994), in terms of both qualitative and quantitative

quantities. The main conclusions are: (i) for a given fk value, the Zero-Transport

(ZT) model is superior to the Maximum-Transport (MT) model for unresolved dissi-

pation εu, (ii) both the ZT and the MT models are adequate for unresolved kinetic

energy Ku and, (iii) for a given grid size, the results depend heavily on grid spacing

especially for larger fk values.
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CHAPTER I

INTRODUCTION

A. Overview

With the advent of high-speed computers, detailed numerical simulation of flow

physics has been receiving increased acceptance as an efficient and practical scientific

investigation method in research institutes and industry. A favorable attribute of

the computational fluid dynamics (CFD) technique is its flexibility when conduct-

ing parametric studies [1]. Not all turbulence simulation methods can be applied to

solve practical problems, much less to the treatment of complex geometries. As in

any engineering method, a compromise is needed between accuracy of results and

the time/cost of effort spent in acquiring the results. Resolving all the scales of a

turbulent flow proves to be very costly, while employing highly empirical turbulence

models to complex problems could give inaccurate simulation results. PANS (Par-

tially Averaged Navier-Stokes Equations) is a method that serves as a bridge between

the highly empirical models and direct computation by being computationally less ex-

pensive and time-effective compared to the previous techniques. In this study, PANS

calculations have been performed for a three-dimensional lid-driven cavity.

The turbulence within a lid-driven cavity is maintained by continuous produc-

tion of kinetic energy from the lid (moving wall). This production is confined to a

very thin viscous layer of fluid next to the lid. The blocking action of the bounding

walls and a great variety of other hydrodynamic phenomena unevenly distribute this

energy over most of the cavity volume. In order to provide an accurate description

of such complex phenomena, the lid-driven cavity needs to be investigated further.

The journal model is the Journal of Computational Physics.
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The investigation of such a flow is motivated by three major factors. First, the

lid-driven cavity flow offers the opportunity to study ”stationary captive” primary

vortices (Fig.1) [2] as well as a number of complex secondary phenomena such as the

corner vortices and the Taylor-Goertler vortices (Fig.2). Second, the flow is a typical

representation of several engineering situations, such as flow over cutouts, slots on

walls of heat exchangers, the mixing container of chemical plants etc. Third, the

problem formulation is straight-forward: the geometry is regular and the boundary

conditions are well-posed. For these reasons, this flow a popular test case for various

turbulence models and computational schemes.

DOWNSTREAM
SECONDARY
EDDY
(DSE)

PRIMARY
VORTEX

UPPER
SECONDARY
EDDY

UPSTREAM
SECONDARY
EDDY
(USE)

y

x

0=v1=u

Fig. 1. Sketch of the basic features of recirculation in the two-dimensional lid-driven

cavity flow
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Y

X

SPAN–MID PLANE

TAYLOR-GOERTLER-LIKE(TGL)

VORTEX PAIRS

CORNER

VORTEX

Fig. 2. Sketch of the Taylor-Goertler-Like (TGL) vortex pairs spanning the cavity floor

B. Literature Review

1. 2-D Simulations

A basic test case involves simulating a two-dimensional cavity at a low Reynolds

Number (Re ≤ 1000), wherein the flow is strictly laminar and steady. Some two-

dimensional simulations (for example Ghia et al., 1982 [3] and Gustafson and Halasi,

1986 [4]) reveal salient features of steady cavity flow at much higher Reynolds num-

ber (Re ≤ 10000). In particular, the extensive results of Ghia et al. serve best

as a basis for comparison of 2D predictions because of the finer grid resolution em-

ployed in their simulations, corresponding to a Reynolds number of 10,000. Several

numerical investigations have reported the turbulent characteristics of the lid-driven

cavity flow (Young et al., 1976 [5], Ideriah, 1978 [6] and Gaskell and Lau, 1988 [7],

for instance). Each of the above cited investigations involve simulations performed
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on a 2D geometry with turbulence fully modelled. The results obtained primarily

focus on validating the the numerical scheme or evaluating a particular turbulence

model. Other studies showing the flow evolution in a 2D cavity under an impulsively

started lid and an oscillating lid have been reported by Soh and Goodrich (1988) [8].

The above cited two-dimensional efforts have substantially deepened and clarified our

qualitative understanding of the complex nature of flow in a cavity driven by a moving

solid boundary. It should be emphasized, however, that any realistic flow in a closed

cavity of finite cross-section possesses three-dimensional characteristics because of the

physically imposed no-slip boundary conditions at the end-walls. This has led to a

number of experimental efforts.

2. Experiments

On the experimental front, the lid-driven cavity flow has been investigated by a num-

ber of researchers such as Koseff and Street (1984a) [9], Pan and Acrivos, 1967 [10];

Mills, 1965 [11]. In a series of insightful and far-reaching publications, Koseff and

Street (1984a-c) [9, 12, 13] presented the results of their elaborate and well-conceived

experimental measurements to depict the essential features of fully-developed three-

dimensional flows in a driven cavity. By varying the span-to-width ratio (spanwise

aspect ratio), complete flow visualization studies were conducted. The main ob-

servation that emerged from their experiments was that the flows exhibit inherent

three-dimensional features with significant transverse motions, the Taylor-Goertler-

like (TGL) vortices and end-wall vortices. A theoretical study of global stability by

Ramanan and Homsy (1994) [14] of two-dimensional flow in a square cavity (infi-

nite span), found that for infinitesimal three-dimensional disturbances the critical

Reynolds number based on lid velocity and height of the cavity was nearly 600. The
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visualization studies of Aidun et al.,(1991) [15] on transition in a cavity of square

cross-section but with a spanwise extent three times its height, concluded that this

flow becomes unsteady at a Reynolds number of approximately 825. They showed

that at first a Taylor instability develops near the downstream during flow startup

and the subsequent development of the Taylor-Goertler-like (TGL) vortices in the re-

gion of the Downstream Secondary Eddy (DSE) is attributed to the concave viscous

shear layer, that forms between the DSE and the primary circulation cell. Moreover

their appearance is viewed as a mechanism for transition to turbulence. The size and

number of pairs of TGL vortices depend strongly on the Reynolds number and the

Spanwise-Aspect Ratio (SAR).

3. 3-D Simulations

Numerical investigations carried out by Jordan and Ragab (1991) [16], include a

Direct Numerical Simulation (DNS) that was carried out at Re = 5000 and a Large

Eddy Simulation (LES) that was carried out at Re = 10000, for a SAR of 3:1:1. At

Re = 5000, the flow was laminar, while the three-dimensionality and unsteadiness

of the flow resulted in severe distortion of the basic flow structure. Rapid changes

in the size of the TGL vortices were noticed and they were shown to meander along

the cavity bottom. At higher Reynolds numbers, the vortices themselves became

distorted due to the onset of turbulence. The other important feature that was

observed in the spanwise direction was the lower corner vortex. The appearance of this

vortex was due to shear and pressure force adjustment in the streamwise recirculating

flow caused by the no-slip condition along the end wall. Like the TGL vortices, it

was also observed that the corner vortex became unsteady at moderate Reynolds

numbers (Re ≥ 3200). Experimental observations showed the first signs of turbulence
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taking place within the free shear layer that lies between the primary vortex and

downstream secondary eddy (DSE). This local transition was found to occur at a

Reynolds number somewhere between 6000 and 8000 (Koseff and Street, 1984a). If

the Reynolds number was increased, the structure of the vortices became obscured

due to their diffusion by turbulence. Other published results from three-dimensional

simulations includes those of Kim and Moin (1985) [17], Frietas et al.(1985) [18],

and Prasad et al. (1988) [19] where the Reynolds number was restricted to low to

moderate values (Re ≤ 3200). In these works, the simulations showed the appearance

of quasi-steady and unsteady spanwise TGL vortices along the cavity bottom, which

had been observed experimentally.

C. Objective

In the present study, we carry out extensive numerical simulations of the three-

dimensional lid-driven cavity flow using the PANS method and compare the results

with those from LES and experiment (Jordan, 1994 [16]). The main objectives are:

(i) to test various turbulence transport modeling concepts for unresolved kinetic

energy and dissipation

(ii) to determine the effect of grid spacing on PANS and,

(iii) to verify ability of PANS to serve as bridging model between RANS and DNS.

The numerical investigation is presented for Re = 10, 000, over a varying range of

spanwise aspect ratios (SAR = 2L/W ): 0.5 : 1 : 1, 1 : 1 : 1 and 3 : 1 : 1. This

will be compared with the the complete flow details available from three-dimensional

simulations provided by Jordan and Ragab (1994) [16]. Such comparisons would

complement and reinforce the three-dimensional flow characteristics that have been
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uncovered by the laboratory experiments (Koseff and Street, 1984 a-c [9, 12, 13]),

while also validating the predictive abilities of the PANS method in obtaining accurate

results. The three-dimensional numerical data generated in the present study will be

thoroughly analyzed to illustrate the proximity of the PANS solutions to LES and

experiment and hence verifying its ability to serve as a bridging model between RANS

and DNS. All the simulations in the present study have been performed using the

FLUENT 6.0 software, which is the most widely used commercial fluid flow solver to

date.
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CHAPTER II

METHOD OF SOLUTION

A. The PANS Turbulence Model

In practical engineering applications, a large number of flows are turbulent in nature

and usually involve a wide range of flow scales. The number of scales of motion in-

crease rapidly with Reynolds number and hence not amenable to exact simulation on

even the most powerful of computers. In many flows of interest, large scales of fluctu-

ations play important roles in the dynamics of the problem. Thus these large scales of

motion need to be resolved accurately. Turbulence modeling techniques such as the

Reynolds-averaged Navier-Stokes Equations (RANS), Large-eddy Simulation (LES)

and Direct Numerical Simulation (DNS) that were used previously for modeling such

flows, either suffer from inherent limitations or are too expensive computationally. As

a consequence, researchers have been trying to develop new or improved turbulence

modeling techniques that are capable of incorporating some of the useful features of

the previous methods (RANS and LES). The main objective of these methods (DES-

Spalart, 2000 [20]), hybrid RANS/LES, unsteady Reynolds-averaged Navier Stokes

(URANS), limited numerical scales (LNS) method etc.) involves reducing computa-

tional time and costs. The Partially Averaged Navier Stokes Equations (PANS) is a

recently developed mixed method and it is the subject of this study.

In RANS, the non-linear governing equations are solved for averaged fields, U ,

while in LES, equations are solved for filtered fields (large scales), 〈U〉. The PANS

method used in the current study, has been developed for resolving a portion of the

large, unsteady scales of motion (partial averaging) by making use of the averaging

invariance property (Germano,1992 [21]) of the governing equations. In PANS, as in
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LES, the total field is decomposed into resolved and unresolved parts. PANS, how-

ever, is distinctly different from LES in three main aspects: (i) the decomposition

is based on the fraction (fk) of kinetic energy (Ku) to be modeled and not on the

cut-off wavenumber, (ii) PANS filtering (or averaging) is implied rather than explicit

and no filtering is performed, and (iii) the SFS (sub-filter scale) stress (τ(Vi, Vj)) is

independent of the grid size (∆): i.e. the level of physical resolution achievable de-

pends wholly, upon the prescription of fk and hence is independent of the numerical

resolution.

1. Theoretical Basis of PANS

The PANS method is described in detail in Girimaji (2003) [22] and the salient issues

are given below. Starting from the instantaneous incompressible flow equations

∂Vi

∂t
+ Vj

∂Vi

∂xj

= −
∂p

∂xi

+ ν
∂2Vi

∂xj∂xj

(2.1)

∂Vi

∂xi

= 0; (2.2)

we define 〈〉 to be a general/arbitrary filtering operator, that is constant preserving

and commutes with spatial and temporal differentiation. The instantaneous field can

then be decomposed into a filtered field and a residual field:

Vi = Ui + ui (2.3)

where Ui = 〈Vi〉, corresponds to the filtered field and ui corresponds to the field that

needs to be modeled. On applying such a filtering operator to the instantaneous

equations we get

∂〈Vi〉

∂t
+ 〈Vj

∂Vi

∂xj

〉 =
∂〈Vi〉

∂t
+ 〈

∂(Vi, Vj)

∂xj

〉
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=
∂〈Vi〉

∂t
+ 〈Vj〉

∂Vi

∂xj

+
∂

∂xj

(〈ViVj〉 − 〈Vi〉〈Vi〉) (2.4)

from which we get the PANS equations as

∂Ui

∂t
+ Uj

∂Ui

∂xj

+
∂τ(Vi, Vj)

∂xj

= −
∂〈p〉

∂xi

+ ν
∂2〈Vi〉

∂xj∂xj

= −
∂pu

∂xi

+ ν
∂2Ui

∂xj∂xj

(2.5)

In the above equation, τ(Vi, Vj) is the generalized second moment as defined by

Germano, 1992 [21]. The generalized second and third order moments can be written

as

τ(Vi, Vj) = 〈ViVj〉 − 〈Vi〉〈Vj〉; (2.6)

τ(Vi, Vj, Vk) = 〈ViVjVk〉 − τ(Vi, Vj)〈Vk〉 − τ(Vi, Vk)〈Vj〉 − τ(Vj, Vk)〈Vi〉

− 〈Vi〉〈Vj〉〈Vk〉

(2.7)

Equation 2.5 is unclosed with respect to the sub-filter scale stress (SFS) term

τ(Vi, Vj). The evolution equation for the SFS stress is similar in form to its RANS

counterpart:

∂τ(Vi, Vj)

∂t
+ Uk

∂τ(Vi, Vj)

∂xk

= Pij + φij − Dij + Tij (2.8)

where

Pij = −τ(Vi, Vj)
∂Uj

∂xk

− τ(Vj, Vk)
∂Ui

∂xk

; (2.9)

φij = 2τ(p, Sij); (2.10)

Dij = 2ντ(
∂Ui

∂xk

,
∂Uj

∂xk

); (2.11)

Tij = −
∂

∂xk

(

τ(Vi, Vj, Vk) + τ(p, Vj)δik − ν
∂τ(Vi, Vj)

∂xk

)

(2.12)
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are the terms for production, pressure-strain correlation, dissipation and transport of

SFS stresses respectively.

Thus the form of the SFS stress equation is invariant to the type of filter (Ger-

mano, 1992 [21]). Consequently, the SFS stress model form must be invariant to the

type of averaging provided the generalized central moments are used (Germano, 1992

[21]; Lilly, 1966 [23]; Deardorff, 1970 [24], Khorrami et al, 2002 [25, 26], Girimaji,

2002 [27]).

2. RANS-type Sub-Filter Stress Closure

Based on the arguments presented in the previous section, PANS can inherit its model

form from either RANS or LES. Current subgrid LES closures, which are all zero-

equation models, are algebraic in nature and hence too elementary to be used as a

basis for PANS. Moreover, the advanced two or seven equation RANS models are

notably the most sophisticated one-point closures, as complicating physics such as

curvature, rotation etc. can be accurately modelled and different physical processes

such as return to isotropy, dissipation, production etc. can be accounted for. In PANS

the extent of filtering is quantified by specifying the ratios of unresolved kinetic energy

and dissipation

fk =
Ku

K
fε =

εu

ε
(2.13)

Invoking the averaging invariance property, we can use a Boussinesq-type

approximation or mixing-length arguments for partial fields as well and hence can

close the SFS stress term τ(Vi, Vj) according to

τ(Vi, Vj) = −νu

(

∂Ui

∂xj

+
∂Uj

∂xi

)

+
2

3
Kuδij; where νu = Cµ

K2
u

εu

(2.14)
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From the above equation, it is observed that in order to completely close the SFS

stress term, suitable models for Ku and εu have to be prescribed. In Girimaji (2003

[22]) the equations for Ku and εu are derived from the RANS two-equation K − ε

model:

∂K

∂t
+ Uj

∂K

∂xj

= P − ε +
∂

∂xj

(

νt

σk

∂K

∂xj

)

; (2.15)

∂ε

∂t
+ Uj

∂ε

∂xj

= Cε1

Pε

K
− Cε2

ε2

K
+

∂

∂xj

(

νt

σε

∂ε

∂xj

)

, (2.16)

where U is the mean velocity, P is the production of kinetic energy, ε is the dissipation-

rate, νt is the total turbulent viscosity (νt = Cµ
K2

ε
) and Cε1, Cε2 are model coefficients.

3. The Ku and εu Model Equations

The model equations for Ku and εu are derived by considering the following require-

ments:

(i) the ratios of unresolved to total kinetic energy and dissipation must be equal

to fk and fε respectively.

(ii) PANS must reduce to RANS as fk tends to unity and

(iii) PANS must reduce to DNS as fk tends to zero.

Hence, fk and fε serve as resolution control parameters and based on these, the de-

sired level of resolution can be obtained. We are chiefly concerned with decomposition

in the inertial scales of motion of length say li, that are considerably larger than the

smallest Kolomogorov scales (η), i.e. li À η. Since the rate of convergence of a

turbulence statistic depends on the corresponding length scale, εu, being a small

scale(O(η)) quantity, converges to its mean rather quickly. Therefore, it seems rea-

sonable to believe that ε = εu for all time (t), in the scales of interest. Hence, fε is
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identically treated as unity and the desired resolution depends solely upon the pre-

scription of fk. However, if DNS type resolution, li ≈ η, is desired then fε must also

be smaller than unity.

Based on the above requirements, the model equation for Ku is written as

dKu

dt
= fk

dK

dt
∂Ku

∂t
+ Uj

∂Ku

∂xj

= fk

(

∂K

∂t
+ Uj

∂K

∂xj

)

+ (Uj − Uj)
∂Ku

∂xj

= fk

(

P − ε +
∂

∂xj

(

νt

σk

∂K

∂xj

))

+ (Uj − Uj)
∂Ku

∂xj

(2.17)

The evolution equation for Ku can also be derived directly from the Navier–Stokes

equation. Then it has the following form:

dKu

dt
= Pu − εu + Tku

(2.18)

where Pu = τ(Vi, Vj)
∂Ui

∂xj
corresponds to unresolved production, εu the unresolved dis-

sipation and Tku
the transport of unresolved kinetic energy. The above two equations

(2.16 and 2.17) have to be consistent with one another and therefore after comparing

equivalent terms in both equations and expressing all variables in terms of their PANS

counterparts we get the evolution equation for Ku as

∂Ku

∂t
+ Uj

∂Ku

∂xj

= Pu − εu +
∂

∂xj

(

νt

σk

∂Ku

∂xj

)

+ (Uj − Uj)
∂Ku

∂xj

(2.19)

The model equation for εu is developed in a similar fashion by requiring

dεu

dt
= fε

dε

dt
. (2.20)

This requirement implies

∂εu

∂t
+ Uj

∂εu

∂xj

= fε

[

∂ε

∂t
+ Uj

∂ε

∂xj

]

+ (Uj − Uj)
∂εu

∂xj
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= fε

[

Cε1

Pε

K
− Cε2

ε2

K
+

∂

∂xj

(

νt

σε

∂ε

∂xj

)]

+ (Uj − Uj)
∂εu

∂xj

(2.21)

Here again, expressing all RANS variables in terms of their PANS counterparts we

obtain the model equation for unresolved dissipation as

∂εu

∂t
+ Uj

∂εu

∂xj

= Cε1

Puεu

Ku

−
(

Cε1 +
fk

fε

(Cε2 − Cε1)
)

ε2
u

Ku

+
∂

∂xj

(

νt

σε

∂εu

∂xj

)

+ (Uj − Uj)
∂εu

∂xj

(2.22)

Finally, the two equation PANS model can be summarized as follows:

∂Ku

∂t
+ Uj

∂Ku

∂xj

= Pu − εu + Tku
(2.23)

∂εu

∂t
+ Uj

∂εu

∂xj

= Cε1

Puεu

Ku

− C∗

ε2

ε2
u

Ku

+ Tεu
(2.24)

where

C∗

ε2 =
(

Cε1 +
fk

fε

(Cε2 − Cε1)
)

(2.25)

and Cε1 and Cε2 are the standard K−ε model constants. The two terms for transport

of unresolved quantities Tku
and Tεu

are expressed as

Tku
=

∂

∂xj

(

νt

σk

∂Ku

∂xj

)

+ (Uj − Uj)
∂Ku

∂xj

(2.26)

Tεu
=

∂

∂xj

(

νt

σε

∂εu

∂xj

)

+ (Uj − Uj)
∂εu

∂xj

(2.27)

The only terms that require further closure in the PANS model are these transport

terms. Modeling these terms constitute an important objective of this thesis.
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CHAPTER III

TURBULENT TRANSPORT MODELS

The equations for Tku
and Tεu

can be written wholly in terms of PANS variables by

expressing the ratio of total viscosity to turbulent Prandtl numbers as

Tku
=

∂

∂xj

(

νt

σk

∂Ku

∂xj

)

+ (Uj − Uj)
∂Ku

∂xj

=
∂

∂xj

(

νufε

σkf 2
k

∂Ku

∂xj

)

+ (Uj − Uj) (3.1)

Tεu
=

∂

∂xj

(

νt

σε

∂εu

∂xj

)

+ (Uj − Uj)
∂εu

∂xj

=
∂

∂xj

(

νufε

σεf 2
k

∂εu

∂xj

)

+ (Uj − Uj) (3.2)

In the PANS equations, the unclosed terms that require modeling are the convection

of Ku, εu by resolved fluctuations (Uj−Uj). In order to close these transport terms

completely, we examine two extremes or limits.

Zero-Transport assumption: This assumption is based on the hypothesis that

the resolved fluctuations (Uj −Uj) do not take part in the net transport of unresolved

kinetic energy (Ku) at the scales of resolution in which we are interested (see Fig 3.).

That is, we hypothesize that

Ku(x −
dx

2
) = Ku(x +

dx

2
) (3.3)

εu(x −
dx

2
) = εu(x +

dx

2
) (3.4)

where dx ≈ li–inertial scales of motion. If our hypothesis is true then we will have

∂Ku

∂x
= 0;∂εu

∂x
= 0. leading to,

Tku
=

∂

∂xj

(

νufε

σkf 2
k

∂Ku

∂xj

)

(3.5)
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Fig. 3. Control volume showing flux of Ku and εu

Tεu
=

∂

∂xj

(

νufε

σεf 2
k

∂εu

∂xj

)

(3.6)

which is finally written as

Tku
=

∂

∂xj

(

νu

σku

∂Ku

∂xj

)

(3.7)

Tεu
=

∂

∂xj

(

νu

σεu

∂εu

∂xj

)

(3.8)

with the unresolved Prandtl numbers expressed as

σku
=

f 2
k

fε

σk (3.9)

σεu
=

f 2
k

fε

σε (3.10)

Maximum-Transport Model: The second case is based on a more generalized

gradient-transport closure and states that the resolved field velocity is proportional to
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the resolved field eddy viscosity νr, which can be defined as

νr = νt − νu = Cµ

K2

ε
− Cµ

K2
u

εu

(3.11)

Thus,

(Uj − Uj)
∂Ku

∂xj

=
∂

∂xj

(

νr

σk

∂Ku

∂xj

)

=
∂

∂xj

(

(νt − νu)

σk

∂Ku

∂xj

)

(3.12)

(Uj − Uj)
∂εu

∂xj

=
∂

∂xj

(

νr

σε

∂εu

∂xj

)

=
∂

∂xj

(

(νt − νu)

σε

∂εu

∂xj

)

(3.13)

For this case from equations (3.1) and (3.2), we get

(Tku
, Tεu

) =
∂

∂xj

(

νt

(σk, σε)

∂(Ku, εu)

∂xj

)

−
∂

∂xj

(

(νt − νu)

(σk, σε)

∂(Ku, εu)

∂xj

)

=
∂

∂xj

(

νu

(σk, σε)

∂(Ku, εu)

∂xj

)

(3.14)

and finally

Tku
=

∂

∂xj

(

νu

σku

∂Ku

∂xj

)

and (3.15)

Tεu
=

∂

∂xj

(

νu

σεu

∂εu

∂xj

)

(3.16)

with the modified Prandtl numbers for unresolved kinetic energy and dissipation as

σku
= σk (3.17)

σεu
= σε (3.18)

Now we will consider the physical implications of the two model. If we consider

a continuum (Fig.1) whose width (dx) corresponds to an order of length equal to the

intermediate scales of motion, then the net flux of Ku (or εu(eu)) between regions 1

and 2 of the continuum is given by

Vj(xj +
dxj

2
)Ku(xj +

dxj

2
) − Vj(xj −

dxj

2
)Ku(xj −

dxj

2
) (3.19)
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Vj

[

∂Ku

∂xj

+ Ku

∂Vj

∂xj

]

dx = Vj

∂Ku

∂xj

invoking the continuity equation (3.20)

Now since εu is a small-scale quantity and consequently its statistics converge to a

mean value quickly, for a given width of the continuum, it is reasonable to assume

that its mean changes slowly between regions 1 and 2, and hence its gradient (or

transport) is negligibly small in the region of interest.i.e.

∂εu

∂xj

≈ 0 (3.21)

Thus, in equation (3.4) the only remaining term is the viscous transport term

Tεu
=

∂

∂xj

(

νt

σε

∂εu

∂xj

)

(3.22)

where the ratio of the total viscosity (νt) to the dissipation Prandtl number (σε) can

be written as

νt

σε

=
Cµ

K2

ε

σε

=
Cµ

K2
u

εu

σε
f2

k

fε

=
νu

σεu

(3.23)

which is essentially the Zero-Transport model for unresolved dissipation εu.

In the equation for Ku however, transport terms due to both viscosity and re-

solved fluctuations exist, as Ku is a large scale quantity whose mean changes consid-

erably between regions 1 and 2 and therefore its gradient is significant in the region

of interest, and thus cannot be neglected. Hence, in this case we have

Tku
=

∂

∂xj

(

νt

σk

∂Ku

∂xj

)

− (Uj − Uj)
∂Ku

∂xj

(3.24)

and therefore make use of the second assumption based on gradient-transport closure

and obtain

Tku
=

∂

∂xj

(

νt

σk

∂Ku

∂xj

)

−
∂

∂xj

(

(νt − νu)

σk

∂Ku

∂xj

)
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=
∂

∂xj

(

νu

σk

∂Ku

∂xj

)

(3.25)

which is the Maximum-Transport model for unresolved kinetic energy, Ku. This

appears to indicate that the ZT model is better suited for modeling unresolved dissi-

pation (εu), while the MT model is adequate for unresolved kinetic energy (Ku).

The objective of the current study is to determine which of these two transport

models performs better for Ku and εu.
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CHAPTER IV

PROBLEM SET-UP AND DETAILS OF THE FLUENT FLOW SOLVER

A. Problem Formulation Using FLUENT Flow Solver

FLUENT [28] is a computer program for modeling fluid flow and heat transfer in

complex geometries. It is capable of solving flow problems with unstructured (as well

as structured) meshes that can be generated about complex geometries with ease.

A variety of mesh types are supported by FLUENT [28], which include 2D trian-

gular/quadrilateral, 3D tetrahedral/hexahedral/pyramid/wedge, and mixed (hybrid)

meshes. An important feature that FLUENT possesses is that it allows refinement

or coarsening of the grid depending on the flow solution and this feature is extremely

useful for accurately predicting flow fields in regions with large gradients, such as free

shear layers and boundary layers. The time required to generate a grid is significantly

reduced and grid refinement studies can be performed with ease. The computational

effort is also reduced, as mesh refinement is limited to those regions where greater

mesh resolution is needed.

Some of FLUENT’s [28] modeling capabilities include flows in 2D or 3D geome-

tries using unstructured, structured or mixed (hybrid) grids, incompressible/compressible

flows, inviscid , laminar, or turbulent flows, modeling heat transfer, chemical species

mixing etc. The initial mesh for FLUENT is generated outside the solver, by em-

ploying a grid generation software such as GAMBIT. FLUENT [28] essentially

provides the following three solver formulations: segregated, coupled implicit and

coupled explicit. The segregated and the coupled solvers differ in the way they solve

the continuity, momentum, and (where appropriate) energy and species equations.

The segregated solver solves these equations sequentially, while the coupled solver
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solves them simultaneously. The segregated solver is intended for incompressible and

mildly compressible flows while the coupled approach is used for high-speed compress-

ible flows. In the present analysis of lid-driven cavity flows, since we have assumed

the flow to be incompressible, the segregated solver has been used to solve the system

of equations.

The steps involved in setting up the FLUENT flow solver for solving the lid-

driven cavity flow problem are briefly discussed below. First, the appropriate mesh

file is read and following that the solver formulation is selected : segregated solver, un-

steady formulation, second-order accurate, implicit discretization scheme. Next, the

required turbulence equations (K − ε model) to be solved are selected and the mate-

rial properties such as density (ρ), viscosity (µ) based on Reynolds No(=10,000), and

lid-speed (U = 1.0m/s) are set. The appropriate boundary and operating conditions

along with the solution control parameters such as Pressure-Velocity coupling method,

pressure interpolation schemes, etc. are selected. This is followed by initialization

of the entire flow field, which involves prescribing initial values to variables such as

velocity, pressure, kinetic energy, dissipation, etc. Calculations are then started and

the solution is checked for convergence. It is important to note that the FLUENT

solver is typically intended for RANS. However, PANS calculations are effected by

suitably changing the values of the model co-efficient Cε2 as
(

Cε1 + fk

fε
(Cε2 − Cε1)

)

and Prandtl numbers σk and σε, based on either transport modeling assumption for a

given fk in the solver formulation menu as per the definitions in the previous sections.

B. Computational Domain

The cavity geometry is modelled for three different spanwise aspect ratios (SAR) of

3:1:1, 0.5:1:1 and 1:1:1, although the majority of the simulations for which qualitative
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as well as quantitative data are available for comparison (Jordan, 1994 [16]), have been

performed on an SAR of 3:1:1 (see Fig.4). For the above cases, the width(W) and the

height(H) are taken to be 1.0, in both x and y directions. For the SAR corresponding

to 3:1:1, the span(L) is taken to be 1.5 in the z-direction, while for the other two

cases, values of 0.75 (SAR=0.5:1:1) and 1 (SAR=1:1:1) are employed. One boundary

of the span (L) corresponding to SAR’s of 3:1:1 and 0.5:1:1 is modelled as the plane of

symmetry (z=0.0) and the other end as a solid end-wall. The lid (top wall) has been

prescribed with a velocity(U) of 1 m/s in the horizontal direction. No-slip conditions

have been enforced along all boundaries except at the mid-span plane which is treated

numerically as a plane of symmetry as mentioned earlier. Simulations have been

performed for a Reynolds number of 10,000. Sampling for unsteady statistics is not

enabled until ten cycles (corresponding to 60 seconds of flow time) are completed.

Quantitative comparisons are available in terms of Centerline mean velocity profiles

for the z=0.28 plane, while qualitative comparisons are available in the form of X-

vorticity contours. The grid sizes used for the various SAR(s) based on the fk values

and the cavity geometry for an SAR of 3:1:1 are shown in table I.



23

Table I. Grid Sizes for Various fk Calculations

fk Grid size

1 0.2 95*95*95

2 0.4 81*81*81

3 0.5 75*75*75

4 0.7 64*64*64

5 1.0 51*51*51

U=1.0

L=1.5

H=1.0

Y Z

X

END

WALL

UPSTREAM

WALL DOWNSTREAM
WALL

MID

PLANE

W=1.0

Fig. 4. The three-dimensional lid-driven cavity setup for SAR = 3:1:1
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CHAPTER V

RESULTS AND DISCUSSION

In this section, the unsteady and turbulent flow results from numerical simulations

of the three-dimensional lid-driven cavity flow are presented and compared with pub-

lished experimental observations and LES results(Jordan, 1994 [16]). The results

are presented in two sections. In the first, a comparison is made between simulations

that are conducted using the Maximum-Transport (MT) and the Zero-Transport (ZT)

models to evaluate which of the two models performs better for Ku and εu. Both simu-

lations have been performed using a uniform grid arrangement. In the second section,

a comparison is made between simulations conducted using two different types of grid

arrangements (i.e between uniform and clustered grids), while also employing the ZT

model. Such a simulation is performed to evaluate the effect of grid sketching on the

accuracy of the numerical solution.

A majority of the simulations have been performed for a spanwise aspect ratio

of 3:1:1, a case for which qualitative as well as quantitative data are available for

comparison. Results for other spanwise aspect ratios of 0.5:1:1 and 1:1:1 on clustered

grids are included for a single value of fk = 0.5. These are used to determine the

effects that a reduction of SAR would have on the accuracy of PANS, and to compare

these with results described in literature (Prasad et al,(1989) [19]). All results have

been generated on completion of the flow simulation corresponding to a flow time

(T ) of approximately 115 seconds. The plots for statistical quantities along cavity

centerlines have been generated such that for the first 10 cycles (corresponding to

about 60 seconds of flow time), no sampling of data is done in order for the flow to

become fully turbulent, after which data is sampled every 6.5 seconds.
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1. Maximum-Transport Vs Zero-Transport Model

In this section, the results of numerical simulations performed for an SAR of 3:1:1,

using both the MT and the ZT models, are compared with each other as well as against

LES and experiment. Qualitative comparisons are available in terms of contours of

X-vorticity, while quantitative comparisons with LES are realized through plots of

Centerline Mean Velocities at a z = 0.28 plane. The experimental results are available

at the symmetry plane (z = 0.0), since LES results on the the z = 0.28 plane appear to

closely follow the experimental data and which essentially proves that the simulation

results are not affected by spatial variations (i.e. location of the planes). Both sets

of simulations have been performed on a uniform grid arrangement (UG).

Fig. 5. Edge mesh grading parameters
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Fig.5 shows a brief description of the grading scheme. Here li+1 and li represent

the lengths of the two succeeding intervals on any edge of the cavity and R is a fixed

value. This scheme is known as the Successive Ratio grading scheme. Figures 6 and

7 show snapshots of the mean U and V velocity profiles along the cavity centerlines,

while Fig. 8 presents contours of X-vorticity for a typical RANS (fk=1) simulation.

The plots illustrate the fact that RANS is inherently incapable of capturing many of

the flow features and the plots for statistical quantities show its inability to produce

LES-accurate results, especially near the boundaries of the cavity.
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Fig. 6. Mean U-Velocity profiles, bottom wall closeup, (RANS, UG)
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Fig. 7. Mean V-Velocity profiles, downstream wall closeup, (RANS, UG)
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Fig. 8. X-Vorticity contours along downstream wall, (RANS, UG)

The next set of figures (9-24) show comparisons of the two turbulent transport

models, ZT and MT, with each other as well as against LES and experiment. From

the statistical comparisons for fk = 0.7 (Figs. 9, 10), its is observed that (i) both

models seem to be performing better than RANS and show greater convergence of

the PANS calculations towards LES results; and (ii) the plots also illustrate the fact

that the ZT model performs marginally better than the corresponding MT model

near the cavity boundaries. Although marginally better accuracy is observed from

the statistical comparisons, instantaneous X-Vorticity contours (Figs. 11 and 12)

along the downstream wall display the fact that considerably more scales of flow are

resolved by the ZT model when compared to the MT model, while both models are
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able to uncover significantly more scales of flow than RANS, in terms of appearance

of TGL vortex pairs. About three pairs of TGL vortices are observed for the ZT

model (Fig. 11) while only one pair can be seen for the MT model (Fig. 12), for a

value of fk=0.7.
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Fig. 9. Mean U-Velocity profiles, bottom wall closeup, fk = 0.7, (ZT Vs MT)
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Fig. 10. Mean V-Velocity profiles, downstream wall closeup, fk = 0.7, (ZT Vs MT)
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Fig. 11. X-Vorticity contours along downstream wall, fk = 0.7, (ZT, UG)

Fig. 12. X-Vorticity contours along downstream wall, fk = 0.7, (MT, UG)
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As the value of fk is reduced, more and more vortices are uncovered and the

number of flow features resolved by the ZT model is considerably more than the cor-

responding MT model for a given fk. Specifically, 3(MT)-5(ZT) pairs are observed for

fk=0.4 (Figs. 15, 16). Statistical comparisons for the models indicate that although

both models seem to perform fairly well along the center of the cavity, the ZT model

appears to perform better than the MT model in the layers adjoining the upper and

lower boundaries. Further, as the value of fk is reduced, the ZT model shows closer

agreement with LES and experiment than the corresponding MT model, for a given

fk. This trend can be seen in figures 13, 14 (fk = 0.4).
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Fig. 13. Mean U-Velocity profiles, bottom wall closeup, fk = 0.4, (ZT Vs MT)
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Fig. 14. Mean V-Velocity profiles, downstream wall closeup, fk = 0.4, (ZT Vs MT)
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Fig. 15. X-Vorticity contours along downstream wall, fk = 0.4, (ZT, UG)

Fig. 16. X-Vorticity contours along downstream wall, fk = 0.4, (MT, UG)
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Figures 17-20 display results generated for fk = 0.2. From these plots, it appears

that results show near-LES accuracy in terms of realizations of mean quantities (Figs.

17, 18 ) and also maximum number of scales seem to be resolved : 4(MT)-6(ZT) pairs

of TGL vortices (Figs. 19, 20).

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.2

0.4

Mean U−Velocity

C
av

ity
 H

ei
gh

t

Center Line Mean Velocity Profiles−−ZTM,Uniform Grid

Expt(Koseff, 1984)
LES(Jordan, 1994)
RANS(UG)
fk=0.2(MTM)
fk=0.7(ZTM)

Fig. 17. Mean U-Velocity profiles, bottom wall closeup, fk = 0.2, (ZT Vs MT)
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Fig. 18. Mean V-Velocity profiles, downstream wall closeup, fk = 0.2, (ZT Vs MT)
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Fig. 19. X-Vorticity contours along downstream wall, fk = 0.2, (ZT, UG)

Fig. 20. X-Vorticity contours along downstream wall, fk = 0.2, (MT, UG)
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Since a majority of the disagreement is observed at the cavity boundaries, it

seems necessary to refine the grid close to the wall, and this is discussed briefly in

the next section. Finally, two important inferences that can be drawn from theses

results are (i) the ZT model performs better than the corresponding MT model for a

given fk and (ii) as the value of fk is decreased, better convergence towards LES and

experiment is observed. The second inference is especially evident in figures 21-24.

Figures 25-28 show a comparison between plots of contours of X-vorticity for various

fk values and essentially display the fact that a reduction in the value of fk causes

more and more scales to be resolved.
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Fig. 21. Mean U-Velocity profiles, bottom wall closeup, (ZT, UG)
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Fig. 22. Mean V-Velocity profiles, downstream wall closeup, (ZT, UG)
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Fig. 23. Mean U-Velocity profiles, full cavity, (ZT, UG)
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Fig. 24. Mean U-Velocity profiles, full cavity, (ZT, UG)
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Fig. 25. X-Vorticity contours: fk = 0.2 Fig. 26. X-Vorticity contours: fk = 0.4

Fig. 27. X-Vorticity contours: fk = 0.7 Fig. 28. X-Vorticity contours: RANS
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All figures clearly display the effects of three-dimensionality on the basic recir-

culating flow features. For example, Figure 19 (fk=0.2) shows the appearance of 6

pairs of TGL vortices which appear distorted due the onset of turbulence within the

downstream free shear layer (Jordan, 1994 [16]). A DNS simulation performed on the

cavity (SAR=3:1:1) at Re=5000 by Prasad et al (1988)[19], has reported the appear-

ances of spiraling spanwise motions (see Fig.29) within the downstream secondary

eddy (DSE), which is attributed to its interaction with the local vortices. A similar

run has been performed at a corresponding Reynolds number(=5000) in which 4 pairs

of TGL vortices are visible (see Fig.30), which is in accordance with results observed

in the literature (Jordan, 1994 [16]).

As reported by Jordan, initially a few of the particles are convected by the

primary recirculation vortex and as they near the cavity bottom, are entrained by

the vortex rather than the DSE, while some of them are still entrained by the DSE.

This complexity is owed to the fact that the large vortex induces a spanwise velocity

component on the DSE, the particles thus trace out a broad spanwise spiral which

quickly turns streamwise once fully entrained by the primary vortex. Hence it is con-

cluded that the streamwise extent of the TGL vortices are sustained by the processes

of fluid entrainment. Close to the downstream wall, these vortices entrain fluid from

the adjacent DSE regions which in turn extract fluid from the primary recirculation

vortex. Upstream of the DSE region however, the TGL vortices entrain the fluid

directly from the primary vortex. Loss of the vortex structure occurs upstream once

the primary vortex separates from the cavity bottom. Towards the end wall, another

vortex pair is created which is due to opposing spanwise viscous interactions of the

corner vortex, the adjacent TGL vortex and the no-slip condition along the cavity

bottom. This secondary vortex is not stationary which is owed to the fact that the

adjacent TGL vortices change in size and meander along the spanwise plane.
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Fig. 29. Spiralling spanwise motions due to interactions among the primary recircula-

tion vortex, downstream secondary eddy, TGL vortex and corner vortices
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Fig. 30. Spanwise distribution and streamwise extent of the TGL vortex contours
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Table II. Grid Sizes and Grading Schemes for Clustered Grid

fk Grid size Grading Scheme Ratio(R) y(meters)

1 0.2 95*95*95 1.10 1.7114e-4

2 0.4 81*81*81 1.11 2.3460e-4

3 0.5 75*75*75 1.115 3.2750e-4

4 0.7 64*64*64 1.117 3.2937e-4

5 1.0 51*51*51 1.125 3.0846e-4

2. Clustered Grid Vs Uniform Grid

In order to reduce the error near the boundaries obtained by the simulations that were

performed in the previous section using the uniform grid (UG), a clustered grid (CG)

arrangement is employed. The main difference between the two grid arrangements is

found in the way the grid points are spaced along the cavity boundaries. Moreover,

the grid sizes that are used are identical to the ones used in the uniform grid, but the

points are clustered more closely to the wall. The clustered grid for the various fk

values and their grading scheme is listed in the table II. The y+ values for the various

grid sizes lie between 12 and 30.

All simulations have been performed using the ZT model. Figures 31 and

32 show mean U and V velocity profiles for a typical RANS simulation (fk=1.0),

performed using both grids. As evident from the plots, the CG arrangement seems

to give better agreement with LES than the corresponding UG arangement. Also,

marginally more scales of flow appear to be resolved by using the CG arrangement,

when instantaneous X-vorticity contour plots (Figs. 33 and 34) are compared for

both grids.
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Fig. 31. Mean U-Velocity profiles, bottom wall closeup, (RANS, CG Vs UG)
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Fig. 32. Mean V-Velocity profiles, downstream wall closeup, (RANS, CG Vs UG)
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Fig. 33. X-Vorticity contours along downstream wall, (RANS, CG)

Fig. 34. X-Vorticity contours along downstream wall, (RANS, UG)
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Figures 35 and 36 show mean velocity profiles for a value of fk = 0.7, generated

using either grid arrangement. Two important inferences that can be drawn from

these plots are (i) the CG arrangement seems to show better convergence towards

LES and experiment than the corresponding UG arrangement and (ii) the fk=0.7

case of the CG arrangement is considerably better in accuracy than the corresponding

RANS result. These observations are especially evident near the boundaries adjoining

the cavities where a majority of the disagreement was observed. The instantaneous

contour plots for X-vorticity (Figs. 37 and 38), once again depict the fact that

marginally more scales of flow are resolved when employing the CG arrangement.
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Fig. 35. Mean U-Velocity profiles, bottom wall closeup, fk = 0.7, (CG Vs UG)



51

0.7 0.75 0.8 0.85 0.9 0.95 1
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Cavity Width

M
ea

n 
V

−
V

el
oc

ity
Center Line Mean Velocity Profiles−−ZTM,Clustered Grid Vs Uniform Grid

Expt(Koseff,1984)
LES(Jordan,1994)
RANS(CG)
fk=0.7(CG)
fk=0.7(UG)

Fig. 36. Mean V-Velocity profiles, downstream wall closeup, fk = 0.7, (CG Vs UG)
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Fig. 37. X-Vorticity contours along downstream wall, (fk = 0.7, CG)

Fig. 38. X-Vorticity contours along downstream wall, (fk = 0.7, UG)
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As the value of fk decreases, a significant improvement in the accuracy of the

numerical solution is observed. This is apparent from the plots of statistical quanti-

ties along the cavity centerlines for various fk values (0.5 (Figures 39, 40), 0.4 (Figs.

43, 44) and 0.2 (Figs. 47, 48)). These plots illustrate the fact that for a given fk

value, the CG arrangement gives closer agreement with LES and experiment than the

corresponding UG arrangement. As the value of fk is reduced, nearly LES-accurate

results are obtained for the CG arrangement. This conclusion can be drawn by ex-

amining figures 51-54, where PANS calculations are compared against literature for

all values of fk using both grid arrangements. Figures 47 and 48 for fk=0.2 show

very close agreement with LES and experiment and are, in fact, nearly as accurate.

On comparing subsequent plots of X-vorticity contours for either grid arrange-

ment, for fk values of 0.5 (Figs. 41, 42), 0.4 (Figs. 45, 46) and 0.2 (Figs. 49, 50), it

is observed that marginally more flow features are resolved, in terms of appearances

of TGL vortex pairs. Maximum physical resolution is obtained for fk=0.2, where

almost 7 TGL vortex pairs (Fig. 49) can be seen. Figures 51-54 are plots that show

the distribution of centerline mean velocities for the full cavity cross-section. These

figures once again indicate that, on the whole, the ZT model performs better than

the MT model for the entire cavity. On analyzing the results obtained in this section,

it seems plausible to conclude that the physical resolution seems to depend on the

prescription of fk, while the numerical accuracy depends on the density and kind

of grid used. This statement is substantiated by results presented in the following

section, where a grid convergence study of the numerical solutionis presented.
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Fig. 39. Mean U-Velocity profiles, bottom wall closeup, fk = 0.5, (CG Vs UG)
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Fig. 40. Mean V-Velocity profiles, downstream wall closeup, fk = 0.5, (CG Vs UG)
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Fig. 41. X-Vorticity contours along downstream wall, (fk = 0.5, CG)

Fig. 42. X-Vorticity contours along downstream wall, (fk = 0.5, UG)
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Fig. 43. Mean U-Velocity profiles, bottom wall closeup, fk = 0.4, (CG Vs UG)
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Fig. 44. Mean V-Velocity profiles, downstream wall closeup, fk = 0.4, (CG Vs UG)
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Fig. 45. X-Vorticity contours along downstream wall, (fk = 0.4, CG)

Fig. 46. X-Vorticity contours along downstream wall, (fk = 0.4, UG)
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Fig. 47. Mean U-Velocity profiles, bottom wall closeup, fk = 0.2, (CG Vs UG)
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Fig. 48. Mean V-Velocity profiles, downstream wall closeup, fk = 0.2, (CG Vs UG)
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Fig. 49. X-Vorticity contours along downstream wall, (fk = 0.2, CG)

Fig. 50. X-Vorticity contours along downstream wall, (fk = 0.2, UG)
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Fig. 51. Mean U-Velocity profiles, bottom wall closeup, (ZT, CG)
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Fig. 52. Mean V-Velocity profiles, downstream wall closeup, (ZT, CG)
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Fig. 53. Mean U-Velocity profiles, full cavity, (ZT, CG)
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Fig. 54. Mean U-Velocity profiles, bottom wall closeup, (ZT, CG)
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3. Grid Convergence

A very important issue in all of CFD is grid convergence or grid insensitivity

[29]. As a result of the finite sizes of the finite-difference cells used in computations,

numerical errors exist between the solution of the discretized equations and the exact

solution of the differential equations. It is important to know the magnitude of such

errors so that fine enough grids can be suitably employed to reduce the error to an

acceptable level. Grid sensitivity studies should therefore be done for all CFD work

and it is of even greater importance for turbulence-model computations because of

the need to separate numerical error from the modeling error.

A common way to demonstrate grid convergence is to repeat the same compu-

tation with twice as many or half the number of grid points and compare the two

solutions by checking the magnitude of the discretization error. This kind of check

has been made in the present study and simulations have been performed for fk values

of 1.0 (RANS) and 0.7 using an 81*81*81 clustered grid arrangement. These results

are compared with the results obtained by simulations performed using the previous

grid sizes (refer Table II). From figures 55-58, it is useful to note that for both cases,

the numerical error near the boundaries is considerably reduced by employing finer

grids and it appears that the tendency is towards convergence with results presented

in literature.
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Fig. 55. Mean U-Velocity profiles, (RANS: 81*81*81 Vs 51*51*51)
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Fig. 56. Mean V-Velocity profiles, (RANS: 81*81*81 Vs 51*51*51)
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Fig. 57. Mean U-Velocity profiles, (fk = 0.7: 81*81*81 Vs 64*64*64)
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72

4. Results for Mixed Model

An additional simulation using a mixed transport model has also been also performed

for fk = 0.5, by changing the value of σεu
as σε

f2

k

fε
while preserving the standard

value of σku
= σk. This essentially implies that a ZT-type assumption is applied for

unresolved dissipation (εu) while an MT-type assumption is applied for unresolved

kinetic energy (Ku). The goal here is to determine the effect of both models on

unresolved kinetic-energy (Ku) and dissipation (εu) and essentially to ascertain which

of these assumptions performs better for either term. All computations have been

performed on a clustered grid arrangement and results are compared for identical grid

sizes.

From the plots of turbulent quantities along cavity centerlines (Figs. 59 and 60),

only a very slight improvement near the walls adjoining the boundaries can be noticed

when the mixed model is compared against the ZT model. This demonstrates the

fact that the ZT model performs better than or is superior to the MT model for εu,

while both models are adequate for Ku, and this is in accordance with the theory

discussed in chapter III.
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5. Results for SAR=0.5:1:1 and 1:1:1

Simulations have also performed to observe the effects of reducing SAR on the accu-

racy of PANS calculations and compare these with LES results available in literature

(Prasad et al, 1989 [19]). These were done for a single fk value of 0.5, on spanwise

aspect ratios of 0.5:1:1 and 1:1:1. From figures 61 and 62, it is observed that at the

given high Reynolds number (Re = 10, 000), the plots for centerline mean velocities

have smoother profiles than the corresponding LES results at the boundaries. On

comparing both results, it is observed that PANS seems to be performing well as the

center of the cavity is approached.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In the present study, a detailed numerical investigation of the three-dimensional lid-

driven cavity flow is carried out using a new turbulence modeling technique, know

as the Partially Averaged Navier Stokes method or PANS. Flow studies have been

conducted at Re=10000 on a lid-driven cavity for spanwise aspect ratios (SAR) of

3:1:1,1:1:1 and 0.5:1:1, with the top surface imparted with a constant velocity of 1

m/s. The investigation consists of two parts. The first primarily focuses on the

effects of two turbulent transport models (the Zero-Transport (ZT) and Maximum-

Transport (MT)) on PANS calculations to ascertain which model performs better for

Ku and εu. The second focuses on the effect of grid sketching on the accuracy of the

numerical solution obtained by PANS, which is explained by comparing the results

generated on a clustered grid as against those generated on a uniform grid.

The main conclusions that can be drawn by observing all the results are:

(i) as the value of fk is decreased from 1 (corresponding to RANS) to 0 (corre-

sponding to DNS) more scales of flow are resolved in terms of the appearance

of flow features, such as the TGL vortices, as evident from the contour plots of

X-vorticity,

(ii) the ZT model is superior to the MT model for unresolved dissipation (εu),

(iii) both models are adequate for unresolved kinetic energy (Ku) and

(iv) for a given grid size, grid sketching improves the accuracy of the numerical solu-

tion, as seen by comparisons of statistical quantities with LES and experiment

available in literature.



79

As a final note, in view of all the results, it is seems justifiable to conclude that the

PANS model is capable of serving as a bridging model between RANS and DNS.
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