INTERNAL TRANSCRIBED SPACERS OF RIBOSOMAL RNA

A Thesis
by
LORIEN SCHOELKOPF

Submitted to the Office of Graduate Studies of
Texas A\&M University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

August 2004

MOLECULAR COMPARISONS OF BABESIA ODOCOILEI USING THE INTERNAL TRANSCRIBED SPACERS OF RIBOSOMAL RNA

A Thesis
by
\section*{LORIEN SCHOELKOPF}
Submitted to Texas A\&M University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE

Approved as to style and content by:

Patricia J. Holman
(Chair of Committee)

Pete D. Teel
(Member)

Thomas M. Craig
(Member)

Ann B. Kier
(Head of Department)

August 2004
Major: Veterinary Parasitology

Abstract

Molecular Comparisons of Babesia odocoilei Using the Internal Transcribed Spacers of Ribosomal RNA. (August 2004)

Lorien Schoelkopf, B.S., University of Texas at Dallas, Richardson, Texas Chair of Advisory Committee: Dr. Patricia J. Holman

Babesia odocoilei is an intraerythrocytic apicomplexan parasite which infects cervidae, sometimes causing babesiosis. It is vectored by the tick Ixodes scapularis and is distributed throughout the southeastern United States. The geographic and host range continue to extend as new incidence of infection is detected.

A genomic DNA region spanning the internal transcribed spacer 1 (ITS1), 5.8S rRNA gene, and ITS2 of ribosomal RNA (rRNA) from 18 B. odocoilei isolates (speciation confirmed by small subunit rRNA analysis) was amplified using the polymerase chain reaction, cloned and sequenced. The isolates originated from 6 different cervidae or bovidae hosts in various U.S. geographic areas. Included in the analysis was a previously described reindeer B. odocoilei-like isolate, RD61, which showed only 99.0% identity in SSU rRNA analysis to B. odocoilei. Percent identity pairwise comparisons among the samples were calculated for both the full ITS1-5.8SITS2 and individual genomic regions. Identity values for all comparisons ranged from 90% to 100%, with the exception of RD61, which showed no higher than 88% identity for all gene regions.

An analysis of fixed differences identified in the ITS1 and ITS2 gene regions of all clones revealed 21 fixed differences in ITS1, and only 11 in ITS2. Most isolates were found to have 2 overall patterns of fixed differences, although some had 1 or 3 .

Phylogenetic analysis of all sequences for the entire ITS1-5.8S-ITS2 gene region placed most isolates into 2 distinct groups corresponding to those observed in the analysis of fixed differences. This suggested the presence of at least 2 rRNA transcription units in B. odocoilei.

ITS analysis failed to demonstrate host or geographic differences that might serve to pinpoint the source of outbreaks of B. odocoilei in farmed and managed host animals. This failure might result from genetic recombination of ITS genomic regions during the tick vector stage. Lack of conspecificity between the RD61 isolate and B. odocoilei was supported by this study; however, more data are needed to clarify the taxonomic status of this B. odocoilei-like isolate.

DEDICATION

I would never have made it to Texas A\&M University without the constant support and inspiration from my family, most especially my father and mother. Mom and Dad, you have always been there for me, from my first day of school to my thesis seminar and defense. I am so happy to make you proud with the work I have done here and will continue to do, and there is no one else in the world to whom I could dedicate this thesis. We have so much to look forward to!

ACKNOWLEDGEMENTS

I am grateful for the wonderful support I have received here at Texas A\&M, particularly from my committee members, who each provided their unique guidance, advice, and support, and whom I admire and respect immensely. Dr. Holman has been a wonderful professor and mentor under whose direction I have learned a great deal about both the academic and real world. Dr. Craig's knowledge never ceases to amaze me, and his teaching helped open up the world of veterinary medicine for me. I also wish to thank him for his help as I prepared to enter graduate school. I would also like to thank Dr. Teel for his patience with me as I first entered the vast world of entomology and learned to appreciate the delicate balance between these 2 fields. I wish to thank Dr. Snowden and the members of her lab, who have also helped me enormously along the way.

To my fellow labmates Kylie Bendele, Angela Spencer, Allison James and Paulette Waters, I will always say that I was extremely fortunate for the privilege of working alongside all of you, and for your companionship and support along the way. You helped my difficult transition into a new town and life more than you may ever know. I also must thank Angie personally for her friendship and advice, which I will always treasure.

Finally, I wish to thank my family and friends, especially Joanne Essa and family, for their constant support and love, without which I would never have come to College Station or made it in the real world on my own.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES viii
LIST OF TABLES ix
CHAPTER
I INTRODUCTION 1
II MATERIALS AND METHODS 17
Babesia spp. Isolates 17
DNA Extraction 20
SSU rRNA Gene Sequence 21
ITS rRNA Gene Sequence. 26
III RESULTS 31
IV DISCUSSION AND SUMMARY 58
LITERATURE CITED 73
APPENDIX A 82
APPENDIX B 95
APPENDIX C 116
VITA 118

LIST OF FIGURES

FIGURE Page
$2.1 \quad$ Schematic drawing showing positions and directions of primers used for amplification of the SSU rRNA gene region. 23
2.2 Schematic drawing showing positions and directions of primers used for amplification of the ITS1-5.8S-ITS2 gene region. 27
3.1 An example of the alignment used in the direct analysis for sequence variation. 43
3.2 Neighbor-joining phylogenetic tree with bootstrapping. 57

LIST OF TABLES

TABLE Page
2.1 Babesia isolates used in this study 18
2.2 ITS-PCR details for Babesia isolates. 29
3.1 Parasite ITS identity comparisons within a host species. 34
3.2 Parasite ITS identity comparisons between host species. 35
3.3 Comparisons among parasite isolates within geographic regions 37
3.4 Comparisons among B. odocoilei isolates between geographic regions 38
3.5 Comparisons among B. odocoilei isolates within the type of host animal infections, fatal versus nonfatal. 39
3.6 Comparisons among B. odocoilei isolates between the type of host animal infections, fatal versus nonfatal. 40
3.7 Fixed differences in ITS1 41
3.8 Fixed differences in ITS2 42
3.9 Isolates with one overall ITS1 sequence pattern. 45
3.10 Isolates with two overall ITS1 sequence patterns. 46
3.11 Isolates with three overall ITS1 sequence patterns 48
3.12 Nucleotide difference changes in ITS1 sequences containing 1, 2 and 3 types per isolate, and for Bodo B isolates 49
3.13 Apparent recombination in Bodo B ITS1 50
3.14 Isolates with one overall ITS2 sequence patterns 51
3.15 Isolates with two overall ITS2 sequence patterns. 53
3.16 Isolates with three overall ITS2 sequence patterns. 54
3.17 Recombination in Bodo B 55
3.18 Nucleotide difference changes in ITS2 sequences containing 1 and 2 types per isolate.. 56

CHAPTER I

INTRODUCTION

The genus Babesia is one of the most important constituents of the class Piroplasmasida, order Piroplasmorida, and family Babesiidae. These erythrocytic apicomplexan parasites have influenced both the veterinary and medical communities. In 1893, Smith and Kilbourne discovered that Babesia bigemina, a causative agent of bovine babesiosis, was transmitted by the tick Boophilus annulatus. This revelation was a breakthrough in the history of parasitology, as it was the first proof that an arthropod was the vector of any disease agent. Ticks from several genera are now known to be vectors and reservoirs of numerous Babesia spp. transmissible to an array of mammals (Levine, 1985).

Members of the Piroplasmasida represent a moderately consistent group of vertebrate blood cell parasites, which can be either piriform, or pear-shaped, round, amoeboid, or rod-shaped in morphology. All are found in the erythrocytes, though some genera may also have a leukocytic stage. Babesia spp. have polar rings, subpellicular microtubules, and perhaps micronemes as well, all characteristics of apicomplexans. No flagella or cilia are present, and no spores or oocysts are formed. Locomotion is either by gliding or body flexion. In the vertebrate host blood stage, reproduction is asexual by division, and parasites are heteroxenous and vectored by Ixodid ticks (Levine, 1973).

This thesis follows the style of the Journal of Wildlife Diseases.

Babesia are transmitted to the vertebrate host by ticks which became infected by ingesting Babesia within erythrocytes. After a multiplication cycle and presumed gamogony and syngamy in the tick gut, the parasites penetrate the gut wall and travel via the hemolymph to the ovary, where they invade the developing eggs (Levine, 1985). The parasites become infective in the hatched ticks and, after further development in the salivary glands, are transmitted by larval, nymphal, or adult ticks (Levine, 1985). The lumen of the salivary glands become full of thousands of individual sporozoites and are inoculated into the vertebrate host as the tick feeds. This 'transovarial transmission' results from infection of the next generation of ticks through the ovary, to the ova, to the larvae, and leads to actual transmission of the parasite by the bite of the offspring of the initially infected adult tick (Kingston, 1981).

Babesia can also be transmitted transstadially, a stage-to-stage transmission in which the ticks infected in one stage transmit the parasites by later stages of the same tick. Depending on the species, Babesia can be picked up by a larval tick and transmitted by the nymph, or it can be picked up by a nymph and transmitted by the adult. Parasites proliferate in the phagocytes of the body cavity of the tick, and form pseudocysts, or clubshaped stages, which exit the host cell and travel to the tick muscle cells. Tick muscles remain unchanged during metamorphosis, and thus Babesia parasites remain there and continue to divide by binary fission. The parasites can also be retained and proliferate in the epithelial cells of the tick gut, which also remains unchanged during molting. As the adult tick begins to feed on its host, parasites migrate to the salivary glands, and further develop for two to three more days. The parasites then undergo a series of binary fissions, and enter the cells of the salivary gland acini. They continue to multiply, filling the host
cell with thousands of diminutive parasites. They then become vermiform, leave the host cell, and migrate to the lumen of the gland, where the now infective Babesia sporozoites are injected into a new host when the tick takes a blood meal. Upon injection into the host, the Babesia invade erythrocytes, where they undergo division (Levine, 1985). After division, the organisms leave the host cells and penetrate another erythrocyte and repeat the cycle (Kingston, 1981). Some vertebrate hosts remain infected for life.

Babesia parasites are the cause of babesiosis, a potentially fatal disease with generally higher death rates in livestock adults than in young animals. The clinical signs are usually similar in different hosts. There is typically fever, malaise, listlessness, anorexia, and severe anemia caused by the destruction of the erythrocytes that is accompanied by hemoglobinuria. Icterus develops, and the spleen and liver become enlarged. Diarrhea or constipation and yellow feces are also common. Without treatment, affected animals become emaciated and often die (Levine, 1973). If no illness occurs as a result of infection the host may maintain babesiasis as a chronic infection.

Piroplasmosis in white-tailed deer (Odocoileus virginianus chiriquensis Allen) was originally detected in Panama by observation of parasites in Giemsa stained brain smears of hunter-killed animals (Clark, 1918). Subsequent experiments by Clark and Zetek (1925) showed clinical piroplasmosis in white-tailed deer that was transmissible to a calf and a brocket deer (Mazama sartorii repertica Goldman) by Boophilus microplus (syn. Margaropus annulatus australis) ticks.

Emerson and Wright $(1968 ; 1970)$ first isolated an unknown Babesia from whitetailed deer (Odocoileus virginianus) in Texas, which was later designated Babesia odocoilei. The organism was not transmissible to sheep, goats or splenectomized calves,
but the infection caused severe anemia and was fatal in a splenectomized deer (Waldrup, 1991). Infections caused by certain Babesia species, including B. odocoilei, can exist without causing serious disease problems, and the fact that parasitemias have been found in healthy, immature deer suggests that a situation of enzootic stability may exist (Callow, 1977; Perry et al., 1985a). Babesia odocoilei is the only named species reported from white-tailed deer (WTD), although Spindler et al. (1958) described a Babesia bigeminalike isolate in WTD in New Mexico.

Babesia odocoilei is widely distributed throughout parts of the southeastern United States. Early studies identified the parasite in the pineywoods of eastern Texas (Robinson et al., 1967). Further studies led to the extension of the B. odocoilei range northward and westward into the post oak-savannah of Texas, Oklahoma, and Virginia (Waldrup et al., 1989a and 1989b; Perry et al., 1985b). The geographic range was recently extended to include Minnesota (MN), where a caribou (Rangifer tarandus) suffered a fatal case of babesiosis due to B. odocoilei (Holman et al., 1994 and 2000; Petrini et al., 1995). The parasite was also isolated from WTD in the same area of MN, and a B. odocoilei-like parasite was found in southern California bighorn sheep (Ovis canadensis nelsoni) (Holman et al., 2000; Goff et al., 1993). Additionally, B. odocoilei has been detected in elk (Cervus elaphus canadensis) herds from Indiana, Minnesota, Wisconsin and New Hampshire by culturing the parasite from both subclinically and clinically infected animals (Gallatin et al., 2003; pers. comm., P.J. Holman).

Morphologically, B. odocoilei is quite similar to other small Babesia spp., most notably the European parasites Babesia divergens and Babesia capreoli. Babesia divergens is a well-known parasite of cattle (Genus Bos) that has been shown to infect a
variety of hosts under both experimental and natural conditions. These include reindeer (Rangifer tarandus tarandus), wild sheep (Ovis musoni), fallow deer (Dama dama), red deer (Cervus elaphus elaphus), and roe deer (Capreolus capreolus) (Enigk and Friedhoff, 1962a, b; 1963; Nilsson et al., 1965; Gray et al., 1990). Gerbils, hamsters, rats, chimpanzees, and humans are among the diverse hosts also known to be susceptible to B. divergens (Canning et al., 1976; Entrican et al., 1979; Lewis et al., 1980; Liddell et al., 1980; Gray et al., 1985; Garnham and Bray, 1959; Gorenflot and Piette, 1976). Babesia capreoli, while morphologically and serologically similar to B. divergens, is distinct in its host specificity, infecting only roe deer, red deer, and sheep (Nikol'skii and Pozov, 1972; Adam et al., 1976; Purnell et al., 1981). Whether B. capreoli is infectious to reindeer is unknown.

Intraerythrocytic B. odocoilei and B. capreoli parasites from experimentally infected sika deer (Cervus nippon) closely resemble one another, and both parasites are frequently located along the margin of the erythrocyte (Gray et al., 1991). This location is commonly referred to as the accolé position, and is comparable to that described for B. divergens in bovine blood at both the light and ultrastructural microscopy levels (Friedhoff and Scholtyseck, 1977; Gorenflot et al., 1991).

The ixodid tick Ixodes scapularis (syn. Ixodes dammini; Oliver et al., 1993) was shown to experimentally transmit B. odocoilei transstadially (Waldrup et al., 1990). Additionally, B. odocoilei DNA was found to be the prevalent piroplasm in the salivary glands of I. scapularis ticks obtained from extremely infested sites in Maine, Massachusetts, and Wisconsin (Armstrong et al., 1998). Ixodes scapularis was found on WTD in the Dismal Swamps in Virginia, but not on B. odocoilei-infected deer
(Sonenshine, 1979; Perry et al., 1985b). Other ticks have been conjectured to vector B. odocoilei. Engorged female Dermacentor albipictus ticks were present on an elk that succumbed to babesiosis in Texas, and a tentative identification of the isolate as B. odocoilei was made, and later confirmed, based on immunofluorescent antibody assays and morphology (Holman et al., 1994 and 2000). However, further studies are required to determine if D. albipictus is a competent vector of B. odocoilei.

Babesia odocoilei is closely related to B. divergens and B. capreoli (Gray et al., 1991; Holman et al., 2000). Ixodid ticks vector the three parasites; the European ixodid tick, Ixodes ricinus, is the vector of B. divergens, and has also been incriminated as a vector of B. capreoli (Donnelly and Pierce, 1975; Adam et al., 1976). Given that both B. capreoli and B. divergens are transmitted both transstadially and transovarially (Joyner et al., 1963), it is likely that both modes are also utilized by B. odocoilei. However, to date only transstadial transmission has been proven for B. odocoilei, with retention of the parasite between the nymphal and adult tick stages (Waldrup et al., 1990).

Laboratory-reared nymphal I. scapularis ticks were placed on a B. odocoileiinfected WTD, and the replete nymphs were collected and held in favorable conditions until they molted to adults (Waldrup et al., 1989a). These adult I. scapularis were then allowed to feed on a second 6-month-old deer previously determined to be free of babesial infection by stained blood smear examination and by the lack of specific antibody using the indirect fluorescent antibody test. Piroplasms from the second deer were noted in peripheral blood smears 6 days after tick infestation, and specific antibody was present 26 days following the infestation. The experiment was similarly repeated using a third
infection-free deer, thus proving that B. odocoilei was transstadially transmitted from deer to deer by I. scapularis (Waldrup et al., 1990).

Some of the first methods developed to distinguish different Babesia species were serologic analyses, such as the indirect fluorescent antibody (IFA) and immunoprecipitation assays. The IFA test has been used in the detection of antibodies reactive to B. divergens in red deer (Cervus elaphus elaphus) and B. capreoli in roe deer (Capreolus capreolus) (Latif and Adam, 1973; Blancou, 1983). It has also been used in the diagnosis of bovine babesiosis (Todorovic and Long, 1976). Immunoprecipitation assays are sensitive tests, especially when using ${ }^{35}$ S-labelled proteins (Barbet et al., 1983). Using this technique, Babesia bovis and Babesia bigemina antigens were detected and distinguished from each other, and antigenic diversity was even observed between different stocks of the same species (Passos, 1998).

Waldrup (1991) used the IFA test to determine serologic reactivity to B. odocoilei and B. bovis of deer sera collected from a range of areas in Texas. This was done to clarify the serologic relationship between these two parasites, to establish the geographic range of each, and to ascertain serologic reactivity and prevalence rates of deer sera acquired throughout Texas to both Babesia spp. In vitro cultures of B. odocoilei and B. bovis were used as the sources of antigen for the tests. It was also ensured that sera from deer infected with Theileria cervi or inoculated with Anaplasma marginale vaccine did not cross-react with either the B. odocoilei or B. bovis antigen. As many as 71% of WTD in Texas have T. cervi at any given time, and anaplasmosis has been previously reported in WTD, although the infection is more prevalent in mule deer and black-tailed deer (Howe, 1970; Robinson et al., 1967; Waldrup et al., 1989b; Waldrup 1991). Results
of the IFA test for B. odocoilei antibody activity showed the highest prevalence in the Gulf Coast (51\%), the Gulf Slope (84\%), and the Southwestern Prairie (57\%) regions. The overall prevalence rate for B. bovis in deer was much lower, 1%, with activity only detected in 1 of 27 (3\%) WTD in the Robert Kerr Wildlife Management Area (Edwards Plateau), and 2 of $50(4 \%)$ WTD in the Welder Wildlife Refuge (Gulf Coast) (Waldrup, 1991).

Serologic analyses, though at times able to make a distinction between Babesia spp. isolates, are not always conclusive, and involve rather tedious work. There can also be background problems, and these may affect the performance of the assays. Additionally, immunological tests will only detect exposure, not current infection status, and when performing an analysis of a herd of animals, they may not be an optimal choice. This was evident in a study of an outbreak of B. odocoilei in a herd of North American elk (Cervus elaphus) in Indiana (Gallatin et al., 2003). The herd was screened for the parasites through microscopic evaluation of Giemsa-stained blood smears, cultures and immunofluorescent antibody (IFA) testing, which would indicate the presence of serum antibodies against B. odocoilei. Any positive test resulted in imidocarb treatment for that animal. Of the complete herd, 58% of the elk were positive, and were reevaluated six weeks following the treatment. None of the elk showed detectable organisms in the blood smears, yet yielded positive results by IFA analysis. No sudden deaths or a reappearance of clinical signs occurred. Hence, if the second assessment of the animals had been based purely on serologic analysis, current babesial infection would have been suspected, and the elk may have been misdiagnosed. Clearly, new techniques are needed to definitively ascertain current infection status in suspected cases of babesiosis.

Holman et al. (2000) compared a previously established isolate of B. odocoilei (B. odocoilei-E, so named due to its geographic origin, the Gus Engeling Wildlife Management Area in East Texas) with caribou and North American elk (Cervus elaphus canadensis) Babesia spp. isolates that had caused fatal infections and high circulating parasitemias (Holman et al., 1988). Immunofluorescent antibody tests were performed using the methods of Goff et al. (1993), and immunoprecipitation assays using those of Barbet et al. (1983). Despite the fact that both serologic analyses revealed antigenic variation, the presence of shared antigens among the three Babesia spp. was observed.

Genetic markers have been utilized for identification and diagnosis of these apicomplexan parasites and the diseases they cause. The small subunit ribosomal RNA (SSU rRNA) gene is currently the foremost marker for identification of the piroplasms, and is one of the principal methods of classification of these parasites.

Holman et al. (2000) also compared the caribou, elk and B. odocoilei-E isolates against each other by experimental infection and SSU rRNA gene nucleotide sequence analysis. Experimental infection in yearling male red deer (Cervus elaphus elaphus), a closely related subspecies of the North American elk, showed no clinical discrepancies among the isolates. SSU rRNA genes of the three samples were amplified, and compared amongst each other as well as against a B. divergens isolate originating from an infected cow in County Wicklow, Ireland (Purnell et al., 1976). The elk and caribou Babesia spp. isolates were found to possess SSU rRNA gene sequences indistinguishable from the B. odocoilei-E isolate, proving conclusively that they were both indeed B. odocoilei. Thus, antigenic discrepancies shown by two different immunological tests accordingly reveal that these traditional methods of characterizing these parasites are not able to absolutely define
whether the caribou and the elk Babesia spp. isolates were indeed B. odocoilei, or even whether they were conspecific (Holman et al., 2000).

Extensive molecular studies have been done with Theileria species, haemoprotozoans that infect ruminants, which are closely related to Babesia spp. Benign Theileria species from Asia and North America were sequenced through the SSU rRNA V4 variable region to provide a better understanding of the phylogenetic relationships among these isolates (Chae et al., 1998a). The samples came from bovine hosts in Japan, Korea and the United States, and cervid hosts in the United States and Canada. This study resulted in the classification of seven different nucleotide sequence patterns (Types A through G); the cervine isolates represent a species separate from the bovine isolates. As there were several sequence types noted in most of the bovine Theileria isolates, it was concluded that mixed species, subspecies populations and/or multiple genotypes may well be present in cattle (Chae et al., 1998a).

The SSU rRNA gene nucleotide-sequence analysis was used to definitively identify both benign and moderately pathogenic Theileria isolates from cattle and deer originating from different geographic regions (Chae et al., 1999a). Six divergent groups in two major divisions, each division with a common ancestor, were determined upon construction of a phylogenetic tree. Presumed geographic diversity was noted in only Korean bovine Theileria spp. (Types C and H), and African Theileria mutans. United States bovine Theileria isolates in the study were proven not to be T. mutans, as previously thought, since they possess Theileria buffeli (Type A or D) SSU rRNA gene sequences.

An additional study (Chae et al., 1999b) confirmed T. cervi infection in North American WTD and elk based on SSU rRNA V4 variable region analysis. Previous
analyses had discovered two sequence types, F and G, in T. cervi from WTD and elk; this study confirmed both types in two deer and two elk isolates. Microheterogeneity was present in the Type G gene only, resulting in the designation of Subtypes G1, G2 and G3, while Type F was highly conserved. The Type F variable regions could eventually be utilized to design specific polymerase chain reaction (PCR) primers (Chae et al., 1999b).

Schnittger et al. (2000) used the SSU rRNA gene to resolve phylogenetic relationships between Theileria and Babesia isolates. A Theileria lestoquardi-like isolate fatal to sheep and goats in northwestern China was compared to other Theileria and Babesia species, in an attempt to resolve its close association with T. lestoquardi. The unknown isolate appeared to be most closely related to T. buffeli, yet clearly divergent from T. lestoquardi. Theileria lestoquardi was found to be most closely related to Theileria annulata and T. buffeli. The confirmed SSU rRNA sequence of the new Chinese parasite was then used to design specific polymerase chain reaction (PCR) primers to amplify genomic DNA (gDNA) of this organism, an important step as this study ultimately concluded that the Chinese isolate was an as yet unrecognized Theileria species.

Cossio-Bayugar et al. (2002) confirmed infection of T. buffeli (Type A) in cattle in Michigan by SSU rRNA gene sequence analysis. Previously, T. buffeli had only been reported in animals in Texas, Missouri and North Carolina.

Another study using SSU rRNA analysis by Holman et al. (2002) cultured an isolate from reindeer, designated RD61, which was morphologically similar to B. odocoilei. Serum from four different reindeer from the same herd all reacted equally strongly to B. odocoilei and the RD61 parasites when an IFA test was performed. Gene sequence analysis of the SSU rRNA showed 99.0% identity to that of B. odocoilei.

Yet another study isolated and sequenced the SSU gene sequences from both human and wildlife Babesia species infections from California and Washington, and performed a phylogenetic analysis that included Asian and African isolates (Kjemtrup et al., 2000). Sequence comparisons revealed that isolates from the human cases were exceptionally similar or, in some cases, indistinguishable, from the isolates from the western wildlife species, particularly those found in mule deer (Odocoileus hemionus). The results supported the hypothesis that large ungulates could serve as reservoirs for human infection, and a phylogenetic analysis further demonstrated this in showing the western United States piroplasm isolates in their own distinct clade apart from the Asian and African ones (Kjemtrup et al. 2000).

Other gene markers are showing promise in distinguishing the relationships among both human and animal apicomplexans, such as heat shock-related proteins (hsps) (Ruef et al., 2000). They are highly conserved functional proteins, with homology across their entire length, and thus offer a reasonable target for phylogenetic analyses (Lindquist and Craig, 1988). The hsps assist parasites as they are subjected to stress when invading and adapting to a new host environment, and are even known to have a chaperone function, forming complexes with an assorted group of cellular proteins and peptides (Polla, 1991; Heike et al., 1996).

There are several advantages of using this gene target, as opposed to the SSU rRNA gene target. The conserved sets of genes allow expansion of the size of the data set while still retaining homology. This larger amount of data for alignments and analysis, the use of amino acid sequences rather than those of nucleic acids, and the fact that a conserved, functional protein is used as opposed to conserved secondary structure of a
transcribed product, are just a few of the reasons that this alternative method of evaluating apicomplexan relationships may be advantageous (Ruef et al., 2000). A phylogenetic study by Ruef et al. (2000) using B. bovis and other apicomplexan hsps showed strong support for the monophyly of the piroplasms in the genus Theileria, and paraphyly of the genus Babesia.

Beta-tubulin, a crucial cytoskeleton gene, is gaining acceptance as another candidate molecular marker for speciation. This conserved molecular target seems to contain enough genetic variation to propose a dependable species identification method (Cacciò et al., 2000). A beta-tubulin gene fragment was amplified by PCR from nine different haemoparasitic isolates, Theileria sergenti, T. annulata, Babesia bigemina, Babesia bovis, Babesia major, Babesia equi, Babesia caballi, B. divergens, and Babesia microti by Cacciò et al. (2000). Within this amplified gene fragment is an intron that varies extensively in both length and sequence. Two separate assays were developed: one to differentiate the species directly on the basis of the size of the PCR products and one that further utilized a simple PCR-restriction fragment length polymorphism (RFLP) protocol to differentiate species not able to be defined based on the first assay.

Size variation in the products of the first assay suggested the presence of introns having different lengths in the different species. Electrophoretic separation of the amplification products resulted in the immediate identification of species associated with either horses (B. caballi and B. equi) or humans (Bx. divergens and B. microti). An additional nested PCR assay using newly designed primers presented the same results as this primary PCR assay. However, the bovine parasites were not distinguishable in either the regular or nested assays, leading to the development of the PCR-RFLP protocol.

Digestion of the PCR products with the endonuclease RsaI generated specific patterns for each species that allowed for easy differentiation among the equine, human and bovine species. Therefore, the variable introns that interrupt the conserved beta-tubulin genes show enough variation to allow speciation of apicomplexans (Cacciò et al., 2000).

Recent work has shown that the internal transcribed spacers (ITS) of ribosomal DNA (rDNA) are not only species specific, but may provide discrimination among parasites at the subspecies level (reviewed by Prichard and Tait, 2001). A key advantage of this potential genomic target is that it includes highly conserved segments in the coding regions as well as hypervariable spacer sequences (Zahler et al., 1998). Zietara et al. (2001) isolated the complete sequences of the ITS rDNA regions of four subgenera of Gyrodactylus. Much molecular variation was expressed in the ITS1 and ITS2 regions, as opposed to morphological variation, expressed in the size and shape of the attachment apparatus. Thus the ITS data allowed new insight to the molecular phylogeny of Gyrodactylus, indicating either that the ITS region evolves fast in Gyrodactylus, or that the genus consists of groups of a higher taxonomic level than previously recognized (Zietara et al., 2001).

Sequencing of the SSU and LSU (large subunit) rRNA genes, as well as the ITS genes, of several Theileria parva lawrencei and T. parva parva isolates showed that the 5.8S gene sequences of all eleven T. parva isolates were identical, but the ITS regions of both T. p. parva and T. p. lawrencei contained different combinations of identifiable sequence segments (Collins and Allsopp, 1999). As this resulted in an assortment of segments in any one isolate, it was inferred that the two populations undergo genetic recombination, deriving from gene pools that are not entirely discrete.

Adam et al. (2000) investigated differing degrees of ITS1 variability in several isolates of Cyclospora cayetanensis, an apicomplexan protozoan that is an important source of epidemic and endemic human diarrhea. Isolates obtained from Guatemala, where an outbreak occurred in 1996, were compared with Guatemalan and Peruvian isolates from endemic regions. All the isolates from the outbreak contained identical ITS1 sequences, in accordance with their single source of origin, while one of the two Guatemalan isolates and two Peruvian ones contained multiple ITS1 sequences. It was conjectured that the sequence inconsistencies exist due to either variability of the ITS1 region within the genome of a single clone, or representation of multiple clones originating from a single clinical source (Adam et al., 2000).

Zahler et al. (1998) isolated and sequenced the first and second internal transcribed spacers, ITS1 and ITS2, along with the intervening 5.8S coding region of the rRNA gene (Fig. 2.1), in eight Babesia canis isolates. The isolates were of disparate geographic origins, vector specificity, and pathogenicity to dogs (Canis familiaris). Their study was conducted to determine whether the genetic differences among the isolates concurred with the currently proposed subspecies levels, B. canis canis, B. canis vogeli, and B. canis rossi. The samples used were two B. canis canis isolates each from Germany and Hungary, three B. canis vogeli isolates (one from Egypt and two from Spain), and one B. canis rossi isolate from South Africa. There was little or no genetic variation observed within the subspecies, and the genetic variation between the subspecies was indeed congruent with the existing taxonomical classifications. The sequences separated into three distinguishable genotypic groups that showed identities amongst each other of no more than 82% (B. canis canis and B. canis vogeli). Comparisons to an equine Babesia isolate,
B. caballi, resulted in identities no higher than 69%. Therefore, the tripartite division of B. canis was proven and retained, and equally important, the advantages of the ITS1-5.8SITS2 genes as a practical genomic target were put into practice and shown to be effective in taxonomically distinguishing organisms at and below the species level. It is currently unknown whether genetic recombination between B. canis subspecies occurs at the tick level when they feed on dually infected dogs.

Thus, analysis of the ITS1-5.8S-ITS2 region appears to be a potentially advantageous and significant gene marker that could be useful for identifying subgroups of B. odocoilei based on mammalian host or geographic origin. The optimal molecular assay for diagnosis of infections caused by both Babesia and Theileria species should combine the high sensitivity of the PCR reaction, which is needed for the detection of asymptomatic carriers, with the concurrent identification of the species, which requires an appropriate and informative marker. In addition, the ITS1-5.8S-ITS2 DNA region may provide a diagnostic tool for determining the source of infection when outbreaks of babesiosis occur in managed herds.

To date, a study of the ITS1-5.8S-ITS2 genes of B. odocoilei has yet to be done, and whether these gene markers are appropriate for future diagnostic work, and perhaps phylogenetic studies, remains unknown. For these reasons and based on the results and questions from previous studies, the current project was undertaken to sequence the ITS1-5.8S-ITS2 genes from B. odocoilei and a B. odocoilei-like isolate based on SSU rRNA gene analysis.

CHAPTER II

MATERIALS AND METHODS

Babesia spp. isolates

The Babesia spp. isolates used in this study covered a wide range of both infected host species and geographic regions (Table 2.1). Babesia spp. previously described included B. odocoilei isolates (Bodo E, Bodo B) from white-tailed deer (Odocoileus virginianus) in Texas, a caribou (Rangifer tarandus caribou) in Minnesota (MN Carib), an elk (Cervus elaphus) in Texas (TX Elk 1), an elk and a reindeer (Rangifer tarandus tarandus) in Wisconsin (WIS Elk 1 and WIS Rein, respectively), a desert bighorn sheep (Ovis canadensis nelsoni) in California (BH 1), and an elk in Indiana (IN Elk); and a Babesia sp. (RD61) from a reindeer in California (Holman et al., 2000; Holman et al., 2003; Goff et al., 1993; Gallatin et al., 2003). Isolates Bodo E, Bodo B, MN Carib, TX Elk 1, WIS Elk 1, WIS Rein, and IN Elk were previously identified as B. odocoilei; all share identical SSU rRNA gene sequences (GenBank Accession No. U16369; Holman et al., 2000; Holman et al., 2002; Holman et al., 2003; Gallatin et al., 2003). RD61 is closely related to B. odocoilei, the SSU rRNA gene sequence (GenBank Accession No. AF411337) varying in only 18 base positions from that of B. odocoilei (GenBank Accession No. U16369) (Holman et al., 2002).

In addition, Babesia isolates from elk in New Hampshire and Wisconsin; from reindeer in New York and Pennsylvania; from white-tailed deer in Massachusetts, Oklahoma, and Minnesota; and 2 isolates from musk ox in Minnesota were included. SSU rRNA gene sequence analysis was used to identify each isolate as to Babesia species as described below.

TABLE 2.1. Babesia isolates used in this study. Host, geographic origin, clinical signs, how they were acquired (descrip/ref) and GenBank database accession numbers are provided.

Isolate Name	Host	Geographic area	Clinical Signs	Description/References	ITS Genbank Numbers	SSU GenBank Numbers
Bodo B-a	White-tailed deer	East Texas	Normal	Cultured from a naturally infected adult deer on the Brushy Creek Experimental Ranch in the Gulf Slope area of Texas (Holman et al., 2000); a definitively established isolate of B.odocoilei		U16369 (Holman et al., 2000)
Bodo B-b				Duplicate DNA extraction		
Bodo E	White-tailed deer	East Texas	Normal	Cultured from an infected blood sample drawn from a $1.5-y r-o l d$ male white-tailed deer killed by a hunter at the Gus Engeling Wildlife Management Area (Holman et al., 1988); a definitively established isolate of B. odocoilei	Cl. 1 - AY339753 Cl. 2 - AY339754 Cl. 3 - AY339755 (Holman et al., 2003)	U16369 (Holman et al., 2000)
TX Elk 1-a	Elk	Del Rio, TX	Acute babesiosis; died	Cultured from elk in a farmed herd in S. TX; first report of naturally acquired acute fatal babesiosis in elk under management near Del Rio TX; confirmed as B. odocoilei using SSU rRNA gene sequence	Cl. 1 - AY339751 Cl. 2 - AY339752 Cl. 3 - AY339759 (Holman et al., 2003)	AY339760 (Holman et al., 2003)
TX Elk 1-b				(Holman et al., 2000) Duplicate DNA extraction		
MN Carib	Caribou	AppleValley, Minnesota	Fatal babesiosis	Cultured from caribou in the MN Zoological Garden; first report of naturally acquired acute fatal babesiosis in caribou under management (Holman et al., 2000)	Cl. 1 - AY339756 Cl. 2 - AY339757 Cl. 3 - AY339758 (Holman et al., 2003)	AY339761 (Holman et al., 2003)
WIS Elk 1	Elk	West Wisconsin	Sick with suspected hemoparasite infection	Cultured from 2 6-yr. old male elk in a farmed herd in W. WIS (Holman et al., 2003)	Cl. 1 - AY339747 Cl. 2 - AY345121 Cl. 3 - AY339748 (Holman et al., 2003)	AY294206 (Holman et al., 2003)
WIS Elk 2	Elk	Wisconsin	Babesiosis Acute dabesiosis- died	Cultured from elk in a farmed herd in WIS		
WIS Rein	Reindeer	North Wisconsin	Acute babesiosis; died	Obtained from blood of 7-mo. old female reindeer in a farmed herd in N. WIS (Holman et al., 2003)	Cl. 1 - AY339749 Cl. 2 - AY339750 Cl. 3 - AY345122 (Holman et al., 2003)	$\begin{gathered} \text { AY237638 (Holman } \\ \text { et al., 2003) } \end{gathered}$
BH 1-a	Desert Bighorn Sheep	San Bernardino Mountains, CA	Normal	Cultured from bighorn sheep in a resident herd in S . CA (Goff et al., 1993); first isolation of B. odocoilei in state of CA		AY661502
BH 1-b	Desert Bighorn Sheep	San Bernardino Mountains, CA	Normal	Blood stabilate of bighorn sheep in a resident herd in S. CA (Goff et al., 1993)		AY661502
NH Elk	Elk	New Hampshire	Babesiosis	Cultured from bull elk in a farmed herd; first report of B. odocoilei in state of NH		AY661503
IN Elk	Elk	Central Indiana	Fatal babesiosis	Cultured from bull elk with fatal babesiosis in a farmed herd in IN (Gallatin et al., 2003)		
OK WTD	White-tailed deer	Oklahoma	Normal; dual infection with Theileria cervi	Cultured from captive 2-yr. old white-tailed deer		

TABLE 2.1. Continued.

Isolate Name	Host	Geographic area	Clinical Signs	ITS Genbank
Numbers				

DNA Extraction

Purified DNA samples previously obtained from isolates Bodo B, Bodo E, MN Carib, TX Elk 1, WIS Elk 1, WIS Rein, and CA RD61 were used in this study (Holman et al., 2000; Holman et al., 2002; Holman et al., 2003). In addition, duplicate extractions were made from frozen blood for isolates Bodo B and TX Elk 1; the original samples were signified by "a" and the duplicates, "b." DNA was purified from cultured BH 1 (BH 1-a) and from original blood stabilate (BH 1-b), the latter kindly provided by W. Goff, USDA/ARS, Pullman, WA. Genomic DNA was also purified from the newly acquired isolates from cultures or infected blood. The culture method used was described previously (Holman et al., 2003).

Genomic DNA was purified using a standard phenol-chloroform extraction method facilitated by the use of Phase Lock Gel tubes (Phase Lock Gel System, Eppendorf AG, Hamburg, Germany) as follows. Heavy and Light Phase Lock Gel (PLG) tubes were prepared by centrifuging at 9000 Xg for 10 min . Infected RBC pellets were washed 3 X in PBS by centrifugation at 600 Xg and either immediately used for DNA extraction or frozen at - 80 C until use. Frozen samples were quickly thawed at 37 C prior to use. Following the transfer of 0.2 ml RBC or thawed RBC lysate to the pre-spun Light PLG tube, an equal volume of lysis buffer (10 mM Tris, $\mathrm{pH} 7.5 ; 1 \mathrm{mM}$ EDTA, $\mathrm{pH} 8.0 ; 10 \%$ SDS) was added and the mixture incubated at room temperature until complete lysis of the erythrocytes occurred. RNAse A was then added to a final concentration of $50 \mu \mathrm{~g} / \mathrm{ml}$, and then the mixture was incubated at 37 C for 1 hr . Following the incubation, Proteinase K was added to a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$ (Proteinase K stock solution $20 \mathrm{mg} / \mathrm{ml}$ in water; $5 \mu \mathrm{l} / \mathrm{ml}$ lysate added), and the mixture incubated either for 3 hr at 50 C with
occasional swirling or overnight at 25 C . The mixture was allowed to cool to 25 C , and an equal volume of Tris-equilibrated phenol was added to the tube, which was then mixed on a tube rotator (Dynal Rotamix, Dynal, Inc., New Hyde Park, NY) at 25 rpm for 5 min . The tube was centrifuged for 2 min at 9000 Xg . The aqueous phase was reextracted with an equal volume of Tris-equilibrated phenol, then mixed and centrifuged as above. The aqueous phase was then extracted using an equal volume of 50:50 chloroform/iso-amyl alcohol:phenol (24 parts chloroform to 1 part iso-amyl alcohol), then mixed and centrifuged as above. The aqueous phase was transferred to a Heavy PLG tube and extracted with an equal volume of chloroform/iso-amyl alcohol, then mixed and centrifuged as above. The top aqueous layer in the tube was measured and transferred to a sterile microtube and 3 M NaOAC was added to a final concentration of 0.3 M . After mixing, 2.5 to 3 volumes of cold absolute ethanol were added and mixed, and the DNA was allowed to precipitate overnight at -80 C . The following day, the microtube was centrifuged at 7 C for 30 minutes at 9300 Xg . The supernatant was removed and the pellet was rinsed with $500 \mu 1$ of cold 70% ethanol by centrifugation as above. The ethanol was removed from the remaining pellet, which was dried overnight at room temperature, and then resuspended the next day in 20-50 $\mu \mathrm{l}$ TE buffer (0.1 M tris(hydroxymethyl)aminomethane and 2 mM EDTA, pH 8.0), the amount depending on the size of the pellet.

SSU rRNA Gene Sequence

SSU rRNA gene sequences were obtained for all new isolates by amplifying and sequencing the gene as described below, except for WIS Elk 2. The WIS Elk 2 SSU rRNA
gene was sequenced from previously prepared cloned plasmid DNA (unpublished data, P.J. Holman). For the remaining samples, the SSU rRNA genes were amplified from approximately 50-100 ng template genomic DNA using 1 pmol each primers A and B (Fig. 2.1) in a 25μ reaction volume (Sogin, 1990). The polymerase chain reaction (PCR) mixture also contained PCR Buffer (40 mM Tricine- $\mathrm{KOH}, 15 \mathrm{mM}$ KOAc, 3.5 mM $\operatorname{Mg}(\mathrm{OAC})_{2}, 3.75 \mu \mathrm{~g} / \mathrm{ml}$ BSA, 0.005% Tween 20, 0.005% Nonidet-P40), dNTP Mix (0.2 mM each of dATP, dCTP, dGTP, and dTTP), TaqDNA Polymerase Mix (BD TITANIUM TaqDNAPolymerase, proofreading polymerase, and BD TaqStart Antibody at $1.1 \mu \mathrm{~g} / \mu \mathrm{l}$) and PCR-Grade water according to manufacturer's instructions (BD Advantage 2 PCR Kit, BD Biosciences Clontech, Palo Alto, CA). The amplification profile for the primary PCR was: initial denaturation at 96 C for 3 min , followed by 30 cycles of denaturation at 94 C for 10 sec , annealing at 60 C for 10 sec and extension at 72 C for 2 min , with a final extension at 72 C for 10 min and then hold at 4 C (PCR Express or Sprint thermocycler; Hybaid, Ashford, UK). A second, nested reaction was used for the MN WTD isolate with the reaction volume, reagents, and amplification profile the same as above, except that the template DNA consisted of $1 \mu l$ of the primary PCR product, and primers AN50 (5'-GCTTGTCTTAAAGATTAAGCCATGC-3') and BN1700 (5’-CGACTTCTCCTTCCTTTAAGTGATAAG-3') were used (Fig. 2.1). Primary and nested products were separated by electrophoresis through a 1% agarose gel, alongside a 100 BP marker (Invitrogen Corp., Carlsbad, CA). The agarose gel was subsequently stained with ethidium bromide to visualize the bands by UV transillumination.

BH 1-a, BH 1-b, NH Elk, and MN MO 1 SSU rRNA genes were directly sequenced from the primary SSU rRNA gene products. For each, 2 to 5 (depending on the

FIGURE 2.1. Schematic drawing showing positions and directions of primers used for amplification of the SSU rRNA gene region. Primary PCR primers include A and B, and nested PCR primers include AN50 and BN1700.
amount of amplicon obtained) primary SSU rDNA PCR products were pooled, column purified (QIAquick PCR Purification Kit, Qiagen Inc., Valencia, CA) and quantitated by agarose gel electrophoresis alongside a mass marker (High Mass DNA Ladder, Invitrogen Corp., Carlsbad, CA), which ranged from 5 to $100 \mathrm{ng} / \mu \mathrm{l}$. Approximately 200 ng purified amplicon was used in each sequencing reaction described below.

Isolates OK WTD, WTD MA, MN MO 2, MN WTD, NY Rein 1, NY Rein 2, and PA Rein were cloned prior to sequencing. Each amplicon was ligated into a plasmid vector, pCR 2.1-TOPO, and Escherichia coli chemically competent cells (TOP10F, One Shot) were transformed according to manufacturer's instructions (TOPO TA Cloning, Invitrogen Corp., Carlsbad, CA). If the PCR product was over 24 hr old at the time of ligation, the product was incubated with 2X Qiagen Taq PCR Master Mix (TaqDNAPolymerase, Qiagen PCR Buffer (3 mM MgCl) , $400 \mu \mathrm{M}$ of each dNTP, Qiagen Inc., Valencia, CA) for 15 min at 72 C , to add single deoxyadenosine (A) overhangs to the 3' ends of the SSU-DNA and thus ensure that it would be ligated efficiently with the
plasmid vector; amplicons less than 24 hr old were directly ligated into the vector. The ligation mixture was incubated at room temperature for 30 min . The E. coli was thawed on ice for 15 min and $2 \mu \mathrm{l}$ of the ligation mixture was added to the cells, then the tube was held on ice for another 30 min . The cells were then heat shocked for 30 sec at 42 C , and $250 \mu \mathrm{l}$ SOC medium was added. The tube was incubated for 1 hr at 37 C in an incubatorshaker at 200 rpm (Queue Orbital Shaker, Queue Systems, Inc., Columbia, SC). Finally, the E. coli suspension was spread onto two LB (Luria Broth Agar, Sigma-Aldrich Co., St. Louis, MO) plates containing Kanamycin ($50 \mathrm{mg} / \mathrm{ml}$ in 0.9% sodium chloride, SigmaAldrich Co., St. Louis, MO) and X-Gal (5-Bromo-4-Chloro-3-Indolyl- β-DGalactopyranoside, $40 \mathrm{mg} / \mathrm{ml}$, Fisher Scientific, Fair Lawn, NJ). The plates were incubated overnight at 37 C .

Colony PCR was performed on 14 colonies the following day to screen for the insert SSU-DNA. A portion of each colony was added to $9 \mu l$ sterile water in a 0.2 ml PCR tube. One tube containing $10 \mu \mathrm{l}$ water served as a negative control. The tubes were incubated for 10 min at 96 C , then placed on ice and $11 \mu \mathrm{PCR}$ master mix was added to each. The master mix consisted of 2X Qiagen Taq PCR Master Mix (Qiagen Inc., Valencia, CA) with 1 pmol each M13 Forward (-20) (5-GTAAAACGACGGCCAG-3') and M13 Reverse (5'-CAGGAAACAGCTATGAC-3') primers. The cycling program used was initial denaturation at 94 C for 10 min , followed by 30 cycles of denaturation at 94 C for 1 min , annealing at 50 C for 1 min and extension at 72 C for 1 min , with a final extension at 72 C for 10 min and then hold at 4 C . The products were checked on an agarose gel as described above.

Five clones containing the desired insert were expanded in an overnight broth culture, and then plasmid DNA (pDNA) purified according to manufacturer's instructions (Qiagen Miniprep Kit, Qiagen Inc., Valencia, CA). The purified pDNA was quantitated by electrophoresis on an agarose gel alongside a plasmid DNA sample of known concentration (pTZ Marker, $230 \mathrm{ng} / \mu$ l, Sigma-Aldrich Co., St. Louis, MO). To confirm the presence of the correct size insert, the pDNA was digested using the restriction enzyme EcoR I (Invitrogen Corp., Carlsbad, CA). In each of 5 tubes, $1 \mu \mathrm{pDNA}, 0.5 \mu \mathrm{l}$ EcoR I enzyme, $0.5 \mu \mathrm{l}$ 10X Buffer (50 mM Tris- $\mathrm{HCl}\left(\mathrm{pH} 8.0\right.$), $10 \mathrm{mM} \mathrm{MgCl}_{2}, 100 \mathrm{mM} \mathrm{NaCl}$, Invitrogen Corp., Carlsbad, CA), and $3 \mu 1$ sterile water were added, and then all tubes were incubated at 37 C for 1 hr , with stirring every 15 min . To each tube was then added $2 \mu \mathrm{l}$ of 5X gel loading solution (0.05% bromphenol blue, 40% sucrose, 0.1 M EDTA $\mathrm{pH} 8,0.5 \%$ sodium lauryl sulfate, Sigma-Aldrich Co., St. Louis, MO). The $7 \mu 1$ samples were each electrophoresed through an agarose gel as described above, alongside a 100 BP marker (Invitrogen Kit, Invitrogen Corp., Carlsbad, CA).

The full nucleotide sequences were obtained from clones by sequencing with primers 528F (5'-CGGTAATTCCAGCTCC-3'), M13 Forward (-20) and M13 Reverse. Primers 528F, AN50 and BN1700 were used to directly obtain the sequences from PCR amplicons. All sequencing reactions (dGTP Big Dye terminator ready reaction; PE Applied Biosystem, Norwalk, CT) were performed by automated methods (Applied Biosystems 3100 genetic analyzer with DNA analysis software version 3.7) through services at Texas A\&M University at either the Gene Technologies Lab in the Department of Biology, or the DNA Technologies Lab in the Department of Veterinary Pathobiology.

BLAST searches (NCBI) were performed for all of the SSU rRNA gene sequences obtained to determine the identity of the respective parasites.

ITS rRNA Gene Sequence

To acquire the ITS sequences, a DNA fragment spanning the ITS1-5.8S-ITS2 region (Fig. 2.2) was amplified from the template DNA using PCR. Generic eukaryotic forward strand primers 1055F (5'-GGTGGTGCATGGCCG-3') or ITSF (5'-

GAGAAGTCGTAACAAGGTTTCCG-3'), derived from the SSU rRNA gene, and reverse strand primers ITSR (5^{\prime}-GGTCCGTGTTTCAAGACGG-3') or LSUR50 (5'-

GCTTCACTCGCCGTTACTAGG-3'), derived from the large subunit (LSU) rRNA gene, were used in primary PCRs (Fig 2.2). If a single band was not obtained, a secondary PCR was done using nested generic forward ITS primer 1200F (5^{\prime}-CAGGTCTGTGATGCT3'), ITSF (5'-GAGAAGTCGTAACAAGGTTTCCG-3'), or Bo1550F (5'-

CCCGAAAGGGCTGG-3'), all derived from the SSU rRNA gene, and reverse nested primer LSUR300 (5^{\prime}-TWGCGCTTCAATCCC-3'), LSUR50 (5'-GCTTCACTCGCCGTTACTAGG-3'), or BoLSUR10 (5'-CAGCGGGATAGCCTC-3'), all derived from the LSU rRNA gene (Fig. 2.2). The primer sets used for each isolate are shown in Table 2.2.

The ITS PCR mixes were composed as described above. The amplification profile for the primary ITS PCR was: initial denaturation at 96 C for 3 min , followed by 35 cycles of denaturation at 94 C for 30 sec , annealing at 55 (primers ITSF and LSUR50, 1055F and ITSR), 57 (primers 1055F and ITSR) or 60 C (primers ITSF and LSUR50) for 30 sec and extension at 72 C for 2 min , with a final extension at 72 C for 10 min and then hold at 4 C .

FIGURE 2.2. Schematic drawing showing positions and directions of primers used for amplification of the ITS1-5.8S-ITS2 gene region. These PCR primers include 1055F, ITSR, 1200F, LSUR50, LSUR300, ITSR, Bdo1550F, and BoLSUR10.

The amplification profile for the nested ITS PCR was: initial denaturation at 96 C for 3 min, followed by 30 cycles of denaturation at 94 C for 10 sec , annealing at 52 C (primers Bo1550F and BoLSUR10), 55 C (primers1200F and LSUR300, ITSF and LSUR300, ITSFand LSUR50), 57 C (primers 1200F and LSUR300) or 60 C (primers ITSF and LSUR50) for 10 sec and extension at 72 C for 2 min , with a final extension at 72 C for 10 \min and then hold at 4 C . The details for each isolate are listed in Table 2, except for isolates Bodo E, WIS Elk 2, RD61, and TX Elk 1-a, which were provided to this study as nested PCR products (unpublished results, P.J. Holman). All primary and nested ITS-PCR products were electrophoresed through an agarose gel as described above, alongside a 100 BP marker (Invitrogen Kit, Invitrogen Corp., Carlsbad, CA).

All PCR products were cloned as described above, except that the ligation mixture was incubated at room temperature for 5 min instead of 30 min , and the NH Elk nested

PCR products were column purified prior to ligation (QIAquick PCR Purification Kit, Qiagen Inc.).

Sequencing reactions and sequencing were performed as described above, but using primers ITSFN (5^{\prime}-GTGAACCTGCGGAAGG-3'), ITSF, LSUR50, M13 Forward (-20) and M13 Reverse. The ITS sequences were aligned and compared among each other using Sequencher 3.11 software. Percent identities of both the entire ITS1-5.8S-ITS2 DNA segments, and each gene separately, were determined using the GeneStream program (http://www2.igh.cnrs.fr/).

TABLE 2.2. ITS-PCR details for Babesia isolates. Particulars for acquiring the ITS1-5.8S-ITS2 gene region for each isolate are provided.

Isolate	DNA Source	Primary PCR Primers	Annealing Temperature, Primary PCR	Sequence From Primary PCR?	Secondary Nested PCR Primers	Annealing temperature, Secondary PCR	Sequence from Secondary PCR?
Bodo B-a	Culture	ITSF, LSUR50	55 C	Yes	NA ${ }^{\text {a }}$	NA	No
Bodo B-b	Culture	1055F, ITSR	55 C	No	ITSF, LSUR50	60 C	Yes
TX Elk 1-b	Culture	1055F, ITSR	55 C	No	1200F, LSUR300	55 C	Yes
MN Carib	Culture	1055F, ITSR	55 C	No	ITSF, LSUR300	55 C	Yes
WIS Elk 1	Culture	1055F, ITSR	55 C	No	1200F, LSUR300	57 C	Yes
WIS Rein	Blood	1055F, ITSR	55 C	No	ITSF, LSUR300	55 C	Yes
BH 1-a	Culture	1055F, ITSR	55 C	No	1200F, LSUR300	55 C	Yes
BH 1-b	Stabilate	1055F, ITSR	55 C	No	1200F, LSUR300	55 C	Yes
NH Elk	Culture	1055F, ITSR	55 C	No	1200F, LSUR300	55 C	Yes ${ }^{\text {b }}$
IN Elk	Culture	1055F, ITSR	55 C	No	1200F, LSUR300	55 C	Yes
OK WTD	Culture	1055F, ITSR	55 C	No	1200F, LSUR300	55 C	Yes

TABLE 2.2. Continued.

Isolate	DNA Source	Primary PCR Primers	Annealing Temperature, Primary PCR	Sequence From Primary PCR?	Secondary Nested PCR Primers	Annealing temperature, Secondary PCR	Sequence from Secondary PCR?
WTD MA	Blood	1055F, ITSR	57 C	No	1200F, LSUR300	57 C	Yes
NY Rein 1	Blood	1055F, ITSR	55 C	No	Bo1550F, BoLSUR10	52 C	Yes
NY Rein 2	Blood	1055F, ITSR	55 C	No	1200F, LSUR300	55 C	Yes
MN MO 1	Blood	ITSF, LSUR50	60 C	Yes	NA	NA	No
MN MO 2	Blood	1055F, ITSR	55 C	No	ITSF, LSUR50	55 C	Yes
MN WTD	Blood	1055F, ITSR	55 C	No	ITSF, LSUR300	55 C	Yes
PA Rein	Blood	1055F, ITSR	55 C	No	ITSF, LSUR50	55 C	Yes

[^0]
CHAPTER III

RESULTS

All Babesia sp. isolates used in this study possessed SSU rRNA gene sequences identical to that of Babesia odocoilei (GenBank accession no. U16369), except for RD61, the reindeer isolate from California (AF411337).

DNA was purified from each isolate and the ITS1-5.8S-ITS2 gene region was successfully amplified by PCR and cloned. Duplicate sets of clones were obtained from Bodo B (Bodo B-a and Bodo B-b), TX Elk (TX Elk 1-a and TX Elk 1-b) and BH 1 (BH 1-a and BH 1-b) isolates using different batches of DNA. At least three clones from each amplicon were sequenced. Four clones were sequenced from MN Carib, TX Elk 1-a, NY Rein 2 and Bodo E, and five clones from MN WTD.

The B. odocoilei ITS1-5.8S-ITS2 gene region ranged from 818 to 827 base pairs (bp) in length, with the ITS1 from 414 to 420 bp and the ITS2 from 250 to 253 bp . The California reindeer RD61 Babesia sp. possessed an ITS1-5.8S-ITS2 gene region of 835 bp , with the ITS1 423 bp and ITS2 253 bp in length. The 5.8S gene region, consisting of 159 bp, was identical for all isolates, including RD61, except for minor microhetero-geneity (14 occurrences as single base polymorphisms among all 63 clones). No fixed differences were found in the 5.8 S gene sequence.

Percent identity pairwise comparisons among the samples were calculated for the full ITS1-5.8S-ITS2 gene region, and for the individual ITS1 and ITS2 regions (Appendix A). From this data comparisons were done based on: 1) Isolates, 2) Clones, 3) Host, 4) Geographic origin, 5) Culture versus blood derived parasite DNA clones, and 6) Fatal versus nonfatal host infections.

Genetic variation between the California RD61 Babesia sp. and the various B. odocoilei isolates was compared. RD61, which is distinct from B. odocoilei based on SSU rRNA gene sequence (99.0% identity between RD61 and B. odocoilei), was also consistently distinct in the ITS region from all B. odocoilei isolates in this study. While identities between the B. odocoilei isolates ranged from 93.3% to 99.9% in the entire ITS1-5.8S-ITS2 gene region, 90.2% to 99.8% in ITS1 and 92.0% to 100.0% in ITS2, the highest percent identity between RD61 and any isolate was only 88.2% in ITS1-5.8S-ITS2 (with OK WTD and Bodo E), 85.8% in ITS1 (with OK WTD), and 87.6% in ITS2 (with Bodo E).

Percent identity among clones from the same Babesia sp. isolate for the ITS1-5.8SITS2 region ranged from 93.6 for Bodo B-b clones 1 and 21 to 100.0 for both MN MO1 clones 5 and 8 and MN WTD clones 1 and 14. ITS1 identities ranged from 91.4% between Bodo B-b clones 14 and 21 to 100.0% between MN MO1 clones 5 and 8, NY Rein 1 clones 4 and 12, RD61 clones 5 and 8 and Bodo E clones 1 and 3. Ranges in ITS2 were slightly narrower, from 93.2% between Bodo B-b clones 1, 14 and 21 , to 100.0% between MN Carib clones 3, 8 and 10, MN MO1 clones 5 and 8, MN MO2 clones 6 and 14, Bodo B-b clones 1 and 14, TX Elk 1-a clones 7 and 18, TX Elk 1-b clones 1 and 2, RD61 clones 2 and 5, WIS Elk 2 clones 10 and 14, Bodo E clones 1 and 3, IN Elk clones 11 and 14 and MN WTD clones 6 and 14.

Parallel comparisons of B. odocoilei and RD61 were also done based on the percent identities within and between the animal host of the isolate. The isolates from reindeer, elk, white-tailed deer or musk ox were compared among each other. The CA bighorn sheep (BH 1-a, BH 1-b) and MN Carib were not included since only one isolate from each
host was available for this study. The highest and lowest ranges in each gene region are listed in Table 3.1, and do not include intraclonal comparisons. Reindeer isolates included PA Rein, WIS Rein, NY Rein 1 and NY Rein 2; elk isolates, WIS Elk 1, TX Elk 1-a, TX Elk 1-b, NH Elk, WIS Elk 2 and IN Elk; white-tailed deer isolates, Bodo B-a, Bodo B-b, OK WTD, WTD MA, Bodo E and MN WTD; and musk ox isolates, MN MO1 and MN MO2. Again, the percent identities for B. odocoilei within a particular host in both ITS1, ITS2 and the entire ITS1-5.8S-ITS2 range from approximately 90% to 100% for all animal hosts of origin. Table 3.1 also lists comparisons within the reindeer host including the RD61 isolate, and these percent identities in all gene regions range from approximately 83% to 98%. The highest and lowest percent identity ranges between animal hosts are listed in Table 3.2, and do not include intraclonal comparisons. For all gene regions, this data ranges from approximately 91% to 100% for all interhost comparisons.

In order to carry out the geographic comparisons, all isolates were placed into one of five geographic areas - California, Minnesota, Northeastern United States, TexasOklahoma, and Wisconsin-Indiana. California isolates included RD61, BH 1-a and BH 1b; Minnesota isolates, MN Carib, MN MO1, MN MO2 and MN WTD; Northeastern United States isolates, PA Rein, WTD MA, NH Elk, NY Rein 1 and NY Rein 2; TexasOklahoma isolates, Bodo B-a, Bodo B-b, TX Elk 1-a, TX Elk 1-b, OK WTD and Bodo E; and Wisconsin-Indiana isolates, WIS Elk 1, WIS Rein, WIS Elk 2 and IN Elk. The highest and lowest ranges in each gene region are listed in Table 3.3, and do not include intraclonal comparisons. Although the samples from California were limited and included disparate data leading to results unlike the other geographic regions, they are still included

TABLE 3.1. Parasite ITS identity comparisons within a host species. The lowest percent identity and the highest percent identity found between isolates from the same species of vertebrate host are given for the full ITS1-5.8S-ITS2 region and ITS1 and ITS2 only.

	Low Value ITS1- 5.8S-ITS2	$\begin{gathered} \text { High Value } \\ \text { ITS1-5.8S- } \\ \text { ITS2 } \end{gathered}$	Low Value ITS1	High Value ITS1	Low Value ITS2	High Value ITS2
Reindeer	95.0\%	98.2\%	92.1\%	98.3\%	93.6\%	98.4\% PA Rein vs NY Rein 1;NY Rein 1 vs NY Rein 2
	WIS Rein	PA Rein vs	WIS Rein vs	PA Rein vs	PA Rein vs	
	vs NY	NY Rein 1	NY Rein 1	WIS Rein	NY Rein 1	
	Rein 2		and 2			
RD61 vs	86.5\%	87.8\%	82.5\%	84.7\%	84.6\%	86.5\%
Reindeer	WIS Rein	NY Rein 1	WIS Rein vs	NY Rein 1	WIS Rein	$\begin{aligned} & \text { NY Rein } 1 \text { vs } \\ & \text { RD61 } \end{aligned}$
	vs RD61	vs RD61	RD61	vs RD61	vs RD61	
Elk	94.1\%	98.2\%	90.2\%	98.8\%	92.4\%	99.2\%
	WIS Elk 1	WIS Elk 1	WIS Elk 1	WIS Elk 1	TX Elk 1-a	WIS Elk 1 vs NH Elk
	$\begin{gathered} \text { vs TX Elk } \\ 1-\mathrm{a} \end{gathered}$	vs NH Elk	$\begin{gathered} \text { vs TX Elk 1- } \\ \mathrm{a} \end{gathered}$	vs NH Elk	vs IN Elk	
Whitetailed deer	93.3\%	98.3\%	90.5\%	98.1\%	92.8\%	98.8\%
	Bodo B-b	Bodo B-b	WTD MA vs	Bodo B-a	Bodo B-a	Bodo B-b vs
	vs Bodo E	vs WTD	Bodo E	and B-b vs	and B-b vs	WTD
		MA		WTD	Bodo E;OK	MA;WTD MA
				MA;WTD	WTD vs	vs Bodo E and
				MA vs MN WTD	WTD MA	MN WTD
Musk Ox	97.7\%	99.9\%	96.4\%	99.8\%	98.4\%	100.0\%
	MN MO1	MN MO1	MN MO1 vs	MN MO1 vs	MN MO1	MN MO1 vs
	vs MN	vs MN	MN MO2	MN MO2	vs MN	MN MO2
	MO2	MO2			MO2	

in the analysis. Percent identities in both ITS1, ITS2 and the entire ITS1-5.8S-ITS2 range from approximately 91% to 100% for all geographic areas. The highest and lowest percent identity ranges among geographic areas are listed in Table 3.4, and do not include intraclonal comparisons or RD61. For all gene regions, this data ranges from approximately 90% to 100% for all interarea comparisons.

The effect of culture versus blood source of the parasite on clonal variation was also evaluated. ITS 1-5.8S-ITS2 comparisons of cultured isolates ranged from 93.6\%

TABLE 3.2. Parasite ITS identity comparisons between host species. The lowest percent identity and the highest percent identity found between isolates from paired host species are given for the full ITS1-5.8S-ITS2 region and ITS1 and ITS2 only.

	Low Value	High Value	Low Value	High Value	Low Value	High Value
	ITS1-5.8S-	ITS1-5.8S-	ITS1	ITS1	ITS2	ITS2
	ITS2	ITS2				
Reindeer	93.6%	98.4%	91.2%	98.6%	93.6%	99.6%
vs Elk	NY Rein 1	NY Rein 1 vs	WIS Rein	PA Rein vs	PA Rein vs	WIS Rein vs
	vs NH Elk	WIS Elk 2	vs WIS Elk	WIS Elk 2;	TX Elk 1-a	WIS Elk 2
			1 and 2	NY Rein 2		
Reindeer	93.9%	98.8%	90.7%	98.6%	92.8%	99.6%
vs White-	PA Rein	WIS Rein vs	WIS Rein	NY Rein 1	PA Rein and	WIS Rein vs
tailed	and NY	MN WTD;	vs Bodo E	vs Bodo B-	NY Rein 2	MN WTD;
deer	Rein 1 vs	NY Rein 1 vs		a	vs Bodo B-a	NY Rein 1 vs
	Bodo E	WTD MA			and B-b	WTD MA
Reindeer	95.2%	98.9%	91.9%	98.3%	94.4%	100.0%
vs Musk	WIS Rein	NY Rein 1 vs	WIS Rein 1	NY Rein 1	NY Rein 1	NY Rein 1 vs
Ox	vs MN	MN MO2	vs MN	vs MN	vs MN MO2	MN MO1
	MO2		MO1 and 2	MO2		
Reindeer	93.7%	97.6%	91.4%	97.3%	93.6%	97.6%
vs	vs WIS	vs WIS Rein	vs WIS	vs WIS	vs WIS Rein	vs WIS Rein
Bighorn	Rein		Rein	Rein	and NY	and NY Rein
Sheep						Rein 1

TABLE 3.2. Continued.

	Low Value ITS1-5.8S- ITS2	High Value ITS1-5.8S- ITS2	Low Value ITS1	High Value ITS1	Low Value ITS2	High Value ITS2
White-	94.5%	97.7%	91.7%	96.9%	93.2%	98.4%
tailed	vs Bodo B-	vs MN	vs OK	vs MN	vs WTD	vs MN
deer vs	a	WTD	WTD	WTD	MA	WTD
Bighorn Sheep						
Musk Ox vs	94.1%	95.5%	90.7%	93.6%	96.0%	97.6%
Bighorn Sheep	MO2	vs MN MO2	vs MN	vs MN	vs MN	vs MN MO1

(Bodo B-b clones 1 and 21, Bodo B-b clones 14 and 21) to 99.9\% (TX Elk 1-a clones 7 and 18, TX Elk 1-b clones 1 and 2, Bodo E clones 1, 3 and 6, IN Elk clones 11 and 14), and isolates obtained from blood ranged from 95.2\% (MN WTD clones 4 and 9) to 100.0% (MN MO1 clones 5 and 8, MN WTD clones 1 and 14). ITS1 was somewhat more variable, with cultured isolates ranging from 91.4% (Bodo B-b clones 14 and 21) to 100.0\% (Bodo E clones 1 and 3, RD61 clones 5 and 8), and blood isolates from 92.2\% (WTD MA clones 5 and 9) to 100.0% (MN MO1 clones 5 and 8, NY Rein 1 clones 4 and 12, MN WTD clones 1 and 14). ITS2 comparison values were similar to those obtained for the full gene region, with cultured isolates ranging from 93.2% (Bodo B-b clones 1 and 21, Bodo B-b clones 14 and 21) to 100.0% (MN Carib clones 3, 8 and 10, Bodo B-b clones 1 and 14, TX Elk 1-a clones 7 and 18, TX Elk 1-b clones 1 and 2, RD61 clones 2 and 5, WIS Elk 2 clones 10 and 14, Bodo E clones 1, 3 and 6, IN Elk clones 11 and 14), and blood isolates ranging from 95.2\% (NY Rein 1 clones 7 and 12, WTD MA clones 3 and 9) to 100.0% (MN MO1 clones 5 and 8, MN MO2 clones 6 and 14, MN WTD clones 1 and 4).

TABLE 3.3. Comparisons among parasite isolates within geographic regions.

	Low Range ITS1-5.8SITS2	High Range ITS1-5.8SITS2	Low Range ITS1	High Range ITS1	Low Range ITS2	High Range ITS2
CA	87.1\%	87.3\%	83.9\%	84.6\%	83.9\%	85.1\%
	BH 1-a vs RD61	BH 1 -a and 1b vs RD61	BH 1-a vs RD61	BH 1-b vs RD61	BH 1-b vs RD61	BH 1-a and 1-b vs
						RD61
MN	94.2\%	99.9\%	91.7\%	99.8\%	94.8\%	100.0\%
	MN Carib vs	MN MO1 vs 2	MN Carib vs	MN MO1	MN Carib vs	MN MO1
	MN WTD		MN WTD	vs 2	MN WTD, MN MO1 and 2	vs 2
NE	93.6\%	98.8\%	91.9\%	98.6\%	92.1\%	99.6\%
US	NH Elk vs	NY Rein 1 vs	NH Elk vs	NH Elk vs	NH Elk vs	NH Elk and
	NY Rein 1	WTD MA	NY Rein 1	NY Rein 2	WTD MA	NY Rein 1
			and WTD			vs WTD
			MA; NY			MA
			Rein 1 vs			
			WTD MA			
TX-	93.3\%	97.8\%	91.0\%	98.3\%	92.8\%	100.0\%
OK	Bodo B-b vs	TX Elk 1-a	TX Elk 1-a	TX Elk 1-a	Bodo B-a and	Bodo B-b vs
	Bodo E	and 1-b vs OK	vs Bodo E	and 1-b vs	B-b vs Bodo	TX Elk 1-a
		WTD		OK WTD	E	and 1-b
WIS-	94.3\%	98.2\%	91.2\%	97.9\%	94.8\%	99.6\%
IN	WIS Elk 1 vs	WIS Rein vs	WIS Elk 1	WIS Elk 2	WIS Elk 2 vs	WIS Rein
	WIS Rein	WIS Elk 2	and 2 vs	vs IN Elk	IN Elk	vs WIS Elk
			WIS Rein			2

Finally, the effect of fatal versus nonfatal host infections on isolate variation was evaluated. The isolates were separated into fatal or nonfatal infection status, and comparisons were done among them. Again, the RD61 isolate was not included due to the disparate data. The highest and lowest ranges in each gene region are listed in Table 3.5, and do not include intraclonal comparisons. Parasite isolates obtained from fatal host infections were TX Elk 1-a, TX Elk 1-b, MN Carib, WIS Rein, NY Rein 1, NY Rein 2, MN MO1, MN MO2, PA Rein and IN Elk; from nonfatal host infections, Bodo B-a,

TABLE 3.4. Comparisons among B. odocoilei isolates between geographic regions.

	Low Range	High Range	Low Range	High	Low Range	High Range
	ITS1-5.8S-	ITS1-5.8S-	ITS1	Range	ITS2	ITS2
	ITS2	ITS2		ITS1		
CA vs	93.3%	97.7%	90.7%	96.9%	92.4%	98.4%
MN	vs MN Carib	vs MN WTD	vs MN MO1	vs MN	vs MN Carib	vs MN WTD
				WTD		
CA vs	93.8%	97.0%	91.6%	97.6%	93.2%	97.6%
NE US	vs NY Rein 1	vs NH Elk	vs PA Rein	vs NH	vs WTD MA	vs NY Rein
				Elk		1
CA vs	93.5%	97.1%	91.2%	97.1%	92.8%	97.6%
TX-	vs TX Elk 1-a	vs OK WTD	vs TX Elk 1-a	vs TX Elk	vs TX Elk 1-	vs OK WTD
OK				$1-\mathrm{a}$	a	
CA vs	93.7%	97.6%	91.4%	98.3%	93.6%	97.6%
WIS-	vs WIS Rein	vs WIS Rein	vs WIS Rein	vs WIS	vs WIS Rein	vs WIS Rein
IN				Elk 1		
MN vs	94.2%	99.0%	91.5%	98.3%	94.0%	100.0%
NE US	MN Carib vs	MN MO1 vs	MN Carib vs	MN MO1	MN Carib vs	MN MO1 vs
	NH Elk	WTD MA	NH Elk	vs WTD	PA Rein;	NY Rein 1
				MA	MN MO2	
						and MN
						WTD vs

TABLE 3.5. Comparisons among B. odocoilei isolates within the type of host animal infections, fatal versus nonfatal.

	Low Range	High Range	Low Range	High Range	Low Range	High Range
	ITS1-5.8S-	ITS1-5.8S-	ITS1	ITS1	ITS2	ITS2
	ITS2	ITS2				
Fatal	94.0%	99.9%	91.6%	99.8%	92.0%	100.0%
infections	MN Carib vs	MN MO1 vs	TX Elk 1-a	MN MO1	MN Carib	NY Rein 1 vs
	WIS Rein	2	and 1-b vs	vs 2	vs IN Elk	MN MO2;
			MN MO1			MN MO1 vs
			and 2			2
Nonfatal	93.3%	98.3%	90.5%	98.8%	92.1%	99.6%
infections	Bodo B vs	Bodo B vs	Bodo E vs	NH Elk vs	NH Elk vs	NH Elk vs
	Bodo E	WTD MA;	WTD MA	WIS Elk 1	WTD MA	WTD MA
		WTD MA	and WIS		and MN	and MN
		and MN	Elk 2		WTD	WTD
		WTD vs				
		WIS Elk 2				

Bodo B-b, Bodo E, BH 1-a, BH 1-b, NH Elk, OK WTD, WTD MA, MN WTD, WIS Elk 1 and WIS Elk 2. The percent identities in both ITS1, ITS2 and the entire ITS1-5.8S-ITS2 range from approximately 91% to 100% for all host infections. The highest and lowest percent identity ranges between geographic areas are listed in Table 3.6, and do not include intraclonal comparisons. For all gene regions, this data ranges from approximately 90% to 100% for all interinfection comparisons.

A direct analysis of sequence variation was performed to analyze fixed differences identified in the ITS1 and ITS2 gene regions (the few nucleotide differences found in the 5.8S gene region were attributed to random polymorphisms due to either PCR or sequencing error, and, accordingly, the 5.8S region was not included in the direct analysis). DNA regions showing fixed differences ranged from 1 to 27 base pairs in length, and were identified in a full alignment of sequences from all the isolates and clones (Appendix B). The location of each run of fixed differences was numbered, and each particular sequence

TABLE 3.6. Comparisons among B. odocoilei isolates between the type of host animal infections, fatal versus nonfatal.

	Low Range	High Range	Low Range	High Range	Low Range	High Range
	ITS1-5.8S-	ITS1-5.8S-	ITS1	ITS1	ITS2	ITS2
	ITS2	ITS2				
Fatal	93.3%	99.2%	90.2%	98.8%	92.4%	100.0%
infections	MN Carib vs	MN MO2 vs	TX Elk 1-a	IN Elk vs	MN Carib	TX Elk 1-a
v.	BH 1-a	WTD MA	vs WIS Elk	Bodo B-a	vs BH 1-a	and 1-b vs
Nonfatal infections			1		and 1-b	Bodo B-b

type in a run was assigned a lowercase letter (Tables 3.7 and 3.8). An example comparison of RD61 clone 2 and Bodo E clone 1 shows fixed differences and their designations (Fig. 3.1). A tabulation of the results for all of the isolates (and clones) is shown in Tables 3.93.15 .

In ITS1, 21 fixed differences were identified. The fixed differences analysis showed only 1 overall pattern each for isolates RD61, NY Rein 2, BH 1-a and BH 1-b (Table 3.9); 2 patterns were found in isolates MN Carib, PA Rein, WIS Rein, WIS Elk 1, NH Elk, Bodo E, IN Elk, MN WTD, TX Elk 1-a, TX Elk 1-b, NY Rein 1, MN MO1 and MN MO2 (Table 3.10); three patterns were found in isolates OK WTD, WTD MA and WIS Elk 2 (Table 3.11). In some cases, occasionally a single base polymorphism found in one fixed difference of an otherwise identical sequence pattern group would give it a different designation at that location. In the summation of ITS1 sequence patterns found in each isolate, single base differences were discounted and the sequence denoted as the predominant type. Those single base differences observed in a sequence pattern predominant in a particular isolate are identified by asterisks in Tables 3.9, 3.10 and 3.11.

TABLE 3.7. Fixed differences in ITS1.

ITS1	At base pair position:	a	b	c	d	e	f	g	h	j	k	1
1	37-42	CTGTTG	CTGTTA	CCGTTG	CCGTTA	TTGTTA	CTGTCA					
2	51-56	AGCTCT	AGCTGT	GGCTGT	AG::GT	AGGTC:	AGCTTT					
3	61-62	CT	TT	CC								
4	82-84	GCG	GCA	CCG	GTG							
5	94-96	TGT	AGT	ACC								
6	104-106	TAG	CAA									
7	166	T	C									
8	180-181	CT	:T	CA								
9	207-214	TCCGGCG	CACGGCG	TTCGGCG	TCCGGCG	TCCGGTGG	TTCGGTG	CACGGTG				
		G	G	G	A		G	G				
10	219	A	G									
11	234-235	TC	CC	TT								
12	244-270	GTTG:GTG	GGTGTGT	GGTGTGT	GTTG:ATG	TTGGTGT	GGTGCGT	GGTGTGT	GGTGCGT	GTTA:GTGT	GGTGCGT	
		T	GT	GT	T	GG::TCTGTT	GT	GT	GT	A::CTGGTG	GT	
		A::CTGGTG	AATCTGTT	AATCTGTT	A::CTGGTG	G	AATCTGTT	AATCTGTT	AATCTGTT	CGCGAGCA	AATCTGTT	
		CGTGAGC	A	A	CGTGAGC	CTCCGGTAA	A	A	A	C	A	
		AC	CCTTG:TA	CTTTG:TA	AC		CCTT:GTA	CTTT:ATA	CTCT:GTA		CTTT:GTA	
			G	G			G	G	G		G	
13	271-283	CGGTACT	CGGTATT	CTGTGA: C	CTGTGA: C	CTCGCC:GC						
		GCACCA	GCACCA	ATTA	ATCA	ATCG						
14	284-287	CTGG	CTAG	CCAA	ATGG	CTAA	CCAG	GCGG	GTGG	CTGA		
15	311-316	TCATGA	TGATGA	TCACGG	TCATGG	CTATAG						
16	328	T	A									
17	339	C	T									
18	354-362	TTTTGACT	GT: :GACT	TT::GACTG	TTTTGGCT	TTTTGACCG	GT::GACT	TTCTGACT				
		G	A		G		G	G				
19	389-394	A:TTTT	T:ATTT	TGTTAT	T:TTTT	T:GTTT	G:TTT:	G:TTTT	TGTtTT	TATTAT	TGTtAC	AATTA
20	396-399	GCTA	GTGG	GCTG	GCAA							T
21	416-417	TG	TT	CT								

TABLE 3.8. Fixed differences in ITS2.

ITS2	At base pair position:	a	b	c	d	e
1	595	G	A			
2	608-609	AT	GC	AC	GT	
3	613-618	TTACTA	TTACCA	CTACCG	TTACCG	TCGCCA
4	622-627	TATCGG	TATCGA	CGCTGG	CGCCGG	CACTTG
5	643	A	C			
6	658-660	GAA	GGA	ATG	GTG	
7	758	A	G			
8	770-772	GTC	GTA	ATC	GCC	
9	780-790	TGCGATATGGC	CGTGGTGCGGC	CGCGATATGGC	CGTGATGCGGC	TGCGATGCGGC
10	798-805	TAATGCGT	TGGTACAT	TAATGCAT	TAGTGCAT	TGATGCGT
11	826	C	T			
		f	g	h	j	
1	595					
2	608-609					
3	613-618	CTACCA	CACTGG			
4	622-627	CACCGG				
5	643					
6	658-660					
7	758					
8	770-772					
9	780-790	TGCGC:GCAGT	TGCGGTATGGC			
10	798-805	TGATGCAT	AAATGCGT	TAATGCGC	TAATGTGT	
11	826					

$$
1
$$

1
1516
$30 \quad 31$
1
4546
2
3
$60 \quad 31$
7576 4
 txwe1 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

8			9	10			11				12	
181	195	210	211		225	226		240	241	255	256	270

 txwe $\overline{1}_{-}$TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC

car2_ CTCGCC-GCATCGCC AGCTCAACGAGATGC TGCTATGGATCTATA GGATCCAAGCAGA CG CTGCCT解G-GCAGTT TGCGTAGTGT--GAC txwe1_ CTG--TGACATTAGT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTGT--GAC
18
18 19 20
$361375376 \quad 390391$
$390391 \quad 405406$
$21420 \quad 421$
435436
450
car2 TACGATTATGCAACT CCGCTTGATTGCCG- TTT-GGCAATCGAGT TTT-CTGAAA $\overline{\mathbf{C T}} \overline{\mathrm{ATT}}$ AAACTTTCAGCGATG GATGTCTTGGCTCAC txwe $\overline{1}_{-}$TACGATTATGCAACT CCGCTTGATTGCCTG TTATGGTGGTCGAGT TTTTCTGAAATGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC
$\begin{array}{llrlrlrlrrr} & 451 & 465 & 466 & 480 & 481 & 495 & 496 & 510 & 511 & 526\end{array}$ txwe $\overline{1}$ ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT TAACAGACCTCTGAA CGTAACAAACACACC

FIGURE 3.1. An example of the alignment used in the direct analysis for sequence variation. Sequences for RD61 clone 2 (car2) and Bodo E clone 1 (txwe1) are shown, including fixed differences and their designations.

			78	9	10	
	721735	736750	751 - 765	766	781	796810
car2_	GTTGTAATTTATTAC	TCTAGGCCTCTTTGA	GGTGTGC $\overline{\mathbf{G}} \mathrm{GCTGTGT}$	CGCGETAT-AGCACT	GCGC-GCAGTGAGTG	GCTGATGCATGGCTG
txwe1_	GTTGTAATTTATTAC	TCTAGGCTTCTGTGA	GATGTGCAGCTGTGT	CGCGGTCT-CGTACT	GCGATGCGGCAAGTG	GCTAATGCATGGCTG
		11				
	811825					
car2	TCGGTGCTGTAGTGA	$\overline{\text { CTTTGA }}$				
txwe1	TCGGTGCTGTATTGA	$\underline{\text { CTTTAT }}$				

FIGURE 3.1. Continued.

TABLE 3.9. Isolates with one overall ITS1 sequence pattern. The ITS1 sequence patterns obtained by ITS1 direct analysis of sequence variation are shown for each isolate.

Isolate	Fixed Differences																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
RD61 Cl. 2	a	e	a	d	c	b	b	b	d	a	a	e	e	$\mathrm{f}^{\text {a }}$	f	b	a	b	f	d	C
RD61 CI.5,8	a	e	a	d	C	b	b	b	d	a	a	e	e	C	f	b	a	b	f	d	c
NY Rein 2 CI.1,3,5,8	b	a	a	a	a	a	a	b	C	a	a	c	b	b	a	a	a	c	b	a	a
$\begin{gathered} \text { BH 1-b } \\ \text { CI.2,BH 1-a } \\ \text { Cl.10,14 } \\ \text { BH 1-a } \end{gathered}$	a	a	a	$\mathrm{a}^{\text {b }}$	a	a	a	b	a	a	a	a	C	g	a	a	b	d	b	a	a
$\begin{gathered} \text { Cl.11,BH 1-b } \\ \text { Cl. } 5,8 \\ \hline \end{gathered}$	a	a	a	C	a	a	a	b	a	a	a	a	c	g	a	a	b	d	b	a	a

${ }^{\text {a }}$ Single base difference between " c " and " f " pattern. Only difference in sequence pattern among 3 clones.
${ }^{b}$ Single base difference converts " c " to "a" pattern. Only difference in sequence pattern among 3 clones.

The actual base pair differences found in each of these fixed difference sites are shown in Table 3.12.

The Bodo B-a and Bodo B-b isolates contained up to 3 identifiable ITS1 patterns that appeared to result from recombination, as evident in Table 3.13. For the first 5 fixed difference sites, Bodo B-a clones 3 and 5 and Bodo B-b clone 21 had one pattern (b a a a a), and Bodo B-b clones 1 and 14 and Bodo B-a clone 6 had another pattern (a b a b b). The last positions, 9-21, also showed the same pattern (a a a bab a a a a e a a) for Bodo B-a clones 3 and 5 and Bodo B-b clone 21, and another pattern (d a a d c dabaac ba) for Bodo B-b clones 1 and 14. Bodo B-a clone 6, however, did not match Bodo B-b

TABLE 3.10. Isolates with two overall ITS1 sequence patterns. The ITS1 sequence patterns obtained by ITS1 direct analysis of sequence variation are shown for each isolate.

Isolate	Fixed Differences																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
MN Carib CI. 10 MN Carib Cl.3, 8,12	a e	b	a a	a a	a a	a a	a a	b a	a a	a a	a a	C	a a	e e	d d	a a	a a	a	h a	b a	a a
PA Rein Cl .3	a	C	a	a	a	a	a	a	C	a	a	C	a	f	a	a	a	a	a	b	a
PA Rein Cl.8,9	a	c	a	a	a	a	a	a	f	a	a	b	a	a	a	a	a	a	a	b	a
WIS Rein CI. 24 WIS Rein CI.25,27	a	C	a	a	a	a	a	b	C	a	a	C	a	a	a	a	a	a	a	b	b
	a	a	a	a	a	a	a	b	d	a	a	a	c	d	a	a	a	a	a	b	a
WIS Elk 1 Cl .8 WIS Elk 1 CI.9,10	d	b	a	a	b	a	a	a	b	b	a	a	C	d	a	a	a	a	b	a	a
	c	b	a	a	a	a	a	b	e	a	a	a	c	d	a	a	a	a	b	a	a
NH Elk Cl. 80	C	b	a	a	a	a	a	C	a	a	a	a	c	d	a	a	a	a	a	a	a
NH Elk Cl.74,79	b	a	a	a	b	b	a	b	e	a	a	b	b	b	a	a	a	C	b	a	a
BodoE CI. 2	b	f	a	a	b	a	a	a	a	a	C	a	C	h	a	a	a	b	C	b	a
BodoE CI.1,3,6	a	a	a	a	a	a	a	b	b	a	a	a	c	h	a	a	a	b	c	b	a
IN Elk Cl. 6	b	a	a	a	a	a	a	a	a	a	a	b	a	a	a	a	a	a	b	a	a
IN Elk Cl. 11	b	a	a	a	a	a	a	a	a	a	a	$h^{\text {a }}$	a	b	a	a	a	a	a	b	b
IN Elk CI. 14	b	a	a	a	a	a	a	a	a	a	a	$k^{\text {a }}$	a	b	a	a	a	a	a	b	b
MN WTD CI. 14	b	a	a	a	$b^{\text {b }}$	a	a	a	b	a	b	f	a	a	a	a	a	a	d	a	b
MN WTD CI. 1	b	a	a	a	a	a	a	a	b	a	b	f	a	a	a	a	a	a	d	a	b
MN WTD Cl. 4	$\mathrm{f}^{\text {c }}$	a	a	a	a	a	a	a	b	a	b	f	a	a	a	a	a	a	d	a	b
MN WTD CI. 9	b	a	a	$b^{\text {b }}$	b	a	a	b	a	a	a	j	C	d	a	a	a	a	g	b	a
MN WTD CI. 11	b	a	a	a	b	a	a	b	a	a	a	j	C	d	a	a	a	a	g	b	a
TX Elk 1-a Cl.7, 14, TX Elk 1-b CI. 8	b	a	a	a	a	a	a	b	C	a	a	a	d	C	C	a	a	a	a	a	a
TX Elk 1-a CI. 18 TX Elk 1-a CI.24, TX Elk 1b Cl. 1	b	a	a	$\mathrm{d}^{\text {d }}$	a	a	a	b	C	a	a	a	d	c	C	a	a	a	a	a	a
	a	d	a	a	a	a	a	b	a	a	a	C	a	a	C	a	a	a	C	b	a

TABLE 3.10. Continued.

Isolate	Fixed Differences																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
TX Elk 1-b CI. 2 NY Rein 1	a	d	a	a	a	a	a	b	a	a	a	c	a	$\mathrm{j}^{\text {e }}$	c	a	a	a	c	b	a
CI.4,12	a	b	a	a	b	a	a	b	b	a	a	b	a	c	a	a	a	a	g	b	a
NY Rein 1 Cl. 7	c	b	a	a	b	a	a	a	c	a	a	b	a	b	a	a	a	e	b	c	a
MN MO1 Cl.5,8	c	b	a	a	$\mathrm{b}^{\text {b }}$	a	a	a	g	$\mathrm{b}^{\text {b }}$	a	c	a	f	b	a	a	a	a	b	b
MN MO2 Cl. 5	c	b	$\mathrm{b}^{\text {b }}$	a	$\mathrm{b}^{\text {b }}$	a	a	a	$\mathrm{b}^{\text {f }}$	$\mathrm{b}^{\text {b }}$	a	c	a	f	b	a	a	a	a	b	b
MN MO2 Cl. 6	c	a	$\mathrm{b}^{\text {b }}$	a	$\mathrm{b}^{\text {b }}$	a	a	a	f	a	a	b	a	a	a	a	a	a	d	a	a
MN MO1 Cl. 4	c	a	a	a	a	a	a	a	f	$\mathrm{b}^{\text {b }}$	a	b	a	a	a	a	a	a	d	a	a
MN MO2 Cl. 14	c	a	a	a	a	a	a	a	f	a	a	b	a	a	a	a	a	a	d	a	a

" Single base difference converts " h " and " k " to same pattern. Only difference in
sequence pattern among clones.
${ }^{\mathrm{b}}$ Single base difference converts "b" to "a" pattern.
${ }^{\mathrm{c}}$ Single base difference converts " f " to "b" pattern.
${ }^{\mathrm{d}}$ Single base difference converts " d " to " a " pattern.
e Single base difference converts " j " to "a" pattern.
${ }^{\mathrm{f}}$ Single base difference converts "b" to "g" pattern.
clones 1 and 14 in these locations, but instead matched Bodo B-a clones 3 and 5 and Bodo B-b clone 21 (Table 3.13).

In ITS2, 11 fixed differences were identified, and up to 3 distinct fixed difference patterns per isolate were also revealed in ITS2, although there was much more conservation in this shorter gene region. Isolates NY Rein 2, Bodo E, BH 1-a, BH 1-b and MN Carib were found to have only 1 pattern (Table 3.14); NY Rein 1, PA Rein, WIS Rein, WIS Elk 1, Bodo B-a, Bodo B-b, RD61, TX Elk 1-a, TX Elk 1-b, NH Elk, WIS Elk 2, IN Elk, MN MO1, MN MO 2 and MN WTD had 2 patterns (Table 3.15); isolates OK WTD and WTD MA had 3 patterns (Table 3.16). Single base differences

TABLE 3.11. Isolates with three overall ITS1 sequence patterns. The ITS1 sequence patterns obtained by ITS1 direct analysis of sequence variation are shown for each isolate.

	Fixed Differences																				
Isolate	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
OK WTD CI. 3	a	a	a	a	a	a	a	b	d	a	b	g	a	e	a	a	a	a	j	b	a
OK WTD CI. 8	a	a	a	b	b	a	a	b	c	a	a	a	d	c	d	a	a	a	a	b	a
OK WTD CI. 11	b	b	a	b	b	a	a	b	b	a	a	a	d	c	c	a	a	a	b	b	a
WTD MA CI. 3	a	b	C	a	a	a	a	a	a	a	a	b	a	a	a	a	a	a	b	b	b
WTD MA CI. 5	d	a	a	a	b	a	a	a	a	a	a	d	c	d	a	a	a	a	I	b	a
WTD MA CI. 9	C	b	a	a	a	a	a	a	e	a	a	b	a	e	b	a	a	a	a	a	a
$\begin{gathered} \text { WIS Elk } 2 \\ \text { CI. } 14 \end{gathered}$	d	b	a	a	a	a	a	a	b	a	a	b	b	e	a	a	a	a	b	a	a
WIS Elk 2 CI. 10	d	b	a	b	a	a	a	a	b	a	a	b	b	e	a	a	a	a	b	c	a
WIS Elk 2 CI. 13	a	a	a	a	a	a	a	a	C	a	a	b	a	a	a	a	a	a	d	b	a

are identified by asterisks in Tables 3.14, 3.15 and 3.16, and are shown in the sequences in Table 3.18. There were no isolates showing distinct recombination, as there were in ITS1.

The recombination events evident in ITS1 for Bodo B-a and Bodo B-b continued through the ITS2 region, as shown in Table 3.17. In ITS1, positions 9-21 showed a match between Bodo B-a clone 6 and Bodo B-a clones 3 and 5 and Bodo B-b clone 21. ITS2 demonstrates a conservation of this trend; Bodo B-a clones 3, 5 and 6 and Bodo Bb clone 21 show one pattern (a b c a a a a a b b a), while Bodo B-b clones 1 and 14 show another (a adcaaaaea).

TABLE 3.12. Nucleotide difference changes in ITS1 sequences containing 1, 2 and 3 types per isolate, and for Bodo B isolates.

Location (1 type/isolate)	Sequence (1 type/isolate)	Location (2 types/isolate)	Sequence (2 types/isolate)	Location (3 types/isolate)	Sequence (3 types/isolate)
4 a	GCG	1b	CTGTTA	4 a	GCG
4 c	CCG	1 f	CTGTCA	4d	GTG
14 c	CCAA	4 a	GCG	14a	CTGG
14 f	CCAG	4b	GCA	14j	CTGA
		5 a	TGT		
		5b	AGT		
		12b	TGGTGTGTGTAATC TGTTACCTTGTAG		
		12h	TGGTGCGTGTAATC TGTTACTCTGTAG		
		12k	tGGTGCGTGTAATC tGTTACTTTGTAG		
Location (Bodo B isolates)	Sequence (Bodo B isolates)	Location (MN MO isolates)	Sequence (MN MO isolates)		
4 a	GCG	3 a	CT		
4b	GCA	3b	TT		
8 a	CT	9 b	CACGGCGG		
8 b	:T	9 g	CACGGTGG		
18a	TTTTGACTG				
18 g	TTCTGACTG				
19c	TGTTAT				
19k	TGTTAC				

TABLE 3.13. Apparent recombination in Bodo B ITS1. Results of direct analysis of sequence variation in ITS1.

Isolate	Fixed Differences																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Bodo B-a Cl. 3	b	a	a	a	a	a	a	b	a	a	a	b	a	b	a	a	a	$\mathrm{g}^{\text {a }}$	e	a	a
Bodo B-a CI. 5	b	a	a	a	a	a	a	b	a	a	a	b	a	b	a	a	a	a	e	a	a
Bodo B-b Cl. 21	b	a	a	a	a	a	b	b	a	a	a	b	a	b	a	a	a	a	e	a	a
Bodo B-b Cl. 1	a	b	a	b	b	a	a	b	d	a	a	d	C	d	a	b	a	a	C	b	a
Bodo B-b Cl. 14	a	b	a	b	b	a	a	$a^{\text {b }}$	d	a	a	d	C	d	a	b	a	a	$k^{\text {c }}$	b	a
Bodo B-a CI. 6	a	b	a	$\mathrm{a}^{\text {b }}$	b	a	a	b	a	a	a	b	a	b	a	a	a	a	e	a	a

${ }^{\text {a }}$ Single base difference converts " g " to " a " pattern.
${ }^{\mathrm{b}}$ Single base difference converts "a" to "b" pattern.
${ }^{c}$ Single base difference converts " k " to " c " pattern.

All clone sequences for the entire ITS1-5.8S-ITS2 gene region were aligned using a ClustalW 1.8 Program (http://searchlauncher.bcm.tmc.edu/multi-align/multialign.html). The alignment (Appendix B) was then used to create a phylogenetic Neighbor-Joining tree, shown both in Fig. 3.2 and Appendix C, using bootstrap resampling (Paup 4.0b10 software program).

The RD61 isolates, used as an outgroup, formed one clade, clearly separated from ITS1, most likely due to the fast that the ITS2 gene region is shorter and more conserved than the ITS1 gene region. Some B. odocoilei isolates are grouped together as clonal groups, and some separate into different groups, correlating to the same distributions seen in the direct analysis of sequence variation based on fixed differences.

Clones of NY Rein 2 (nyr2), PA Rein (par), BH 1-a and BH 1-b (casa and casb), and Bodo E (txwe) formed single groups for each isolate. Clones of isolates TX Elk 1-a and

TABLE 3.14. Isolates with one overall ITS2 sequence pattern. The ITS2 sequence patterns obtained by ITS2 direct analysis of sequence variation are shown for each isolate.

Isolate	Fixed Differences										
	1	2	3	4	5	6	7	8	9	10	11
NY Rein 2 CI. 1,3,5,8	a	a	b	g	a	a	a	a	g	a	a
Bodo E CI. 1,2,3,6	a	a	a	c	b	a	a	a	e	c	a
$\begin{gathered} \text { BH 1-a Cl.10,14, } \\ \text { BH 1-b Cl.2,5,8 } \end{gathered}$	a	b	d	f	a	b	a	c	a	d	a
BH 1-a Cl. 11	a	b	d	$\mathrm{g}^{\text {a }}$	a	b	a	C	a	d	a
M ${ }^{\text {Carib Cl. }}$, 8, 10	b	a	b	a	a	a	a	a	b	a	a
MN Carib CI. 12	b	a	b	$\mathrm{b}^{\text {b }}$	a	a	a	a	b	a	a

${ }^{\text {a }}$ Single base difference converts " g " to " f " pattern.
${ }^{\mathrm{b}}$ Single base difference converts " b " to " a " pattern.

TX Elk 1-b (txea and txeb) and those of MN Carib (mnc), MN WTD (mnw), NH Elk (nhe), IN Elk (ine), NY Rein 1 (nyr1), WIS Rein (wir), WTD MA (maw) and WIS Elk 1 (wie1) each separated into two distinct groups, as seen in the direct sequence analysis. WIS Elk 2 (wie2) and Bodo B (a and b) (txwba and txwbb) each distribute into 2 groups as in the direct sequence analysis. MN MO1 (mnmo1) clones 5 and 8 and MN MO2 (mnmo2)
clone 8 group together, versus clones 5 and 8 placed closer together, which is consistent with the ITS2 direct sequence analysis. The direct sequence analysis shows differences among MN MO1 clone 4 and MN MO2 clones 6 and 14, which in the tree results in the MN MO2 clones branching together separately from the MN MO1 clone. OK WTD
(okw)clones 3, 8 and 11 all show different types in both ITS1 and ITS2 direct sequence analyses, and in the tree clones 8 and 11 group together, while clone 3 is separate.

In summary, the phylogenetic tree based on ITS region nucleotide sequences shows no clear separation of isolates due to vertebrate host, geographic region, or other factor. The tree does show that the majority of the isolates have two distinct ITS sequence types, and that within these types, clones of an isolate are more like each other than other isolates that share that type.

TABLE 3.15. Isolates with two overall ITS2 sequence patterns. The ITS2 sequence patterns obtained by ITS2 direct analysis of sequence variation are shown for each isolate.

TABLE 3.15. Continued.

Isolate	Fixed Differences											Isolate	Fixed Differences										
	1	2	3	4	5	6	7	8	9	10	11		1	2	3	4	5	6	7	8	9	10	11
RD61																							
CI.2,5	b	d	e	e	b	c	b	b	f	f	a												
RD61																							
Cl. 8	b	d	c	e	b	d	b	b	f	f	a												
MN WTD																							
CI. 11	a	b	d	f	a	a	a	a	a	a	a												
MN WTD																							
CI. 9	a	$c^{\text {d }}$	d	f	a	a	a	a	a	$\mathrm{j}^{\text {e }}$	a												
MN WTD																							
CI. 1,4,14	a	a	d	c	a	a	a	a	b	a	a												

${ }^{\text {a }}$ Single base difference converts " h " to " a " pattern.
${ }^{\mathrm{b}}$ Single base difference converts " b " to " a " pattern.
${ }^{c}$ Single base difference converts " d " to " a " pattern.
${ }^{d}$ Single base difference converts " c " to " b " pattern.
${ }^{e}$ Single base difference converts " j " to "a" pattern.

TABLE 3.16. Isolates with three overall ITS2 sequence patterns. The ITS2 sequence patterns obtained by ITS2 direct analysis of sequence variation are shown for each isolate.

Isolate	Fixed Differences										
	1	2	3	4	5	6	7	8	9	10	11
OK WTD CI. 3	a	a	b	a	a	a	a	a	C	a	b
OK WTD CI. 8	a	b	f	f	a	a	a	a	a	a	a
OK WTD CI. 11	a	a	d	f	a	a	a	a	a	b	a
WTD MA CI. 3	b	a	d	c	a	a	a	a	b	b	b
WTD MA CI. 5	a	a	b	C	a	a	a	a	e	a	a
WTD MA CI. 9	a	a	d	d	a	a	a	a	a	a	a

TABLE 3.17. Recombination in Bodo B. Clone Bodo B-a Cl. 6 most closely shares the same sequence pattern vs Bodo B-b Cl. 1 and Bodo B-b Cl. 14 in ITS1, positions 1-8. For ITS1 positions 9-21, and the complete ITS2 region, this clone matches Bodo Ba Cl. 3, Bodo B-a Cl.5, and Bodo B-a Cl. 21.

Isolate	Fixed Differences																															
	ITS1																					ITS2										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1	2	3	4	5	6	7	8	9	10	11
Bodo B-a Cl. 3	b	a	a	a	a	a	a	b	a	a	a	b	a	b	a	a	a	$\mathrm{g}^{\text {a }}$	e	a	a	a	b	c	a	a	a	a	a	b	b	a
Bodo B-a Cl. 5	b	a	a	a	a	a	a	b	a	a	a	b	a	b	a	a	a	a	e	a	a	a	b	c	a	a	a	a	$d^{\text {e }}$	b	b	a
Bodo B-b Cl. 21	b	a	a	a	a	a	b	b	a	a	a	b	a	b	a	a	a	a	e	a	a	a	b	c	a	a	a	$\mathrm{b}^{\text {d }}$	a	b	b	a
Bodo B-b Cl. 1	a	b	a	b	b	a	a	b	d	a	a	d	c	d	a	b	a	a	c	b	a	a	a	d	c	a	a	a	a	a	e	a
Bodo B-b Cl. 14	a	b	a	b	b	a	a	$\mathrm{a}^{\text {b }}$	d	a	a	d	c	d	a	b	a	a	$k^{\text {c }}$	b	a	a	a	d	c	a	a	a	a	a	e	a
Bodo B-a Cl. 6	a	b	a	$a^{\text {b }}$	b	a	a	b	a	a	a	b	a	b	a	a	a	a	e	a	a	a	b	c	a	a	a	a	a	b	b	a

${ }^{\text {a }}$ Single base difference converts " g " to " a " pattern.
${ }^{\mathrm{b}}$ Single base difference converts "a" to "b" pattern.
${ }^{c}$ Single base difference converts " k " to " c " pattern.
${ }^{\text {d }}$ Single base difference converts "b" to "a" pattern.
${ }^{e}$ Single base difference converts "d" to "a" pattern.

TABLE 3.18. Nucleotide difference changes in ITS2 sequences containing 1 and 2 types per isolate.

Location (1 type/isolate)	Sequence (1 type/isolate)	Location (2 types/isolate)	Sequence $(2$ types/isolate)
4 f	CACCGG	7 a	A
4 g	CACTGG	7 b	G
4 a	TATCGG	8 a	$\mathrm{GT}:$
4 b	TATCGA	8 d	$\mathrm{GC}:$
		10 a	TAATGCGT
		10 h	TAATGCGC
		10 j	TAATGTGT

FIGURE 3.2. Neighbor-joining phylogenetic tree with bootstrapping. The California Reindeer RD61 Babesia sp. served as the outgroup. The different isolates are designated by number to more clearly show the separate placement of different clones from the same isolate.

CHAPTER IV

DISCUSSION AND SUMMARY

The ITS1-5.8S-ITS2 ribosomal RNA gene region contains both highly conserved and variable regions now considered to be criteria for discrimination among parasites at a subspecies level (reviewed by Prichard and Tait, 2001).

Zahler et al. (1998) analyzed the ITS1-5.8S-ITS2 rRNA gene region in eight Babesia canis isolates of disparate geographic origins, vector specificity and pathogenicity to dogs (Canis familiaris) in order to determine whether genetic differences concurred with currently proposed subspecies designations - B. canis canis, B. canis vogeli and B. canis rossi. Definite genetic variation between the subspecies congruent with the existing taxonomic classifications was observed, with the sequences separating into three distinguishable genotypic groups. The percent identity among these three groups ranged from 70-82\% for the entire ITS1-5.8S-ITS2 gene region. Little or no variation was observed within each subspecies. Polymorphism between this gene region in the B. canis isolates and an equine Babesia caballi isolate was on the same order of magnitude as that found among the B. canis subspecies. Thus, the partitions of B. canis were not only proven, but separate species status was even suggested in place of the current subspecies designations. This study established the possibility of utilizing the ITS1-5.8S-ITS2 gene region as a standard for grouping together and assigning subspecies or even species status to interrelated Babesia organisms.

The results from the Zahler study confirming taxonomic divisions for one Babesia sp. using molecular analysis consequently led to the idea that a similar study could be undertaken for Babesia odocoilei isolates, also of differing geographic origin and pathogenicity to hosts. It was anticipated that genotypic groups could be discerned for B. odocoilei as well using ITS as a genetic marker.

Babesia odocoilei has been described in a number of different deer hosts including the original host, white-tailed deer, and caribou and elk (Spindler et al., 1958; Emerson and Wright 1968; 1970; Holman et al., 1994; Holman et al., 2000). During the course of this study, this parasite was also found to infect reindeer and two members of the bovidae, bighorn sheep and musk ox (Holman et al., 2003; unpublished data). As these different hosts were recognized, the known geographic range of the parasite was also extended. Originally described in Texas, the parasite is now known to be cosmopolitan across the southern U.S., as well as in the Great Lakes region, New York, Pennsylvania and New Hampshire. It has also been identified in California.

Frequently, babesiosis outbreaks with one or more fatalities occur in farmed or managed deer with no previous history of the disease (Holman et al., 1994; 2000; 2003). This study was undertaken to determine if the ITS1-5.8S-ITS2 gene region could be used as a marker to trace the source of Babesia sp. infection when these outbreaks occur. The isolates used in this study covered a wide range of both geographic regions and hosts infected.

To assess the baseline variation that might be expected in the ITS gene region within a Babesia sp. isolate, intraclonal comparisons based on sequence percent
identities were first determined for each isolate. For the full ITS1-5.8S-ITS2 gene region, these percent identities ranged from 93.6-100.0\%. Ranges in the ITS1 gene region were from 91.4-100.0\%, and ranges in ITS2, the smaller and more conserved gene region, were from 93.2-100.0\%. Isolates for which duplicate clone sets were made showed higher percent identities in all gene regions among themselves compared to other sequences. This was most notable in ITS2. For all isolates, higher conservation was consistently found in the ITS2 versus the ITS1 gene region. The disparity in sequences among clones of an isolate deemed it necessary to include at least three, and in some cases four (Minnesota Caribou, Texas Elk 1-a, New York Reindeer 2, Texas B. odocoilei-E WTD) or five (Minnesota WTD), clones per isolate when determining percent identities and in sequence analysis.

The California reindeer Babesia sp., RD61, which is distinct from B. odocoilei based on SSU rRNA gene sequence (99.0% identity between RD61 and B. odocoilei), was also distinct in the ITS region from all B. odocoilei isolates in this study. Identities between the B. odocoilei isolates ranged from 93.3-99.9\% for the entire ITS1-5.8S-ITS2 gene region, whereas the highest percent identity between RD61 and B. odocoilei was only 88.2% (Appendix A).

Pairwise comparisons of the full ITS1-5.8S-ITS2 gene region and the ITS1 or ITS2 regions only were performed to determine if any sequence segregation exists based on vertebrate host, geographic location of the infection, fatal versus nonfatal disease and culture- versus blood-derived parasites. None of the above factored into the results obtained. The values for these comparisons were no different from the intraclonal
variation observed. These conclusions were supported by the phylogenetic tree constructed using the full ITS1-5.8S-ITS2 gene region (Fig. 3.2), where the isolates did not segregate into groups based on vertebrate host, geographic area, clinical manifestation, or source of parasite.

An alignment of the sequences obtained in this study revealed that there were a limited number of variable sites reflecting fixed differences throughout the ITS1 and ITS2 gene regions. The 5.8 S gene region was identical in all isolates, except for random single base heterogeneity observed in some clones. There were no fixed differences in 5.8S gene sequences among the isolates. Random single base heterogeneity was also found occasionally throughout the ITS1 and ITS2 regions. As these variations were both inconsistent and random, it is likely that they are a result of PCR and/or sequencing errors.

Analysis of the fixed differences in ITS1 and ITS2 revealed that most of the isolates had two distinct sequence patterns, although two isolates had only one pattern and three appeared to have three patterns. Some of the fixed differences were point mutations such that in some cases, a sequence pattern differed from the predominant in a particular isolate due to a single base variation. When only one base difference occurred, the sequences were considered as a single pattern.

The phylogenetic tree (Fig. 3.2) was inferred using the NeighborJoining/UPGMA method, bootstrap resampling and the RD61 isolates as the outgroup. This program produces a reliable phylogeny if the rates of evolution are reasonably constant among the different lineages (Sokal and Sneath, 1963), as would be expected
with this group of closely related parasites. RD61 was confirmed as an outgroup, branching separately from the B. odocoilei isolates. The B. odocoilei isolates either grouped together as clonal groups or separated into different groups, usually correlating to the same distributions seen in the direct analysis of sequence variation based on fixed differences. As mentioned above, the phylogenetic tree did not characterize Babesia species based on animal hosts and geographic areas. Indeed, similarity in ITS sequences was shown among isolates from diverse hosts and geographic separation. Thus, the tree topology concurred with the other analyses that no segregation of isolates can be inferred from the ITS sequence data.

The clones of each B. odocoilei isolate generally separate into two categories occupying different positions in the tree, which may be adjacent or divergent. Within these categories, clones of an isolate are more similar to each other than to other isolates that also occupy that position, with the exception of New Hampshire Elk isolate clone 80. Despite the variation seen in some isolates in the fixed differences pattern analysis, which at times resulted in three or more patterns, when analyzed in direct comparison to all the other sequences each isolate separated into two categories of clones in the phylogenetic tree, except for the Massachusetts WTD isolate. This division into two categories suggests that there are at least two rRNA transcription units present in B. odocoilei.

In the analysis based on fixed differences, Texas B. odocoilei-B-a WTD and Texas B. odocoilei-B-b WTD isolates contained up to 3 identifiable patterns that appear to result from recombination in the ITS1 and ITS2 gene regions (Table 3.16).

Recombination in the ITS regions of Theileria parva was previously reported by Collins and Allsopp (1999). Isolation and sequencing of Theileria parva subspecies, Theileria parva lawrencei and Theileria parva parva, showed that the 5.8 S gene sequences of eleven T. parva isolates were identical, but the ITS regions of both T. p. parva and T. p. lawrencei contained different combinations of identifiable sequence segments. This data led to a conclusion of the other extreme from that garnered in the B. canis study (Zahler et al., 1998); namely, that the resulting assortment of segments in any one isolate made it impossible to definitively distinguish isolates based solely on ITS1 and ITS2 sequences (Collins and Allsopp 1999). Collins and Allsopp suggested that genetic recombination of populations, derived from mingled gene pools, could account for such diverse data.

It is possible that the recombination evident in the Texas B. odocoilei-B isolate in this study occurs in an area where the incidence of Babesia infection and tick infestation in the white-tailed deer population is quite high. Texas B. odocoilei-B was isolated from a naturally infected white-tailed deer exhibiting no clinical signs of illness, suggesting that a situation of enzootic stability is present on the Brushy Creek Experimental Ranch, TX. Furthermore, the high seropositive prevalence rate to B. odocoilei (80%) in resident deer (Waldrup et al., 1989a) supports the likelihood of endemicity in that region. In such a situation, there would be opportunity for recombination to occur.

A highly endemic region will lead to a substantial proportion of Babesia-infected juveniles in the white-tailed deer population while they are still protected by maternal antibodies and/or age related immunity factors (possibly fetal hemoglobin), which then culminate in an adult population that is predominantly immune to disease by B.
odocoilei (Perry et al., 1985b). A population of white-tailed deer carrying the parasites in such a prevalent area could lead to considerable recombination events in the population and therefore, an assortment of sequence clones in a single isolate. Indeed, the Texas B. odocoilei-B WTD isolates showed evidence of recombination throughout the ITS1-5.8S-ITS2 gene region (Table 3.16). Knowing that the endemic region does in fact exist in Texas, the direct sequence analysis data provides more evidence to support the conclusion that recombination of ITS1 and ITS2 segments of B. odocoilei does occur in the tick gut.

Initially, it was thought that perhaps the disparity found in the first set of clones from the Texas B. odocoilei-B isolate might be due to mutations that may have occurred during lengthy storage at 4 C , thus a second set of clones was derived from infected blood cryopreserved in liquid nitrogen. A total of seven clones were sequenced; a high level of variation was found among the second set of clones also. Therefore, the variation observed is inherent in this particular isolate.

Another Texas white-tailed deer isolate, B. odocoilei-E, originated from the Gus Engeling Wildlife Management Area, TX, which showed an intermediate prevalence rate to B. odocoilei (50\%) (Waldrup et al., 1989a). Although two sequence types were observed for Texas B. odocoilei-E WTD in the direct analysis, the phylogenetic tree places them on adjacent branches, rather than in discrete groups as with Texas B. odocoilei-B, indicating that they are more conserved. This may imply either that the prevalence of Babesia and tick infection in the white-tailed deer population at the Gus Engeling Wildlife Management Area is not as high as in the Brushy Creek area, or that
there could be a more closed population of white-tailed deer in the Gus Engeling area, with less introduction of new individuals or ticks so there is less variation than in the Brushy Creek area.

Seropositive prevalence rates to B. odocoilei were also determined for parts of Oklahoma. The Oklahoma WTD isolate was obtained from a captive 2-year old whitetailed deer in Payne County, where the rates were as high as 75% (Waldrup et al., 1989a). The high occurrence of B. odocoilei in Oklahoma may also be reflected in the direct analysis of fixed differences, in which 3 different patterns were discernable in both ITS1 and ITS2. Again, it appears that increased genetic recombination results in an area with a high rate of Babesia infection and tick infestation in the white-tailed deer population.

Three of the isolates in the present study, Minnesota Caribou, Minnesota Musk Ox 1 and Minnesota Musk Ox 2, originated from a zoo in Apple Valley, Minnesota. The white-tailed deer isolate from Minnesota was a naturally infected, free-ranging animal exhibiting no clinical signs of illness, and was collected in the vicinity of the zoo. All three isolates exhibited 2 consistent patterns in both ITS1 and ITS2. A serosurvey of animals in the zoo was carried out in 1993 (pers. comm., P.J. Holman). No positive animals were found, and no subsequent cultures from a variety of zoo animals were positive for B. odocoilei. Therefore, although there is obvious concurrent Babesia and tick infection occurring in the Apple Valley area, the lack of recombination and the negative serosurvey results implies that the zoo area may not be endemic as is the case in Texas.

Genetic exchange is clearly more likely to occur in regions of endemicity where prevalence of infection in ticks is high since gamogony occurs in the vector. However, epidemiological data encompassing areas of both high and low incidence are needed to prove or disprove the hypothesis that more variation is found within isolates in such regions.

The most remote isolates in the study, RD61 and Bighorn Sheep, were from Northern and Southern California, respectively. RD61 originated from Placer County, near Sacramento, and Bighorn Sheep originated from the San Bernardino Mountains, near Los Angeles. In the direct analysis of fixed differences, the Bighorn Sheep clones contained only one pattern in both ITS1 and ITS2. The RD61 clones exhibited one pattern in ITS1 and two patterns in ITS2, but the two patterns evident in the RD61 clones were due to variation in only 2 fixed difference sites out of 11 . Hence, it appears as though the parasite genetic recombination prevalent in Texas, and perhaps Oklahoma as well, is not occurring in California. The white-tailed deer population is much lower in this state than in Texas and Oklahoma. Their range extends throughout the continental United States, but is much lower in arid portions of the West and Southwest, where they coexist with mule deer, especially common in the higher elevations (Smith, 1991; Downing, 1987).

However, these are not the only isolates to exhibit just one pattern in the fixed difference analysis; this is true for New York Reindeer 2 in both ITS1 and ITS2, and Texas B. odocoilei-E WTD and Minnesota Caribou in ITS2. ITS2 is a more conserved region compared with ITS1, so it may not be unusual to see conservation of patterns in
the clones in this gene region. Additionally, there may be recombination events occurring in the New York Reindeer 2 isolate that were not picked up in this study. More data is needed to make definite conclusions regarding the factors contributing to recombination of ITS segments in B. odocoilei.

Based on the ITS data, it appears that B. odocoilei possesses at least two rDNA units. The numbers of rDNA transcriptional units determined for other Babesia species range from two to four, depending on the species. There are two units in Babesia microti and Babesia rodhaini, three units in Babesia bigemina and Babesia bovis, and possibly four units in B. canis (Dalrymple 1990; Reddy et al., 1991; Dalrymple et al., 1992). Babesia bovis has three highly conserved rDNA units that are probably single copy, each separated from the others by at least 16 kb DNA (Dalrymple 1990; Reddy et al., 1991), similar to the gene organization in Plasmodium spp., which have a small number of units dispersed through the genome (McCutchan, 1986). Each rDNA unit is composed of the SSU rRNA gene, ITS1, 5.8S gene, ITS2, and the large subunit ribosomal gene. Unlike many other organisms, these units are not tandemly repeated.

The data acquired in this study imply that there exist at least two transcriptional units in B. odocoilei, the same number found in both B. rodhaini and B. microti. These species, however, fall into the category of "uncertain taxonomic standing," ie. the Babesia sensu lata, and are phylogenetically distinct from the "true Babesia," ie. the Babesia sensu stricto (Ellis et al., 1992; Holman et al., 2000). Morphologically and on the basis of SSU rRNA gene sequence analysis, of the named Babesia spp., B. odocoilei
most closely resembles the small parasite, Babesia divergens (Holman et al., 2000). To date the number of transcriptional rDNA units in B. divergens has not been determined.

Although multiple rDNA units do exist in Babesia species, thus probably in B. odocoilei as well, to date the evidence suggests that these units do not comprise clearly discrete sets of RNA genes that are expressed differentially depending on the stage of the parasite, as is the case for Plasmodium species. In Plasmodium spp., the ITS sequences are identical at $80-91 \%$ of the positions among the genes expressed during the asexual stage and 75% between the genes expressed during sporogony, with just 42-57\% identity between the two types (Rogers et al., 1995). The SSU rRNA genes from the same set of genes, however, showed no sequence variation from a single genotype. Up to 10% variation was found among geographically distinct strains.

Currently, it is unknown whether the rRNA genes of B. odocoilei are in tandem or located on different chromosomes. Most likely, the array will be similar to the organization found in B. bovis. However, rDNA units in the hemoparasite T. parva have been cloned and mapped out to 2 separate chromosomes, and 2 different ITS sequences were obtained upon cloning a single isolate (Kibe et al., 1994). Multiple T. parva ITS sequences were confirmed by Collins and Allsopp (1999), who noted the futility of attempting classification of T. parva subspecies based solely upon ITS sequences, a view shared for B. odocoilei by the results of the current study.

The data from this study support lack of conspecificity between the California reindeer RD61 isolate and B. odocoilei. Although RD61 and B. odocoilei are morphologically similar and indirect fluorescent antibody (IFA) testing to B. odocoilei
showed equally strong reactions with both anti-B. odocoilei and serum from the RD61infected reindeer, small subunit ribosomal RNA (SSU rRNA) gene-sequence analysis showed only 99.0% gene identity to B. odocoilei (Holman et al., 2002). Furthermore, RD61 was consistently distinct from all other isolates in this ITS-based study. Indeed, lower percent identities were observed in this study between RD61 and all the B. odocoilei isolates than among the B. odocoilei isolates. While the known B. odocoilei isolates ranged in identity from $93.3-99.9 \%$ in the entire ITS1-5.8S-ITS2 gene region, 90.2-99.8\% in ITS1 and 92.0-100.0\% in ITS2, the highest percent identity between RD61 and any isolate was only 88.4% in the ITS1-5.8S-ITS2 gene region, 85.8% in ITS1 and 87.6% in ITS2. Although regions of sequence conservation between some B. odocoilei clones and the RD61 clones were evident in the fixed differences analysis, the overall lower identity values indicate that RD61 is not conspecific with B. odocoilei.

Thus, these rDNA data support the separation of RD61 from B. odocoilei. Among the B. canis subspecies, ITS comparisons were no higher than 82.0%, which suggests that the anomalous ITS data for the RD61 isolate in this study may be indicative of a B. odocoilei subspecies similar to those of B. canis. The SSU sequences for the three B. canis subspecies are approximately $95-98 \%$ identical (Allsopp et al., 1994; Cacciò et al., 2002), compared to 99% for RD61 versus B. odocoilei. This study, combined with previous sequencing data, show that eighteen B. odocoilei isolates from different vertebrate hosts and different geographic regions share identical SSU rRNA gene sequences. Although this alone is not conclusive as to whether a 1% difference in SSU gene identities is evidence of two distinct species, or subspecies, the additional
genetic heterogeneity shown in the ITS region supports the case for two distinct Babesia isolates.

The ITS1-5.8S-ITS2 gene region has been studied in other protozoan parasites, including Entamoeba species (Som et al., 2000). Entamoeba rRNA genes are arranged on circular extrachromosomal DNA molecules and, unlike the Babesia rRNA, the ITS2 sequences were more variable than the ITS1 sequences. ITS nucleotide sequence differences were found among individual Entamoeba species. SSU rRNA sequences for Entamoeba histolytica and Entamoeba dispar (GenBank Accession numbers X56991 and Z 49256 , respectively) share $98-99 \%$ identity (Genestream analysis), which is comparable to the difference seen between RD61 and B. odocoilei. ITS1, 5.8S and ITS2 analysis between the two Entamoeba species showed sequence differences equivalent to a percent identity of 89%. Thus, two closely related Entamoeba species show differences in the SSU rRNA and the ITS gene regions comparable to those of the RD61 isolate and B. odocoilei species. However, it is still unknown whether this difference, along with that in the ITS, reflect differences among distinct species versus subspecies.

It is interesting to note that as more B. odocoilei infections and fatalities are reported, these are more prevalently occurring in zoos, herded farms or managed wildlife areas. The parasite continues to emerge in new animal hosts and geographic areas; since commencing the present study, B. odocoilei has been newly reported in musk ox from Minnesota, elk from New Hampshire and reindeer from New York and Pennsylvania. As the rate of cases, both fatal and nonsymptomatic, seems to be increasing, the shipment of animals nationwide is also increasing. Parasite infections leading to clinical
disease in male elk are more prevalent during the rut season, which happens to fall at the same time of year as the high tick activity season for the vector, I. scapularis. If this also coincides with the shipment of an elk, the stress of the move, the introduction of a new animal into an enzootic area or the arrival of an animal carrying the parasite can lead to devastating outbreaks in these animals. The recent report of a 7-month-old female reindeer dying of acute babesiosis is also troubling; whether this is an isolated incident or typical for reindeer is unknown (Holman et al., 2003). If age-related immunity to babesiosis is not a characteristic of reindeer, tick control on reindeer farms must be strictly followed.

Equally remarkable is the emergence of musk ox (Ovibos moschatus) as a new host for B. odocoilei infection during the course of this study. The Bighorn Sheep (Ovis canadensis nelsoni) Babesia sp. isolate was previously described, but at the time was not confirmed to be B. odocoilei (Goff et al., 1993). Thus the emergence of musk ox as the second bovidae host to be susceptible to B. odocoilei infection is significant. These two isolates from the bovidae hosts did not group together in the phylogenetic tree, but this is not surprising due to the extreme sequence variation observed in this study.

Additionally, the geographic areas of both isolates are quite removed, especially that of Bighorn Sheep, which originated from the San Bernardino Mountains in southern California and was one of the most isolated samples in the study.

Certain initial questions from the beginning of this study remain unanswered. It was hoped that the ITS gene regions could be used as a gene target for determining the source of outbreaks of B. odocoilei in farmed and managed cervids. Clearly, these gene
regions did not show any trends based on animal host, geographic area, or type of infection, and more variation was observed than was ever expected. The inability to separate isolates using the ITS gene regions has been shown for T. parva as well. The RD61 isolate, already known to be different from B. odocoilei, indeed showed itself to be a distinct organism from the B. odocoilei isolates in all analyses and comparisons. Particularly important is the possible evidence in both direct sequence and phylogenetic analyses for at least two rRNA transcription units, which have already been shown to exist in several other Babesia species. Equally noteworthy is the amount of data analyzed in this study. Nineteen distinct isolates and a minimum of three clones per isolate were evaluated. Although some clones were identical to others, this was typically not the case, and the level of variation observed was staggering. For proper scientific accuracy, it is critical to include many isolates when carrying out similar phylogenetic studies that attempt to define one or more species.

LITERATURE CITED

ADAM, K. M. G., D. A. BLEWETT, D. W. BROCKLESBY, AND G. A. M. SHARMAN. 1976. The isolation and characterization of a Babesia from red deer (Cervus elaphus). Parasitology 73: 1-11.

ADAM, R. D., Y. R. ORTEGA, R. H. GILMAN, AND C. R. STERLING. 2000. Intervening transcribed spacer region 1 variability in Cyclospora cayetanensis. Journal of Clinical Microbiology 38: 2339-2343.

ALLSOPP, M. T., T. CAVALIER-SMITH, D. T. DE WAAL, AND B. A. ALLSOPP. 1994. Phylogeny and evolution of the piroplasms. Parasitology 108: 147-152.

ARMSTRONG, P. M., P. KATAVOLOS, D. A. CAPORALE, R. P. SMITH, A. SPIELMAN, AND S. R. TELFORD III. 1998. Diversity of Babesia infecting deer ticks (Ixodes dammini). The American Journal of Tropical Medicine and Hygiene 58: 739-742.

BARBET, A. F., L. W. ANDERSON, G. H. PALMER, AND T. C. MCGUIRE. 1983. Comparison of proteins synthesized by two different isolates of Anaplasma marginale. Infection and Immunity 40: 1068-1074.

BLANCOU, J. 1983. Serologic testing of wild roe deer (Capreolus capreolus L.) from the Trois Fontaines Forest region of eastern France. Journal of Wildlife Diseases 19: 271-273.

CACCIÒ, S., B. ANTUNOVIC, A. MORETTI, V. MANGILI, A. MARINCULIC, R. R. BARIC, S. B. SLEMENDA, AND N. J. PIENIAZEK. 2002. Molecular characterisation of Babesia canis canis and Babesia canis vogeli from naturally infected European dogs. Veterinary Parasitology 106: 285-292.
, C. CAMMÀ, M. ONUMA, AND C. SEVERINI. 2000. The β-tubulin gene of Babesia and Theileria parasites is an informative marker for species discrimination. International Journal for Parasitology 30: 1181-1185.

CALLOW, L. L. 1977. Vaccination against bovine babesiosis. In Immunity to Blood Parasites of Man and Animals, L. H. Miller et al. (eds.). Plenum Press, New York, New York, pp. 121-149.

CANNING, E. U., R. KILLICK-KENDRICK, AND J. B. MONK. 1976. Morphology of piroplasms in abnormal hosts and the identification of piroplasms of man. The Journal of Tropical Medicine and Hygiene 79: 5-8.

CHAE, J. S., B. A. ALLSOPP, S. D. WAGHELA, J-H PARK, T. KAKUDA, C. SUGIMOTO, M. T. E. P. ALLSOPP, G. G. WAGNER, AND P. J. HOLMAN. 1999a. A study of the systematics of Theileria spp. based upon small-subunit ribosomal RNA gene sequences. Parasitology Research 85: 877-883.
__ J-M LEE, O-D KWON, P. J. HOLMAN, S. D. WAGHELA, AND G. G. WAGNER. 1998a. Nucleotide sequence heterogeneity in the small subunit ribosomal RNA gene variable (V4) region among and within geographic isolates of Theileria from cattle, elk and white-tailed deer. Veterinary Parasitology 75: 41-52.

__ J-H PARK, O-D KWON, S. D. WAGHELA, P. J. HOLMAN, G. G.

WAGNER, AND J-M LEE. 1998b. Identification and sequence analysis of small subunit ribosomal RNA gene of bovine Theileria isolates from Korea and Japan. Korean Journal of Veterinary Research 39: 909-917.

, S. D. WAGHELA, T. M. CRAIG, A. A. KOCAN, G. G. WAGNER, AND P.

J. HOLMAN. 1999b. Two Theileria cervi SSU rRNA gene sequence types found in isolates from white-tailed deer and elk in North America. Journal of Wildlife Diseases 35: 458-465.

CLARK, H. C. 1918. Piroplasmosis of cattle in Panama. The Journal of Infectious Diseases 22: 159-168.
___ AND J. ZETEK. 1925. Tick biting experiments in bovine and cervine piroplasmosis. The American Journal of Tropical Medicine 5: 17-26.

COLLINS, N. E., AND B.A. ALLSOPP. 1999. Theileria parva ribosomal internal transcribed spacer sequences exhibit extensive polymorphism and mosaic evolution: application to the characterization of parasites from cattle and buffalo. Parasitology 118: 541-551.

COSSIO-BAYUGAR, R., R. PILLARS, J. SCHLATER, AND P. J. HOLMAN. 2002. Theileria buffeli infection of a Michigan cow confirmed by small subunit ribosomal RNA gene analysis. Veterinary Parasitology 105: 105-110.

DALRYMPLE, B. P. 1990. Cloning and characterization of the rRNA genes and flanking regions from Babesia bovis: use of the genes as strain discriminating probes. Molecular and Biochemical Parasitology 43: 117-124.
, C. M. DIMMOCK, F. PARRODI, AND I. G. WRIGHT. 1992. Babesia bovis, Babesia bigemina, Babesia canis, Babesia microti and Babesia rodhaini: Comparison of ribosomal RNA gene organization. International Journal for Parasitology 22: 851-855.

DONNELLY, J., AND M. A. PIERCE. 1975. Experiments on the transmission of Babesia divergens to cattle by the tick Ixodes ricinus. International Journal for Parasitology 5: 363-367.

DOWNING, R. L. 1987. Success story: white-tailed deer. In Restoring America's Wildlife, H. Kallman (ed.). U.S. Fish and Wildlife Service, Washington, District of Columbia, pp. 44-57.

DROLESKEY, R. E., P. J. HOLMAN, K. A. WALDRUP, D. E. CORRIER, AND G. G. WAGNER. 1993. Ultrastructural characteristics of Babesia odocoilei in vitro. The Journal of Parasitology 79: 424-434.

ELLIS, J., C. HEFFORD, P. R. BAVERSTOCK, B. P. DALRYMPLE, AND A. M. JOHNSON. 1992. Ribosomal DNA sequence comparison of Babesia and Theileria. Molecular \& Biochemical Parasitology. 1992. 54: 87-95.

EMERSON, H. R., AND W. T. WRIGHT. 1968. The isolation of a Babesia in white-tailed deer. Bulletin of the Wildlife Disease Association 4: 142-143.
\qquad , AND \qquad . 1970. Correction. Journal of Wildlife Diseases 6: 519.

ENIGK, K., AND K. T. FRIEDHOFF. 1962a. Babesia capreoli n. sp. beim Reh (Capreolus capreolus L.). Zeitschrift für Tropenmedizin und Parasitologie 13: 820.
\qquad , AND \qquad . 1962b. Zur Wirtsspezifitat von Babesia divergens (Piroplasmidae). Zeitschrift für Parasitenkunde 21: 238-256.
\qquad , AND \qquad . 1963. Babesia capreoli hos ustonradjur i Sverge. Svensk Veterinartidning 31: 231-232.

ENTRICAN, J. H., H. WILLIAMS, I. A. COOK, W. M. LANCASTER, J. C. CLARK, L. P. JOYNER, AND D. LEWIS. 1979. Babesiosis in man: report of a case from Scotland with observations on the infecting strain. The Journal of Infection 1: 227-234.

FRIEDHOFF, K. T., AND E. SCHOLTYSECK. 1977. Fine structural identification of erythrocytic stages of Babesia bigemina, B. divergens, and B. ovis. Protistologica 1: 195-204.

GALLATIN, L. L., A. R. IRIZARRY-ROVIRA, M. L. RENNINGER, P. J. HOLMAN, G. G. WAGNER, J. E. SOJKA, AND J. A. CHRISTIAN. 2003. Babesia odocoilei infection in elk. Journal of the American Veterinary Medical Association 223: 1027-1032.

GARNHAM, P. C. C., AND R. S. BRAY. 1959. The susceptibility of the higher primates to piroplasms. The Journal of Protozoology 6: 352-355.

GOFF, W. L., D. A. JESSUP, K. A. WALDRUP, J. W. THOMFORD, P. A. CONRAD, W. M. BOYCE, J. R. GORHAM, AND G. G. WAGNER. 1993. The isolation and partial characterization of a Babesia sp. from desert bighorn sheep (Ovis Canadensis nelsoni). The Journal of Eukaryotic Microbiology 40: 237-243.

GORENFLOT, A., P. BRASSEUR, E. PRECIGOUT, M. L'HOSTIS, A. MARCHAND, AND J. SCHREVEL. 1991. Cytological and immunological responses to Babesia divergens in different hosts: ox, gerbil, man. Parasitological Research 77: 3-12.
\qquad , AND M. PIETTE. 1976. Septième cas mondial de babésiose (piroplasmose) humaine. Aspect en microscopie électronique à balayage des hématies parasites. Annales Pharmaceutiques Françaises. 34: 89-94.

GRAY, J. S., R. J. LANGLEY, AND T. M. MURPHY. 1985. Morphological comparisons of the bovine piroplasm, Babesia divergens, in cattle and jird (Meriones unguiculatus) erythrocytes. The Journal of Parasitology 71: 799-802.
, T. M. MURPHY, S. M. TAYLOR, D. A. BLEWETT, AND R.
HARRINGTON. 1990. Comparative morphological and cross transmission studies with bovine and deer babesias in Ireland. Preventive Veterinary Medicine 9: 185-193.
\qquad , T. M. MURPHY, K. A. WALDRUP, G. G. WAGNER, D. A. BLEWETT, AND R. HARRINGTON. 1991. Comparative studies of Babesia spp. from white-tailed and sika deer. Journal of Wildlife Diseases 27: 86-91.

HEIKE, M., B. NOLL, AND K. H. MEYER ZUM BUSCHENFELDE. 1996. Heat shock protein-peptide complexes for use in vaccines. Journal of Leukocyte Biology 60: 153-158.

HOLMAN, P. J., K. G. BENDELE, L. SCHOELKOPF, R. L. JONES-WITTHUHN, AND S. O. JONES. 2003. Ribosomal RNA analysis of Babesia odocoilei isolates from farmed reindeer (Rangifer tarandus tarandus) and elk (Cervus elaphus canadensis) in Wisconsin. Parasitology Research 91: 378-383.
\qquad , T. M. CRAIG, D. L. DOAN CRIDER, K. R. PETRINI, J. RHYAN, AND G. G. WAGNER. 1994. Culture isolation and partial characterization of a Babesia sp. from a North American elk (Cervus elaphus). Journal of Wildlife Diseases 30: 460-465.

, J. MADELEY, T. M. CRAIG, B. A. ALLSOPP, M. T. E. P. ALLSOPP, K. R. PETRINI, S. D. WAGHELA, AND G. G. WAGNER. 2000. Antigenic, phenotypic and molecular characterization confirms Babesia odocoilei isolated from three cervids. Journal of Wildlife Diseases 36: 518-530.

\qquad , P. K. SWIFT, R. E. FREY, J. BENNETT, D. CRUZ, AND G. G.
WAGNER. 2002. Genotypically unique Babesia spp. isolated from reindeer (Rangifer tarandus tarandus) in the United States. Parasitology Research 88: 405-411.
\qquad , K. A. WALDRUP, AND G. G. WAGNER. 1988. In vitro cultivation of a Babesia isolated from a white-tailed deer (Odocoileus virginianus). The Journal of Parasitology 74: 111-115.

HOWE, D. L. 1970. Anaplasmosis. In Infectious Diseases of Wild Mammals, D. S. Davis et al. (eds.). Iowa State University Press, Ames, Iowa, pp. 363-371.

JOYNER, L. P., S. F. M. DAVIES, AND S. B. KENDALL. 1963. The experimental transmission of Babesia divergens by Ixodes ricinus. Experimental Parasitology 14: 367-373.

KIBE, M. K., O. K. OLE-MOIYOI, V. NENE, B. KHAN, B. A. ALLSOPP, N. E. COLLINS, S. P. MORZARIA, E. I. GOBRIGHT, AND R. P. BISHOP. 1994. Evidence for two single copy units in Theileria parva ribosomal RNA genes. Molecular and Biochemical Parasitology 66: 249-259.

KINGSTON, N. 1981. Protozoan Parasites. In Diseases and Parasites of WhiteTailed Deer, W. R. Davidson et al. (eds.). Tall Timbers Research Station, Tallahassee, Florida, pp. 193-236.

KJEMTRUP, A. M., J. THOMFORD, T. ROBINSON, AND P. A. CONRAD. 2000. Phylogenetic relationships of human and wildlife piroplasm isolates in the western United States inferred from the 18S nuclear small subunit RNA gene. Parasitology 120: 487-493.

LATIF, B. M. A., AND K. M. G. ADAM. 1973. Antibody to Babesia in Scottish red deer (Cervus elaphus). Nature (London) 241: 476-477.

LEVINE, N. D. 1973. Protozoan Parasites of Domestic Animals and of Man. Burgess Publishing Company, Minneapolis, Minnesota, 406 pp.

[^1]LEWIS, D., R. E. PURNELL, S. R. SHAW, AND J. P. REVINGTON. 1980. The isolation and characterization of human and bovine strains of Babesia divergens from Drumnadrochit, Scotland. Parasitology 81: 145-155.

LIDDELL, K. G., S. B. LUCAS, AND H. WILLIAMS. 1980. Babesia divergens infections in the Mongolian gerbil: characteristics of a human strain. Parasitology 82: 205-224.

LINDQUIST, S., AND E. A. CRAIG. 1988. The heat-shock proteins. Annual Review of Genetics 22: 631-677.

MCCUTCHAN, T. F. 1986. The ribosomal genes of Plasmodium. International Reviews of Cytology 99: 295-309.

NIKOL’SKII, S. N., AND S. A. POZOV. 1972. Ixodes ricinus ticks as carriers of Babesia capreoli in the roe deer. Veterinariya (Moscow) 4: 62.

NILSSON, O., M. NORDKVIST, AND L. RYDEN. 1965. Experimental Babesia divergens infection in reindeer (Rangifer tarandus). Acta Veterinaria Scandinavica 6: 353.

OLIVER, J. H. JR., M. R. OWSLEY, H. J. HUTCHESON, A. M. JAMES, C. CHEN, W. S. IRBY, E. M. DOTSON, AND D. K. MCLAIN. 1993. Conspecificity of the ticks Ixodes scapularis and I. dammini (Acari: Ixodidae). Journal of Medical Entomology 30: 54-63.

PASSOS, L. M. F., L. BELL-SAKYI, AND C. G. D. BROWN. 1998. Immunochemical characterization of in vitro culture-derived antigens of Babesia bovis and Babesia bigemina. Veterinary Parasitology 76: 239-249.

PERRY, B. D., F. L. MUSISI, R. G. PEGRAM, AND H. F. SCHELS. 1985a. Assessment of enzootic stability to tick-borne diseases. World Animal Review 56: 24-32.
__ D. K. NICHOLS, AND E. S. CULLOM. 1985b. Babesia odocoilei Emerson and Wright, 1970, in white-tailed deer, Odocoileus virginianus (Zimmermann), in Virginia. Journal of Wildlife Diseases 21: 149-152.

PETRINI, K. R., P. J. HOLMAN, J.S. RHYAN, S. J. JENKINS, AND G. G. WAGNER. 1995. Fatal babesiosis in an American woodland caribou (Rangifer tarandus caribou). The Journal of Zoo and Wildlife Medicine 26:298-305.

POLLA, B. S. 1991. Heat shock proteins in host-parasite interactions. Immunology Today 12: A38-A41.

PRICHARD, R., AND A. TAIT. 2001. The role of molecular biology in veterinary parasitology. Veterinary Parasitology 98: 169-194.

PURNELL, R. E., D. W. BROCKLESBY, D. J. HENDRY, AND E. R. YOUNG. 1976. Separation and recombination of Babesia divergens and Erhlichia phagocytophila from a field case of redwater from Erie. The Veterinary Record 99: 415-417.
\qquad , D. LEWIS, M. R. HOLMAN, AND E. R. YOUNG. 1981. Investigations on a Babesia isolated from Scottish sheep. Parasitology 83: 347-356.

REDDY, G. R., D. CHAKRABARTI, C. A. YOWELL, AND J. B. DAME. 1991. Sequence microheterogeneity of the three small subunit ribosomal RNA genes of Babesia bigemina: expression in erythrocyte culture. Nucleic Acids Research 19: 3641-3645.

ROBINSON, R. M., K. L. KUTTLER, J. W. THOMAS, AND R. G. MARBURGER. 1967. Theileriasis in Texas white-tailed deer. The Journal of Wildlife Management 31: 455-459.

ROGERS, J. M., G. A. MCCONKEY, J. LI, AND T. F. MCCUTCHAN. 1995. The ribosomal DNA loci in Plasmodium falciparum accumulate mutations independently. The Journal of Molecular Biology 254: 881-891.

RUEF, B. J., T. J. WARD, C. R. OXNER, P. G. CONLEY, W. C. BROWN, AND A. C. RICE-FICHT. 2000. Phylogenetic analysis with newly characterized Babesia bovis hsp70 and hsp90 provides strong support for paraphyly within the piroplasms. Molecular and Biochemical Parasitology 109: 67-72.

SCHNITTGER, L., H. YIN, L. JIANXUN, W. LUDWIG, P. SHAYAN, S. RAHBARI, A. VOSS-HOLTMANN, AND J. S. AHMED. 2000. Ribosomal small-subunit RNA gene-sequence analysis of Theileria lestoquardi and a Theileria species highly pathogenic for small ruminants in China. Parasitology Research 86: 352-358.

SMITH, W. P. 1991. Odocoileus virginianus. Mammalian Species 388: 1-13.
SOGIN, M. L. 1990. Amplification of ribosomal RNA genes for molecular evolution studies. In PCR Protocols: A Guide to Methods and Applications, M. A. Innis et al. (eds.). Academic Press, New York, New York, pp. 307-314.

SOKAL, R. R., AND P. H. A. SNEATH. 1963. Numerical Taxonomy. Freeman, San Francisco, California, 359 pp.

SOM, I., A. AZAM, A. BHATTACHARYA, AND S. BHATTACHARYA. 2000. Inter- and intra-strain variation in the 5.8 S ribosomal RNA and internal transcribed spacer sequences of Entamoeba histolytica and comparison with Entamoeba dispar, Entamoeba moshkovskii, Entamoeba invadens. International Journal for Parasitology 30: 723-728.

SONENSHINE, D. E. 1979. Ticks of Virginia (Acari: Metastigmata). Research Division Bulletin 139, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 44 pp.

SPINDLER, L. A., R. W. ALLEN, L. S. DIAMOND, AND J. C. LOTZE. 1958. Babesia in a white-tailed deer. The Journal of Protozoology 5: 8.

STEITZ, J. A. 1987. The unexpected structures of eukaryotic genomes. In Molecular Biology of the Gene (4th ed.), J. D. Watson et al. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California, pp. 621-675.

TODOROVIC, R. A., AND R. F. LONG. 1976. Comparison of indirect fluorescent antibody (IFA) with complement fixation (CT) tests for diagnosis of Babesia spp. infections in Columbian cattle. Zeitschrift für Tropenmedizin und Parasitologie 27: 169-181.

WALDRUP, K. A. 1991. The involvement of white-tailed deer (Odocoileus virginianus) in the epidemiology of bovine Babesia bovis infection in Texas. Ph.D.Dissertatation. Texas A\&M University, College Station, Texas, 196 pp.
\qquad , R. W. BARKER, AND G. G. WAGNER. 1990. Transmission of Babesia odocoilei in white-tailed deer (Odocoileus virginianus) by Ixodes scapularis (Acari: Ixodidae). Journal of Wildlife Diseases 26: 390-391.
, E. COLLISSON, S. E. BENTSEN, C. K. WINKLER, AND G. G. WAGNER. 1989b. Prevalence of erythrocytic protozoa and serologic reactivity to selected pathogens in deer in Texas. Preventive Veterinary Medicine 7: 49-58.
\qquad , A. A. KOCAN, T. QURESHI, D. S. DAVIS, D. BAGGETT, AND G. G. WAGNER. 1989a. Serological prevalence and isolation of Babesia odocoilei among white-tailed deer (Odocoileus virginianus) in Texas and Oklahoma. Journal of Wildlife Diseases 25: 194-201.
, J. MORITZ, D. BAGGETT, S. MAGYAR, AND G. G. WAGNER. 1992. Monthly incidence of Theileria cervi and seroconversion to Babesia odocoilei in white-tailed deer (Odocoileus virginianus) in Texas. Journal of Wildlife Diseases 28: 457-459.

ZAHLER, M., E. SCHEIN, H. RINDER, AND R. GOTHE. 1998. Characteristic genotypes discriminate between Babesia canis isolates of differing vector specificity and pathogenicity to dogs. Parasitology Research 84: 544-548.

ZIETARA, M. S., T. HUYSE, J. LUMME, AND F. A. VOLCKAERT. 2002. Deep divergence among subgenera of Gyrodactylus inferred from rDNA ITS region. Parasitology 124: 39-52.

ZWEYGARTH, E., M. C. JUST, AND D. T. DE WAAL. 1995. Continuous in vitro cultivation of erythrocytic stages of Babesia equi. Parasitology Research 81: 355358.

APPENDIX A

퓬용응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
뚠용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응

응ㅇㅇㅇ응
侖家


```
-
```



```
-
```



```
\(\delta\)
```



```
AHFT
```



```
案
```



```
§
突
```



```
悹
```



```
突
```



```
突
```



```
安
人
```



```
密
```


笑

$\underset{\substack{\circ} \sim \infty}{\infty}$

$$
\begin{aligned}
& \text { 绦 } \\
& \text { 引 } \\
& \text { 多 } \\
& \text { ふ } \\
& \text { 《 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 采 } \\
& \text { W } \\
& \begin{array}{l}
\text { W } \\
\text { 合 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nom } \\
& \text { 은 } \\
& \text { 은 응 } \\
& \text { 응응 }
\end{aligned}
$$

蔥

$$
=
$$

$\stackrel{\rightharpoonup}{\top}$

$$
\begin{aligned}
& \text { N }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 过 } \\
& \text { N } \\
& \text { ミ } \\
& \text { ミ } \\
& \text { § }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Ni } \\
\text { 岕 } \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\infty}{\infty} \stackrel{\circ}{4}-\stackrel{\circ}{3} \\
& \stackrel{2}{2}
\end{aligned}
$$

© ∞

宸

トゥ

©

 ○

N

APPENDIX B

- 1

1
4546
2
$1 \quad 1516$
3031
$60 \quad 61$
7576
90
1 car2_ ACATTGAATCT-TTG CACTTTGGTGCTTGG CGTTGT $\overline{C T G T T G} C G T$ CGTGCC $\overline{\mathbf{A G - G T} C C G C} \overline{\mathbf{C T} G C A G C T G C G-C C T ~ T T G G G C \overline{G T G} G T C C--}$ 2 car5 ${ }^{-}$ACATTGAATCT-TTG CACTTTGGTGCTTGG CGTTGTCTGTTGCGT CGTGCAG--GTCCGC CTGCAGCTGCG-CCT TTGGGCGTGGTCC-3 car8- ACATTGAATCT-TTG CACTTTGGTGCTTGG CGTTGTCTGTTGCGT CGTGCAG--GTCCGC CTGCAGCTGCG-CCT TTGGGCGTGGTCC-4 mnc3_ ACATTGAATCTGTTG CACTTTTGTGCTCGA CGTTGTTTGTTACGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

5 mnc8 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTTTGTTACGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 6 mnc1 $\overline{2}$ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTTTGTTACGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 7 par3- ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCGGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 8 par8_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCGGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

9 par9_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCGGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 10 mnmolı_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 11 mnmo15_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 12 mnmo18 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

13 wir24 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCGGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 14 txwba $\overline{3}$ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGCCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 15 txwba5_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGCCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 16 txwba6_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

17 txwbb21_ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGCCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 18 mnc10 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 19 wir25_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCCCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 20 wir27 ${ }^{-}$ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

21 wie19 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 22 wielī_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 23 casal0_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 24 casal1_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCCCGGTCCAC

25 casb5_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCCCGGTCCAC 26 casb 8^{-}ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCCCGGTCCAC 27 casb2 $^{-}$ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 28 casal $\overline{4}$ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

29 txea __ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 30 txea18_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGTGGTCCAC 31 txea14_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 32 wie18_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTACGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

33 txwbb1 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGCGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 34 txwbb1 $\overline{4}$ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 35 txea24_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGC-CTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 36 txeb8_- ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC
1516

3031
4546
$60 \quad 61$
7576
90
37 okw11 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGT $\overline{\mathbf{C T G T T A} C G T}$ CGTGC $\overline{\mathbf{A G C T G T}} \mathrm{CTCG} \overline{\mathbf{C T} G C A G C T G C G T C C G ~ T C G G G C \overline{G C G}} \mathbf{G T C C A C}$ 38 okw _- ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 39 mnw - ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 40 mnw11 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

41 maw5 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 42 nhe $8 \overline{0}$ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 43 nhe 74^{-}ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 44 nhe79 ${ }^{-}$ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

45 nyr21_ ACATTGAATCTGTtG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 46 nyr25_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 47 nyr28_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 48 nyr23 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGTAGCTGCGTCCG TCGGGCGCGGTCCAC

49 wie210 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTACGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCAGTCCAC 50 wie214- ACATTGAATCTGTTG CACTTTTGTGCTTGT CGTTGTCCGTTACGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 51 nyrl7_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 52 maw9_- ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

53 wie213_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 54 ine6 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 55 maw3 GCATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTGTCTCG CCGCAGCTGCGTCCG TCGGGCGCGGTCCAC 56 ine1 $\overline{1}$ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

57 ine14 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 58 mnmo2 $\overline{5}$ _ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTGTCTCG TTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 59 mnmo26- ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTCTCTCG TTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 60 mnmo214_ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCCGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

61 mnw1_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 62 mnw 4 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTCACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 63 mnw $\overline{4}$ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 64 nyr14

65 nyr nyr112_ ACAITGAAICIGIIG CACIITIGTGCIIGA CGITGICIGITGCGI CGIGCAGCIGICICG CTGCAGCrGCGICCG ICGGGCGCGGICCAC
 67 txeb2_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGC-CTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 68 okw3_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC

69 txwe1 ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 70 txwe $^{-}$ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 71 txwe ${ }^{-}$ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTGCGT CGTGCAGCTCTCTCG CTGCAGCTGCGTCCG TCGGGCGCGGTCCAC 72 txwe2_ ACATTGAATCTGTTG CACTTTTGTGCTTGA CGTTGTCTGTTACGT CGTGCAGCTTTCTCG CTGCAGCTGTGTCCG TCGGGCGCGGTCCAC

5	6							7	8
91	105106	120121	135	136	150	151	165	166	180

1 car2 GTT $\overline{\mathbf{A C C}}$ GGCTTCG $\overline{\mathbf{C A}} \mathbf{A} C T G G C C T C G T C T T G ~ G C G A C G T G G T T T C G G ~ T C T T G T T C C G T T T C C ~ T T G C C T G C G C T T G C G ~ \overline{\mathbf{C} G G G A C G T T G C C C C}=$ car5- GTTACCGGCTTCGCA ACTGGCCTCGTCTTG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC TTGCCTGCGCTTGCG CGGGACGTTGCCCC3 car8 ${ }^{-}$GTTACCGGCTTCGCA ACTGGCCTCGTCTTG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC TTGCCTGCGCTTGCG CGGGACGTTGCCCC-

5 mnc8 GTTTGTGGCTTCGTA GCTGGCCCCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGTTTGCG TGGGACGTTGCCCCC par3 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC par8_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC

9 par9 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 10 mnmo14_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 11 mnmols_ GTtAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 12 mnmol8 GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC

13 wir24 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTCCGG TCTTGTTCCGTTTCC ATCCCTGCGCTCGCG TGGGACGTTGCCCC14 txwba $\overline{3}$ GTTTGTGGTTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC15 txwba5_ GTTTGTGGTTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC16 txwba6_ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-

17 txwbb21_GTTTGTGGTTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG CGGGACGTTGCCCC18 mnc10_ GTATGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC19 wir25_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC20 wir27 ${ }^{-}$GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-

21 wie19 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC22 wielī GTTTGTGACTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC23 casal0_ GTTTGTGGCTTCGTA GCTGGTCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC24 casal1_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-

25 casb5_ GTTTGTGGCTTCGTA GCTGGTCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC26 casb8 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC27 casb2 $^{-}$GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-
28 casal̄_ GTTTGTGGCTTCGTA GCTGGTCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-
29 txeal_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC30 txea18_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC31 txea14_ GTTTGTAGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC32 wie18_ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC

33 txwbb1 GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 34 txwbb1 $\overline{4}$ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 35 txea24_-GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTCGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC36 txeb _- GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-

5	6					7	8
91	105106	120121	135136	150151	165	166	180

37 okw11_ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC= $\begin{array}{ll}37 & \text { okw11_ } \\ 38 \text { okw } & \text { GTTAGTGGCTTCGTA } \mathbf{G C T G G C C T C G T C A T G ~ G C G A C G T G G T T T C G G ~ T C T T G T T C C G T T T C C ~ A T C C C T G C G C T T G C G ~ T G G G A C G T T G C C C C - ~}\end{array}$ 39 mnw ${ }^{-}$GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-

41 maw5_ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 42 nhe $8 \overline{0}$ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC
43 nhe74
44 nhe79
Gle GTTAGTGGCTTCGCA ACTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC46 nyr2 - GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC47 nyr28_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-
48 nyr23 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-

49 wie210 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 50 wie214- GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 51 nyr17- GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 52 maw9_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC

53 wie213_ GTtTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 54 ine6_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 55 maw3 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 56 ine1 $\operatorname{GTTTGTGGCTTCGTA~GCTGGCCTCGTCATG~GCGACGTGGTTTCGG~TCTTGTTCCGTTTCC~ATCCCTGCGCTTGCG~TGGGACGTTGCCCCC~}$

57 ine14 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 58 mnmo2 $\overline{5}$ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 59 mnmo26_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 60 mnmo214_GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC

61 mnw1_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC 62 mnw 4
63 mnw14 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC

64 nyr14 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC

65 nyr112_ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC AT-CCTGCGCTTGCG TGGGACGTTGCCCC66 txeb1_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC67 txeb2_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC68 okw3_ GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-

69 txwe 1 GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC70 txwe $^{-}$GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-
71 txwe ${ }^{-}$GTTTGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCC-
72 txwe2_ GTTAGTGGCTTCGTA GCTGGCCTCGTCATG GCGACGTGGTTTCGG TCTTGTTCCGTTTCC ATCCCTGCGCTTGCG TGGGACGTTGCCCCC
9
10
11
12

 $\begin{array}{ll}\text { car2 } & \text { TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGACGACACGCTTG GGTTATGCTCGTTTT GTTTTGGTGTGG--T CTGTTGCTCCGGTAA } \\ \text { car5 } & \text { TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGACGACACGCTTG GGTTATGCTCGTTTT GTTTTGGTGTGG--T CTGTTGCTCCGGTAA }\end{array}$ $\begin{array}{ll}\text { car5_ } & \text { TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGACGACACGCTTG GGTTATGCTCGTTTT GTTTTGGTGTGG--T CTGTTGCTCCGGTAA } \\ \text { car8_ } & \mathbf{T C C C A C C C C T C C A A C ~ T G T G T T G C T G C T C C G ~ G C G A C G A C A C G C T T G ~ G G T T A T G C T C G T T T T ~ G T T T T G G T G T G G - - T ~ C T G T T G C T C C G G T A A ~}\end{array}$ mnc3_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG

5 mnc8 TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG mnc1 $\overline{2}$ TCCCAССССТССААС TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGCTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG par ${ }^{-}$TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG 8 par8_ TCCCAССССТССААС TGTGTTGCTGCTTCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTTG-TAG
par9 TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTTG-TAG 10 mnmo14_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GTGGCGACGCGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTTG-TAG 11 mnmo15_ TCCCAССССТССАAС TGTGTTGCTGCCACG GTGGCGACGCGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG 12 mnmol8 tCCCACCCCTCCAAC TGTGTTGCTGCCACG GTGGCGACGCGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG

13 wir24 TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTC GTTGGTGTGTGTAAT CTGTTACTTTG-TAG 14 txwba $\overline{3}$ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTTG-TAG 15 txwba5_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTTG-TAG 16 txwba6_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTTG-TAG

17 txwbb21_TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTTG-TAG 18 mnc10_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG 19 wir25 TCCCACCCCTCCAAT TGTGTTGCTGCTCCG GCGACGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 20 wir27 ${ }^{-}$TCCCACCССТССАAT TGTGTTGCTGCTCCG GCGACGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC

21 wie19 TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 22 wielī_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 23 casal0_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 24 casa11_ TCCCACCCCTCCAAC TGTGTCGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC

25 casb5_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 26 casb8 TCCCAССССТССАAС TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 27 casb2 $^{-}$TCCСАССССТССААС TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 28 casa1̄_ TCCCAССССТССААС TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTGATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC

29 txea7_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 30 txea18_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 31 txea14_ TCCCAССССТССАAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 32 wie18_ TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACGCGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC

33 txwbb1 TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGACGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-ATGTA-- CTGGTGCGTGAGCAC 34 txwbb1 $\overline{4}$ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGACGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-ATGTA-- CTGGTGCGTGAGCAC 35 txea24_ TCCACCCCCTCCGAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTTG-TAG 36 txeb8_ $\mathbf{T C C C A C C C C T C C A A C ~ T G T G T T G C T G C T T C G ~ G C G G C G A C A C G C T T G ~ G G T T A T G C T C G T T T T ~ G T T G T T G - G T G T A - - ~ C T G G T G C G T G A G C A C ~}$
9
10
11
12
$\begin{array}{lllllllllll}181 & 195 & 196 & 210 \quad 211 & - & 225 & 226 & 11 & 240 & 241 & 255 \quad 256\end{array}$
$\begin{array}{lllllllllll}181 & 195 & 196 & 210 \quad 211 & - & 225 & 226 & 11 & 240 & 241 & 255 \quad 256\end{array}$
255256
37 okw11 $\overline{\mathbf{T}}$ CCCACCCCTCCAAC TGTGTTGCTGC $\overline{C A C G}$ GCGGCGAC $\overline{\mathbf{A}} \mathrm{CGCTTG}$ GGTTATGC $\overline{\mathbf{T}} \mathrm{GTTTT}$ GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 38 okw _- TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTG-- CTGGTGCGTGAGCAC 39 mnw9- TCCCAССССТССААС TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTA-GTGTA-- CTGGTGCGCGAGCAC 40 mnw11_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTA-GTGTA-- CTGGTGCGCGAGCAC

41 maw5_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-ATGTA-- CTGGTGCGTGAGCAC 42 nhe $8 \overline{0}$ ACCCAССССТССААС TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 43 nhe 74^{-}TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 44 nhe79_ TCCCACCCCTCCAAC TGTGTTGTTGCTCCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG

45 nyr21_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTT-GTAG 46 nyr25_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GGTGGTGTGTGTAAT CTGTTACTTT-GTAG 47 nyr28_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTT-GTAG 48 nyr23 tCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTT-GTAG

49 wie210 tCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 50 wie214- TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 51 nyr17_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 52 maw9_ tCCCACCCCTCCAAC TGTGTTGCTGCTCCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG

53 wie213_ TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 54 ine6_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 55 maw3 TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG

57 ine14 TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGCGTGTAAT CTGTTACTTT-GTAG 58 mnmo2 $\overline{5}$ TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACGCGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTT-GTAG 59 mnmo26- TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 60 mnmo214_TCCCACCCCTCCAAC TGTGTTGCTGCTTCG GTGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG

61 mnw1_ TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCCCGTTTT GTTGGTGCGTGTAAT CTGTTACCTT-GTAG 62 mnw 4 TCCCACCССTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCCCGTTTT GTTGGTGCGTGTAAT CTGTTACCTT-GTAG 63 mnw $\overline{1} \overline{4}$ TCCCACCССТССАAС TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCCCGTTTT GTTGGTGCGTGTAAT CTGTTACCTT-GTAG 64 nyr14_ TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG

65 nyr112_ TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACCTT-GTAG 66 txeb1_ TCCCACCCCTCCGAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTT-GTAG 67 txeb2_ TCCCACCCCTCCGAC TGTGTTGCTGCTCCG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGGTGTGTGTAAT CTGTTACTTT-GTAG 68 okw3_ TCCCACCCCTCCAAC TGTGTTGCTGCTCCG GCGACTACACGCTTG GGTTATGCCCGTTTT GTTGGTGTGTGTAAT CTGTTACTTT-ATAG

69 txwe1 TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 70 txwe $^{-}$TCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC 71 txwe6_ tCCCACCCCTCCAAC TGTGTTGCTGCCACG GCGGCGACACGCTTG GGTTATGCTCGTTTT GTTGTTG-GTGTA-- CTGGTGCGTGAGCAC

T TGTGTGGTGCTCCG GCGGcGACACGCTAG GGITATGCTIGTITT GTTGTTG-GTGTA--

5 mnc8_ CGGTACTGCACCACT AACTCAACGGGATGC TGCTGTGAATTCATG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC CGGTACTGCACCACT AACICAACGGGATC CGGTACTGCACCACC AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTACAGTT TGCGTAGTTTTTGAC 8 par8CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

9 par9_ CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 10 mnmol4_ CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 1 mnmo15_ CGGTACTGCACCACC AGCTCAACGGGATGC TGCTGTGAATTGATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 12 mnmol8 CGGTACTGCACCACC AGCTCAACGGGATGC TGCTGTGAATTGATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

13 wir24 CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 14 txwba $\overline{3}$ CGGTACTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTCTGAC 15 txwba5_ CGGTACTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 16 txwba6_ CGGTACTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

17 txwbb21_CGGTACTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 18 mnc10_ CGGTACTGCACCACT AACTCAACGGGATGC TGCTGTGAATTCATG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTGT--GAC 19 wir25
20 wir27 CTGTGA--CATTAAT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

俗 23 casal0- CTGTGA--CATTAGC GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTTGTGCAGTT TGCGTAGTTTTTGGC 24 casal1_ CTGTGA--CATTAGC GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTTGTGCAGTT TGCGTAGTTTTTGGC

25 casb5_ CTGTGA--CATTAGC GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTTGTGCAGTT TGCGTAGTTTTTGGC 26 casb8 CTGTGA--CATTAGC GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTTGTGCAGTT TGCGTAGTTTTTGGC 27 casb $^{-}$CTGTGA--CATTAGC GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTTGTGCAGTT TGCGTAGTTTTTGGC 28 casa1̄_ CTGTGA--CATTAGC GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTTGTGCAGTT TGCGTAGTTTTTGGC

29 txea7_ CTGTGA--CATCACC AACTCAACGGGATGC TGCTGTGAATTCACG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 30 txea1 $\overline{8}$ _ CTGTGA--CATCACC AACTCAACGGGATGC TGCTGTGAATTCACG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 31 txeal4_ CTGTGA--CATCACC AACTCAACGGGATGC TGCTGTGAATTCACG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 32 wie18_ CTGTGA--CATTAAT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCGGTT TGCGTAGTTTTTGAC

33 txwbb1 CTGTGA--CATTAAT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGACG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 34 txwbbl- CTGTGA--CATTAAT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGACG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 35 txea24_-CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCACG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC
36 txeb _- CTGTGA--CATCACC AACTCAACGGGATGC TGCTGTGAATTCACG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC
 38 okw - CTGTGA--CATCACC AACTCAACGGGATGC TGCTGTGAATTCATG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 39 mnw9- CTGTGA--CATTAAT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

CTGTGA--CATTAAT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC CTGTGA--CATTAAT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC CGGTATTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTT--GAC

45 nyr21_ CGGTATtGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTT--GAC 46 nyr25
47 nyr28_
48 nyr23 CGGTATTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTT--GAC CGGTATTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTT--GAC CGGTATTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTT--GAC

49 wie210 CGGTATTGCACCACT AACTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 50 wie214- CGGTATTGCACCACT AACTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 51 nyr17- CGGTACTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 52 maw9_ C CGGTACTGCACCACT AACTCAACGGGATGC TGCTGTGAATTGATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

53 wie213_ CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 54 ine6_ CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 55 maw3 CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 56 ine1 \quad CGGTACTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

57 ine14 CGGTACTGCACCACT AGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 58 mnmo2 $\overline{5}$ CGGTACTGCACCACC AGCTCAACGGGATGC TGCTGTGAATTGATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 59 mnmo26- CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 60 mnmo21 $\overline{4}$ _CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

61 mnw1_ CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC 62 mnw 4
63 mnw $1 \overline{4}$
64 nyr14 CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGAATCATG AGATCAACCACTCG CTCCCTCGTGCAGTT TGCGTAGTTH CGGTACTGCACCACT GGCTCAACGGGATGC TGCTGTGATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

65 nyr
6 txeb1- CGGTACTGCACCACC AACTCAACGGGATGC TGCTGTGAAITCATG AGATICAAGCAGTCG CIGCCICGIGCAGIT IGCGIAGITTITGAC

68 okw3 CGGTACTGCACCACT GACTCAACGGGATGC TGCTGTGAATTCACG GGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTITTGAC CGGTACTGCACCACT AACTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTTTTTGAC

69 txwe $\mathbf{~ C T G T G A - - C A T T A G T ~ G G C T C A A C G G G A T G C ~ T G C T G T G A A T T C A T G ~ A G A T T C A A G C A G T C G ~ C T G C C T C G T G C A G T T ~ T G C G T A G T G T - - G A C ~}$ 70 txwe ${ }^{-}$CTGTGA--CATTAGT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTGT--GAC 71 txwe ${ }^{-}$CTGTGA--CATTAGT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTGT--GAC
72 txwe2_ CTGTGA--CATTAGT GGCTCAACGGGATGC TGCTGTGAATTCATG AGATTCAAGCAGTCG CTGCCTCGTGCAGTT TGCGTAGTGT--GAC
18 19 20 21

18 19 20 21
37 okw11 $\quad \begin{array}{lllll}36 & 376 & 390 & 391 & 405 \\ \text { TGCGATTATGCAACT } & \text { CCGCTTGATTGCCT- ATTTGGTGGTCGAGT } & 406 \\ \text { TTTTCTGAAATGATT }\end{array}$ 38 okw8_ TGCGATTATGCAACT CCGCTTGATTGCCA- TTTTGGTGGTCGAGT TTTTCTGAAATGATT 39 mnw9 - TGCGATTATGCAACT CCGCTTGATTGCCG- TTTTGGTGGTCGAGT TTTTCTGAAATGATT 40 mnw1 $\overline{1}_{1} \quad$ TGCGATTATGCAACT CCGCTTGATTGCCG- TTTTGGTGGTCGAGT TTTTCTGAAATGATT

41 maw5_ TGCGATTATGCAACT CCGCTTGATTGCCAA TTATGGTGGTCGAGT TTTTCTGAAATGATT 42 nhe $\overline{0} \overline{0}$ TGCGATTATGCAACT CCGCTTGATTGCCA- TTTTGGCTATCGAGT TTTTCTGAAATGATT 43 nhe74 ${ }^{-}$TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT 44 nhe79- TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT

45 nyr21_ TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT 46 nyr25_ TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT 47 nyr28_ TGCGATTATGCAACT CTGCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT 48 nyr23 TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT

49 wie210 TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTGTCGAGT TTTTCTGAAATGATT 50 wie214 TGCGATTATGCAACT CCCCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT 51 nyrl7_ CGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTGTCGAGT TTTTCTGAAATGATT 52 maw9_- TGCGATTATGCAACT CCGCTTGATTGCCA- TTTTGGCTATCGAGT TTTTCTGAAATGATT

53 wie213_ TGCGATTATGCAACT CCGCTTGATTGCCT- TTTTGGTGGTCGGGT TCTTCTGAAATGATT 54 ine6_ TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGCTATCGAGT TTTTCTGAAATGATT 55 maw3 ${ }^{-}$TGCGATTATGCAACT CCGCTTGATTGCCT- ATTTGGTGGTCGAGT TTTTCTGAAATTATT 56 inel $\overline{1} \quad$ TGCGATTATGCAACT CCGCTTGATTGCCA- TTTTGGTGGTCGAGT TTTTCTGAAATTATT

57 ine14 TGCGATTATGCAACT CCGCTTGATTGCCA- TTTTGGTGGTCGAGT TTTTCTGAAATTATT 58 mnmo2 $\overline{5}$ TGCGATTATGCAACT CCGCTTGATTGCCA- TTTTGGTGGTCGAGT TTTTCTGAAATTATT 59 mnmo2 6^{-}TGCGATTATGCAACT CCGCTTGATTGCCT- TTTTGGCTATCGAGT TTTTCTGAAATGATT 60 mnmo214_TGCGATTATGCAACT CCGCTTGATTGCCT- TTTTGGCTATCGAGT TTTTCTGAAATGATT

61 mnw1_ TGCGATTATGCAACT CCGCTTGATTGCCT- TTTTGGCTATCGAGT TTTTCTGAAATTATT 62 mnw4 TGCGATTATGCAACT CCGCTTGATTGCCT- TTTTGGCTATCGAGT TTTTCTGAAATTATT 63 mnw $\overline{4} \overline{4}$ TGCGATTATGCAACT CCGCTTGATTGCCT- TTTTGGCTATCGAGT TTTTCTGAAATTATT 64 nyr14- TGCGATTATGCAACT CCGCTTGATTGCCG- TTTTGGTGGTCGAGT TTTTCTGAAATGATT

65 nyr112_ TGCGATTATGCAACT CCGCTTGATTGCCG- TTTTGGTGGTCGAGT TTTTCTGAAATGATT 66 txeb1_ TGCGATTATGCAACT CCGCTTGATTGCCTG TTATGGTGGTTGAGT TTTTCTGAAATGATT 67 txeb2_ TGCGATTATGCAACT CCGCTTGATTGCCTG TTATGGTGGTTGAGT TTTTCTGAAATGATT
68 okw3 TGCGATTATGCAACT CCGCTTGATTGCCTA TTATGGTGGTCGAGT TTTTCTGAAATGATT

69 txwe1
70 txwe3-
TACGATTATGCAACT CCGCTTGATTGCCTG TTATGGTGGTCGAGT TTTTCTGAAATGATT TACGATMATGCAACT
TACGATTATGCAACT CCGCTTGATTGCCTG TTATGGGGTCGAGT TMTTCTGAAAGATT
72 txwe2 TACGATTATGCAACT CCGCTTGATTGCCTG TTATGGTGGTCGAGT TTTTCTGAAATGATT TACGATTATGCAACT CCGCTTGATTGCCTG TTATGGTGGTCGAGT TTTTCTGAAATGATT
421
435436
450451
465466
480481
495496
510
car2 AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT car5 car8 mnc3-
mnc8 mnc1 $\overline{2}$ par3 par8_
par9
0 mnmo14
1 mnmo15_
2 mnmol8
13 wir24
14 txwba $\overline{3}$
5 txwba5
16 txwba ${ }^{-}$
17 txwbb21
18 mnc 10
19 wir25
20 wir27_
21 wie19
22 wie110
23 casa10-
24 casa11_
25 casb5
26 casb8 27 casb2 28 casa1 $\overline{4}$

29 txea7
30 txea1 $\overline{8}$
31 txea14
32 wie18_
33 txwbb1
34 txwbb1 $\overline{4}$
35 txea24
36 txeb8_AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATCGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCCCAC ACAACGATGAAGGAC GCAGCAAGTTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCAATG GGTGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATI AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGGTGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCGAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT
421
435436
450451
465466
480481
495496
510

37 okw11_
38 okw8_
$39 \mathrm{mnw9}{ }^{-}$
40 mnw11_
41 maw5
42 nhe $\overline{0}$
43 nhe74-
44 nhe79
45 nyr21
46 nyr25-
47 nyr28_
48 nyr23
49 wie210
50 wie214
51 nyr17_-
52 maw9_
53 wie213_
54 ine6
55 maw3
56 ine11_
57 ine14
58 mnmo2 $\overline{5}$
59 mnmo26
$60 \mathrm{mnmo214}$
61 mnw1_
62 mnw 4^{-}
3 mnw
64 nyr14
65 nyr112
66 txeb1_
67 txeb2_
68 okw3
69 txwe1
70 txwe3-
71 txwe6_
72 txwe2_

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGTGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT

AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACCTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT AAACTTTCAGCGATG GATGTCTTGGCTCAC ACAACGATGAAGGAC GCAGCAAATTGCGAT AAGCATTATGACTTG CAGACTTCTGCGATT
511
525526
540541
555556
570571
579

1 car2 TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC
car5 car8 4 mnc3-
mnc8 mnc1 $\overline{2}$
par3
par8_
9 par9
0 mnmo 14
$1 \mathrm{mnmo15}$
2 mnmo18
13 wir24
14 txwba $\overline{3}$
15 txwba5-
16 txwba ${ }^{-}$
17 txwbb21_
18 mnc10
19 wir25-
20 wir27_
21 wie19
22 wie11 $\overline{0}$
23 casa10_-
24 casal1_
25 casb5_
26 casb8_
27 casb2-
28 casa1"
29 txea7
30 txea1 $\overline{8}$
31 txea14_
32 wie18_
33 txwbb1
34 txwbb1 $\overline{4}$
35 txea24-
36 txeb8_- TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC CAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACGCACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACTGACCTCTGAA CGTAACAAACACATC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC
511
525526
540541
555556
570571
579

37 okw11
38 okw8
39 mnw9
40 mnw11_
41 maw5
42 nhe $8 \overline{0}$
43 nhe74
44 nhe79
45 nyr21
46 nyr25
47 nyr28
48 nyr23
49 wie210
50 wie214
51 nyr17_-
52 maw9
53 wie213_
54 ine6_
55 maw3
56 ine11_
57 ine14
$58 \mathrm{mnmo} 2 \overline{5}$
$59 \mathrm{mnmo2} 6^{-}$
$60 \mathrm{mnmo214}$
61 mnw1
62 mnw 4^{-}
63 mnw14
64 nyr14
65 nyr112
66 txeb1_
67 txeb2_
68 okw3
69 txwe1
70 txwe ${ }^{-}$
71 txwe6_
72 txwe2_

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCACATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC

TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCTGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACAAACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC TAACAGACCTCTGAA CGTAACATACACACC GCCTCTGCTCGCATG CGGTACTCCCGTTTC AGTGAGCCC
585586
$1 \quad 600 \quad 601$
2
$3 \quad 4$

- $600601 \quad 615616$
630631
$\begin{array}{ll}5 \\ 645 & 646\end{array}$
6
660661
675 CCATGGCACTTGGTT GTGTGGCCTTTGCGA GTGGGTGTTTTTATG GGCACCCCAATTTCG car5car8
4 mnc3_ CCTTTC CTAAAGGTGACAACC -TTTGCTGTGGTCTA CCGTGGCACTTGGTT GTGTGGCCTTTGCGA GTGGGTGTTTTCGTG GGCACCCCAATTTCG CCTTTC CTAAAGGTGACAACC CTTTGCTATGGTTTA CCATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

5 mnc8 CCTTTC CTAAAGGTGACAACC CTTTGCTATGGTTTA CCATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG $6 \mathrm{mnc} 1 \overline{2}$
6 mnc12
7
par8CCTTTC CTAAAGGTGACAACC CTTTGCTATGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG CCTTTC CTAAAGGTGACAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

9 par9 CCTTTC CTAAAGGTGACAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 10 mnmo14_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 11 mnmo15_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 12 mnmo18_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

13 wir24 CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 14 txwba $\overline{3}$ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTCTA CCGTGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 15 txwba5_ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTCTA CCGTGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 16 txwba6_ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTCTA CCGTGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

17 txwbb21_CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTCTA CCGTGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 18 mnc10 - CCTTTC CTAAAGGTGACAACC CTTTGCTATGGTTTA CCATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 19 wir25_ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 20 wir27 CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

21 wiel9_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCATGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 22 wiel1 $\overline{0}$ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCATGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 23 casal0_ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGGA ATCACCCCAATTTCG 24 casal1_ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCACTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGGA ATCACCCCAATTTCG

25 casb5_ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGGA ATCACCCCAATTTCG 26 casb8 CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGGA ATCACCCCAATTTCG 27 casb $^{-}$CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGATTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGGA ATCACCCCAATTTCG 28 casal $\overline{4}$ _ CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGGA ATCACCCCAATTTCG

29 txea7_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 30 txea18_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 31 txea14_ CCTCTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 32 wie18_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTG-TATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

33 txwbb1 CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTTTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 34 txwbb1 $\overline{4}$ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTTTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 35 txea24 - CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 36 txeb8_- CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG
585586
1600601
23
$3 \quad 4$
$\begin{array}{ll}5 \\ 645 & 64\end{array}$
6
660661
675
 38 okw8 39 mnw9 40 mnw11

41 maw5
42 nhe8 $\overline{0}$
43 nhe74 ${ }^{-}$
44 nhe79 CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTCTA CCATGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATTACCCCAATTTCG CCTTTC CTAAAGGTGGCAACC CTTTGCTACGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

45 nyr21_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCATGACACTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 46 nyr25_
47 nyr28_
48 nyr23_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCATGACACTGGGTT GCGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG C-TTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCATGACACTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

49 wie210 CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 50 wie214 ${ }^{-}$CCTTTC CTAAAGGTGGCAACC CTTTGCTGCGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 51 nyrli_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 52 maw9_ C CTTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

53 wie213_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCATGGCACTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 54 ine6_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTCTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 55 maw3 CCTTTC CTAAAGGTGACAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 56 ine1 $\overline{1} \quad$ CCTTTC CTAAAGGTGACAACC CTTTGCTGCGGTCTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

57 inel4_ CCTTTC CTAAAGGTGACAACC CTTTGCTGCGGTCTA CCGTGGCACCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 58 mnmo2 $\overline{5}$ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCACCGGGTT GTGCGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 59 mnmo2 6^{-}CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 60 mnmo214_CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

61 mnw1_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 62 mnw 4^{-}CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 63 mnw1 $\overline{4}$
64 nyr14_CCIIC CIAAAGGIGGCAACC CIIIGCIATGGITIA CCGIGGCGCTGGGIT GIGIGGCCIIIGAGA GIGGGIGIIMIGGAA AICACCCAAIIICG CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG CCTTTC CTAAAGGTGACAACC CTTTGCTGCGGTCTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

65 nyr112_ CCTTTC CTAAAGGTGACAACC CTTTGCTGCGGTCTA CCGTGGCGCTGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 66 txeb1_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 67 txeb2_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG
68 okw3 CСTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CCATGGTATCGGGTT GTGTGGCCTTTGAGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG

69 txwe 1 CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGCGCTGGGTT GTGTGGCCTTTGCGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 70 txwe ${ }^{-}$CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGCGCTGGGTT GTGTGGCCTTTGCGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 71 txwe ${ }^{-}$_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGCGCTGGGTT GTGTGGCCTTTGCGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG 72 txwe2_ CCTTTC CTAAAGGTGGCAACC CTTTGCTATGGTTTA CTATGGCGCTGGGTT GTGTGGCCTTTGCGA GTGGGTGTTTTGGAA ATCACCCCAATTTCG
676
690691
705706
720721
735736
750751
765
 car5_ ATAGCACGCTGCCGA GCATTACCACGTGTG ATCTCGAGGCTCTTT GTTGTAATTTATTAC TCTAGGCCTCTTTGA GGTGTGCGGCTGTGT car8 ATAGCACGCTGCCGA GCATTACCACGTGTG ATCTCGAGGCTCTTT GTTGTAATTTATTAC TCTAGGCCTCTTTGA GGTGTGCGGCTGCGT mnc3_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

5 mnc8_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 6 mnci $\overline{2}$ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC CCTAGGCTTCTGTGA GATGTGCAGCTGTGT 5 mnc12 par3 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGTAGCTGTGT par8_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

9 par9 ATAGCACGCTGCCGA GTATTACCACGTGCG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 10 mnmolı_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 11 mnmol5_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT $12 \mathrm{mnmo18} 8^{-}$ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

13 wir24 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 14 txwba $\overline{3}$ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTACTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 15 txwba5_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 16 txwba6_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

17 txwbb21_ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCGGCTGTGT 18 mnc10 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 19 wir25 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 20 wir27- ATAGCGCGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

21 wie19 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 22 wielī_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 23 casal0_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 24 casal1_ ATAGCACGCTGCCGA GTATTACCACGTGTG GTCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

25 casb5_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 26 casb8 ATAGCACGCTGCCGA GTATTACCACGTGTG GTCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 27 casb2 $^{-}$ATAGCACGCTGCCGA GTATTACCACGTGTG GTCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 28 casal $\overline{4}$ _ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

29 txea7_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 30 txeal $\overline{8}$ _ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 31 txea14 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 32 wie18_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

33 txwbb1 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 34 txwbbl- ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 35 txea24_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 36 txeb8_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT
676
690691
750751
765
37 okw11_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGC $\bar{A} G C T G T G T$ 38 okw - ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 39 mnw9 40 mnw11_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

41 maw5_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 42 nhe $8 \overline{0}$ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTTTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 43 nhe74ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTATGCTTCTGTGA GATGTGCAGCTGTGT 44 nhe79ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

45 nyr21_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTACAGCTGTGT 46 nyr25_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 47 nyr28_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 48 nyr23 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

49 wie210 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 50 wie214- ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 51 nyrl7_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 52 maw9_- ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

53 wie213_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 54 iné_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGACTTCTGTGA GATGTGCAGCCGTGT 55 maw3 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 56 ine1 $\overline{1}$ _ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

57 ine14 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 58 mnmo2 $\overline{5}$ _ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 59 mnmo26_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 60 mnmo21 $\overline{4}$ _ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

61 mnw1_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 62 mnw 4 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 63 mnw1 $\overline{4}$ _ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 64 nyr14-

65 nyr112_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 66 txeb1_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 67 txeb2_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATITATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 68 okw3_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT

69 txwe 1 ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 70 txwe $^{-}$ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 71 txwe __ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT 72 txwe2_ ATAGCACGCTGCCGA GTATTACCACGTGTG ATCTCGAGGCTCTCT GTTGTAATTTATTAC TCTAGGCTTCTGTGA GATGTGCAGCTGTGT
766
9
10
810811
11
766
780781
795796
825826

1 car2_ CGCG $\overline{G T A T}-A G C A C \bar{T}$ GCGC-GCAGTGAGTG GCTGATGCATGGCTG TCGGTGCTGTAGTGA $\overline{\mathbf{C} T T T G A}$ $\begin{array}{lll}2 & \text { car }{ }^{-} & \text {CGCGGTAT-AGCACT GCGC-GCAGTGAGTG GCTGATGCATGGCTG TCGGTGCTGTAGTGA CTTTGA } \\ 3 & \text { car8 }\end{array}$ 3 car8 - CGCGGTAGCAATACT GCGC-GCAGTGAGTG GCTGATGCATGGCTG TCGGTGCTGTAGCGA CTTTCA 4 mnc3_- CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

5 mnc8_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 6 mnc1 $\overline{2}$ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 7 par3-
$\begin{array}{ll}7 & \text { par3 } \\ 8 & \text { par8 }\end{array}$ par8_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA CTTTAT

9 par9 - CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCATGGCTG TCGGTGCTGTATTGA CTTTAT 1 mnmo14- CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 1 mnmol5_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 12 mnmo18_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

13 wir24 CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTGATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 14 txwba $\overline{3}$ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA CTTTAT 15 txwba5_ CGCGGCCT-CGTACC GTGGTGCGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA CTTTAT 16 txwba6_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA CTTTAT

17 txwbb21_CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA CTTTAT 18 mnc10_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 19 wir25_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 20 wir27_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

21 wiel9_ CGCGGTCT-CGTACC GCGATATGGCAAGTG GCTAATGCGCGGCTG TCGGTGCTGTATTGA CTTTAT 22 wiel1 $\overline{0}$ CGCGGTCT-CGTACC GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 23 casal0_ CGCGATCT-CGTACT GCGATATGGCAAGTG GCTAGTGCATGGCTG TCGGTGCTGTATTGA CTTTAT 24 casa11_ CGCGATCT-CGTACT GCGATATGGCAAGTG GCTAGTGCATGGCTG TCGGTGCTGTATTGA CTTTAT

25 casb5_ CGCGATCT-CGTACT GCGATATGGCAAGTG GCTAGTGCATGGCTG TCGGTGCTGTATTGA CTTTAT 26 casb8 CGCGATCT-CGTACT GCGATATGGCAAGTG GCTAGTGCATGGCTG TCGGTGCTGTATTGA CTTTAT 27 casb2 ${ }^{-}$CGCGATCT-CGTACT GCGATATGGCAAGTG GCTAGTGCATGGCTG TCGGTGCTGTATTGA CTTTAT 28 casal $\overline{4}$ CGCGATCT-CGTACT GCGATATGGCAAGTG GCTAGTGCATGGCTG TCGGTGCTGTATTGA CTTTAC

29 txea \quad CGCGGTCT-CGTACC GTGATGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 30 txea1 $\overline{8}$ _ CGCGGTCT-CGTACC GTGATGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 31 txea14_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 32 wie18_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

33 txwbb1 CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTGATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 34 txwbb1 $\overline{4}$ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTGATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 35 txea24_CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 36 txeb8_- CGCGGTCT-CGTACC GTGATGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

37 okw11_ CGCG $\overline{\mathbf{G T C}} T-C G T A C \bar{T}$ GCGATATGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA $\overline{\mathbf{C} T T T A T ~}$ 38 okw8_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 39 mnw ${ }^{-}$CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGTGTGGCTG TCGGTGCTGTATTGA CTTTAT 40 mnw11 CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

41 maw5_ CGCGGTCT-CGTACT GCGATGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 42 nhe $8 \overline{0}$ CACGGTACTCGTACT GCGATATGGCAAGTG GCAAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 43 nhe74 44 nhe79-CGCGGTCT-CGTACC GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT CGCGGTCT-CGTACC GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

45 nyr21_ CGCGGTCT-CGTACT GCGGTATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 46 nyr25
47 nyr28
48 nyr23 CGCGGTCT-CGTACT GCGGTATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT CGCGGTCT-CGTACT GCGGTATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT CGCGGTCT-CGTACT GCGGTATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

49 wie210 CGCGGTCT-CGTACC GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 50 wie214- CGCGGTCT-CGTACC GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 51 nyr17- CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 52 maw9_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

53 wie213_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCATGGCTG TCGGTGCTGTATTGA CTTTAT 54 ine6_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA CTTTAT 55 maw3 CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTGGTACATGGCTG TCGGTGCTGTATTGA TTTTAT 56 ine1 \quad CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

57 inel4_ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 58 mnmo2 $\overline{5}$ CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGCATTGA CTTTAT 59 mnmo2 6^{-}CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 60 mnmo214_CGCGGTCT-CGTACT GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT

61 mnw1_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 62 mnw 4
63 mnw $1 \overline{4}$
64 nyr14 CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT
nyr112_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGCGGCTG TCGGTGCTGTATTGA CTTTAT 66 txeb1_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT 67 txeb2_ CGCGGTCT-CGTACC GTGGTGCGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA CTTTAT
68 okw3 CGTGGTCT-CGTACC GCGATATGGCAAGTG GCTAATGCGTGGCTG TCGGTGCTGTATTGA TTTTAT

69 txwe1 CGCGGTCT-CGTACT GCGATGCGGCAAGTG GCTAATGCATGGCTG TCGGTGCTGTATTGA CTTTAT 70 txwe $^{-}$CGCGGTCT-CGTACT GCGATGCGGCAAGTG GCTAATGCATGGCTG TCGGTGCTGTATTGA CTTTAT
71 txwe ${ }^{-}$_ CGCGGTCT-CGTACT GCGATGCGGCAAGTG GCTAATGCATGGCTG TCGGTGCTGTATTGA CTTTAT
72 txwe2_ CGCGGTCT-CGTACT GCGATGCGGCAAGTG GCTAATGCATGGCTG TCGGTGTTGTATTGA CTTTAT

APPENDIX C

VITA

Lorien Schoelkopf
7610 Carta Valley Drive
Dallas, Texas, 75248-3105
USA

EDUCATION

2004
M.S. Veterinary Parasitology, Texas A\&M University, College Station, Texas, USA.
B.S. Biology, University of Texas at Dallas, Richardson, Texas, USA.

PUBLICATIONS

HOLMAN, P. J., K. G. BENDELE, L. SCHOELKOPF, R. L. JONES-WITTHUHN, AND S. O. JONES. 2003. Ribosomal RNA analysis of Babesia odocoilei isolates from farmed reindeer (Rangifer tarandus tarandus) and elk (Cervus elaphus canadensis) in Wisconsin. Parasitology Research 91: 378-383.

SCHOELKOPF, L., K. G. BENDELE, WILL L. GOFF, MICHELLE WILLETTE, JIM RASMUSSEN, AND P. J. HOLMAN. Extended geographic and host range of Babesia odocoilei confirmed by SSU rRNA gene sequence analysis. In Preparation.

SPENCER, A., H. GOETHERT, S. R. TELFORD III, L. SCHOELKOPF, AND P. J. HOLMAN. Phylogenetic relationships among Babesia divergens and B. divergenslike parasites. In Preparation.

[^0]: ${ }^{\mathrm{a}}$ NA = not applicable.
 ${ }^{\mathrm{b}}$ The nested ITS-PCR products were pooled and column purified prior to ligation.

[^1]: \qquad . 1985. Veterinary Protozoology. Iowa State University Press, Ames, Iowa, 414 pp .

