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ABSTRACT 
 
 

The Use of CEN38 in Assessing Evolutionary Relationships in the Genus Sorghum. 
 

(August 2005) 
 

Jason Correnth Anderson, B.S., Southern University 
 

Chair of Advisory Committee: Dr. H. James Price 
 

 

 A DNA sequence-based phylogenetic tree (Dillon et al., 2004) places the species 

of the genus Sorghum into two sister lineages, one with x = 5 and the other with x = 10 

as a basic chromosome number.  It has not been resolved whether or not these lineages 

are monophyletic or polyphyletic.  A repetitive sequence, CEN38, found only in 

Sorghum and sugarcane, was used to assess evolutionary relationships among Sorghum 

species.  The objectives of this research were to determine the taxonomic distribution of 

CEN38, its chromosomal position(s), and its organization in DNA.  CEN38 was detected 

by filter hybridization to be present in the DNA of 16 of 21 Sorghum species analyzed, 

ranging from 15 to ~21,000 copies.  It was detected by fluorescence in situ hybridization 

(FISH) only in chromosomes of species of the section Eu-sorghum, where it had a 

pericentromeric distribution.  The low copy number and/or chromosomal distribution of 

CEN38 in other Sorghum species apparently does not allow for its detection by FISH.  

Analysis of restriction enzyme digested DNA with homology to CEN38 and of 

fragments amplified by PCR using primers selected to amplify S. bicolor CEN38 

sequences showed that S. laxiflorum and S. macrospermum have tandemly arranged 

CEN38 sequences as is found in S. bicolor.  This supports the close evolutionary affinity 
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of the species in the x = 10 lineage.  In the x = 5 lineage, DNA of 11 of 16 species 

analyzed hybridized with CEN38 by filter hybridization.  In S. versicolor, large DNA 

fragments (4.36 kb to 23 kb) generated by digestion with restriction enzymes hybridized 

to CEN38.  Since a ladder of smaller fragments was not detected, CEN38 may have been 

inserted into a transposable element in this species and dispersed throughout the genome.  

Among species of the x = 5 lineage, PCR using primers for S. bicolor CEN38 amplified 

only DNA fragments from S. timorense and these formed a ladder based on a ~125 bp 

repeat.  Since hybridization of the CEN38 sequence to DNA of S. timorense was not 

detected by filter hybridizations, these sequences apparently are not similar to CEN38.  

Cloning and sequencing of DNA from species of the x = 5 lineage that hybridizes to 

CEN38 are needed to determine whether or not they are in the CEN38 family.  A 

monophyletic or polyphyletic origin of the x = 5 and x = 10 lineages was not resolved. 
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INTRODUCTION 
 

 
Background 

 
Sorghum [Sorghum bicolor (L.) Moench] is the fifth major cereal crop in the 

world.  Cultivated Sorghum bicolor constitutes as a major economical crop in the 

agriculture community of many countries in the world (Garber, 1950).  Sorghum is also 

an intregal part of the diets of millions of people around the world, where it is processed 

into unleavened breads, boiled porridge, malted beverages including beer, and specialty 

foods such as popped grain and syrup.  In Africa, the straw of traditional tall sorghums is 

used to make palisades in villages or around a homestead. The plant bases are an 

important source of fuel for cooking and the stems of wild varieties are used to make 

baskets and fish traps.  In West Africa a red dye is extracted from sorghum that is used 

to color leather.  In the United States, sorghum is a principal feed ingredient for both 

cattle and poultry. 

Grain sorghum has a capacity to tolerate conditions of limited moisture and 

reproduce during periods of extended drought, circumstances that would impede 

production in most other grains. Sorghum leaves roll along the midrib when moisture-

stressed, making the plant more drought resistant than other grain plants.  Therefore, it is 

extensively cultivated in marginal rainfall areas of the tropics and subtropics, whereas 

selected varieties are widely grown in temperate climates (Lazarides et al., 1991).  The  

______________ 
This thesis follows the style of Crop Science. 
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wild races of S. bicolor serve as an extensive pool of germplasm for breeders around the 

world (Rooney and Smith, 2000; Rosenow and Dahlberg, 2000).   

Taxonomy and cytology 

            The genus Sorghum consists of 25 recognized species, 17 of which are 

indigenous to Australia (Dillon et al., 2001).  The other species of Sorghum are found in 

Africa, Central America and India (Garber, 1950).  Species in the Sorghum genus have 

chromosome numbers of 2n = 10, 20, 30, and 40 (Garber, 1950; Lazarides et al., 1991).    

The genus Sorghum has been traditionally classified into five subgenera or sections: Eu-

sorghum, Chaetosorghum, Heterosorghum, Para-sorghum and Stiposorghum (Garber, 

1950).  Although this classification is convenient, it does not represent evolutionary 

relationships (Dillon et al., 2004).  Phylogenetic relationships based on DNA sequence 

comparison are presented in Figure 1.  The section Eu-sorghum includes the cultivated 

species S. bicolor (L.) Moench, its subspecies drummondii and arundinaceum, and wild 

species S. x alum Parodi, S. halepense (L.) Pers., and S. propinquum (Kunth) Hitchc 

(deWet, 1978).  The section Eu-sorghum originated in Africa or Asia (DeWet and 

Harlan, 1971; Doggett, 1976; DuVall and Doebley, 1990).  Sorghum bicolor, which has 

a basic chromosome number of 10, has a relatively small genome of ~818 Mbp (Price et 

al., 2005a).  Individual chromosomes are hard to recognize morphologically at 

metaphase I due to their small size and general lack of morphologically distinctive 

characters.  In fact, Kim et al. (2002) used BAC-FISH to establish a means of metaphase 

karyotyping.  The position of the nucleolus-organizing region in S. bicolor is intercalary, 

residing near the centromere of the largest chromosome (Garber, 1950).  The  
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B  100 

S. brachypodum [S]     
S. matarankense [P]    
S. exstans [S]     

S. angustum [S]    

S. intrans [S]     

S. grande [P]    

S. bulbosum [S]     

S. amplum [S]    

S. stipoideum [S]     

S. timorense [P]      

S. ecarinatum [S]     

S. interjectum {S]     

S. plumosum [S]     

S. leiocladum [P]     

S. purpureo-sericeum [P]  

Cleistachne sorghoides    

S. versicolor [P]     

S. nitidum [P]     

S. x almum [E]    

S. arundinaceum [E]    

S. bicolor [E]     

S. halepense [E]     

S. x drummondii [E]   

S. propinquum [E]     

S. macrospermum [C]     

S. laxiflorum [H]     

Saccharum officinarum    

Zea mays     

 
Figure 1. Phylogeny of the genus Sorghum derived by Dillon et al. (2004).  It is a strict 
consensus tree for the combined ITS1/ndhF data using maximum parsimony analyses.  
Numbers above branches are percentages of bootstrap replicates in which the clade was 
recovered.  Letters A and H designate sister lineages.  Trees were rooted using Zea 
mays.  Letters in parenthesis indicate taxonomic sections within Sorghum where P = 
Para-sorghum, S =  Stiposorghum, H = Heterosorghum and E = Eu-sorghum. 
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centromeres are clearly distinct after differential staining at pachynema.  Occasional 

multivalents (trivalents or quadrivalents) have been reported at metaphase I of S. bicolor 

chromosomes (Kidd, 1952; Celarier, 1958).  This notion might imply the tetraploid 

origin of S. bicolor.  With the advent of bacterial artificial chromosomes (BACs) and 

techniques such as fluorescent in situ hybridization (FISH), Gomez et al. (1998) 

provided evidence seemingly congruent with the hypothesis that sorghum is at least of 

tetraploid origin.  However, the acceptance of this hypothesis is not widespread.  

Sorghum halepense, also known as Johnsongrass, is a tetraploid derived from a natural 

cross between S. arundinaceum and S. propinquum (Doggett, 1976).  Garber (1950) 

reported a somatic chromosome number of 2n = 4x = 40 for S. halepense.  Meiotic 

observations have varied, however the existence of pairings higher than quadrivalents 

have been seen at a low frequency (Garber, 1944; Endrizzi, 1957).  Sorghum 

propinquum is a perennial rhizomateous species related to S. bicolor (Doggett, 1976, 

Chittenden et al., 1994; Sun et al., 1994).  It is a 2n = 20 species that is chromosomally 

similar to S. bicolor and has been crossed to it.  F2 progeny resulting from crosses of S. 

bicolor and S. propinquum have been evaluated to generate RFLP (restriction fragment 

length polymorphism) loci used in mapping (Chittenden et al., 1994).  Hybrids of S. 

bicolor and S. propinquum are meiotically regular with ten bivalents observed at meiotic 

metaphase I (Doggett, 1988).   

Sections Chaetosorghum and Heterosorghum consist of S. macrospermum and S. 

laxiflorum respectively.  Both species are annuals and polyploids, displaying 20 

bivalents at metaphase I of meiosis (Garber, 1950; Lazarides et al., 1991; Wu, 1990).  
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Sorghum laxiflorum and S. macrospermum were identified as the Australian species 

most closely related to cultivated Sorghum (Dillon et al., 2004).   

 Section Stiposorghum consists of ten species indigenous to northern Australia 

(Lazarides et al., 1991).  Section Para-sorghum comprises seven African, Asian, 

Australian and Central American species.  The basic chromosome number of species in 

each section is five.  Most of the species in Parasorghum and Stiposorghum are diploid 

(2n = 10) with a few species being tetraploid or hexaploid.  The species of sections 

Para-sorghum and Stiposorghum may be separated into two groups based on number of 

nucleolus chromosomes at pachytene (Garber, 1950).  The species of Parasorghum have 

1 nucleolus organizer per genome whereas the species of Stiposorghum have 2 or 4 

nucleoli genome.  Morphological and positional differences of nucleolus-organizing 

regions at pachynema were also observed (Garber, 1950).  In general, the chromosome 

sizes of species in sections Parasorghum and Stiposorghum are large, relative to those of 

Eu-sorghum (Price et al., 2005a). 

 The taxonomic distribution and organization of CEN38 in the genus Sorghum 

have not previously been revealed.  Dillon et al. (2001, 2004) used ITS1 and ndhF gene 

sequence comparison to analyze the genus Sorghum.  Two main lineages were revealed, 

one containing species with a basic chromosome number of 5 and the other lineage 

containing species with a basic chromosome number of 10 (Figure 1).  In the current 

study, the presence of CEN38 is analyzed in relationship to the Sorghum phylogenetic 

tree to see if it can be used as an evolutionary marker.  Specifically, its distribution will  
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be superimposed on the phylogeny of Dillon et al. (2004) to see if it can be used to 

support a monophyletic or polyphyletic evolution of species in the sister lineages, A and 

H, of the genus Sorghum. 

Genetic maps and molecular cytogenetics 

 Before the era of genetic mapping using molecular markers, over 200 genes had 

been discovered in sorghum (Rooney, 2000).  Collectively, these genes controlled many 

different phenotypes including morphology, maturity, fertility, disease resistance and 

drought tolerance.  Only seven linkage groups containing three or more (8 maximum) 

genes were identified (Doggett, 1988).  Construction of sorghum genome maps based on 

DNA markers began in the early 1990’s, with several moderately marker-dense maps 

being reported (Bhattramakki et al., 2000; Chittenden et al., 1994; Pereira et al., 1994; 

Peng et al., 1999).  These maps were developed using SSR (simple sequence repeat) 

and/or RFLP markers from F2  populations and recombinant inbred lines.  Current 

RFLP/SSR/AFLP-based genetic maps in sorghum are high density and include 

approximately 3000 loci (Klein et al., 2000; Menz et al., 2002).  More recently, an 

integrated Sorghum bicolor genome map has been constructed utilizing a combination of 

methodologies, including high-throughput amplified fragment length polymorphism 

(AFLP) DNA marker technology (Klein et al., 2000; Menz et al., 2002), six-dimensional 

pooling of BAC clones (Klein et al., 2000), cDNA capture technology (Childs et al., 

2001), sequenced-based alignment of the genomes of sorghum and rice (Klein et al., 

2003) and BAC-based fluorescence in situ hybridization (FISH) (Islam-Faridi et al., 

2002; Kim et al., 2002, 2005a, b).  FISH of genetically mapped BACs has permitted all 
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linkage groups to be associated to specific sorghum chromosomes and to integrate the 

genetic recombination frequency with physical distances along each chromosome 

(Islam-Faridi et al., 2002; Kim et al., 2002, 2005b).  It also provided an excellent means 

of karyotyping sorghum chromosomes using landed sorghum BACs (Kim et al., 2002, 

2005a).  Recent application is leading to a more thoroughly integrated sorghum genomic 

map that will provide a valuable resource to researchers. 

Repetitive DNA and CEN38 

 There is remarkable variability in genome size among eukaryotes that does not 

correlate with the evolutionary complexity or the number of coding genes of an 

organism (Price, 1976; Charlesworth et al., 1994).  Much of this variation is due to non-

coding, repeated DNA.  For many years, repetitive sequences were believed by some to 

be “selfish elements” or “junk DNAs”.  A major fraction of the genomes of many 

eukaryotes is comprised of repetitive DNA sequences, in which short sequences are 

repeated in small to huge tandem arrays and/or are dispersed throughout the genome 

(Flavell, 1986).  Families of repetitive DNA sequences are differentiated by their degree 

of sequence homology, distribution among species and/or genome and physical 

organization (Schmidt and Heslop-Harrison, 1998).  The concept that variation in DNA 

content is due to the accumulation of “junk” DNA has recently been strongly challenged 

(Cavalier-Smith, 2005). 

 The definition of centromere-associated sequences and their functions is likely to 

improve the understanding of centromere action and genome evolution (Zwick et al., 

2000).  It is widely known that centromere functions are highly conserved throughout 
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many species.  However, there is a notable lack of sequence homology among the 

centromeres of distantly related species, highlighting the extremely rapid rate of 

centromere DNA evolution (Hall et al., 2004).  In S. bicolor, CEN38 is a tandemly 

repeated DNA sequence that was subcloned (Zwick et al., 2000) from a bacterial 

artificial chromosome, BAC 22B2 (Gomez et al., 1998).  CEN38 belongs to a family of 

repeats from Sorghum that also includes the sequence, pSau3A10 (Miller et al., 1998) 

and the sugarcane sequence SCEN (Nagaki et al., 1998).  It is an AT-rich DNA 

sequence that is amplified as a <280 bp dimer, each dimer consisting of two divergent 

<140 bp monomers (Zwick et al., 2000).  Results from Miller et al. (1998) and Zwick et 

al. (2000) reported that this repeat family was found only in the section Eu-sorghum and 

Saccharum and not in related species such as rice, maize and wheat.   

CEN38 yielded differentially strong hybridization signal in pericentromeric 

regions of 10 out of 20 Sorghum mitotic chromosomes (Gomez et al., 1998; Zwick et al., 

2000).  CEN38 has been used to provide insight onto the architecture and karyotype of 

sorghum chromosomes (Islam-Faridi et al., 2002; Kim et al., 2002).  The aim of this 

research is to evaluate CEN38 as an “evolutionary tool” to assess phylogenetic and 

evolutionary relationships among members of the genus Sorghum.  Since CEN38 has 

been reported in only the Eu-sorghum section of Sorghum and Saccharum and not in 

related gramineous species, Sorghum species possessing CEN38 may be derived from a 

common ancestor with CEN38 in its genome.  Therefore, if CEN38 is found in both the 

x = 10 and x = 5 sister lineages detected by Dillon et al. (2004), it would be evidence for 

a monophyletic origin of the genus Sorghum.  If it is not present in both sister lineages, it 
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would not help resolve the issue of whether or not the two Sorghum lineages are 

monophyletic or polyphyletic.  The objectives of this research are:  (1) To determine the 

taxonomic distribution of the S. bicolor centromere-associated CEN38 sequence; (2) To 

determine the chromosomal distribution of CEN38 in at least two additional Sorghum 

species using fluorescence in situ hybridization (FISH); and (3) To determine the 

organization of CEN38 in the DNA of Sorghum species. 
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MATERIALS AND METHODS 
 
 

Plant materials 
 
 The Sorghum species used in this research were propagated from seeds and 

grown in a glasshouse, except S. halepense, which was sampled directly from the field.  

Accession numbers, herbarium voucher numbers, life forms and origins are listed in 

Table 1. 

DNA extraction 

            DNA from 21 species of Sorghum was extracted carefully following a 

modification of CTAB (cetytrimethylammonium bromide) method by Zhang (1995).  

Fresh young leaf tissue, approximately five to 10 g, was collected early in the morning to 

avoid accumulating unwanted photosynthetic compounds.   200 mL of extraction buffer 

(1275.4 g Sorbitol, 242.0 g Tris, 33.6 g EDTA; final volume to 20 L with dd H20, adjust 

pH to 7.5 before adding sodium bisulfite) combined with 0.76 g of dissolved sodium 

bisulfite were used to homogenize the leaf tissue in a kitchen blender.  The leaf tissue 

was pureed for 30-40 sec to form a slurry.  This slurry was filtered through two layers of 

cheesecloth and one layer of Miracloth® into a 50 mL Falcon tube on ice.  Subsequently 

the tube was centrifuged on a JA-14 rotor at 1880 rcf (relative centrifugal field) at 4ºC 

for 20 min.  The supernatant was discarded and the pellet was re-suspended with a 

paintbrush in 10 ml of extraction buffer.  Ten mL of nuclei lysis buffer (1.0 M Tris, 

HCL, 0.5 M EDTA, 5.0 M NaCl, CTAB, dd H2O) and 4 mL of 5% sarkosyl (50g/L N 

Lauroyl sarcosine) were added and mixed gently by inverting several times.  The 

mixture was incubated at 60ºC in a water bath for 15-20 min.  Following incubation,
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Table 1.  Accession number, life form and origin of 21 Sorghum species used in this study  (Modified from Price et al., (2005a). 
 
     Herbarium             Accession  
Species    voucher              number†  Life form       Collection date and site, or source of seeds     
 
Sorghum amplum Lazarides  CANB 480260‡           302455‡ Annual         17-Mar.-94, 1.4 km E of Lake ArgleT/O on Great Northern Hwy,  

        WA, Australia 
S. angustum S. T. Blake  BRI AQ585981§           302605§ Annual         19-May –95, Windmill Ck crossing, 18.8 km S. of Musgrave  
                  Station on Peninsula. Development  Road, QLD, Ausralia 
S. bicolor TX623 L. (Moench)     Annual         Seeds obtained from W. Rooney, Texas A&M University 
S. brachypodum Lazarides                      DNA D133019                 302670 Annual         Oenpelli Rd (road to Jabiru), approx 2km E of Magela Creek, Kakadu  
                                                                                                                                                        National Park, NT 
S. bulbosum Lazarides  DNA D129483¶           302645 Annual         25-Apr.-96, 29.1 km S Wyndham T/O on Halls Creek Rd (Great  
                 Northern Hwy) NT, Australia 
S. ecarinatum Lazarides                 DNA D129449                 302648  Annual         1.9 km W of Quanbun Stn T/O on Great Northern HWY (Approx 5 km W         
                                                                                                                                                         of 2321), NT 
S. exstans Lazarides  BRI AQ586005           302577 Annual         2-Apr.-95, 37 km N Pickataramoor on Melville Island, Australia 
S. halepense (L.) Pers.        Perennial         14-June-01, Hwy 60, 0.5 miles W of Brazos River, T.A.E.S. Field  
                 Laboratory, Burleson County, TX USA 
S. interjectum Lazarides                 BRI AQ585985                302563 Perennial         0.5 km E of Angurugu River crossing, map unit 6, Groote Eyland 
S. intrans F. Muell. Ex Benth                 DNA D133021                 302668 Annual         Rod to Howard river floodplain, SE of Darwin 
S. laxiflorum Bailey   BRI AQ773635           302510 Annual         15-Apr.-94, 67.9 km N of Wollogorang on Wollogorang Station  
                 Rd to coast, NT, Australia 
S. leiocladum (Hack.) C E. Hubb DNA D0155521           300170 Perennial         16-Dec-97, 2-3 km W from Drake on roadside on range in State  
                 Forest, NSW, Australia 
S. macrospermum Garber  DNA C867           302367 Annual         4-Apr.-95, 7.9 km N Katherine River bridge on Stuart  Hwy, NT Australia 
S. matarankense Garber & Snyder         DNA D129470                 302636          Annual         25.5 km N Newcastle Waters on Stuart Hwy 
S. nitidum (Vahl.) Pers.  BRI AQ496360           316930 Perennial         6-Jun.-00, 450m down road from summit of Mt. Stuart on both  
                 sides of road, QLD, Australia 
S. plumosum (R. Br.) P. Beauv.   BRI AQ773634           302489 Perennial         11-Apr.-94, Einslie River, 26.4 km W of Georgetown on Gulf 
                 Development Rd QLD, Australia, 
S. propinquum (Kunth) Hitch.     Perennial         Africa, seeds from W. Rooney, Texas A&M University 
S. purpureosericeum (A. Rich). IS 18945#            318068 Annual         Sudan, Northeast tropical Africa 
Aschers & Schweinf 
S. stipoideum (Ewart & Jean White)      DNA D129471                 302632 Annual         Old Victoria Riv crossing, NT 
C. Gardner  and C. E. Hubb                 
S. timorense (Kunth) Buse                 DNA D129479                 302440 Annual         28.5 km W Top SpringsT/O on Victoria Hwy, 0.5 km E Innesfan Stn T/O, NT 
S. versicolor Anderss.      Annual         East Africa, seeds obtained from G. Liang, Kansas State University 
                  
 

†AusTRC number, Australian Tropical Crops and Forages Collection, Queensland Department of Primary Industries 
‡CANB = Australian National Herbarium, Canberra, ACT Australia 
§BRI  = Queensland Herbarium, Mt Coot-tha, QLD Australia 
¶DNA = Northern Territory Herbarium, Darwin, NT Australia 
#IS = ICRISAT 
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approximately 17 mL of 24:1 chloroform/isoamyl were added to the mixture in a hood.  

The mixture was inverted 10-15 times to get an emulsion and then centrifuged at 1880 

rcf at room temperature for 20 min.  After centrifugation, the aqueous layer (top layer) 

was pipetted into a new tube and one volume of isopropanol was added to precipitate the 

DNA.  To promote precipitation of the Sorghum DNA, tubes were centrifuged at 8820 

rcf at 4ºC for 20 min, the isopropanol was decanted, and 4 mL of 70% ethanol was 

added to the mixture.  Again the tubes of DNA were centrifuged at 8820 rcf for 10 min.  

The ethanol was decanted off and the DNA pellet was allowed to air dry 5 min.  

Afterwards various amounts of TE buffer (200-800 �l) were added to dissolve the DNA 

pellet (depending on size of pellet).  The DNA was subsequently stored at 4ºC until 

needed. 

Extraction, amplification and purification of pCEN38 

 The plasmid pCEN38 was extracted from E. coli cells by the standard protocol 

by Sanbrook, Fritsch, and Maniatis (1989).  One L of LB medium (950 mL of dd H2O, 

10 g of bacto-tryptone, 5 g bacto-yeast extract and 10 g NaCl) was prepared and 

autoclaved for 20 min.  One mL of ampicillin was added per L of LB medium.  Fifty mL 

of LB medium was poured into a separate flask.  This flask of LB medium was 

inoculated with ~25 �L of the glycerol stock of CEN38.  Another batch of LB medium 

was prepared (without ampicillin) and added to the small flask containing the CEN38 

glycerol stock.  This doubled the volume of the flask (45 mL to 90 mL) and halved the 

concentration of ampicillin to the correct concentration (50 �g/�L to 25 �g/�L).  The 

flask with cells was then covered with aluminum foil and incubated at an environmental 
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shaker at 37ºC for 250 cycles/min overnight.   The next day the flask was removed from 

the shaker.  The original LB medium’s (containing ampicillin) concentration remained 

50 �g/�L.  The concentration was halved when ~870 mL of regular LB medium was 

added.  This large volume was poured into 5 smaller flasks (~300 mL – 600 mL) and 10 

mL of the late-log phase culture was added to each flask.  These cultures were incubated 

for 3 h at 65ºC with vigorous shaking (250 cycles/min) on a rotary shaker.  After 

incubation, the cultures were combined and the optical density (OD) was checked with  a 

spectrophotometer.  Serial dilutions were made (1:10 and 1:100) and the optical density 

was recorded at OD�600 and OD�450.  The large culture was aliquotted into 5 smaller 

flasks and again incubated at 37ºC onto a rotary shaker with vigorous shaking overnight.  

The next morning, the cultures were poured into 4 large centrifugal bottles and 

centrifuged at 4ºC at 3000 rpm on a JA-14 rotor for 15 min.  The supernatant was 

subsequently decanted and drained.  Fifty mL of ice-cold TE was added to each bottle to 

resuspend the pellet.  After resuspension, the DNA was combined into 1 bottle and 

centrifuged again at 4ºC for 15 min.  After centrifugation, the DNA was released during 

lysis of the bacteria cells.  Twenty mL of ice-cold Solution I (50 mM glucose, 25mM 

Tric/HCL pH 8.0, 10 mM EDTA pH 8.0) were added to resuspend the pellet.  The bottle 

was kept on ice for 10 minutes.  Forty mL of freshly prepared Solution II (0.2N NaOH, 

1% SDS) were added and mixed thoroughly, but gently.  This is very important because 

this is the stage when the plasmid is released from the bacteria.  The solution was kept 

on ice for an additional 10 min.  Thirty ml of ice-cold Solution III (5M potassium 

acetate, glacial acetic acid, H2O) was added to the solution and mixed well.  The mixture 
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was kept on ice for 30 min.  Afterwards, the solution was centrifuged at 4ºC at 3000 rpm 

for 15 min.  The supernatant was subsequently filtered through 4 layers of cheesecloth 

and 2 layers of Miracloth®.  Nearly 1 volume (0.6) of isopropanol was added to the 

supernatant and centrifuged at 4ºC at 5000 rpm for 20 min.  The isopropanol was 

decanted and the pellet was washed with 70% ethanol.  The resuspended pellet was 

centrifuged at 4ºC at 5000 rpm for 3 min.  Ten ml of TE was added to the tube to 

dissolve the pellet and inverted at 4ºC overnight.  The following day, the quality of 

plasmid DNA containing CEN38 was verified by 1% agarose gel electrophoresis.  A 

large amount of RNA existed, so the pCEN38 was treated with RNase to remove the 

RNA.  The quality of DNA was checked again via agarose gel electrophoresis, which 

showed no presence of RNA.  After removing the RNA from the sample containing 

pCEN38, the plasmid DNA was quantified using DyNA Quant 200 Fluorometer. After 

quantification, CEN38 was amplified using polymerase chain reaction (PCR) and 

purification through a Sephadex G-50 column (5% Sephadex saturated with TE). 

Detection and quantification of DNA by dot blot hybridization 

 The presence of CEN38 in genomic DNA from Sorghum species was quantified 

by dot blot hybridization using a modified protocol by Zhang (2005b).  Genomic DNA 

from 21 Sorghum species and Cleistochne sorghoides listed in Table 1 on page 11 was 

quantified by a DyNA fluorometer.  Various concentrations of genomic DNA were used 

for dot blot analysis (100 ng/�L, 200 ng/�L, 300 ngl�L and 2 �g/mL).  The 

concentration of the probe DNA (CEN38) used was 32 ng/�L.  CEN38 was used as a  
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positive control and subdivided into 10,000 copies, 50,000 copies and 100,000 copies to 

estimate the copy numbers present.  TE was used a negative control.   

 The nylon membrane was soaked in 325 mL of 2x SSC.  While the filter was 

soaking, 50 �L of denaturation buffer were added to each tube of genomic DNA and 

allowed to remain on ice for 15 min.  All of the samples were incubated at 80ºC for 10 

min, and 50 �L of neutralization buffer were added to each tube.  The tubes remained on 

ice for 15 min.  The filter was placed in the Bio-Dot apparatus and 100 �L of 20x SSC 

were added to the template and vacuum-filtrated gently.  The samples (110 �L each) 

were loaded with a multi-tip pipette and vacuum-filtered gently onto the membrane.  

Afterwards, 100 �L of 0.4 N NaOH (each) were filtered onto the membrane.  The 

membrane was then removed from the apparatus and rinsed in 2x SSC for 5 min.  The 

filter was wrapped in SaranWrap® and incubated at 80ºC for exactly 2 h.  After 

incubation, the filter was stored at 4ºC.  On day 2, the membrane was incubated in 

hybridization solution (250 mL of 20x SSC, 25mLof 0.5% SDS, 25 mM 0.5 M KPB, pH 

6.5, 100x Denhardt’s and 625 mL of dd H2O) at 65ºC for >2 h.  Afterwards, the probe 

DNA (CEN38) was radioactively-labeled by incubating at 37ºC for 30 min in LS 

(labeling solution), 0.5U/uL Klenow, P32-dCTP, and dd H20.  The labeled probe DNA 

was denatured by adding one volume of 0.4 N NaOH and incubating the reaction at 95ºC 

for 10 min.  The labeled probe was carefully transferred into the hybridization solution 

(without touching the membrane) and incubated overnight at 65ºC with gentle shaking.  

On the third day, the membrane was washed several times at 65ºC with a washing buffer 

(20x SSC [0.2x], 20% SDS [0.1%] and ddH20).  After the third washing, the membrane 
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was blotted with paper towels to remove excess fluid and wrapped with SaranWrap®.  

The membrane was covered with x-ray film and placed in an autoradiograph cassette at -

80ºC for 2 h exposure.  The x-ray film was developed and the exposed areas were 

quantified on the autoradiograph using a phosphoimager.  The copy numbers were 

calculated using the densiometric values of Sorghum genomic DNA relative to the value 

of the control DNA (CEN38).  This value is multiplied by the copies of CEN38 present 

in the control.  This value is divided by the number of cells present in each species’ 

genome.  This quantified value was the copy number of CEN38 present in each cell per 

diploid complement (Table 2). 

Seed germination and somatic chromosome preparation 

            To obtain young, actively dividing root tips for preparing slides with 

chromosome spreads, seeds of Sorghum species (S. versicolor, S. macrospermum, S. 

laxiflorum and S. bicolor) were germinated on a 0.7% agar medium (200 mL of dd H20, 

4 g of sucrose, 1.4 g of agarose) using aseptic techniques.  The quality of root tips used 

for somatic chromosome spreads from plants grown in a greenhouse showed much 

seasonal and environmental variability, therefore it is often difficult to obtain good 

metaphase chromosome spreads using root tips from plants grown in a greenhouse.  

However, it was observed that seeds germinated on a 0.7% agar medium (containing dd 

H20, 0.4% sucrose) produced roots that were optimal for preparing chromosome spreads 

year round.  This method can be used to propagate an ample number of actively dividing 

roots that are free of soil debris.  The use of aseptic techniques lowers the rate of  
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Table 2. Chromosome number and estimated copy number of CEN38 for 21 species 
of Sorghum and Cleistochne sorghoides. 
 
Number Species† Chromosome 

number (2n) 
Estimated 
CEN38 copy 
numbers‡  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

S. brachypodum (S) 
S. matarankense (P) 
S. extans (S) 
S. angustum (S) 
S. intrans (S) 
S. bulbosum (S) 
S. amplum (S) 
S. plumosum (S) 
S. stipoideum (S) 
S. timorense  (P) 
S. encarinatum (S) 
S. interjectum (S) 
S. leiocladum (P) 
S. purpureo-sericeum (P) 
S. versicolor (P) 
S. nitidum (P) 
S. bicolor (E) 
S. halepense (E) 
S. propinquum (E) 
S. macrospermum (C) 
S. laxiflorum (H) 
Cleistochne sorghoides 

10 
10 
10 
10 
10 
10 
30 
30 
10 
10 
10 
30 
10 
10 
10 
20 
20 
40 
20 
40 
40 
36 

0 
15 
34 
37 
0 
129 
164 
0 
51 
0 
0 
97 
92 
90 
278 
205 
20,708 
20,828 
12,008 
71 
436 
0 

†Sorghum subgenera – C=Chaetosorghum, E=Eu-sorghum, H=Heterosorghum,   
                                     P=Para-sorghum, and S=Stiposorghum 
‡Estimated copy numbers based on haploid (1C) genome size (Price et al., 2005a) 
 

 

 

 



   

 

18 

contamination.  This new procedure is overall a cleaner, quicker and more optimal 

technique to produce root tips for somatic chromosome spreads. 

The agar medium was heat-sterilized and allowed to cool (35-45 min) before it 

was poured into Petri plates.  While the agar medium was cooling, seeds were surfaced-

sterilized in 30% sodium hypochlorite for 20 min.  The agar medium was carefully 

poured into the Petri plates and allowed to solidify.  While solidifying, the seeds were 

removed from the bleach and rinsed with sterilized water.  The seeds were gently placed 

onto the agar using aseptic techniques.  The plates were covered, labeled, sealed with 

Parafilm® and placed in the dark for at least 2 d.  The time the seeds remained in the 

dark depended on germination and the length of the primary root.  The root was excised 

at ~ 2.5 cm – 7.6 cm.  Somatic chromosome spreads were prepared by the protocol of 

Jewell and Islam-Faridi (1994).  Excised roots were treated with aqueous �-

monobromonaphthalene at room temperature in the dark for 1 h and 45 min.  The roots 

were fixed with 4:1 ethanol: acetic acid.  The following day, the root tips were rinsed 

with dd H20 for an h (every 15 min) and treated with 0.2 N HCL for 10 min.  The roots 

were rinsed again with ddH20 for 10 min before the root tips were excised and 

submerged into enzyme solution (5% cellulose, 2.5% pectolyase in 0.2 M citrate buffer).  

The root tips were incubated at 37ºC for at least 20-25 min (the time depended on the 

size of root tip, i.e. very large tip required 35 min).  After digestion, the enzyme was 

removed and dd H20 was added to the root tips.  The tips were spread on the slide with 

the aid of 3:1 ethanol: acetic acid and tweezers.  The slides were allowed to dry and 
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analyzed under a light microscope.  After visualization of the cells under the microscope, 

the slides were kept in a slide box at -80ºC.   

Fluorescence in situ hybridization (FISH) 

Visualization of the chromosomal distribution of CEN38 and 18S-28S rDNA in 

specific Sorghum species followed a modified protocol of Jewell and Islam-Faridi 

(1994), as described by Hanson et al. (1995) and Kim et al. (2002).  First, the purifed 

pCEN38 was indirectly labeled with digoxigenin-11 dUTP (DIG) by nick-translation.  

Labeled probe was hybridized to chromosomal DNA.  On day 1, the hybridization 

mixture was prepared (25 �L/slide).  The mixture consisted of deionized formamide 

(50%), 50% dextran sulfate (10%) and 20x SSC (2x concentration).  The probe DNAs (1 

�L of CEN38), 18S-28S rDNA (1 �L) and TE (3 �L) were added.  Afterwards, 100 �L 

of formamide was added to each slide, covered with a glass coverslips, and incubated at 

70ºC for 1.5 min to denature the chromosomal DNA.  While the chromosomal DNA was 

denaturing, the graded EtOH series was setup.  The 70% EtOH coplin jar was placed in -

20ºC freezer to be chilled.  The 80%, 95% and absolute EtOH series were kept at room 

temperature.  After, denaturation, the coverslips were removed and the slides were 

dehydrated in the graded ethanol series.  While the slide were air-drying (10 min), the 

probe DNA (CEN38 and 18S-28S rDNA) was added to the hybridization mixture and 

denatured at 90ºC for 10 min.  The denatured probes were immediately quenched on ice 

for 5 min.  Twenty-five �L of hybridization mixture were added per slide.  Glass 

coverslips were placed on the slides and sealed with rubber cement.  The slides were 

incubated in a humidity chamber at 37ºC overnight.  On day 2, the rubber cement and 
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glass coverslips were removed from the slides.  It was important to not let the slides dry 

out.  The slides were washed with 2x SSC at 40ºC for 5 min in a shaking incubator.  The 

2x SSC was removed and fresh 2x SSC was added to the slides at room temperature with 

the lid off the coplin jar for 5 min.  The 2x SSC was removed and the slides were 

washed with 4x SSC (with 0.2% Tween-20) at room temperature for 5 min.  After 

washing, 200 �L of 0.1 g of 5% BSA solution was added to 2 mL of 4x SSC (0.2% 

Tween-20) was added to each slide to block non-homologous DNA from hybridizing to 

the conjugated dyes.  The next step was done in the dark to avoid exposing the 

fluorescent dyes to light.  The hybridization of probe DNA (DIG-labeled) to its 

homologous sequences in chromosomal DNA was detected with fluorescein 

isothiocyanate (FITC) conjugated with antidigoxygenin ([1.3 �g/mL]/100 �L of 5% 

BSA/4x SSC/0.2% Tween-20).  The 18S-28S rDNA was detected with (Cy-3) 

conjugated with streptoavidin ([5 �g/mL]/ 100 �L of 5% BSA/4x SSC/0.2% Tween-20).  

Plastic coverslips were placed on the slides and incubated for 20-30 min at 37ºC.  The 

coverslips were removed and the slides were washed three times, 1-2 min with 4x 

SSC/0.2% Tween-20 at 37ºC.  The chromosomes are detected by adding 100-200 �L of 

3 �g/mL DAPI with Vectashield®.  The slides were then covered with clean glass 

coverslips and observed under an Olympus AX-70 fluorescent microscope. 

Southern hybridization 

 The presence and organization of CEN38 in the genus Sorghum was detected by 

Southern blotting.  Procedures for Southern blotting and hybridization followed the 

protocol by Zhang (2005b).  Genomic DNA from twenty-one species of Sorghum was 
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digested with specific restriction enzymes, HindIII and PstI, with each having a specific 

restriction site in CEN38 (Table 3).  The DNA was digested at 37ºC for exactly 2 h.  

While the DNA was being digested, a 0.8% agarose gel (250 ml of 1x NEB and 2.0 g of 

agarose) was prepared.  Once the gel solidified, it was submerged with the gel mold tray 

in 1x NEB in the buffer chamber.  After digestion, 5 �L of 10x loading dye was added to 

each sample and the samples were inserted into the gel.  Two lanes of marker DNA (� 

DNA digested with HindIII) were loaded per gel.  The gel was run at 24 v for 

approximately 16 h.  The gel tray was carefully removed and transferred into a staining 

tray containing ethidium bromide.  The tray was agitated on an orbital shaker with gentle 

shaking and allowed to stain for 30 min.  The gel was carefully transferred to another 

tray containing water and destained on the orbital shaker for 20 min.  The gel was 

carefully removed from the tray and view on a UV light box.  The gel was photographed 

and prepared for blotting.  A blotting tray was filled with 1 L of 0.4 N NaOH.  A glass 

plate was placed over the tray (used as a bridge) and a wick was constructed using two 

layers of blotting paper soaked in 0.4 N NaOH.  Bubbles were removed between the 

plate and the blotting paper with a glass pipette.  The edge of the gel without samples  

was cut with a razor blade (identification purposes) and placed upside down on the  
 
blotting paper wick.  A piece of Hybond-N+® membrane the same size as the gel was  
 
placed over the gel.  Again, the bubbles were removed from the gel with a glass pipette.   
 
The areas of the gel and the blotting paper wick that was not covered by the membrane  
 
was covered with Parafilm® to block transfer through these areas.  Two sheets of  
 
blotting paper with sizes slightly larger than the gel were cut, soaked in the reservoir 



   

 

22 

Table 3. Lane assignments, species, and restriction enzymes used to digest DNA 
prior to Southern blotting. 
 
Lane #† Species/Marker Restriction 

Enzyme 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
1a 
2a 
3a 
4a 
5a 
 

 �DNA marker 
S. brachypodum 
S. brachypodum 
S. matarankense 
S. matarankense 
S. extans 
S. extans 
S. angustum 
S. angustum 
S. intrans  
S. intrans  
S. bulbosum  
S. bulbosum  
S. amplum 
S. amplum  
S. plumosum  
S. plumosum  
S. stipoideum 
S. stipoideum  
S. timorense   
S. timorense   
S. encarinatum  
S. encarinatum  
S. interjectum 
S. interjectum  
S. leiocladum  
S. leiocladum 
S. purpureo-sericeum 
S. purpureo-sericeum 
�DNA marker 
�DNA marker 
S. versicolor  
S. versicolor  
S. nitidum  
S. nitidum  
 

HindIII 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
PstI 
HindIII 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
HindIII 
HindIII 
PstI 
HindIII 
PstI 
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Table 3. Continued_______________________________________________________ 
 
Lane #† 
 

Species/Marker Restriction 
Enzyme 
 

6a 
7a 
8a 
9a 
10a 
11a 
12a 
13a 
14a 
15a 
16a 
17a 
18a 
 

 S. bicolor  
S. bicolor 
S. halepense 
S. halepense 
S. propinquum 
S. propinquum 
S. macrospermum  
S. macrospermum  
S. laxiflorum 
S. laxiflorum  
Cleistochne sorghoides 
Cleistochne sorghoides 
�DNA marker 
 

HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
PstI 
HindIII 
 

† letter “a” designates the lanes on the bottom-half of the gel 
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 buffer (0.4 N NaOH) and placed on the membrane.  A large stack of paper towels (2.5 – 

5.0 cm) was placed over the blotting paper.  A glass plate was placed over the paper 

towels and large weight (500 - 1000 g) was placed on top of the plate.  The DNA from 

the gel was allowed to diffuse to the membrane overnight.  The next day, the membrane 

was transferred into a tray containing 500 mL of 2x SSC with a forceps and soaked on 

an orbital shaker for 10 min.  Then the membrane was wrapped with SaranWrap® and 

stored at 4ºC until hybridization.  The membrane was incubated in hybridization solution 

(250 mL of 20x SSC, 25mL of 0.5% SDS, 25 mM 0.5 M KPB, pH6.5, 100x Denhardt’s 

and 625 mL of dd H2O) at 65ºC for >2 h.  The probe DNA (CEN38) was radioactively-

labeled by incubating at 37ºC for 30 min in LS (labeling solution), 0.5U/ul Klenow, 32P-

dCTP, and dd H20.  The labeled probe DNA was denatured by adding one volume of 0.4 

N NaOH and incubating the reaction at 95ºC for 10 min.  The labeled probe was 

carefully transferred into the hybridization solution (without touching the membrane) 

and incubated overnight at 65ºC with gentle shaking.  On the next day, the membrane 

was washed several times at 65ºC with a washing buffer (20x SSC [0.2x final 

concentration], 20% SDS [0.1% final concentration] and dd H20).  After the third 

washing, the membrane was blotted with paper towels to remove excess fluid and 

wrapped with SaranWrap®.  The membrane was placed in an autoradiograph cassette, 

covered with x-ray film.  The cassette containing the film was exposed at room 

temperature for 2 d.  The x-ray film was then developed and the exposed ladder patterns 

on the autoradiograph were analyzed using a phosphoimager.  

 
 



   

 

25 

PCR amplification 
 

The presence and organization of CEN38 in the genus Sorghum were detected by 

PCR amplification.  Procedures for PCR amplification followed the protocol by Zhang 

(2005a).  Ten Sorghum species were chosen for PCR amplification, depending on the 

presence and absence of CEN38 displayed by Southern hybridization (Table 4).  Gene-

specific forward and reverse primers (4 sets) were synthesized based on the nucleotide 

sequence of CEN38 found in GenBank.  The sequence for each primer set is as follows:   

Primer set 1 

Forward Primer 5’ TTTGCAGGCAACGTACCATA 3’,  

Reverse primer  5’ GAACCGAGCTTCCACTTGAG 3’  

Primer set 2  

Forward primer 5’ TGGAATCTTGCTTCGGTTTC 3’,  

Reverse primer 5’ GCCTGCAAATTGTGCAACTA 3’  

Primer set 3  

Forward primer 5’ TCACATGGAATCTTGCTTCG 3’,  

Reverse primer 5’ GCCTGCAAATTGTGCAACTA 3’ 

  Primer set 4  

Forward primer 5’ CCGTTGGAACTCCTTGAGAA 3’,  

Reverse primer 5’ CGAGCTTCCACTTGAGCTTC 3’.   

DNA from each Sorghum species was amplified separately with each of the primer sets.  

A cocktail containing 30 �l of 10x PCR buffer, 9 �L of 50 mM MgCl2, 30 �L of dNTPs 

(2 mM each), 15 �L of forward primer (8 �M), 15 �L of reverse primer (8 �M) and 3 �L 
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of AmpliTaq (5 units/�L) was made for each set of reactions (4).  From these 4 cocktails, 

8.5 �L was aliquotted into 40 Ultra PCR tubes.  Then 15.50 �L of dd H20 and 1 �L of 

DNA were added to each tube, increasing the total volume of the reaction to 25 �L.  The 

reactions were briefly centrifuged before undergoing amplification in a Perkin-Elmer 

9600 thermal cycler.  The program consisting of heating and cooling steps were linked 

as follows:  (94°C, 4 min- hot start - 94°C, 40 sec - 42°C, 2 min - 72°C, 5 min x 25 

cycles; extension step -  72°C, 7 min – 4°C, infinite.  After amplification, the PCR 

product of each reaction was electrophoresed on a 1% agarose gel in 1% NEB, stained 

with ethidium bromide and counterstained with dd H20 for analysis. 



   

 

27 

 Table 4.  Lane assignments and description for Sorghum species used in PCR 
                amplification 
 
Lane #† Species/Marker Primer Set‡ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

 1 kb plus DNA ladder 
S. bicolor 
S. halepense 
S. propinquum 
S. laxiflorum 
S. macrospermum 
S. versicolor 
S. timorense 
S. nitidum 
S. brachypodum  
Cleistochne sorghoides 
S. bicolor  
S. halepense 
S. propinquum 
1 kb plus DNA ladder 
S. laxiflorum 
S. macrospermum 
S. versicolor 
S. timorense 
S. nitidum 
S. brachypodum  
Cleistochne sorghoides 
S. bicolor  
S. halepense 
S. propinquum 
S. laxiflorum 
S. macrospermum 
S. versicolor 
S. timorense 
1 kb plus DNA ladder 
 

N/A 
Set #1 
Set #1 
Set #1 
Set #1 
Set #1 
Set #1 
Set #1 
Set #1 
Set #1 
Set #1 
Set #2 
Set #2 
Set #2 
N/A 
Set #2 
Set #2 
Set #2 
Set #2 
Set #2 
Set #2 
Set #2 
Set #3 
Set #3 
Set #3 
Set #3 
Set #3 
Set #3 
Set #3 
N/A 
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Table 4. Continued______________________________________________________ 
 
Lane #† Species/Marker Primer set‡ 

1a 
2a 
3a 
4a 
5a 
6a 
7a 
8a 
9a 
10a 
11a 
12a 
13a 
14a 
15a 
 

1 kb plus DNA ladder 
S. nitidum  
S. brachypodum 
Cleistochne sorghoides 
S. bicolor 
S. halepense 
S. propinquum  
S. laxiflorum 
S. macrospermum  
S. versicolor 
S. timorense 
S. nitidum  
S. brachypodum 
Cleistochne sorghoides 
�DNA marker 
 

N/A 
Set #3 
Set #3 
Set #3 
Set #4 
Set #4 
Set #4 
Set #4 
Set #4 
Set #4 
Set #4 
Set #4 
Set #4 
Set #4 
N/A 
 

† letter “a” designates the lanes on the bottom-half of the gel 
‡ Four different primer sets, each set consisting of forward and reverse primers 
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RESULTS 
 
 

Taxonomic distribution of CEN38 in the genus Sorghum 
 
 Hybridization of CEN38 was detectable for only 3 of 21 Sorghum species in the 

initial dot blots, where loading values were 0.1, 0.2, and 0.3 �g of genomic DNA (Figure 

2).  Due to the lack of hybridization displayed in the other 18 species of Sorghum, the 

amount of all genomic DNA was increased to 2 �g in a second dot blot.  The second dot 

blot displayed hybridization of CEN38 for 15 of the 21 Sorghum species (Figure 3).  

Hybridization intensities of each species were individually quantified and scored by a 

phosphoimager.  Densiometric values for each species relative to the value of CEN38 

control DNA plus the genome size of the specific species were used to calculate 

approximate copy numbers of CEN38 present in each cell (Table 4).   

 Comparisons of the two dot blot hybridizations indicated that the small amount 

of DNA used in the initial hybridization (0.1 �g, 0.2 �g and 0.3 �g) was probably not 

adequate to detect hybridization.  Once the amount of DNA was increased for the second 

dot blot, it revealed a broader range of hybridization intensities.  Strong hybridization 

signals were detected for species of the section Eu-sorhgum (S. bicolor, S. halepense and 

S. propinquum), with reduced hybridization to species outside the Eu-sorghum section, 

e.g. S. versicolor and S. laxiflorum (Figure 3).   

FISH of CEN38 and 18S rDNA 

 Chromosomes of four species (S. bicolor, S. versicolor, S. laxiflorum, S. 

macrospermum) were analyzed by FISH of CEN38 to determine its relative abundance 

and locations.  CEN38 was labeled with digoxygenin (DIG) and detected with
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Figure 2.  Autoradiogram of dot blot hybridizations of radioactively-labeled-pCEN38 to 
genomic DNA from 21 species of Sorghum.  The amount of genomic DNA and positive 
controls were 0.1 �g (rows 1, 2, and 3), 0.2 �g (rows 4, 5, and 6), and 0.3�g (rows 7, 8, 
and 9).  The positive controls were subdivided into 10,000 copies, 50,000 copies and 
100,000 copies.  Autoradiogram lanes: a)  positive control (10,000 copies of CEN38); b) 
positive control (50,000 copies of CEN38 ); c) positive control (100,000 copies of 
CEN38), n) negative control (TE); 17) S. bicolor; 18) S. halepense; 19) S. propinquum; 
1) S. brachypodum; 2) S. matarankense; 3) S. extans;  4) S. angustum;  5) S. intrans; 6) 
S. bulbosum; 7) S. amplum; 8) S. plumosum; 9) S. stipoideum; 10) S. timorense; 11) S. 
encarinatum; 12) S. interjectum; 13) S. leiocladum; 14) S. purpureo-sericeum; 15) S. 
versicolor; 16) S. nitidum; 20) S. macrospermum; 21) S. laxiflorum; 22) Cleistochne 
sorghoides (see Table 4) 
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Figure 3.  Autoradiogram of 2nd dot blot displaying hybridizations of radioactively-
labeled pCEN38 to genomic DNA from 21 species of Sorghum.  The amount of genomic 
DNA and positive controls were 2 �g .  The positive controls remained subdivided into 
10,000 copies, 50,000 copies and 100,000 copies.  Autoradiogram lanes:  a) positive 
control (10,000 copies of CEN38), b) positive control (50,000 copies of CEN38), c) 
positive control (100,000 copies of CEN38), n) negative control (TE), 17) S. bicolor; 18) 
S. halepense; 19) S. propinquum; 1) S. brachypodum; 2) S. matarankense; 3) S. extans; 
4) S. angustum; 5) S. intrans; 6) S. bulbosum; 7) S. amplum; 8) S. plumosum; 9) S. 
stipoideum; 10) S. timorense; 11) S. encarinatum; 12) S. interjectum; 13) S. leiocladum; 
14) S. purpureo-sericeum; 15) S. versicolor; 16) S. nitidum; 20) S. macrospermum; 21) 
S. laxiflorum; 22) Cleistochne sorghoides (see Table 4) 
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fluorescein isothiocyanate (FITC) conjugated to anti-digoxygenin antibody.  The 18S-

28S rDNA probe was labeled with biotin and detected with Cy-3-conjugated streptavidin 

antibody.  Surprisingly, CEN38 was detected by FISH to chromosomes of S. bicolor 

(Figure 4), but not to S. versicolor (Figure 5, 6), S. macrospermum and S. laxiflorum 

(results not shown). CEN38 hybridized strongly to just 10 of 20 S. bicolor 

chromosomes, which is consistent with the reports of Gomez et al. (1998) and Zwick et 

al. (2000).  The other species displayed no hybridization of CEN38.  Sorghum versicolor 

(2n = 10), which has the highest copy numbers of CEN38 of the H lineage species, did 

not display CEN38 FISH signals (Figure 5).  Sorghum macrospermum (2n = 40), which 

is a relative of S. bicolor (Dillon et al., 2004), displayed no CEN38 hybridization 

(Figures 6).  Sorghum laxiflorum (2n = 40) (results not shown), which has the highest 

copy numbers of CEN38 for species outside the section Eu-sorghum, also displayed no 

hybridization of CEN38.  After observing these results, the hybridization-detecting 

fluorochromes were switched (green-fluorescent FITC to red-fluorescent Cy-3).  Cy-3 is 

noted to have a stronger affinity and higher sensitivity than FITC.  Also, CEN38 was 

allowed to hybridize for 4 d to chromosomes.  However, this revealed no detectable 

hybridization of CEN38 by FISH (Figures 7, 8, 9).  Somatic chromosome spreads of S. 

bicolor were used as a positive control side by side on the same slides as S. versicolor, S. 

laxiflorum and S. macrospermum (data not shown).  This also revealed no detectable 

hybridization of CEN38 by FISH. 

 FISH of 18S-28S rDNA was detected in all of the species.  In S. bicolor, 18S- 
 
28S rDNA was detected at the submetacentric region of the chromosome 1 (Figure 4).   
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Figure 4.  FISH of CEN38 and 18S-28S rDNA to S. bicolor chromosomes.  FITC-
labeled CEN38 (green) hybridizes to 10 of 20 S. bicolor chromosomes.  Cy-3 labeled 
18S-28S rDNA (red) hybridized to the submetacentric regions of the 2 chromosomes 
(indicated by arrows). 
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______________________________________________________________________ 
Figure 5.  FISH of CEN38 and 18S-28S rDNA to S. versicolor (2n = 10) chromosomes.  
FITC-labeled CEN38 (green) displayed no detectable hybridization to S. versicolor 
chromosomes.  However, Cy-3 labeled 18S-28S rDNA (red) hybridized to the terminal 
regions of the chromosomes (indicated by arrows). 
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_______________________________________________________________________ 
Figure 6.  FISH of Cy-3 labeled CEN38 and 18S-28S rDNA to S. versicolor (2n = 10) 
chromosomes.  Cy-3 labeled CEN38 (red) displayed no detectable hybridization to S. 
versicolor chromosomes.  However, Cy-3 labeled 18S-28S rDNA (red) hybridized to the 
terminal regions of one pair of chromosomes (indicated by arrows). 
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_______________________________________________________________________ 
Figure 7.  FISH of Cy-3 labeled CEN38 and 18S-28S rDNA to S. bicolor chromosomes.  
Cy-3 labeled CEN38 (red) hybridized to the pericentrimeric regions of 10 of 20 S. 
bicolor chromosomes (indicated by arrows).   
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_______________________________________________________________________ 
Figure 8.  FISH of CEN38 and 18S-28S rDNA to S. macrospermum (2n = 40) 
chromosomes.  FITC-labeled CEN38 (green) displayed no detectable hybridization to S. 
macrospermum chromosomes.  However, Cy-3 labeled 18S-28S rDNA (red) hybridized 
to the terminal regions of the 4 chromosomes (indicated by arrows). 
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_______________________________________________________________________ 
Figure 9.  FISH of Cy-3 labeled CEN38 and 18S-28S rDNA to S. macrospermum (2n = 
40 chromosomes.  Cy-3 labeled CEN38 (red) displayed no detectable hybridization to S. 
macrospermum chromosomes.  However, Cy-3 labeled 18S-28S rDNA (red) hybridized 
to the terminal region of 4 chromosomes (indicated by arrows) Only a partial 
chromosome complement is apparent. 
 

 
 

 

 

 

  

�	�)�	���*#+��
����$�
%� ��!,)��



   

 

39 

Sorghum versicolor (2n = 10) yielded 18S-28S rDNA sites on the terminal ends of the 

largest chromosome (Figures 5, 6).  Sorghum macrospermum yielded the most intriguing 

results, having two major and minor sites located on the terminal ends of two 

chromosome pairs (Figures 8, 9). 

 Sorghum versicolor chromosomes stained with 4’, 6-diamidino-2-phenylindole 

(DAPI) fluorescent dye yielded dark-staining, heterochromatic regions flanking the 

centromere (Figure 5, 6), whereas DAPI staining on S. bicolor chromosomes yielded 

relatively more pericentric heterochromatin.   

Southern blots and hybridization of restriction-enzyme digested genomic DNA with 

CEN38 

Genomic DNA was digested separately with two restriction enzymes, HindIII 

and PstI.  CEN38 used as probes were hybridized to genomic DNA of 21 Sorghum 

species.  Three autoradiograms were produced from the Southern blots, each with 

different post-hybridization washing stringencies.  The autoradiogram of the 0.5x SSC 

washed membrane showed taxonomic-wide hybridization of CEN38 (Figure 10).  

CEN38 digested with PstI displayed no relevant results in many species compared to 

species digested with HindIII-digested CEN38.  Sorghum  plumosum, S. leiocladum and 

S. purpureo-sericeum, displayed a >23 kb fragment was obtained.  The presence of 

CEN38-positive DNA is inconsistent with the dot blot results that did not detect CEN38-

positive sequences in S. plumosum.  However, the CEN38-positive >23 kb fragment 

detected in S. plumosum, S. purpureo-sericeum and S. leiocladum was not detected (or 

only barely detected) when post-hybridization washing stringency increased (0.5x – 0.1x 
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SSC).  This indicates that the fragments are not very similar in nucleotide sequence to 

CEN38. 

The most intriguing result of the Southern blot was the 4 bands displayed by S. 

versicolor.  The approximate size of these bands is 24 kb, 6.0 kb, 5.0 kb and 840 bp.  

These bands do not display a pattern expected of tandem repeats.  The autoradiograms of 

0.2x and 0.1x SSC washed membranes (increased stringency) showed similar results for 

this species (Figures 11, 12).  In the other species, a distinct smear was shown.  This 

suggests that CEN38 may be interspersed in these species.  The array of tandem repeats 

shown in species of the section Eu-sorghum is consistent with results from the previous 

study of Miller et al. (1998) where a ~280 bp ladder was apparent. 

PCR amplification of CEN38 

 Four primer sets designed from CEN38 sequence data were used to detect 

potential CEN38 elements in 10 Sorghum species.  The PCR products were detected and 

sized after agarose gel electrophorese (Figures 13).  PCR products were not obtained 

from primer set 1.  Primer sets 2, 3 and 4 (results for 4 not shown) generally produced 

the same results.  Primer set 2 produced a ladder-based array of tandem repeats (<280 

bp) in species of the section Eusorghum (S. bicolor, S. halepense, S. propinquum).  

Species S. macrospermum and S. laxiflorum, which are related to S. bicolor (Dillon et 

al., 2004), yielded one amplified fragment, which was extrapolated as <280 bp.  

Nevertheless, primer set 3 produced tandem arrays in S. macrospermum and S. 

laxiflorum, which were nearly the identical size of the amplified <280 bp repeat 
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Figure 10.  Autoradiogram of Southern blot hybridizations of radioactively-labeled 
pCEN38 to genomic DNA from 21species of Sorghum (0.5x stringency).  The amount of 
genomic DNA was 2 �g per lane.   Upper autoradiogram lanes (A):  1) �DNA/HindIII; 
2) S. brachypodum/HindIII; 3) S. brachypodum/PstI; 4) S. matarankense/HindIII; 5) S. 
matarankense/PstI; 6) S. extans/HindIII; 7) S. extans/PstI; 8) S. angustum/HindIII; 9) S. 
angustum/PstI; 10) S. intrans/HindIII; 11) S. intrans/PstI; 12) S. bulbosum/HindIII; 13) 
S. bulbosum/PstI; 14) S. amplum/HindIII; 15) S. amplum/PstI; 16) S. plumosum/HindIII; 
17) S. plumosum/PstI; 18) S. stipoideum/HindIII; 19) S. stipoideum/PstI; 20) S. 
timorense/PstI; 21) S. timorense/HindIII; 22) S. encarinatum/HindIII; 23) 
S. encarinatum/PstI; 24) S. interjectum/HindIII; 25) S. interjectum/PstI; 26) S. 
leiocladum/HindIII; 27) S. leiocladum/PstI; 28) S. purpureo-sericeum/HindIII; 29) S. 
purpureo-sericeum/PstI; 30) �DNA/HindIII 
Lower autoradiogram lanes (B): 1) �DNA/HindIII; 2) S. versicolor/HindIII; 3) S. versicolor/PstI; 4) S. nitidum/HindIII; 5) S. 
nitidum/PstI; 6) S. bicolor/HindIII; 7) S. bicolor/PstI; 8) S. halepense/HindIII; 9) S. halepense/PstI; 10) S. 
propinquum/HindIII; 11) S. propinquum/PstI; 12) S. macrospermum/HindIII; 13) S. macrospermum/PstI; 14) S. 
laxiflorum/HindIII; 15) S. laxiflorum/PstI; 16) Cleistochne sorghoides/HindIII; 17) Cleistochne sorghoides/PstI; 18) 
�DNA/HindIII (see Table 3) 
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Figure 11.  Autoradiogram of Southern blot hybridizations of radioactively-labeled 
pCEN38 to genomic DNA from 21species of Sorghum (0.2x stringency).  The amount of 
genomic DNA was 2 �g per lane.   Upper autoradiogram lanes (A):  1) �DNA/HindIII; 
2) S. brachypodum/HindIII; 3) S. brachypodum/PstI; 4) S. matarankense/HindIII; 5) S. 
matarankense/PstI; 6) S. extans/HindIII; 7) S. extans/PstI; 8) S. angustum/HindIII; 9) S. 
angustum/PstI; 10) S. intrans/HindIII; 11) S. intrans/PstI; 12) S. bulbosum/HindIII; 13) 
S. bulbosum/PstI; 14) S. amplum/HindIII; 15) S. amplum/PstI; 16) S. plumosum/HindIII; 
17) S. plumosum/PstI; 18) S. stipoideum/HindIII; 19) S. stipoideum/PstI; 20) S. 
timorense/PstI; 21) S. timorense/HindIII; 22) S. encarinatum/HindIII; 23) 
S. encarinatum/PstI; 24) S. interjectum/HindIII; 25) S. interjectum/PstI; 26) S. 
leiocladum/HindIII; 27) S. leiocladum/PstI; 28) S. purpureo-sericeum/HindIII; 29) S. 
purpureo-sericeum/PstI; 30) �DNA/HindIII. 
Lower autoradiogram lanes (B): 1) �DNA/HindIII; 2) S. versicolor/HindIII; 3) S. versicolor/PstI; 4) S. nitidum/HindIII; 5) S. 
nitidum/PstI; 6) S. bicolor/HindIII; 7) S. bicolor/PstI; 8) S. halepense/HindIII; 9) S. halepense/PstI; 10) S. 
propinquum/HindIII; 11) S. propinquum/PstI; 12) S. macrospermum/HindIII; 13) S. macrospermum/PstI; 14) S. 
laxiflorum/HindIII; 15) S. laxiflorum/PstI; 16) Cleistochne sorghoides/HindIII; 17) Cleistochne sorghoides/PstI; 18) 
�DNA/HindIII (see Table 3).
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Figure 12.  Autoradiogram of Southern blot hybridizations of radioactively-labeled 
pCEN38 to genomic DNA from 21species of Sorghum (0.1x stringency).  The amount of 
genomic DNA was 2 �g per lane.   Upper autoradiogram lanes (A):  1) �DNA/HindIII; 
2) S. brachypodum/HindIII; 3) S. brachypodum/PstI; 4) S. matarankense/HindIII; 5) S. 
matarankense/PstI; 6) S. extans/HindIII; 7) S. extans/PstI; 8) S. angustum/HindIII; 9) S. 
angustum/PstI; 10) S. intrans/HindIII; 11) S. intrans/PstI; 12) S. bulbosum/HindIII; 13) 
S. bulbosum/PstI; 14) S. amplum/HindIII; 15) S. amplum/PstI; 16) S. plumosum/HindIII; 
17) S. plumosum/PstI; 18) S. stipoideum/HindIII; 19) S. stipoideum/PstI; 20) S. 
timorense/PstI; 21) S. timorense/HindIII; 22) S. encarinatum/HindIII; 23) 
S. encarinatum/PstI; 24) S. interjectum/HindIII; 25) S. interjectum/PstI; 26) S. 
leiocladum/HindIII; 27) S. leiocladum/PstI; 28) S. purpureo-sericeum/HindIII; 29) S. 
purpureo-sericeum/PstI; 30) �DNA/HindIII. 
Lower autoradiogram lanes (B): 1) �DNA/HindIII; 2) S. versicolor/HindIII; 3) S. 
versicolor/PstI; 4) S. nitidum/HindIII; 5) S. nitidum/PstI; 6) S. bicolor/HindIII; 7) S. 
bicolor/PstI; 8) S. halepense/HindIII; 9) S. halepense/PstI; 10) S. propinquum/HindIII; 
11) S. propinquum/PstI; 12) S. macrospermum/HindIII; 13) S. macrospermum/PstI; 14) 
S. laxiflorum/HindIII; 15) S. laxiflorum/PstI; 16) Cleistochne sorghoides/HindIII; 17) 
Cleistochne sorghoides/PstI; 18) �DNA/HindIII (see Table 3). 
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produced by primer set 2 in the species of the section Eu-sorghum.  However, S. 

timorense, a species that displayed no hybridization to CEN38 on the dot or Southern 

blots, produced a ladder of fragments (~ 225 bp, 350 bp, 475 bp, 600 bp, 725 bp, 850 bp, 

975, 1.1 kb, etc…) when amplified with primer set 3.  The ladder depicted a tandem 

array based on repeats of ~ 125 bp. 
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Figure 13.      Photograph of PCR products of 10 Sorghum species using 4 different primer sets.  Gel lanes:  1) 1 kb plus 
ladder; 2) S. bicolor/ Set #1; 3) S. halepense/ Set #1; 4) S. propinquum/ Set #1; 5) S. laxiflorum/Set #1; 6) S. macrospermum/ 
Set #1; 7) S. versicolor/ Set #1; 8) S. timorense/ Set #1; 9) S. nitidum/ Set #1; 10) S. brachypodum/ Set #1; 11) Cleistochne 
sorghoides/ Set #1; 12) S. bicolor/Set #2; 13) S. halepense/ Set #2; 14) S. propinquum/ Set #2; 15) 1 kb plus ladder; 16) S. 
laxiflorum/ Set #2; 17) S. macrospermum/ Set #2; 18) S. versicolor/ Set #2; 19) S. timorense/ Set #2; 20)  S. nitidum/Set #2; 
21) S. brachypodum/ Set #2; 22) Cleistochne sorghoides/ Set #2; 23) S. bicolor/ Set #3; 24) S. halepense/ Set #3; 25) S. 
propinquum/ Set #3; 26) S. laxiflorum/ Set #3; 27) S. macrospermum/ Set #3; 28) S. versicolor/ Set #3; 29) S. timorense/ Set 
#3; 30) 1 kb plus ladder, (see Table 4). 
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DISCUSSION AND SUMMARY 
 
 

The current study detected the presence of sequences with homology to CEN38 

in 16 of the 21 Sorghum species analyzed using dot blotting.  When detected, the copy 

number was estimated to range from 15 to ~ 21,000 copies.  The taxonomic distribution 

of CEN38 provides interesting, but limited, data concerning the phylogenetic 

relationships among species of the genus Sorghum.  The data obtained have limitations 

and caution needs to be exercised in its interpretation.  The hybridization detected to 

DNA of dot blots and to Southern transferred restriction fragments does not prove that 

CEN38 was detected. Hybridizations may have resulted from sequences that share some 

regions of homology but are not in the CEN38 family.  Dillon et al. (2004) detected two 

sister lineages (A and H in Fig. 1) in a Sorghum phylogenetic tree constructed from an 

ITS1 and ndhF DNA sequence comparison.  Lineage A contains the species of the Eu-

sorghum section and two other species, S. laxiflorum (Heterosorghum) and S. 

macrospermum (Chaetosorghum).  This lineage has a base chromosome number of x = 

10 and the chromosomes are relatively small.  The sister lineage (H) in the phylogenetic 

tree of Dillon et al. (2004) contains species with relatively large chromosomes with a 

basic chromosome number of x = 5.  The evolutionary relationship of lineages A and H 

remains unresolved.  CEN38 has a narrow taxonomic distribution and, with exception of 

sugarcane, has not been detected in gramineous species other than Sorghum (Miller et 

al., 1998; Zwick et al., 2000).  Therefore, the presence of this sequence in species of 

both lineages A and H would support the hypothesis that they share a common ancestor 

and are therefore monophyletic in origin.  The current study suggests that CEN38 may 
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reside in the genome of some H lineage species, but the data are not conclusive.  

However, CEN38 sequences are abundant in DNA of species of the Eu-sorghum section.  

They also occur, albeit at much lower frequencies, in S. macrospermum and S. 

laxiflorum as detected by dot blot hybridization of CEN38 to undigested DNA, and by 

hybridization of CEN38 to Southern blotted restriction fragments.  The occurrence of 

CEN38 in S. laxiflorum and S. macrospermum supports the hypothesis that they are 

closely related to S. bicolor.   

            Spangler (2003) proposed that the genus Sorghum be split into three genera, 

Sorghum, Sarga, and Vacoparis. Only species of the Eu-sorghum section and S. nitidum 

were retained in the genus Sorghum.  All the Stiposorghum and Para-sorghum species, 

except S. nitidum, were reclassified into the genus Sarga.  Sorghum laxiflorum and S. 

macrospermum were placed into a new genus, Vacoparis.  Such a reclassification is not 

totally supported by cytology and DNA sequence comparisons (Price et al. 2005a; 

Dillon et al., 2004).  This, coupled with the unresolved issue of the monophyletic vs. 

polyphyletic origin of the x = 5 and x = 10 lineages, indicates that reclassification of the 

genus was premature. The similarities in base chromosome number and genome sizes of 

S. laxiflorum, S. macrospermum, and species of the section Eu-sorghum (Price et al., 

2005a), the apparent presence of CEN38 sequences arranged in a ~ 140 bp ladder in S. 

laxiforum, S. macrospermum, and species of the Eu-sorghum section, and the ability of 

hybrids to be recovered from crosses of S. macrospermum and S. bicolor (Price et al., 

2005b) provide strong support for retaining these species in the genus Sorghum.  

Sorghum nitidum, based on chromosome size, genome size and DNA sequence 
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comparisons (Price et al., 2005a; Dillon et al., 2004), aligns with the lineage containing 

the Para-sorghum and Stiposorghum sections.  Furthermore, Garber (1950) showed 

through meiotic metaphase analysis of hybrids that S. nitidum was an allotetraploid 

containing one genome of 5 chromosomes from S. leiocladum and a second unidentified 

set of 5 chromosomes.  Based on this evidence alone, S. nitidum aligns with the other x = 

5 chromosome Sorghum species and not with the Eusorghum species as proposed by 

Spangler (2003).  

            Gomez et al. (1998) and Zwick et al. (2000) reported that CEN38 preferentially 

hybridized to 10 of 20 S. bicolor somatic chromosomes.  In this study, S. bicolor (~ 

21,000 copies of CEN38) was used as a positive control to confirm that the FISH 

procedure was working.  No hybridization of CEN38 was detected by FISH for S. 

laxiflorum (copy number = 436), S. macrospermum (copy number = 71) and S. 

versicolor (copy number = 278).  Several factors may have contributed to this lack of 

detection of CEN38.  First, there may not be ample amounts of CEN38 in the 

chromosomes to detect hybridization by the resolution of FISH.  Two, the CEN38 

sequences may be dispersed and not organized in tandem arrays in the wild species of 

Sorghum.  If so, it would be very difficult to detect CEN38 by FISH, given the low copy 

numbers in species of sections other than Eu-sorghum.  Three, short tandem arrays may 

exist but be interspersed in small clusters throughout the genome that would not be 

detectable by FISH.   

            The 18S-28S ribosomal DNA sequences encode ribosomal RNA (rRNA).  In 

eukaryotes, rDNA is arranged in tandemly-repeated units.  The transcribed sequences are 
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highly conserved among plants.  FISH of 18S-28S rDNA revealed a secondary 

constriction site in each chromosome where it is detected, which reveals the nucleolus-

organizing region (NOR) (Islam-Faridi et al., 2002).  In this study, 18S-28S rDNA was 

used as a positive marker and a determinant of the nucleolus-organizing region in four 

Sorghum species.  FISH of 18S-28S rDNA to S. bicolor chromosomes revealed the NOR 

at a submetacentric location on the largest chromosome, i.e., chromosome 1 (Islam-

Faridi et al., 2002; Kim et al., 2005a) (Figure 4).  FISH of 18S-28S rDNA to S. 

macrospermum yielded 4 discrete signals, which is indicative of its apparent tetraploid 

nature.  Chromosomes of S. macrospermum are very small, therefore it is difficult to 

determine if the NOR is located in an intercalary or terminal position in highly 

contracted metaphase chromosomes.  FISH of 18S-28S rDNA to S. versicolor showed 

that the NOR is located on the terminal end of the largest chromosome.  This is 

consistent with the previous studies by Garber (1950) and Sang and Liang (2000).   

            Primers based on sequences present in CEN38 amplified fragments in a ~ 280 bp 

ladder in S. laxiflorum and S. macrospermum, as was also observed for Eu-sorghum 

DNAs.  This indicates that CEN38 is present in a tandam array.  As mentioned earlier, 

the occurrence of CEN38 supports the hypothesis that S. laxiflorum, S. macrospermum, 

and the Eu-sorghum species are phylogenetically closely related and share ancestors that 

also possessed CEN38. 

 The highest estimated copy number in the genome of H lineage species is 278 for 

S. versicolor.  Restriction fragments of S. versicolor that hybridized to CEN38 did not 

form a ladder, as did restriction fragments of Eu-sorghum DNA, nor were CEN38 
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sequences amplified by any of the primer sets used for PCR.  Detection of a ladder in 

restriction fragments containing tandemly repetitive CEN38 sequences is contingent on 

the conservation of restriction sites in CEN38 DNA (HindIII or PstI).  PCR 

amplification of CEN38 (if present) in genomic DNA of divergent Sorghum species 

requires the conservation of sequences complementary to the PCR primers used.  If these 

have undergone nucleotide substitutions, especially at the 3’ end of the sequence, their 

ability to anneal to primers may be lost.  CEN38 hybridized to large restriction 

fragments of S. versicolor estimated to be 840 bp, 5 kb, 6 kb, and 24 kb.  Such a pattern 

does not support a tandem arrangement of CEN38 repeats in S. versicolor.  Rather, it 

suggests that the CEN38 sequences are a part of larger unrelated fragments.        

Transposable elements are abundant and ubiquitous in genomes of higher plant 

species including Sorghum (Voytas et al., 1992; SanMiguel and Bennetzen, 1998).  The 

CEN38-positive large restriction fragments observed in S. versicolor may represent 

pieces of transposons that have one or more CEN38-like sequences embedded within 

them.   

            This study provides the foundation for several lines of future research.  Positive 

CEN38 restriction fragments of S. versicolor could be cloned and sequenced to identify 

if they belong in the CEN38 repeat family.  Comparing the sequences surrounding the 

CEN38 fragments to sequences in GenBank would allow one to determine if they are 

embedded in transposable elements.  The nature of the ~125 bp fragment of S. timorense 

DNA and DNA fragments of S. laxiflorum and S. macrospermum that were amplified 

using primer sets for CEN38 of S. bicolor are worthy of further investigation.  The DNA 
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fragments of these species electrophoresed in agarose gels could be Southern transferred 

to nylon filters and hybridized with labeled CEN38.  Since CEN38 was not detected in S. 

timorense DNA by other techniques, it would not be expected to hybridize to PCR 

amplified fragments of S. timorense DNA.  If no hybridization to CEN38 is observed, 

the fragments would be members of a different tandemly arranged repeat family.  These 

sequences could be further characterized by cloning into vectors followed by DNA 

sequencing.  On the other hand, it is likely that the ~280 bp amplified repeats of S. 

laxiflorum and S. macrospermum would be detected as members of the CEN38 family. 
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