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ABSTRACT 

 

Integration and Quantification of Uncertainty of Volumetric and Material Balance 

Analyses Using a Bayesian Framework. (August 2005) 

Chile Ogele, B.Eng.; M.Eng., University of Port Harcourt, Nigeria 

Chair of Advisory Committee:  Dr. Duane A. McVay 

 

Estimating original hydrocarbons in place (OHIP) in a reservoir is fundamentally 

important to estimating reserves and potential profitability. Quantifying the uncertainties 

in OHIP estimates can improve reservoir development and investment decision-making 

for individual reservoirs and can lead to improved portfolio performance. Two 

traditional methods for estimating OHIP are volumetric and material balance methods. 

Probabilistic estimates of OHIP are commonly generated prior to significant production 

from a reservoir by combining volumetric analysis with Monte Carlo methods. Material 

balance is routinely used to analyze reservoir performance and estimate OHIP. Although 

material balance has uncertainties due to errors in pressure and other parameters, 

probabilistic estimates are seldom done. 

 

In this thesis I use a Bayesian formulation to integrate volumetric and material balance 

analyses and to quantify uncertainty in the combined OHIP estimates. Specifically, I 

apply Bayes’ rule to the Havlena and Odeh material balance equation to estimate 

original oil in place, N, and relative gas-cap size, m, for a gas-cap drive oil reservoir. The 

paper considers uncertainty and correlation in the volumetric estimates of N and m 

(reflected in the prior probability distribution), as well as uncertainty in the pressure data 

(reflected in the likelihood distribution). Approximation of the covariance of the 

posterior distribution allows quantification of uncertainty in the estimates of N and m 

resulting from the combined volumetric and material balance analyses. 
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Several example applications to illustrate the value of this integrated approach are 

presented. Material balance data reduce the uncertainty in the volumetric estimate, and 

the volumetric data reduce the considerable non-uniqueness of the material balance 

solution, resulting in more accurate OHIP estimates than from the separate analyses. One 

of the advantages over reservoir simulation is that, with the smaller number of 

parameters in this approach, we can easily sample the entire posterior distribution, 

resulting in more complete quantification of uncertainty. The approach can also detect 

underestimation of uncertainty in either volumetric data or material balance data, 

indicated by insufficient overlap of the prior and likelihood distributions. When this 

occurs, the volumetric and material balance analyses should be revisited and the 

uncertainties of each reevaluated. 
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CHAPTER I 

INTRODUCTION 

 

Research Background 

The estimation of original hydrocarbons in place (OHIP) in a reservoir is one of the 

oldest and, still, most important problems in reservoir engineering. Estimating OHIP in a 

reservoir is fundamentally important to estimating reserves and potential profitability. 

We have long known that our estimates of OHIP possess uncertainty
1-3

 due to data 

inaccuracies and scarcity of data. Quantifying the uncertainties in OHIP estimates can 

improve reservoir development and investment decision-making for individual 

reservoirs and can lead to improved portfolio performance.
4
 The general question I 

address in this thesis is: Given all the various types of reservoir data available, how do 

we best estimate OHIP and how do we quantify the uncertainty inherent in this estimate? 

 

Two traditional methods for estimating OHIP are volumetric and material balance 

methods.
5,6

 Volumetric methods are based on static reservoir properties, such as 

porosity, net thickness and initial saturation distributions. Since they can be applied prior 

to production from the reservoir, volumetric methods are often the only source of OHIP 

values available in making the large investment decisions required early in the life of a 

reservoir. Given the often large uncertainty due to paucity of well data early in the 

reservoir life, it is common to quantify the uncertainty of volumetric estimates of OHIP 

using statistical methods such as Confidence Interval
7
 and Monte Carlo analysis.

8,9
 

 

Material balance is routinely used to analyze reservoir performance data and estimate 

OHIP. The material balance method requires pressure and production data and, thus, can 

be applied only after the reservoir has produced for a significant period of time. The 

advantages of material  balance  methods  are (1) we can determine  drive  mechanism in  

 

_________________ 

This thesis follows the style of the Society of Petroleum Engineers Journal. 
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additional to OHIP, (2) no geological model is required, and (3) we can solve for OHIP 

(and sometimes other parameters) directly from performance data. Primary sources of 

uncertainty in material balance analyses are incomplete or inaccurate production data 

and inaccuracies in determining an accurate average pressure trend, particularly in low-

permeability or heterogeneous reservoirs. Although these uncertainties have been long 

recognized, since material balance methods are based on observed performance data, 

they are often considered more accurate than volumetric methods. Thus, it is uncommon 

to formally quantify the uncertainty in material balance estimates of OHIP, although 

there have been some attempts.
10-13

 

 

McEwen
10

 presented a technique for material balance calculations with water influx in 

the presence of uncertainty in pressures. He introduced a major change by limiting the 

least-square line-fitting to yield only one constant, OHIP. His approach did not fully 

quantify the uncertainty in the OHIP estimate. Later, Fair
11

 discussed the application of a 

method to perform regression analysis of the material balance equations. He expressed 

the uncertainty in the OHIP estimate in terms of a confidence interval. Wang and 

Hwan
12

 used a statistical approach to investigate and provide explanation for the 

uncertainties in material balance calculation for various types of reservoirs. They 

suggested the use of a reservoir voidage replacement plot as a good measure to quantify 

the uncertainty level. None of these attempts integrates data from volumetric analysis.  

 

Volumetric and material balance methods provide independent estimates of OHIP, since 

they rely on different data sets: static data for volumetric methods and dynamic data for 

material balance methods. Both volumetric and material balance analyses individually 

have valid justification for utilization. When used jointly, they can provide even greater 

insight into estimates of OHIP. However, traditional material balance methods are often 

skipped in reservoir studies today, since reservoir simulation has become the preferred 

mechanism for integrating static and dynamic data. Omitting material balance analysis is 

often unwise because this analysis still has considerable value, particularly as a precursor 
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to reservoir simulation studies.
14

 Material balance analysis can help narrow the range of 

the many parameters, including OHIP that can be adjusted during simulation.
15 

 

Comparing and reconciling estimates from both methods can lead to a more accurate 

estimate of OHIP, as well as a feel for the uncertainty in the estimate. In the absence of 

reservoir simulation, this reconciliation has usually been done informally. According to 

Dake,
14

 “Material balance used to be a valuable point of contact between engineers and 

geologists.  If the material balance OHIP turned out to be, say, 10% lower than the 

volumetric estimate they would get together to try and figure out why this disparity 

existed…" Some have attempted to reconcile both estimates by using a filtered Monte 

Carlo method,
16

 which screens input parameters to volumetric analysis and accepts only 

those sets that lead to a consistent estimate of OHIP. This approach will likely not fully 

quantify the uncertainty in the OHIP since it eliminates some sets of input parameters. 

The authors assumed that the estimate of OHIP from material balance is the more 

accurate. A better approach to solve the problem is to integrate both analyses under a 

single framework.  

 

In recent years, Bayesian formalism
17-19

 has been introduced as a framework for 

reconciling static data and dynamic data in reservoir simulation. Reservoir simulation 

has become a convenient mechanism for combining volumetric and material balance 

analyses, since it incorporates both static and dynamic data. Unlike material balance 

methods, OHIP and other reservoir parameters cannot be solved for directly. Reservoir 

simulation requires the solution of an inverse problem, in which the reservoir description 

and OHIP are determined by history matching observed performance data. It is through 

history matching that volumetric and material balance estimates of OHIP are reconciled.  

 

Early on, reservoir simulation was most often used deterministically to generate most-

likely forecasts of reservoir performance. When attempts to quantify uncertainty were 

made, it was often done my making perturbation runs after the history match was 
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complete.
20

 In Bayesian methods, prior probability distributions of reservoir parameters 

available from static data are conditioned to observed dynamic data to yield posterior 

probability distributions of the reservoir parameters, which are then sampled to quantify 

the uncertainty of production forecasts. While Bayesian methods can be quite helpful, 

the large number of parameters present in typical reservoir simulation models presents 

several difficulties. First, since the parameter space is usually many-dimensional and not 

easily visualized, it may be difficult to fully comprehend parameter interactions. Due to 

the computational burden, it is usually necessary to reduce the number of parameters, 

which can introduce bias and result in an underestimation of the uncertainty in the 

production forecasts. Even with a reduction in the number of parameters, in most cases 

the number of parameters is still large enough that it is virtually impossible to fully 

sample the posterior distribution, which can result in either underestimation or 

overestimation of the uncertainty. Thus, while we may be able to model the reservoir 

with greater resolution using reservoir simulation, we may be limited in our ability to 

fully quantify the uncertainty of results from reservoir simulation models.  

 

Since material balance methods involve many fewer parameters than reservoir 

simulation, this suggests that there may be value in application of Bayesian methods to 

combine volumetric and material balance analyses. Literature search reveals only one 

previous application of Bayesian methods to material balance analysis.
 

Hwan
21

 

combined a material balance program with a Bayesian-based history matching program 

to improve the accuracy of material balance results. However, he did not quantify the 

uncertainty of the resulting parameters. The specific question addressed in this research 

is whether Bayesian methods can be used to integrate volumetric and material balance 

estimates of OHIP and to quantify the uncertainties in these estimates. 
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Objectives 

The goals of this research are as follows: 

1. Apply Bayesian formalism to integrate volumetric and material balance analyses 

to better estimate OHIP and quantify uncertainty. Test the framework using data 

for gas-cap oil reservoirs reported in the literature.   

2. Investigate the effect of correlation between parameters of the prior distribution 

on the combined OHIP estimate. 

 

General Approach 

In the remainder of this thesis I first provide a mathematical background of Bayes’ 

theory as applied to integration of volumetric and material balance OHIP estimates using 

the Havlena and Odeh formulation.
22

 Second, I outline the approach used to quantify 

uncertainties in original oil in place, N, and ratio of gas-cap volume to oil volume, m. 

Finally, I demonstrate the concept using two field examples reported in the literature. 
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CHAPTER II 

METHODOLOGY 

 

Bayes’ Theory for Combining Volumetric and Material Balance Analyses 

Bayes’ theorem quantifies how new information can be used to revise the probabilities 

associated with various states of nature. The theory is the basis of the framework for 

combining the prior probability distribution of OHIP obtained from volumetric analysis 

with the likelihood distribution from material balance analysis of pressure and 

production data for gas-cap drive oil reservoirs. The resulting improved probability 

distribution for OHIP, the posterior distribution, incorporates uncertainties from the 

volumetric analysis as well as uncertainties from the material balance analysis due to 

errors in observed pressure data. Bayes’ rule
23,24

 is as follows: 

( )

obs
obs

obs

( |  ) 
( ) ( )  

| ( )

d x
x | d x

d x x x

f
f f

f f d

+∞

−∞

= ⋅

∫
 ………………………..……………… (2.1) 

where x is the vector of model parameters, d
obs

 is the vector of observed pressure data,  

f(x) is the prior probability distribution function of the model parameters, f(d
obs

 | x) is the 

likelihood probability distribution of the observed pressure data given parameters x, and 

f(x | d
obs

) is the posterior probability distribution of the model parameters given the 

observed data. The posterior is a conditional probability. The denominator in Eq. 2.1 is 

the marginal probability and is also called the pre-posterior.
25,26

 The pre-posterior is a 

constant value that normalizes the posterior distribution. Consequently, removing it from 

Eq. 2.1 will not affect the shape of the posterior distribution.    

 

Assuming the uncertainties in the parameters, f(x), and the model plus measured data, 

f(d
obs

 | x), follow Gaussian distributions, f(x) and f(d
obs

 | x) can be written as: 

( ) ( )
( ) ( )1

prior prior1/ 2/ 2

1 1
(  )  exp

22 det
x x x C x x

C
x

T

xn

x

f
π

−  = − − −      

 ………..……. (2.2) 
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( ) ( )
( ) ( )obs obs 1 obs

1/ 2/ 2

1 1
( | ) exp ( ) ( )

22 det
d x x d C x d

C
d

T

Dn

D

f g g
π

−  = − − −      

 .…… (2.3) 

where nx is the number of model parameters, nd is the number of measured (observed) 

data points, xprior is the vector of mean, or most likely, values of the model parameters 

from the prior distribution, Cx is the prior parameter covariance matrix, which quantifies 

the prior uncertainties in the model parameters, g(x) is the forward model as a function 

of the model parameters, CD is the data covariance matrix, which quantifies the 

uncertainties in the measured data, and det() is the determinant. 

 

Eq. 2.2 is the multi-dimensional Gaussian probability distribution of the uncertainties in 

the model parameters, the prior distribution. This equation assumes that the prior 

distribution is multi-variate and normally distributed and, therefore, can be represented 

by the means and covariance of the variables. Eq. 2.3 is the multi-dimensional Gaussian 

probability distribution of the combined uncertainties in the measured data and the 

theoretical forward model, the likelihood distribution. Assuming the uncertainties in the 

forward model are negligible, Eq. 2.3 can be considered the uncertainties related only to 

the measured data. Of particular interest is the maximum likelihood (ML) value. This is 

the solution corresponding to the mode, or maximum value, of the likelihood probability 

distribution function, i.e., the set of parameters that results in the best match of the 

measured data. The ML is the solution that would be obtained if the material balance 

model was solved backward directly for the parameters assuming no error in the 

measured data.      

 

Substituting Eqs. 2.2 and 2.3 into Eq. 2.1 yields the posterior distribution, which 

quantifies the uncertainty in the model parameters given both the prior information and 

the measured data. The mode of the posterior distribution function is the maximum a 

posteriori (MAP) solution. This is the most probable set of parameter values considering 

both the prior information and the measured data.  
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The forward model, g(x), is the material balance equation for oil with original gas cap, 

expressing pressure implicitly as a function of N and m. Using the formulation by 

Havlena and Odeh,
22 

 

( )
go EmENF  +=  …………………………………………………..………………. (2.4) 

where 

gssioioo BRRBBE )()( −+−=  ………………………………….…………………… (2.5) 














−= 1

gi

g

oig
B

B
BE  …………………………………………..……………………….. (2.6) 

))(( gspop BRRBNF −+=  ………………………………………………….……… (2.7) 

Note that, in Eq. 2.4, pressure is implicit since Bo, Bg, and Rs are pressure dependent. Eq. 

2.4 is solved iteratively for pressure given N and m using the Gauss-Newton method. 

The formulation used in the iteration process is written as 

( ) 0)( =+−= go EmENFpf   …………………….………………………………… (2.8) 

The parameters x and xprior in Eq. 2.2 are defined as follows:  

x
N

m

 
=  
 

,  
prior

prior

prior

x
N

m

 
=  
 

  

where Nprior and mprior are the means, or most likely, values of N and m, respectively, 

obtained from volumetric analysis. The covariance matrix, which quantifies the 

uncertainties in N and m from volumetric analysis, in Eq. 2.2 is as follows:        

2

2
C N N m

x

N m m

σ ρσ σ

ρσ σ σ

 
=  
 

 ……………………………….…………………………. (2.9) 

where σN and σm are the standard deviations of prior N and m, respectively, and ρ is the 

correlation coefficient between N and m. The correlation coefficient between N and m 

should be negative, since N and m should normally be inversely related as they trade off 

due to uncertainty in gas-oil contact elevation. In Chapter III, I investigate the effect of 

correlation
27

 by assuming correlation coefficients ranging from -0.90 to zero.
 
 

 

If  ρ equals zero, Eq. 2.9 reduces to: 
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2

2

0

0
C N

x

m

σ

σ

 
=  
 

 …………………………………..……….…….………………... (2.10) 

Recall that d
obs

 in Eq. 2.3 is the vector of observed pressure data points and can be 

written as:  

obs obs obs obs

1 2 . . .d
T

nd
P P P =    …………………………..………...…..……. (2.11) 

g(x) in Eq. 2.3 is the vector of pressures calculated iteratively from Eqs. 2.4-2.7: 

1 2( ) . . .x
T

calc calc calc

nd
g P P P =    …………………….……………….…….. (2.12) 

Assuming that the errors in the measured pressure data points are uncorrelated, the data 

covariance matrix, CD, in Eq. 2.3 is:  

1

2

3

2

2

2

2

0 0 0

0 0

0 0

0 0 0
nd

p

p

D p

p
nd nd

σ

σ

σ

σ
×

 
 
 
 =  
 
 
  

C   ……………..……………….…………...... (2.13)  

where σpi, i=1,nd are the standard deviations of the pressure measurements. If the 

standard deviations at all measured points are equal, then Eq. 2.13 can be written as: 

2

2

2

2

0 0 0

0 0

0 0

0 0 0

p

p

D p

p
nd nd

σ

σ

σ

σ
×

 
 
 
 =
 
 
 
 

C …………………………….…..………..…… (2.14) 

Eq. 2.1 yields the posterior distribution, a 2D probability distribution that quantifies 

uncertainties in N and m considering information from both volumetric and material 

balance analyses.  The posterior distribution is generally non-Gaussian. 

 

Quantification of Uncertainties in Posterior N and m Values 

The posterior distribution, which is a multidimensional, contains the most complete 

information regarding the uncertainties in N and m. However, multidimensional 
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probability distributions are often difficult to comprehend, particularly when non-

Gaussian. Therefore, it is useful to represent the uncertainties in a form that is more 

easily understood and utilized by decision makers. One such representation is the 

covariance of the posterior distribution. The posterior covariance matrix gives an 

indication of the uncertainties associated with the model parameters. It can be 

approximated at the maximum a posteriori (MAP) value. The MAP is the mode of the 

posterior distribution, which is considered the most probable parameter set.  

 

The covariance can be calculated by analytical or numerical methods. In the analytical 

method, the observed data and model parameters are assumed to be quasi-linear around 

the MAP estimate. According to Tarantola
23

 and Duijndam,
28

 the covariance of the 

posterior distribution is then related to the covariance of the observed data and prior by 

the following:  

( )
1

1 1

(posterior) MAP MAP (prior)C G C G CT

x D x

−
− −= ⋅ ⋅ +  ……………………………………….. (2.15) 

Where Cx(posterior) is the covariance matrix approximated at the MAP, CD is the data 

covariance matrix, Cx(prior) is the prior covariance matrix and GMAP is the sensitivity 

matrix at the MAP of the forward model with respect to N and m, evaluated as follows: 

1 2

MAP

1 2

. . .

. . .

G

T

nd

nd

PP P

N N N

PP P

m m m

∂∂ ∂ 
 ∂ ∂ ∂

=  
∂∂ ∂ 

 ∂ ∂ ∂ 

 ……………………………………………… (2.16) 

 

The numerical method uses basic laws of the joint probability function for discrete 

random variables
29

 to calculate the covariance matrix for the posterior probability 

distribution:  

(posterior)

cov( , ) cov( , )

cov( , ) cov( , )
C

x

N N N m

m N m m

 
=  
 

 …………………………………….…….... (2.17) 

The entries can be calculated using the expectation rules for the joint probability 

function. For example, 



  

    

11 

 

)()()(),cov( 2 NENENENN ⋅⋅⋅⋅−−−−====  ……………………….…………………….. (2.18) 

and 

2 2 obs( ) ( , | )d
N m

E N N f N m= ⋅∑∑  ………………………………………….…..... (2.19) 

Similarly, 

)()()(),cov(),cov( mENEmNENmmN ⋅⋅⋅⋅−−−−⋅⋅⋅⋅======== ……………………………….… (2.20) 

and 

obs( ) ( , | )d
N m

E N m N m f N m⋅ = ⋅ ⋅∑∑  …………………………………………… (2.21) 

where obs( , | df N m ) is the posterior joint probability function obtained from Eq. 2.1. 

 

The uncertainties can further be simplified by examining the standard deviations of N 

and m individually. The standard deviations are obtained by taking the square roots of 

the variances along the diagonal of the covariance matrix. Furthermore, these values can 

be compared with the diagonal elements of the prior covariance matrix to determine the 

extent to which the volumetric uncertainties in N and m have been reduced by 

conditioning to material balance data.  

 

The procedure is summarized as follows: 

1. Create a joint prior probability function of N and m using the mean and 

covariance matrix obtained from volumetric analysis assuming Gaussian 

distribution of the variables.   

2. Calculate a likelihood function using the observed pressures and the Havlena and 

Odeh material balance model that predicts pressure for a given set of N and m. 

3. Use Bayes’ rule to combine the prior distribution and the likelihood function to 

obtain the posterior distribution. 

4. Select the MAP, or mode, of the posterior distribution as the most probable (N, 

m) set. 
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5. Determine the uncertainties in the N and m estimates from the posterior 

distribution by either approximation of the covariance matrix or by using 

standard statistical equations. 

 

A computer code that implements Bayes’ rule by combining volumetric and material 

balance analyses was developed for this research. See Appendices A and B for the main 

code and modified subroutine, respectively. The main code was developed specifically 

for Example 1. To adapt the code for other examples requires some modifications to the 

subroutines to account for differences in fluid PVT properties (Appendix B). This is 

because the forward model, g(x), depends on the equations governing the fluid PVT 

properties as a function of pressure.   
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CHAPTER III 

APPLICATION CASES AND RESULTS 

 

Two examples illustrate the use of Bayes’ theory to combine volumetric data with the 

Havlena and Odeh
22

 material balance equation to estimate N and m and quantify 

uncertainties. First, I used the data set for a gas-cap drive reservoir with initial 

volumetric estimates presented by Dake
30

 in several cases. I introduced uncertainties into 

the volumetric analysis by assuming standard deviation values to include the ranges of N 

and m investigated by Dake.
30

 In other cases, I used different initial estimates to mimic 

situations where volumetric and material balance results do not coincide. In the second 

example I used the data set presented by Walsh.
13

 The data set includes average reservoir 

properties that I used to perform volumetric analysis. 

 

Example 1: Gas-cap Oil Reservoir Reported by Dake
30

 

Problem Statement: A gas-cap drive reservoir was estimated, from volumetric 

calculations, to have an initial oil volume, N, of 115 MMstb. The ratio of initial gas-cap 

volume to initial oil volume, m, is uncertain, with a best estimate based on geological 

information of m=0.4. Pertinent PVT, pressure and production data are given in Table 

3.1. The goal is to determine most likely values of N and m considering both volumetric 

and material balance data, and to quantify the uncertainties in these estimates. The 

problem as presented by Dake
30

 did not specify the uncertainties in the pressure data or 

the volumetric estimates of N and m, so the results for various combinations of prior 

probability distributions and observed data errors were investigated. 

 

Case 1: Large Uncertainty in Prior and Small Uncertainty in Pressure Data 

This case shows how the posterior and its covariance behave for large uncertainties in 

the prior (σN=35 MMstb, σm=0.13) and small uncertainty in the pressure data (σp=10 

psia). It represents a case in which measured pressures closely represent average 
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reservoir pressure, because either shut-in times are long or because permeability is high 

and, thus, pressure stabilization times are short. 

 

Table 3.1
*
—Pressure, Cumulative Production, and PVT Data for Example 1 

Pressure Np Rp Bo Rs Bg 

psia MMstb scf/stb rb/stb scf/stb rb/scf 

      3330 (Pi)   1.2511 510 0.00087 
3150 3.295 1050 1.2353 477 0.00092 

3000 5.903 1060 1.2222 450 0.00096 

2850 8.852 1160 1.2122 425 0.00101 

2700 11.503 1235 1.2022 401 0.00107 

2550 14.513 1265 1.1922 375 0.00113 

2400 17.730 1300 1.1822 352 0.00120 
*
”Reprinted from Fundamentals of Reservoir Engineering, 8, L.P. Dake, Material Balance 

Applied to Oil Reservoirs, 91, Copyright (2001), with permission from Elsevier.” 

 

The parameters required to describe the prior distribution (Eq. 2.2) are:  

115

0.4
x

prior

prior

prior

N

m

   
= =   

  
  …………………………………………………….…….. (3.1) 

2

2

1225 4.55

4.55 0.017
C N n m

x

n m m

ρσ ρσ σ

ρρσ σ σ

   
= =   

  
  ……………………….……….…….. (3.2) 

The prior distributions shown in Figs. 3.1 and 3.2, which are the joint probability 

distributions calculated by Eq. 2.2, were calculated using 100 uniformly spaced values of 

N and m. The mode of the distribution corresponds to the prior mean (PM), which is the 

most probable set of N and m values from volumetric analysis. The difference in the 

shapes of the distributions in Figs. 3.1 and 3.2 is due to the effect of parameter 

correlation between N and m. Figs. 3.1 and 3.2 include zero and negative correlation, 

respectively. Fig. 3.2 has less uncertainty, compared to Fig. 3.1, because it demarcates a 

smaller region in the space. There is less uncertainty in Fig. 3.2 because correlation 
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provides more information about the system. This is further illustrated in Fig. 3.3, which 

shows that the uncertainty in the distribution decreases as the magnitude of the 

correlation coefficient increases. The implication is that parameter correlation is 

important and should be included in the analysis.  

  

Accordingly, the d
obs

 required by Eq. 2.3 is:  

[ ]obs 3150 3000 2850 2700 2550 2400d
T

= ……………………….…….… (3.3) 

The forward model, g(x), defined by Eqs. 2.4-2.7, is used to calculate the likelihood 

distribution given by Eq. 2.3 (Fig. 3.4). Observe in Fig. 3.4 that there are many 

combinations of N and m with significant probability. This indicates we have significant 

non-uniqueness when we consider only the material balance solution, even with low 

error in the pressure data. The likelihood has a clear peak, with maximum likelihood 

(ML) estimates of N=145 MMstb and m=0.34. 

 

 
0 25 50 75 100 125 150 175 200 225

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N,  MMstb

m
, 

fr
a

c
ti

o
n

8.0E-04-1.0E-03
6.0E-04-8.0E-04
4.0E-04-6.0E-04
2.0E-04-4.0E-04
0.0E+00-2.0E-04

f(x)

PM

0

2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

8.0E-04

9.0E-04

f(
x

)

N,  MMstb

m
, f

ra
ct

io
n

8.0E-04-9.0E-04
7.0E-04-8.0E-04
6.0E-04-7.0E-04
5.0E-04-6.0E-04
4.0E-04-5.0E-04
3.0E-04-4.0E-04
2.0E-04-3.0E-04
1.0E-04-2.0E-04
0.0E+00-1.0E-04

 

 

Fig. 3.1—Prior distribution of N and m for case with large uncertainty in the prior  

for ρρρρ=0. 
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Fig. 3.2—Prior distribution of N and m for case with large uncertainty in the prior  

for ρρρρ=-0.6. 
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Fig. 3.3—Increasing magnitude of parameter correlation demarcates smaller  

region in space. 
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The posterior distribution is the product of the prior and likelihood distributions (Eq. 

2.1). We multiply the probabilities from the prior (Fig. 3.1) and likelihood (Fig. 3.4) 

distributions at every value of x=N,m, yielding the posterior distribution (Fig. 3.5). Note 

that the extent of the posterior is considerably smaller than either the prior or likelihood 

distributions, indicating the reduced uncertainty in the combined volumetric-material 

balance solution. The MAP solution is N=127.5 MMstb and m=0.42. The extent of the 

reduction in the uncertainty is better illustrated in Fig. 3.6, in which all three 

distributions have been plotted on the same graph. The contour lines in Fig. 3.6 represent 

probability values equal to 10% of the maximum probability from each distribution. 

Results for this case are summarized in Table 3.2. The prior uncertainties in N and m as 

measured by the standard deviations are each reduced by more than an order of 

magnitude by integrating the volumetric and material balance analyses.  
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Fig. 3.4—Likelihood distribution of N and m for case with small uncertainty in  

pressure data. 
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Fig. 3.5—Posterior distribution of N and m for case with small uncertainty in   

pressure data for ρρρρ=0. 
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Fig. 3.6—Composite plots show that the posterior distributions lie within the  

prior and likelihood distributions. 
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Table 3.2—Summary of Results for Case 1 

Prior ML Posterior 

ρ N 

MMstb 

σN 
MMstb 

m σm N 

MMstb 

m NMAP 

MMstb 

σN 
MMstb 

mMAP σm 

0 115 35 0.4 0.13 145 0.34 127.5 1.3815 0.42 0.00527 

-0.1 115 35 0.4 0.13 145 0.34 127.5 1.3815 0.42 0.00527 

-0.2 115 35 0.4 0.13 145 0.34 127.5 1.3814 0.42 0.00527 

-0.3 115 35 0.4 0.13 145 0.34 127.5 1.3814 0.42 0.00527 

-0.4 115 35 0.4 0.13 145 0.34 127.5 1.3813 0.42 0.00527 

-0.5 115 35 0.4 0.13 145 0.34 127.5 1.3812 0.42 0.00527 

-0.6 115 35 0.4 0.13 145 0.34 127.5 1.3809 0.42 0.00527 

-0.7 115 35 0.4 0.13 145 0.34 127.5 1.3806 0.42 0.00527 

-0.8 115 35 0.4 0.13 145 0.34 127.5 1.3798 0.42 0.00527 

-0.9 115 35 0.4 0.13 145 0.34 140.0 1.3776 0.36 0.00482 

 

Case 2: Large Uncertainty in Both Prior and Pressure Data 

The prior for this case is the same as the previous, except that the uncertainty in pressure 

data, σp, is increased from 10 to 100 psia. As noted by McEwen
10

 and Walsh,
13

 

uncertainties as high as 100 psia are not unusual, and they can be even much higher in 

some cases. Some of the uncertainty in pressure data is in the local static pressure 

measurement, due to gauge error, short shut-in times, or imprecise extrapolation and 

correction to datum. However, most of the uncertainty is likely in the calculation of 

average reservoir pressure. Local static pressures may not be representative of average 

reservoir pressure when there are significant pressure gradients across the reservoir due 

to low permeability and/or reservoir heterogeneity, and it is often difficult to accurately 

calculate average reservoir pressure from local static pressures when the data are sparse. 

 

Results for this case are shown in Fig. 3.1, since the prior is the same as in Case 1, and 

Figs. 3.7 to 3.10. The likelihood distribution is shown in Fig. 3.7. The ML is the same as 

in the previous case, since the ML is the solution to the material balance equation 

assuming no error in pressures. However, the maximum is not as obvious here, as high 

probabilities extend over a very long band of N-m combinations. There is much more 



  

    

20 

 

non-uniqueness in the material balance solution than in the previous case, due to the 

increased   uncertainty in the pressure data. This is further illustrated in Fig. 3.8, which 

shows pressure solutions for the three parameter combinations A, B and C indicated on 

Fig. 3.7. For the purpose of direct comparison, the pressure match for the ML and MAP 

is plotted on Fig. 3.8 also. All the pressure solutions are in close agreement, and all are 

well within the ±1σp (±100 psia) bands shown on Fig. 3.8. Any of these pressure 

matches would be considered excellent by industry standards. 
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Fig. 3.7—Likelihood distribution for case with large pressure data uncertainty  

shows considerable non-uniqueness in material  balance solution. 
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Fig. 3.8—Pressure history match for different N,m solutions (Fig. 4.7) show  

non-uniqueness of material balance solution. 
 

The posterior distribution is shown in Figs. 3.9 and 3.10. The MAP estimate (N=127.5 

MMstb and m=0.41) is very close to the MAP solution in case 1 (N=127.5 MMstb and 

m=0.42.). However, there is more uncertainty in this case, as exhibited by the increased 

width of the posterior distribution (Figs. 3.9 and 3.10) and the larger posterior standard 

deviations for N and m (Table 3.3). This increased parameter uncertainty is due to the 

increased uncertainty in the pressure data. Although the uncertainty in the posterior 

distribution is larger for this case, it is still smaller than the uncertainties in either the 

prior or likelihood distributions (Fig. 3.10). The material balance data reduce the 

uncertainty in the prior volumetric estimate, and the volumetric data reduce the non-

uniqueness (uncertainty) of the material balance solution. 
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Fig. 3.9—Posterior distributions for cases with large prior and large data  

uncertainty. 
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Fig. 3.10—Composite plot for case with large prior and large data uncertainty. 
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Table 3.3—Summary of Results for Case 2 

Prior ML Posterior 

ρ N 

MMstb 

σN 
MMstb 

m σm N 

MMstb 

m NMAP 

MMstb 

σN 
MMstb 

mMAP σm 

0 115 35 0.4 0.13 145 0.34 125.0 12.8058 0.43 0.04943 

-0.1 115 35 0.4 0.13 145 0.34 125.0 12.8099 0.43 0.04944 

-0.2 115 35 0.4 0.13 145 0.34 125.0 12.7990 0.43 0.04939 

-0.3 115 35 0.4 0.13 145 0.34 125.0 12.7712 0.43 0.04927 

-0.4 115 35 0.4 0.13 145 0.34 125.0 12.7229 0.43 0.04906 

-0.5 115 35 0.4 0.13 145 0.34 127.5 12.5381 0.41 0.04717 

-0.6 115 35 0.4 0.13 145 0.34 127.5 12.3983 0.41 0.04663 

-0.7 115 35 0.4 0.13 145 0.34 127.5 12.2198 0.41 0.04593 

-0.8 115 35 0.4 0.13 145 0.34 130.0 11.7451 0.39 0.04321 

-0.9 115 35 0.4 0.13 145 0.34 132.5 10.8969 0.37 0.03949 

 

Case 3: Large Uncertainty in Prior With 50 psia Pressure Data Uncertainty 

The prior for this case is the same as in Case 2, except that the uncertainty in pressure 

data, σp, is reduced from 100 to 50 psia. The MAP estimate (N=127.5 MMstb and 

m=0.42) is very close to the MAP for Case 2. However, there is less uncertainty in this 

case, as exhibited by the reduced width of the posterior distribution (Fig. 3.11), as 

compared to Fig. 3.10, and the smaller posterior standard deviations for N and m (Table 

3.4), as compared to Table 3.3. 

 

Cases 1 to 3 confirm that the uncertainty in the posterior estimate of N and m increases 

as the error in the pressure data is increased. However, for the same error in pressure 

data, the uncertainty in the posterior estimate is reduced as parameter correlation 

increases (Fig. 3.12). The magnitude of the reduction increases as the correlation 

between N and m increases. As noted earlier, the increase of the correlation coefficient 

demarcates a smaller region in the prior distribution, which reduces the uncertainty in 

the posterior.  
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Fig. 3.11—Composite plot for case with large prior and 50 psia pressure data  

uncertainty. 

 

Table 3.4—Summary of Results for Case 3 

Prior ML Posterior 

ρ N 

MMstb 

σN 
MMstb 

m σm N 

MMstb 

m NMAP 

MMstb 

σN 
MMstb 

mMAP σm 

0 115 35 0.4 0.13 145 0.34 127.5 6.7815 0.42 0.02587 

-0.1 115 35 0.4 0.13 145 0.34 127.5 6.7814 0.42 0.02587 

-0.2 115 35 0.4 0.13 145 0.34 127.5 6.7787 0.42 0.02586 

-0.3 115 35 0.4 0.13 145 0.34 127.5 6.7731 0.42 0.02583 

-0.4 115 35 0.4 0.13 145 0.34 127.5 6.7637 0.42 0.02579 

-0.5 115 35 0.4 0.13 145 0.34 127.5 6.7489 0.42 0.02573 

-0.6 115 35 0.4 0.13 145 0.34 127.5 6.7221 0.42 0.02562 

-0.7 115 35 0.4 0.13 145 0.34 127.5 6.6851 0.42 0.02548 

-0.8 115 35 0.4 0.13 145 0.34 132.5 6.5497 0.39 0.02396 

-0.9 115 35 0.4 0.13 145 0.34 135.0 6.3252 0.38 0.02287 
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Fig. 3.12—Increasing magnitude of parameter correlation reduces uncertainty in  

posterior estimates of N and m.  
 

Common features of these first three cases are significant overlap between the prior and 

likelihood distributions and a ML estimate that lies within the prior solution space. This 

will be the situation in practice when there is general agreement between estimates from 

volumetric and material balance analyses. In such situations, the Bayesian results can be 

meaningful and quite valuable in quantifying the most likely values of N and m and their 

respective uncertainties. This may not always be the case in practice. 

 

Case 4: Situation With Small Overlap Between Prior and Likelihood 

The volumetric estimate (prior mean) for this case was moved so that there is less 

overlap with the material balance solution (likelihood). The uncertainties in the 

volumetric estimate and pressure data are the same as in Cases 1 and 2. Fig. 3.13 is a 

composite view of the prior, likelihood and posterior distributions. Although the prior 

mean lies well outside the likelihood distribution and the ML lies well outside the prior 

distribution, the MAP lies within both the prior and likelihood distributions. With the 
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Bayesian approach, we are able to reconcile volumetric and material balance analyses 

that, at first glance, might appear to be quite far apart. If we did not consider the 

uncertainty in the pressure data (i.e., if we considered only the ML solution), which is 

common, we might be led to believe that (1) we have a good estimate for N, since the 

volumetric and material balance solutions for N are in good agreement, and (2) there is a 

major discrepancy between the volumetric and material balance estimates for m that 

needs to be resolved. However, when we consider the uncertainties in pressure, we see 

that the most likely (MAP) value for N is much less than the values from either the 

volumetric or material balance analyses, and the most likely value for m is greater than 

both the volumetric and material balance values. With this Bayesian approach, we can 

reasonably reconcile the differences in the volumetric and material balance analyses 

even when there is small overlap in the distributions, and we can readily quantify the 

resulting uncertainties in both N and m. 
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Fig. 3.13—Composite plot for case with small overlap in prior and likelihood  

shows reconciliation of volumetric and material balance analyses. 
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Case 5: Situations With Negligible Overlap Between Prior and Likelihood 

Volumetric and material balance estimates of OHIP can differ significantly for a variety 

of reasons. For example, material balance estimates can exceed volumetric estimates 

when the seismic and well data do not define the full areal extent of the reservoir in the 

volumetric analysis. Volumetric estimates can exceed material balance estimates when 

faults or other flow barriers compartmentalize the reservoir, reducing the effective 

reservoir volume. Three cases in which there is negligible overlap between the prior and 

likelihood distributions are evaluated. 

 

Case 5a: The volumetric estimate (prior mean) for this case was moved so that there is 

negligible overlap with the material balance solution (likelihood). The uncertainties in 

the volumetric estimate and pressure data are the same as in Case 4.  Fig. 3.14 is a 

composite view of the prior, likelihood and posterior distributions. The MAP is within 

the likelihood contour, but not within the prior contour. The result is summarized in 

Table 3.5.  
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Fig. 3.14— Composite plot for case with large uncertainty in both prior and data,  

and negligible overlap between prior and likelihood distributions. 
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Table 3.5—Summary of Results for Case 5a 

Prior ML Posterior 

ρ N 

MMstb 

σN 
MMstb 

m σm N 

MMstb 

m NMAP 

MMstb 

σN 
MMstb 

mMAP σm 

0 50 35 0.25 0.13 145 0.34 122.5 12.4839 0.42 0.02587 

-0.1 50 35 0.25 0.13 145 0.34 122.5 12.4930 0.42 0.02587 

-0.2 50 35 0.25 0.13 145 0.34 125.0 12.3959 0.40 0.02586 

-0.3 50 35 0.25 0.13 145 0.34 125.0 12.3713 0.40 0.02583 

-0.4 50 35 0.25 0.13 145 0.34 125.0 12.1958 0.39 0.02579 

-0.5 50 35 0.25 0.13 145 0.34 127.5 12.0130 0.37 0.02573 

-0.6 50 35 0.25 0.13 145 0.34 130.0 11.7584 0.35 0.02562 

-0.7 50 35 0.25 0.13 145 0.34 130.0 11.4632 0.34 0.02548 

-0.8 50 35 0.25 0.13 145 0.34 132.5 10.8698 0.31 0.02396 

-0.9 50 35 0.25 0.13 145 0.34 130.0   9.7244 0.27 0.02287 

 

Case 5b: The likelihood for this case is the same as in Case 5a, except that the 

uncertainty in the prior has been decreased significantly. With the increased certainty of 

the volumetric analysis, the MAP moves further from the ML and closer to the PM, and 

is now outside both the prior and likelihood contours (Fig. 3.15). This means that the 

overlap is at extremely small probability values, i.e., less than 10% of the maximum for 

the distributions. The uncertainty in the posterior decreases significantly, despite the 

MAP being far from either volumetric or material balance solutions with significant 

probability. 

 

Case 5c: The uncertainty in the pressure data is reduced from 100 to 10 psia. With the 

increased certainty of the pressure data, the MAP is located within the likelihood 

distribution, although it is far from either the PM or the ML (Fig. 3.16). The uncertainty 

in the posterior is unreasonably low, given that there is negligible overlap between the 

prior and likelihood distributions. 

 

Figs. 3.15 and 3.16 point out a caveat to using this approach. If we use the method as a 

black box without looking too closely at the intermediate results and distributions, we 
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may believe we have an accurate solution given the relatively low uncertainty in the 

posterior. However, when we look at a composite plot of the distributions, we see that 

there is clearly something wrong. The prior mean could be in error, but the most likely 

problem is that we have underestimated the uncertainty in the volumetric analysis or the 

pressure data (and likely both). Figs. 3.14 and 3.16 have the same prior means and ML’s. 

However, Fig. 3.14 is a more reasonable and believable solution than Fig. 3.16, because 

of the larger uncertainty in the prior and likelihood distributions. The larger uncertainty 

in the posterior distribution in Fig. 3.14 is more realistic, given the large uncertainties in 

the volumetric and material balance estimates. However, it should still give cause for 

concern, due to the negligible overlap between the prior and likelihood distributions. 
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Fig. 3.15—Composite plot for case with small prior uncertainty, large data  

uncertainty, and negligible overlap between prior and likelihood. 
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Fig. 3.16—Composite plot for case with small uncertainty in both prior and data,  

and negligible overlap between prior and likelihood distributions. 
 

While Fig. 3.14 is a better solution, it can be improved further by increasing the 

uncertainty of the volumetric analysis and/or the pressure data so that the prior and 

likelihood distributions overlap significantly. As a general guideline, I propose that there 

should be significant overlap in the prior and likelihood distributions for the posterior 

distribution to be considered reasonable. When there is negligible overlap between the 

prior and likelihood distributions, the remedy is to revisit the volumetric and material 

balance analyses and, in particular, to reevaluate the uncertainties in both. It may further 

require revising the geological model that formed the basis of the volumetric analysis. 

This is, of course, very similar to conventional practice: when the OHIP estimates from 

volumetric and material balance methods do not agree, the geologists and engineers 

should get together and resolve the differences. The difference is that the proposed 
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Bayesian approach is a systematic method of formalizing this resolution and quantifying 

the uncertainties in the combined results. 

 

Implications for Higher-Dimensional Problems 

There is significant non-uniqueness in the 2-parameter material balance problem 

investigated here, particularly when the uncertainty in the observed data is high. Non-

uniqueness results in increased uncertainty in the posterior distribution. We will have 

similar, if not more, non-uniqueness with an increase in the number of parameters, such 

as in material balance problems with water influx and, particularly, reservoir simulation 

problems. Thus, if we underestimate the uncertainty in observed data used to calibrate 

reservoir simulation models, which is common,
1
 we will underestimate the uncertainty in 

reservoir simulation results as well. 

 

One of the advantages of integrating volumetric and material balance analyses using the 

proposed methodology is that, as demonstrated in the examples above, we can easily 

sample the entire posterior distribution of OHIP parameters, such as N and m, due to the 

small number of parameters involved. It is usually impossible to fully sample the 

posterior distribution of parameters in reservoir simulation models, due to the large 

number of parameters.  

 

Thus, while we model the reservoir with lower resolution using material balance, we 

should be able to better quantify the estimates of uncertainty from material balance than 

from reservoir simulation. Since the primary result from a material balance analysis is a 

distribution of OHIP, we have to combine this with a distribution of recovery factors to 

generate a reserves distribution, as done by Salomao and Grell.
31

 The advantage of 

reservoir simulation, of course, are that we can forecast production and generate a 

probability distribution of reserves using the simulation model. Perhaps the best use of 

the volumetric-material balance integration method proposed herein would be in the 
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calculation of the OHIP distribution prior to reservoir simulation to ensure that the 

correct OHIP distribution is investigated in the reservoir simulation study. 

 

As with the 2-parameter cases presented here, we should be able to gain insights into the 

reasonableness of reservoir simulation forecast uncertainties by checking for overlap 

between the prior and likelihood distributions. This is difficult for multi-parameter 

reservoir simulation problems because, first, we cannot easily visualize the relationships 

between the multidimensional probability distributions and, second, it is computationally 

intensive to do so for a large number of parameters. However, as was demonstrated 

above, if we do not ensure that there is sufficient overlap between the prior and 

likelihood distributions, then we will underestimate the uncertainty in reservoir 

simulation forecasts. 

 

It may be possible to use the pre-posterior,
25,26

 the denominator in Bayes’ rule, as a 

measure of how well the prior and likelihood distribution overlaps. The pre-posterior 

increases as the degree of the overlap between the prior and likelihood increases (Fig. 

3.17), as observed in the seven cases discussed above. The suggestion is inconclusive at 

present and warrants further investigation. More cases need to be evaluated to establish a 

baseline for perfect overlap. 

 

Example 2: Synthetic Gas-cap Oil Reservoir Presented by Walsh
13

 

This is a synthetic gas-cap drive reservoir with reservoir properties, fluid PVT properties 

and simulated production histories presented in Tables 3.6 to 3.8, respectively. Walsh 

generated three production histories corresponding to m=0, 0.25 and 0.5, respectively. I 

evaluated only one production history, for m=0.25.  

 

Walsh
12

 did not provide probability distributions for the reservoir parameters and did not 

provide a prior distribution for N and m. First, I performed the volumetric analysis using 

Palisade
32

 @Risk
®
 software to generate prior probabilistic estimates of N and m while 
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assuming various distributions for the input variables (Table 3.6). The means and 

standard deviations for the normal and lognormal distributions are in parentheses. The 

three values for the triangular distribution are minimum, most likely and maximum 

respectively. The reservoir parameters that correlate and the values used for the 

correlation matrix are in parentheses. Next, BestFit
®
 was used to obtain the mean and 

standard deviation of a normal distribution fitted to the probabilistic estimates of N and 

m from step one. A correlation coefficient of -0.9 between N and m was calculated using 

the CORREL function in Excel.
®
 The result of the volumetric analysis is summarized in 

Table 3.9. These parameters, mean, standard deviation and correlation coefficient, were 

used to calculate the prior distribution using Eq. 2.2. Finally, the Bayesian code was 

used to combine these results with the observed (simulated) production history while 

considering error in pressure data. The problem as presented by Walsh
13

 did not specify 

the uncertainties in the pressure data, so I investigated pressure data errors of 10, 50 and 

100 psia. 
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Fig. 3.17—Pre-posterior increases as prior and likelihood overlap significantly. 
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Table 3.6
**

—Reservoir Properties for Example 2 

General   Distribution Correlation matrix 

Area, acres 3,796 n/a n/a 

No. of producing wells  48 n/a n/a 

Permeability, md 5 n/a n/a 

Oil-leg thickness, ft 20 Lognormal (20,6.3) Gas thickness (-1) 

Porosity, fraction 0.31 Normal (0.31,0.02) Water sat. (-0.4) 

Initial water sat., fraction 0.20 Lognormal (0.2,0.01) Porosity (-0.4) 

Other  m=0.25   

Gas-cap thickness, ft 5 Triangular (0,5,10) Oil thickness (-1) 

Initial gas-cap gas sat., %PV 80   

OOIP, MMstb 100.0   

OFGIP, Bscf 18.98   

OGIP, Bscf 100.98   
**

After Walsh, M.P.: “Effect of Pressure Uncertainty on Material-Balance Plots,” paper SPE 56691 

presented at the 1999 SPE Annual Technical Conference and Exhibition, Houston, Texas, 3–6 October, 

with permission from SPE. Copyright SPE. 

 

Table 3.7
†
—Black-Oil PVT Properties for Example 2 

Pressure Bo Bg Rs 

psia rb/stb rb/Mscf scf/stb 

1640 1.462 1.926 820.7 
1620 1.457 1.951 810.5 
1600 1.453 1.977 800.5 
1550 1.441 2.047 775.8 
1500 1.429 2.126 751.9 
1450 1.418 2.211 728.8 
1400 1.407 2.305 706.4 
1350 1.395 2.406 684.6 
1300 1.384 2.514 663.6 
1250 1.373 2.630 643.2 
1200 1.362 2.753 623.4 
1150 1.351 2.884 604.2 
1100 1.340 3.023 585.6 
1050 1.330 3.169 567.6 
1000 1.319 3.323 550.1 

†
Reprinted from Walsh, M.P.: “Effect of Pressure Uncertainty on Material-Balance Plots,” paper SPE 

56691 presented at the 1999 SPE Annual Technical Conference and Exhibition, Houston, Texas, 3–6 

October, with permission from SPE. Copyright SPE. 
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Table 3.8
‡
—Cumulative Oil and Gas 

Production History for Example 2 

 m=0.25 

Pressure Oil Gas 

psia MMstb Bscf 

1640 0.00 0.00 

1620 1.36 0.84 

1600 2.74 1.69 

1550 6.30 3.81 

1500 9.67 5.94 

1450 12.47 8.08 

1400 14.68 10.20 

1350 16.44 12.30 

1300 17.88 14.37 

1250 19.08 16.41 

1200 20.10 18.41 

1150 20.98 20.36 

1100 21.75 22.28 

1050 22.42 24.14 

1000 23.01 25.96 

OOIP 100.0 MMstb 

OFGIP 18.98 Bscf 

OGIP 100.98 Bscf 
‡
Reprinted from Walsh, M.P.: “Effect of Pressure Uncertainty on Material-Balance 

Plots,” paper SPE 56691 presented at the 1999 SPE Annual Technical Conference and 

Exhibition, Houston, Texas, 3–6 October, with permission from SPE. Copyright SPE. 

 

Table 3.9—Summary of 

 Volumetric Analysis 

Parameter   

N, MMstb 92.5 

σN, MMstb 32.3 

m, fraction 0.35 

σm, fraction 0.26 

ρ, decimal -0.90 
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Figs. 3.18 to 3.20 illustrate the composite plots for the various ranges of uncertainty in 

pressure data investigated. There is significant overlap between the prior and the 

likelihood in all the cases. The reason is because the most-likely values of the parameters 

used in the volumetric analysis corresponded to the OHIP in the simulation used to 

generate the production history. Overlap is an important condition for the posterior 

estimate to be realistic, based on previous results in Example 1. The uncertainty in the 

prior volumetric estimate is reduced in all the cases after integrating the pressure data 

using Bayes’ theory. The results of the analyses are summarized in Table 3.10. There is 

little difference in posterior uncertainty with a ten-fold difference in pressure error. The 

reason is because there is considerable uncertainty in the prior and the axes of the prior 

and likelihood distributions are near parallel.   
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Fig. 3.18—Composite plot for Example 2 with 10 psia error in pressure data. 
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Fig. 3.19—Composite plot for Example 2 with 50 psia error in pressure data. 
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Fig. 3.20—Composite plot for Example 2 with 100 psia error in pressure data. 
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Table 3.10—Summary of Results for Example 2 

Prior Data ML Posterior 

N 

MMstb 

σN 

MMstb 
m σm σp 

psia 

N 

MMstb 

m NMAP 

MMstb 

σN 

MMstb 
mMAP σm 

92.5 32.3 0.35 0.26 10 99 0.26 91.5 20.1124 0.34 0.23077 

92.5 32.3 0.35 0.26 50 99 0.26 90.0 20.0613 0.36 0.23229 

92.5 32.3 0.35 0.26 100 99 0.26 90.0 21.6384 0.36 0.23540 
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CHAPTER IV 

CONCLUSIONS 

 

The results of this investigation warrant the following conclusions: 

1. Bayes’ theory can provide a useful framework for combining and reconciling 

volumetric and material balance analyses and quantifying the uncertainties in the 

resultant combined estimates of OHIP. An advantage of this approach over 

reservoir simulation is that, due to the smaller number of parameters, we can 

readily sample the entire posterior distribution and better quantify the uncertainty 

in OHIP. 

2. Solutions to material balance problems may be highly non-unique (uncertain), 

even for 2-parameter problems such as in gas-cap drive oil reservoirs. Non-

uniqueness increases significantly with increasing error in the observed pressure 

data. 

3. The uncertainty in the posterior estimates reduces as the magnitude of the 

parameter correlation increases for the cases investigated in this thesis. 

4. Use of the Bayesian approach yields combined OHIP parameter estimates with 

lower uncertainties than from either volumetric or material balance estimates. 

The material balance data reduce the uncertainties in the prior volumetric 

estimate, and the volumetric data reduce the non-uniqueness (uncertainties) of 

the material balance solution. 

5. If the prior (volumetric) and likelihood (material balance) probability 

distributions do not overlap significantly, the approach may result in 

unrealistically low uncertainties in the posterior (combined) OHIP parameter 

estimates. When there is insufficient overlap, the volumetric and material balance 

analyses should be revisited and the uncertainties of each reevaluated. 
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NOMENCLATURE 

 

Bg = gas formation volume factor, rb/scf 

Bgi = initial gas formation volume factor, rb/scf 

Bo = oil formation volume factor, rb/stb 

Boi = initial oil formation volume factor, rb/stb 

det() = determinant 

Eg = gas expansion factor, rb/stb 

Eo = oil expansion factor, rb/stb 

F = underground withdrawal of fluid, rb 

m = ratio of gas-cap volume to oil volume, fraction 

N = original oil in place, stb 

nd = number of observed data 

nx = number of model parameter  

Np = cumulative oil recovery, stb 

Rp = cumulative gas oil ratio, scf/stb 

Rs = solution gas oil ratio, scf/stb 

Rsi = initial solution gas oil ratio, scf/stb 

ρ = correlation coefficient 

σ = standard deviation 

π  = 3.1416 

 

Subscripts 

D = data 

x = model 

 

Superscripts 

obs = observed 

T =  transpose 
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APPENDIX A 

BAYESIAN MAIN CODE  

 

c     Program to integrate volumetric and material balance analyses. 

      implicit double precision(a-h,o-z)  

      PARAMETER(nrand=100,ndata=6,nparam=2) 

      Dimension aN(nrand),am(nrand),d(ndata),aNp(ndata),Rp(ndata), 

     *pprior(nrand,nrand),pdata(nrand,nrand),ppost(nrand,nrand), 

     *Gsen(ndata,nparam),Cd(ndata,ndata),Cm(nparam,nparam),g(ndata), 

     *Gt(nparam,ndata),CdGs(ndata,nparam),GtCdGs(nparam,nparam), 

     *Cmapinv(nparam,nparam),Cmap(nparam,nparam),objinv(nrand,nrand), 

     *Cprmx(nparam,nparam),Cprmxinv(nparam,nparam),Prm(nrand,nparam), 

     *PrmT(nparam,nrand),CpPT(nparam,nrand),PCmPT(nrand,nrand) 

 

      open(3,file = 'preliminp1.dat') 

      open(2,file = 'prelimout.out') 

      open(6,file = 'check.out') 

      open(8,file = 'MAP_Estimate.dat') 

      open(9,file = 'senstivity.out') 

      open(11,file='Cmapinv.dat') 

      open(13,file='gcal_MAP.dat') 

      open(15,file='mean-covariance_imethod_1.dat') 

      open(16,file='Cmap_imethod_0.dat') 

      open(17,file='Cmap_imethod_2.dat') 

      open(18,file='negative_pressure.dat') 

      open(21,file='Cprmx.dat') 

      open(23,file='Cprmxinv_chile.dat') 

      open(26,file='PrmT_chile.dat') 

     

       read(3,*)n,m,nd,aNavg,amavg,sdN,sdm,cor,sdd,Boi,Bgi,Rsi 

c     Reading the i_method 

c  i_method = 0—Use approximated analytical method with the exact Covariance Matrix    

c  i_method = 1—Use numerical method    

c  i_method = 2—Use approximated analytical method with the covariance of the prior   

c                            calculated from the numerical method 

 read(3,*)i_method  

 do 10 i=1,nd 

10 read(3,*)d(i),aNp(i),Rp(i) 

      do 20 i=1,n 

20 read(3,*)aN(i),am(i) 

 

c     Calculating the 1/(((2 * pi)^(m/2))*((det(Cm))^(0.5))) & 
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c                     1/(((2 * pi)^(nd/2))*((det(Cd))^(0.5))) 

c              for 2x2 matrix of Cm and diagonal matrix of Cd 

c******************************Start Calculation******************** 

 corS=cor**2. 

 sdNS=sdN**2. 

 sdmS=sdm**2. 

 sddS=sdd**2. 

 cstprr=1./(((44./7.)**(m/2.))*(sdNS*sdmS-(corS*sdNS*sdmS))**0.5) 

 cstexp=0.5/(1-corS) 

 cstdat=1./(((44./7.)**(nd/2.))*(sdd**nd)) 

c*****  form the matrix Cprmx **************************************  

      do i=1,m 

 do j=1,m 

 Cprmx(i,j)=0.0 

  If(i.eq.j)then 

   if (i.eq.1) then 

    Cprmx(i,j)=sdNS 

   else   

    Cprmx(i,j)=sdmS 

   endif 

       endif 

  if(i.eq.1) then 

  if(j.eq.2) then 

   Cprmx(i,j)=cor*sdN*sdm 

  endif 

  endif 

  if(i.eq.2) then 

  if(j.eq.1) then 

   Cprmx(i,j)=cor*sdN*sdm 

  endif 

  endif 

 enddo 

 enddo 

c***** write the matrix Cprmx *********************************************  

      do i=1,m 

 write(21,*)(Cprmx(i,j),j=1,m) 

 enddo 

 Close(21) 

c**** call the subroutine prmxinversion to get the invesre of the matrix Cprmxinv **** 

 CAll prmxinversion 

c***** saving the inverse of the matrix Cprmxinv ***************************** 

open(22,file='Cprmxinv.dat')   

 do i=1,m 

 read(22,*)(Cprmxinv(i,j), j=1,m) 
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 enddo 

c***** writing the inverse of the matrix Cprmxinv **************************** 

      do i=1,m 

 write(23,*)(Cprmxinv(i,j), j=1,m) 

 enddo 

c***** call the subroutine prpdf to set up the prior pdf ************************* 

do j=1,n 

      CALL prpdf(n,m,j,aNavg,amavg,aN(j),am(j),Prm(j,1),Prm(j,2)) 

 enddo 

  do j=1,n 

  write(25,*)(Prm(j,i), i=1,m) 

 enddo 

c***** form matrix Prm^T in array PrmT *********************************** 

      do i=1,m 

 do j=1,n 

 PrmT(i,j)=Prm(j,i) 

 enddo 

 enddo 

  do i=1,m 

  write(26,99)(PrmT(i,j), j=1,n) 

99 format(100(F8.2)) 

 enddo 

c********************PDF for the prior-Likelihood-Posterior***************** 

c      iflag=0 

c     Save the maximum of the liklihood and the posterior in array amaxl, amax    

      amaxl=0.0 

 amax=0.0   

 aobjinvmax=0.0 

 do 30 i=1,n 

 do 31 k=1,n 

pprior(i,k)=cstprr*dexp(-cstexp*((((aN(k)-aNavg)**2.)/sdNS)- 

     &(2.*cor*(aN(k)-aNavg)*(am(i)-amavg)/(sdN*sdm))+ 

     &(((am(i)-amavg)**2.)/sdmS))) 

 sum=0.0 

 sum1=0.0 

j=0 

35 j=j+1 

c***** calling subroutine iterate to use Newton method to get g(m) **************** 

      Call iterate(i,k,j,aN(k),am(i),aNp(j),Rp(j),Boi,Bgi,Rsi,g(j), 

     & dfpdp) 

 write(6,*)g(j)  

 IF(g(j).lt.0.0.or.g(j).gt.3330.0)THEN  

  pdata(i,k)=0.0 

       ppost(i,k)=0.0 
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  objinv(i,k)=0.0 

  write(18,*)aN(k),am(i) 

      Else 

       if(j.ne.nd)then  

        sum1=sum1+(1./(((d(j)-g(j))**2.)*(1./sddS))) 

        sum=sum+(((d(j)-g(j))**2.)*(1./sddS)) 

        goto 35 

       else 

        sum1=sum1+(1./(((d(j)-g(j))**2.)*(1./sddS))) 

        sum=sum+(((d(j)-g(j))**2.)*(1/sddS)) 

  endif 

 pdata(i,k)=cstdat*dexp(-0.5*sum) 

 objinv(i,k)=sum1 

 ppost(i,k)=pprior(i,k)*pdata(i,k) 

       if(pdata(i,k).Gt.amaxl)then 

     amaxl=pdata(i,k) 

    aNmaxl=aN(k) 

    ammaxl=am(i) 

    kmaxl=k 

    imaxl=i 

        endif 

       if(pdata(i,k).lt.1E-20)then 

      pdata(i,k)=0.0 

   endif 

  if(objinv(i,k).Gt.aobjinvmax)then 

     aobjinvmax=objinv(i,k) 

    aNobjinv=aN(k) 

    amobjinv=am(i) 

    kobjinv=k 

    iobjinv=i 

        endif 

   if(ppost(i,k).Gt.amax)then 

     amax=ppost(i,k) 

    aNmax=aN(k) 

    ammax=am(i) 

    kmax=k 

    imax=i 

   endif 

   if(ppost(i,k).lt.1E-20)then 

   ppost(i,k)=0.0 

          endif 

      ENDIF 

31 continue  

30    continue 
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c*************************Writing the PDF distribution***************** 

 write(2,*)"the prior" 

      do 50 i=1,n 

 write(2,4)(pprior(i,k), k=1,n) 

4     format(100(F20.4)) 

50    continue 

      write(2,*)"the data error" 

      do 60 i=1,n 

 write(2,5)(pdata(i,k), k=1,n) 

5     format(100(E20.4E3)) 

60    continue 

      write(2,*)"the posterior" 

      do 70 i=1,n 

 write(2,6)(ppost(i,k), k=1,n) 

6     format(100(E20.4E3)) 

70    continue 

      If(i_method.eq.0)then 

c*************** getting senstivity Matrix at the MAP ************************

  do j=1,nd 

c***** calling subroutine iterate to use Newton method to get g(m) at MAP ******** 

       Call iterate(imax,kmax,j,aNmax,ammax,aNp(j),Rp(j),Boi,Bgi,Rsi, 

     & g(j),dfpdpmax) 

      write(13,*)j,g(j),dfpdpmax 

 Call Senstivity(m,nd,j,g(j),dfpdpmax,aNmax,ammax,Boi,Bgi,Rsi, 

     & Gsen(j,1),Gsen(j,2))  

      enddo 

c********** writing sensitivity ******************************************** 

      do j=1,nd 

 write(9,*)(Gsen(j,k), k=1,m) 

 enddo 

c********** form the matrix Cd^-1 in array Cd ******************************* 

      do i=1,nd 

 do j=1,nd 

 cd(i,j)=0.0 

  If(i.eq.j)then 

   cd(i,j)=1./sddS 

  endif 

 enddo 

 enddo 

c********** form matrix G^T at the MAP in array GsT ************************ 

      do i=1,m 

 do j=1,nd 

 Gt(i,j)=Gsen(j,i) 

 enddo 
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 enddo 

c********** form the matrix (Cd^-1 * G) in array CdGs ************************* 

      do i=1,nd 

 do j=1,m 

      sum1=0.0 

 do k=1,nd 

 sum1=sum1+(cd(i,k)*Gsen(k,j)) 

 enddo 

 CdGs(i,j)=sum1 

 enddo 

 enddo 

c********** form the matrix G^T * CdGs in array GtCdGs **********************  

      do i=1,m 

 do j=1,m 

      sum2=0.0 

 do k=1,nd 

 sum2=sum2+(Gt(i,k)*CdGs(k,j)) 

 enddo 

 GtCdGs(i,j)=sum2 

 enddo 

 enddo  

c******** form the matrix G^T * Cd^-1 * G + Cm^-1 in array Cmapinv ************ 

      do i=1,m 

 do j=1,m 

 Cmapinv(i,j)=GtCdGs(i,j)+Cprmxinv(i,j) 

 enddo 

 enddo 

c********** write the matrix Cmapinv which is the Hessian *********************  

      do i=1,m 

 write(11,*)(Cmapinv(i,j),j=1,m) 

 enddo 

 Close(11) 

c**** call the subroutine matrixinversion to get the invesre of the matrix Cmapinv **** 

 CAll matrixinversion 

c********** saving the inverse of the matrix Cmapinv in array Cmap ************** 

      open(12,file='Cmap.dat')   

 do i=1,m 

 read(12,*)(cmap(i,j), j=1,m) 

 enddo 

c********** writing the inverse of the matrix Cmapinv ************************* 

      do i=1,m 

 write(16,*)(cmap(i,j), j=1,m) 

 enddo 

 sdNpst=cmap(1,1)**0.5 
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 sdmpst=cmap(2,2)**0.5 

 corpst=cmap(1,2)/(sdNpst*sdmpst) 

c***** writing the Maximum liklihood and the Maximum A posteriori estimate *****  

      write(8,*)amaxl,aNmaxl,ammaxl,imaxl,kmaxl  

 write(8,*)amax,aNmax,ammax,imax,kmax,sdNpst,sdmpst,corpst  

 ELSEIF(i_method.eq.1)then  

c***** calculating Mean and Covariance of the Prior using the numerical form****** 

      sum3=0.0 

      do i=1,n 

 do k=1,n 

 sum3=sum3+(pprior(i,k)) 

 enddo 

 enddo 

 sum4=0.0 

      do i=1,n 

 do k=1,n 

 sum4=sum4+(aN(k)*pprior(i,k)) 

 enddo 

 enddo 

 sum4=sum4/sum3 

      sum5=0.0 

      do i=1,n 

 do k=1,n 

 sum5=sum5+(am(i)*pprior(i,k)) 

 enddo 

 enddo 

 sum5=sum5/sum3 

 write(15,*)'mean of N, m for the prior',sum4,sum5 

      sum6=0.0 

      do i=1,n 

 do k=1,n 

 sum6=sum6+(aN(k)*aN(k)*pprior(i,k)) 

 enddo 

 enddo 

 sum6=(sum6/sum3)-(sum4*sum4) 

      sum7=0.0 

      do i=1,n 

 do k=1,n 

 sum7=sum7+(am(i)*am(i)*pprior(i,k)) 

 enddo 

 enddo 

 sum7=(sum7/sum3)-(sum5*sum5) 

      sum8=0.0 

      do i=1,n 
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 do k=1,n 

 sum8=sum8+(aN(k)*am(i)*pprior(i,k)) 

 enddo 

 enddo 

 sum8=(sum8/sum3)-(sum4*sum5) 

      write(15,*)'covariance, cov(n,n),cov(m,m), cov(n,m) for the prior' 

      write(15,*)sum6,sum7,sum8 

c*** calculating Mean and Covariance of the Posterior using the numerical method**** 

      sum33=0.0 

      do i=1,n 

 do k=1,n 

 sum33=sum33+(ppost(i,k)) 

 enddo 

 enddo 

 sum44=0.0 

      do i=1,n 

 do k=1,n 

 sum44=sum44+(aN(k)*ppost(i,k)) 

 enddo 

 enddo 

 sum44=sum44/sum33 

      sum55=0.0 

      do i=1,n 

 do k=1,n 

 sum55=sum55+(am(i)*ppost(i,k)) 

 enddo 

 enddo 

 sum55=sum55/sum33 

 write(15,*)'mean of N, m for the posterior',sum44,sum55 

      sum66=0.0 

      do i=1,n 

 do k=1,n 

 sum66=sum66+(aN(k)*aN(k)*ppost(i,k)) 

 enddo 

 enddo 

 sum66=(sum66/sum33)-(sum44*sum44) 

      sum77=0.0 

      do i=1,n 

 do k=1,n 

 sum77=sum77+(am(i)*am(i)*ppost(i,k)) 

 enddo 

 enddo 

 sum77=(sum77/sum33)-(sum55*sum55) 

      sum88=0.0 
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      do i=1,n 

 do k=1,n 

 sum88=sum88+(aN(k)*am(i)*ppost(i,k)) 

 enddo 

 enddo 

 sum88=(sum88/sum33)-(sum44*sum55) 

      write(15,*)'cov(n,n),cov(m,m),cov(n,m) for the posterior' 

      write(15,*)sum66,sum77,sum88 

 ELSEIF(i_method.eq.2)then 

c*****Calculating Mean and Covariance of the Prior using the numerical form******* 

      sum3=0.0 

      do i=1,n 

 do k=1,n 

 sum3=sum3+(pprior(i,k)) 

 enddo 

 enddo 

 sum4=0.0 

      do i=1,n 

 do k=1,n 

 sum4=sum4+(aN(k)*pprior(i,k)) 

 enddo 

 enddo 

 sum4=sum4/sum3 

      sum5=0.0 

      do i=1,n 

 do k=1,n 

 sum5=sum5+(am(i)*pprior(i,k)) 

 enddo 

 enddo 

 sum5=sum5/sum3 

      sum6=0.0 

      do i=1,n 

 do k=1,n 

 sum6=sum6+(aN(k)*aN(k)*pprior(i,k)) 

 enddo 

 enddo 

 sum6=(sum6/sum3)-(sum4*sum4) 

      sum7=0.0 

      do i=1,n 

 do k=1,n 

 sum7=sum7+(am(i)*am(i)*pprior(i,k)) 

 enddo 

 enddo 

 sum7=(sum7/sum3)-(sum5*sum5) 
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      sum8=0.0 

      do i=1,n 

 do k=1,n 

 sum8=sum8+(aN(k)*am(i)*pprior(i,k)) 

 enddo 

 enddo 

 sum8=(sum8/sum3)-(sum4*sum5) 

c*************** getting senstivity Matrix at the MAP ************************* 

 do j=1,nd 

c***** calling subroutine iterate to use Newton method to get g(m) at MAP ********* 

      Call iterate(imax,kmax,j,aNmax,ammax,aNp(j),Rp(j),Boi,Bgi,Rsi, 

     & g(j),dfpdpmax) 

      write(13,*)j,g(j),dfpdpmax 

 Call Senstivity(m,nd,j,g(j),dfpdpmax,aNmax,ammax,Boi,Bgi,Rsi, 

     & Gsen(j,1),Gsen(j,2))  

      enddo 

c********** writing sensitivity ********************************************* 

      do j=1,nd 

 write(9,*)(Gsen(j,k), k=1,m) 

 enddo 

c********** form the matrix Cd^-1 in array Cd ******************************** 

      do i=1,nd 

 do j=1,nd 

 cd(i,j)=0.0 

  If(i.eq.j)then 

   cd(i,j)=1/(sdd**2.0) 

  endif 

 enddo 

 enddo 

c********** form the matrix Cm^-1 in array Cm ****************************** 

      do i=1,m 

 do j=1,m 

 Cm(i,j)=sum8 

  If(i.eq.j)then 

   if (i.eq.1) then 

    Cm(i,j)=1/sum6 

   else   

    Cm(i,j)=1/sum7 

   endif 

       endif  

 enddo 

 enddo 

c********** from matrix G^T at the MAP in array GsT ************************* 

      do i=1,m 
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 do j=1,nd 

 Gt(i,j)=Gsen(j,i) 

 enddo 

 enddo 

c********** form the matrix (Cd^-1 * G) in array CdGs ************************* 

      do i=1,nd 

 do j=1,m 

      sum1=0.0 

 do k=1,nd 

 sum1=sum1+(cd(i,k)*Gsen(k,j)) 

 enddo 

 CdGs(i,j)=sum1 

 enddo 

 enddo 

c********** form the matrix G^T * CdGs in array GtCdGs ********************** 

      do i=1,m 

 do j=1,m 

      sum2=0.0 

 do k=1,nd 

 sum2=sum2+(Gt(i,k)*CdGs(k,j)) 

 enddo 

 GtCdGs(i,j)=sum2 

 enddo 

 enddo  

c******** form the matrix G^T * Cd^-1 * G + Cm^-1 in array Cmapinv ************ 

      do i=1,m 

 do j=1,m 

 Cmapinv(i,j)=GtCdGs(i,j)+Cm(i,j) 

 enddo 

 enddo 

c********** write the matrix Cmapinv which is the Hessian ********************* 

      do i=1,m 

 write(11,*)(Cmapinv(i,j),j=1,m) 

 enddo 

 Close(11) 

c**** call the subroutine matrixinversion to get the invesre of the matrix Cmapinv **** 

 CAll matrixinversion 

c********** saving the inverse of the matrix Cmapinv in array Cmap ************** 

      open(12,file='Cmap.dat')   

 do i=1,m 

 read(12,*)(cmap(i,j), j=1,m) 

 enddo 

c********** writing the inverse of the matrix Cmapinv ************************* 

      do i=1,m 
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 write(17,*)(cmap(i,j), j=1,m) 

 enddo 

 endif 

 stop 

 END 

c*************************End Calculation******************************** 

 

c***************************************************************** ***** 

c     This subroutine used to setup the prior pdf  

c********************************************************************** 

      Subroutine prpdf(n,m,j,aNavg,amavg,aN,am,Prm1,Prm2) 

      implicit double precision(a-h,o-z)  

      open(24,file = 'priormatrix.dat')  

 Prm1=aN-aNavg 

 Prm2=am-amavg 

      write(24,*)Prm1,Prm2 

 Return 

 End 

c*********************************************************** *********** 

c          This subroutine used to calculate g(m) by using Newton Method  

c********************************************************************** 

      Subroutine iterate(i,k,j,aN,am,aNp,Rp,Boi,Bgi,Rsi,g,dfpdp) 

      implicit double precision(a-h,o-z)  

      open(4,file = 'iterate_results.dat')  

      open(7,file = 'check_iterate.dat')  

      write(7,*) aN,am,aNp,Rp,Boi,Bgi,Rsi,g 

 n=1   

      g=3200.0 

2     Bo=(7.0*(10.0**(-5.0))*g)+1.0145 

 Bg=2.5965*(g**(-0.9867)) 

 Rs=(0.1665*g)-48.638 

 F=aNp*(Bo+((Rp-Rs)*Bg)) 

 Eo=(Bo-Boi)+((Rsi-Rs)*Bg) 

      Eg=Boi*((Bg/Bgi)-1.0) 

 fp=(F-(aN*(Eo+(am*Eg)))) 

      dbo=7.0*(10.0**-5.0) 

 dbg=-2.5965*0.9867*(g**(-1.9867)) 

      drs=0.1665 

 dfdp=aNp*(dbo+(Rp*dbg)-(Bg*drs)-(Rs*dbg)) 

      dEodp=dbo+(Rsi*dbg)-(drs*Bg)-(Rs*dbg) 

 dEgdp=(Boi/Bgi)*dbg 

 dfpdp=(dfdp-(aN*dEodp)-(aN*am*dEgdp)) 

      g1=g-(fp/dfpdp) 
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 if(g1.lt.0.0.or.g1.gt.3330.0)then 

 g=g1 

      goto 3 

      endif   

      Bo=(7.0*(10.0**(-5.0))*g1)+1.0145 

 Bg=2.5965*(g1**(-0.9867)) 

 Rs=(0.1665*g1)-48.638 

 F=aNp*(Bo+((Rp-Rs)*Bg)) 

 Eo=(Bo-Boi)+((Rsi-Rs)*Bg) 

      Eg=Boi*((Bg/Bgi)-1.0) 

 fp=(F-(aN*(Eo+(am*Eg)))) 

  if(abs(fp).le.0.0001)then 

   g=g1 

   goto 1 

       else 

       g=g1 

  n=n+1 

   If(n.eq.100) then 

    write(*,*)'No convergence' 

         stop 

   else 

         goto 2 

        endif  

       endif 

1 write(4,*)i,j,k,g,g1,n,dfpdp 

3     Return 

 end 

c**********************************************************************  

c     This subroutine calculates the senstivity coeffecient at each data point analytically  

c********************************************************************** 

      Subroutine Senstivity(m,nd,j,g,dfpdpmax,aNmax,ammax,Boi,Bgi,Rsi, 

     * Gs1,Gs2) 

      implicit double precision(a-h,o-z)  

c dimension Gs(nd,m) 

      open(10,file = 'check_senstivity.dat')  

      Bo=(7*(10**(-5))*g)+1.0145 

 Bg=2.5965*(g**(-0.9867)) 

 Rs=(0.1665*g)-48.638       

      Eo=(Bo-Boi)+((Rsi-Rs)*Bg) 

      Eg=Boi*((Bg/Bgi)-1) 

      dfpdN=-(Eo+(ammax*Eg)) 

      dfpdm=-aNmax*Eg 

      dgdN=(1/dfpdpmax)*dfpdN 

 dgdm=(1/dfpdpmax)*dfpdm 



  

    

57 

 

c      dlngdN=0.4343*(1/g)*dgdN 

c dlngdm=0.4343*(1/g)*dgdm 

 Gs1=dgdN 

 Gs2=dgdm 

      write(10,*)Gs1,Gs2,g,dfpdpmax 

 Return 

 End 

c********************************************************************** 

c     Subroutine to get the inverse of any matrix of dimension np x np  

c********************************************************************** 

 Subroutine matrixinversion 

      implicit Double Precision(a-h,o-z) 

c      PARAMETER(np=15*15*2,n=15*15*2) 

      PARAMETER(np=2,n=2) 

 dimension a(np,np), y(np,np), indx(np) 

 open(11,file='Cmapinv.dat') 

 open(12,file='Cmap.dat')   

      do i=1,np 

 read(11,*)(a(i,j),j=1,np) 

 enddo 

      do i=1,n 

        do j=1,n  

            y(i,j)=0. 

         end do 

         y(i,i)=1. 

      end do 

      call ludcmp(a,n,np,indx,d) 

      do j=1,n 

         call lubksb(a,n,np,indx,y(1,j)) 

c          Note that FORTRAN stores two-dimensional matrices by columns, 

c          so y(1,j) is the address of the jth column of y. 

      end do 

      do i=1,n 

  write(12,*)(y(i,j), j=1,n) 

 enddo 

 close (12)   

      Return 

      END  

c********************************************************************** 

c     Subroutine to get the inverse of prior matrix np x np  

c            Modified By Chile Ogele ... February 2005 

c********************************************************************** 

 Subroutine prmxinversion 

      implicit Double Precision(a-h,o-z) 
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      PARAMETER(np=2,n=2) 

 dimension a(np,np), y(np,np), indx(np) 

 open(21,file='Cprmx.dat') 

 open(22,file='Cprmxinv.dat')   

      do i=1,np 

 read(21,*)(a(i,j),j=1,np) 

 enddo 

      do i=1,n 

        do j=1,n  

            y(i,j)=0. 

         end do 

         y(i,i)=1. 

      end do 

      call ludcmp(a,n,np,indx,d) 

      do j=1,n 

         call lubksb(a,n,np,indx,y(1,j)) 

      end do 

      do i=1,n 

  write(22,*)(y(i,j), j=1,n) 

 enddo 

 close (22)   

      Return 

      END  

c********************************************************************** 

      SUBROUTINE ludcmp(a,n,np,indx,d) 

c********************************************************************** 

      implicit Double Precision(a-h,o-z) 

      PARAMETER (NMAX=100000,TINY=1.0d-20) 

      dimension indx(n),a(np,np),vv(nmax) 

      d=1. 

      do 12 i=1,n 

 aamax=0. 

 do 11 j=1,n 

   if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j)) 

11      continue 

 if (aamax.eq.0.) pause 'singular matrix in ludcmp' 

 vv(i)=1./aamax 

12    continue 

      do 19 j=1,n 

 do 14 i=1,j-1 

   sum=a(i,j) 

   do 13 k=1,i-1 

     sum=sum-a(i,k)*a(k,j) 

13        continue 
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   a(i,j)=sum 

14      continue 

 aamax=0. 

 do 16 i=j,n 

   sum=a(i,j) 

   do 15 k=1,j-1 

     sum=sum-a(i,k)*a(k,j) 

15        continue 

   a(i,j)=sum 

   dum=vv(i)*abs(sum) 

   if (dum.ge.aamax) then 

     imax=i 

     aamax=dum 

   endif 

16      continue 

 if (j.ne.imax)then 

   do 17 k=1,n 

     dum=a(imax,k) 

     a(imax,k)=a(j,k) 

     a(j,k)=dum 

17        continue 

   d=-d 

   vv(imax)=vv(j) 

 endif 

 indx(j)=imax 

 if(a(j,j).eq.0.)a(j,j)=TINY 

 if(j.ne.n)then 

   dum=1.0d0/a(j,j) 

   do 18 i=j+1,n 

     a(i,j)=a(i,j)*dum 

18        continue 

 endif 

19    continue 

      return 

      END 

c********************************************************************** 

      SUBROUTINE lubksb(a,n,np,indx,b) 

c********************************************************************** 

      implicit Double Precision(a-h,o-z) 

      dimension indx(n),a(np,np),b(n) 

      ii=0 

c          write(*,*)'lub,n,np,b',n,np 

          do i=1,n 

c             write(*,*)'b',b(i)  
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          enddo 

 do 12 i=1,n 

 ll=indx(i) 

 sum=b(ll) 

 b(ll)=b(i) 

 if (ii.ne.0)then 

   do 11 j=ii,i-1 

     sum=sum-a(i,j)*b(j) 

11        continue 

 else if (sum.ne.0.) then 

   ii=i 

 endif 

 b(i)=sum 

12    continue 

      do 14 i=n,1,-1 

 sum=b(i) 

 do 13 j=i+1,n 

   sum=sum-a(i,j)*b(j) 

13      continue 

 b(i)=sum/a(i,i) 

14    continue 

      return 

      END 
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 APPENDIX B 

MODIFIED SUBROUTINE FOR EXAMPLE 2  

 

c********************************************************************** 

c This modifies the subroutine used to calculate g(m) for Example 2 because g(m)  

c depends on the equation of each PVT variable as a function of pressure.   

c********************************************************************** 

      Subroutine iterate(i,k,j,aN,am,aNp,Rp,Boi,Bgi,Rsi,g,dfpdp) 

      implicit double precision(a-h,o-z)  

      open(4,file = 'iterate_results.dat')  

      open(7,file = 'check_iterate.dat')  

      write(7,*) aN,am,aNp,Rp,Boi,Bgi,Rsi,g 

 n=1   

      g=1620.0 

2     Bo=1.123*10.**(0.00006986*g) 

Bg=0.0079803-0.0000061666*g+0.000000001509*(g**2.) 

 Rs=294.4*10.**(0.0002715*g) 

 F=aNp*(Bo+((Rp-Rs)*Bg)) 

 Eo=(Bo-Boi)+((Rsi-Rs)*Bg) 

      Eg=Boi*((Bg/Bgi)-1.0) 

 fp=(F-(aN*(Eo+(am*Eg)))) 

      dbo=0.000181*10.**(0.00006986*g) 

 dbg=0.000000003018*g-0.0000061666 

      drs=0.184045*10.**(0.0002715*g) 

 dfdp=aNp*(dbo+(Rp*dbg)-(Bg*drs)-(Rs*dbg)) 

      dEodp=dbo+(Rsi*dbg)-(drs*Bg)-(Rs*dbg) 

 dEgdp=(Boi/Bgi)*dbg 

 dfpdp=(dfdp-(aN*dEodp)-(aN*am*dEgdp)) 

      g1=g-(fp/dfpdp) 

       

 if(g1.lt.0.0.or.g1.gt.16400.0)then 

 g=g1 

      goto 3 

      endif   

      Bo=1.123*10.**(0.00006986*g) 

Bg=0.0079803-0.0000061666*g+0.000000001509*(g**2.) 

 Rs=294.4*10.**(0.0002715*g) 

 F=aNp*(Bo+((Rp-Rs)*Bg)) 

 Eo=(Bo-Boi)+((Rsi-Rs)*Bg) 

      Eg=Boi*((Bg/Bgi)-1.0) 

 fp=(F-(aN*(Eo+(am*Eg)))) 

  if(abs(fp).le.0.0001)then 
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   g=g1 

   goto 1 

       else 

       g=g1 

  n=n+1 

   If(n.eq.100) then 

    write(*,*)'No convergence' 

         stop 

   else 

         goto 2 

        endif  

       endif 

1 write(4,*)i,j,k,g,g1,n,dfpdp 

3     Return 

 end 

c**********************************************************************  

c     This subroutine calculates the senstivity coeffecient at each data point analytically  

c********************************************************************** 

      Subroutine Senstivity(m,nd,j,g,dfpdpmax,aNmax,ammax,Boi,Bgi,Rsi, 

     * Gs1,Gs2) 

      implicit double precision(a-h,o-z)  

c dimension Gs(nd,m) 

      open(10,file = 'check_senstivity.dat')  

      Bo=1.123*10.**(0.00006986*g) 

Bg=0.0079803-0.0000061666*g+0.000000001509*(g**2.) 

 Rs=294.4*10.**(0.0002715*g) 

      Eo=(Bo-Boi)+((Rsi-Rs)*Bg) 

      Eg=Boi*((Bg/Bgi)-1) 

      dfpdN=-(Eo+(ammax*Eg)) 

      dfpdm=-aNmax*Eg 

      dgdN=(1/dfpdpmax)*dfpdN 

 dgdm=(1/dfpdpmax)*dfpdm 

c      dlngdN=0.4343*(1/g)*dgdN 

c dlngdm=0.4343*(1/g)*dgdm 

 Gs1=dgdN 

 Gs2=dgdm 

      write(10,*)Gs1,Gs2,g,dfpdpmax 

 Return 

 End 
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