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ABSTRACT 
 

A Study on Raman Injection Laser. 

(August 2005) 

Debin Liu,  

B.S., University of Science & Technology of China 

Chair of Advisory Committee:  Dr. Alexey Belyanin 

 
 

The Raman Injection Laser is a new type of laser which is based on triply resonant 

stimulated Raman scattering between quantum confined states within the active region 

of a Quantum Cascade Laser that serves as an internal optical pump. The Raman 

Injection Laser is driven electrically and no external laser pump is required. Triple 

resonance leads to an enhancement of orders of magnitude in the Raman gain, high 

conversion efficiency and low threshold. We studied this new type of laser and conclude 

some basic equations. With reasonable experimental parameters, we calculated the laser 

gain, losses and the output power of the Raman Injection Laser by using Mathematica 

and FEMLab. Finally we compared the theoretical and experimental results.  
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INTRODUCTION 
 

Stimulated Raman scattering is a nonlinear optical process that, in a broad variety 

of materials, enables the generation of optical gain at a frequency that is shifted from 

that of the incident radiation by an amount corresponding to the frequency of an internal 

oscillation of the material. This effect is the basis for a broad class of tunable sources 

known as Raman lasers. In general, these sources have only a small gain and therefore 

require external pumping with powerful lasers, which limits their applications [1].  

A Quantum Cascade Laser operates due to population inversion on the intersubband 

transition between quantum confined electron states in semiconductor quantum well 

structures. In this structure, the typical lasing scheme of a Quantum Cascade Laser is 

4-level scheme in Fig. 2.  

Recently, the Raman Injection Laser was developed. The Raman Injection Laser 

represents several key innovations in laser technology, combining the advantages of 

nonlinear optical devices and the Quantum Cascade Laser with a compact design.  

The physics underlying the Raman Injection Laser differs in a fundamental way 

from the existing Raman lasers. The Raman Injection Laser is based on triply resonant 

stimulated Raman scattering between quantum confined states within the active 

_____________ 

This thesis follows the style of Physical Review D.  
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region of a Quantum Cascade Laser that serves as an internal optical pump. 

The Raman Injection Laser is driven electrically and no external laser pump is 

required. This leads to an enhancement of orders of magnitude in the Raman gain, high 

conversion efficiency and low threshold [1]. 

The theoretical design and analysis of the Raman Injection Laser are based on 

Maxwell’s equations and density-matrix equations.  

In this thesis, we first introduce the Quantum Cascade Laser and the Raman laser. 

We show how the Raman Injection Laser combines the advantages of these two lasers. 

Then starting from the Maxwell’s equations and density-matrix equations, we conclude 

the basic equations for the lasing system of the Raman Injection Laser. And using 

reasonable parameters from experiment, we calculate laser gain, losses and power by 

computer. Finally we compare our theoretical power curves with the experiment 

measurement.  
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QUANTUM CASCADE LASER 
 

The Quantum Cascade Lasers were invented and first demonstrated in 1994. They 

have already reached a remarkably high level of maturity. 

A Quantum Cascade Laser is a sliver of semiconductor material about the size of a 

tick. Inside, electrons are constrained within layers of gallium and aluminum compounds, 

called quantum wells that are nanometers thick. In such a tight space, electrons take on 

properties explained by quantum physics. 

In the conventional lasers, Fig. 1, a photon of light is emitted when a negative 

charge (an electron) jumps from a semiconductor's conduction band to a positive 

charge (or "hole") in the valence band. Once an electron has been neutralized by a hole, 

it can emit no more photons.  

 
 
 

 
 

FIG. 1. Lasing process. 
 
 
 



4 

A Quantum Cascade Laser contains a series of quantum wells and operates like an 

electronic waterfall. Electrons cascade down a series of identical energy steps, emitting 

a photon and losing energy at each step. 

The Quantum Cascade Laser operates due to population inversion on the 

intersubband transition between quantum-confined electron states in semiconductor 

quantum-well structures. They utilize a typical 4-level lasing scheme in Fig. 2, in which 

electrons are injected to the upper laser state 3 from the upstream injector 4 by resonant 

tunneling, make radiative or nonradiative transition to the lower laser state 2, and then 

rapidly depopulate this state via phonon emission and tunneling out of the active region 

to the injector section downstream. This section serves as an upstream injector for the 

next active stage [2]. 
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When the lower-energy electron leaves the first well, it enters a region of material, 

level 4 in Fig. 2, where it is collected and sent to the next well, Fig. 3. Typically 25 to 

75 active wells are arranged in a QC laser, each at a slightly lower energy level than 

the one before, thus producing the cascade effect, and allowing 25 to 75 photons to be 

created per electron journey. 
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FIG. 3. Cascading structure in a Quantum Cascade Laser. 

 
 
 

Clearly, the cascading structure of the Quantum Cascade Laser has unique 

efficiency in controlling electron transport, lifetimes and populations of electron states in 

combination with flexibility of the active region design [3]. 

Also because of the similar effective masses, different subbands have similar 
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dispersion. Therefore, there is no cross-absorption between intersubband transitions at 

different frequencies in the cascading structure of a Quantum Cascade Laser. 
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RAMAN LASER 
 

When light is scattered from a molecule, most photons are elastically scattered. The 

scattered photons have the same energy and, therefore, wavelength, as the incident 

photons. However, a small fraction of light is scattered at optical frequencies different 

from, and usually lower than, the frequency of the incident photons. The process leading 

to this inelastic scattering is termed the Raman Effect. Raman scattering can occur with a 

change in the vibrational, rotational or electronic energy of a molecule. 

If the molecule of the medium changes its energy state and the photon loses an 

equivalent energy, the scattered light has a lower frequency and is called the Stokes 

radiation, Fig. 4.  

 

 

 

If a molecule is in an excited state, the reverse scattering process can take place. In 

that case, the scattered light has a higher frequency than the exciting light and is called 

the anti-Stokes radiation, Fig. 4. 
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FIG. 4. Stokes and anti-Stokes Raman scattering. (a) Stokes, (b)anti-Stokes. 

 

The stimulated Raman scattering is a two photon nonlinear optical process that, in a 

broad variety of materials, enables the generation of optical gain at a frequency that is 

shifted from that of the incident radiation by an amount corresponding to the frequency 

of an internal oscillation of the material1. This effect is the basis for a broad class of 

tunable sources known as Raman lasers. 

The Raman Laser works as follows: Light hits a substance, causing the atoms in 

the substance to vibrate sympathetically. The collision of photons with the substance 

causes some of the photons to gain or lose energy, resulting in a scattered light of a 

different wavelength. A Raman laser essentially involves taking this scattered light and 

then amplifying it by reflecting it and pumping energy into the system to emit a 

coherent laser beam. 

The Raman Lasers have typically small gain (10-9 cm/W) and therefore require a 

large and powerful external pump to compensate for the beam's attenuation, or 
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weakening, as it propagates through the material, which limits their applications [1]. 
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RAMAN INJECTION LASER 

To circumvent these limitations of traditional Raman laser, the Raman Injection 

Lase

FIG. 5. Size of the Raman Injection Laser. width 3-15 µm, length 1-3 mm. 
 

The main idea of the Raman Injection Laser is to monolithically integrate active 

laser

 

r is developed, Fig. 5. The Raman Injection Laser is based on triply resonant 

stimulated Raman scattering between quantum confined states within the active region 

of a Quantum Cascade Laser that serves as an internal optical pump. 

 
 
 

 

 

 

 

 

 

 

 
 

 medium and the nonlinear medium in such a way that the laser field could serve as 

an intracavity optical pump for the desired nonlinear optical interaction [3]. 
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The active nonlinear systems support both laser action and, at the same time, 

nonl

ptical pump. Active region of a resonant Raman laser integrates fundamental laser cascade 

In the waveguide core of the Raman Injection Laser, there are 30 repetitions of 

activ

inear self-conversion of laser light into coherent radiation at different frequencies. 

With application to intersubband transitions, the nonlinear section, a coupled quantum 

well containing a desired set of intersubband transitions, is incorporated into an active 

region of a Quantum Cascade Laser.  

 
 
 

 
 
FIG. 6. Raman structure. The Raman Injection Laser monolithically integrated with its own 
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The yellow arrows indicate the direction of electron transport. The solid and dashed 

vertical arrows represent the internally generated pump laser radiation.  

Laser light at 6.7 µm generated on the transition 6-5 serves as a resonant optical 

pum

ally and no external laser pump is 

requ

p for lasing at the Stokes wavelength of 9 µm, which is detuned by 15 meV from 

the transition 3-2. Resonant absorption of the pump at the transition 1-3 is overcome 

by amplification in the pump laser section at the transition 6-5. Electrons in the state 1 

are injected into the state 6 of the following period. 

The Raman Injection Laser is driven electric

ired. Triple resonance leads to an enhancement of orders of magnitude in the Raman 

gain. It approaches 10-3 cm/W (106 times higher than in existing Raman lasers), high 

conversion efficiency (30%) and low threshold [1]. 
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THEORY 

The analysis of the Raman Injection Laser is based on coupled density-matrix 

equa

Density-matrix equations 

Since we are dealing with resonant optical nonlinearities, the natural way to treat 

the i

3-level system, Fig. 7:   

G. 7. 3-level syst

 

 

tions and Maxwell’s equations. We assume that the electromagnetic field is classical 

and is described by Maxwell’s equations. 

 

 

nteraction of light with electron subsystem is through the density matrix equations. 

It allows one to easily incorporate many interacting fields and various incoherent 

relaxation and scattering processes. 

We first start from the simplest 
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The Hamiltonian of this system is H=H0+Hint.  

 

 

he         is the Rabi frequency. d is the dipole moment. ε is the slowly 

vary

states and its coherent 

inter

mportant approximations: 1, we neglect most many-body 

effec

where  

3332221110 ωωω hhh ++=Η 

⎟
⎟
⎞

⎜
⎜
⎛

+
−

Ω+
−

Ω+
−

Ω−=Η cc
t

e
t

e
t

e .233
3132

2121
1int

ννν
h

⎠⎝
 

 

h2
εd

=ΩT

ing complex amplitude of field. ν is the wave frequency.  

The total Hamiltonian includes a system of electron 

action with electromagnetic field, while all relaxation and scattering processes are 

considered as the decay-term. 

We proceed with several i

ts due to the Coulomb interaction of electrons. 2, we neglect the effect of the laser 

field on the electron wavefunctions and dipole moments of the ISB transitions. 3, in 

evaluating the dynamics of populations (diagonal terms in the density matrix), we 

replace the realistic spatial kinetics of electron transport through the structure with rate 

equations for a set of electron states, with the transition times between different states 

defined by phonon emission and tunneling. 
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Then simply we start from the dynamics:  

 

where the ρ are the density matrix elements. 

 

e for the 

deca

 

Considering only the slow varying part of off-diagonal element, we replace the 

off-d

 

decaytermH,ρiijρ +⎥
⎤

⎢
⎡−=

∂
 

ijt ⎦⎣∂ h

 
decayterm

k kjΗikρkjρikΗ
t
iji +∑ ⎟

⎠
⎞⎜

⎝
⎛ −=

∂
h

Plug in the expression of H=H0+Hint, and consider the relaxing tim

y-term. We get the density matrix equations of diagonal elements for this 3-level 

system: 

 

 

 

 

 

iagonal elements of the density matrix as:  

 

ρ∂

331221]312Im[2]211Im[21 nrnrdtdn ++∗Ω−∗Ω−= σσ

221332]323Im[2]211Im[22 nrnrdtdn −+∗Ω−∗Ω= σσ

3)3231(]323Im[2]312Im[23 nrrdtdn +−∗Ω+∗Ω= σσ

( ) ( )
tjetijtij

iν
σρ

−
=

)1(
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We get the equations of

 

Where the Γij = γij+i∆ij. ∆ij = ωij-νj = ωi-ωj-νj is the detuning of corresponding 

trans

icated than the above three-level system. It includes, as a 

mini

 the field Ω1 which is between level 1 and 2, and we get the 

dens

 off-diagonal elements: 

313322121212121 σσσσ ∗Ω+∗Ω−Ω=Γ+ iinidtd

213321132313131 σσσσ Ω+Ω−Ω=Γ+ iinidtd

∗Ω+∗Ω−Ω=Γ+ 212311233323232 σσσσ iinidtd

 

 

 

 

 

itions. nij = ρii-ρjj is the difference of populations of corresponding energy levels. σjk 

is the slowly varying amplitude of the corresponding elements. rij is the relaxation rates 

of transitions i to j. ni = ρii [4]. 

Our system is more compl

mum, states 1, 2, 3, 5 and 6 coupled by two laser fields. We assume that the injector 

states remain undepleted and do not need to be included directly. Also, our system is an 

open system. This means that the sum of populations of states 1, 2, and 3 is not 

conserved and one can control them quite efficiently by combination of scattering and 

tunneling processes. 

Then we ignore

ity-matrix equations. 
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For off-diagonal elements: 

 

or diagonal elem
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Here j is the tota  are the densities of current flowing through 

the s

 the inverse time during which state i reaches equilibrium 

with 

Maxwell’s equations 

For ISB transitions close to the Γ

mome

l current density, j1,2

tates 1 and 2. We will assume that j1 + j2 = j. The factor η is the efficiency of 

injection to the upper drive laser state 6; we again assume that the rest of the current 

goes to state 5. Because of relative higher state energy, equilibrium populations of 

states 3 and 6 are neglected. 

The relaxation rate ri is

the injector; we assume that the injector remains undepleted and has Fermi 

distribution of electrons at temperature T. The relaxation rate rij is the inverse time of 

the transition from state i to state j.  

 
 

 

-point in the conduction band, the dipole 

nts only have z-components, as indicated in Fig. 8. Therefore, TM-polarized 

modes with a large z-component of the electric field are preferentially excited.  
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FIG. 8. Geometry of the Raman Injection Laser. 
 
 
 

In the Maxwell’s equations it is convenient to separate resonant ISB polarization 

P from non-resonant dielectric response described by the complex dielectric function 

),,( zyxε as follows:  

 

tctc ∂
∂

+
∂
∂

=×∇
PEH πε 4  

     

              
tc ∂

∂
−=×∇

HE 1      

 

In the simplest case of a plane-parallel semiconductor waveguide, the dielectric 

function has a piecewise-constant profile in z-direction and is constant in y-direction, 

with jumps on the lateral walls of the waveguide.  
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Combine Maxwell’s equations. 

 

                                                     
⎟⎟
⎠

⎞
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πεε PHH
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4
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2
2

Then further assume for simplicity that ),( zyεε =  is independent of x and 

expand the magnetic field over the quasi-orthogonal set of the transverse waveguide 

modes Fj(y,z):  

.                                      
c.c.e),()( +−∑= tjixjik

j
zyjxjh νFH

 

Here the functions hj(x) are slowly varying with x, and we can neglect their 

second derivatives. In general, hj are also the functions of time, but here we consider 

the continuous wave operation or pulses that are much longer than all relaxation times 

in a QCL. The waveguide modes are eigen functions of the equation 
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The solution of this equation defines both the transverse profile of a given 

waveguide mode Fj(y,z) and its dispersion, i.e. complex propagation constant kj(νj) as a 

function of real frequency of the mode.  

Then we have, 
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And assuming the orthogonality condition  

 

ijdAjFiF δ
ε

=∫ *1  ,       

 

where the integration is over the waveguide cross-section and the star denotes 

complex conjugation. So we have, 

                                                         
dAjt
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∂ ε

 

We recall that the ISB electronic polarization is directed along z axis 

perpendicular to the QW plane: 0zP P= . For the waveguide that is sufficiently broad 

in the y-direction we may also assume that the magnetic field has only y-component. 

Then:  

                                              
dAjF

xt
Ptkixik ∂+−∂ νπ ke

kck
i

x
kh *212

∂∂
∫−=

∂ ε 

This equation has to be solved with appropriate boundary conditions on the 

cavity facets x = 0 and x = L, taking into account reflection and transmission of the 

optical power. For a weak signal field, the polarization can be expanded in series in 

powers of the field, and only the terms of zeroth and first order can be retained. Here 
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we restrict ourselves to the processes of true lasing, in which the polarization is 

proportional to the z-component of the electric field of a given mode: zEP χ= . This 

would lead to the exponential gain.  

The resonant susceptibility χ is a function of all three coordinates x,y,z as it 

depends on the position of the active layers in a waveguide and the distribution of the 

drive field intensity across the waveguide and along the cavity. We will, however, 

assume that the x-dependence of χ is quite smooth and neglect its x-derivative. Then, 

from the Maxwell’s Equations, we have the relation,  

                                                      

∑
−

≈
∂

∂
−≈

∂∂
∂

j

tjixjik
ejFjkjhc

x

Hc
xt
P ν

ε
χ

ε
χ 2

2

22

 

 

Suppose that one transverse mode has the excitation threshold considerably lower 

than all other modes, so there is only one waveguide mode excited. Then we can obtain 

the equation for the amplitude of this mode: 
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c
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µ
ikh

x
h

∫=
χνπ

ε

χπ 22
22

          

where                   ,                  is the effective refractive 

index of the waveguide mode. Solve this partial deferential equation, it’s easy to define 

the field gain as                  

ν
µ Re[

=
]kcdAF 2
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Γ=
µ

χπν
cMg ]Im[2

 

and the waveguide loss is            . Im[kw =α ]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

THEORETICAL RESULTS 
 

Laser gain 

 

Consider the polarization on the Stokes transition 2-3, P23, we have  

323 Ε=Ρ χ 

where the χ is the linear resonant susceptibility at the Stokes frequency, E3 is the 

electric field generated between transition 2-3, Fig. 9. 
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FIG. 9. Stokes transition. 

 
 
 

From density matrix equations we can calculate  

    
322323 σd=Ρ
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where σ23 is the off-diagonal element, d23 is the dipole moment between transition 

2-3. 

From these two expressions of P23, we can have the relation, 

 

Im[χ] = (d23/E3)Im[σ32]                

 

The field gain is  

                                                        Γ=
µ

χπνg ]Im[2
cM

 

So we get the relation between the field gain and the density-matrix element. In 

order to get the gain of our system, the key point is to find out off-diagonal element of 

the density-matrix σ32. 

For the continuous wave operation that is much longer than all relaxation times, 

we can neglect the time derivatives in the density-matrix equations. Then the 

calculation of σ32 is reduced to algebra. So we obtain the intensity gain which is double 

of the field gain, 
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where Γs is the confinement factor for the Stokes mode. This expression is similar 

to the one obtained in [5] for the anti-Stokes generation.  

Let us analyze this expression for the gain. The gain is not proportional to the 

Raman inversion n1–n2 between the initial and final state of the two-photon transition. 

Instead, there are two terms. Their origin can be seen from inspecting the general 

structure of density-matrix equations. It is clear that in the absence of the drive field 

the density matrix element σ32 can excited only by the first term on the right-hand side 

of 

 

*
2122333232

32 σσ
σ

Ω+Ω=Γ+ ini
dt

d
 

  

which is proportional to the Stokes field and the population difference n2–n3 on 

the Stokes transition. This term describes linear absorption of the Stokes field on the 

transition 2-3 

After using the experimental parameters taken from reference [1], we use 

Mathematica to solve the density-matrix equations and expression of gain. We get the 

curve of gain, varies with the difference 

323 ωωδ −=  
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FIG. 10. Gain spectrum for the Stokes field. 

 
 
 

From the curve in Fig. 10, the designed value of ∆=15 mev is close to the optimum. 

That mean ∆ is proper to avoid strong first-order absorption and to get the low threshold 

and high gain. 

 
 

Losses 

 

The Raman Injection Laser has a heterostructure waveguide which includes 

hundreds of different layers. However, the active region consists of QW layers that 

have thickness much smaller than wavelength, so one can average over those layers 

and use an average complex refractive index of the active region as a whole. As a 
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result, the waveguide consists of only nine layers.  

In reference [6], the wave propagation in multi-layer slab waveguide is discussed. 

First the wave equation should be derived from Maxwell’s equations. Consider the TM 

mode with the magnetic field polarized transverse to the direction of propagation.  

Then by using the technique of separation of variables and the boundary 

conditions from Maxwell’s equations, solutions of these wave equations can be found.  

In order to have the guided modes, the fields outside the waveguide core must 

decay. So we finally obtain the transcendental equation of k from boundary condition.  

To solve this kind of equation, computer technique is necessary. 

So in our case, from the equation,  

 

c.c.tjiνxjik
j

(y,z)ej(x)FjhH +−∑= 

 

consider,                  , then we have, [ ] [ ]kiImRek = k +

 
[ ] [ ] c.c.ee(y,z)e(x)Fh           H = xkxki

j

tiν
jj

jjj +−−∑ ImRe

 

We find out the expression of waveguide losses, 

 
[k]wα Im=
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This equation would also be:  

 

]
c
µν[wα Im= 

 

where                  is the effective refractive index of the waveguide 

mode. 

[ ]
ν

kcReµ =

The key point to get the waveguide losses in our system is to find out the complex 

value of k. 

We choose the computer software FEMLab, which is an interactive environment 

to model single and coupled phenomena based on partial differential equations, as our 

computer technique.  

We simulate the waveguide structure and input the experimental parameters of 

each layer. Finally the effective refractive index is determined as in Fig. 11. Then we 

can calculate the waveguide losses.  
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FIG. 11. Waveguide simulation. 

 
 
 

Here FEMLab gives the effective refractive index µ=3.223601+i0.000280955.  

From equation, 

]
c
µν[wα Im= 

 

The waveguide losses are around 2cm-1. 
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Power 

 

We know the Poynting Vector represents energy flux density. It’s given by: 

HEcS ×=
π4 . Using the connection between E and H in the TM mode we can have 

nE
µ
ε

π
cHE

π
cS vvvv

⋅=×= 2
44  

 

So if we can determine the magnitude and distribution of the electric field, we will 

get the laser output power after integrating over the waveguide cross-section. 

To get the power curve, we first solve Maxwell’s equations and density-matrix 

equations to find out the Rabi frequency        , which is proportional to the electric 

field.  Then after getting the drive electric field  and the Stokes field , the laser 

power would be proportional to .  

2e 3e

2e

εd
=Ω

h2

Finally we use reasonable experimental parameters in reference [2]. We take η = 1, 

j2/j = 0.2, and T = 10 meV. The total non-resonant cavity losses for the drive and the 

Stokes modes were taken to be 12 and 13 cm-1, including radiation losses from cavity 

facets. These numbers correspond to experimentally measured values. As a result, we get 

the theoretical power curves for drive and Stokes by Mathematica.  
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FIG. 12. Theoretical power curve. 

 
 
 

In Fig. 12, the red curve is the drive power and the blue curve is the Stokes power. 

Both of them are plotted as functions of injection current.  

In experiment, Raman lasing was reproduced in all ten tested devices. Fourier 

transform infrared spectrometer was used for optical measurements, together with a 

calibrated room-temperature HgCdTe detector for the optical power–current 

characterization. To filter out only the pump laser wavelength in order to measure the 

optical power emitted at the Stokes frequency, a long-wavelength (7.5mm) pass filter 

was placed along the light path [1]. 
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FIG. 13. Experimental power curve. 

 
 
 

In Fig. 13, the blue curve is the peak output power for drive emission; the red 

curve is the Stokes emission. Both curves are measured at temperature of 80 K. 
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COMPARISON AND CONCLUSION 
 

Compare the calculated plot and measured plot, both the thresholds and the slopes 

are similar. This proved our theoretical simulations and calculations are correct. Also 

our anticipation on the design of the Raman Injection Laser is affirmed. 

The difference between these two plots is: the slope jumps from high value to low 

value when the Stokes field turns on in theoretical curve, but it jumps from low value 

to high value at that point in the experimental curve 

This phenomenon can be explained that the slope is much more sensitive to the 

uncertainties in the input parameters than the laser thresholds. 

As the conclusion of this study, the Raman Injection Laser, as a new type of laser, 

has many benefits like high Raman gain, high conversion efficiency and low threshold 

compared to the traditional Raman Laser. Also the Raman Injection Laser may have 

many potential benefits as compared to a standard Quantum Cascade Laser. For example, 

some benefits which are usually associated with nonlinear optical sources [2]: 

1. Generation at frequencies that are not easily accessible for QC lasers in 

general, or within a given material system; 

2. Significantly better tunability and wavelength agility as compared to 

standard lasers; 

3. Higher operating temperature; 
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4. New functionalities, such as small beam divergence or generation of 

light with interesting statistical properties 

Meanwhile, as compared to the regular Raman lasers, the Raman Injection Laser is 

much more compact, Fig. 14, have a smaller size and requires a lower power input. 

 

 

 

 

 

 

 

 

FIG. 14. Small laser size. 
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