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ABSTRACT

Cosmology and Gravity in the Brane World. (August 2005)

James Blackman Dent, B.S., University of Missouri-Rolla

Chair of Advisory Committee: Dr. Christopher Pope

The cosmology in the Hubble expansion era of the Horava-Witten M-theory

compactified on a Calabi-Yau threefold is studied in the reduction to five-dimensions

where the effects of the Calabi-Yau manifold are summarized by the volume modulus,

and all perturbative potentials are included. Matter on the branes are treated as first

order perturbations of the static vacuum solution, and all equations in the bulk and

all boundary conditions on both end branes are imposed. It is found that for a static

volume modulus and a static fifth dimension, y, one can recover the four dimensional

Robertson-Friedmann-Walker cosmology for relativistic matter on the branes, but not

for non-relativistic matter. For relativistic matter, the Hubble parameter H becomes

independent of y to first order in matter density, and if a consistent solution for non-

relativistic matter exists it would require H to be y dependent. These results hold also

when an arbitrary number of 5-branes are included in the bulk. The five dimensional

Horava-Witten model is compared with the Randall Sundrum phenomenology with a

scalar field in the bulk where a bulk and brane potential are used so that the vacuum

solutions can be rigorously obtained.(In the Appendix, the difficulty of obtaining

approximate vacuum solutions for other potentials is discussed.) In this case non-

relativistic matter is accommodated by allowing the distance between the branes to

vary. It is suggested that non-perturbative potentials for the vacuum solution of
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Horava-Witten theory are needed to remove the inconsistency that non-relativistic

matter creates.

Also considered is the problem of gravitational forces between point particles

on the branes in a Randall-Sundrum (R-S) two brane model with S1/Z2 symmetry.

Matter is assumed to produce a perturbation to the R-S vacuum metric and all the 5D

Einstein equations are solved to linearized order (for arbitrary matter on both branes).

We show that while the gauge condition hi5 = 0, i = 0, 1, 2, 3 can always be achieved

without brane bending, the condition h55 = 0 leads to large brane bending. The static

potential arising from the zero modes and the corrections due to the Kaluza-Klein

(KK) modes are calculated. Gravitational forces on the Planck (y1 = 0) brane recover

Newtonian physics with small KK corrections (in accord with other work). However,

forces on the TeV (y2) brane due to particles on that brane are strongly distorted

by large R-S exponentials, making the model in disagreement with experiment if the

TeV brane is the physical brane.
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CHAPTER I

INTRODUCTION

The Standard Model (SM) of particle physics is one of the great successes in the

history of science. Its framework can be used to explain electromagnetic and nuclear

interactions (strong and weak) among elementary particles and has been experimen-

tally verified to astounding accuracy[1]. However, it is incomplete. The most glaring

problem is that gravity is not incorporated in the SM. Other problems include: the

gauge hierarchy problem (why is the weak scale so far below the GUT scale), coupling

constant unification does not occur, many parameters (masses, couplings, number of

generations) are put in by hand, neutrino masses can not be accommodated, and

cosmological problems such as the origin and nature of dark energy and dark matter

as well as inflation are not explained.

Supersymmetry (SUSY) (see [2] for a review of global and local supersymmetry)

is an extension of the SM that can seemingly ameliorate some of the problems listed

above. SUSY is a symmetry that relates bosons to fermions through a fermionic

SUSY generator (which can be global or local). Matter multiplets (known as super-

multiplets) are categorized as irreducible representations under the SUSY algebra and

contain equal numbers of bosons and fermions. Particles within the same representa-

tion (termed superpartners) carry the same mass and charge under any gauge groups.

This leads to an obvious incompatibility with experiment in that, for example, we do

not observe a negatively charged scalar at .511MeV (which would be the electron’s

superpartner, the selectron1). Therefore SUSY is not a good symmetry of the cur-

The journal model is Nuclear Physics B.

1The superpartners of SM fermions are named by adding an ’s-’ to the beginning
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rent universe and must be broken at some higher energy. The difficulty of finding a

natural mechanism for global SUSY breaking eventually led to the abandonment of

global SUSY as a fundamental symmetry.

When SUSY is treated as a local symmetry it incorporates the spacetime symme-

tries of general relativity and is called supergravity (SUGRA). Supergravity provides

a natural mechanism that solves the gauge hierarchy problem by cancelling the di-

vergences coming from loop corrections to the scalar Higgs mass, supergravity gives

a natural mechanism to break SUSY, and coupling constants unify in SUSY GUTs

(here SUSY GUTs refers to locally supersymmetric grand unified theories). In ad-

dition SUSY GUTS can also include massive neutrinos, possess a natural candidate

for dark matter in the form of the stable lightest supersymmetric particle (LSP),

and inflation finds a more natural home since there exist fundamental scalars in su-

pergravity models. However supergravity actually introduces more unconstrained

parameters (although in some models such as mSUGRA [3] this number is small).

Although gravity is included in supergravity it is still not compatible with quantum

field theory in that it is non-renormalizable. There are other unresolved questions

such as the origin and nature of both inflation and dark energy (the cosmological

constant problem), the number of generations, why would the universe use certain

SUSY GUTs as opposed to others, and why is spacetime 3+1 dimensional. Over the

past twenty years string theory has emerged as the leading framework within which

these questions may be considered.

String theory (for a review see [4]) dispenses with the notion of particles as

mathematical points and treats particles as extended objects which allows gravity

to be included in a finite manner. Supersymmetry is an ingredient of string theory

of the SM particle name, e.g. stop, sbottom, stau, etc..., while the superpartners of
SM bosons are named by appending an ’-ino’ to the name, e.g. Higgsino, gluino, etc...
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(superstrings) and therefore it is hoped that all of its apparent successes will be

found in any realistic superstring model. In order for string theory to be internally

consistent one finds automatically that string theory gives the number of spacetime

dimensions as a prediction (the superstring is formulated in ten dimensions whereas

the bosonic string exists in 26). String theory is only consistent with certain gauge

groups which can then provide the origin for SUSY GUT groups and string theory is

the only theory that offers the possibility of calculating Yukawa coupling constants.

The number of generations can also be calculated from topological considerations in

superstring theory. However there are many problems that need addressing if string

theory is to be a correct theory of nature. Among these are the fact that in string

theory the problem of SUSY breaking re-emerges, also string theory predicts the

existence of extra dimensions and there exist many additional fields known as moduli

whose existence makes building a reasonable phenomenology difficult. Seemingly

another problem is that superstring theory has not one but five vacuum states: Type

I, IIA, IIB, heterotic SO(32)×SO(32) and E8×E8. The fact that superstrings exist

in ten dimensions also brings up another puzzle in that the highest dimension that

one finds a consistent theory of supergravity is eleven. For example, we know that the

Type IIA and Type IIB superstring theories can be realized as the low energy limit

of the corresponging Type IIA and Type IIB supergravity theories in ten dimensions

but there seems to be no place for the 11D supergravity in string theory. Also the

problem of many parameters of SUSY reemerges more violently in M-theory in the

form of many possible vacua, i.e. the O(105) CY manifolds (not to mention the

landscape problem[5]). Some of these problems were addressed in the mid 1990s with

the use of dualities, branes, and M-theory.

It was shown by the use of duality relations that one can relate each of the five

superstring vacua to one another as well as 11D supergravity (for a review see [6]).
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For example a particularly interesting theory was proposed by Horava and Witten

(HW) [7, 8, 9]who showed that the strong coupling limit of the E8×E8 heterotic string

is related to an 11D theory formulated on the orbifold R10×S1/Z2. It was therefore

conjectured that there exists an underlying 11D quantum theory called M-theory that

contains the five supertring formulations as well as 11D SUGRA as different points

in its parameter space. One would like to explore the parameter space of the 11D M-

theory and see if there are any vacua that give rise to 4D models which can correctly

reproduce the SM of particle physics, explain the known cosmology (the Hubble

and inflationary eras), reproduce 4D gravity, as well as give predictions concerning

topics such as SUSY phenomenology, the cosmological constant problem, etc... In the

remaining chapters we will discuss some of these problems in the framework of HW

theory as well as a 5D phenomenological model based on HW theory known as the

Randall-Sundrum (RS) model.

Next we will give a description of the Horava-Witten theory and its reduction to

five dimensions. This will be followed by a study of Hubble era cosmology within the

HW theory. Then we will introduce the 5D RS model and examine both cosmology

and gravity within its framework.
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CHAPTER II

HORAVA WITTEN M-THEORY

In this chapter we give a brief review of the construction of Horava-Witten M-theory

and its compactification to five dimensions. Then we will explore the cosmology

using the five dimensional action as a starting point. This chapter follows the work

of [7, 8, 9, 10].

A. 11D Supergravity on an Orbifold

The low energy limit of M-theory is 11D supergravity. The field content of 11D

supergravity is a graviton, gMN , a gravitino, ψα
M , and a 3-form potential, CIJK . It has

N = 1 supersymmetry generated by a 32 component spinor. The 11D supergravity

action was first formulated in [11] and for our purposes we will only need the bosonic

piece which is

SSG = − 1

2/κ2

∫
M11

√
−g[R +

1

24
GIJKLG

IJKL

+

√
2

1728
εI1...I11CI1I2I3GI4...I7GI8...I11] (2.1)

where the 3-form CIJK has field strength GIJKL = 24∂[ICJKL].

It has been shown [12] that the strong coupling behavior of Type IIA string theory

is related to 11D supergravity on M10×S1 where the radius of the S1 is related to

the string coupling by

ρ = g2/3
s (2.2)

Here we will look at 11D supergravity formulated on the orbifold M10×S1/Z2 and

show that it is related to the heterotic E8×E8 string theory. The Z2 symmetry acts

on x11 as x11 → −x11. This gives two orbifold fixed points at x11 = 0, πρ. Thus
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the universe appears as an eleven dimensional bulk space bounded by an interval of

length πρ at whose endpoints are ten-dimensional hyperplanes. The action of 11D

supergravity is invariant under the Z2 symmetry with an additional sign change of

CIJK . The Z2 symmetry also acts to kill half of the supersymmetries and one is

left with a sixteen dimensional supersymmetry generator that is chiral from a ten-

dimensional perspective. Therefore the low energy limit of the 11D supergravity on

M10×S1/Z2 will be given by an N = 1 10d supergravity. In [7] it was shown that

this corresponds to the low energy structure of the E8×E8 heterotic string theory due

to arguments arising from space-time gravitational and gauge anomalies, the strong

coupling behavior of the theory, as well as world-sheet anomaly considerations.

B. The Consequences of Anomaly Cancellation and Supersymmetry Invariance

By examining the arguments of space-time gravitational and gauge anomalies (for

reviews of anomalies see [4, 13, 14]) as well as conditions for unbroken local super-

symmetry given in [7, 8, 9] we will illuminate some remarkable properties of H-W

M-theory. 11D supergravity formulated on a smooth manifold is anomaly free. This

is because gravitational anomalies only occur in 4k + 2 dimensions. Therefore when

formulated on M10×S1/Z2, anomalies will be (evenly) supported on the 10D hy-

perplanes located at the orbifold fixed points. Theses anomalies are the usual 10D

supergravity anomalies and can be dealt with in the standard way, i.e. factorizable

anomalies cancel by the Green-Schwarz mechanism (the Green-Schwarz term now

arises in a very natural way from the Chern-Simons C ∧ G ∧ G term in the action)

and unfactorizable anomalies must be cancelled by the introduction of 496 additional

vector multiplets. However these multiplets must be (evenly) split since each hy-

perplane carries half of the usual 10D anomaly. Thus one is forced to introduced
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248 vector multiplets at each fixed point by placing one E8 gauge group on each

hyperplane.

Now that there is an E8 gauge group at each fixed point we have supermultiplets

that live on each 10D hyperplane whose Yang-Mills action is given by

LY M = − 1

λ2

∫
M10

d10x
√
gtr(

1

4
FABF

AB +
1

2
χ̄ΓADAχ) (2.3)

where indices A,B, ... are over x0, x1, ...x9, λ is the gauge coupling constant, FAB is the

field strength, and χ is the gluino. One would like for this action plus the supergravity

action to be invariant under local supersymmetry. In order to accomplish this one

uses the standard Noether procedure and adds additional interaction terms which

have the result of modifying the Bianchi identity of GIJKL to be

dG11ABCD = −3
√

2
κ2

λ2
δ(x11)F a

[ABF
a
CD] (2.4)

This can be seen to arise due to a (step function) discontinuity across the boundary

at the orbifold fixed points arising from G being odd under Z2. This in turn means

that CIJK is no longer gauge invariant but transforms as

δC11AB = − κ2

6
√

2λ2
δ(x11)tr(εFAB) (2.5)

It is clear from this equation that the C ∧G∧G term in the action is no longer gauge

invariant which means that the classical theory is not gauge invariant. In order to

cancel this anomalous variation one must look at the variation of the 10D fermionic

effective action and use the anomaly arising from the quantum theory to cancel the

gauge anomaly of the classical theory. What is found is that for a cancellation to occur

there must exist a relation between the gauge coupling constant and the gravitational
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coupling constant i.e.

λ2 = 2π(4πκ2)2/3 (2.6)

The theory is now anomaly free under gauge transformations, but in order to have a

theory devoid of gravitational anomalies the Bianchi identity for G must be modified

to read

dG11ABCD = −3
√

2
κ2

λ2
δ(x11)(F a

[ABF
a
CD] −

1

2
tr(R[ABRCD])) (2.7)

whose form can be seen to arise from the usual anomaly combination trF 2−(1/2)trR2.

With these relations one can begin to see some remarkable consequences of H-

W M-theory. As explained in [9] if one now compactifies the theory on a Calabi-

Yau threefold there exists a prediction for the lower bound on the four dimensional

Newton’s constant that can be accommodated by experiment. This is in contrast to

the case for the weakly coupled heterotic string theory where the value of Newton’s

constant is predicted to be much larger than the experimental value. One also finds a

relation for the GUT coupling constant, αGUT . In terms of the Calabi-Yau volume, V ,

the radius of the eleventh dimension, ρ, and the 11D gravitational coupling constant,

κ, one has

GN =
κ2

16π2V ρ
(2.8)

αGUT =
(4πκ2)2/3

2V
(2.9)

where Eq.(2.6) has been utilized. It is natural to assume that the volume of the

Calabi-Yau is of order M−6
GUT . Then using the experimentally known values of GN and

αGUT one finds that ρ is O(10) times the GUT scale and that the 11D gravitational

constant is on the order of the GUT scale. This is remarkable in that it explains the
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discrepancy between the 4D Planck scale and the GUT scale (that plagued superstring

theory in the 1980s). The 4D gravitational constant is now a derived quantity and

it is the 11D Planck scale that is fundamental and it is the order of the GUT scale.

Also the value of ρ allows one to consider a five-dimensional picture. Thus if one were

to view spacetime along an ever increasing energy range one would first see the usual

3+1 spacetime. At an energy about (1/ρ) an order of magnitude below the GUT

scale (which is the compactification scale), one would begin to see a fifth dimension

and above the GUT scale one could then access all eleven dimensions of spacetime.

It is this view of a five-dimensional universe that we will be concerned with in the

next section where we will be dealing with compactifications to five dimensions, and

which allows one to consider phenomena at energies . MG.

C. Compactification to Five Dimensions

We will now follow [15] as we examine the compactification of Horava-Witten theory

to five dimensions. To lowest order, space is now of the form X×M4×S1/Z2 where

X is a Calabi-Yau threefold. In [15] only the (1,1) sector of the Calabi-Yau was

examined and here we will assume the number of (1,1) forms (denoted by h1,1) is

one, the Kähler form. The general form of the five dimensional theory will be that

of N = 1 supergravity in the bulk and (after the reduction) N = 1 supersymmetry

on the four dimensional planes at the orbifold fixed points. The field content arises

due to a usual reduction on a Calabi-Yau of the field strength G and the potential

C. One also must provide a solution to the modified Bianchi identity as well as the

equation of motion for G. This is done in [15] using the standard embedding which

leaves

(dG)11ABCD = − 1

4
√

2π
(
κ

4π
)2/3[δ(x11)− δ(x11 − πρ)](trR ∧R)ABCD (2.10)
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while the field equation is

DIG
IJKL = 0 (2.11)

For the purposes of obtaining a five-dimensional effective action one only needs to

find the zero mode parts of the solution to these equations. This can be solved by

introducing a basis of (2,2) forms and four-cycles Ci

1

v

∫
X

ωi ∧ νj = δj
i (2.12)

1

v2/3

∫
Ci

νj = δj
i (2.13)

where v is a coordinate volume and ωi (i = 1, ..., h1,1) is a harmonic (1,1) form defined

by the expansion of the Kähler form ωAB

ωAB = aiωiAB (2.14)

Here the ai are moduli of the Calabi-Yau space. Now the zero mode part trR ∧ R|0

is expanded in terms of νj

trR ∧R
∣∣∣
0

= −8
√

2π(
4π

κ
)2/3αiν

i (2.15)

where αi are given in terms of the first Pontrjagin class of the Calabi-Yau as

αi =
π√
2
(
κ

4π
)2/3 1

v2,3
βi (2.16)

βi = − 1

8π2

∫
Ci

tr(R ∧R) (2.17)

In the case being considered, i=1. Therefore we will call αi, where i runs over the

number of harmonic (1,1) forms, simply α and reserve in the future the notation αi

to indicate the value of α at the orbifold fixed points yi where here i = 1 indicates

the fixed point y = 0 ≡ y1 and i = 2 indicates the fixed point at y = πρ ≡ y2. In this
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case

αi = (−1)iα i = 1, 2 (2.18)

With these relations, the zero mode pieces of the Bianchi identity and the equation

of motion are solved by

GABCD

∣∣∣
0

= αiν
i
ABCDε(x

11) =
1

4V
αiε EF

ABCD ωiEF ε(x
11) (2.19)

GABC11

∣∣∣
0

= 0 (2.20)

where ε(x11) is a step function and V is the volume modulus of the C-Y threefold

which is defined as

V =
1

v

∫
X

√
gCY (2.21)

where v is a coordinate volume chosen to keep V dimensionless and gCY is the deter-

minant of the C-Y metric.

Discarding the shape moduli and keeping only the volume modulus of the C-

Y threefold, the bosonic part of the reduced five-dimensional Lagrangian takes the

following form

S = − 1

2κ2
5

∫
M5

√
g[R +

1

2
V −2∂αV ∂

αV +
3

2
α2V −2]

+
1

κ2
5

∑
i

∫
M

(i)
4

√
−gV −13(−1)i+1α

− 1

16παGUT

∑
i

∫
M

(i)
4

√
−gV trF i2

µν

−
∑

i

∫
M

(i)
4

√
−g
[
(DµC)n(DµC̄)n + V −1 ∂W

∂Cn

∂W̄

∂C̄n
+D(µ)D(µ)

]
(2.22)

where κ5 is the five-dimensional Newton constant defined as

κ2
5 =

κ2

v
(2.23)
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R is the five-dimensional Ricci scalar, αG is the GUT scale coupling constant, F
(i)
µν

are the gauge field strengths on the boundary orbifolds, Cn are complex scalars of

chiral matter, W is the superpotential, and the last term represents the D term of

the gauge theory on the branes. The parameter α, which is O(1015GeV), fixes the

bulk and brane cosmological constants.
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CHAPTER III

COSMOLOGY IN HORAVA-WITTEN M-THEORY*

Now that we have a five-dimensional action we would like to study the cosmology of

such a system. Specifically we would like to determine if the usual RWF cosmology

can be recovered. We will use the vacuum solution given in [15]. This vacuum

solution automatically fixes the bulk and brane cosmological constants (without any

fine tuning) so that when matter is added to the branes the net cosmological constant

is correctly zero. We will then add matter perturbatively and examine the resulting

cosmology. We will also discuss the inclusion of bulk five-branes in the system. We

do not include any mechanism for moduli stabilization.

Previous work on HW cosmology has been given in [16, 17, 18]. However, the

first two papers do not impose all the boundary conditions, and hence do not see the

difficulties found here. The last paper is concerned with the inflationary era rather

that the Hubble expansion era being discussed here. A very general analysis for an

arbitrary model was given in [19], but the authors do not seem to have noticed the

difficulty discussed here. Within the M-theory framework, there have been several

papers suggesting that stabilization of moduli can be achieved by turning on fluxes

[20, 21, 22]. The first two give rise to large negative cosmological constants, while the

last to a large positive cosmological constant. How to reduce these constants to their

physical values in a natural way remains (as well as how to analyse the presence of

matter).

∗Reprinted with permission from “Five Dimensional Cosmology in Horava-Witten
M-theory” by R. Arnowitt, J. Dent, B. Dutta, 2004. Physical Review D, 70,126001:2-
7. Copyright 2004 by The American Physical Society.
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A. 5D Equations

The starting point is the action given by Eq.(2.22) and the ansatz

ds2 = a(t, y)2dxkdxk − n(t, y)2dt2 + b(t, y)2dy2, (3.1)

where y≡x11 is the coordinate of the fifth-dimension which extends from y=0 to

y=πρ, and t is time. The five-dimensional Einstein field equations are

Gt
t =

3

b2

[
a′′

a
+
a′

a

(
a′

a
− b′

b

)]
− 3

n2

ȧ

a

(
ȧ

a
+
ḃ

b

)
= −1

4
n−2φ̇2 − 1

4
b−2φ′2 − 3

4
α2e−2φ (3.2)

− 1

M3
5

2∑
i=1

δ(y − yi)b
−1
(
ρire

φi + ρinre
−φi + 3M3

5αie
−φi
)

Gk
k =

1

b2

[
2
a′′

a
+
n′′

n
+
a′

a

(
a′

a
+ 2

n′

n

)
− b′

b

(
n′

n
+ 2

a′

a

)]
− 1

n2

[
2
ä

a
+
b̈

b
+
ȧ

a

(
ȧ

a
− 2

ṅ

n

)
+
ḃ

b

(
2
ȧ

a
− ṅ

n

)]
=

1

4
n−2φ̇2 − 1

4
b−2φ′2 − 3

4
α2e−2φ (3.3)

+
1

M3
5

2∑
i=1

δ(y − yi)b
−1
(
pire

φi − 3M3
5αie

−φi
)

Gy
y =

3

b2
a′

a

(
a′

a
+
n′

n

)
− 3

n2

[
ä

a
+
ȧ

a

(
ȧ

a
− ṅ

n

)]
=

1

4
n−2φ̇2 +

1

4
b−2φ′2 − 3

4
α2e−2φ (3.4)

Gty = 3

(
n′

n

ȧ

a
+
a′

a

ḃ

b
− ȧ′

a

)
=

1

2
φ̇ φ′ , (3.5)

where i = 1, 2 corresponds to the fixed points at y=0, πρ, prime and dot denote

derivatives with respect to y and t respectively, and V = eφ where φ is the breathing

modulus of the Calabi-Yau. The non-relativistic matter density on the i’th orbifold

is ρinr, the relativistic matter is ρir, and pir is the pressure. Their couplings to φ are
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determined from Eq.(2.22); one can see that ρr and pr arise from the trF i2

µν term and

are coupled to V while ρnr come from the term ∂W
∂Cn

∂W̄
∂C̄n which couples to 1/V (These

V factors were incorrectly omitted in previous work[16, 17]). Also for cosmological

considerations we make the usual assumption that matter is of the form of an ideal

fluid

The δ-functions in Eqs.(3.2) and (3.3) imply boundary conditions at the orbifolds

y=0, πρ given by

(−1)i 1

b

a′

a

∣∣∣
y=yi

=
ρi

6M3
5

; ρi = ρire
φi + ρinre

−φi + 3M3
5αie

−φi (3.6)

(−1)i 1

b

n′

n

∣∣∣
y=yi

= −2ρi + 3pi

6M3
5

; pi = pire
φi − 3M3

5αie
−φi (3.7)

φi = φ(yi) ; αi = (−1)iα (3.8)

where M5 is the five-dimensional Planck mass given by 1/κ2
5 and ρi and pi are the

total matter density and pressure on the two orbifolds. Thus the bulk cosmological

constants α, and the brane cosmological constant αi are naturally correlated without

any fine tuning.

In addition to the Einstein field equations, one can derive field equations and

boundary conditions for the breathing modulus from the action:

−n−2

[
φ̈+

(
− ṅ
n

+ 3
ȧ

a
+
ḃ

b

)
φ̇

]

+b−2

[
φ′′ +

(
n′

n
+ 3

a′

a
− b′

b

)
φ′
]

+ 3α2e−2φ = 0 (3.9)(
φ′ − (3bα− b

M3
ρinr)e

−φ

) ∣∣∣
y=yi

= 0. (3.10)

This differs from the result of Ref.[16] in that non-relativistic matter has been included

in the boundary condition for φ as it should since φ is coupled to the gauge fields
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on the branes at y=0 and πρ by the factor V −=e−φ in the superpotential term in

Eq.(2.22). (Note that φ also couples to gauge fields in Eq.(2.22) with the factor V=eφ,

but the coefficient FµνF
µν vanishes for the radiation fields).

B. Solution of the 5D Equations

We now proceed to solve the field equations using a perturbative expansion in powers

of matter on the branes. This expansion is allowed since in the Hubble era the matter

density is very small compared to the cosmological constants in the bulk and on the

brane which are of GUT size. We start with the vacuum solutions and then include

matter on the branes as a higher order correction. The vacuum solution which fully

solves the bulk and boundary equations, preserves Poincaire invariance, and breaks

4 of the 8 supersymmetries (appropriate for getting N=1 supergravity when one

descends to four dimensions) was given in [15] as

a(y) = f
1
2 ; n(y) = f

1
2 ; b(y) = bof

2 ; V (y) = bof
3. (3.11)

Here bo is a constant that is arbitrary due to the flat directions of the potential and

f is given by

f(y) = c+ α|y|. (3.12)

where c is a constant. To first order in ρ, the vacuum solutions are perturbed to take

the following form:

a(y, t) = f 1/2(1 + δa(y, t)) (3.13)

n(y) = f 1/2(1 + δn(y)) (3.14)

b(y) = b0f
2(1 + δb(y, t)) (3.15)

V (y) = b0f
3(1 + δV (y, t)) (3.16)



17

It is convenient to introduce the notation

∆a′ ≡ δa′ +
α

2f
δV − α

2f
δb (3.17)

∆n′ ≡ δn′ +
α

2f
δV − α

2f
δb (3.18)

∆V ′ ≡ δV ′ +
3α

f
δV − 3α

f
δb (3.19)

along with the definition of the Hubble constant

H ≡ ȧ

a
. (3.20)

The significance of the combinations of Eqs.(3.17-3.19) is that they are invariant under

a first order coordinate change in the y coordinate: ȳ = y + δ(y).

To first order in ρ, the Einstein equations Gtt, Gkk, Gyy, and the field equation

for the breathing modulus become the following:

∆a′′ = b2of
3

(
H2 +H

ḃ

b
− 1

12
φ̇2

)
≡ b2of

3A1 (3.21)

∆n′′ + 2∆a′′ = b2of
3

(
3H2 + 2Ḣ + 2H

ḃ

b
+
b̈

b
+
φ̇2

4

)
≡ b2of

3A2 (3.22)

3∆a′ + ∆n′ −∆V ′ =
b2of

4

α

(
4H2 + 2Ḣ − φ̇2

6

)
≡ b2of

4

α
A3 (3.23)

∆V ′′ +
3α

f
(∆n′ + 3∆a′ −∆V ′) = b2of

3

(
φ̈+ 3Hφ̇+

ḃ

b
φ̇

)
≡ b2of

3A4 (3.24)

As we will show in Section D, the Gty equation is of higher order and will be discussed

later concerning the possibility of including y-dependence in the Hubble constant.

Inserting the metric ansatz into the boundary equations (3.6),(3.7), and (3,10) yields

∆a′i = (−1)i

(
b2of

5
i

6M3
5

ρir +
1

6M3
5 fi

ρinr

)
(3.25)

∆n′i = (−1)i+1

(
b2of

5
i

6M3
5

(2ρir + 3pir) +
2

6M3
5 fi

ρinr

)
(3.26)
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∆V ′
i = (−1)i+1 1

M3
5 fi

ρinr (3.27)

where fi are the values of f(y) on the branes:

f1 ≡ c ; f2 ≡ c+ α2πρ (3.28)

It will also be helpful to use the combination of Eq.(3.25) and Eq.(3.26) that isolates

ρinr:

(3∆a′ + ∆n′)yi
= (−1)i 1

6M3
5 fi

ρinr (3.29)

where we have used pir=ρir/3. The significance of the above results is that both

the field equations and the boundary conditions can be expressed in terms of the

y-invariant combinations of Eqs.(3.17-3.19).

We are now ready to examine the solution of the bulk equations, impose the

boundary conditions on them, and check their consistency. First of all we notice that

the equations Gtt and Gkk are easily solved by integration with respect to y. However,

it will be more convenient to change integration variables from y to f and to use the

combination Gtt + Gkk instead of Gkk. One finds

∆a′ =
b2o
α

(∫ f

f1

df ′f ′3A1 + c1

)
(3.30)

3∆a′ + ∆n′ =
b2o
α

(∫ f

f1

df ′f ′3 (A1 + A2) + c1 + c2

)
(3.31)

and imposing the boundary conditions Eqs.(3.25) and (3.26) one obtains

c1 = −λ
6

(
b2of

5
1ρ1r +

1

f1

ρ1nr

)
; λ ≡ α

b2oM
3
5

(3.32)∫ f2

f1

df ′f ′3A1 =
λ

6

(
b2o
(
ρ1rf

5
1 + ρ2rf

5
2

)
+

(
ρ1nr

f1

+
ρ2nr

f2

))
(3.33)

c1 + c2 = − λ

6f1

ρ1nr (3.34)
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∫ f2

f1

df ′f ′3 (A1 + A2) =
λ

6

(
1

f1

ρ1nr +
1

f2

ρ2nr

)
. (3.35)

Eqs.(3.33) and (3.35), arising from the boundary conditions at the distant brane

y=πρ, thus produce constraints on the time derivatives (which enter in the Ai defined

in Eqs.(3.21-3.24)) of the metric and φ. We next integrate the field equation for

the breathing modulus, Eq.(3.24), using Eq.(3.23) to eliminate 3∆a′ + ∆n′ -∆V ′.

Combined with the boundary condition Eq.(3.27) one obtains

∆V ′ =
b2o
α

(∫ f

f1

df ′f ′3 (A4 − 3A3) + c3

)
; c3 =

λ

f1

ρ1nr (3.36)

∫ f2

f1

df ′f ′3 (A4 − 3A3) = −λ
(

1

f1

ρ1nr +
1

f2

ρ2nr

)
. (3.37)

The remaining equation to be satisfied is Eq.(3.23). Inserting Eqs.(3.31) and (3.36)

back into Eq.(3.23) gives the constraint

b2o
α

(∫ f

f1

df ′f ′3 (A1 + A2 + 3A3 − A4) + c1 + c2 − c3

)
=
b2of

4

α
A3 (3.38)

This constraint is a strong one as it must hold for all y.

We now examine the consistency of this system. We consider here the static case

where φ̇ = 0 = ḃ. Here A4=0 and A3 = A1+A2. Thus multiplying Eq.(3.35) by 3 and

adding to Eq.(3.37) gives

0 = −λ
2

(
1

f1

ρ1nr +
1

f2

ρ2nr

)
(3.39)

Thus a consistent solution without fine tuning requires (when φ̇ = 0 = ḃ)

ρnr = 0 (3.40)

i.e. only relativistic matter is consistent with Horava-Witten cosmological equa-

tions. However, in addition to Eq.(3.40) one must also make sure that the constraint
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Eq.(3.38) is satisfied. In Section D we will show that the Gty equation implies H ′ is

O(ρ3/2) for the static case, and hence to O(ρ) that we are calculating one can consider

H and Ḣ to be independent of y. Hence we note that for the static case Eqs.(3.33)

and (3.35) correctly reduce to the RFW cosmology equations for relativistic matter

with GN defined in terms of λ and fi:

H2 =
8π

3
GN (ρ′1r + ρ′2r) ; GN =

λ

4π

(
1

f 4
2 − f 4

1

)
(3.41)

H2 + 2Ḣ = 0 (3.42)

(where the rescaled ρ′ir = bof

i ρir are the mass densities as seen locally on the orbifold

3-branes). Eqs.(3.41) and (3.42) just incorporate the 4D relativistic matter equation

of continuity: ρ̇ = -3H(ρ + p) = -4 Hρ. Since A1 + A2 = A3, Eq.(3.38) is then

identically satisfied as a consequence of Eqs.(3.40) and (3.42).

In summary we note that it is the boundary conditions on the distant brane at y

= πρ, Eqs.(3.35) and (3.37), that produces the constraint Eq.(3.40) on non-relativistic

matter (which is why earlier analyses have not seen this). However, a satisfactory

FRW cosmology does result for relativistic matter, with the brane cosmological con-

stant naturally vanishing with no fine tuning required.

C. Inclusion of 5-Branes

We have shown that in the static case (φ̇, ḃ = 0) the system of bulk equations with

their boundary conditions imposed is inconsistent when non-relativistic matter is

included in the system. Therefore we would like to examine other situations that

might lead to a consistent solution when all types of matter are present. The only

additional generalization available in the Horava-Witten theory is to include a set of

5-branes in the bulk transverse to the orbifold direction [9, 23]. We follow here the
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analysis of [24] of a single 5-brane residing at an arbitrary position y=Y in the bulk

(which can easily be generalized to an arbitrary number of 5-branes). The fields that

live on the 5-brane include an N=1 chiral multiplet and N=1 gauge multiplets but

no superpotential. One must generalize the function f(y) and the definition of α to

be (for 0≤y≤πρ)

f(y) = c+ h(y) ; h(y) = −α1y + (−α5y + α5Y ) θ (y − Y ) (3.43)

h′(y) ≡ α(y) = −α1 − α5θ (y − Y ) (3.44)

α(y = Y ) ≡ α3 =
α5

2
(3.45)

with the cohomology condition

α1 + α2 + α5 = 0 (3.46)

but otherwise the vacuum solution has the same form as Eq.(3.11). Note that f(y) is

continuous whereas α(y) = h′(y) is not

α(y) =

 −α1 0 ≤ y < Y

−α1 − α5 = α2 Y < y ≤ πρ
(3.47)

We use the same ansatz as before for the metric: Eqs. (3.12),(3.13),(3.14),(3.15),

and (3.16). However, the Einstein equations are altered due to the fact that α is no

longer a constant; thus α′ no longer vanishes. We also must make some assumptions

about the matter content of the five-brane in the bulk. We know that in order to

give rise to the Big Bang at the end of inflation that the inflaton couples to matter

on the physical orbifold at y=0 and we have assumed that it also couples to matter

on the orbifold at y=πρ. There is no a priori reason to believe that it also couples to

any matter fields on the 5-brane in the bulk. However, we will make the assumption

that it does couple to the five-brane matter with the same strength V as for the two
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orbifolds (this does not effect the general conclusions of this section).

Now we would like to solve the Einstein equations in the presence of this 5-

brane. The calculation is very similar to that done in the previous section with the

modifications that i runs from 1 to 3 and α′ terms must now be included. For example

in the Gtt equation we still have the definition

∆a′ ≡ δa′ +
α

2f
δV − α

2f
δb. (3.48)

However ∆a
′′

is

∆a′′ = δa′′ +
α2

2f 2
(δb− δV )− α

2f
(δb′ − δV ′)− α′

2f ′
(δb− δV ) (3.49)

and after making use of the ansatz, the Gtt equation becomes

∆a′′ = − 1

M3
5

(
ρ3rb

2
of

5
3 +

1

f3

ρ3nr

)
δ (y − Y ) + b2of

3A1 (3.50)

where the δ-function term arises from a y-derivative of α, and A1 is given in Eq.(3.21).

The key point in this relation is the unexpected result that the α5 terms cancel, not

only at the vacuum order (which was already verified in showing Eq.(3.11) with f(y)

of Eq.(3.43) is correctly the vacuum solution), but also at higher orders. This also

applies to the other field equations.

Since there is a discontinuity in α when crossing the five-brane, we solve the Gtt

equation in two domains: 0≤y<Y and Y<y≤πρ and then match them across y=Y.

We define the gauge covariant combinations in these regions as

∆a′1 ≡ δa′ +
α1

2f
(δb− δV ) ; 0 ≤ y < Y (3.51)

∆a′2 ≡ δa′ − α2

2f
(δb− δV ) ; Y < y ≤ πρ. (3.52)
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These quantities obey the boundary conditions

∆a′1(y = 0) = − 1

M3
5

(
ρ1rb

2
of

5
1 +

1

f1

ρ1nr

)
(3.53)

∆a′2(y = πρ) =
1

M3
5

(
ρ2rb

2
of

5
2 +

1

f2

ρ2nr

)
. (3.54)

We now solve the Gtt equation in these two domains to obtain

∆a′1 =

∫ y

0

dy′b2of
3A1 −

1

M3
5

(
ρ1rb

2
of

5
1 +

1

f1

ρ1nr

)
(3.55)

∆a′2 = −
∫ πρ

y

dy′b2of
3A1 +

1

M3
5

(
ρ2rb

2
of

5
2 +

1

f2

ρ2nr

)
. (3.56)

The discontinuity across the five-brane required by Eq.(3.50) gives∫ Y +ε

Y −ε

dy′∆a′′ = (∆a′2 −∆a′1)y=Y = − 1

M3
5

(
ρ3rb

2
of

5
3 +

1

f3

ρ3nr

)
(3.57)

Thus, subtracting (3.55) from (3.56) leads to∫ πρ

0

dy′b2of
3A1 =

3∑
i=1

1

M3
5

(
ρirb

2
of

5
3 +

1

f3

ρinr

)
(3.58)

If we make the assumption as before that φ̇ = 0 = ḃ this equation will give the RFW

relation for the Hubble parameter but now with matter from three separate branes

included. However,the situation with no matter included on the 5-brane in the bulk

does not reduce to the case with only two branes since α and therefore the function

f(y) are modified from the case where only two branes were present. Therefore, the

Hubble law (more specifically the Newton constant, GN) is affected by the presence

of the additional five brane even if it is empty.

The other field equations can be solved in a manner similar to that described

above for the Gtt equation. Namely, we first modify the equations with the inclusion of

terms involving the y-derivative of α, look at the equations separately in the regions,

0≤ y < Y and Y < y ≤ πρ, and then match them across the five brane. The result
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for the φ equation in the bulk is

∆V ′′ +
3α

f
(∆n′ + 3∆a′ −∆V ′) = b2of

3A4 +
1

M3
5 f3

ρ3nrδ (y − Y ) (3.59)

which leads to ∫ πρ

0

dy′b2of
3 (A4 − 3A3) = −

3∑
i=1

1

M3
5 fi

ρinr. (3.60)

The Gkk equation gives∫ πρ

0

dy′b2of
3 (A1 + A2) =

3∑
i=1

1

6M3
5 fi

ρinr. (3.61)

The Gyy equation remains unchanged from Eq.(3.23) since there are no matter sources

present but where now the gauge invariant combinations ∆a, ∆n, and ∆V include

the new definitions of α(y) and f(y). We can now proceed to check the consistency

using the same steps that led to Eq.(3.39). The new relation is(
1

f1

ρ1nr +
1

f2

ρ2nr +
1

f3

ρ3nr

)
= 0 (3.62)

Once again we see that introducing non-relativistic matter into the system results in

an inconsistency if there is no fine tuning of the matter on the different branes.

D. y-Dependence and Non-Relativistic Matter

Assuming the static case for φ and b we have shown that the system does not admit

consistent solutions in the presence of non-relativistic matter. We would now like to

relax this assumption and then examine the system. We consider here the case of

no 5-branes present. To see what constraints are put on our assumptions, let us first

look at two separate ways of evaluating the y-derivative of H and compare this with
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the Gty equation. The definition of H is

H ≡ ȧ

a
. (3.63)

Therefore

H ′ =
ȧ′

a
− a′

a

ȧ

a
(3.64)

and using the explicit form of a(y, t) in Eq.(3.13) we find

ȧ′

a
=

(
α

2f
+ δa′

)
H +H ′. (3.65)

Alternately

a′

a
=

α

2f
+ δa′ (3.66)

which gives

ȧ′

a
=

(
α

2f
+ δa′

)
H + δȧ′. (3.67)

Comparing Eq.(3.65) with Eq.(3.67) and using the fact that in the static case ∆ȧ′ =

δȧ′ we find

∆ȧ′ = H ′. (3.68)

In the static case the Gty equation is given by

∆ȧ′ = (∆n′ −∆a′)H. (3.69)

The right hand side is seen to be of order ρ3/2 which shows from Eq.(3.68) that H ′

is also of order ρ3/2. Thus the static case requires H to be independent of y to first

order in ρ.

Let us next examine the situation when we let φ and b depend on time. The

Einstein equations Gtt, Gkk + Gtt, Gyy, and Gyy plus the φ equation of motion
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(Eqs.(3.33),(3.35),(3.37),(3.38)) give∫ f2

f1

df ′f ′3A1 =
λ

6

2∑
i=1

(
b2oρirf

5
i +

ρinr

fi

)
(3.70)

∫ f2

f1

df ′f ′3(A1 + A2) =
λ

6

2∑
i=1

ρinr

fi

(3.71)

∫ f2

f1

df ′f ′3(3A3 − A4) = λ
2∑

i=1

ρinr

fi

(3.72)∫ f

f1

df ′f ′3(A1 + A2 + 3A3 − A4) = f 4A3(y) +
7λ

6

ρ1nr

f1

(3.73)

In particular evaluating Eq.(3.73) at y = y1 gives

A3(y1) = −7λρ1nr

6f 5
1

. (3.74)

However, considering the combination Eq.(3.71) + Eq.(3.72) - Eq.(3.73), where Eq.(3.73)

is evaluated at y = y2, yields

A3(y2) =
7λρ2nr

6f 5
2

(3.75)

and therefore we see that A3 has non-trivial y-dependence. Since A3 only depends

on H and φ̇ this implies that φ̇ depends on y. With the static condition relaxed

we can now see that the Einstein equations contain integrals over functions whose

y-dependence is not known. Therefore relations such as Eq.(3.39) are no longer valid.

Eq.(3.39) now becomes∫ f2

f1

df ′

(
9H

ḃ

b
+ 3

b̈

b
+ φ̇2 + φ̈+

ḃ

b
φ̇+ 3Hφ̇

)
= −λ

2

(
1

f1

ρ1nr +
1

f2

ρ2nr

)
(3.76)

and we see that non-relativistic matter is now related to an integral over an unknown

function of y. Without knowing the exact form of the integrand it is difficult to

determine if there is any constraint on the non-relativistic matter with the static

constraint relaxed.
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CHAPTER IV

RANDALL SUNDRUM MODEL

The phenomenological Randall-Sundrum model (RS)[25, 26] is built upon the same

geometrical framework as the reduced five dimensional Horava-Witten theory. It is a

five-dimensional model with two 3-branes separated by an interval. (There are also

Randall-Sundrum models that consist of only one brane but here we will consider

the two brane model for cosmology and when discussing gravitational forces we will

discuss some differences that arise between the one and two brane models). First we

will discuss the general set-up for the model including the vacuum solutions and their

consequences. Then we will describe a stabilization mechanism due to Goldberger

and Wise (GW)[27] followed by an examination of cosmology in the model. We will

then elaborate the differences between the RS model and the HW theory. Finally we

will explore gravitational forces in the model.

A. The Randall Sundrum Vacuum Solution

In the Randall-Sundrum model (RS) the universe is five dimensional with the fifth

dimension being an interval bounded by two 3-branes. This model is inspired by 5D

compactifications of Horava-Witten theory. In RS the geometry is warped, i.e. the

4D metric has a dependence on the fifth dimension, y:

ds2 = e−2A(y)gijdx
idxj + dy2 (4.1)

e−2A(y) is called the warp factor and will have interesting consequences for determi-

nation of mass scales in the RS model. The warped geometry in this model is also

attractive since warped geometries arise frequently in string theory, for example in
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type IIB orientifold compactifications with fluxes present[28, 29]. The fifth dimension

has the symmetry of S1/Z2 just as in HW which is an interval with the endpoints

identified and symmetric under y → −y. There are two orbifold fixed points at y1 = 0

and y2 = πρ. A 3-brane is located at each orbifold fixed point. The brane at y1 is

called the Planck brane and the brane at y2 is the TeV brane where Standard Model

particles and fields reside.

At the vacuum level one can consider RS to be a gravitational theory in the

bulk with additional terms on the branes. (These terms will include the matter that

resides on the brane as well as a potential term). The action is given by

S = Sbulk + Sbrane (4.2)

Sbulk =

∫
d5x
√
−5g(− R

2κ2
− Λ) (4.3)

Sbrane =
∑

α

∫
d4x
√
−4g(Lmα − V(yα))δ(y − yα) α = 1, 2 (4.4)

where Lmα is the matter Lagrangian on the brane located at yα and V(yα) is the brane

potential. Neglecting matter the metric Eq.(4.1) (with gij = the Lorentz metric ηij)

yields the Einstein equations for the vacuum

4A′2 − A′′ = − 2Λ

3M3
5

−
∑

α

δ(y − yα)

3M3
5

V(yα) (4.5)

4A′2 − 4A′′ = − 2Λ

3M3
5

− 4

3

∑
α

δ(y − yα)

3M3
5

V(yα) (4.6)

where prime denotes a derivative with respect to y. The discontinuities that arise in

the second derivatives of the metric across the branes lead to the boundary conditions

(−1)α+1A′ =
V(yα)

6M3
5

(4.7)
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The solution to the bulk equations subject to these boundary conditions is

A = |y|

√
− Λ

6M3
5

≡ β|y| (4.8)

where

β ≡

√
− Λ

6M3
5

(4.9)

One also must choose the potentials V(yα) to be

V(y0) = −V(y1) = 6M3
5β (4.10)

One sees that the bulk space is a slice of AdS5 (since Λ < 0) with radius of curvature

given by 1/β. Eq.(4.10) also has the effect of setting the 4D cosmological constant on

the branes to zero (which is required since we have set gij = ηij). This is one difference

between the HW theory and the RS model. In the RS model the brane potentials

are chosen as in Eq.(4.10) which is a fine-tuning that sets the brane cosmological

constants to zero whereas in the HW theory the potentials are fixed by the internal

consistency requirements of the theory and naturally produced a zero cosmological

constant.

B. Mass Scales in the Model

The 5D metric now becomes

ds2 = e−2β|y|gijdx
idxj + b2dy2 (4.11)

which shows that there can be a large scale factor difference between the Planck and

TeV brane locations due to the exponentially decreasing dependence on y of the warp

factor. The relation gTeV
ij = e−2βy2gPl

ij has an affect on the physical masses as follows.
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In the RS model all fundamental masses are taken to be of Planck size. Now imagine

a scalar field with mass parameter mo that resides on the TeV brane with the action

STeV =

∫
d4x
√
−gTeV (gij TeVDiφDjφ−

1

2
m2

oφ
2) (4.12)

and then using the relation between the metric at the Planck brane and the TeV

brane one finds

STeV =

∫
d4x
√
−gPle−4βy2(gij P le2βy2DiφDjφ−

1

2
m2

oφ
2) (4.13)

Then after the renormalization φ̃ = e−βy2φ to achieve the canonical form for the

kinetic energy term one has

S =

∫
d4x
√
−gPl(gij P lDiφ̃Djφ̃−

1

2
e−2βy2m2

oφ̃
2) (4.14)

The mass term can be seen to be renormalized which determines that a mass param-

eter mo on the TeV brane gets a physical mass

m = moe
−βy2 (4.15)

which can produce TeV masses from Planck masses for βy2 ' 50. This is a method

of creating large mass hierarchies from natural (not extremely large) quantities.

Now that we have studied the basic underlying structure of the RS model, in the

next chapter we will turn to a discussion of Hubble era cosmology in this system.
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CHAPTER V

COSMOLOGY IN THE RS MODEL*

In this chapter we will determine whether the conventional RWF 4D cosmology can

be recovered in the RS model. This problem has been studied by many authors stim-

ulated first by the work of Binetruy, Deffayet, and Langlois[30]. It has been argued

that the standard four-dimensional RFW cosmology is obtained only if the fifth di-

mension is stabilized [31] (though counter arguments have been given in [32]). In

order to achieve stabilization naturally, it has been suggested that one phenomeno-

logically add a scalar field in the bulk with appropriate bulk and brane potentials

[27, 33]. Vacuum solutions appropriate for these potentials are then obtained and

solutions are discussed with brane matter viewed as perturbations on the vacuum in

[34, 35]. The work of [27] and [35] however did not include the effect of back-reaction

of the scalar field on the metric, which we will see is important.

In constructing solutions we will follow the same procedure as in the HW case,

we will introduce matter perturbatively on the branes and look for solutions to the

bulk Einstein equations along with the bulk scalar field equation subject to brane

boundary conditions. In general it is very difficult to find vacuum solutions for the

Einstein-scalar field equations with arbitrary brane and bulk potentials. Further,

we have seen from our study of HW theory how important it is to have a rigorous

vacuum solution since it is the careful imposition of boundary conditions on both

branes that produces tension in the system. In Ref.[34], matter on the branes was

added and treated perturbatively with respect to a particular choice of scalar field

∗Reprinted with permission from “Five Dimensional Cosmology in Horava-Witten
M-theory” by R. Arnowitt, J. Dent, B. Dutta, 2004. Physical Review D, 70,126001:8-
10. Copyright 2004 by The American Physical Society.
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potentials. However, an explicit vacuum solution for their choice of potentials was not

obtained, and the difficulty in obtaining a solution is discussed in Appendix A which

tends to invalidate their analysis. However, a rigorous special class of solutions for

the vacuum metric obeying all boundary conditions on the branes was constructed

by deWolfe et. al [33] where the brane and bulk potentials are related to a single

function of the scalar field. Here we will discuss the case of [33] with matter treated

as a perturbative addition on the branes , since this case treats the vacuum solution

rigorously.

We will also comment on the differences between the HW theory and the RS

phenomenology which will become apparent in the following calculation.

A. 5D Equations and Solutions

We begin with the action which consists of gravity and a scalar field in the bulk along

with potentials and matter on the branes:

S =

∫
d5x
√
−5g(−1

4
R +

1

2
(∂φ)2 − V (φ)) +

∑
α=1,2

∫
d5x
√
−4g(Lmα + λα(φ))δ(y − yα)

Where V (φ) is the bulk potential and λi(φ), i=1,2 are the potentials on the two

branes at y = y1 and y = y2 respectively and Lmα are the matter Lagrangians on the

branes. The metric is given by1

ds2 = e2N(t,y)dt2 − e2A(t,y)
∑

i

dx2
i − b(t, y)2dy2 (5.1)

with the perturbative expansions

N(t, y) = Ao(y) + δN(t, y) (5.2)

1In this section we use the notation i=1,2,3 for the 4D spatial coordinates.
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A(t, y) = Ao(y) + δA(t, y) (5.3)

b(t, y) = 1 + δb(t, y) (5.4)

φ(t, y) = φo(y) + δφ(t, y). (5.5)

Ao and φo are the vacuum fields and δN, δA, δb, and δφ are the perturbations due to

matter. Since V (φ) and λα(φ) are chosen to stabilize the system we will be working

in the static case where φ̇ = 0 = ḃ.

The vacuum equations in the bulk are

φ′′o + 4A′
oφ

′
o = V ′(φo) (5.6)

A′′
o = −2

3
φ′2o (5.7)

A′2
o = −1

3
V (φo) +

1

6
φ′2o (5.8)

where primes denote ∂
∂y

except on V (φ) where it represents ∂
∂φ

. The boundary con-

ditions are given by

A′
o

∣∣∣
y=yi

= (−1)i b(y)

3
λi(φo)

∣∣∣
y=yi

(5.9)

φ′o

∣∣∣
y=yi

= (−1)i+1 b(y)

2

∂λi(φo)

∂φo

∣∣∣
y=yi

(5.10)

where i = 1,2 corresponds to the brane locations at y = y1, y2.

It was shown in [33] that if V (φo) has the form

V (φo) =
1

8

(
∂W (φo)

∂φo

)2

− 1

3
W (φo)

2 (5.11)

for some W (φo), then a solution of the bulk vacuum equations will also satisfy

φ′o =
1

2

∂W (φo)

∂φo

, A′
o = −1

3
W (φo) (5.12)
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as long as the boundary conditions

W (φo)
∣∣∣
y=yi

= (−1)i+1λi(φo)
∣∣∣
y=yi

,
∂W (φo)

∂φo

∣∣∣
y=yi

= (−1)i+1∂λi(φo)

∂φo

∣∣∣
y=yi

(5.13)

are also satisfied. Once W (φo), λ1, and λ2 are chosen one is then left with a set of

first order differential equations that can easily be solved.

In the example constructed in [33] W (φo), λ1, and λ2 were chosen to be

W (φo) =
3

L
− bφ2

o (5.14)

λ1(φo) = W (φo(y1)) +W ′(φo(y1))(φo − φo(y1))

+γ1(φo − φo(y1))
2 (5.15)

λ2(φo) = −W (φo(y2))−W ′(φo(y2))(φo − φo(y2))

+γ2(φo − φo(y2))
2 (5.16)

which gives

φo(y) = φ1e
−βy (5.17)

Ao(y) = ao −
y

L
− 1

6
φ2

1e
−2βy (5.18)

where ao, L, γ1, γ2, φ1, and φ2 are all arbitrary parameters. The relationship between

λi(φo) and W (φo) fine tunes the net cosmological constant on the branes to zero.

While there is no a priori motivation for the choice (other than the fact it fine tunes

the cosmological constant to zero), it leads to simple analytic forms, Eqs.(5.17),(5.18),

which can be treated easily.

Next we define the quantities

∆A′ = δA′ +
2

3
φ′oδφ− A′

oδb (5.19)

∆N ′ = δN ′ +
2

3
φ′oδφ− A′

oδb (5.20)
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∆V ′ = φ′oδφ
′ − φ′′oδφ− φ′2o δb. (5.21)

These quantities are invariant under a first order coordinate change in the y coordi-

nate: ȳ = y + δ(y).

To first order in the matter the Einstein equations Gtt, Gkk, Gyy, and the field

equation for φ in the bulk become

∆A′′ + 4A′
o∆A

′ = e−2Ao(y)H2 ≡ A1 (5.22)

2∆A′′ + 8A′
o∆A

′ + ∆N ′′ + 4A′
o∆N

′ = e−2Ao(y)
(
3H2 + 2Ḣ

)
≡ A2 (5.23)

A′
o (3∆A′ + ∆N ′)− 2

3
∆V ′ = e−2Ao(y)

(
2H2 + Ḣ

)
≡ A3 (5.24)

∆V ′′ + 4A′
o∆V

′ + φ′2o (3∆A′ + ∆N ′) = 0. (5.25)

The boundary conditions are

∆A′
∣∣∣
y=yi

= (−1)i ρi

3
(5.26)

(3∆A′ + ∆N ′)
∣∣∣
y=yi

= (−1)i ρinr

3
(5.27)

∆V ′
∣∣∣
y=yi

= δφi

(
(−1)i+1 γiφ

′
o − φ′′o

) ∣∣∣
y=yi

(5.28)

where ρi = ρir + ρinr and γi are free parameters in the model of Eqs.(5.15),(5.16) i.e.

γi =
1

2

∂2λi

∂φ2
. (5.29)

Immediately we see a difference between HW theory and the RS phenomenology

manifesting itself in the boundary conditions for ∆V ′. In HW only the invariant

quantity ∆V ′ appears in the boundary conditions whereas an additional δφ term

appears in the RS model. One can easily check that in HW there is no free parameter

analogous to γi, and the M-theory choice of potential makes the term in parenthesis

on the right-hand side of Eq.(5.28) zero. This distinction will allow one to avoid the
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constraint on matter found in the HW theory.

We will now solve the system in the presence of arbitrary matter. The Gtt

equation can be integrated to obtain

∆A′ = e−4Ao(y)

∫ y

y1

dy′e2Ao(y′)H2 + e−4Ao(y)c1 (5.30)

and using the boundary conditions we get

c1 = −ρ1

3
e4Ao(y1) (5.31)∫ y2

y1

dy′e2Ao(y′)H2 =
ρ1

3
e4Ao(y1) +

ρ2

3
e4Ao(y2) (5.32)

If H is independent of y one can see that the usual Friedman relation is recovered.

Eq.(5.30) now becomes

∆A′ = e−4Ao(y)

(∫ y

y1

dy′e2Ao(y′)H2 − ρ1

3
e4Ao(y1)

)
(5.33)

In a similar manner we can solve the combination Gtt + Gii to obtain∫ y2

y1

dy′e2Ao(y′)(4H2 + 2Ḣ) =
ρ1nr

3
e4Ao(y1) +

ρ2nr

3
e4Ao(y2) (5.34)

3∆A′ + ∆N ′ = e−4Ao(y)

(∫ y

y1

dy′e2Ao(y′)(4H2 + 2Ḣ)− ρ1nr

3
e4Ao(y1)

)
. (5.35)

The remaining equation is Gyy which can be solved for ∆V or equivalently for δφ(y)

in terms of δb(y)

δφ(y) = φ′o

∫ y

y1

dy′δb(y′) + φ′o

∫ y

y1

dy′
A′

o

φ′2o
(3∆A′ + ∆N ′)

−φ′o
∫ y

y1

dy′
e−2Ao(y′)

φ′2o

(
2H2 + Ḣ

)
+ δφ(y1). (5.36)
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The boundary conditions on φ(y) are2

δφ(yi) =

(−1)i

2
A′

o(yi)ρinr − e−2Ao(yi)
(
2H2 + Ḣ

)
(−1)i+1γiφ′o(yi)− φ′′o(yi)

(5.37)

One can then substitute the known expressions for A′
o, φ

′
o (for the specific model of

[33] these are given by Eqs.(5.17),(5.18)), and 2H2 + Ḣ from Eq.(5.34) into Eq.(5.37).

This then determines δφ(yi) in terms of ρinr. However, there remains one additional

relation involving δφ(yi) for we may let y = y2 in Eq.(114). Eliminating δφ(y1) and

δφ(y2) using Eq.(5.37), then Eq.(5.36) at y = y2 becomes a constraint on δb(y):∫ y2

y1

dy′δb(y′) =
δφ(y2)− δφ(y1)

φ′o
+

∫ y2

y1

dy′
e−2Ao(y′)

φ′2o

(
2H2 + Ḣ

)
−
∫ y2

y1

dy′
A′

o

φ′2o
(3∆A′ + ∆N ′) . (5.38)

Note that the right hand side of Eq.(5.38) depends only on the vacuum metric and

ρinr which can be seen upon substitution of Eqs.(5.34),(5.35),(5.37)∫ y2

y1

dy′δb(y′) =

A′
o(y2)
2

ρ2nr − e−2Ao(y2)F−1
∑

i
ρinr

6
e4Ao(yi)

−γ2φ′2o (y2)− φ′′o(y2)φ′o(y2)

+
A′

o(y1)
2

ρ1nr + e−2Ao(y1)F−1
∑

i
ρinr

6
e4Ao(yi)

γ1φ′o(y1)φ′o(y2)− φ′′o(y1)φ′o(y2)

+

∫ y2

y1

dy′
e−2Ao(y′)

φ′2o (y′)
F−1

∑
i

ρinr

6
e4Ao(yi) (5.39)

+

∫ y2

y1

dy′
A′

o(y
′)

φ′2o (y′)
e−4Ao(y′)ρ1nr

3
e4Ao(y1)

−
∫ y2

y1

dy′
A′

o(y
′)

φ′2o (y′)
e−4Ao(y′)

∫ y′

y1

dy′′e2Ao(y′′)F−1
∑

i

ρinr

3
e4Ao(yi)

2We note the limit γi → ∞ is the stiff potential limit used in the analysis of [34].
It is unnecessary to make this assumption and our results hold for any γi.
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where

F =

∫ y2

y1

dy′e2Ao(y′). (5.40)

Therefore a consistent solution for arbitrary non-relativistic matter is obtained. (It

should be noted that although these equations hold in general, explicit values for

δφ(yi) can only be calculated if A′
o and φ′o can be determined, which will be dependent

on the choice of the bulk potential.)

We see now the meaning of the result that the δφ boundary condition depends on

both the coordinate invariant combination ∆V ′ and on δφi (rather than just on ∆V ′ as

in HW). Instead of putting a constraint on ρinr, this determines the integral of δb(y) in

Eq.(5.38) which is just the change of distance between the branes due to the presence

of non-relativistic matter. This is possible with the phenomenological potentials of

the RS model (e.g. the example of Eqs.(5.14)-(5.16)), but not in HW where the

theory determines the potentials to automatically cancel the cosmological constant.

Since ρinr decreases as 1/a(t)3, the brane separation is actually time dependent at

higher order in RS so the distance between the branes cannot be fixed, and the RS

model is also non-static. Here, however, the time variation of the invariant distance

between the branes sets in at O(ρ
3/2
inr) since ρ̇ ∼ Hρ = O(ρ3/2) while in HW the time

variation sets in at O(ρ).

The above illustrates the difference between the phenomenology of RS and the

theory of HW. In the RS model one is free to add arbitrary bulk and brane poten-

tials (characterised here by γi) for the scalar field while in HW the couplings of the

volume modulus V are determined by the theory and one is not free to include ad

hoc potentials. In our analysis of HW theory we have used all potentials that arise

perturbatively. There are non-perturbative potentials in HW that have not been in-

cluded that might relax the tension that non-relativistic matter produces. If this is
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the case, one would also have to modify the vacuum solution to take into account the

additional interactions.
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CHAPTER VI

GRAVITY IN THE RANDALL SUNDRUM MODEL*

In this chapter we will be concerned with the subject of whether the RS model gives

rise to the correct 4D Newtonian gravitational potential (in leading order). To exam-

ine this one considers point particles on the branes and calculates the gravitational

forces between them. Our calculation is performed to first order in the metric per-

turbation (due to the particles) in the static limit. There is a large literature on

this subject as well and on calculations of corrections arising from the presence of

an additional dimension[36, 37, 38, 39, 40, 41, 42, 43]. Previous analyses have only

examined forces between particles on the y1 = 0 brane1 and also neglect the effects

of the Goldberger-Wise scalar stabilization field φ.

The vacuum metric of the RS model has the usual form

ds2 = e−2A(y)ηijdx
idxj + dy2 (6.1)

where A(y) is an increasing function of y. (We again use the notation i,j = 0,1,2,3; µ, ν

= 0,1,2,3,5 and x5 ≡ y.) Thus to account for the gauge hierarchy, the physical brane

must be at y2 (where e−A(y2) w 10−16) while in the HW theory one can assume that

the physical brane is at y1 = 0. Thus for RS one needs to calculate the gravitational

forces between the two particles at y2 (though it is also interesting to see what forces

the theory predicts between one particle at y1 = 0 and one at y2 = πρ). For this case

∗Reprinted with permission from “Gravitational Forces in the Brane World” by
R. Arnowitt, J. Dent, 2004. To be published in Physical Review D. Copyright 2005
by The American Physical Society.

1Ref.[38] considers a single brane model with the brane displaced from the origin.
However this is different in that it does not have S1/Z2 boundary conditions imposed
at y = y1 and y = y2.
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the function A(y) reduces to

A(y) = β|y| ; y1 − ε ≤ y ≤ y2 − ε ; ε > 0 (6.2)

We examine here within this framework the general case of gravitational forces be-

tween particles on both branes as well as the size of the leading corrections due to the

extra dimensions. We find that the force on a particle on y1 = 0 due to other particles

on y1 and y2 has a leading Newtonian form (in accord with previous work) though the

Newton constant GN is different for the two cases. However, the Newtonian force on

a particle at y2 due to another particle at y2 contains terms that grow exponentially

with y2 which leads to an unsatisfactory theory.

In carrying out these calculations, it is important to take careful account of

“brane bending” effects. Thus we assume that matter is added on the branes as a

perturbation to the vacuum metric

ds2 = e−2βy(ηij + hij)dx
idxj + hi5dydx

i + (1 + h55)dy
2 (6.3)

and then solve the Einstein equations to linear order in hµν . The diffeomorphisms of

a 5D theory with S1/Z2 symmetry are those of R4xS1 which commute with Z2. This

means that for the transformation

xµ → x′µ + ξµ ≡ xµ (6.4)

one has that ξ5 vanishes at the orbifold points, y1 and y2:

ξ5(xi, y1) = 0 = ξ5(xi, y2) (6.5)

If one were to make a coordinate transformation with a non-vanishing ξ5, then the

branes become bent and this would create a complication when one imposes the Z2

boundary constraint on the branes, leading to the so-called brane bending effects.
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In previous analyses, the 5D Einstein equations were solved in Gaussian coordinates

described by

h5µ = 0 ; ∂jhij = 0 = ηijhij (6.6)

In general, these cannot be achieved without brane bending occurring (and thus

can give wrong answers). We give here an alternate analysis which avoids these

complications by making only coordinate transformations that satisfy Eq.(6.5).

In Sec.A we give the metric decomposition along with our gauge choices which

will allow us to solve the Einstein equations in the presence of matter on the branes

without introducing brane bending effects. In Secs.B and C we explicitly solve the

bulk Einstein equations to first order in the metric perturbation in the static limit,

and subject these solutions to the brane boundary conditions. In Sec.C we also find

the poles of the transverse traceless piece of hij and show how the Kaluza-Klein

modes produce corrections to the leading static potential. In Sec.D we give the form

of the Newtonian potential and show that Newton’s constant differs depending on

whether the gravitational force is due to particles on coincident or separate branes.

The leading corrections to the Newtonian terms are discussed more fully in Appendix

B.
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A. Coordinate Conditions

Following 4D analyses, it is convenient to decompose the metric into its transverse

and longitudinal parts according to the ADM prescription2:

hij = hTT
ij + hT

ij + hi,j + hj,i (6.7)

where hTT
ij is transverse and traceless3 (∂ihTT

ij ≡ 0 ≡ hi
i) and hT

ij is transverse but (in

general) possesses a trace:

∂ihT
ij ≡ 0 ; (hT )i

i ≡ fT 6= 0 (6.8)

We also decompose hi into transverse and longitudinal parts

hi = hT
i +

1

2
hL

,i ; ∂ihT
i ≡ 0 (6.9)

and can write

hT
ij =

1

3
πijf

T ; πij ≡ ηij −Oij (6.10)

where

Oij ≡
∂i∂j

�2
(6.11)

One can express each of the subparts in Eq.(6.7) in terms of hij. Thus taking

the divergence of Eq.(6.7) gives

∂ihij = ∂j�
2hL + �2hT

j (6.12)

2This decomposition was first introduced in [44]. (Ref.[45] is a more accessible
recent reprint summarizing the ADM formalism.) The generalization to 4-space is
trivial except for the ambiguity in defining 1/�2 in Minkowski space. However, we
will always be considering the static Newtonian limit here where �2 →∇2, though the
size (and correct definition of) the higher order dynamical effect are also of interest.

3Four dimensional indices are raised and lowered with the Lorentz metric ηij. We
use the notation hi,j ≡ ∂jhi
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and

∂i∂jhij = (�2)2hL (6.13)

Thus

hL
,ij = OijOklh

kl (6.14)

and

hT
i,j = Ok

jhik −OijOklh
kl (6.15)

Taking the trace of Eq.(6.7) and using Eq.(6.14) determines fT to be

fT = πijhij (6.16)

and since

hTT
ij = hij − hT

ij − hi,j − hj,i (6.17)

one has

hTT
ij = πikπjlh

kl − 1

3
πijπklh

kl (6.18)

Our general metric with matter on the branes has the form

ds2 = e−2A(y)(ηij + hij)dx
idxj + h5idydx

i + (1 + h55)dy
2 (6.19)

In order to discuss clearly the issues of brane bending, we assume here that there exists

a frame with no brane bending (as e.g. is required in H-W theory) i.e. in this frame

the 4D branes are orthogonal to the fifth dimension. The vacuum metric of Eq.(6.1) is

indeed a solution of the 5D Einstein equations obeying the S1/Z2 boundary conditions

in this frame (as can be seen below Eqs.(6.37, 6.38)). Since the perturbation due to

matter, hµν , in Eq.(6.19) is general, we can assume there is a choice of hµν that holds

in a frame with no bending. We now ask what coordinate conditions can be imposed

to simplify the metric but remain in a frame with unbent branes. We chose the
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coordinate condition

h5i = 0 ; i = 0, 1, 2, 3 (6.20)

To verify that this can be achieved without any brane bending, we consider the

infinitesimal gauge transformation

h′5i(x) = h5i(x) + ξ5,i + ξi,5 − 2Γα
5iξα (6.21)

where Γα
µν are the Christoffel symbols for the vacuum metric (hµν = 0). Hence

h′5i(x) = h5i(x) + ξ5,i + e−2A(e2Aξi),5 (6.22)

Thus if in the initial gauge h5i were not zero, one can always set h′5i = 0 without brane

bending e.g. by choosing ξ5 = 0 and solving for ξi. Eqs.(6.20) are not a complete set

of coordinate conditions (being only four in number), and one may ask what is the

remaining gauge freedom that maintains δh5i = 0. From Eq.(6.22), this implies

0 = ξ5,i + e−2A(e2Aξi),5 (6.23)

Writing ξi = ξT
i + ξL

,i where ∂iξT
i ≡ 0, one finds

ωT
i = F T

i (xi) (6.24)

ω5 = −(ωL),5 (6.25)

where F T
i is independent of y, and we have introduced the notation

ωµ ≡ e2A(y)ξµ(xi, y) (6.26)

It is understood in Eq.(6.25) that from Eq.(6.5) ω5(x
i,y1) = 0 = ω5(x

i,y2) to avoid

brane bending, which consequently also constrains (ωL),5.

The remaining gauge freedom, Eqs.(6.24, 6.25), allows a residual gauge freedom
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in hij and h55:

δhij = ωi,j + ωj,i − 2A′e−2Aω5ηij (6.27)

δh55 = 2(e−2Aω5),5 (6.28)

where A′(y) ≡ dA/dy. Decomposing hij into its transverse and longitudinal parts one

finds using Eqs.(6.24, 6.25) that

δhTT
ij = 0 ; δhT

i = ωT
i (xi) (6.29)

δfT = 6A′e−2A(ωL),5 = −6A′e−2Aω5 (6.30)

δ(�2hL) = 2�2ωL + 2A′e−2A(ωL),5 (6.31)

Since ω5(x
i,yα) = 0 we see that fT is gauge invariant on the branes

δfT (xi, yα) = 0 ; α = 1, 2 (6.32)

Further, since ω5(x
i,y) is otherwise arbitrary, one may expand it around y = yα

ω5(x
i, y) = (y − yα)ω′

5(x
i, yα) +

1

2
(y − yα)2ω′′

5(x
i, yα) + ... (6.33)

so that

δ(∂5f
T (xi, yα)) = −6A′e−2Aω′

5(x
i, yα) + ... (6.34)

Hence one may choose ω′
5(x

i, yα) to set

∂5f
T (xi, yα) = 0 (6.35)

which we will see below is a convenient further gauge choice.
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B. Einstein Equations

The action for our system is

S =

∫
d5x
√
−5g(−1

2
M3

5R + 6M3
5β

2) (6.36)

+
∑

α=1,2

∫
d5x
√
−4g(Lmα + (−1)α+16M3

5β)δ(y − yα)

where M5 is the 5D Planck mass, Lmα are the Lagrangians for point particles on the

branes y1 = 0 and y2 = πρ, and we have fine tuned the bulk and brane cosmological

constants so that the net cosmological constant is zero. The vacuum equations of

motion for the metric of Eq.(6.1) read

1

2
A′′ = (−1)α+1βδ(y − yα) (6.37)

A′2 = β2 (6.38)

so that A = βy for y1 < y < y2 with S1/Z2 boundary conditions at the orbifold fixed

points. The linearized first order equations read

R(1)
µν = − 1

M3
5

∑
α

(Tµν(yα)− 1

3
gµνT (yα))δ(y − yα) (6.39)

where T ≡ gµνTµν and Tµν(yα) are the 4D stress tensors for Lmα . Hence T5i = 0 =

T55. We will consider here only the static gravitational forces and so only T00 need to

be taken non-zero4.

The 15 Einstein equations are then

R
(1)
5i = 0 ; i = 0, 1, 2, 3 (6.40)

4In obtaining Eq.(6.39), R
(1)
µν is the first order part of Rµν omitting terms propor-

tional to the cosmological constant, since these terms are precisely canceled by the
cosmological constant sources on the right hand side as a consequence of the zero’th
order equations Eqs.(6.37, 6.38).
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R
(1)
55 = − 1

3M3
5

∑
α

e2AT00(yα)δ(y − yα) (6.41)

and

R
(1)
ij = − 1

M3
5

∑
α

(Tij(yα)− 1

3
ηije

−2AT )δ(y − yα) (6.42)

The 10 equations Eq.(6.42) can be decomposed as

ηijR
(1)
ij = − 1

3M3
5

∑
α

T00(yα)δ(y − yα) (6.43)

∂iR
(1)
ij = − 1

M3
5

∑
α

(∂iTij(yα) +
1

3
∂jT00(yα))δ(y − yα) (6.44)

and

R
TT (1)
ij =

1

M3
5

∑
α

T TT
ij (yα)δ(y − yα) (6.45)

Eqs.(6.43) and (6.44) together pick out the ′′T ′′ components and ′′L′′ component of

Rij while Eq.(6.45) picks out the TT components. In this section we solve Eqs.(6.40,

6.41, 6.43, 6.44). Eq.(6.45) is discussed in Sec.C below.

Eq.(6.40) reads

R
(1)
5i ≡

1

2
ηkl∂5(∂ihkl − ∂lhik) +

3

2
A′∂ih55 = 0 (6.46)

where A′ ≡ ∂yA. In terms of the decomposition of Eqs.(6.7) and (6.9), Eq.(6.46)

reduces to

−∂i∂5f
T − 3A′∂ih55 + �2∂5h

T
i = 0 (6.47)

where �2 ≡ ∇2 − ∂2
0 . In the static approximation, �2 → ∇2, the T part of Eq.(6.47)

reads

∂5h
T
i = 0 (6.48)

which says that hT
i is independent of y. We can thus use the gauge freedom of
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Eq.(6.29) to set hT
i to zero

hT
i = 0 (6.49)

The remaining longitudinal part of Eq.(6.47) yields

h55 = − 1

3A′∂5f
T (6.50)

Note from Eqs.(6.28) and (6.30), the combination 3A′h55 + ∂5f
T is gauge invariant.

However in the gauge of Eq.(6.35), one has that h55 vanishes on the branes, i.e.

h55(x
i, yα) = 0 (6.51)

though in general it is non-zero off the branes.

Eqs.(6.41) and (6.43) allow us to determine fT and hL. One has for R
(1)
55

R
(1)
55 = (

1

2
∂2

5 − A′∂5)η
ijhij +

1

2
e2A�2h55 + 2A′∂5h55 (6.52)

and so Eq.(6.41) becomes, using Eq.(6.50)

(
1

2
∂2

5 − A′∂5)(�
2hL − 1

3
fT )− e2A

6A′�
2∂5f

T = − 1

3M3
5

∑
α

e2AT00δ(y − yα) (6.53)

In arriving at Eq.(6.53) we have made use of the fact that

A′′∂5f
T ∼ δ(y − yα)∂5f

T = 0 in the gauge of Eq.(6.35).

The full R
(1)
ij is

e2AR
(1)
ij = (

1

2
∂2

5 − 2A′∂5)hij −
1

2
A′ηij∂5(η

mkhmk) (6.54)

+ ηijh55(A
′′ − 4A′2) +

1

2
A′ηij∂5h55

+
e2A

2
∂i∂jh55 +

1

2
e2A∂i∂j(η

mkhmk)

+
1

2
e2Aηmk(∂k∂mhij − ∂k∂ihjm − ∂j∂mhik)
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Hence Eq.(6.43) becomes

(
1

2
∂2

5 − 4A′∂5)(�
2hL − 1

3
fT )− 1

6

e2A

A′ �2∂5f
T + e2A�2fT

= − 1

3M3
5

∑
α

e2AT00(yα)δ(y − yα) (6.55)

Subtracting Eq.(6.55) from Eq.(6.53) determines hL in terms of fT

�2hL =
1

3
fT +

∫ y

0

dy′
e2A

3A′�
2fT + φ(x) (6.56)

where the function of integration φ(x) is independent of y. However, from Eq.(6.31),

one may set φ(x) to zero using a gauge transformation with ωL(xi). Further, Eqs.(6.53)

and (6.55) imply the same boundary conditions

∂5(�
2hL − 1

3
fT )
∣∣∣
y=yα

=
(−1)α

3M3
5

e2A(yα)T00(yα) (6.57)

Inserting Eq.(6.56) into Eq.(6.57) then gives

�2fT (xi, yα) =
(−1)αβ

M3
5

T00(yα) (6.58)

where in our static approximation �2 → ∇2. While fT is not gauge invariant in the

bulk, we saw that it was gauge invariant on the branes, which is why its value on

each brane is determined by the physical quantities T00(yα).

If one now inserts Eq.(6.56) back into Eqs.(6.53) and (6.55), one sees that these

equations are identically satisfied and so Eqs.(6.53) and (6.56) have no further content.

Thus rather than determining hL and fT separately, Eqs.(6.53) and (6.55) determine

only the gauge invariant combination Eq.(6.56).

To check the solution of Eq.(6.44), we first note that ∂iTij is second order and

may be neglected. Using Eq.(6.54) and the coordinate conditions Eqs.(6.49) and
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(6.51), and the fact that

A′′h55 ∼ δ(y − yα)h55 = 0 (6.59)

one sees that Eq.(6.44) reduces to

(
1

2
∂2

5 −
5A′

2
∂5)(�

2hL − 1

3
fT ) − 1

6

e2A

A′ �2∂5f
T +

1

2
e2A�2fT =

− 1

3M3
5

T00(yα)δ(y − yα) (6.60)

The boundary conditions implied by the right hand side of Eq.(6.60) are thus identical

to Eq.(6.57), and inserting Eq.(6.56) one sees that Eq.(6.60) is identically satisfied.

We will see in the following section that the remaining Einstein equations, Eq.(6.45)

uniquely determines hTT
ij so that we have found solutions to all the Einstein equations.

The undetermined function, fT (xi, y) off the branes, is the remaining gauge freedom.

However, note one cannot set h55 = 0 everywhere (as is conventionally done in other

analyses) as Eq.(6.50) would then imply fT is constant in y, which would be incon-

sistent with the boundary conditions Eq.(6.58) (which are in fact gauge invariant).

We will see that Eq.(6.58) contributes a significant term to the static gravitational

potential.

C. Solution for hTT
ij

The remaining Einstein field equations, Eq.(6.45), can be obtained by taking the TT

part of Eq.(6.54). We find

(
1

2
∂2

5 − 2A′∂5 +
1

2
e2A�2)hTT

ij = −e
2A

M3
5

∑
α

T TT
ij (yα)δ(y − yα) (6.61)

and hence hTT
ij obeys the boundary conditions

∂5h
TT
ij

∣∣∣
y=yα

= (−1)α e
2A

M3
5

T TT
ij (yα) ; α = 1, 2 (6.62)
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The static potential is obtained from h00(x, yα) where

h00(x
i, yα) = hTT

00 (xi, yα)− 1

3
fT (xi, yα) (6.63)

The corresponding source is then

T TT
00 = πρ

0π
σ
0Tρσ −

1

3
π00π

σ
ρT

σ
ρ (6.64)

which in the static limit reduces to

T TT
00 =

2

3
T00 (6.65)

To solve Eq.(6.61) we Fourier analyse hTT
ij

hTT
ij (xi, yα) =

∫
d4peipxhTT

ij (pi, y) (6.66)

In the bulk then hTT
ij (p, y) obeys

(
1

2
∂2

5 − 2A′∂5 +
1

2
e2Am2)hTT

ij (p, y) = 0 (6.67)

where m2 ≡ −p2 = p2
o − ~p2. The solutions of Eq.(6.67) are Bessel and Neumann

functions

hTT
ij (pi, y) = e2βy[Aij(p)J2(ξ) +Bij(p)N2(ξ)] (6.68)

where

ξ(y) =
m

β
eβy (6.69)

and m/β is short hand for (m2/β2)1/2. The boundary conditions Eq.(6.62) determine

Aij and Bij. One finds on the branes

hTT
00 (p; y1) = − 2

3βM3
5

[
N11(ξ1, ξ2)

D
T00(y1) +

N12(ξ1, ξ2)

D
T00(y2)] (6.70)
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where

D ≡ N1(ξ1)

J1(ξ1)
− N1(ξ2)

J1(ξ2)
(6.71)

ξ1 =
m

β
; ξ2 =

m

β
eβy2 (6.72)

m2 ≡ −p2 = (p0)2 − ~p2 (6.73)

N11 ≡
J2(ξ1)

ξ1J1(ξ1)

[
N2(ξ1)

J2(ξ1)
− N1(ξ2)

J1(ξ2)

]
(6.74)

N12 ≡
J2(ξ1)

ξ2J1(ξ2)

[
N2(ξ1)

J2(ξ1)
− N1(ξ1)

J1(ξ1)

]
(6.75)

and

hTT
00 (p; y2) = −2e2βy2

3βM3
5

[
N21(ξ1, ξ2)

D
T00(y1) +

N22(ξ1, ξ2)

D
T00(y2)] (6.76)

where

N21(ξ1, ξ2) = N12(ξ2, ξ1) ; N22(ξ1, ξ2) = N11(ξ2, ξ1) (6.77)

It is useful to consider hTT
00 (p, yα) as a function of a complex variable z = m2. In

looking at the analytic behavior in z, the logarithmic branch cuts in the Neumann

functions cancel in the differences such as N1(ξ1)/J1(ξ1) − N1(ξ2)/J1(ξ2). Poles can

arise from a number of sources. Thus in N11, a pole might occur at the zeros of

J1(ξ1), but this is actually canceled by the zeros in J1(ξ1) appearing in D. Similarly

the zeros of J1(ξ2) in N11 are canceled. Thus the only poles that occur are the pole

at m2 = 0 (arising e.g. from N2/J2 ∼ 1/m4 in N11) and when D vanishes, i.e., at

D(m2
n) = 0 =

N1(ξn)

J1(ξn)
− N1(ξne

βy2)

J1(ξneβy2)
(6.78)

where ξn ≡ (m2
n/β

2)1/2. To find the residue at m2
n, we expand D(m2

n) around the

pole position

D(m2) =
∂D(m2)

∂m2

∣∣∣
m2

n

(m2 −m2
n) + . . . (6.79)
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and differentiating the Bessel and Neumann functions in D one has

∂D(m2)

∂m2
=

1

2βm

1

J2
1 (ξ1)

[J1(ξ1)N
′
1(ξ1)−N1(ξ1)J

′
1(ξ1)] (6.80)

− eβy2

2βm

1

J2
1 (ξ2)

[J1(ξ2)N
′
1(ξ2)−N1(ξ2)J

′
1(ξ2)]

Using the two Bessel function Wronskian identities

J1N
′
1 −N1J

′
1 =

2

πξ
= N1J2 − J1N2 (6.81)

Eq.(6.79) reduces to

D(m2) = (
1

πm2
[

1

J2
1 (ξ1)

− 1

J2
1 (ξ2)

])
∣∣∣
mn

(m2 −m2
n) + . . . (6.82)

To obtain the residue at the pole, we need also the numerator N11 evaluated at

m2 = m2
n

N11 =
1

ξ1

1

J2
1 (ξ1)

[N2(ξ1)J1(ξ1)−N1(ξ1)J2(ξ1)]
∣∣∣
mn

(6.83)

and using Eq.(6.81) this reduces to

N11(m
2
n) = − 2β2

πm2
n

1

J2
1 (m2

n/β
2)

(6.84)

Hence the residue at m2
n is simply

Rn(m2
n) = − 2

3βM3
5

N11

D

∣∣∣
mn

=
4β

3M3
5

1

1− J2
1 (mn/β)

J2
1 ((mn/β)eβy2 )

(6.85)

The residue at m2 = 0 can be obtained by examining the limit when both ξ1 and ξ2

approach zero in N11(ξ1, ξ2)/D. One finds

R0 = − 4β

3M3
5

1

1− e−2βy2
(6.86)

where for the Randall-Sundrum model one may neglect the e−2βy2 ≈ 10−32 in the

denominator. A similar analysis to the above holds for the other three terms in
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Eqs.(6.70) and (6.76).

One may now cast the results for hTT
00 (z, yα) in a more convenient form. Using

the asymptotic forms of Bessel and Neumann functions, one can see that hTT
00 (z, yα)

falls like 1/z for |z| on a large circle. Hence integrating

g(z) ≡ hTT
00 (z, yα)

z −m2
(6.87)

over a large circle in the complex plane we can express hTT
00 (m2, yα) as a sum of poles

with the residues calculated above. One has then

hTT
00 (y1) = − 4β

3m2M3
5

[T00(y1) + e−2βy2T00(y2)] (6.88)

+
4β

M3
5

∑
mn

1

m2 −m2
n

(
J2

2 (ξ2)

J2
2 (ξ2)− J2

1 (ξ1)

)
[T00(y1) +

e−βy2J1(ξ1)

J1(ξ2)
T00(y2)]

∣∣∣
m=mn

and

hTT
00 (y2) = − 4β

3m2M3
5

[T00(y1) + e−2βy2T00(y2)] (6.89)

+
4β

M3
5

∑
mn

1

m2 −m2
n

(
J2

1 (ξ1)

J2
1 (ξ2)− J2

1 (ξ1)

)
[T00(y2) +

eβy2J1(ξ2)

J1(ξ1)
T00(y1)]

∣∣∣
m=mn

The first term of Eqs.(6.88) and (6.89) contributes to the Newtonian potential (since

m2 = −p 2 → ~p2 in the static limit) while the other term gives 5D corrections to the

Newtonian theory.

While Eq.(6.78) is a transcendental equation, one can obtain the positions of the

poles analytically in certain limits. Thus if ξn = mn/β � 1 but ξne
βy2 � 1 (i.e.

ξn � 10−16) then inserting in the Bessel function asymptotic forms in the ratios of

Eq.(6.78) gives

tan(ξne
βy2 − 3π

4
) ∼= −

4

π
(

1

ξn
)2 (6.90)
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which can be solved by iteration to give

m2
n

β2
∼= [(n+

5

4
)π + εn]2e−2βy2 ; ξn � 1 , ξne

βy2 � 1 (6.91)

where

εn ∼=
π

4
[(n+

5

4
)πe−βy2 ]2 (6.92)

(We have included the first order correction εn as in some expressions the leading

term can cancel out). The residues at the poles can then be calculated in this limit.

Thus for the T00(y1) term one finds for

Rn = − 2

3βM3
5

N11(ξ1, ξ2)

D

∣∣∣
m=mn

(6.93)

the result

Rn = − 2π

3M3
5

mne
−βy2 (6.94)

and the contribution to the scalar potential is

hTT
00 = − 2π

3M3
5

∑
n=1

mne
−βy2

m2 −m2
n

T00(y1) (6.95)

Since the poles are very dense

∆mn ≡ mn+1 −mn = βπe−βy2 (6.96)

one can approximate Eq.(6.95) by converting the sum to an integral (m2 = −p2 = −~p 2

in the static limit)

hTT
00
∼=

2π

3M3
5

∫ β

0

dmn
mn

~p2 +m2
n

T00(y1) (6.97)

where we have cut off the integral at β since ξ1 = mn/β . 1. Returning to coordinate

space this yields

hTT
00 (~r) =

2

3βM3
5

m0

4πr3

∫ βr

0

dαe−α (6.98)

where m0 is the mass of T00(y1). For r � 1/β, i.e. for distances large compared to the
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warping parameter 1/β, this is a 1/r3 correction to the leading Newtonian potential.

Eventually, for sufficiently large n, ξn becomes large (i.e. n & 1016), and the

poles from Eq.(6.78) occur at

mn =
nπβ

eβy2 − 1
∼= nπβe−βy2 ; ξn � 1 (6.99)

Then one finds for this contribution

hTT
00 = − 4β

3M3
5

∑
n

e−βy2

m2 −m2
n

T00(y1) (6.100)

or in the continuum approximation

hTT
00
∼=

4β

3M3
5

∫ ∞

β

dmn

~p2 +m2
n

T00(y1) (6.101)

In coordinate space one finds

hTT
00 (r) =

m0

3M3
5

∫ ∞

β

dmne
−mnr

r
T00(y1) (6.102)

and in the limit r � 1/β one finds a 1/r2 correction to the Newtonian potential

hTT
00 (r) =

m0

3M3
5

1

r2
(6.103)

Eqs.(6.98) and (6.103) agree with results obtained in [43](although there, a fine tuning

of matter is needed on the second brane in order to get a consisitent solution of the

Einstein equations).

One may carry out a similar analysis of the other three terms in Eqs.(6.70) and

(6.76) (N12/D, N21/D, and N22/D) and these results will be discussed further in the

Appendix. In Eq.(6.97) it is conventional to extend the integral down to mn = 0, and

think of the continuum of poles as reaching down to m2 = 0 without a gap. Actually,
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as can be seen from Eq.(91), the first discrete pole occurs at

mn
∼= (

9

4
πβ)e−βy2 (6.104)

The size of the gap depends on the model. Thus for Randall-Sundrum one has

m1 ≈ (
9

4
πβ)e−βy2 ≈ (1019GeV )(10−16) = 1TeV (6.105)

since

β ≈MPl (6.106)

On the Planck brane y1 = 0, a TeV of energy is negligible (since masses are of order

MPl). On the TeV brane y2 however, it is sometimes argued that one should not

consider phenomena & 1TeV. In this case one would neglect the Kaluza-Klein modes.

D. Newtonian Potential

The static Newtonian potential is the 1/r terms of h00(x
i, yα) of Eq.(6.63). These

arise from the poles in momentum space at m2 = 0. As discussed in Sec.C, these

poles occur in hTT
00 from the fact that the numerator functions Nij go as Nij ∼ 1/m4

as m2 → 0 due to the N2(ξα), α = 1, 2 terms, while the denominator function goes

as D ∼ 1/m2 leading to a net 1/m2 term for small m2. As seen from Eq.(6.58),

fT (xi, yα) is totally a 1/m2 term in momentum space. One can thus pick out the

m2 = 0 pole contributions on the two branes

hN
00(y1) = − 4β

3M3
5

1

m2
[T00(y1) + e−2βy2T00(y2)] +

β

3M3
5

1

m2
T00(y1) (6.107)

and

hN
00(y2) = − 4β

3M3
5

1

m2
[T00(y1) + e−2βy2T00(y2)]−

β

3M3
5

1

m2
T00(y2) (6.108)



59

In Eqs.(6.107) and (6.108) the first bracket is from hTT
00 and the second is from fT .

The stress tensor Tij arising from the matter Lagrangian Lm is

T ij =
1√
−g

δLm

δgij

(6.109)

where for a point particle on brane yα

Lmα = m0

∫
dτuiujgij(x

i, yα)δ4(xi − xi(τ)) (6.110)

and ui = dxi/dτ with dτ 2 = −gijdx
idxj. For our metric, gij = e−2Aĝij where in the

linearized approximation ĝij = ηij + hij. Thus defining

dτ̂ 2 = ĝijdx
idxj ; ûi =

dxi

dτ̂
(6.111)

Lm reduces to

Lmα = m̄α(yα)

∫
dτ̂ ûiûj ĝijδ

4(xi − xi(τ̂)) (6.112)

where

m̄(y) = e−A(y)m0 (6.113)

showing the usual result that if m0 is of Planck size, the effective mass seen on the

TeV brane y2 will be of TeV size. The Lagrangian of Eq.(6.112) will then correctly

give rise to the (linearized) geodesic equation governed by ĝij = ηij + hij.

Returning to Eq.(6.109), the stress tensor is

T ij =
1√
−g

m0

∫
dτuiujδ4(xi − xi(τ)) (6.114)

and in the static approximation,

u0 ∼= eA ; ui ∼= 0 (6.115)
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one has

T 00 = e5Am0δ
3(r − r(t)) (6.116)

so that

T00(yα) = e2A(yα)m̄(yα)δ3(r − r(t)) (6.117)

The interaction potential between the two particles may be defined by

V = −
∫
d3rLm int (6.118)

where the total Lm is

Lm =
∑

α

m0α

∫
dτuiuje−2A(yα)(ηij + hij(yα))δ4(x− xα(τ)) (6.119)

Hence in the static limit

−
∫
d3rLm = −

∑
α

m0α

∫
dτ(

dx0
α

dτ
)2e−2A(yα)(η00 + h00(yα))δ4(x− xα(τ)) (6.120)

Since u0
αdτ = dx0

α and

dx0
α

dτ
∼=

1√
−g00

=
eA

(−η00 − h00)1/2
(6.121)

one has

−
∫
d3rLm =

∑
α

m̄α(−η00 − h00)
1/2 (6.122)

Expanding to first order gives for the interaction potential energy

V = −1

2

∑
α

m̄αh00(x
0
α, yα) (6.123)

Inserting Eq.(6.107) and (6.108) and returning to coordinate space (m2 = −~p2) one

gets for the Planck brane the contribution

V (y1) = − β

8πM3
5

1

r
[m̄1m̄

′
1 +

4

3
m̄1m̄2] (6.124)
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where m̄1 is the mass of a second particle on the Planck brane, m̄2 a mass of a particle

on the TeV brane (m̄2 = e−βy2m20), and r is the 3D distance between the particles.

Note that the fact that m̄2 is separated by additional distance in the fifth dimension

(y2 − y1 = πρ) does not enter in r.

We see from Eq.(6.124) that if the two particles are on the Planck brane, Eq.(6.126)

correctly reproduces the Newtonian force law with

GN ≡
β

8πM3
5

(6.125)

(the conventional value for the Newton constant in Randall-Sundrum theory). The

fT contribution correctly changes the 4/3 factor in the first term of Eq.(6.107) to 1.

However, if one particle is on the TeV brane, the Newton constant is modified by an

extra factor of 4/3, since the fT factor does not contribute. (The fact that matter on

the TeV brane changes gravitational effects seen on the Planck brane has previously

been noted in [37] in a different connection.)

For the potential energy seen on the TeV brane we use Eq.(6.108) in Eq.(6.123).

One finds now from Eq.(6.117) that

V (y2) = − 4β

3M3
5

1

8πr
[m̄2m̄1 + m̄2m̄

′
2]

− β

3M3
5

1

8πr
m̄2m̄

′
2e

2βy2 (6.126)

where m̄′
2 is a second particle on the y2 brane. The interaction energy between m̄2

and m̄1 particles is as before as is the Newtonian potential between two particles on

the TeV brane, m2 and m′
2, arising from hTT

00 (aside from the peculiar 4/3 factor).

However, the fT term gives an additional contribution to V (y2) scaled by e2A(y2)

(the factor from Eq.(6.117)) which would produce an anomolously large additional

contribution. (Recall eβy2 ≈ 1016 in the Randall-Sundrum model to account for the
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gauge hierarchy problem!) Thus the theory does not appear to give sensible results

on the TeV brane.

E. Discussion on Previous Works

We briefly compare our analysis with some of the previous calculations for the static

gravitational potential. In Ref.[37] it is assumed that in Gaussian coordinates

hµ5 = 0 ; µ = 0, 1, 2, 3, 5 (6.127)

there is no brane bending, and brane bending occurs only when one adds the coordi-

nate conditions

∂ihij = 0 = hi
i ; i, j = 0, 1, 2, 3 (6.128)

One can easily check, however, that the extra condition h55 = 0 of Eq.(6.128) cannot

be achieved without introducing brane bending. Thus to achieve h55 = 0, we see from

Eqs.(6.28) and (6.50) one requires

ξ5(x
i, y) =

1

6A′f
T (xi, y) + φ5(x) (6.129)

where the function of integration φ5(x) is independent of y and fT (xi, y) is the value

of fT in the frame of Eq.(6.20). On the branes, therefore fT (yα) is given by Eq.(6.58),

and one cannot choose φ5(x) to make ξ5 vanish on both branes. Thus if we choose

φ5(x) = -fT (xi, y1)/6A
′ (so that ξ5(y1) = 0) then ξ5(y2) is proportional to e2βy2m̄(y2)

[by Eqs.(6.58) and (6.117)] and so there is a huge amount of brane bending on the

TeV brane. (Alternately, the choice φ5(x) = 0 gives by Eq.(6.30) that fT (xi, y) = 0

but with brane bending on both branes.) This would presumably greatly modify the

geodesic motion of particles on the TeV brane. Ref.[43] carries out the analysis in the

frame of Eq.(6.128) assuming there is no brane bending in that frame. They define
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the gravitational potential by the diagram of two point mass stress tensors connected

by a free field gravitational propagator. The fT components vanish for free fields and

so they miss the effects of fT . Further, they find it necessary to fine tune the matter

on the y2 brane to get a consistent solution. In contrast, the analysis given here is

valid for arbitrary matter on the y1 and y2 branes. Finally we note that none of the

previous discussions have analysed gravitational forces involving two particles on the

y2 brane which is where difficulties arose.
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CHAPTER VII

CONCLUSIONS

We have studied here the Hubble era cosmology in Horava-Witten M-theory. After

compactification of the 11D space on a Calabi-Yau threefold, the system reduces

to a 5D theory, the fifth dimension, y, bounded by two 3-branes with gravity and

a scalar field (representing the volume modulus) in the bulk, and gauge and chiral

matter on the 3-branes. The field equations were solved in the bulk and the boundary

conditions on both 3-branes were imposed. We have shown that for the static solution,

the standard RWF cosmology arises for relativistic matter on the branes, but the field

equations cannot allow non-relativistic matter. This result arises from the constraint

of satisfying the boundary conditions on both 3-branes. The same result maintains if

one adds 5-branes in the bulk (the most general form of Horava-Witten M-theory). We

have included all of the potentials that arise perturbatively in HW theory. However,

there are non-perturbative potentials in the theory that have not been included and

may allow the introduction of non-perturbative matter. Once these potentials are

included, the vacuum structure of the theory will be altered and one will need to find

a new set of vacuum solutions and then perturb for matter around these. We also

have not addressed the issue of moduli stabilization that has been studied recently

in the context of flux compactifications in [20, 22], and it is of interest to see if this

modifies the above results.

We have also demonstrated the difference between the HW theory and the RS

phenomenology. For the special class of potentials studied in [33] the RS model

can accommodate arbitrary matter on the branes and thereby reproduce the RWF

cosmology. This occurs due to the existence of free parameters in the brane potentials

which can relax the constraint on non-relativistic matter found for HW theory by
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allowing one to solve for the change in brane separation due to the presence of matter

rather than putting a constraint on the matter itself. In HW theory one is not

allowed to introduce such free parameters as the form of the brane potentials are

fully determined by the consistency conditions of the theory.

In Appendix A we have analysed the RS model discussed in [34] which includes

a scalar potential that does not fall into the class of potentials studied in [33]. The

vacuum solutions in this case are given by a series expansion and we have shown that

one cannot generate the desired solution to the hierarchy problem if one truncates

the series after the first term as was done in [34] (or if one includes the second term).

The difficulty is that the vacuum solution must obey boundary conditions on both

branes which precludes the hierarchy from developing. It is an interesting question

of whether this difficulty is due to the truncation or whether formation of a hierarchy

is sensitive to the choice of brane and bulk potentials.

We have also examined the gravitational forces between point particles in the

static limit in the two brane Randall-Sundrum model. In contrast to previous analy-

ses, we have chosen gauge conditions (coordinate frames) to solve the field equations

that maintain the S1/Z2 boundary conditions, and hence produce no brane bend-

ing effects, and we also examine forces between particles on both branes, not just the

y1 = 0 brane. A convenient technique for solving the field equations is to introduce for

the 4D generalization of the ADM decomposition [44, 45] for the metric perturbation

hij = hTT
ij + hT

ij + hi,j + hj,i (7.1)

where ∂ihTT
ij = 0 = ∂ihT

ij, η
ijhTT

ij = 0, and ηijhT
ij ≡ fT 6= 0. The hTT

ij contain the

Kaluza-Klein modes while both the hTT
ij and hT

ij contribute to the static Newtonian

potential (with pole at ~p 2 = 0 in momentum space). One finds that a particle on the

y1 = 0 brane sees a Newtonian force from another particle on either the y1 brane or
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the y2 = πρ brane but with different Newtonian constants: GN = β/8πM3
5 and GN =

β/6πM3
5 respectively. The difference arises from the fact that the fT component of

h00 enters with opposite sign for y1 and y2 particles, as seen in Eqs.(6.58) and (6.63).

(The fact that matter at y2 effects matter at y1 differently from other matter at y1 was

also noted in [37] in another connection.) Note that the fT contribution is precisely

what is needed to give the conventional value GN = β/8πM3
5 on the y1 brane.

A curious feature of the potential Eq.(6.124) is that the force depends only on

the 3D distance, and is independent of any y separation. It would be interesting to

see if this produces any causal questions i.e. if one jiggled the mass on y2, how long

does it take for the effect to become noticeable at the y1 particle, a question involving

dynamical rather than static solutions.

A more serious problem is the force seen by two particles on the TeV brane

y2. One sees from Eq.(6.126) that there is an attractive term arising from the fT

contribution which is O(e2βy2) ≈ (1016)2 larger than the normal gravity and this

occurs after one has correctly rescaled the y2 masses to TeV size (as one normally

does in the RS model). Thus one does not recover normal Newtonian gravitation

in the static limit on the TeV brane. All analyses both in the literature and here

up to now have neglected the Goldberger-Wise scalar field. Including it in might in

some way cancel out the anomolous e2βy2 factor in Eq.(6.126). The analysis including

the scalar field is much more complicated than the calculation given here and it is

uncertain whether it will solve the problem.
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APPENDIX A

RS COSMOLOGY WITHOUT AN EXACT SOLUTION

In chapter 5 we discussed cosmology in the Randall-Sundrum model and showed that

for a general class of bulk and brane potentials one can obtain vacuum solutions and

then find consistent solutions to the Einstein and scalar field equations for arbitrary

matter introduced perturbatively on the branes. In this appendix we will analyse the

situation for a scalar field obeying the potentials chosen in [34],i.e. in the bulk

V (Φ) =
1

2
mΦ2, (A.1)

and on the boundaries Vi(Φ) = mi(Φ− vi)
2. Here mi are the analogs of γi that arose

in chapter 5. These potentials cannot be put into the form specified by Eq.(5.12)

and therefore one will have to solve the second order differential equations to find the

vacuum solutions. We will find that it is not easy to see how this choice of potentials

leads to the desired hierarchy.

Throughout this section we follow the notation of [34]. The metric is

ds2 = e−2N(t,y)dt2 − e−2A(t,y)
∑

i

dx2
i − b(t, y)2dy2 (A.2)

and the perturbative expansions are given by

N(t, y) = Ao(y) + δN(t, y) (A.3)

A(t, y) = Ao(y) + δA(t, y) (A.4)

b(t, y) = bo + δb(t, y) (A.5)

Φ(t, y) = Φo(y) + δΦ(t, y). (A.6)
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The Einstein equations and the scalar field equation at vacuum order are

A′2
o =

κ2

12

(
Φ′2

o −m2b2oΦ
2
o

)
+ k2b2o (A.7)

A′′
o = κ2 1

3
Φ′2

o (A.8)

Φ′′
o = 4A′

oΦ
′
o +m2b2oΦo (A.9)

where κ2 is given by κ2 = 1/M3 where M is the 5D Planck scale and κ2 and k2

are related to the bulk cosmological constant Λ by Λ = -6k2/κ2. Only two of these

equations are independent since the third equation can be generated by taking the

y-derivative of the first and then inserting the second. Therefore a solution of any

two of these equations will necessarily satisfy the third. We look for solutions of the

form

Ao = ao + βy +
∞∑

n=1

ane
−2nαy (A.10)

Φo =
∞∑

n=1

cne
−(2n−1)αy (A.11)

where α = εkbo.

Ref.[34] assumed that truncating the series at n=1 represents a good approxima-

tion. However, it is easy to see that when this truncation is inserted into Eqs.(A.7-

A.9) one generates the higher terms of Eqs.(A.10,A.11). We would like to examine

the question of whether the higher terms can be ignored thereby giving the results

found in [34]. While the equations are non-linear, it is still possible to obtain recursion

relations. Inserting Eqs.(A.10) and (A.11) into the vacuum equation (A.8) generates

relations between an and cn, the first few of which are

4a1 =
κ2

3
c21 (A.12)

16a2 =
κ2

3
6c1c2 (A.13)
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36a3 =
κ2

3

(
10c1c3 + 9c22

)
. (A.14)

One can also see that β = kbo from Eq.(A.7). Inserting Eqs.(A.10) and (A.11) into

Eq.(A.9) we find

∞∑
n=1

cn
(
α2 (2n− 1)2 + 4βα (2n− 1)−m2b2o

)
e−(2n−1)y (A.15)

= 8α2

∞∑
n,m=1

n(2m− 1)ancme
−(2n+2m−1)y. (A.16)

For n=1 this gives an equation for the coefficients of e−αy,

α2 + 4αβ −m2b2o = 0 (A.17)

or

ε = −2 +

√
4 +

m2

k2
(A.18)

where we have taken the positive root so that ε > 0.(This is identical to the result

found in [34].) For n = 2, after using the result of Eq.(A.12), we find the following

relation between c2 and c1

c2 =
2α2κ2

3(9α2 + 12βα−m2b2o)
c31. (A.19)

Using Eq.(A.17) reduces this to

c2 =
1

12

ακ2

α+ β
c31 (A.20)

which is an example of the general result

cn ∼ κ2n−2c2n−1
1 (A.21)
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and subsequently

an ∼ κ2nc2n
1 . (A.22)

Thus all the coefficients are determined by the constant of integration c1.

Solutions to the bulk equations must also satisfy the boundary conditions

A′
o

∣∣∣
y=yi

= (−1)i+1κ
2

6
boVi(Φ)

∣∣∣
y=yi

(A.23)

Φ′
o

∣∣∣
y=yi

= (−1)i+1 bo
2
V ′

i (Φ)
∣∣∣
y=yi

(A.24)

where i=1,2 refers to the boundary at y=0, and y=1 respectively and Vi is specified

below Eq.(A.1). We will first try to satisfy these boundary conditions by keeping

only the first term in the series for Φo and Ao and then use the relation Eq.(A.19) to

determine if this is a reasonable approximation. Using

Φ′
o = −αc1e−αy (A.25)

A′
o = β − κ2

6
αc21e

−2αy (A.26)

in the Φo boundary conditions we find equations for c1 and e−α in terms of v1 and v2

c1 =
m1v1

m1 + kε
(A.27)

e−α =
m2v2

m2 − kε

m1 + kε

m1v1

. (A.28)

Note that if m1,2 � kε (the “stiff potential” limit) then

e−εkbo ' v2

v1

(A.29)

which was obtained in [34] and used there to create a large hierarchy without the

need for fine-tuning of parameters. Thus writing Eq.(A.29) as

e−kbo '
(
v2

v1

)1/ε

(A.30)
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one see that for e.g. ε = 1/30 one needs only assume v2/v1 = 0.3 to obtain

e−kbo ∼= 2× 10−16 (A.31)

However, v1 and v2 are not totally free parameters and using the boundary conditions

for Ao we find relations for v1 and v2

v2
1 =

6

κ2

m1 + εk

εm1

(A.32)

v2
2 =

6

κ2

m2 − εk

εm2

(A.33)

When these relations are inserted into Eq.(A.28) we find that

e−α =

(
m2

m2 − kε

m1 + kε

m1

)1/2

. (A.34)

This implies that e−α ≥ 1 and therefore does not give a solution to the hierarchy

problem. It should be noted that this result holds for any mi.

One can also see that with ε� 1 the n=2 term in the series is not small compared

to the n=1 term. From Eq.(A.19) the ratio c2/c1 becomes

c2
c1
' ε

12
(κc1)

2 (A.35)

when ε � 1. Using Eq.(A.27) for c21 and Eq.(A.32) for v2
1 we find

c2
c1
' m1

2(m1 + kε)
(A.36)

which is of O(1), and in the stiff potential limit c2/c1 ' 1/2. Therefore truncating

the series to the first term is not a valid approximation, as the small parameter ε in

Eq.(A.35) cancels out in Eq.(A.36). It is the imposition of the A′
o boundary condition

that makes v1,2 ∼ 1/ε1/2.

We next examine the effect of retaining only the first two terms in the series
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expansions for Φo and Ao:

Ao = ao + kbo + a1e
−2αy + a2e

−4αy (A.37)

Φo = c1e
−αy + c2e

−3αy. (A.38)

As was previously noted, all coefficients can be found in terms of c1. The Φo boundary

condition at y=0 becomes

c̃1
3 +

1 + δ1
1 + 3δ1

c̃1 −
1

1 + 3δ1
ṽ1 = 0 (A.39)

where we have introduced the notation

c̃1 ≡
(

εκ2

12(1 + ε)

)1/2

c1 (A.40)

ṽ1 ≡
(

εκ2

12(1 + ε)

)1/2

v1 (A.41)

δi ≡ kε

mi

. (A.42)

Inserting Eqs.(A.37) and (A.38) into the y=0 boundary condition for A′
o gives

δ1
2(1 + ε)

− δ1c̃1
(
c̃1 + 3c̃31

)
=
(
c̃1 + c̃31 − ṽ1

)2
. (A.43)

Upon substituting for c̃31 from Eq.(A.39), Eq.(A.43) becomes

2(1 + δ1)c̃
2
1 − 3(1− δ1)c̃1ṽ1 +

(1 + 3δ1)
2

2(1 + ε)
− 9δ1ṽ

2
1 = 0. (A.44)

This is easily solved for c̃1 in terms of ṽ1:

c̃1 =
3ṽ1

4(1 + δ1)

(
1− δ1 ±

[
(3δ1 + 1)2 − 4(1 + δ1)(1 + 3δ1)

2

9ṽ2
1(1 + ε)

]1/2
)
. (A.45)

In the stiff potential limit, δ1 → 0, this reduces to

c̃1 =
3ṽ1

4

(
1±

[
1− 4

9ṽ2
1(1 + ε)

]1/2
)
. (A.46)
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Taking the positive root and putting this into Eq.(A.39) leads to an equation for ṽ1

that can be solved to give

ṽ1
∼= .667. (A.47)

No real solution is found if one takes the negative root in Eq.(A.46).

From the y=1 boundary conditions we obtain the equations

e−3αc̃31 +
1− δ2
1− 3δ2

e−αc̃1 −
1

1− 3δ2
ṽ2 = 0 (A.48)

e−αc̃1 =
3ṽ2

4(1− δ2)

(
1 + δ2 ±

[
(1− 3δ2)

2 − 4(1− δ2)(1− 3δ2)
2

9ṽ2
2(1 + ε)

]1/2
)
. (A.49)

which are identical to Eqs.(A.39) and (A.45) found at y=0 with c̃1 replaced by e−αc̃1

and δ1 replaced by (−δ2). In the stiff potential limit, δ2 → 0, this gives ṽ1 = ṽ2 and

e−α = 1 which again would not give the desired solution to the hierarchy problem

just as in the n=1 case.

We can also determine the situation for δi small but non-zero. Table 1 gives some

sample values. Thus a hierarchy is not obtained if we truncate at n=2. The above

results suggest that keeping a finite number of terms in Eqs.(A.10) and (A.11) will

not lead to a valid approximation, and it may be that truncating at n=1 does not

approximate the rigorous solutions of Eqs.(A.7)-(A.9).
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Table I. Example of determination of the hierarchy parameter e−α for various choices

of ε, δ1, and δ2. A valid hierarchy is obtained when e−β ≈ 10−16, which

requires ṽ1/ṽ2 ≈ 1/3 for ε = .03 and ṽ1/ṽ2 ≈ 2/3 for ε = .01

ε 0.03 0.03 0.01 0.01

δ1 0.01 0.01 0.0001 0.0001

δ2 -0.01 0.01 -0.0001 0.0001

ṽ1 ±.6613 ±.6613 ±.6578 ±.6642

ṽ2 ±.6613 ± .6542 ±.6578 ±.6640

c̃1 ±.5152 ±.5152 ±.5184 ±.5219

e−α 1 0.9876 1 1.0001

e−β 1 0.6597 1 1.0101
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APPENDIX B

KALUZA-KLEIN CORRECTIONS

In Sec.C of Chapter 6 we calculated the Kaluza-Klein (KK)corrections to hTT
00 on the

y1 = 0 brane in the case where both particles reside on the y1 = 0 brane. In this

Appendix we will calculate the other KK corrections for the two cases (i) ξ1 � 1,

ξ2 � 1 and (ii) ξ1 � 1, ξ2 � 1. These can be most easily found in terms of what we

have already shown for hTT
00 (y1) due to the presence of T00(y1). These results were

h
TT (i)
00 (1, 1) =

∑
n

Ri
n(1, 1)

m2 −m2
n

T00(1) ; Ri
n(1, 1) = −2πe−βy2

3M3
5

mn (B.1)

and

h
TT (ii)
00 (1, 1) =

∑
n

Rii
n(1, 1)

m2 −m2
n

T00(1) ; Rii
n(1, 1) = −4βe−βy2

3M3
5

mn (B.2)

where we have denoted the contribution to hTT
00 on the i’th brane due to matter on

the j’th brane by hTT
00 (i, j) and (i), (ii) represent the two limits on ξ1 and ξ2 stated

above.

We can convert these into coordinate space using

m2 = −p2 ∼= −~p 2 (B.3)

where the last approximation is true in the static limit. We then take the continuum

limit where

∆mn → dmn = πβe−βy2 (B.4)

Thus for Eq.(B.1)

h
TT (i)
00 (1, 1) =

2

3M3
5β

∫ β

0

dmnd
3r
eip·rmn

~p 2 +m2
n

T00(1) (B.5)
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where we have taken the upper limit of the integral to be β since ξ1 . 1. After

performing the coordinate space integral we get

h
TT (i)
00 (1, 1) =

2

3M3
5β

∫ β

0

dmn
mne

−mnr

4πr
T00(1) (B.6)

Upon integration we find

h
TT (i)
00 (1, 1) =

1

6πM3
5βr

3
[1− e−βr(βr + 1)]T00(1) (B.7)

Thus in the limit r � 1/β we have a 1/r3 correction

h
TT (i)
00 (1, 1) ∼=

1

6πM3
5βr

3
T00(1) ; ξ1 � 1 ; ξ2 � 1 (B.8)

Similarly from Eq.(B.2) we get

h
TT (ii)
00 (1, 1) =

1

3π2M3
5 r

2
e−βrT00(1) (B.9)

which in the limit r � 1/β becomes a 1/r2 correction

h
TT (ii)
00 (1, 1) ∼=

1

3π2M3
5 r

2
T00(1) (B.10)

We consider now the other corrections arising from Eqs.(6.88) and(6.89). We

have for the correction due to T00(2) on the y1 brane

hTT
00 (1, 2) =

ξ1J1(ξ1)T00(2)

ξ2J1(ξ2)T00(1)
hTT

00 (1, 1) (B.11)

For case (i) we have

ξ1J1(ξ1)

ξ2J1(ξ2)
∼= e−βy2

ξ1

2
√

2
πξ2
cos(ξ2 − 3π

4
)

(B.12)
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From Eq.(6.90) tan(ξ2 − 3π
4

) = −4/(πξ2
1) and so

cos(ξ2 −
3π

4
) =

1√
1 + 16

π2ξ4
1

∼=
πξ2

1

4
(B.13)

Thus

ξ1J1(ξ1)

ξ2J1(ξ2)
= (

2β

πmn

)1/2e−
βy2
2 (B.14)

Substituting this expression into Eq.(B.11) and after performing the coordinate space

integration we find

h
TT (i)
00 (1, 2) =

e−
βy2
2

6π3/2M3
5 r

√
2

β

∫ β

0

dmnm
1/2
n e−mnrT00(2) (B.15)

We can calculate the integral in the limit r � 1/β which gives a 1/r5/2 correction

h
TT (i)
00 (1, 2) =

√
2e−

βy2
2

12πM3
5

1

β1/2r5/2
T00(2) (B.16)

For case (ii) we need

ξ1J1(ξ1)

ξ2J1(ξ2)
∼=

√
ξ1
ξ2

cos(ξ1 − 3π
4

)

cos(ξ2 − 3π
4

)
= e−

βy2
2 (−1)n (B.17)

After substituting this into Eq.(B.11) and performing the coordinate space integral

we find

h
TT (ii)
00 (1, 2) =

β

3πM3
5

e−
3βy2

2

r

∑
n

(−1)ne−mnrT00(2) (B.18)

Here since ξ1 & 1 the sum is over mn & β and since mn = nπβe−βy2 we require

n &
eβy2

π
≡ N � 1 (B.19)

Thus Eq.(B.18) becomes

h
TT (ii)
00 (1, 2) ∼=

β

3πM3
5

e−
3βy2

2

r

∞∑
n=N

(−1)ne−nπβre−βy2T00(2) (B.20)
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Let

n = N +m ; m = 0, 1, 2, ... (B.21)

Since

Nπβre−betay2 = βr (B.22)

one has

h
TT (ii)
00 (1, 2) ∼= (−1)N β

3πM3
5

e−
3βy2

2 e−βr

r

∞∑
m=0

(−1)me−mπβre−βy2T00(2) (B.23)

The sum is found to give

∞∑
m=0

(−1)me−mπβre−βy2T00(2) =
T00(2)

1− e−πβre−βy2
(B.24)

Thus in the limit r � 1/β

h
TT (ii)
00 (1, 2) = (−1)N e−

βy2
2

3π2M3
5 r

2
T00(2) (B.25)

For the KK corrections on the y2 brane we have

h00(2, 1) = e2βy2h00(1, 2)
T00(y1)

T00(y2)
(B.26)

Thus from Eqs.(B.16) and (B.25) we find

h
TT (i)
00 (2, 1) =

√
2e

3βy2
2

12πM3
5

1

β1/2r5/2
T00(1) ; βr � 1 (B.27)

h
TT (ii)
00 (2, 1) = (−1)N e

3βy2
2

3π2M3
5 r

2
T00(1) ; βr � 1 (B.28)

Similarly the corrections for both particles on the y2 brane give

hTT
00 (2, 2) = hTT

00 (1, 1)
J2

1 (ξ1)T00(2)

J2
1 (ξ2)T00(1)

(B.29)
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For case (i) we need

J2
1 (ξ1)

J2
1 (ξ2)

∼=
mne

βy2

2β
(B.30)

Hence

h
TT (i)
00 (2, 2) =

π

3βM3
5

∑
n

m2
n

~p 2 +m2
n

T00(2) (B.31)

and after going to the continuum limit and performing the integrations over coordinate

space and the mass spectrum we find in the limit βr � 1

h
TT (i)
00 (2, 2) =

eβy2

6πβ2M3
5 r

4
T00(2) (B.32)

For case (ii) we have

J2
1 (ξ1)

J2
1 (ξ2)

∼=
ξ2cos

2(ξ1 − 3π
4

)

ξ1cos2(ξ2 − 3π
4

)
= eβy2 (B.33)

which in the limit βr � 1 gives

h
TT (ii)
00 (2, 2) =

eβy2

3π2M3
5 r

2
T00(2) (B.34)
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