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ABSTRACT 

 

Temperature Behavior in the Build Section of Multilateral Wells. (August 2005) 

Analis Romero Lugo, B.S., Universidad del Zulia  

     Chair of Advisory Committee:    Dr. A. Daniel Hill 
             

 Intelligent well completions are increasingly being used in horizontal, multilateral, and 

multi-branching wells. Such completions are equipped with permanent sensors to 

measure temperature and pressure profiles, which must then be interpreted to determine 

the inflow profiles of the various phases produced that are needed to characterize the 

well’s performance. Distributed temperature measurements, using fiber optics in 

particular, are becoming increasingly more often applied. 

The value of an intelligent completion hinges on our capability to extract such inflow 

profiles or, at a minimum, to locate the entry locations of undesirable water or gas 

entries.  

In this research, a model of temperature behavior in multilateral wells was developed. 

The model predicts the temperature profiles in the build sections connecting the laterals 

to one another or to a main wellbore, thus accounting for the changing well angle 

relative to the temperature profile in the earth. In addition, energy balance equations 

applied at each junction predict the effects of mixing on the temperature above each 

junction. 

The multilateral wellbore temperature model was applied to a wide range of cases, in 

order to determine the conditions for which intelligent completions would be most 

useful. Parameters that were varied for this experiment included fluid thermal properties, 

absolute values of temperature and pressure, geothermal gradients, flow rates from each 
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lateral, and the trajectories of each build section. From this parametric study, guidelines 

for an optimal application of intelligent well completion are represented.  
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background and Purpose of Research 

Well monitoring, surveillance, and problem diagnosis are all important parts of the 

production business, and many production parameters are monitored during this process. 

Of these, flow rate and fluid type (phase) are two of the most fundamental of the 

accumulated measurements. Over the years, many instruments have been used to collect 

and process flow data, including production logging tools, surface test separators, and 

surface multiphase flow-meters, but none of these provide a complete information 

solution. Production logs provide flow information as a function of depth, but only 

intermittently over time. In addition, production logging tools are complicated, 

especially those designed for deviations beyond 45o from vertical, which is the case in a 

multilateral well. The traditional method of flow analysis relies on routine periodic 

production testing through a separator, and back allocation of production over the 

intervals between tests. Restricted access to a test separator often imposes constraints on 

when this information can be gathered. The empirical relationships used to estimate the 

rates between valid tests are often vulnerable to those errors and uncertainties associated 

with varying flow conditions and data limitations. Permanent downhole sensors are the 

solution to all these problems. They are used to measure temperature and pressure 

profiles, are reliable and simple, can be operated at any deviation angle, and are capable 

of real-time response. Distributed temperature measurements using fiber optics, in 

particular, are becoming increasingly applied. The value of an intelligently completed 

design hinges on our capability to extract such inflow profiles or, at a minimum, to 

identify the entry locations of undesirable water or gas entries. 

_________________ 

This thesis follows the style of the SPE Reservoir Evaluation and Engineering Journal. 
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1.2 Objectives 

The main objective of this thesis is to predict temperature profiles in the build sections 

connecting the laterals to one another or to a main wellbore, thus accounting for the 

changing well angle relative to the temperature profile in the earth. In addition, energy 

balance equations applied at each junction will predict the effects of mixing on the 

temperature above each junction. 

The results of this work will allow researches to have a better idea of the effects of those 

parameters such as fluid thermal properties, geothermal gradients, flow rates from each 

lateral, and the trajectories of each build section have in absolutes temperatures. In the 

case of modeling the wellbore junctions and having commingled fluids with different 

properties, the mixing method1 was first reviewed. According to this method, an 

enthalpy balance is applied to the mixing of two streams of fluid at different 

temperatures into one combined stream, in order to determine the relative flow rates of 

those streams.  

 

1.3 Problem Description 

The build section can be defined as a section of wellbore that is closed to the formation 

and that connects the productive lateral to the main wellbore or to another lateral. The 

temperature and pressure profiles of these build sections are needed to relate the 

temperature and the pressure at the junction locations to the temperatures and pressures 

of the source laterals. 

Sensitivity studies for both single phase liquid and single phase gas are presented in this 

work where the temperature at the junction is considered to be a function of the flow 

rates from each lateral, as well as the distance between the laterals, the fluid thermal 

properties, and the geothermal gradient. In the plots used to analyze those effects, lines 

with a maximum value were observed when lateral 1 had a higher flow rate than lateral 

2, and lines with a minimum value were observed when lateral 2 had a higher flow rate 
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than lateral 1, which made it easy to distinguish what variables have more significant 

effects than others.  

 

1.4 Motivation: Wells of the Future 

The motivation for this study is the belief that intelligent completions, specifically those 

with distributed temperature sensors, will be the future tool in improving well 

performance. These tools allow rapid reaction in the case of gas or water breakthrough 

by allowing a quick shutting in of the control valve of a lateral as well as improving the 

control and production measurements by not forcing engineers to wait for production 

tests to identify problems in the well. These intelligent completions will also maximize 

ultimate recovery, minimize operating expenditures by reducing the number of visits 

from the operator to the field, reduce well intervention costs, and accelerate production 

by increasing the contact area between the wellbore and the reservoir. A model of 

temperature behavior will help operators to understand and utilize intelligent completion 

more efficiently. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 Previous Models 

During the past few years, several authors have studied practical methods for the 

calculation of temperatures in the wellbore, understanding that there is transmission of 

heat between the fluids and the earth as a result of the variation between the fluid and 

geothermal temperature. In order to develop a model to determine the temperature 

profile of build sections, several works to predict this temperature profile in a flowing 

well were studied.  

Ramey2 established a solution for the temperature distribution through the wellbore for 

injection and production wells of either a single-phase incompressible liquid, or a single-

phase ideal gas, taking into consideration that heat transmission in the wellbore was 

similar to heat flow in the formation. Also, the physical and thermal properties of the 

earth and wellbore were assumed to be constant with the temperature resulting in a 

steady-state solution. Solutions for radial heat conduction from an infinitely long 

cylinder were presented by Carslaw and Jaeger3 to estimate the time function for a 

cylinder losing heat at a constant temperature, a constant heat-flux line source, and a loss 

of heat under the radiation or convection boundary condition. Figure 2.1 shows that all 

solutions, in the end, come together to form the same line. In earlier stages this solution 

could generate significant errors, but for long times of greater duration, the line source 

can be expressed by, the following equation: 

t
r

t

r
tf

αα 4
29.0

2
ln)(

2'
2

'
2 +−−=  ……………………………..(2.1) 
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Parameters such as overall heat transfer has been calculated accounting for all the 

resistances to heat flow presented by the fluid inside the tubing, the tubing wall, fluids or 

solids in the annulus, and the casing wall. However, some assumptions made to calculate 

this variable are as follows: 

1. Due to the higher thermal conductivity of steel, the thermal resistance of the pipe 

is neglected. 

2. The thermal resistance from liquid water or condensing steam can be ignored 

because of the high value of the corresponding heat transfer film coefficients. 

3. The resistance of cement must be considered because of its low conductivity. 

 

Fig. 2.1- Transient heat conduction in an infinite radial system3. 

 



  

    

6 
 

Chen4 developed a model to predict the performance of multilateral wells which 

calculates the production of each lateral that couples the reservoir inflow model to the 

wellbore model. Also, the pressure drop in the horizontal lateral was taken into account 

in this model. Then, the horizontal lateral model was incorporated into a well system 

with more than one lateral commingled to the main wellbore. As a result of the 

production of each lateral, the overall production rate and the pressure in the well system 

can be predicted by the multilateral deliverability model. Single phase and two phase 

wellbore models were used for flow in the laterals. The single phase lateral flow model 

includes accelerational and frictional pressure drops, and the two phase lateral flow 

model applies the Beggs-Brill correlation (or Ouyang’s homogeneous model) which 

accounts for the consequences of the wall inflow, acceleration, and flow patterns. The 

pressure drop in the tubing from the upper most lateral to the surface was determined 

using a two phase flow correlation. 

Two models were used before this new model for calculating the horizontal laterals: 

1. The steady state model using a potential fluid flow was proposed by Joshi5 

which, in general, underestimates productivity. 

2. The straightforward model to calculate productivity at a constant flowing 

bottomhole pressure or a constant rate from a bounded reservoir was presented 

by Babu and Odeh6. 

Sagar7 derived a model to predict temperature profiles in two-phase flowing wells based 

on the steady state energy equation, which allows for the heat transfer mechanisms 

found in a wellbore. It was developed with measured temperature data from 392 vertical 

wells, accounting for kinetic energy effects and Joule-Thomson expansion.   

The correlation developed by multiple regression analysis is a function of known 

physical properties (independent variables) specific to a length interval. The correlation 

should be used for rates less than 5.0 lbm/sec based on the fact that Joule-Thomson and 

kinetic energy effects would tend to be less when a smaller amount of gas is present, so 
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for higher flow rates than that, the value of the result is very close to zero. Also, the 

radial well dimensions and oil fractions do not contribute to the Joule-Thomson and 

kinetic energy effects. 

+×+×−×+×+×−= −−−−−
APIgLc RwtpwhF γ56463 10229.310047.110906.110006.110978.2

 

Gg g3551.010009.4 3 −×+ − γ  ……………………………..(2.2) 

The Joule-Thomson coefficient states that the quantity of heating or cooling is due to 

pressure changes within a fluid flowing up the well. Joule-Thomson cooling would 

normally take place in certain gas-condensate systems and could be determined from the 

mixture composition. Also, it is usually associated with a higher gas component in the 

two phase mixture. Joule-Thomson heating is present in wells having comparatively 

high liquid holdups attributable to either lower gas/liquid ratios or higher wellhead 

pressures. Another term that tends to be relatively small except for high gas/liquid ratios 

and low wellhead pressures is kinetic energy. 

In addition, several benefits were found by the above listed authors in predicting 

temperature distribution for two phase flows: 

1. The design of production facilities would be improved.  

2. Calculations for the two phase flow pressure drop predictions would be more 

exact. 

3. The prediction of temperatures at valve depth would improve gas lift design, 

improving the predictability of valve throughput.  

Hasan and Kabir,8,9 as well as many other authors, have established that the temperature 

of the fluid in the wellbore depends upon of the rate of heat loss from the wellbore to the 

formation, depth and time. 
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The model determines temperatures in the wellbore through steady state two phase 

conditions, including a new solution for the thermal diffusivity equation and the 

consequence of both conductive and convective heat transport for the wellbore system 

and formation. Then the model shows that as free gas increases, the temperature at the 

wellhead decreases due to the Joule-Thomson cooling effect.  

To determine the formation temperature at distribution, the initial formation temperature 

was assumed to stay time-invariant, and the outer boundary formation temperature 

would not to be modified by radial distance. 

This model permits conduction and convection for the fluid in the tubing-casing annulus 

to calculate the overall heat transfer. In the past, convection was not taken into account 

the resulting high temperature of the fluid. 
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CHAPTER III 

 

FUNDAMENTALS 

 

3.1 Model Description 

We have formulated two models to describe the temperature profiles along the variable 

inclination build sections of multilateral wells, and to describe the resulting temperature 

when two fluid streams are mixed at a multilateral well junction. To model the 

temperature profile in a build section, we adapted Ramey’s2 method to the variable 

inclination geometry of the build section, assuming a constant radius of curvature 

between the horizontal wellbore and the main wellbore. Other trajectories can be 

handled in a manner similar to that presented here. To determine the temperature of the 

mixed stream just above the junction, we applied an enthalpy balance to two streams 

commingled at the junction.   

 

3.2 Build Section 

The equations describing temperature along the build section for single-phase liquid and 

gas are described in Appendix A. The expression for single-phase liquid for the first 

build segment is:  

( ) ( )
�
�
�

�

�
�
�

�
��
�

	



�

�
�
�

	


�

� −−−−−= A
A

Lz
zLgTT GGibhf exp1sinα ……………………………….….(3.1) 

And for any other segment is: 

{ } ( )[ ]ALzAgTTAgTT GGiknownfGGif /expsinsin −−−++= αα ……………….….(3.2) 

Correspondingly, the expression for single-phase gas for the first build segment is: 
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We approximated the trajectory of a build section with a constant radius of curvature by 

a number of discrete wellbore increments, each having a constant angle described in 

Appendix B. The temperature profile was developed beginning with the lowest segment, 

which is connected to a horizontal lateral of known temperature. Moving up the build 

section, each lateral segment’s temperature was based on the temperature of the previous 

segment.     

 

3.3 Junction Mixing Model 

For the case of modeling the wellbore junctions and having commingled fluids with 

different properties, the mixing method1 was reviewed. According to this method, an 

enthalpy balance applied to the mixing of two streams of fluid at different temperatures 

into one combined stream is used to determine the relative flow rates of those streams.  

The development of the equation to calculate the temperature at the mixing point when 

the two streams are commingled is shown in Appendix A as: 

2211

222111

pp

pp
m CwCw

TCwTCw
T

+
+

= ……………………………….….(3.5) 

When the two streams commingling at the junction are the same fluid, so that all heat 

capacities are the same, combining Eq. 3.5 with the mass balance at the junction 
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1 2mw w w= + ……………………………….….(3.6) 

can be arranged to yield: 

21

1 2

m

m

T Tw
w T T

−
=

− ……………………………….….(3.7) 

Thus, if there are measurable temperatures differences between T1, T2 and Tm, the 

fraction of the total flow from each lateral can be determined by measuring these 

temperatures. This describes the mixing method1 used for temperature log interpretation. 
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CHAPTER IV 

 

SENSITIVITIES STUDIES AND RESULTS 

 

In this chapter, results of temperature profiles along the build section with different 

trajectories were calculated. First, the temperature profile for the variable angle 

trajectory was obtained and compared to a temperature profile with a constant angle of 

45o. Additionally, temperature profiles for multilateral wells with two single-phase 

liquid laterals, and temperature profiles for multilateral wells with two single-phase gas 

laterals were calculated using the model for single-phase liquid and gas, as well as 

junction mixing, in order to determine whether the mixing method1 used in temperature 

log interpretation could be used to interpret the relative flow rates from different laterals.  

 

4.1 Temperature Profiles along the Build Section with Different Trajectories 

Temperature profiles for several constant angles (90o, 45o, 25o, and 10.5o) and variable 

angles along the build section were calculated for an oil flow rate of 3000 STB/D, as 

shown in Fig. 4.1, using equations 3.1 and 3.2. Table 4.1 summarizes other important 

characteristics of the reservoir used. As the well deviation from the vertical increases, 

the temperature at the top of the build section decreases. This is because of the increased 

length of the wellbore in the build section as the deviation increases, which in turn 

increases the length of time for the relatively hot wellbore fluid to be cooled by the 

surrounding formation.  

The temperature profile for the variable angle trajectory was surprisingly close to the 

profile obtained with a constant angle of 45o. Even thought these trajectories are quite 

different (see Figure 4.2), the net heat transfer from the wellbore fluid to the formation 

was similar. 
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Table 4.1 Main Characteristics of the Reservoir - Build Section with Different 

Trajectories. 

Reservoir characteristic Values 

Geothermal gradient  0.0274 oF/ft 

Oil heat capacity 0.485 Btu/lbmoF  

Wellbore diameter 7.5 in 

Outside casing diameter 5.5 in 

Inside casing diameter 5.047 in 

Thermal conductivity of cement  96.5 Btu/D ft oF 

Thermal conductivity of earth  33.6 Btu/D ft oF  
oAPI 35 
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Fig. 4.1 Temperature profiles along the build section (3000 STB/D). 
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Fig. 4.2 Constant radius of curvature and constant angle trajectory.  

 

At a much lower flow rate (200 STB/D), the wellbore cools much more quickly (see 

Figure 4.3) than at higher flow rate (3000 STB/D), as shown in Figure 4.1, because of 

the increased length of time for the relatively hot wellbore fluid to be cooled by the 

surrounding formation.  

For the vertical case, the temperature at the top of the build section is less than 10 oF 

higher than the geothermal temperature; a highly deviated (10.5 oF from the horizontal), 

constant angle build section has a temperature at the top of the build section that is only 

2 oF different from the geothermal temperature. 
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Fig. 4.3 Temperature profiles along the build section (200 STB/D). 

 

4.2 Temperature Profiles for Multilaterals: Dual-Lateral with Single-Phase Liquid 

Data from Zuata Field in the Orinoco heavy oil belt10,11 were used to calculate the 

temperature profiles for multilateral wells with two single-phase liquid laterals, using the 

model for single-phase liquid and junction mixing. In this area, dual-laterals are 

expected to achieve a target oil production rate per single well of approximately 3000 

STB/D by increasing the contact area between the wellbore and the reservoir. Due to the 

depth of the reservoir (1500 ft – 2000 ft), the temperatures were moderately low. Down-

hole temperature at the total vertical depth was measured to be approximately 120 oF, 

corresponding to an approximate temperature gradient of 0.02oF/ft, as can be seen in 

Table 4.2. For the three cases studied, lateral 1 produced 2000 STB/D and lateral 2 

produced 3000 STB/D, with an oil gravity of 10o API for both laterals. 

To determine whether the mixing method1 used in the temperature log interpretation 

could be used to interpret the relative flow rates from different laterals, we simulated 
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dual laterals produced from different depths as shown in Fig. 4.4. The mixing method 

depends on the fact that fluids entering a well at different depths have different 

temperatures due to the geothermal gradient. Similarly, if fluids from two branches of a 

multilateral have different temperatures before commingling at a junction, the resulting 

intermediate temperature of the mixed stream should be proportional to the rates from 

each lateral. 

 

Fig. 4.4 Dual lateral geometry for examples. 

 

Figures 4.5 – 4.7 show the predicted temperature profiles for laterals completed at the 

same depth, laterals completed 500 vertical feet apart, and laterals completed 1000 

vertical feet apart. For laterals completed at the same depth (see Figure 4.5), the streams 

from the two laterals arrive at the junction at slightly different temperatures because of 

the different flow rates in each lateral. However, the difference is so small (about 0.5 oF) 

that interpretation of the junction mixing is probably impossible. When the two laterals 

are spaced at a significant distance (see Figures 4.6 and 4.7), the difference in the 

temperatures of the fluid from the two laterals is significant enough that the mixing 

method can be applied. The mixing temperature in these cases is different enough from 
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the temperature of the lateral (1 oF or more) to be readily measured with current 

distributed temperature sensor devices. 

Table 4.2 Main Characteristics of the Reservoir - Temperature Profiles for 

Multilaterals: Dual-Lateral with Single-Phase Liquid. 

Reservoir characteristic Lateral 1 Lateral 2 

Geothermal gradient  0.02 oF/ft 0.02 oF/ft 

Oil heat capacity 0.485 Btu/lbmoF  0.485 Btu/lbmoF  

Wellbore diameter 7.5 in 7.5 in 

Outside casing diameter 5.5 in 5.5 in 

Inside casing diameter 5.047 in 5.047 in 

Thermal conductivity of cement  96.5 Btu/D ft oF 96.5 Btu/D ft oF 

Thermal conductivity of earth  33.6 Btu/D ft oF  33.6 Btu/D ft oF  
oAPI 10 10 
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Fig. 4.5 Build section temperature profiles with liquid production at the 
same depth. 



  

    

18 
 

1000

1500

2000

2500

3000

3500

90 95 100 105 110 115 120 125 130 135 140

Temperature,  oF 

D
ep

th
, f

t

Geothermal Build section lateral 1: 2000 STB/D
Build section lateral 2: 3000 STB/D After mixing at junction: Constant Angle
Between laterals

 

Fig. 4.6 Build section temperature profiles with liquid production at depths 
spaced 500 feet apart. 
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Fig. 4.7 Build section temperature profiles with liquid production at depths 
spaced 1000 feet apart. 
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When one lateral is producing at a much lower rate than the other, a sizable temperature 

difference at the junction may occur during production from the same depth at both 

laterals. Figure 4.8 shows the temperature profiles for production rates of 500 STB/D for 

lateral 1, and 3000 STB/D for lateral 2, both produced at the same depth. The difference 

in the temperatures of the streams arriving at the junction is significantly greater than the 

case with similar rates shown in Figure 4.5. 
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Fig. 4.8 Build section temperature profiles with different rates of 3000 
STB/D and 500 STB/D. 

 

4.3 Cases with Different Fractions of Total Production from Each Lateral: Dual-

Lateral with Single-Phase Liquid 

Several cases were used for calculations for different fractions of the total production 

from each lateral, for example if the total production of the well was 5000 STB/D, 20% - 

80% means, lateral 1 is producing 1000 STB/D and lateral 2 is producing 4000 STB/D. 

In these examples, lateral 1 was always kept at the same level, and lateral 2 had a 
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changing depth (0 ft, 500 ft, and 1000 ft) from lateral 1, and the difference of 

temperature is calculated at the junction.  

The difference in temperature at the junction was calculated in the following fashion: 

lateral 2 minus lateral 1. Therefore, when the difference is positive it is because lateral 2 

has a higher temperature than lateral 1. The total flow rate was kept constant and the 

fraction flow rate of each lateral changed, and calculations were made for different total 

flow rates. 

When there is a difference in lateral production, we can see that the difference in 

temperature between the laterals increases as the total flow rate increases, as is 

illustrated in Figures 4.9 – 4.11, but there is one point when this difference starts 

decreasing as the flow rate increases. All the differences in depth between the laterals are 

0 ft, 500 ft and 1000 ft. This is due to the fact that after certain flow rates (especially 

high flow rates), the lateral which is producing less increases temperature in a more 

rapid manner than the lateral which is producing more. This effect is delayed when there 

is a difference in depth between the laterals. Even though lateral 1 increases rapidly 

temperature, lateral 2 also increases because it is deeper than lateral 1. However, 

eventually the difference in temperature will decrease, even for very high flow rate. For 

very high flow rate the difference in temperature between the laterals at the junction 

would have a small value, but for those cases where there is a difference in depth, the 

resulting effect would be delayed.  
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Fig. 4.9 Fraction of total production from each lateral: 20% - 80%. 
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Fig. 4.10 Fraction of total production from each lateral: 30% - 70%. 
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Fig. 4.11 Fraction of total production from each lateral: 
40% - 60%. 

 

When the two laterals produce the same flow rate and are at the same level, there is not 

difference in temperatures at the junction. Therefore, the mixing method can not be 

applied (as can be seen in Figure 4-12). The mixing method can be applied when there is 

a difference in depth between the laterals, and the total flow rate is large enough to have 

an appreciable temperature difference at the junction measurable by a sensor. 
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Fig. 4.12 Fraction of total production from each lateral: 50% - 50%. 

 
 

When a lateral which is producing more is kept at the same level while the other lateral 

which is producing less is moved to changing depths, there is one instant when there is 

no difference in temperature at the junction (as shown in Figures 4.13 - 4.15). This level 

is reached when the effect of having a high flow rate from lateral 1 has the same effect 

as having a difference in depth from lateral 2, which has a lower flow rate. If the laterals 

have a significant difference in flow rate, this effect will not be visible. 

From Figures 4.13 – 4.15 we see that the absolute difference in temperature at the 

junction for different total flow rates can be seen to be smaller for all cases, because the 

effect of having a higher flow rate is larger than having depth differences between the 

laterals. Also, in this case lateral 1 will always have a higher temperature than lateral 2, 

because of its higher flow rate. However, when the total flow rate increases, there is a 

point where lateral 2 has a higher temperature than lateral 1. 



  

    

24 
 

When there is a difference in the lateral’s production, it can be seen that the difference in 

temperature between the laterals usually decreases as the total flow rate increases. 

However, there is one point where this difference begins to increase as the flow rate 

increases for all the differences in depth. These differences between the laterals are 0 

feet, 500 feet and 1000 feet as shown in Figures 4.13 – 4.15. This is due to the fact that 

above certain flow rates (high flow rates), the lateral producing less increases in 

temperature in a more rapidly manner than the lateral producing more. When there is a 

difference in depth between the laterals, the lateral which has less production but a 

changing depth will increase in temperature even more rapidly than if the laterals are at 

the same level. Also, when both laterals are at the same level, the difference in 

temperature decreases for high flow rates. Therefore, for high flow rates and laterals at 

the same level, the difference in temperature at the junction has a low value. 
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Fig. 4.13 Fraction of total production from each lateral: 60% - 40%. 
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Fig. 4.14 Fraction of total production from each lateral: 70% - 30%. 
 
 

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1000 2000 3000 4000 5000 6000

Total flow rate, STB/D

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 a

t t
he

 ju
nc

tio
n,

 o F

Difference in depth between laterals of 0 ft Difference in depth between laterals of 500 ft
Difference in depth between laterals of 1000 ft  

Fig. 4.15 Fraction of total production from each lateral: 80% - 20%. 
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4.4 Temperature Profiles for Multilaterals: Dual-Lateral with Single-Phase Gas 

Typical data from the Parks Field Unit in west Texas12 shown in Table 4.3 were used to 

calculate the temperature profiles for multilateral wells with two single-phase gas 

laterals, using the model for single-phase gas in the build section and mixing at the 

junction. Wells are design to produce gas from the upper and lower porosity lenses of 

geologically constrained Devonian limestone. The results from temperature profiles for 

this case are shown in Figures 4.16 – 4.18, where lateral 1 produces 700 Mscf/D and 

lateral 2 produces 1.7 MMscf/D. The geothermal temperature gradient used was 

0.016oF/ ft.  

Table 4.3 Main Characteristics of the Reservoir - Temperature Profiles for 

Multilaterals: Dual-Lateral with Single-Phase Gas. 

Reservoir characteristic Lateral 1 Lateral 2 

Geothermal gradient  0.016 oF/ft 0.016 oF/ft 

Oil heat capacity 0.3 Btu/lbmoF  0.3 Btu/lbmoF  

Wellbore diameter 7.5 in 7.5 in 

Outside casing diameter 5.5 in 5.5 in 

Inside casing diameter 5.047 in 5.047 in 

Thermal conductivity of cement  96.5 Btu/D ft oF 96.5 Btu/D ft oF 

Thermal conductivity of earth  33.6 Btu/D ft oF  33.6 Btu/D ft oF  

Gas gravity 1.04 1.04 

 

The results for these gas production cases are similar to those for an oil producing dual 

lateral. The larger the vertical separation between the laterals, the bigger the temperature 

difference between the produced streams arriving at the junction. For a vertical spacing 

of 500 or 1000 feet, the temperature difference between the streams is easily discernible, 

allowing the application of the mixing method to interpret the relative flow rates from 

the laterals. 
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Fig. 4.16 Build section temperature profiles with gas production at the same 
depth. 
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Fig. 4.17 Build section temperature profiles with gas production at depths 
spaced 500 feet apart. 
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Fig. 4.18 Build section temperature profiles with gas production at depths 
spaced 1000 feet apart. 

 

4.5 Summary 

Based on the results and sensitivities cases studied, several interesting observations 

follow: 1) when we consider the effect of variable angles on the build section, we were 

able to calculate different temperature profiles for variable angles and different constant 

angles in order to compare the effects. 2) From the model for single-phase liquid and gas 

and junction mixing, the temperature profiles for multilateral wells with two single-

phase liquid laterals and two single-phase gases were analyzed in this research. As a 

result, we were able to obtain different temperature profiles for different depths and flow 

rates between the laterals. This means that the effect of different depths and flow rates 

are significant and need to be taken into account.  
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Also, these results helped to determine whether the mixing method1 used in temperature 

log interpretation could also be used to interpret the relative flow rates from different 

laterals. 
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CHAPTER V 

 

CONCLUSIONS 

 

We have developed a model to predict temperature profiles in the variable angle build 

sections of a multilateral well by applying the method developed by Ramey to this 

geometry. In addition, we have applied an energy balance to a multilateral junction 

where two flow streams are commingled. From these models of temperature behavior in 

multilaterals we find: 

1. The temperature of the fluids produced from two laterals will differ significantly 

at the junction when the streams are commingled, if the laterals are producing 

from reservoirs at different depths. This is because the fluids produced have 

different temperatures, due to the geothermal gradient. 

2. A significant temperature difference between the two streams can also occur 

when the flow rates from the two laterals differ greatly. 

3. When measurable differences between the temperatures just below a junction 

occur, the mixing method of production log interpretation can be used to estimate 

the fraction of flow produced from each lateral. 
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NOMENCLATURE 

 
 
A =     inverse relaxation parameter, ft 
Cp =     specific heat capacity, BTU/lbm oF 
Cj =     Joule-Thomson coefficient, oF/psi 
CI =     integration constant 
D =     length of a discrete segment of build section, ft 
f(t) =     time function, dimensionless 
g =     acceleration of gravity, 32.2 ft/s2 

gc =     conversion factor, 32.17 lbm-ft/lbf-s2 

gG =     geothermal gradient, oF/ft 
H =     enthalpy per unit mass, BTU/lbm 

J =     mechanical equivalent of heat, 778 ft-lbf/BTU 

kcem =     conductivity of cement, Btu/hr-ft- oF 
ke =     conductivity of earth or formation, Btu/hr-ft- oF 
L =     total measure of well depth, ft 
p =     pressure, psi 
Q =     heat transfer rate per unit length of wellbore, Btu/hr-ft 
R =     constant radius between the main wellbore and horizontal lateral,ft 
r =     radius, ft 
t =     production time, hr 
T =     temperature, oF 
TG =     formation temperature at any radial distance, oF 
TGi =     formation temperature at initial condition, oF 
TGibh =     static formation temperature at the bottom hole, oF 
Tf =     fluid temperature, oF  
Tf (known)=     last fluid temperature of final segment, oF 
Tm =     mixed stream temperature, oF 
U =     overall heat transfer coefficient, Btu/hr-ft2- oF 
v =     fluid velocity, ft/s 
V =     specific volume 
w =     mass flow rate of fluid, lbm/s 
X =     horizontal length of each discrete segment, ft 
z =     variable well depth from surface, ft 
α         =     wellbore inclination with horizontal, degrees 
γ, λ =     angles between horizontals of each discrete segment, ft 
ρ =     density, lbm/ft3 

σ =     thermal diffusivity, ft2/sec 
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Subscripts 
ci =     casing inside 
co =     casing outside 
m =     mixed stream 
to =     tubing outside 
wb =     wellbore 
1 =     stream 1 
2 =     stream 2 
 
 

2.  

3.  
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APPENDIX A 

 

DERIVATION OF FLUID TEMPERATURE MODELS 

 

In this appendix, we derive equations describing the temperature in a variable angle 

build section and at a well junction, when two streams mix. 

Build Section 

To determine the temperature profile of a build section where the well inclination is 

changing, we extended Ramey’s2 method to this flow geometry, as follows: 

Applying an energy balance for a segment along the build section as a control volume as 

shown in Figure A-1, yields 

w
Q

dz
dv

Jg
v

Jg
g

dz
dH

cc

±=++ αsin
……………………………..…….(A-1) 

 

Fig. A-1 Control volume  
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The enthalpy is defined by 

dpCCdTCdH pjfp −= ……………………………..…….(A-2) 

By substituting equation (A-2) into (A-1), we get 

  �
�

�
�
�

�
−−+=

dz
dv

Jg
v

Jg
g

w
Q

Cdz
dp

C
dz

dT

ccp
J

f αsin1
……………………………..…….(A-3) 

The heat flow through the completion can be represented as 

 ( )wbftoto TTUrQ −−= π2  ……………………………..…….(A-4) 

and the heat loss to the formation as 

( ) ( )Giwb
e TT

tf
k

Q −−≡
π2

……………………………..…….(A-5) 

Combining equations (A-4) and (A-5) yields 

( )Gif
p TT

A

wC
Q −−≡ ……………………………..…….(A-6) 

where A is defined as 
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……………………………..…….(A-7) 

Substituting equation (A-6) into (A-3), the equation becomes (A-8): 

( )
dz
dp

C
dz
dv

JgC
v

JgC
g

A

TT

dz

dT
J

cpcp

Giff +−−
−

=
αsin

……………………………..…….(A-8) 
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Single-Phase Liquid 

The following assumptions were made in order to develop the equation for single-phase 

liquid: incompressible fluids; kinetic energy becomes negligible; flowing friction 

becomes negligible, radiation and convection coefficients are negligible and can be 

ignored for the calculation of overall heat transfer. Also, because steel has a high thermal 

conductivity, the thermal resistance of the pipe and casing are negligible as compared to 

the thermal resistance of the material in the casing. 

For single phase liquid flow, the static head loss nearly equals the total pressure gradient.  

αρ sin�
�
�

	




�

�
=

cg
g

dz
dp

……………………………..…….(A-9) 

Liquid density variation with pressure is usually very small, so the Joule-Thomson 

coefficient can be defined as 

ppTp
j CC

V
p
H

C
C

ρ
11

==�
�

�
�
�

�

∂
∂

≡ ……………………………..…….(A-10) 

and the final energy balance becomes 

( )
A

TT

dz

dT Giff −
±= ……………………………..…….(A-11) 

where 

( ) αsinGGibhGi gzLTT −−= ……………………………..…….(A-12) 

Substituting equation (A-12) into (A-11), the equation becomes 

( )[ ]{ }αsin
1

GGibhf
f gzLTT

Adz

dT
−−−= ……………………………..…….(A-13) 
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Solving the first-order linear differential equation with the integration factor method 

yields 

( )
A

Lz
CAgTT GGif

−++= expsin 1α ……………………………..…….(A-14) 

( ) ( )
A

Lz
CAggzLTT IGGGibhf

−++−−= expsinsin αα ……………………………..…….(A-15) 

 

Boundary Conditions for Single-Phase Liquid 

For fluid coming from the formation at the bottom hole location (z=L) fluid temperature 

and geothermal temperature are the same (Tf = TGibh). The integration constant for this 

boundary condition yields 

αsinGI AgC −= ……………………………..…….(A-16) 

Substituting equation (A-16) into (A-15), the equation becomes 
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�
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A

Lz
zLgTT GGibhf exp1sinα ……………………………..…….(A-17) 

For other segments, the initial fluid temperature is equal to the last fluid temperature of 

the last segment. 

 

( ) αsinGGifI AgTknownTC −−= ……………………………..…….(A-18) 

 

( )[ ] ( )
A

Lz
AgTknownTAgTT GGifGGif

−−−++= expsinsin αα ……………………………..…….(A-19) 
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Single-Phase Gas 

In the case of single-phase gas the static head loss is not the same as the total pressure 

gradient, but these two terms together can be neglected for gases a low pressure. Solving 

the equation (A-8) yields 

( )[ ]ALzC
JgC

g
gATT I

cp
GGif /exp

sin
sin −+

�
�

�

	






�

�
−+= αα ……………………………..…….(A-20) 

 

Boundary Conditions for Single-Phase Gas 

For the first segment where fluid is coming from the formation at the bottom of the hole 

(z=L), the fluid temperature and the geothermal temperature are the same (Tf = TGibh). 

The integration constant for this boundary condition is 
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Substituting equation (A-21) into (A-20), the equation becomes  
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For other segments, the initial fluid temperature is equal to the last fluid temperature of 

the last segment. 
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Overall Heat Transfer Coefficient for Casing Flow 

The radiation and convection coefficients are negligible and can be ignored for the 

calculation of overall heat transfer. Also, because steel has a high thermal conductivity, 

the thermal resistance of the casing is negligible as compared to the thermal resistance of 

the casing, so the heat transfer coefficient is 

( ) 1
/ln12

−

�
�

�
�
�

�
=

cem

cowb

ci k
rr

r
U ……………………………..…….(A-25) 

 

Time Function f(t).   

Ramey2 presented procedures for finding the function f(t). For extended periods of time, 

it can be approximated by 

( ) 290.0
2

ln −−=
t

r
tf co

σ ……………………………..…….(A-26) 

 

Wellbore Junction (Mixing Point) 

Applying an energy balance to the wellbore junction system, considering no heat loss 

and gain during the mixing process, yields 

( ) ( ) 0222111 =−+− TTCwTTCw mpmp ……………………………..…….(A-27) 

And the temperature of a mixture can be defined by 
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The following equation was used to calculate the heat capacity of a mixture: 
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10.  
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APPENDIX B 

 
GEOMETRY OF THE BUILD SECTION 

 

The build section geometry was calculated assuming a constant radius of curvature 

between the horizontal wellbore and the main wellbore by a number of discrete wellbore 

increments of same the length, each having a constant angle. As a result, the build 

section presents variable inclination geometry, as shown in Figure B-1. Other trajectories 

can be handled in a similar manner to the one presented here.  

 

 

Fig. B-1 Geometry of Build Section  

 

Angle from Each Segment   

For the first discrete segment, in order to calculate the length of segment X1, the angle β 

was calculated using the equations B-1 and B-2 from trigonometric definitions, as shown 

in Figure B-2. 
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Fig. B-2 Demonstration of how to calculate segment X1  

11.  

( )
R

DDDDD
Sin 23456 ++++=β ……………………………..…….(B-1) 

    �
�

	


�

� ++++=
R

DDDDD 23456arcsinβ ….…………………….…………(B-2) 

Also, angles β and β’ are the same as that which is shown in Figure B-2, 

'ββ = …………………………………….(B-3) 

So, the length of X1 can be approximated by 

( ) RX ×= 'cos1 β …………………………………….(B-4) 

After calculating the length of segment X1, the calculations necessary to obtain the angle 

γ are based on knowing both lengths X1 and D1, and on using the definition of a tangent 

as follows (and is illustrated in Figure B-3): 
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( )
1

1tan
X
D

=γ …………………………………….(B-5) 

��
�

	



�

�
=

1

1arctan
X
Dγ …………………………………….(B-6) 

Knowing that the sum of the angles inside a triangle must be 180 degrees, and also 

knowing the value of two of the three angles (γ and 90 degrees), the angle λ can be 

calculated as follows:  

 

 
Fig. B-3 Demonstration of how to calculate the angle γγγγ  

 

( )90180 +−= γλ …………………………………….(B-7) 

Yielding the solution for α1 as 

λα −= 901 …………………………………….(B-8) 

For other discrete segments, the procedure to determine the length of segment X2 is the 

same as the one used to calculate the length of segment X1, but because the model was 

developed beginning with the lowest segment connected to a horizontal lateral, one of 

the distances of the triangle gets smaller as we move up. This can be seen in Figure B-4. 

Also, the procedure is repeated in order to calculate the other lengths, X3, X4, etc. until 

we get to the last segment.  
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( )
R

DDDD
Sin 3456 +++

=β ……………………………..…….(B-9) 

    �
�

	


�

� +++=
R

DDDD 3456arcsinβ ….…………………….…………(B-10) 

 

 

Fig. B-4 Demonstration of how to calculate segment X2   

 

Also, angles β and β’ are the same, as shown in Figure B-4. 

'ββ = …………………………………….(B-11) 

So, the length of X2 can be approximated by 

( ) RX ×= 'cos2 β …………………………………….(B-12) 
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After calculating the length of segment X2, the calculations to obtain the angle τ1 are 

based on knowing both lengths (X2-X1) and D2, and using the definition of a tangent as 

follows (and is illustrated in Figure B-5): 

 

Fig. B-5 Demonstration of how to calculate the angle ττττ1111  

( )
2

12
1tan

D
XX −

=τ …………………………………….(B-13) 

 

��
�

	



�

� −
=

2

12
1 arctan

D
XXτ …………………………………….(B-14) 

 

Yielding the solution for α2 as, 

 

( )12 90 τα −= …………………………………….(B-15) 

This procedure was repeated for all discrete segments until we reached the final 

segment. 
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