
 

 

EFFECT OF FLUE GAS IMPURITIES ON THE PROCESS OF INJECTION AND 

STORAGE OF CARBON DIOXIDE IN DEPLETED GAS RESERVOIRS 

 

 

A Thesis 

by 

MARJORIE C. NOGUEIRA DE MAGO 

 

 

Submitted to the Office of Graduate Studies of 
 Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

 

 
August 2005 

 

 

 

Major Subject: Petroleum Engineering 

 

 

 



 

 

EFFECT OF FLUE GAS IMPURITIES ON THE PROCESS OF INJECTION AND 

STORAGE OF CARBON DIOXIDE IN DEPLETED GAS RESERVOIRS 

 

 

A Thesis 

by 

MARJORIE C. NOGUEIRA DE MAGO 

 

 

Submitted to the Office of Graduate Studies of 
 Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Daulat D. Mamora 
Committee Members, Maria A. Barrufet 
   Ben Welch 
Head of Department,  Steve Holditch 
 

 
 

August 2005 
 

Major Subject: Petroleum Engineering 

 

 



iii 

ABSTRACT 
 

 

Effect of Flue Gas Impurities on the Process of Injection and Storage of Carbon Dioxide in 

Depleted Gas Reservoirs. (August 2005) 

Marjorie C. Nogueira de Mago, B.S., Simon Bolivar University 

Chair of Advisory Committee: Dr. Daulat D. Mamora 
 
 
 

 Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is 

a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto 

unrecoverable natural gas that could help defray the cost of CO2 sequestration. In this thesis, I 

report my findings on the effect of flue gas “impurities” on the displacement of natural gas during 

CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate 

samples. 

 In displacement experiments, corefloods were conducted at 1,500 psig and 70°C, in which 

flue gas was injected into an Austin chalk core containing initially methane.  Two types of flue 

gases were injected: dehydrated flue gas with 13.574 mole% CO2 (Gas A), and treated flue gas 

(N2, O2 and water removed) with 99.433 mole% CO2 (Gas B).  The main results of this study are 

as follows.  First, the dispersion coefficient increases with concentration of “impurities”. Gas A 

exhibits the largest dispersion coefficients, 0.18-0.25 cm2/min, compared to 0.13-0.15 cm2/min 

for Gas B, and 0.15 cm2/min for pure CO2.  Second, recovery of methane at breakthrough is 

relatively high, ranging from 86% OGIP for pure CO2, 74-90% OGIP for Gas B, and 79-81% for 

Gas A.  Lastly, injection of Gas A would sequester the least amount of CO2 as it contains about 

80 mole% nitrogen.  From the view point of sequestration, Gas A would be least desirable while 

Gas B appears to be the most desirable as separation cost would probably be cheaper than that for 

pure CO2 with similar gas recovery.     
For UCS tests, corefloods were conducted at 1,700 psig and 65°C in such a way that the cell 

throughput of CO2 simulates near-wellbore throughput.  This was achieved through increasing the 

injection rate and time of injection. Corefloods were followed by porosity measurement and UCS 

tests. Main results are presented as follows. First, the UCS of the rock was reduced by 

approximately 30% of its original value as a result of the dissolution process. Second, porosity 

profiles of rock samples increased up to 2.5% after corefloods. UCS test results indicate that CO2 

injection will cause weakening of near-wellbore formation rock. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 

1.1 Present Status of the Question 

Depleted gas reservoirs provide favorable conditions for the sequestration of large volumes of 

carbon dioxide. In addition, repressurization and displacement of natural gas by CO2 results in the 

recovery of significant amounts of unrecoverable gas reserves defraying the cost of carbon dioxide 

sequestration. Previous experiments with CO2 have shown that displacement of natural gas by 

supercritical CO2 is a very efficient process.1 However, CO2 sources are rarely pure. The cost of 

CO2 separation out of flue gas is significantly higher than that of transporting and injecting it into 

reservoirs. In practice, flue gas impurities such as SO2, NO2, CO, O2 and N2 are present in the CO2 

stream to be sequestered.2 Therefore, effects of these impurities on CO2 displacement efficiency 

need to be investigated.  

To make geologic sequestration of greenhouse gases an environmentally acceptable practice, 

it is necessary to understand how geologic formations will react to pre- and post-operational 

conditions, with a focus on the formations around the wellbore. The structural integrity of a 

reservoir formation is important not only to ensure that the gas does not return to the atmosphere 

gradually, but also because a sudden release of carbon dioxide in a populated area could be 

catastrophic. If carbon dioxide is injected into a carbonate reservoir or carbonate-bearing sandstone 

reservoir, calcite dissolution could occur. Weakening of near-wellbore formation rock may result in 

subsidence and possibly wellbore collapse.3   

This thesis presents the results of coreflood experiments in which a CO2 stream with 

impurities displaced C1 at pressures and temperatures encountered in the field. An analytical model 

based on experimental results was developed in order to estimate the gain in gas recovery and 

sweep efficiency. Changes in the rock compressive strength of Austin limestone samples were 

measured after injecting CO2 for a prolonged period of time into these reservoir rocks.  

 

 

 

_________________________ 

This thesis follows the style and format of the Journal of Petroleum Technology.  
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1.2 Objectives 

The main objectives of this research are as follows: 

• Evaluate experimentally the effect of flue gas impurities on CO2 displacement efficiency of 

natural gas (methane) in Austin chalk core samples: C1 recovery (% OGIP), breakthrough 

time, and dispersion coefficient of the injected CO2 mixture. 

• Quantify experimentally the effect of carbon dioxide injection on calcite dissolution and 

thus the change in compressive strength of the Austin chalk samples.  
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CHAPTER II 
 
 

LITERATURE REVIEW 
 
 

 Carbon dioxide is one of the major contributors to the greenhouse effect. When the solar 

energy passes through the atmosphere, it heats the earth surface. Greenhouse gases trap some of this 

heat to keep the atmosphere warm. Greenhouse gases include CO2, methane, water vapor, NO2, and 

aerosols. Without the natural greenhouse effect, the average temperature of the earth’s surface 

would be on the order of -2°F, rather than the 57°F actually observed. 

 Emissions from burning fossil fuels are the major contributor to the increase in atmospheric 

CO2 levels that can potentially lead to global climate change.  Environmentalists predict that the 

global surface temperature can rise 1 to 4.5 °F in the next 50 years, and 2.2 to 10°F in the next 

century.2  In this respect, strategies to reduce or limit gaseous carbon production from fossil fuel 

use need to be developed. 

 Worldwide environmental concerns regarding greenhouse gases have resulted in new 

regulations to be passed and higher emission standards to be enforced. Under the Kyoto protocol, 

developed countries are committed to reduce emissions of greenhouse gases by an average of 5.2% 

below the 1990 levels by 2008 to 2012.4 Under the Rio Treaty, the United States and other 160 

countries target to stabilize greenhouse gas concentrations in the atmosphere within a time frame 

sufficient to allow ecosystems to adapt, to ensure food production and to enable a sustainable 

economic development.5 On November 2003, U.S. DOE proposed General Guidelines for the 

voluntary reporting of greenhouse gas emissions and emission reductions, scheduled for release in 

fall 2004. In the future, greenhouse gas emission reporting will be mandatory; hence, a more 

efficient use of energy and the development of new technologies will be required to meet the 

challenge of stabilizing CO2 concentrations in the atmosphere.  

 

2.1   Geologic Sequestration of CO2

Possible CO2 sequestration sites (Fig. 2.1) include coal beds, depleted gas an oil reservoirs, deep 

aquifers, salt domes and the deep ocean floors. Geologic sequestration of CO2 appears to be a 

reasonable pathway to stabilization of atmospheric CO2 concentration.  The various options must be 

evaluated for cost, safety, and environmental effects. Our ongoing study is the evaluation of CO2 

storage in depleted gas reservoirs.  
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 The principal motivation for injecting CO2 in geologic formations has been to maximize CO2 

storage volume and to enhance hydrocarbon recovery. This is the case of CO2 injection in oil 

reservoirs and unmineable coal beds. The first large-scale project specifically aimed at CO2 

underground disposal was started in 1996 by Statoil in the North Sea.6,7  Approximately 1x106 

tonnes per year of CO2 from the Sleipner Vest field are separated out of the produced natural gas 

and injected into the overlying Utsira aquifer. This project demonstrated the feasibility of 

sequestering CO2 in saline aquifers. More recently, a combined EOR and CO2-sequestration project 

has been undertaken, in which CO2 generated at a coal-gasification plant in North Dakota is 

transported by pipeline to the Weyburn field in Saskatchewan to be injected.8 This is the first 

attempt to sequester CO2 in an oil reservoir. 

 

 

 

 
 

Fig. 2.1—Storage sites for CO2 in geologic formations and the deep sea. 
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 Carbon dioxide injection into gas reservoirs has been proposed but not tested. CO2 could be 

used for pressure maintenance or for condensate vaporization, but the cost of purchasing CO2 

makes this approach uneconomical in the absence of incentives for CO2 storage.6  

 Given a depleted natural gas reservoir and a depleted oil reservoir with the same hydrocarbon 

pore volume, the depleted natural gas reservoir will store significantly more CO2. This is due to the 

high compressibility of natural gas (approximately 30 times more compressible than oil and water), 

and the fact that the ultimate hydrocarbon recovery in a gas reservoir is typically about twice as 

large as that in an oil reservoir.9 In addition to the larger storage capacity of depleted gas reservoirs, 

another advantage is that all CO2 - resulting from the combustion of natural gas produced from the 

reservoir - could be stored in the same reservoir, with additional storage capacity. For each mole of 

C1 combusted, one mole of CO2 is produced, and the molar volume of CO2 is smaller than that of 

C1 at the same field temperature and pressure. Therefore, CO2 injection could be replaced for a 

mixture of CO2, N2 and impurities resulting from the partial separation of flue gas.6

   

 

2.2   CO2 Capture 

Unfortunately, CO2 sources are rarely pure; the most likely CO2 source is usually a stream extracted 

from the flue gas of a power plant.10 Flue-gas composition from typical electric power generation 

plants depends on the fuel type (bituminous coal, natural gas, wet feed of slurry coal, etc), amount 

of excess air, and power generation scheme (boiler, steam, and gas turbine types).  

 A typical flue-gas composition of an electric power plant based on a combustion calculation 

for a Powder River Basin (PRB) coal in a 500 MW plant with 20% excess air, is shown in Table 

2.1.  The main components of flue gas are N2 (71 mole %), CO2 (12 mole %), H2O (12 mole %), O2 

(5 mole %), and also impurities such as SO2, NO2, and CO.* Flue gas may be treated to obtain a 

stream rich in CO2 for sequestration purposes. Two types of treated flue gases are used in my 

experiments:  dehydrated flue gas with 13.574 mole % CO2 (Gas A), and treated flue gas with 

99.433 mole % CO2 (Gas B) as presented in Table 2.1 

 According to the International Environmental Agency (IEA), the total cost of CO2 capture and 

storage ranges from $50 to $100/tonne of CO2.This cost can be split into cost of capture, 

transportation and storage. Current estimates for large-scale capture systems (including CO2 

pressurization, excluding transportation and storage) are $25 to $50/tonne of CO2. Transportation 

                                                 
* Electronic communication with D. Chuck, EPRI-Continuous and Predictive Emissions Monitoring 
Group (22 July 2003). 
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costs are approximately $1 to $5/tonne of CO2 per 100 km, and storage costs are $1 to $2/tonne of 

CO2. 11,12 Unquestionably, the cost of capturing CO2 out of flue gas is significantly higher than that 

of transporting and injecting CO2 in reservoirs.3  Due to the high cost of CO2 capture, the purpose 

of this study is to understand and model the displacement of natural gas by flue gas and compare it 

with the displacement by pure CO2.  Results will determine if flue gas displacement efficiency will 

enhance gas recovery, and if flue gas sequestration in depleted gas reservoirs is an alternative for 

reducing CO2 levels in the atmosphere.   

 

 
 

TABLE 2.1—COMPOSITION OF FLUE GAS FROM AN 

ELECTRIC POWER GENERATION PLANT 

 Composition, mole %

Component Flue Gas Gas A Gas B

Nitrogen, N2 70.726 80.370 --- 

Water, H2O 12.000 --- --- 

Carbon dioxide, CO2 11.945 13.574 99.433 

Oxygen, O2 5.258 5.975 --- 

Sulfur dioxide, SO2 0.045 0.051 0.368 

Nitrogen oxide, NO2 0.016 0.018 0.129 

Carbon monoxide, CO 0.010 0.012 0.070 

Total 100.000 100.000 100.000 

 

 

  

2.3   Coreflood Experiments Injecting “Pure” CO2 in Carbonate Rocks 

Previous coreflood experiments injecting pure CO2 into carbonate rocks showed that the process is 

a win-win technology, sequestrating CO2 while recovering significant amounts of hitherto 

unrecoverable natural gas that could help defray the cost of CO2 sequestration.  

 Seo and Mamora (2004) concluded that displacement of C1 by CO2 –whether CO2 is a gas, 

liquid or supercritical fluid –appears to be a very efficient process. In addition, at experimental 

conditions (20 to 80 oC and 1,000 to 2,700 psi) the coefficient of longitudinal dispersion of CO2 in 



7 

C1 is relatively low, 0.01 to 0.30 cm2/min; recovery of C1 at CO2 breakthrough is high, 73% to 87% 

of original gas in place (OGIP).9,13,14 Experimental results at pressures and temperatures similar to 

the experiments presented in this thesis are presented in Table 2.2, and will be used as a reference 

to compare flue gas displacement efficiency with that of pure CO2. 

 

 
 

TABLE 2.2—EXPERIMENTAL DATA USING SUPERCRITICAL CO2 IN 

COREFLOOD EXPERIMENTS AT 1,200 TO 1,700 PSI AND 60 TO 80 oC 
9,13

P, psig T, oC
Swi, 

fraction
OGIP, 

__std L_
C1 recovery at 

breakthrough, %OGIP
Breakthrough, 
____min____

KL, 
cm2/min

1,200 60 0.0 3.604 86.80% 55.0 0.06 

1,200 80 0.0 2.850 84.60% 30.0 0.30 

1,700 60 0.0 5.202 86.80% 90.0 0.08 

1,700 80 0.0 4.045 83.90% 60.0 0.17 

1,700 80 0.2 3.739 61.80% 55.0 0.15 
 

 

 

2.4 Analytical Model 

The following convection-dispersion-reaction equation describes the overall transport and reaction 

of carbon dioxide for one-dimensional flow.13

 

t
CC

x
Cv

x
CK RL ∂

∂
=−

∂
∂

−
∂
∂

2

2

…………………………………………………………………(2.1) 

 

where C is the concentration of carbon dioxide at time t and location x, CR is the reaction rate 

concentration of carbon dioxide with the reservoir, KL is the coefficient of longitudinal dispersion, 

and v is the interstitial velocity of carbon dioxide. If the kinetic reaction term in Eq. 2.1 is removed, 

we obtain the well-known convection-dispersion equation as given by Eq. 2.2. 

 

t
C

x
Cv

x
CK L ∂

∂
=

∂
∂

−
∂
∂

2

2

………………………………………………………..……………… (2.2) 
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Eq. 2.2 may be expressed in dimensionless form as follows: 

 

DDDe t
C

x
C

x
C

P ∂
∂

=
∂
∂

−
∂

∂
2

21
………………………………………………………………………… (2.3) 

 

where: 

 

L
xxD = , dimensionless distance, where L is length of core, 

L
tvtD = , dimensionless time, and 

L
e K

vLP = , Peclet number (ratio of convection to dispersion). 

 

Since the carbon dioxide injection inlet is at x = 0, then  

 

Initial condition:   C = 1  at  tD = 0, 

 

Boundary conditions: C = 1  at  xD = 0, tD > 0 

 

 C→ 0  as  xD → ∞, tD > 0 

 

Solution to Eq. 2.3 is presented below. 
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Carbon dioxide concentration profiles are compared against those based on the analytical 

solution (Eq. 2.4) for various values of the dispersion coefficient. The correct dispersion coefficient 

would be that which gives the best agreement between data and the analytical solution. 

 

2.5 Carbonate Dissolution  
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Carbon dioxide injection into carbonate formations could potentially cause weakening of near-

wellbore formation rock.  Carbon dioxide will react with the formation water resulting in the 

dissolution of carbonates and the formation of carbonic acid until equilibrium is reached between 

the fluids and the rock.  The chemical equation that describes this reaction is as follows: 

 
−+ +⇔++ 3

2
322 2HCOCaCaCOOHCO  .……..…………....…………….. (2.5) 

 

 This equilibrium can be easily shift increasing the pH or in presence of high concentrations 

of aqueous metal cations, causing precipitation of secondary minerals, lowering permeability, 

porosity and potentially impeding further CO2 injection. A pre-requisite for carbonate precipitation 

is the availability of non-carbonate minerals that will react with dissolved CO2.  This incorporation 

of CO2 into a solid phase is referred as mineral trapping.15

 Dr. John Morse in the Department of Oceanography at Texas A&M University found 

limited dissolution of carbonate occurred in cases where a small amount of connate water was 

present and found no more dissolution after equilibrium was reached between the fluid and 

rock.16,17,18  However, if carbon dioxide is captured from the emissions of a power plant, the 

injection gas is likely to contain water and other impurities. Therefore, carbonate dissolution will 

occur through all the sequestration process potentially affecting the injectivity of the well and the 

integrity of the wellbore.  Grigg reported that injectivity of CO2 was the first concern of operators in 

the context of oil recovery by WAG process dealing with CO2 particularly in open-hole wells.19   

 Izgec et al. concluded that changes in injectivity associated with rock permeability and 

porosity result from dissolution of rock minerals, transportation and later precipitation of them.  

Permeability and porosity alteration had similar trends in coreflood experiments with CO2 and water 

in carbonate cores.  They observed that as carbonic acid dissolves calcite and calcite particles 

deposit, the tortuosity should change continuously.20

 Experimental results by Egermann et al. after coreflood experiments with CO2-brine flow in 

carbonate rocks have shown that dissolution patterns, comparable to the wormholes during 

acidizing processes, have been observed. High flow rates give longer dissolution forms described as 

pinholes well distributed on the injection face, while low flow rates lead to a more compact 

dissolution described as limited number of big holes.21

Tristan et al. performed CO2-brine flow experiments with carbonate cores and numerical 

simulation including reactive transport of CO2. Their results indicated that dissolution of the rock is 

more severe at near the injection point and decreased as the fluid traveled into the formation.22
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 A most recent geochemical study performed by Knauss et al. considers the presence of flue 

gas impurities and other common industrial waste gases such as H2S on the overall injection process. 

They found that the presence of H2S negligibly affects the CO2 injection process, but the presence 

of SO2 can alter significantly the quantity of carbonates dissolved due to the formation of extremely 

low pH fluids.23  

 The geochemical modeling of carbonate dissolution and re-precipitation by CO2 

sequestration is a very complex process that highly depends on the rock compositions, reservoir 

fluids and the injected gas. This thesis doesn’t cover the geochemistry behind the CO2 injection 

process, but creates a scenario similar to that encountered near the wellbore in the field and evaluate 

changes on the integrity of the rock after CO2 injection. 

 

2.6 Compressive Strength Tests 

To characterize the changes that occur in the strength of the rock after dissolution, the unconfined 

compression test is used widely.24 Compressive strength σu is expressed as the ratio of peak load Pl 

to initial cross-sectional area A: 

 

 
A
Pl

u =σ   …………………………………………………………………………………… (2.6) 

 

Results from this type of test can vary by a factor of more than two as procedures are varied.  

The test sample should be a rock cylinder of length to width ratio in the range 2 to 2.5 with flat, 

smooth, parallel ends cut perpendicularly to the cylinder axis. Capping of ends with sulfur or plaster 

to achieve smoothness is suggested to introduce artificial end restraints that overly strengthen of the 

rock.  However, introducing Teflon pads to reduce friction between the ends and the loading 

surfaces can cause premature splitting failure; especially in harder rocks.24  

Procedures for this test are recommended in ASTM designation D2938. A typical report shall 

include the following information:  

• Source of sample and lithologic description of the rock. 

• Moisture condition before the test. 

• Specimen diameter and height. 

• Temperature at which test was performed. 

• Rate of loading or deformation rate. 

• Unconfined compressive strength. 
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• Type of failure; a sketch of the fractured specimen is recommended. Fig 2.2 shows the 

different types of failure a specimen will present. Columnar fractures are typically 

encountered when the axial load is equally transmitted to the end of the specimen. 

 

 

 

 

Cone Cone and 
Split 

Cone and  
Shear 

Shear Columnar 

 
Fig. 2.2―Sketches of types of fracture. 

 

 

 

Typical values for the compressive strength of a fresh sample of the Austin chalk formation 

may vary between 361 to 3,794 psi, with a mean value of 2,445 psi and a standard deviation of 727 

psi. The carbonate content ranges between 62% and 92%. The specific gravity is approximately 

2.68 ± 0.01.25
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CHAPTER III 
 
 

EXPERIMENTAL APPARATUS AND PROCEDURES 
 
 

 Two types of experiments were conducted in this research. First, displacement experiments 

were performed to determine the effect of impurities in the displacement efficiency of methane by 

CO2. Second, compressive strength tests were performed to measure changes in the integrity of the 

rock after possible dissolution as a result of CO2 injection. The experimental procedures will be 

described for each of the two types of experiments as well as equipment used. 

 

3.1 Displacement Experiments 

The main objective of these experiments is to measure the rate of longitudinal diffusion of CO2 

with impurities in gas-bearing carbonate reservoir rocks and compare the results with those 

obtained for pure CO2. Parameters such as breakthrough time, recovery of original gas in place 

(OGIP), and compositions of the produced gas were measured to estimate the coefficient of 

longitudinal dispersion. 
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Fig. 3.1—Phase envelopes of injected gases compared to the CO2 vapor pressure. 
 Two types of flue gases were used in these experiments:  dehydrated flue gas with 13.574 

mole % CO2 (Gas A), and treated flue gas with 99.433 mole % CO2 (Gas B) as presented in Table 

2.1.  The phase envelopes of the two gases (Fig. 3.1) were obtained from the company Specialty 

Gas Products of Houston that provided these reconstituted gases to our laboratory. No critical point 

was observed for Gas A. 

  

 

 

 

Fig. 3.2—Schematic diagram of experimental apparatus for displacement experiments. 

 

 

 

 The equipment used in these experiments consists of five main components: the injection 

system, the coreflood cell, the Universal System HD 350 x-ray computed tomography scanner (CT 

scanner), the production system and the data recording system. Fig. 3.2 shows a diagram of the 

experimental apparatus, which is briefly described in the following. All of the equipment was 

available in the department of petroleum engineering at Texas A&M University. 
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3.1.1 Injection System 

 This consists of two sets of one-liter Temco accumulators connected to a Ruska pump (Fig 3.3) to 

displace the CO2 gas mixture and the methane into the cell. After introducing each gas into the 

accumulator, the gas pressure is slowly increased to the desired level by injecting water below the 

piston in the accumulator.   

 

 

 

 

Fig. 3.3—Ruska pump used to pressurize and inject gases into the coreflood cell.  
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 Table 3.1 lists the equipment used in the displacement experiments and compressive strength 

tests. A brief description of each of these main components follows. 

 

 

 

TABLE 3.1—EQUIPMENT USED IN EXPERIMENTS 

Equipment                                         Description                                             

HPLC Pump ISCO syringe pump, model 314, capacity 33.3cc/min 

Accumulator Temco, model CF50-200-66, max pressure 5,000 psi at 350°F 

Pump Ruska model 2216-603A, max pressure 10,000 psi, capacity 30 cc/min 

Back Pressure Regulator Tecom Corp., model 26-172224, max pressure 6,000 psi 

Pressure Transducer Omega, model PX 621, max pressure 10,000 psi 

Thermocouple  Omega J-type 

Coreflood Cell  Custom made, aluminum 7075-T6, 21 in long by 3.75 in OD with wall 
thickness of 1.91 in. 

Convection Incubator Precision, model 32 MR, temperature range 41 to 158°F 

X-ray CT Scanner Universal Systems, model HD-350 E 

Wet Test Meter American Meter Company, model P-2991 

Data Logger Hewlett-Packard data acquisition/switch unit, model 34970A 

Gas Chromatograph Hewlett-Packard series II model 5890 

Integrator  Hewlett-Packard 3396A computing integrator 

Manual Switching Valve VICI switching valve for GC, model E36 

Valve Actuator VICI 2-position valve actuator, model DVSP4 

Uniaxial Compression MTS model 309.30S, maximum peak load 20,000 lbf 
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3.1.2 Coreflood Cell 

The coreflood cell measuring 21 in. (53.3 cm) long with an OD of 3.75 in. (9.53 cm) and wall 

thickness of 0.75 in. (1.91 cm) is constructed of aluminum (transparent to X-Ray CT scanning). The 

cell is machined out of a solid cylindrical block of aluminum 7075-T6 to withstand the high 

temperature and pressure. The maximum operating conditions are 5,000 psig and 200°F. (Fig. 3.4 

and Fig. 3.5) 
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Fig. 3.4—Longitudinal section of coreflood cell (scale approximately 1: 3). 

 

 

 

 

Fig. 3.5—Photograph showing coreflood cell. 
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 An Austin chalk core sample measuring 1 ft (30.5 cm) long and 1 in. (2.54 cm) in diameter is 

inserted into a Viton Hassler sleeve with both ends secured to plungers in the cell. This is placed 

inside a Precision mechanical convection incubator in a horizontal position for an accurate 

temperature control as shown in Fig. 3.6. In this manner, the desired cell temperature can be 

obtained. The system is pressurized with nitrogen to test for leaks and then nitrogen is displaced by 

methane to set the cell with initial conditions for displacement experiments. 

 

 

 

  
Fig. 3.6—Mechanical convection incubator used to heat the coreflood cell.  
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3.1.3 The Universal System HD 350 X-Ray CT Scanner 

The x-ray CT scanner (Fig. 3.7) provides precise determination of core porosity and fluid saturation.  

The objective of CT scanning is to obtain descriptive images of density variations within the core 

sample in cross-sectional slices. This non-destructive evaluation process is invaluable to my 

experiments by imaging porosity and fluid saturations and providing insight into the displacement. 

CT scanner performs with a speed up to 1 rev/sec and resolution of 6 to 9 line pairs/cm. 

 

 

 

 
 

Fig. 3.7—Photograph showing Universal System HD 350E X-Ray CT Scanner. 

 

 

 

3.1.4. Production and Data Recording System  

Produced gas volume and composition are measured using a wet test meter and a Hewlett Packard 

5890 Series II gas chromatograph with a Hewlett Packard 3396A integrator, respectively (Fig. 3.8).   

The cell outlet pressure is set to the desired level with the aid of a Temco backpressure regulator.  

Pressure and temperature readings are recorded in 30-second intervals using a Hewlett Packard 

34970A data logger in conjunction with a personal computer. 
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Fig 3.8—Gas chromatograph and data integration system. 

 

 

 

3.1.5. Procedure for Displacement Experiments 

A typical experiment is conducted as follows: 

• Place the Austin chalk core in the thick-walled aluminum coreflood cell described in Fig. 

3.4 and Fig. 3.5. 

• Place the cell in the mechanical convection incubator at the desire reservoir temperature 

65°C to 70°C for an accurate temperature control. 

• With the backpressure regulator closed, the coreflood cell is slowly charged up with 

methane from the accumulator until the desired pressure is reached.   

• While injecting methane into the cell, high-temperature Mobil DTE 26 hydraulic oil is 

injected into the Hassler sleeve-inner cell wall annulus to maintain an overburden pressure 

differential of about 300 psi.   

• The CO2 gas mixture is then injected into the cell at a constant rate of 0.25 ml/min.   
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• Analyze produced gas by using a GC to determine the concentration of the different 

components in the mixture. Measure cumulative produced gas volume using wet test meter. 

• A run is terminated when the methane composition in the produced gas is negligible.   

 

3.2 Compressive Strength Tests 

For experiments involving the measurement of compressive strength of the carbonate core, the 

procedure is the same as described in the foregoing, except that the carbon dioxide stream injection 

flux is similar to that encountered near the wellbore in the field.  Fig. 3.9 shows a diagram of the 

apparatus for the dissolution experiments that may potentially lead to changes in the compressive 

strength of the core.   

   

 

 

 
Fig. 3.9—Schematic diagram of experimental apparatus for dissolution experiments. 

 

 

 

3.2.1 Dissolution Experiment Design 

Runs are performed in such a way that the cell throughput of carbon dioxide simulates  

near-wellbore throughput.  This is achieved through increasing the injection rate and injection time 
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(weeks).  The composition of the fluid injected into the core is CO2 saturated with water at the same 

proportion they are emitted from a power plant as previously shown in Table 2.1. It was not 

possible to include other impurities in the injection gas because the composition of the gas changes 

over time, and no company could certify the cylinder of gas with the desired composition.   

 The length of the experiment was determined by scaling the simulation study by Seo and 

Mamora.1,13 Their simulation results show that 1.2 MM Tons of CO2 could be injected into a 

depleted, 40–acre, 150–ft–thick gas reservoir over 29 years. This amount of CO2 injected is 

equivalent to approximately 1,165 moles of CO2 per square inch of wellbore area. This information 

was translated into a linear flow through a one-inch diameter, cylindrical core. A total of 914.93 

moles would have to be injected through the core to simulate the near-wellbore throughput over the 

29 years of injection. This relationship was used to determine the length of the lab experiment to 

approximately 80 hours, which are equivalent to 30 days of CO2 injection in the field. A more 

detailed calculation is presented in Appendix C. 

 

3.2.2. Experimental Procedure 

A typical experiment is conducted as follows: 

• Fill one of the accumulators with 192cc of distilled water, and add liquid CO2 from a 

saturated bottle at 870 psi. Liquid CO2 is obtained by tilting the bottle as indicated in Fig. 

3.10. Accumulator is then pressurized at 1,400 psi. 

• Place the Austin chalk core in the thick-walled aluminum coreflood cell described in Fig. 

3.4 and Fig. 3.5. 

• Place the cell in the mechanical convection incubator at the desire reservoir temperature, 

65°C for an accurate temperature control. 

• With the backpressure regulator closed, the coreflood cell is slowly charged up with 

methane from a bottle until the desired pressure 1,200 psi is reached.   

• While injecting methane into the cell, high-temperature Mobil DTE 26 hydraulic oil is 

injected into the Hassler sleeve-inner cell wall annulus to maintain an overburden pressure 

differential of about 300-500 psi.   

• The CO2 fluid mixture is then injected from the first accumulator into the cell at a high rate 

varying from 5 to 20 cc/min. The outlet CO2 stream is collected in the second accumulator 

and re-injected at the end of the cycle. The back pressure regulator is set at 1,400 psi. 

•  A run is terminated when 2.587 moles of CO2 have been injected into the cell, in our case 

110 cycles. This is approximately equivalent to 30 days of CO2 injection in the field. 
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Fig. 3.10 - Preparation of CO2 mixture for dissolution experiments.  Bottle is tilted to obtain 

liquid CO2. 

 

 

 

 After completion of the coreflood run, one–inch diameter and two–inch long rock samples are 

cut from the core.  The unconfined compressive strength (UCS) of the rock samples is then 

measured by using the MTS uniaxial compressive strength apparatus described in Table 3.1 and Fig 

3.11.  The procedure for conducting these tests and for preparing the samples are described in the 

standard practices ASTM D 4543-01 and ASTM D 2938-95. For each core type, UCS of the 

original core (not subjected to coreflooding) is measured to obtain the base case. UCS results of 

flooded cores are then compared against the base case.      

 In particular, the CT scan analyses are invaluable measuring any changes in core porosity 

as a result of the more corrosive reactions of the injection stream with the core.  Porosity and initial 

water saturation is measured before the run and compared with values measured at the end of the 

experiment.     
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Fig. 3.11—MTS uniaxial compressive strength apparatus 
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CHAPTER IV 
 
 

EXPERIMENTAL RESULTS 
 

 

4.1 Displacement Experiment Results 

A total of 5 runs at 1,500 psig and 70oC are reported in Table 4.1. Three runs injecting Gas A 

(13.574% CO2), one of them with initial water saturation of 20% in the core, and two runs injecting 

Gas B (99.433% CO2) with zero initial core water saturation. Results indicate that Gas A exhibits 

higher longitudinal dispersion coefficients and lower C1 recovery at breakthrough than Gas B.   

 

 

 

TABLE 4.1—SUMMARY OF COREFLOOD EXPERIMENTS AT 1,500 PSIG AND 70OC  

Injection gas Swi OGIP, std L
C1 recovery at 

breakthrough, %OGIP
Breakthrough, 

min 
KL, 

cm2/min

0.0 3.967 80.66% 121.5 0.18 

0.0 4.027 79.46% 102.5 0.19 

   Gas A 

0.2 3.227 74.36% 88.5 0.25 

0.0 3.982 89.90% 112 0.15    Gas B 

0.0 3.060 88.16% 140 0.13 

 
 
 
 Prior to every run, core porosity was determined using the CT-scanner. An average porosity 

of 21% was calculated using the Voxecalc software as presented in Fig. 4.1. The equations used to 

measure porosity and saturations are as follows: 
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where: 
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φx,y  is the core porosity at x, y position. 

 
water

yxCT %100
,  is CT number of core saturated with 100 % water at x, y position. 

 

 
dry

yxCT ,    is CT number of dry core at x, y position. 
 

 

waterCT   is CT number of water used to calculate  ( = 0). water
yxCT %100

, waterCT

 

 

 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

inlet

outlet

Fig. 4.1—CT scan images of porosity profile using Voxecalc software.  

              The core average porosity is 21% as observed in the scale above. 
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where: 

 
water

yxS ,  is the core water saturation at x, y position.  

 

 
water

yxCT ,  is CT number of core partially saturated with water at x, y position. 

 

  

 
 

Region of the core with a porosity 
of 21% or more

Region of the core with a porosity 
of 23% or more

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.2—Isosurface images of 3D porosity profiles using Petro3D.  These images are  

very helpful to understand the porosity distribution in the core. 
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 A 3D porosity profile was created using 3D-Petro software to better understand the porosity 

distribution inside the core (Fig. 4.2). Porosity was used to calculate the pore volume, and 

consequently the OGIP with Eq.4.3 and gas recovery at breakthrough for every run. 
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000,1

)1( −
=  ....................................................................................................................... (4.3) 

  

 The coefficients of dispersion of gases A and B were estimated using the convection-

dispersion equation previously described in Eq. 2.2.  The longitudinal dispersion coefficient was 

varied to yield the best agreement between experimental data and analytical solution (Eq. 2.4). 

Calculated profiles of concentration of gases A and B are presented as “best fit” in Fig. 4.3. Best-fit 

lines represent analytical solution for the best value of the coefficient of longitudinal dispersion. 

Coefficients of dispersion obtained for each run are presented in Table 4.1. These values are, in 

general, relatively small, ranging from 0.13 to 0.25 cm2/min.  
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Fig. 4.3—Concentration of the produced gas versus time for runs at 1,500 psig and 70oC. 
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 Comparing our results to those presented in Table 2.2 corresponding to experiments with pure 

CO2, the following observations can be pointed out.  First, the dispersion coefficient of pure CO2 at 

70°C and 1,500 psig, estimated with linear interpolation from the values presented in Table 2.2 is 

approximately 0.15 cm2/min. This value is in good agreement with the dispersion coefficient of Gas 

B, 0.13 to 0.15 cm2/min, which contains 99.433 mole % CO2. Displacement efficiency of Gas B and 

pure CO2 are very similar.  

Second, the dispersion coefficients for Gas A, 0.18 to 0.25 cm2/min, is consistently higher than 

that for pure CO2 and for Gas B.  This result can be better understood by looking at the densities 

and viscosities of pure CO2 and Gas A, as well as the phase envelopes at the conditions of the 

experiment. Fig. 4.4 and Fig. 4.5 show densities and viscosities estimated with the software 

PVTSim version 13.0.2. Pure CO2 exhibits higher density and higher viscosity than Gas A. The 

phase behavior of pure CO2 is more liquid-like than Gas A, and thus is more efficient displacing 

methane in the experiment. In addition, the phase envelope of Gas A (Fig. 3.1) does not exhibit a 

critical point, indicating that at 70oC and 1,500 psig the fluid is in vapor phase, different from CO2 

that is in supercritical phase. 

 

 

 

 
Fig. 4.4—Density diagram with respect to pressure at 160oC (from PVTSim 13.0.2).   
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Fig. 4.5—Viscosity diagram with respect to pressure at 160oC (from PVTSim 3.0.2). Viscosity 

of CO2 is higher than that of Gas A for pressures higher than 1,000 psia. 

 

 

 

Breakthrough times vary from 102.5 to 140 min for runs with zero initial water saturation, 

despite the fact that the water HPLC pump (displacing gases A and B in the accumulator) was set 

constant to 0.25 ml/min for all runs. This is probably due to cell pressure variations resulting from 

continuous adjustment of the backpressure regulator during each run. For the run with 20% initial 

water saturation, the breakthrough time was significantly lower, 88.5 min, due to the reduction in 

hydrocarbon pore volume compared to zero initial water saturation. 

Recovery of methane is lower for Gas A (79-81% OGIP) than for Gas B (88-90% OGIP) and 

pure CO2 (ca. 86% OGIP). These results indicate that Gas A exhibits the poorest displacement 

efficiency, in line with the fact that its longitudinal dispersion coefficient is the largest.  

 

4.2 Compressive Strength Test Results 

A total of two marathon dissolution experiments were conducted at 150°F and at an average 

injection pressure of 1,910 psi. Porosity distribution along the core was measured using the  

CT-scanner before and after the experiments. After completing approximately 80 hours of CO2 
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injection, core samples were dried, extracted from the sleeve, and cut to the desired length as a 

preparation for the unconfined compressive strength tests.  

Porosity was measured using the X-ray CT scanner. First, a pilot image was generated for 

each core sample (Fig. 4.6). This tool was useful to verify the integrity of the sample inside the cell, 

and to plan the axial plane study. In Fig. 4.6 three sections can be identified for each sample. 

Average porosity was calculated for each section before and after dissolution experiments.   

 

 

 

 
Fig. 4.6─CT scan pilot image for Sample 1 and Sample 2. 

 

 

 

CT scan images for Sample 1 are presented in Fig. 4.7. The average initial porosity for the 

central section of the core before the dissolution experiment is 0.200. This section exhibits a small 

increase in its average porosity up to 0.215 after the dissolution experiments. Evidence of this 

change is the increase of red spots in images for the final porosity. In the color scale, red represents 

values for high porosity. Images for the inlet and outlet sections of the core before the dissolution 

experiments were not available.  The outlet section of the core presents a fracture that was possibly 

caused by the insertion of the core inside the Viton Hassler sleeve with both ends secured to 

plungers in the cell prior to the experiment.  
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Fig. 4.7―CT scan images of initial and final porosity ─Sample 1. Images for the initial 

porosity were only available for the central section of the core. 

 

 

 

 CT scan images for Sample 2 are presented in Fig. 4.8. The average initial porosity for the inlet, 

central, and outlet sections of the core before the dissolution experiment are 0.205, 0.225 and 0.230 

respectively. After the dissolution experiment, the inlet and central sections exhibit a small increase 

in its average porosity up to 0.230 and 0.240 respectively; while the outlet section maintains the 

same average porosity. In general, inlet and center CT scan images for the initial porosity present 

more blue spots than images for the final porosity. In the color scale, blue represents values for low 

porosity.  
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Fig. 4.8─CT scan images of initial and final porosity ─Sample 2. 

 

 

 

The average porosity for each CT scan image was calculated using Voxecalc software and 

plotted against core length in Fig. 4.9 and Fig. 4.10.  The porosity distribution along the core is 

presented before and after the dissolution experiments. Final porosity values are consistently higher 

than the initial ones for both core samples. In Fig. 4.10, the increase in porosity is more noticeable 

in the inlet section of the core. This is probably due to a higher dissolution process in the core inlet.  

The maximum reduction in rock porosity observed for both core samples was less than or equal to 

2.5%. 

 



33 

 

 

 

 

0.15

0.18

0.21

0.24

0.27

0.30

0 2 4 6 8 10
Core Length, in

Po
ro

si
ty

, f
ra

ct
io

n

12

Sample 1-Initial Porosity Sample 1- Final Porosity

 
Fig. 4.9―Porosity distribution along the core before and after dissolution experiments for 

Sample 1. 
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Fig. 4.10―Porosity distribution along the core before and after dissolution experiments for 

Sample 2. 
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 After completion of each coreflood run, the aluminum cell was open and the core samples were 

extracted. High pressure, high temperature, and high injection flow rate during coreflood runs 

caused severe alterations to the sleeve, as presented in Fig. 4.11. Both sleeves were carefully cut 

and core samples were removed from the inside.  

 

 

 

 
Fig. 4.11─Viton Hassler sleeve transformation after coreflood runs. 

 

 

 

 Fig. 4.12 shows both core samples after dissolution experiments. The outlet section of Sample 1 

was fractured as we could anticipate with the CT scan images from Fig. 4.7. Approximately, one 

third of this core sample was useless for the unconfined compressive strength test. On the contrary, 

Sample 2 was integer for the following compressive strength test.   
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Fig. 4.12─Core samples after coreflood run. 

 

 

 

 From the three core samples: Base Case, Sample 1 and Sample 2, 11 one–inch diameter and 

two–inch long rock specimens were cut with a diamond sword and dried for the unconfined 

compressive strength test.  Fig. 4.13 displays the 11 specimens before the compression test.  

 

 

 

 
Fig. 4.13─Rock specimens prepared for unconfined compressive strength test. 
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Unconfined compressive strength test results for the 11 specimens are presented in Table 4.2. 

Tests were performed at room temperature (69 ºF).  The moisture condition of all specimens was 

zero at the time of the test. The rate of loading was constant at 2 lbf/s and the same for all 

specimens. Results indicate that the integrity of the rock is affected by the long term dissolution 

experiments. The unconfined compressive strength of the rock was reduced by approximately 30% 

as a result of the dissolution process from 3,949 ± 966 psi for the base case down to 2729 ± 347 psi 

for the combined Sample 1 and Sample 2 specimens. 

 

  

 

TABLE 4.2― UNCONFINED COMPRESSIVE STRENGTH TEST RESULTS  

   Description Specimen UCS (psi) Type of failure

      

   Base Case 1 3,459 Columnar 

  2 3,547 Columnar 

  3 5,395 Cone and Split 

  4 3,394 Shear 

  mean ± st.dev. 3,949 ± 966   

      

   Sample 1 5 2,951 Columnar 

  6 3,110 Cone and Split 

  7 2,133 Cone and Split 

  mean ± st.dev. 2,731 ± 524   

      

   Sample 2 8 3,077 Columnar 

  9 2,688 Cone and Split 

  10 2,597 Columnar 

  11 2,549 Columnar 

   mean ± st.dev. 2,787 ± 255   
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The types of failure of the majority of the specimens were columnar or cone-and-split.  Fig. 

4.14 presents a good example of a columnar failure. This type of failure indicates that samples were 

well prepared for the straightness of the elements of the cylindrical surface, the flatness of the end 

bearing surfaces and the perpendicularity of the end surfaces with the axis of the core.   

 

 

 

 
Fig. 4.14─Specimen #1 at the time of failure (columnar failure).  
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CHAPTER V 
 
 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
 

 

5.1 Summary 

The main purpose of this research was to evaluate the effect of flue gas impurities on CO2 

displacement efficiency by measuring parameters such as the coefficient of longitudinal dispersion 

(using the convection/dispersion equation), the natural gas recovery (%OGIP), and the 

breakthrough time. A secondary objective was to quantify the effect of carbon dioxide injection on 

calcite dissolution and thus the change in compressive strength. Results have been presented and 

conclusions and recommendations are described next. 

 

5.2 Conclusions 

Main conclusions arising from the displacement experiments are summarized as follows. 

1. Displacement of methane by Gas A (dehydrated flue gas with CO2 concentration of 13.574 

mole %) at the conditions studied exhibits larger dispersion coefficients, 0.18-0.25 cm2/min, 

than displacement by pure CO2, ca. 0.15 cm2/min.   

2. Impurities appear to have a negligible effect in the displacement of methane by Gas B (CO2 

concentration of 99.433 mole %). Dispersion coefficient of Gas B is 0.13-0.15 cm2/min. 

3. Recovery of methane at breakthrough is higher for Gas B (88-90% OGIP) and pure CO2 

(86% OGIP) than for Gas A (79-81% OGIP).  Gas recovery from injection of Gas A is 

lowest due to the large concentration of N2 in the gas, resulting in the largest dispersion 

coefficient of the three injection gases studied.  

4. It appears therefore that injection of CO2 with approximately less than 1 mole % 

“impurities” would result in practically the same volume of CO2 being sequestered as 

injecting pure CO2. Gas B would have the advantage of being a cheaper separation process 

compared to pure CO2 as not all the “impurities” are removed in the case of Gas B.  

5. Although separation of CO2 out of flue gas is a costly process, it appears this is necessary to 

maximize CO2 sequestration volume, reduce compression costs of N2 (approximately 80% 

of the stream), improve sweep efficiency and gas recovery in the reservoir.  
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Conclusions from dissolution experiments and unconfined compressive strength tests are 

summarized as follows: 

1. Long term coreflood experiments equivalent to 30 days of CO2 injection in the field 

cause a small reduction in the Austin chalk rock porosity less than or equal to 2.5%. 

2. The unconfined compressive strength of the Austin chalk rock is significantly reduced 

by approximately 30% from 3,949 ± 966 psi for the base case down to 2,729 ± 347 psi 

for the combined Sample 1 and Sample 2 specimens. 

3. Although porosity is not significantly reduced by carbon dioxide injection into the 

Austin chalk formations, unconfined compressive strength results certainly indicate that 

CO2 injection will cause weakening of near-wellbore formation rock. 

 

5.3 Recommendations 

This study has been performed using Austin chalk core samples. Similar studies using sandstone 

samples are recommended to determine the impact of rock type on the dispersion of CO2 in natural 

gas, and to evaluate rock dissolution and changes in the compressive strength of sandstones.  

 In these experiments, the Viton Hassler sleeve was severely altered by the long term 

coreflood experiments. It is recommended to implement a different type of sleeve that can better 

withstand the conditions of the runs.   
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NOMENCLATURE 

 

A = cross sectional area, in2

Bg = formation volume factor of gas (C1), vol/vol 

C = concentration of Gas A or Gas B, mole% 
dry

yxCT ,  = CT number of dry core at x, y position 

water
yxCT %100

,  = CT number of core saturated with 100 % water at x, y position 

water
yxCT ,  = CT number of core partially saturated with water at x, y position 

Pl = peak load, lbf 

KL = coefficient of longitudinal dispersion, cm2/min 

OGIP = original gas (C1)-in-place, std. Liter 

P = pressure, psi 

Pe = Peclet number, dimensionless 

φx,y  = core porosity at x, y position 

Swi = initial water saturation, fraction 
water

yxS ,  = core water saturation at x, y position 

t = time, min 

tD = dimensionless time, defined in Eq. 3 

T = temperature, oC 

Vp = pore volume, cm3

σu = unconfined compressive strength, psi 

v = insterstitial velocity, cm/min 

x = distance from core injection point, cm 

xD = dimensionless distance, defined in Eq. 3 
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APPENDIX A 
 
 

EXPERIMENTAL DATA FOR DISPLACEMENT EXPERIMENTS 
 
 

 Duration for displacement experiments was approximately 5 hours. Breakthrough time 

occurred generally during the first two hours. The following tables show the composition (mol %) 

of the produced gas over time and the cumulative gas produced. Table A.1 shows results for the 

second run with a breakthrough of 88.5 min, a C1 produced at breakthrough 2.40 L.  

 

 
 

TABLE A.1―EXPERIMENTAL DATA FOR RUN #2, GAS A INJECTED AT 1,500 PSI 

AND 70°C AND 20% INITIAL WATER SATURATION 

t (min) Total flow (L) CO2% O2% N2% C1% (100%-C1%)

0 0 0 0 0 100 0 
10.50 0.15 0 0 0 100 0 
18.50 0.41 0 0 0 100 0 
28.50 0.72 0 0 0 100 0 
37.50 1.00 0 0 0 100 0 
47.50 1.32 0 0 0 100 0 
59.78 1.71 0 0 0 100 0 
71.50 2.08 0 0 0 100 0 
80.50 2.23 0 0 0 100 0 
88.50 2.40 0 0 5.96 94.04 5.96 

100.50 3.01 0 0.69 12.93 86.34 13.66 
107.50 3.29 0 1.37 21.57 77.06 22.94 
116.50 3.56 0 2.1 32.04 66.46 33.54 
136.50 4.03 1.28 3.34 49.22 45.73 54.27 
148.50 4.45 2.09 4.07 59.77 34.02 65.98 
159.50 4.72 3.63 4.69 68.97 22.65 77.35 
171.50 5.03 4.63 5.02 73.28 17.24 82.77 
187.50 5.43 5.26 5.27 77.3 12.12 87.88 
206.50 6.10 7.15 5.61 80.91 6.11 93.89 
238.50 6.81 7.79 5.74 82.37 4.10 95.90 
259.50 7.38 8.54 5.75 82.42 3.26 96.74 
276.50 7.78 8.8 5.77 82.6 2.79 97.21 
296.50 8.25 8.87 5.78 82.68 2.32 97.68 
316.50 8.68 9.14 5.81 83.05 2.00 98.00 
345.00 10.32 9.13 5.83 83.27 1.74 98.26 
399.50 10.57 9.48 5.82 83.19 1.57 98.43 
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 Table A.2 shows results for the third run with a breakthrough of 100.5 min, and a C1 

produced at breakthrough 3.20 L.  

 
 
 

TABLE A.2―EXPERIMENTAL DATA FOR RUN #3, GAS A INJECTED AT 1,500 PSI 

AND 70°C AND 0% INITIAL WATER SATURATION 

t (min) Total flow (L) CO2% O2% N2% C1% (100%-C1%)

0.00 0           

8.00 0.02 0 0 0 100 0 

17.00 0.68 0 0 0 100 0 

32.00 0.85 0 0 0 100 0 

37.50 1.48 0 0 0 100 0 

46.00 1.51 0 0 0 100 0 

51.95 1.75 0 0 0 100 0 

59.00 2.03 0 0 0 100 0 

66.50 2.29 0 0 0 100 0 

80.42 2.67 0 0 0 100 0 

87.42 3.08 0 0 0 100 0 

93.00 3.12 0 0 0 100 0 

100.50 3.20 0.50 0 0.78 98.72 1.28 

108.22 3.27 0.58 0 1.39 97.88 2.12 

116.25 3.43 1.14 0.15 2.10 96.61 3.39 

125.75 3.73 3.73 0.34 5.30 90.43 9.57 

132.00 4.01 0.77 0.77 12.08 86.37 13.63 

141.67 4.26 1.18 1.22 18.95 78.51 21.49 

147.50 4.46 1.83 1.51 23.24 73.43 26.57 

161.50 4.77 2.31 2.33 35.58 59.78 40.22 

172.75 5.02 2.81 2.76 42.03 52.26 47.74 

180.50 5.29 3.49 3.27 49.33 43.78 56.22 

193.50 5.62 4.06 3.73 55.90 36.20 63.80 

215.50 6.43 6.09 4.59 68.18 21.12 78.88 

226.00 6.72 6.51 4.84 71.58 17.03 82.97 

248.50 7.22 6.90 5.13 75.55 12.39 87.61 

255.50 7.70 8.95 5.33 78.70 7.02 92.98 

273.50 8.03 10.64 5.60 79.80 3.96 96.04 

292.50 8.70 11.06 5.74 82.18 1.01 98.99 
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 Table A.3 shows results for the fourth run with a breakthrough of 117.5 min, and a C1 

produced at breakthrough 3.20 L.  

 
 
 

TABLE A.3―EXPERIMENTAL DATA FOR RUN #4, GAS A INJECTED AT 1,500 PSI 

AND 70°C AND 0% INITIAL WATER SATURATION 

t (min) Total flow (L) CO2% O2% N2% C1% (100%-C1%)

0.00 0.00 0 0 0 100 0 
6.50 0.11 0 0 0 100 0 

16.50 0.54 0 0 0 100 0 
31.50 0.97 0 0 0 100 0 
46.50 1.35 0 0 0 100 0 
61.50 1.71 0 0 0 100 0 
76.50 2.08 0 0 0 100 0 
91.50 2.56 0 0 0 100 0 
106.50 2.93 0 0 0.73 99.27 0.73 
117.50 3.20 0.06 0 1.99 97.95 2.05 
134.50 3.76 5.37 0.08 4.70 89.85 10.15 
147.50 4.34 0.83 1.04 16.69 81.44 18.56 
162.50 4.43 2.31 1.59 25.11 70.94 29.06 
176.50 4.68 3.66 2.41 37.21 56.59 43.41 
198.50 5.25 4.46 3.25 50.96 41.21 58.79 
210.50 5.58 5.01 3.80 57.34 33.83 66.17 
230.50 5.89 6.04 4.49 66.86 22.61 77.39 
246.50 6.41 7.10 4.85 71.57 16.47 83.53 
258.50 6.75 7.77 5.14 75.44 11.59 88.41 
270.50 7.34 10.02 5.28 77.12 7.78 92.22 
290.50 7.74 8.97 5.50 79.89 5.50 94.50 
307.50 8.25 9.31 5.53 80.61 4.52 95.49 
323.50 8.89 10.61 5.60 80.90 3.39 96.61 
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Table A.4 shows results for the fifth run with a breakthrough of 112 min, and a C1 produced at 

breakthrough 3.58 L.  

 
 
 

TABLE A.4―EXPERIMENTAL DATA FOR RUN #5, GAS B INJECTED AT 1,500 PSI 

AND 70°C AND 0% INITIAL WATER SATURATION 

t (min) Total flow (L) CO2% O2% N2% C1% (100%-C1%)

0.00 0.00 0.00 100.00 0.00 0.00 0.00 
12.00 0.11 0.00 100.00 12.00 0.11 0.00 
30.00 1.00 0.00 100.00 30.00 1.00 0.00 
37.00 1.47 0.00 100.00 37.00 1.47 0.00 
60.00 1.90 0.00 100.00 60.00 1.90 0.00 
80.00 2.45 0.00 100.00 80.00 2.45 0.00 
95.00 2.93 0.00 100.00 95.00 2.93 0.00 
107.00 3.32 0.00 100.00 107.00 3.32 0.00 
112.00 3.58 1.314 98.69 112.00 3.58 1.314 
126.00 3.90 2.53 97.47 126.00 3.90 2.53 
136.00 4.14 7.07 92.93 136.00 4.14 7.07 
146.00 4.33 11.67 88.33 146.00 4.33 11.67 
154.00 4.62 15.98 84.02 154.00 4.62 15.98 
164.00 4.85 24.18 75.82 164.00 4.85 24.18 
178.00 5.24 34.84 65.16 178.00 5.24 34.84 
186.00 5.42 41.16 58.84 186.00 5.42 41.16 
203.00 6.17 55.03 44.97 203.00 6.17 55.03 
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Table A.5 shows results for the sixth run with a breakthrough of 140 min, and a C1 produced at 

breakthrough 3.15 L.  

 
 
 

TABLE A.5―EXPERIMENTAL DATA FOR RUN #6, GAS B INJECTED AT 

1,500 PSI AND 70°C AND 0% INITIAL WATER SATURATION 

t (min) Total flow (L) CO2% Ci%

0.00 0.00 0 100.00 
10.00 0.24 0 100.00 
20.00 0.41 0 100.00 
30.00 0.57 0 100.00 
40.00 0.65 0 100.00 
50.00 0.71 0 100.00 
60.00 0.77 0 100.00 
70.00 0.95 0 100.00 
80.00 1.29 0 100.00 
90.00 1.34 0 100.00 
100.00 1.51 0 100.00 
120.00 1.92 0 100.00 
130.00 2.42 0 100.00 
140.00 3.15 6.50 93.50 
150.00 3.46 11.97 88.03 
160.00 3.84 19.00 81.00 
170.00 4.24 25.16 74.84 
180.00 4.8 36.34 63.66 
192.00 5.42 48.21 51.79 
204.00 6.04 56.20 43.80 
217.00 6.57 66.61 33.39 
228.00 7.46 71.63 28.37 
238.00 7.95 77.28 22.72 
250.00 8.34 84.51 15.49 
260.00 8.87 85.85 14.15 
270.00 9.11 89.18 10.82 
280.00 9.58 90.27 9.73 
290.00 9.92 94.17 5.83 
300.00 10.12 95.20 4.80 
310.00 10.71 96.58 3.42 
320.00 11.00 97.28 2.72 
330.00 11.21 98.41 1.59 
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APPENDIX B 
 
 

VBA CODES FOR DISPLACEMENT EXPERIMENTS 
 
 

 The following VBA function was written to calculate the analytical concentration of the 

produced gas described in Eq. 2.3 by solving the convection-dispersion equation. All other 

calculations were made with a spreadsheet.   

 

 

 
 

Function erff(x As Double) As Double 
If x < 0 Then 
erff = Sgn(x) * erf(Abs(x)) 
Else 
erff = erf(x) 
End If 
End Function 
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APPENDIX C 
 
 

DISSOLUTION EXPERIMENT DESIGN―CALCULATIONS 
 
 

In dissolution experiments the cell throughput of carbon dioxide simulates near-wellbore 

throughput.  The length of the experiment was determined by scaling the simulation study by Seo 

and Mamora.1,13 Table C1 shows the data  and results for this CO2 sequestration simulation. 

 
 
 
 

TABLE C.1―RESERVOIR DATA AND RESULTS FOR 
SIMULATION STUDY BY SEO AND MAMORA1,13

Reservoir Data  

    Area, acres 40 
    Simulation pattern 0ne eighth five spot 
    Thickness, ft 150 
     Porosity, fraction 0.23 
     X,Y Permeability, md 50 
     Z permeability, md 5 
     Initial water saturation, fraction 0 
     Temperature, °F 152 
     Original pressure, psi 3,045 
     Depth, ft 7,000 

Simulation Results  

     CO2 sequestered, MM Tons 1.2 
     Injection rate, STB/D 200 
     Injection time, yr 29 

 
 

 

 

 

 

 

 

 

 

 

 

                 

 

 

Calculations 

Using the simulation data provided in Table C.1, calculate the area along the wellbore that will be 

in contact with the injected gas. Assume a wellbore radius of 0.345 ft. 

 

   216.325)150)(345.0)(1416.3(22 ftftftrLAreasimulation === π

 

Calculate the amount of CO2 moles injected through all the sequestration process in the simulation.  

22
1 545.54

441
000,22.1

2

COmolesMM
lbm

lbmol
Ton

lbmCOTonsMM
MW
mass

Moles
CO

simulation =⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛==  
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For the lab calculations, determine the cross sectional area of the core that will be in contact with 

the injected gas. 

 

 2
2

22 00545.0
12
1)5.0)(1416.3( ft

in
ftinrArealab =⎟
⎠
⎞

⎜
⎝
⎛== π   

 

Calculate the amount of CO2 moles that need to be injected through the cross sectional area of the 

core to scale 29 years of the simulation study.   

 

 

2
6 93.914

16.325
00545.010*545.54 COmoles

Area
Area

MolesMoles
simulation

lab
simulationlab =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 

The maximum amount of CO2 that the accumulator can hold is 0.0235 moles at room temperature 

and 870 psi. It will take approximately three years to inject this amount of moles. The relationship 

between the moles of CO2 and the years of injection was used to determine the length of the lab 

experiment to approximately 80 hours, which are equivalent to 30 days of CO2 injection in the field. 
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