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ABSTRACT 
 
 
 

Experimental Deformation of Natural and Synthetic Dolomite. 

(August 2005) 

Nathan E. Davis, B.S., University of Missouri: Rolla 

Co-Chairs of Advisory Committee:  Dr. Andreas Kronenberg 
    Dr. Julie Newman 

 
 
 

 Natural and hot isostatically pressed dolomite aggregates were experimentally 

deformed at effective pressures of Pe = 50 – 400 MPa, temperatures of 400 – 850°C, and 

strain rates of ε&  = 1.2x10-4 s-1 to 1.2x10-7 s-1.  Coarse- and fine-grained dolomite 

deformed at low temperature (T ≤ 700°C for coarse-grained natural dolomite, T < 700°C 

for fine-grained natural and synthetic dolomite) exhibit mechanical behavior that is 

nearly plastic; differential stresses are insensitive to strain rate, fitted either by a power 

law 
n
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([ 31exp )]σσαεε −= o&&  with exponential law term α values from 0.023 to 0.079 MPa-1.  

Microstructures of samples deformed at low temperatures include mechanical twins, and 

undulatory extinction suggesting that twin glide and dislocation slip are the predominant 

deformation mechanisms. 

 At high temperatures (T ≥ 800°C) flow strengths of coarse- and fine-grained 

dolomite depend more strongly on strain-rate and exhibit pronounced temperature 

dependencies.  Microstructures of coarse-grained dolomite samples deformed at T ≥ 
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800°C include undulatory extinction and fine recrystallized grains suggesting that 

recovery and dynamic recrystallization contribute to dislocation creep at these 

conditions.  By comparison with lower temperature deformation, mechanical twinning is 

unimportant.  Fine-grained synthetic dolomite deformed at high temperature (T ≥ 700°C) 

exhibits nearly linear (Newtonian) viscous behavior, with n = 1.28 (±0.15) consistent 

with grain boundary (Coble) diffusion creep. 

 At low temperatures (T ≤ 700°C) coarse-grained dolomite exhibits higher 

strengths at higher temperatures which cannot be described by an Arrhenius relation, 

while fine-grained dolomite strengths show little or no temperature dependence.  At high 

temperatures (T ≥ 800°C), dislocation creep of coarse-grained dolomite can be described 

by a thermally activated power law ⎟⎟
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At high temperatures, diffusion creep of fine-grained synthetic dolomite can be 

described by ⎟⎟
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together, the flow laws for coarse- and fine-grained dolomites constrain the high 

temperature conditions over which crystal plasticity, dislocation creep, and diffusion 

creep dominate. 
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INTRODUCTION 

 As shallow marine sediments at continental margins, carbonates are commonly 

deformed during continental collision.  As a result, mechanical properties of sediments 

consisting primarily of calcite and dolomite govern the stresses during collision and the 

deformation seen in many orogens (Heitzmann, 1987; Burkhard, 1990; Busch and van 

der Pluijm, 1995; Bestmann et al., 2000; Molli et al., 2000; Ulrich et al, 2002).    

 Field observations indicate that dolomites are stronger than calcite-rich 

carbonates.  Dolomites often appear fractured while limestones and marbles may exhibit 

substantial internal strains (Woodward et al., 1988; Erickson, 1994; Busch and van der 

Pluijm, 1995; Bestmann et al., 2000).  Interlayers of dolomites and limestones appear to 

lead to ramp-flat geometries of thrust faults (Heitzmann, 1987; Burkhard, 1990; Busch 

and van der Pluijm, 1995; Bestmann et al., 2000; Molli et al., 2000; Ulrich et al, 2002).  

Flat-lying decollements develop within weak calcite-rich units while ramps and high-

angle brittle faults develop across strong dolomite units (e.g., Woodward et al., 1988; 

Erickson, 1994).  

 Early experimental studies are in broad agreement with these field studies, with 

fracture and flow strengths significantly higher for dolomite (Turner et al, 1954; Handin 

and Fairbairn, 1955; Higgs and Handin, 1959; Handin et al., 1967; Wenk and Shore, 

1975; Barber, 1977; Barber and Wenk, 1979; Barber et al., 1981, 1983, 1994) than flow 

strengths measured for calcite rocks at comparable conditions (Griggs and Miller, 1951; 

 
 
____________ 
This thesis follows the style of Tectonophysics. 
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Handin and Griggs, 1951; Turner and Ch’ih, 1952; Griggs et al., 1951, 1953, 1960; 

Turner et al., 1956; Heard, 1960, 1963; Heard and Raleigh, 1972; Schmid, 1976; Schmid 

et al., 1977, 1980; Wenk et al., 1983; Fredrich et al., 1989; Rowe and Rutter, 1990; de 

Bresser and Spiers, 1993, 1997; Dressen and Evans, 1993; Rutter, 1995; de Bresser, 

1996; Wang et al., 1996; Covey-Crump, 1997, 1998; Casey et al., 1998; Paterson and 

Olgaard, 2000).  However, experimental studies of dolomite deformation have been 

exploratory in nature, and they are limited to a restricted set of conditions (Turner et al, 

1954; Handin and Fairbairn, 1955; Higgs and Handin, 1959; Handin et al., 1967; Wenk 

and Shore, 1975; Barber, 1977; Barber and Wenk, 1979; Barber et al., 1981, 1983, 

1994).  Only those experiments documented by Barber et al. (1981, 1983) offer evidence 

for dislocation glide and creep.  The conditions that favor different deformation 

mechanisms in dolomite have not been determined and flow laws describing high 

temperature creep have not been reported. 

 While fracture is documented and high strength can be inferred for many 

dolomite occurrences, field studies have also documented ductile deformation of other 

dolomites, notably those deformed at greenschist and amphibolite facies conditions 

(White and White, 1980; Newman and Mitra, 1994; Leiss et al., 1994, 1996; Leiss and 

Barber, 1999).  Motivated by these occurrences of deformed dolomites, I have 

investigated the strength and deformation mechanisms of polycrystalline dolomites by 

performing deformation experiments at temperatures of 400° to 850°C, strain-rates of 

1.2x10-4 s-1 to 1.2x10-7 s-1, and effective pressures of 50 to 300 MPa.  Over these 

conditions, I find evidence for a number of different deformation processes that govern 
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mechanical response.  At low temperature, dolomites deform by mechanical twinning 

and dislocation glide, leading to nearly perfect plasticity.  At higher temperature, coarse-

grained dolomite deforms by dislocation creep at reduced differential stress, and fine-

grained dolomite deforms by diffusion creep, marked by nearly linear viscous response 

and low differential stresses. 
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PREVIOUS WORK 

 Previous experimental studies of dolomite deformation have identified several 

intracrystalline mechanisms of deformation.  Mechanical twinning and dislocation glide 

have been activated in triaxial compression experiments on dolomite single crystals and 

critical resolved shear stresses determined at temperatures of 250° to 600°C (Barber et 

al., 1981).  These same mechanisms have been observed in experimentally deformed 

dolomite rocks and flow strengths have been compared with limestones and marbles. 

 Triaxial compression experiments on crystallographically oriented dolomite 

single crystals combined with optical and electron microscopy have revealed 1) 

dislocation glide on the c plane parallel to the a direction, 2) mechanical twinning on f 

planes, 3) dislocation glide on f planes, 4) microcracking on r cleavage faces, and 5) 

minor secondary slip on r planes (Table 1, after Wenk et al., 1983; Higgs and Handin, 

1959; Barber and Wenk, 1979; Barber et al., 1981, 1983).  At any one set of conditions, 

shear stresses required to activate these mechanisms are greater than those for similar 

deformation mechanisms in calcite.  Over the temperature range of 250°-500°C, critical 

shear strengths for f-twinning in dolomite are 90-100 MPa while e-twinning in calcite 

requires shear stresses of only 6.5-11.5 MPa (Table1).  Slip on the c- and f-planes in 

dolomite occurs at T ≤ 700°C with critical shear strengths of 50-130 and 100-170 MPa, 

respectively, while r+- and f+-slip in calcite occur at shear stresses both below 20 MPa.  

Only when the slip vectors are reversed relative to the calcite structure do the critical 

shear strengths increase, with r--slip requiring 18-64 MPa and f---slip requiring 16-210 

MPa.  Experimental studies of dolomite single crystal deformation also show an unusual
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Table 1.  Deformation mechanisms in carbonates (from Wenk et al., 1983) 
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temperature effect on c-slip.  Both Higgs and Handin (1959) and Barber et al. (1981) 

show an inverse temperature dependence for samples that are not well oriented for f-slip.  

Samples that are oriented to allow f-slip display a normal temperature dependence, and 

are weaker with increasing temperature. 

 Microstructural analyses of experimentally deformed polycrystalline dolomite 

rocks (Turner et al, 1954; Handin and Fairbairn, 1955; Wenk and Shore, 1975; Barber, 

1977, Barber et al., 1983, 1994) have documented many of the same deformation 

mechanisms as reported for dolomite single crystals.  Differential stresses measured in 

triaxial compression are large compared with those measured for polycrystalline calcite 

samples.  However, flow strengths have not been measured systematically as a function 

of confining pressure, strain-rate, or temperature.  In addition, high temperature 

experiments on polycrystalline dolomites have been restricted to coarse-grained rocks in 

which the predominant deformation mechanisms included twinning and slip with little 

evidence of intergranular deformation mechanisms such as grain boundary diffusion or 

sliding.  The high strength of dolomite relative to calcite is thought to result from 

differences in crystal structure and the influence of cation ordering on intracrystalline 

deformation mechanisms.  Fine-grained calcite rocks deform by grain boundary 

diffusion and sliding at elevated temperatures (Schmid, 1976; Schmid et al., 1977, 1987; 

Walker et al., 1990; Herwegh et al., 2003) and it is not clear whether crystal structure 

and ordering impose restrictions on these mechanisms in fine-grained dolomite. 
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EXPERIMENTAL METHODS 

 The mechanical properties of polycrystalline dolomite rocks and synthetic 

dolomite aggregates were determined by performing triaxial compression experiments at 

constant strain-rate.  Deformation mechanisms were documented by optical microscopy. 

Starting Materials 

 Four polycrystalline dolomites were investigated in this study, including two 

coarse-grained dolomite marbles, designated as Madoc dolomite and Kern Mtn. 

dolomite, a fine-grained natural dolomite, known as Blair dolomite, and a fine-grained 

synthetic dolomite.  The grain sizes and compositions of the starting materials are listed 

in Tables 2 & 3.  Chemical analyses of each starting material were obtained using a 

Cameca SX-50 electron microprobe in the department of Geology and Geophysics at 

Texas A&M University.  Analyses were conducted using wavelength dispersive 

spectrometers equipped with LiF, PET and TAP crystals.  Backscattered electron (BSE) 

imaging was used to detect secondary phases in the starting materials. 

 Coarse-grained Madoc dolomite was obtained from the “Polar White” marble 

quarry of Upper Canada Stone in Ontario, Canada.  Optical examination of this material 

(Figure 1A) reveals equant grains, 240 ±30 µm in diameter, with straight extinction in 

crossed-polarized light, some twins, and straight, sharply defined grain boundaries, and 

negligible porosity (~1%).  BSE imaging reveals few secondary phases and electron 

microprobe analyses indicate a nearly perfect, stoichiometric composition with only a 

trace of Fe (Table 3). 
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Table 2. Starting materials 

Material grain size Chemical formula 
mineral 

impurities 

Madoc 240±30µm Ca0.999 Mg0.998 Fe0.001(CaCO3)2 trace calcite 

Kern 80±20µm Ca1.005 Mg0.989 Si0.002 Na0.002(CaCO3)2 trace quartz 

Blair 10±5µm Ca1.012 Mg0.957 Fe0.006 Si0.018 Al0.004(CaCO3)2
10% quartz, 
trace mica 

synthetic 2.5±1.5µm Ca1.014 Mg0.982(CaCO3)2   
 

Table 3. Wt.% oxides 
Analysis Madoc  Kern  Synthetic Blair 

SiO2 BDL 0.067 BDL 0.453
Al2O3 BDL BDL BDL 0.114

FeCO3 0.082 BDL BDL 0.343
MnCO3 BDL BDL BDL BDL
MgCO3 45.657 45.439 44.770 43.894
CaCO3 54.202 54.789 54.827 55.087

SO3 BDL BDL BDL BDL
Na2O BDL 0.031 BDL BDL

SrCO3 BDL BDL BDL BDL
Total 100.038 100.446 99.752 100.011

   
Si BDL 0.002 BDL 0.018
Al BDL BDL BDL 0.004

Fe 0.001 BDL BDL 0.006
Mn BDL BDL BDL BDL
Mg 0.998 0.989 0.982 0.957
Ca 0.999 1.005 1.014 1.012

S BDL BDL BDL BDL
Na BDL 0.002 BDL BDL
Sr BDL BDL BDL BDL

BDL = below detection limit 
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Figure 1.   Undeformed dolomite materials in cross-polarized light.  A. Madoc dolomite, 
B. Kern Mtns. dolomite, C. Synthetic dolomite, D. Blair dolomite.   
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 A coarse-grained dolomite (Figure 1B) from the Kern Mountains of eastern 

Nevada was used in several experiments for comparison with our results for Madoc 

dolomite.  This dolomite marble has a foliation in hand specimen but exhibits relatively 

equant grains in thin section (Figure 1B) with a grain size of 80 ±20 µm.  Dolomite 

grains exhibit straight extinction and few twins.  Electron microprobe analyses reveal 

that this dolomite is slightly enriched in Ca relative to Mg (Table 2).  Trace levels of Na 

and Si are attributed to fine solid inclusions.  BSE imaging reveals trace secondary 

minerals (<1%) including calcite and mica, and a very low porosity (<1%).   

 A fine-grained synthetic dolomite starting material was generated by hot-isostatic 

pressing methods similar to those used to synthesize fine-grained calcite aggregates 

(Olgaard and Fitz Gerald, 1993; Zhu et al., 1999).  A natural, nearly stoichiometric 

dolomite powder, sieved to <5µm was obtained from the Dolomitwerk Jettenberg 

division of Schöndorfer GmbH, Oberjettenberg 7, GERMANY 83458 Schneizlreuth.  

This powder was first cold pressed at a confining pressure of 300 MPa, vacuum-welded 

into mild steel jacketing and then hot pressed at a confining pressure of 300 MPa and a 

temperature of 600°C for five days at the Materials Preparation Center of AMES 

Laboratory on the Iowa State campus in Ames, Iowa (thanks to the assistance and 

supervision of Paul Wheelock).  The resulting synthetic dolomite (Figure 1C) has a grain 

size of 2.5 ±1.5 µm, a porosity of ~5% and a nearly perfect, stoichiometric composition 

(Table 2). 

 A fine-grained, dense (~1% porosity) dolomite known as Blair dolomite (Handin 

et al., 1967) was used in two experiments to compare with the results obtained for the 
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fine-grained synthetic dolomite.  Thin section observations of this dolomite reveal a 

grain size of 10 ±5 µm (Figure 1D) and microprobe analyses of the dolomite grains 

reveal a composition that is enriched in Ca relative to Mg and low levels of Fe (Table 2).  

Trace levels of Si and Al are attributed to fine solid inclusions.  This dolomite contains 

as much as 10% quartz grains, and experiments were limited to low temperatures, to 

avoid any carbonate-silicate reactions during experiments. 

Constant Strain-rate Experiments 

 Constant-strain-rate triaxial compression experiments were performed on right 

circular cylinders 20.2 (±0.6) mm  in length and 8.8 (±0.05) mm  in diameter using a 

Heard-type gas apparatus (John Handin Rock Deformation Laboratory).  The samples 

were inserted into annealed (700°C) thin-walled (0.25 mm) silver jackets and a pair of 

aluminum oxide spacers was placed at each specimen end to provide insulation from the 

tungsten carbide (WC) pistons.  The silver jacket was sealed to the tapered ends of the 

WC pistons by cold swaging using beveled WC push rings (Figure 2).  The aluminum 

oxide spacers directly adjacent to each sample were solid, dense, and impermeable so 

that experiments are considered to represent undrained tests. 

 Confining pressures Pc of up to 400 MPa were applied by way of argon gas; 

confining pressure during experiments was controlled by manual operation during short 

experiments (ε&  ≤ 10-5 s-1) to within ±1 MPa and by servo-control during long 

experiments to within ±3 MPa.  The chemical stability of dolomite was maintained as 

temperature was increased, owing to the undrained test configuration and generation of 

an internal CO2 pore pressure (Pp or PCO2) by the dissociation reaction of dolomite to 



 12

 
 
Figure 2.  Sample assembly with temperature profile.  Parts are: 1. WC pistons, 2. Al2O3 
Spacers, 3. Sample, 4. Silver jacket, 5. WC sealing push rings.  Temperature profile 
shows maximum temperature, T, at center of sample, and thermocouple measurement 
location between the 2 Al2O3 spacers on the right with the TC inserted through the piston 
and first spacer on the right. 
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calcite, periclase, and CO2 (Goldsmith, 1959).  Given that porosities of all starting 

materials are small, equilibrium CO2 pore pressures (Figure 3) could be reached by 

dissociation of surficial traces of the dolomite samples.  Equilibrium CO2 pressures were 

taken from reaction equilibria for dolomite reported by Goldsmith (1959) and effective 

pressures, Pe, were determined by subtracting this equilibrium PCO2 from Pc (Pe = Pc - 

PCO2). 

 Temperature was increased by way of an internal platinum wire resistance 

furnace and measured using an inconel-sheathed Chromel-Alumel thermocouple.  The 

thermocouple was inserted along the center of one of the WC pistons and a hollow 

aluminum oxide spacer; temperatures were thus monitored in each experiment at one 

end of a solid aluminum oxide spacer, 4.8 mm from the specimen end.  Calibrations of 

the temperature profile along the axis of a hollow sample and aluminum oxide spacers 

allow determination of the maximum temperature at the sample center from the 

temperature measured by the sheathed thermocouple in the aluminum oxide spacer.  

Temperatures at the thermocouple bead were controlled during experiments to within 

±1°C.  Temperatures reported for the experiments represent the highest temperature 

within the sample and the temperatures throughout the samples are within 1% of this 

value. 

 Samples were shortened at nearly constant axial strain rates (1.5x10-7 to 1.2x10-4 

s-1) by way of the WC pistons, driven by a constant speed motor and screw-driven load 

system.  Strains and strain rates were determined from transducer measurements of axial 

displacement (l-lo) normalized by the original length, lo.  From the shapes and diameters 
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Figure 3.  Thermal Dissociation equilibrium of confined dolomite (after Goldsmith 
1959).  Dissociation begins at approximately 560°C.  When samples sealed into their 
jackets are heated beyond this temperature, dissociation generates a CO2 pressure given 
by the equilibrium curve.  Owing to negligible pore volumes, the volume fraction of 
dolomite that dissociates is very small. 
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of the deformed samples, and deformation microstructures, strains appear to be relatively 

homogeneous and uncertainties in local internal strains are probably small (±1%).  Axial 

loads before and during triaxial compression were measured using an internal Heard-

type force gauge and differential stresses (σ1-σ3) determined to within ±1 MPa. 

 The strain rates used are considerably faster than tectonic rates in the Earth 

(typically 10-12 to 10-15 s-1).  The common method of adjusting for this is to trade time for 

temperature, with an increase in temperature used to activate the same deformation 

mechanisms that are important in the earth at faster strain-rates.  Extrapolations to 

natural strain-rates can then be made using flow laws, assuming similar differential 

stresses to activate the same mechanisms. 

 Grain growth in the natural dolomite starting materials is negligible at the 

temperatures imposed in the experiments reported here.  However, grain growth was 

noted in the extremely fine-grained synthetic dolomite subjected to elevated 

temperatures.  Thus, synthetic samples were annealed for 28 hrs at 800°C, Pc = 380 MPa 

to promote grain growth prior to each experiment, resulting in a mean grain size of ~2.5 

µm. Following this initial annealing period, the confining pressure and temperature of 

the sample were adjusted to the desired deformation conditions, allowing 1-2 hours for 

thermal equilibration of the apparatus. 

 Stress-strain data were obtained for all of the dolomite starting materials by 

running individual constant strain-rate experiments at different effective pressures, strain 

rates, and temperatures.  In addition, a series of constant strain-rate experiments were 

performed on individual samples, altering the strain rate in a stepwise manner or 
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changing the temperature in a stepwise manner.  Strain-rate-stepping experiments were 

performed by increasing strain rate by increments of a factor of 10 without unloading 

and redetermining the point of zero differential load.  Temperature-stepping experiments 

were performed by reducing (and in some cases increasing) the temperature by 100°C, 

unloading the specimen between each temperature step in order to allow for thermal 

expansion and redetermining the “hit point” at which differential load becomes non-

zero.   

 Buffered and amplified transducer signals for Pc, σ1, and (l-lo) were monitored 

and recorded by way of a National Instruments data acquisition board and Labview 

software.  Mechanical data are reported as differential stress (σ1-σ3) versus axial strain 

(ε) with sample strains corrected for apparatus distortion.  Corrections to differential 

stress (σ1-σ3) were made for changing cross-section areas of samples during shortening, 

assuming that deformed samples remain cylinders of constant volume. 

 A mechanical steady state was not obtained in most of the experiments.  Thus, 

strengths of dolomite at different conditions are tabulated and compared at the yield 

point and at a fixed strain ε of 5%.  Comparisons of strength for different strain rates of 

strain-rate-stepping tests and for different temperatures of temperature-stepping tests 

were made at a common reference strain.  Second-order polynomial fits were used to fit 

the observed strain hardening following yield for each step and differential stresses 

evaluated at the same strain value for the different strain rate or temperature conditions, 

extrapolating beyond measured values as little as possible (<3% in axial strain). 
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 Thermally-activated flow laws with exponential and power relationships between 

strain rate and stress were compared with the mechanical data for the different dolomites 

and flow law parameters determined by least-squares fitting. 

Microstructural Characterization

 Deformation microstructures of selected samples deformed at different 

temperatures and strain rates were examined by optical microscopy in plane-polarized 

and cross-polarized light.  Deformed samples were impregnated with epoxy resin, cut in 

half parallel to the compression axis and doubly-polished ultra-thin (~5 µm) sections 

prepared.  The extent of microcracking was judged from plane-polarized light scattering 

and observations of mechanical twinning, undulatory extinction, deformation bands, and 

recrystallization were made in cross-polarized light. 
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RESULTS 

Mechanical Response 

 The results of individual constant strain-rate experiments are listed in Table 4, 

results of strain-rate-stepping experiments are listed in Tables 5 & 6, and results of 

temperature-stepping experiments appear in Tables 7 & 8.  A subset of selected stress-

strain curves are used to illustrate the mechanical response of dolomite in the figures of 

this thesis and all stress-strain data obtained in this study appear in the Appendix, 

organized alphanumerically by sample number.  

 Compressive flow strengths of coarse-grained Madoc and Kern Mtns. dolomites 

are large over the experimental conditions tested (Figure 4A, B) and they compare well 

with mechanical data obtained previously (Figure 4C) for Dover Plains dolomite (Turner 

et al., 1954), Hasmark dolomite (Handin and Fairbairn, 1955) , and Crevola dolomite 

(Barber et al., 1994).  Madoc and Kern Mtns. dolomite samples shortened at T = 400-

850°C, Pe = 50-300 MPa, and ε&  = 1.2x10-7 to 1.2x10-5 s-1 begin to yield at differential 

stresses of 130-420 MPa, as marked by the departure in stress-strain data from linear 

elastic behavior.  Thereafter, their stress-strain curves show considerable strain 

hardening with differential stress (σ1-σ3) reaching 400-685 MPa at ε = 5%, well above 

the applied effective pressures, Pe (Pe = Pc-Pp or Pe = σ3 - Pp), and hardening coefficients 

h, defined as  

   
εε

σσ
&d

dh )( 31 −=       (1) 

of up to 3.4x103 MPa (or an increase in strength of 34 MPa over 1% strain).  Hardening 
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Table 4. Constant strain-rate experiments 

 Sample  
T 

(°C) έ (s-1) 
Pc 

(MPa) 
Pe 

(MPa)a
(σ1-σ3)y 
(MPa)b εy (%)c

(σ1-σ3)5% 
(MPa)d

h5% (102 
MPa)e

εf 
(%)f

MD33 400 1.25x10-5 300 300 374 0.961 600 24 9.14 

MD35 400 1.25x10-5 300 300 263 0.82 413** 18.046** 4.39*

MD26 500 1.19x10-5 300 300 400 1.01 642 27 7.4 

MD10 600 1.29x10-5 305 300 365 1.1 650 34 7.98 

MD13 700 1.25x10-7 330 300 403 1.29 596 25 7.26 

MD32 700 1.18x10-5 330 300 422 1.21 684 26 7.78+

MD27 700 1.27x10-5 230 200 321 1.02 650 24 7.92 

MD39 700 1.25x10-5 130 100 372 1.09 608 15 7.94*

MD20 700 1.25x10-5 80 50 131 0.39 317** 18** 3.54*

MD25 700 1.35x10-4 330 300 418 1.18 654 24 7.77*

MD9 800 1.36x10-5 380 300 326 1.22 523 -3 8.3*

M
ad

oc
 d

ol
om

ite
 

MD34 850 1.25x10-5 400 200 267 1.58 397 2 8.75 

           

KM1 500 1x10-5 400 400 487 2 612 31 10.3 

KM3 700 1x10-7 400 370 302 2.3 323 -4 11.5 K
er

n 

KM2 700 1x10-5 400 370 352 1.96 502 4 12.8 
           

SD A3-1 400 1.2x10-5 300 300 775 1.71 875** 260** 2.1*

SD B2-3 600 1x10-5 305 300 638 1.64 842 155 5.16 

SD B3-1 700 1.2x10-5 330 300 155 3.46 197 20 9.43 Sy
nt

he
tic

 

SD B1-4 800 1.25x10-5 380 300 0 0.05 0.3 0 9.25 

           

BD-1 500 1x10-5 400 400 636 1.3 765** 41** 3*

B
la

ir
 

BD-2 700 1x10-5 400 370 466 2.4 567** 70** 3.7*

a. Assuming Pe = Pc - Pp where Pp = PCO2 at equilibrium     
b. Differential stress at yield as defined by departure from linear σ - ε response   
c. Axial strain at yield   
d. Differential stress at 5% axial strain   
e. Hardening coefficient at 5% axial strain   
f. Final axial strain for experiment   
*  sample faulted at final strain   

** Sample faulted prior to ε = 5%, (σ1-σ3) and h reported for εf   
+ piston bent during deformation   
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Table 5.  Strain rate-stepping experiments coarse-grained dolomite 

 Experiment έ (s-1) (σ1-σ3)y (MPa)b
εy 

(%)c (σ1-σ3)sf (MPa)d hsf (102 MPa)e
εsf 

(%)f

Sample MD24  T = 600°C, Pc = 305 MPa, Pe = 300 MPaa

MD24E7 1.20x10-7 382 1.09 573 64 3.3 

MD24E6 1.69x10-6 582 3.5 705 27 6.2 

MD24E5 1.52x10-5 709 2.4 732 11 8.1 

MD24E4 1.2x10-4 ---- ---- ---- ---- 8.1*

normalizing to έ = 1.69x10-6 at ε = 5% 

       
Sample MD21  T = 700°C, Pc = 330 MPa, Pe = 300 MPaa

MD21E6 1.30x10-6 305 1.19 694 21 8.1 

MD21E5 1.56x10-5 706 8.3 734 6 10.4 

MD21E4 1.2x10-4 ---- ---- ---- ---- 10.5*

normalizing to έ = 1.30x10-6 at ε = 8% 

       

Sample MD30  T = 700°C, Pc = 330 MPa, Pe = 300 MPaa

MD30E7 1.20x10-7 352 1.23 496 46 2.8 

MD30E6 1.69x10-6 511 3 614 27 5.2 

MD30E5 1.52x10-5 630 5.4 670 29 6.4 

MD30E4 1.26x10-4 684 6.6 709 21 7.9*

normalizing to έ = 1.69x10-6 at ε = 5% 

For T ≤ 700°C  α = 0.079 ±0.001 MPa-1, n = 49 ±7 

       

Sample MD28  T = 800°C, Pc = 380 MPa, Pe = 300 MPaa

MD28E6 1.21x10-6 346 1.35 502 15 4.2 

MD28E5 1.45x10-5 502 4.4 611 27 6 

MD28E4 1.23x10-4 608 6.2 697 14 8.3+

M
ad

oc
 d

ol
om

ite
 

α = 0.046 ±0.008 MPa-1, n = 26 ±6, normalizing to έ = 1.45x10-5 at ε = 5% 

a. Assuming Pe = Pc - Pp where Pp = PCO2 at equilibrium 

b. Differential stress at yield for first step, or differential stress at 0.2% strain following stepwise change in   
     strain rate 
c. Axial strain at yield 
d. Differential stress at end of strain rate step 
e. Hardening coefficient at end of strain rate step 
f. Final cumulative strain for strain rate step 
*  sample faulted at final strain 
+ piston bent during deformation 
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Table 6.  Strain rate-stepping experiments fine-grained dolomite 

 Experiment έ (s-1) (σ1-σ3)y (MPa)b
εy 

(%)c (σ1-σ3)sf (MPa)d hsf (102 MPa)e
εsf 

(%)f

        
Sample SD B1-3 T = 700°C, Pc = 330 MPa, Pe = 300MPaa

B1-3E6 1.33x10-6 309 4.17 413 6 7 

B1-3E5 1.1x10-5 529 7.46 640 76 8.63 

B1-3E4 1x10-4 697 8.89 720 121 9 
α = 0.023 ±0.03 Mpa-1, n = 12 ±10, normalizing to έ = 1.1x10-5 at ε = 8.5% 

              

Sample SD B1-2 T = 800°C, Pc = 380 MPa, Pe = 300MPaa

B1-2E5 1.62x10-5 2.26 0.04 4 0 3.1 

B1-2E4 1.62x10-4 9.4 3.44 20 1 7.2 

B1-2E5 1.72x10-5 3.47 7.32 5 0 9.6 

B1-2E4 1.61x10-4 11.9 9.96 32 4 13.9 

Sy
nt

he
tic

 d
ol

om
ite

 

n = 1.28 ±0.15 , normalizing to έ = 1.6x10-5 at ε = 7% and ε = 13.8% 

a. Assuming Pe = Pc - Pp where Pp = PCO2 at equilibrium 
b. Differential stress at yield for first step, or differential stress at 0.2% strain following stepwise change in  
    strain rate 
c. Axial strain at yield 
d. Differential stress at end of strain rate step 
e. Hardening coefficient at end of strain rate step 
f. Final strain for strain rate step 
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Table 7.  Temperature-stepping experiments coarse-grained dolomite 

 Experiment 
T 

(°C) 
Pc 

(MPa) 
Pe 

(MPa)a
(σ1-σ3)y 
(MPa)b εy (%)c

(σ1-σ3)sf 
(MPa)d hsf (102 MPa)e εsf (%)f

          
Sample MD12  έ = 1.25x10-5s-1

MD12T8 800 380 300 344 1.3 526 5 6.1 

MD12T7 700 380 350 517 6.34 655 11 9.3 

MD12T6 600 380 375 631 9.83 673 4 11.4 
normalized to T = 700°C at ε = 7% 

Sample MD17  έ = 1.05x10-5s-1

MD17T8 800 380 300 381 1.36 586 37 3.8 

MD17T7 700 330 300 560 3.68 699 42 5.6 

MD17T5 500 300 300 598 6.14 725 17 8.4 
normalized to T = 700°C at ε = 5% 

Sample MD15  έ = 0.96x10-6s-1

MD15T8 800 380 300 350 1.28 505 29 3.5 

MD15T7 700 330 300 496 3.34 631 44 5.4 

MD15T6 600 305 300 517 5.96 694 50 7.7 
normalized to T = 700°C at ε = 6% 

For T ≤ 700°C,  (2.303R)*∆log(σ1-σ3)/∆(1/T) = ~-2 kJ/mol 

M
ad

oc
 d

ol
om

ite
 

For T ≥ 700°C, H*/n ≥ 13kJ/mol, H*/α ≥ 370 kJ/mol 

           
Sample KM4  έ = 1.25x10-5s-1

KM4T8 800 380 300 370 2 388 -14 7.4 

KM4T7 700 380 350 425 8.5 496 -1 11.3 

KM4T6 600 380 375 475 11.9 548 9 13.7* 

K
er

n 

H*/n = ~13 kJ/mol, normalized to T = 700°C at ε = 9% 

a. Assuming Pe = Pc - Pp where Pp = PCO2 at equilibrium  
b. Differential stress at yield point of each temperature step  
c. Axial strain at yield point of each temperature step  
d. Differential stress at end of temperature step   
e. Hardening coefficient at end of temperature step   
f. Strain at end of temperature step   
*  sample faulted at final strain   
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Table 8.  Temperature-stepping experiments fine-grained dolomite 

 Experiment 
T 

(°C) 
Pc 

(MPa) 
Pe 

(MPa) 
(σ1-σ3)y 
(MPa)d εy (%) 

(σ1-σ3)sf 
(MPa)d hsf (102 MPa)e εsf (%) 

          
Sample SD A1-1  έ = 1.63x10-4s-1

A1-1T8 800 380 300 -- -- 5 0 4.5 

A1-1T7 700 330 300 449 6.64 577 4 9.3 

A1-1T6 600 305 300 667 9.75 717 195 10.1 
For T ≥ 700°C, H*/n = 218 ±35 kJ/mol, normalized to T = 700°C at ε = 9% 

For T ≤ 700°C,  (2.303R)*∆log(σ1-σ3)/∆(1/T) = ~-12 kJ/mol 
Sample SD B1-1  έ = 1.48x10-5s-1

B1-1T8 800 380 300 18 0.3 19 0 8 

B1-1T7 700 330 300 26 8.23 166 24 13.8 

B1-1T6 600 305 300 428 15.1 597 15 18.1 
For T ≥ 700°C, H*/n = 218 ±35 kJ/mol, normalized to T = 800°C at ε = 13% 

For T ≤ 700°C,  (2.303R)*∆log(σ1-σ3)/∆(1/T) = ~-0 kJ/mol 
Sample SD B2-2  έ = 1.53x10-6s-1

B2-2T7 700 330 300 10.8 0.26 31 7 3.6 

B2-2T6 600 305 300 502 4.93 710 16 4.5 

B2-2T5 500 300 300 746 7.83 867 66 8.9 
For T ≥ 600°C, H*/n = 218 ±35 kJ/mol, normalized to T = 500°C at ε = 7% 

Sy
nt

he
tic

 d
ol

om
ite

 

For T ≤ 600°C,  (2.303R)*∆log(σ1-σ3)/∆(1/T) = ~1 kJ/mol 

a. Assuming Pe = Pc - Pp where Pp = PCO2 at equilibrium  
b. Differential stress at yield point of each temperature step  
c. Axial strain at yield point of each temperature step  
d. Differential stress at end of temperature step   
e. Hardening coefficient at end of temperature step   
f. Strain at end of temperature step   
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Figure 4.  Stress-Strain plots for coarse-grained dolomites.  A. Madoc Dolomite, 
(Samples MD32, MD10, MD26, MD33, MD12T8, MD9, MD34).  B. Stress-strain data 
for Kern Mtns. Dolomite.  C. Compilation of previous experiments, HM is Hasmark 
dolomite (Handin and Fairbairn, 1955), CD is Crevola dolomite (Barber et al., 1994), DP 
is Dover Plains dolomite (Turner et al., 1954). 
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is most pronounced at low temperatures (T ≤ 700°C for Madoc dolomite and T < 700°C 

for Kern Mtns. dolomite).  Limited strain hardening to strain weakening (h < 0) is 

observed for Madoc dolomite only at T ≥ 800°C (Figure 4A).  Differential stresses 

determined are relatively constant with strain for Kern Mtns. dolomite at T = 700°C. 

 Compressive strengths of fine-grained synthetic and Blair dolomites (Figure 5) 

are somewhat larger than those of the coarse-grained dolomites (~25%) at low 

temperatures (400° ≤ T ≤ 600°C, ε&  = 10-5 s-1) and some failed by fracture soon after the 

onset of inelastic yielding.  At T < 700°C both fine-grained dolomites are very strong, 

with yield strengths of 630-775 MPa differential stress, while at T ≥ 700°C the strength 

drops dramatically, with yield stresses of 150 MPa and less for the synthetic dolomite, 

and only 470 MPa for Blair dolomite.  Both fine-grained dolomites faulted at T < 600°C 

at differential stresses of 875 MPa for synthetic dolomite and 765 MPa for Blair 

dolomite.  The differential stress at failure is in excess of 2.5 times the Pe at failure for 

Blair dolomite, and nearly 3x Pe for the synthetic dolomite. 

 In sharp contrast to the low T deformation, the synthetic dolomite deforms at low 

differential stresses at higher temperatures (T ≥ 700°C), with a yield strength of 150 

MPa at 700°C and the yield was not detectable at 800°C.  At 5% strain the differential 

stress of synthetic dolomite at 700°C reaches 200 MPa with a hardening coefficient, h, 

of 2x103 MPa, while at 800°C the synthetic dolomite appears to deform in a steady state 

manner, at a differential stress ≤ 1 MPa with an h of ~1 MPa.   
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Figure 5.  Stress-Strain plots for fine-grained dolomites.  A. Blair dolomite prior to  
failure by fracture.  B. Synthetic dolomite data (Samples SD A3-1, SD B2-3, SD B3-1, 
SD B1-1T8). 
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Pressure Dependence 

 Once differential stresses (σ1-σ3) reach values equal to or greater than Pe, stresses 

within polycrystalline rocks may locally be sufficient to initiate microcracking. 

Contributions of brittle, dilatant mechanisms of deformation to the total sample 

deformation can be assessed by determining the dependence of strength on effective 

pressure.  Constant-strain-rate experiments were thus conducted on Madoc dolomite 

samples at constant temperature and strain rate (T = 700°C, ε&  = 1.25x10-5 s-1) at 

different effective pressures, Pe, from 50 to 300 MPa (Figure 6A, Table 5). Stress-strain 

data at 100 ≤ Pe ≤ 300 MPa are very similar with differential stresses at yield within 50 

MPa of each other and stresses measured at ε = 5% within 11% of the value (σ1-σ3 = 684 

MPa) measured at Pe = 300 MPa.  The sample deformed at Pe = 50 MPa yielded at 131 

MPa, just one-third the value (σ1-σ3 = 372 MPa) for the sample deformed at Pe = 100 

MPa.  The stress-strain curve for Pe = 50 MPa exhibits strain hardening, much as 

observed at higher pressures, but the experiment terminated when the sample failed at ε 

= 3.5% by shear fracture.  The results, recast as (σ1-σ3) at ε = 5% versus effective 

pressure, Pe (Figure 6B) show that flow strengths at Pe > 100 MPa depend weakly upon 

effective pressure (with an internal coefficient of friction of µ* of ~0.1) whereas 

differential stresses supported at Pe < 100 MPa may be described by a Mohr-coulomb 

criterion (with an internal coefficient of friction of µ* of ~1.0).  The weak dependence of 

flow strength on effective pressure at Pe > 100 MPa is confirmed by comparisons with 

previous results obtained for Dover Plains dolomite (Turner et al., 1954) and Hasmark 



 28

 

 
 
Figure 6.  Pe effect on strength of coarse-grained dolomite.  A. Stress-strain data for 
Madoc dolomite deformed at effective pressures, Pe, from 50 to 300 MPa.  B. 
Differential stresses measured at 5% strain verses effective pressure.  Madoc dolomite 
data at T = 700°C and έ = 1.25x10-5 s-1 are represented as diamonds.  Dover plains data 
of Turner et al. (1954) are squares, and Hasmark dolomite of Handin and Fairbairn, 
(1955) are triangles.  The Madoc sample deformed at Pe = 50 MPa failed at 3.5% strain.
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dolomite (Handin and Fairbairn, 1955) at confining pressures up to 500 MPa (and lower 

temperatures).  

 The majority of constant strain-rate experiments in this study were performed at 

Pe = 300 MPa as determined from the applied confining pressure, Pc, and a pore  

pressure, Pp, assumed to equal the equilibrium PCO2 of dolomite (Goldsmith, 1959).  

Given the weak dependence of flow strength on Pe at high Pe any uncertainties in pore 

pressure, Pp are not likely to cause large variations in (σ1-σ3). 

Strain Rate Dependence 

 Comparison of differential stresses measured for Madoc and Kern Mtns. 

dolomite specimens shortened at different strain rates for a given temperature and 

effective pressure (Table 4) show that strength does not change much with strain-rate 

over the experimental conditions.  Strain-rate-stepping experiments were therefore 

performed to determine the dependence of flow strength on rate of deformation for 

individual specimens to eliminate sample-to-sample variations in strength (Tables 5 & 

6). 

 Strain-rate-stepping experiments performed on coarse-grained dolomite samples 

exhibit small increases in strength at a given temperature and effective pressure 

associated with stepwise increases in strain-rate that are superposed on strain hardening 

(Figure 7A).  To compare stresses achieved at different strain-rates, strain hardening 

curves were generated using second order polynomials and extrapolated, as necessary, to 

a common strain (~5%). 
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Figure 7.  Strain-rate-stepping tests for Madoc and synthetic dolomites.  A. Results for 
Madoc sample MD 30 deformed at 10-7 s-1 to 10-4 s-1, reducing strain rate stepwise by  
orders of magnitude.  The inset shows data in detail for a strain rate step from 10-6 s-1 to 
10-5 s-1 and curves fit to the two strain rates.  B. Results for fine-grained synthetic 
dolomite SD B1-2 deformed at έ = 10-5 s-1, then at έ = 10-4 s-1, returning to έ = 10-5 s-1, 
and back to έ = 10-4 s-1.  Values for the faster rates were taken near the end of each step 
(~7 and 13% respectively). 
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Figure 8.  Log stress vs log strain rate for Madoc dolomite.  A. Differential stress at ~5% 
strain for individual specimens deformed at different strain rates shows substantial 
scatter about best fits to the data.  Best fits for exponential law and power law are 
superposed, shown as a line. (Samples MD30, MD21, MD13, MD32, MD25)  B. Results 
of strain-rate-stepping experiments with best fits to their data using exponential and 
power laws. (Samples MD30, MD28, MD24, MD21)
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 The stress – strain rate relations determined from strain-rate-stepping 

experiments are comparable to those determined from individual experiments performed 

at different strain-rates, but with less scatter about least-squares fits.  Recast as log(σ1-

σ3) versus logε&  (Figure 8A), stresses measured at ε = 5% for individual Madoc dolomite 

samples shortened at T = 700°C, Pe = 300 MPa show a weak positive correlation with 

strain rate.  Similar stress – strain rate correlations are obtained for strain-rate-stepping 

experiments performed on Madoc dolomite (Figure 8B) at T = 600°C and T = 700°C but 

a slightly stronger rate dependence is observed at T = 800°C. 

 Strain-rate-stepping experiments performed on fine-grained synthetic dolomite 

samples reveal a weak dependence of flow strength on strain rate at T = 700°C (Pe = 300 

MPa) and a much stronger dependence on strain rate at T = 800°C (Pe = 300 MPa).  

Changes in differential stress with stepwise changes in strain rate at T = 700°C were 

distinguished from changes in stress due to strain hardening in the same manner as for 

the coarse-grained dolomite results.  However, strain hardening was not observed at the 

lower strain rates (10-5 s-1) of the strain-rate-stepping test (Figure 7B) performed at T = 

800°C (and Pe = 300 MPa; SD B1-2).  Moreover, differential stresses measured at a 

given strain rate (10-5 s-1) at T = 800°C appear to be reproducible at different finite axial 

strain values, and are apparently independent of prior triaxial deformation.  Stress-strain 

rate relations for experiment SD B1-2 were determined from the relatively steady 

differential stress measurements made at ε&  = 10-5 s-1 and choosing the differential stress 

measured at the end of each high strain-rate (10-4 s-1) step (at ε = 4% after initiating the 

10-4 s-1 step). 
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Figure 9.  Log stress vs log strain rate for strain-rate-stepping experiments on synthetic 
dolomite.  A. Strain-rate-stepping experiment (SD B1-3) at T = 700°C and Pe = 300MPa, 
with best fit exponential and power law fits shown.  B. Strain-rate-stepping experiment 
(SD B1-2) at T = 800°C and Pe = 300MPa, fit by power law. 
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 Results of strain-rate-stepping experiments displayed as log(σ1-σ3) versus logε&  

(Figure 9) show that flow strengths are weakly dependent on strain rate at T = 700°C and 

are strongly dependent on strain rate at T = 800°C.  Flow strengths of fine grained 

dolomite at T = 700°C increase by 60% for an order of magnitude increase in strain rate, 

while at T = 800°C, differential stresses are 6 times larger for an increase in strain-rate 

of 10. 

Temperature Dependence

   The dependence of flow strength on temperature was determined for the coarse- 

and fine-grained dolomites from individual constant strain rate experiments (Table 4) 

and temperature-stepping experiments (Tables 7 & 8).  Differential stresses measured at 

ε = 5% at different temperatures and a given strain rate and effective pressure require 

several stress-temperature relations. 

 Coarse-grained Madoc dolomite samples deformed at T ≤ 700°C show a 

remarkable stress temperature relationship with differential stresses reaching higher 

values at higher temperatures (Figure 4A).  While the increase in strength with 

temperature is small (~35 MPa for a temperature increase of 100°C), it is systematic and 

cannot be accounted for by sample-to-sample scatter (± 20 MPa).  This relationship is 

inconsistent with simple, thermally activated deformation processes and cannot be 

described by an Arrhenius relationship. 

 In contrast to the lower temperature results, stresses measured for Madoc 

dolomite samples at temperatures T > 700°C show a marked reduction in strength with 

increasing temperature.  At a strain rate of ε&  = 10-5 s-1 and Pe = 300 MPa, differential 
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stresses measured at ε = 5% drop from 684 MPa at 700°C to 523 MPa at 800°C.  The 

differential stress measured at ε = 5%, T = 850°C, and ε&  = 10-5 s-1 was only 397 MPa  

Because of the high equilibrium PCO2 generated at T = 850°C and the confining pressure, 

Pc, limit of the pressure vessel, the effective pressure, Pe, of the experiment performed at 

T = 850°C (experiment MD 39) was only 200 MPa.  However, based on determinations 

of Pe (Figure 6), the reduction in differential stress at this temperature is attributed 

largely to thermally activated processes, not to the departure in Pe from 300 MPa as 

imposed in the other experiments. 

 Temperature-stepping experiments for Madoc dolomite reveal stress-temperature 

relations like those determined for individual experiments at different temperatures.  

Normalizing to a common axial strain using second-order polynomial fits to stress-strain 

curves of temperature-stepping experiments (Figure 10A), differential stresses are 

relatively insensitive to temperature at T ≤ 700°C whereas (σ1-σ3) measured at T = 

800°C are distinctly lower than at T ≤ 700°C. 

 Differential stresses measured at different temperatures for coarse-grained Kern 

Mtns. dolomite do not show the distinct stress-temperature relations observed for Madoc 

dolomite.  However, this may be due to the relatively small number of experiments 

performed on this starting material.  Comparisons of individual experiments performed 

at T = 500°C and 700°C (Figure 4B) at ε&  = 10-5 s-1 and Pc = 400 MPa (Pe =400 and 370 

MPa, respectively for KM1 and KM2) reveal a significant drop in strength with 

increased temperature and a change from strain hardening to a stress-strain curve 

characterized by a steady stress at ε > 5%.  A somewhat smaller temperature dependence  
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Figure 10.  Results of temperature-stepping experiments.  A. Series of stress-strain 
curves for Madoc dolomite (MD17).  Inset shows the fit to strain hardening data at T = 
800°C and 700°C, used to separate temperature dependence from strain dependence.  B. 
Series of stress-strain curves for Kern Mtns. dolomite (KD-4) C. Temperature-stepping 
results for synthetic dolomite (SD B1-1).
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is apparent from temperature-stepping results on Kern Mtns. dolomite at T = 600° and 

700°C (Figure 10B) and a stronger temperature dependence is apparent at T = 700° and 

800°C. 

 Fine-grained synthetic and natural Blair dolomites are very strong at low 

temperatures (T <700°C, Figure 5) with differential stresses at ε = 5% (or at fracture) 

that exceed coarse-grained dolomite strengths by 18-35% and show little variation with 

temperature.  At high temperatures (T ≥ 700°C), however, stresses measured for 

synthetic dolomite are low and show a strong temperature dependence.  Differential 

stresses measured at T = 700°C in individual constant strain-rate experiments (Figure 

5B) and temperature-stepping experiments (Figure 10C) performed on synthetic 

dolomite are less than 30% of the stresses measured at T = 600°C at comparable ε&  and 

Pe.  Differential stresses measured for synthetic dolomite (~4 MPa) at T = 800°C, ε&  = 

10-5 s-1, and Pe = 300 MPa are just resolvable using the internal force gauge (±1 MPa).  

Temperature-stepping experiments (experiment SD B1-1, Figure 10C) further 

demonstrate that the low strength of synthetic dolomite at high temperature (T = 800°C) 

is reproducible, independent of earlier temperature steps at low temperature (T = 600°C). 

 The different dependencies of flow strength on temperature can be distinguished 

in terms of log(σ1-σ3) and 1/T, where T is absolute temperature, compiling results for 

coarse-grained dolomites (Figure 11) and for fine-grained dolomites (Figure 12). 

 Log(σ1-σ3) - 1/T data for Madoc dolomite define a relationship at low 

temperatures (T ≤ 700°C) with a shallow, negative slope, both for independent constant-

strain-rate experiments (Figure 11A) and for temperature-stepping experiments (Figure 
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Figure 11.  Strength of Madoc dolomite as a function of temperature, shown as log(σ1-
σ3) versus 1/T.   A. Results of individual experiments performed at Pe = 300MPa and 
strain rates of 10-5 s-1.  In addition to Madoc dolomite results (diamonds), results are 
shown for other coarse-grained dolomites (Kern, squares; Crevola, Barber et al. 1994, 
triangle; Dover, Turner et al. 1954, circle).  At low temperatures, strengths are not 
sensitive to temperature, with a slight increase in strength with an increase in 
temperature.  At temperatures above 700°C, strengths are strongly dependent on 
temperature with an apparent ratio of flow law parameters H*/α = 24 kJ MPa/mol if an 
exponential σ – έ relationship is assumed, or a ratio H*/n = 60 kJ/mol if a power law is 
assumed.   B. Temperature-stepping results for έ = 10-6 s-1 (MD15), and έ = 10-5 s-1 
(MD17 , MD12) for Madoc dolomite (diamonds).  The same transition in slope is 
apparent in these results as obtained by compiling results of individual constant-strain-
rate experiments.  Temperature-stepping results for Kern Mtns. dolomite are shown for 
comparison (squares, KD-4). 
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Figure 12.   Strength of fine-grained synthetic dolomite as a function of temperature, 
shown as log(σ1-σ3) versus 1/T.   A. Results of individual experiments performed at Pe = 
300 MPa and έ = 10-5 s-1.  In addition to synthetic dolomite results (circles, SD B1-1T8, 
B2-3, B3-1, B1-4), results are shown for fine-grained Blair dolomite (squares, BD-1, 
BD-2).  At low temperatures, strengths of the fine-grained dolomites are insensitive to 
temperature and comparable, or slightly higher by 20%, to those of the coarse-grained 
dolomites.  At temperatures above 600°C, strengths are strongly dependent on 
temperature with a slope given by H*/n = 324 ±117 kJ/mol.  B. Temperature-stepping 
results for έ = 10-4 (SD A1-1), έ = 10-5 (SD B1-1), and έ = 10-6 (SD B2-2) for synthetic 
dolomite.  The same transition in slope is apparent in these results as obtained by 
compiling results of individual constant strain-rate experiments, with a slope given by 
H*/n = 218 ±35 kJ/mol. 
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11B).  Madoc dolomite strengths at low temperatures compare favorably with the 

strength of Kern Mtns. dolomite measured at T = 500° and 600°C and that reported for 

Dover Plains dolomite at T = 380°C (ε&  = 10-4 s-1, and Pc = 500 MPa, Turner et al.,1954).  

The strength of Kern Mtns. dolomite at T = 700°C, ε&  = 10-4 s-1, Pe = 370 MPa, appears 

to be low relative to Madoc dolomite results.  Log(σ1-σ3) - 1/T data for Madoc dolomite 

at T = 800° and 850°C define a relationship at high temperatures with a steep, positive 

slope that is consistent with the flow strength reported for Crevola dolomite at T = 

900°C (ε&  = 10-4 s-1, Pc = 500 MPa, Barber et al., 1994).  Given that the transition in 

stress-temperature relationships occurs between T = 700° and 800°C, the slopes 

evaluated at high temperatures of the temperature-stepping experiments are considered 

to be lower bounds of the high temperature stress-temperature relationship.  

Temperature-stepping results for Kern Mtns. dolomite (Figure 11B) appear to give a 

constant slope in terms of log(σ1-σ3) - 1/T.  However, given the available data, two 

stress-temperature relationships might fit Kern Mtns. dolomite results with slopes similar 

to those of Madoc dolomite, if the transition temperature for Kern Mtns. dolomite is 

lower (between T = 600° and 700°C). 

 Differential stresses measured for synthetic and Blair dolomite at low 

temperatures (T < 700°C) are large and appear to be independent of temperature as 

illustrated in log(σ1-σ3) - 1/T plots for individual constant strain-rate experiments (Figure 

12A) and temperature-stepping experiments (Figure 12B).  At higher temperatures (T ≥ 

700°C), however, log(σ1-σ3) - 1/T plots show a very strong stress-temperature 

relationship for both individual constant-strain-rate experiments (Figure 12A) and 
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temperature-stepping experiments (Figure 12B).  The log(σ1-σ3) - 1/T slope obtained 

from the individual constant strain-rate experiments is 5 times steeper than for the 

coarse-grained individual constant strain-rate experiments, while fine-grained 

temperature-stepping experiments indicate a slope up to 16 times steeper than the 

coarse-grained temperature-stepping experiments.  However, the transition between low 

and high temperature behavior occurs between T = 700° and 800°C, suggesting that the 

slope for the coarse-grained stepping experiments may well be steeper, and more similar 

to the results from the individual experiments.  If the high temperature portion of the 

coarse-grained temperature-stepping experiments is similar to the individual condition 

experiments, the slope difference is reduced to 3.6 times steeper. 

 Additionally, the transition from the low temperature behavior in log(σ1-σ3) - 1/T 

space to high temperature behavior in the synthetic is strain-rate dependent, with the 

transition occurring around 700°C at ε&  = 10-4 s-1 and 10-5 s-1 but the transition is closer to 

600°C at ε&  = 10-6 s-1.  Thus, the transition in temperature dependence is distinctly 

different for synthetic and Madoc dolomites. 

Microstructures 

 Optical deformation microstructures of coarse-grained Madoc and Kern Mtns. 

dolomites differ for samples deformed at low temperatures (T ≤ 700°C) and high stresses 

and those deformed at high temperatures (T ≥ 800°C) and lower stresses (Figure 13).  

Coarse-grained dolomite samples deformed at low temperatures exhibit f-twins (Figure 

13C) with densities that exceed those observed in the starting materials (Figure 13A) and 

undulatory extinction.  Optically visible subgrains are absent and there is no evidence of 
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Figure 13.  Optical microstructures of Madoc Dolomite. Cross-polarized light (A, C, E) 
and plane-polarized light (B, D, F).  Maximum shortening direction is vertical in 
deformed samples (C-F).  A. & B. Madoc dolomite prior to deformation.  Individual 
grains show straight extinction, low twin densities (A.), and low intergranular crack 
densities (B.)  C. & D. Madoc dolomite deformed at T = 700°C to ε = 7.8% (Pe = 
300MPa, ε&  = 1.18x10-5s-1, MD32).  Sample is dominated by mechanical f-twins and 
undulatory extinction (C.), while intergranular crack densities are low (D.).  E. & F. 
Madoc dolomite deformed to ε = 8.8% at 850°C (E., F., Pe = 200MPa, ε&  = 1.25x10-5s-1, 
MD34).  Microstructures include undulatory extinction, fine recrystallized grains at 
grain boundaries with twin densities that are comparable to that in the starting material 
(E.).  Crack densities are somewhat greater than observed in the starting material (F.). 
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Figure 14.  Optical grain boundary microstructures in crossed polarized light.  A. MD32 
deformed to ε = 7.8% at 700°C (Pe = 300MPa, ε&  = 1.18x10-5s-1).  B. MD34 deformed to 
ε = 8.8% at 850°C (Pe = 200MPa, ε&  = 1.25x10-5s-1).  C.  SD B1-4 deformed to ε = 
9.25% at 800°C (Pe = 300MPa, ε&  = 1.25x10-5s-1).  Grain boundaries of Madoc dolomite 
deformed at T ≤ 700°C are straight and sharply defined, much as observed for the 
starting material.  In contrast, grain boundaries following deformation at T ≥ 800°C are 
decorated by fine recrystallized grains.  Recrystallization is also noted within grains, 
particularly at twins and zones that may have involved shear and/or cracking.  Grain 
boundaries and intragranular microstructures of deformed synthetic dolomite samples 
appear little changed from those of the HIP starting material.  The shortening direction is 
vertical in all micrographs. 
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recrystallization, either at grain boundaries or in twins (Figure 14A).  Despite the large 

differential stresses (σ1-σ3) achieved at the lower temperatures, relative to the effective 

pressure, Pe, samples imaged in plane polarized light show little scattering of light due to 

microcracks (Figure 13D) over that observed for the starting materials (Figure 13B). 

 Coarse-grained dolomite samples deformed at higher temperatures (T = 800, 

850°C at ε&  = 10-5 s-1, and Pe = 300, 200 MPa, respectively) have twin densities (Figure 

13E) similar to the starting materials (Figure 13A).  Individual dolomite grains show 

smooth undulatory extinction and fine recrystallized grains are observed at grain 

boundaries and within grains, localized on twins and deformation zones that may have 

involved shear and/or cracking (Figure 14B).  Some of the light scattering noted in plane 

polarized light for these samples may be due to microcracks but some scattering appears 

to be due to plucking of the thin section where finely recrystallized grains are abundant 

(Figure 13F). 

 Optical microstructures of fine-grained synthetic and Blair dolomite appear 

unchanged by deformation, except for the macroscopic brittle shear fractures that formed 

in some of the samples.  In contrast to the coarse-grained dolomites deformed at low 

temperatures, deformed fine-grained dolomites do not exhibit any twins that are 

optically detectible.  Undulatory extinction is also not observed for the fine-grains of 

deformed synthetic dolomite (Figure 14C) and Blair dolomite samples.  However, 

dislocation nucleation and glide cannot be ruled out for these samples since optical 

methods to detect distortions of the fine grains of these samples are not very sensitive.  

For fine-grained dolomite samples with no visible faults, shortening strains of up to 18% 
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must be accounted for, despite the lack of optical deformation microstructures (e.g., 

sample SD B1-1, Table 8). 

Flow Laws 

 Coarse- and fine-grained dolomites deformed at low temperatures (T ≤ 600°C at 

ε&  = 10-5 s-1, Pe = 300 MPa) exhibit mechanical behavior that is nearly plastic, with 

differential stresses (at yield and at ε = 5%) that increase little with increases in strain-

rate.  Differential stresses of coarse-grained Madoc dolomite deformed at these 

conditions exhibit a small dependence on temperature that cannot be described by an 

Arrhenius relation and stresses measured for the fine-grained dolomites show little or no 

dependence on temperature.  Deformation microstructures corresponding to this 

mechanical response indicate that the high stresses measured at these conditions reflect 

the critical resolved shear stresses for mechanical twinning and dislocation slip in the 

coarse polycrystalline dolomites and, by inference, dislocation slip in the fine-grained 

dolomites.  Local microcracking may play an accommodating role in plastic deformation 

but the relatively modest microcrack densities cannot account for large fractions of the 

total accumulated strains.  The observed strain hardening and the lack of a strong 

temperature effect on mechanical properties suggest that dislocation recovery is limited, 

and this is consistent with the absence of optically visible subgrains or recrystallized 

grains. 

 To describe the high crystal-plastic flow strengths of polycrystalline dolomites at 

these low temperature conditions, I use two non-linear relationships between strain-rate, 

ε& , and stress, (σ1-σ3), assuming that any thermal activation terms are negligible: 
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where the pre-exponential terms oε&  in eqns. 2 and 3 are in units of strain-rate (s-1), (σ1-

σ3) is taken at ε = 5%, µ is the shear modulus (45.7 GPa; Bass, 1995), and parameters n 

(dimensionless) and α (MPa-1) are fitting parameters, respectively, of the assumed power 

and exponential laws.  Fits of the power law (eqn. 2) to experimental data yield a value 

of n that can be compared with idealized mechanical relations for viscous (n = 1) and 

plastic (n = ∞) response.  However, micromechanical models suggest that an exponential 

form (eqn. 3) of the flow law best describes dislocation glide (Poirier, 1985). 

 Mechanical results for coarse-grained Madoc dolomite were plotted as log(σ1-σ3) 

versus logε&  (Figure 8) and least-squares methods used to find values of n,  
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The power and exponential laws fit the experimental measurements equally well, with 

values of n = ~54 (±30) or α = ~0.092 (±0.059) MPa-1 describing the results of 
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individual strain-rate experiments at T = 700°C and Pe = 300 MPa (Figure 8A) and 

values of n = ~49 (±7) or α = ~0.076 (±0.01) MPa-1 describing strain-rate-stepping 

results obtained at T = 600° and 700°C at Pe = 300 MPa (Figure 8B).  Scatter in 

differential stresses measured for different samples leads to large uncertainties in flow 

law parameters and the best determinations of n and α come from the strain-rate-

stepping experiments, which eliminate sample-to-sample variations.  The values of n are 

much larger than expected for dislocation creep (3 ≤ n ≤ 5) and reflect the nearly perfect 

plastic response of dolomite at low temperatures. 

 Strain-rate-stepping results for fine-grained synthetic dolomite, at T = 700°C and 

Pe = 300 MPa,  fitted by power and exponential laws (Figure 9A) yield values of n = ~12 

(±10) or α = ~0.023 (±0.03) MPa-1.  While these values are considerably smaller than 

determined for Madoc dolomite at the same conditions, they characterize flow strengths 

that are similarly insensitive to changes in strain rate. 

 Flow strengths of coarse- and fine-grained dolomites depend more strongly on 

strain-rate at high temperatures (T ≥ 800°C) than at low temperatures (Figures 8 & 9) 

and they exhibit pronounced temperature dependencies (Figures 11 & 12).  However, the 

flow strengths of coarse- and fine-grained dolomites deformed at high temperatures are 

not generally comparable.  Differential stresses measured at (5%) for fine-grained 

synthetic dolomite show much stronger dependencies on strain-rate and temperature than 

do stresses measured for the coarse-grained dolomites.  Microstructures of the coarse-

grained dolomite samples deformed at high temperatures suggest that mechanisms of 

dislocation recovery and dynamic recrystallization are important at T ≥ 800°C (at ε&  = 
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10-5 s-1, Pe = 300 MPa). Optical microstructures of deformed synthetic dolomite samples 

do not provide evidence for dislocation recovery mechanisms nor do they disprove that 

recovery is important.  However, the nearly linear changes in flow strength with strain-

rate suggest some form of diffusion creep rather than dislocation creep. 

 To describe the high temperature deformation of coarse-grained dolomites, I use 

the same nonlinear functions as used to describe the low temperature deformation, but 

with an Arrhenius term added to describe reductions in flow strength with increasing 

temperature: 
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where H* is an activation enthalpy (in kJ/mol), R is the ideal gas constant and absolute T 

is in Kelvin.  In the absence of mechanical data for fine-grained dolomites of varying 

grain size, eqn. 6 can be used to fit the high temperature results of synthetic dolomite.  

However, assuming that the nearly linear (Newtonian) stress-strain rate relation for fine-

grained dolomite at high temperatures results from Coble (grain boundary diffusion) 

creep, I fit the high temperature mechanical data of synthetic dolomite by  
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where d is the grain size in µm, the grain size exponent is assumed to equal 3, and Ω, the 

unit cell volume, is used to normalize the diffusional length scale. 

 Strain-rate-stepping results for coarse-grained Madoc dolomite deformed at T = 

800°C (Pe = 300 MPa, Figure 8B) fitted with power and exponential laws yield values of 

n = ~26 (±6) or α = ~0.046 (±0.008) MPa-1.  While the n value is still large compared to 

the expected values for dislocation creep (3 ≤ n ≤ 5, Poirier, 1985), n determined at T = 

800°C is significantly lower than n for low temperature experiments.  Although 

microstructures of samples deformed at T ≥ 800°C suggest that recovery and 

recrystallization are important, the large value of n suggests dislocation glide rather than 

dislocation creep.  The value of α may thus describe dislocation glide best.  However, 

the stress-strain relation at T > 800°C may differ from that determined at T = 800°C as 

recovery processes become more important, and the values of n decreases 

correspondingly. 

 Synthetic dolomite deformed at T = 800°C (Pe = 300 MPa) deforms with a nearly 

linear (Newtonian) viscous behavior, in contrast to the low temperature (plastic) 

behavior.  From the slope determined in log(σ1-σ3) – logε&  at T = 800°C, n = 1.28 ±0.15 

(Figure 9B).  The viscous response of fine-grained synthetic dolomite is very different 

from the nonlinear behavior of Madoc dolomite at 800°C (n = 26). 

 The high temperature data for coarse-grained Madoc dolomite, plotted as log(σ1-

σ3) versus1/T (Figure 11) yield a slope of:  
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From the results of individual constant-strain-rate experiments performed at T > 700°C 

(including the result for Crevola dolomite at T = 900°C; Barber et al., 1994) the ratio 

H*/n = 60 ±6 kJ/mol, in contrast to the shallow, negative slope noted at low temperature.  

Alternatively, if the thermally activated exponential law (eqn. 7) is assumed, the same 

data fitted in terms of (σ1-σ3) versus1/T yield a slope of:  
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with the ratio of H*/α = 22,907 ±1,078 kJ-MPa/mol.  If n or α values from the strain-

rate-stepping experiments at T = 800°C are adopted (n = ~26 or α = ~0.046 MPa-1), and I 

take H*/n = 60 kJ/mol or H*/α = 22,907 kJ-MPa/mol, the inferred value of H* is very 

large.  This result, and the microstructural evidence for dislocation creep suggest that the 

value of n (and α) is too large.  If, on the other hand, n is taken to be ~7, adopting the 

value reported for dislocation creep of Carrara marble (Schmid et al., 1980), the ratio 

H*/n = 60 kJ/mol for Madoc dolomite implies that H* is ~420kJ/mol.  Similarly, the 

temperature dependence of Madoc dolomite flow strength at high temperatures can be 

described by the exponential law with α = ~0.018 MPa-1 and H* = ~420kJ/mol. 

 Temperature-stepping results for Kern Mtns. dolomite yield ratios of H*/n = 13 

±4 kJ/mol or H*/α = 6,136 ±1,580 kJ-MPa/mol.  However, given the temperature 

interval over which these data were obtained, it is likely that there values are 

intermediate between high temperature and low temperature values for crystal plasticity 

and dislocation creep of dolomite. 
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 The high temperature data for fine-grained synthetic dolomite, plotted as log(σ1-

σ3) versus1/T (Figure 12) yields ratios of  H*/n = 324 ±155 kJ/mol for individual 

constant strain-rate experiments and H*/n = 218 ±35 kJ/mol for temperature-stepping 

experiments.  Given the much larger uncertainty in H*/n from the individual constant-

strain-rate experiments, I conclude that the best determination of H*/n comes from the 

temperature-stepping experiments.   From H*/n = 218 kJ/mol and n = 1.28, the activation 

enthalpy H* = 280 ±45 kJ/mol for high temperature synthetic dolomite (Figure 9B). 

 Best-fit flow law parameters for the different dolomite starting materials are 

summarized in Table 9.  Values of log oε&  are given for the different flow laws, using a 

shear modulus, µ, for dolomite of 45.7 GPa (Bass, 1995) and unit cell volume Ω of 

3.2x10-10 µm3 (Deer et al., 1992). 
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Table 9. Flow law parameters 
Material conditions log έo α n H* flow law 

low T 85.7 ---- 49±7 ---- eqn 2 
low T -27.1 0.079±0.01 ---- ---- eqn 3 
high T 29.0 ---- 7* 420±44* eqn 6 

Madoc 

high T 11.8 0.018** ---- 430 ±8** eqn 7 
high T 13.9 ---- 7+ 91±28+ eqn 6 Kern 
high T -2.8 0.018++ ---- 108±26++ eqn 7 
low T 15.8 ---- 12±10 ---- eqn 2 
low T -10.3 0.023±0.03 ---- ---- eqn 3 Synthetic 
high T 24.7 ---- 1.28±0.15 280±45 eqn 8 

* H*/n = 60 kJ/mol and H* determined assuming n = 7 
**  H*/α = 25447 kJ/mol and H* determined assuming α = 0.018 
+  H* determined assuming n = 7 
++  H* determined assuming α = 0.018 
Dolomite shear stress, µ, 45.7 GPa (Bass, 1995) 
Dolomite unit cell, Ω, 3.2x10-10 µm3 (Deer et al., 1992) 
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DISCUSSION 

 The results of this study compare favorably with results from previous 

experimental studies of dolomite deformation (Figure 4).  Most of the previous 

experimental work on dolomite deformation was carried out at low temperatures (25-

300°C) and the stress-strain data obtained for Madoc dolomite at 400°C (MD 33) are 

similar in form to results from these early studies and strengths are of similar magnitude.  

Madoc dolomite deformed at 400°C, yields at 374 MPa and it’s strength at 5% strain is 

600 MPa while the results of Turner et al. (1954) for Dover Plains dolomite deformed at 

380°C show a yield strength of 360 MPa and a strength at 5% strain of 620 MPa.  

Handin and Fairbairn (1955) report a strength of 364 MPa at yield and 660 MPa at 5% 

strain for Hasmark dolomite deformed at 300°C and Barber et al. (1994) report a 

strength of 395 MPa at yield and 570 MPa at 5% strain for Crevola dolomite deformed 

at 300°C.  Only Barber et al. (1994) report data for dolomite deformed at higher 

temperatures, and their results for Crevola dolomite deformed at 900°C (σ1-σ3 =106 MPa 

at yield and 308 MPa at 5% strain) are consistent with my results for Madoc dolomite 

deformed at 850°C (σ1-σ3 =267 MPa at yield and 397 MPa at 5% strain).  At low 

temperatures (T ≤ 600°C) the fine-grained dolomites exhibit stresses higher than the 

coarse-grained dolomites.  The strength of the synthetic dolomite at 400°C is 775 MPa at 

yield and 875 MPa at 2% strain just prior to faulting (Figure 5), and the strength of Blair 

dolomite at 500°C is 636 MPa at yield and 765 MPa at 3% strain prior to faulting.  At 

high temperatures (T ≥ 700°C) the fine-grained synthetic dolomite exhibits weaker 

behavior than the coarse-grained dolomite at similar conditions. 
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 The unusual increase in strength with increasing temperature displayed by the 

Madoc dolomite at T ≤ 700°C has not been reported in previous experimental 

deformation studies of polycrystalline dolomite.  However, a similar trend of increasing 

strength with increasing temperature has been observed for oriented dolomite single 

crystals (Higgs and Handin, 1959; Barber at al., 1981). 

Deformation Mechanisms

 Optical microscopy of Madoc dolomite deformed at T ≤ 700°C reveal abundant 

f-twins and thus mechanical twin glide is important at these conditions (Figure 13C).  At 

T ≥ 800°C, microstructures exhibit evidence for dislocation glide, relatively little twin 

glide, and recovery processes with undulatory extinction and fine recrystallized grains 

(Figure 13E).  These observations are consistent with the relative magnitudes of critical 

resolved shear stresses (τc) for twinning and dislocation slip for oriented single crystals 

deformed at different temperatures (Figure 15B; Higgs and Handin, 1959; Barber at al., 

1981).  At T ≤ 700°C, the τc for f-twinning is less than that for f-slip (Barber at al., 

1981),while at T > 700°C the τc for f-slip is less than that for f-twinning.  The 

temperature interval over which Madoc dolomite exhibits mechanical twinning 

corresponds to conditions where dislocation slip on the f-plane requires shear stresses 

that exceed those for twinning on the same plane.  In addition to twinning, some 

dislocation slip must occur, and the increase in Madoc dolomite strength with increasing 

temperature at T ≤ 700°C corresponds to the increase in critical resolved shear stress of 

c-slip (Barber et al., 1981), though with a shallower negative slope.  This comparison 
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Figure 15.  Comparison of temperature effects on strength of Madoc dolomite (A.) with 
critical resolved shear stresses τc of intracrystaline deformation mechanisms (B.) 
determined for experimentally deformed single crystals (Barber et al., 1981).  The 
temperature interval over which Madoc dolomite exhibits mechanical twinning 
corresponds to conditions where dislocation slip on the f-plane (f-slip) requires shear 
stresses that exceed those for twinning on the same plane.  The increase in Madoc 
dolomite strength with increasing temperature at T ≤ 700°C corresponds to the increase 
in critical resolved shear stress of c-slip reported for single crystals (Barber et al., 1981) 
though with a shallower negative slope.  The Arrhenius temperature dependence 
exhibited by Madoc dolomite at T ≥ 800°C is larger than reported for f-slip and may 
reflect the role of recrystalization and recovery processes that differ between the 
polycrystalline and single crystal dolomites. 
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suggests that c-slip is one of the important deformation mechanisms in Madoc dolomite 

at T ≤ 700°C in addition to mechanical twinning. 

 At higher temperatures (T ≥ 800°C), the temperature dependence of Madoc 

dolomite strength is larger than that reported by Barber et al. (1981) for f-slip.  The 

strong temperature dependence exhibited by Madoc dolomite flow strengths at these 

conditions may reflect recovery processes and recrystallization in the polycrystalline 

aggregates that are not as important in the single crystal experiments (Figure 14B). 

 Many of the deformation and recovery processes of dolomite have been 

identified by transmission electron microscopy of experimentally deformed single 

crystals and polycrystalline rocks (Barber et al., 1981, 1994).  In polycrystalline Crevola 

dolomite, Barber et al. (1994) observed evidence for f-twinning at all conditions 

explored (25°C ≤ T ≤ 500°C atε&  = 10-4 s-1, 700°C ≤ T ≤ 900°C at ε&  = 10-6 s-1), but the 

highest twin densities were observed in samples deformed at 500° and 700°C.  f-slip and 

c-slip were also active at all temperatures, with f-slip becoming dominant over c-slip at T 

≥ 700°C.  Evidence for dislocation climb was only observed in a single sample deformed 

at 900°C (Barber et al., 1994).  Thus, the high stresses measured at T < 700°C and the 

nearly plastic behavior of coarse- and fine-grained dolomites correspond to deformation 

by f-twinning and c-slip.  The reduced strengths determined for coarse-grained Madoc 

and Kern Mtns. dolomites at high temperatures (T ≥ 800°C) corresponds to reductions in 

critical resolved shear stress of f-slip and processes of dislocation recovery and 

recrystallization.  Mechanical twinning and c-slip are of less importance at these higher 

temperatures. 
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Transitions in Flow Law 

  The low temperature mechanical behavior of coarse- and fine-grained dolomites 

corresponds to temperature- and strain-rate-insensitive crystal plasticity and twinning 

(Figure 16A).  Fine-grained dolomite is stronger than coarse-grained dolomite, as 

expected if grain boundaries serve as barriers to twin glide and dislocation glide.  

However, both follow similar exponential flow laws (Table 9; coarse oε& = 7.2x10-28s-1 α 

= 0.079 MPa-1, fine oε& = 5.0x10-11s-1 α = 0.023 MPa-1). 

 At higher temperatures both coarse- and fine-grained dolomites exhibit 

transitions to strain-rate- and temperature-dependent strengths (Figure 16A).  However, 

the transitions occur at different temperatures and the slopes are distinct (Figure 16A).  

Mechanical and microstructural evidence indicates that coarse-grained Madoc dolomite 

deforms by dislocation creep at high temperature while fine-grained synthetic dolomite 

deforms by diffusion creep.  Over a wide range of high temperatures, fine-grained 

synthetic dolomite is weaker than the coarse-grained Madoc dolomite. 

 The transition from crystal plasticity and twinning to dislocation creep in coarse-

grained Madoc dolomite occurs between T = 700°C and 800°C at ε& = 10-5s-1.  This 

transition is expected to shift to lower temperatures at lower (i.e. geologic) strain rates 

but it should not be strongly affected by grain size.  Given that the compound parameter 

H*/n (or H*/α) at high temperatures is well determined for Madoc dolomite, the 

transition temperature at laboratory strain rates is known.  However, dependable 

prediction of the transition temperature at lower, geologic strain rates must await better 

determinations of the individual parameters, H* and n (or potentially α). 
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Figure 16.  Transitions from crystal plasticity and mechanical twinning at low 
temperature and high stress to dislocation creep and diffusion creep at higher 
temperatures and reduced stresses.  A. Comparison of strengths measured for coarse-
grained Madoc dolomite (diamonds) and for fine-grained synthetic dolomite (circles).  
Both starting materials show high, temperature-insensitive, strength at low temperatures.  
However the transitions to temperature-dependent creep differ; critical temperatures for 
the transitions differ and the slopes in log(σ1-σ3) - 1/T differ, corresponding to 
deformation by dislocation creep (n =  ~7, α = ~0.018 MPa-1, H* = 420 kJ/mol; Madoc 
dolomite) and deformation by diffusion creep (n = 1.28, H* = 280 kJ/mol; synthetic).  B. 
Extrapolating the diffusion creep relation determined for fine-grained synthetic dolomite 
to a geologic strain rate of έ = 10-14s-1, the transition from crystalline plasticity and 
twinning to diffusion creep shifts to lower temperature.  Assuming a grain size 
dependence according to Coble creep, dolomite strengths are inferred at έ = 10-14s-1 and 
grain sizes of 1 µm to 1 mm. 
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 The transition from crystal plasticity and twinning to diffusion creep in the fine-

grained synthetic dolomite (with a grain size of d = 2.5 µm) occurs at temperatures 

between 600° and 700°C at laboratory strain-rates.  Assuming that the high temperature 

deformation is described by grain boundary (Coble) diffusion creep (eqn. 8), the 

transition from crystal plasticity to diffusion creep should occur at lower temperatures at 

lower (geologic) strain-rates.  Extrapolating eqn. 8 with the creep law parameters 

determined for synthetic dolomite (Table 9; oε& =  4.7x1024s-1, n = 1.28, H* = 280 kJ/mol) 

to a geological strain-rate of 10-14 s-1, the transition from crystal plasticity and twinning 

to diffusion creep can be predicted for varying grain sizes (Figure 16B).  For example, 

the transition from crystal plasticity to diffusion creep is predicted to occur at T = 280°C 

for fine-grained dolomites (d = 1 µm) while the transition is predicted at T = 450°C for d 

= 100 µm, and at T = 580°C for d = 1 mm.  Thus dolomite may be strong (deforming by 

crystal plasticity and twinning) or weak (deforming by diffusion creep), depending 

critically on temperature and grain size. 

Comparison of Dolomite and Calcite Strengths

 Coarse-grained Madoc and Kern Mtns. dolomite are strong over the range of 

conditions tested, with flow strengths that exceed those reported for calcite rocks by an 

order of magnitude (at T = 600° to 800°C; Figure 17; Heard and Raleigh, 1972; Schmid 

et al., 1980; Walker et al., 1990; Renner et al., 2002).  At low temperatures (T ≤ 700°C), 

deformation of dolomite by twinning and dislocation glide is insensitive to temperature 

and strain rate, while deformation of coarse-grained calcite rocks occurs by dislocation 

creep at the same conditions with significant temperature and strain rate sensitivities.  
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Figure 17.  Comparison of Madoc dolomite strength with calcite marble data for 
dislocation creep at ε&  = 10-5s-1 (Yule marble results of Heard and Raleigh, 1972; Carrara 
marble, Schmid et al., 1980; synthetic calcitea, Walker et al., 1990; synthetic calciteb, 
Renner et al., 2002) 
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At higher temperatures (T ≥ 800°C), coarse-grained dolomite deforms by dislocation 

creep with a compound parameter H*/n = 60 kJ/mol that is larger than H*/n ratios for 

Yule marble (H*/n = 28 kJ/mol; Heard and Raleigh, 1972), and Carrara marble (H*/n = 

44 kJ/mol; Schmid et al., 1980) but similar to H*/n for coarse synthetic marbles (H*/n = 

57 kJ/mol Walker et al., 1990; and effective temperature dependence of synthetic marble 

or Renner et al., 2002). 

 The high strength of dolomite compared with calcite has been attributed to 

differences in its structure and Ca, Mg ordering that offer greater lattice resistance to 

twin glide and dislocation slip (Barber, 1977; Barber et al., 1981, 1983; Wenk et al., 

1983; Barber and Wenk, 2001).  The results of this study confirm the high resistance to 

intracrystalline deformation mechanisms. 

 Coarse-grained dolomites deformed in the laboratory are stronger than calcite 

rocks at all experimental conditions tested, and flow laws extended to geologic 

conditions indicate that coarse-grained dolomite will be strong relative to calcite-rich 

units, as observed by Carter (1992) and Bestmann et al. (2000).  However, strengths of 

fine-grained dolomite and calcite aggregates deformed by diffusion creep show much 

less contrast in rheology (Figure 18).  Diffusion creep strengths of dolomite are 

comparable (at T = 800°C, ε&  = 10-5 s-1) to those measured for Solenhofen limestone 

(Schmid et al., 1977), and a factor of 10 higher than calculated for synthetic calcite 

aggregates of a comparable grain size (Walker et al. 1990).  Given that grain growth is 

more rapid for calcite (Olgaard and Evans, 1988; Olgaard and Fitz Gerald, 1993; Zhu et 

al., 1999) than for dolomite and high Mg calcite (Kronenberg et al., 2003; Herwegh et 
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Figure 18.  Comparison of synthetic dolomite strength with fine-grained limestone and 
synthetic calcites deformed by diffusion creep (results shown for ε&  = 10-5s-1; Solenhofen 
limestone, Schmid et al., 1977; synthetic calcite marble with calculated grain size d = 
2.5µm, Walker et al., 1990; high Mg synthetic calcite marble with calculated grain size d 
= 2.5µm, Herwegh et al., 2003). 
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al., 2003), dolomites may have finer grain sizes than limestones and marbles subjected to 

comparable thermal history reducing further the strength contrast between these 

carbonates.   

 For diffusion creep in dolomite, the best-fit value of n = 1.28 is similar to values 

reported for diffusion creep in calcite (n = 1.66 Schmid et al., 1977; n = 1.67 Walker et 

al., 1990; n = 1.1 Herwegh et al., 2003).  The value of H* determined for diffusion creep 

in the synthetic dolomite aggregates is 280 kJ/mol, somewhat higher than values 

reported for diffusion creep in calcite (H* = 213, Schmid et al., 1977; H* = 190, Walker 

et al., 1990; H* = 200, Herwegh et al., 2003) 

 While large differences in crystal plastic strengths and dislocation creep strengths 

of dolomite and calcite can be explained by differences in crystal structure, the obstacles 

to internal strain in dolomite are of no consequence to diffusion at grain boundaries or to 

grain boundary sliding.  Diffusion creep of polycrystalline dolomite requires the net 

transport along grain boundaries of the same cations and anions as must diffuse along 

grain boundaries of calcite during diffusion creep, with the addition of Mg.  Thus, rates 

of diffusion creep for these carbonates may be comparable at laboratory and geologic 

conditions.  Herwegh et al. (2003) report similar rheologies for diffusion creep of 

magnesian calcite aggregates, of varying Mg-contents, with creep rates that depend on 

grain size but not directly on Mg content. 

Application to Geologic Deformation Rates 

  The experimental results for the coarse-grained dolomites constrain the flow law 

parameters for crystal plastic deformation at low temperatures and dislocation creep at 
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high temperatures.  The experimental results for fine-grained dolomites provide further 

evidence of crystal plasticity at low temperatures, while flow law parameters at high 

temperature correspond to diffusion creep.  Taken together, the flow laws for coarse- and 

fine-grained dolomites constrain the fields over which different deformation mechanisms 

are predominant (Figure 19).  The rheologies listed in Table 9 can be used to construct a 

deformation mechanism map for dolomite of a given grain size (d = 100µm) in log [(σ1-

σ3)/µ] versus T/Tm space (Figure 19), normalizing differential stress by a shear modulus 

µ = 45.7 GPa (Bass, 1995), and normalizing temperature by a melting temperature, Tm = 

1373 K (inferred as the metastable extension of higher pressure melting determinations 

to P = 300MPa, Wyllie and Huang, 1976).   

 Three fields are displayed on the deformation mechanism map for dolomite 

(Figure 19): crystal plasticity at high stresses, dislocation creep at high temperatures and 

relatively high stresses, and diffusion creep at elevated temperatures.  Strain-rate 

contours are shown from the laboratory values ε&= 10-5 s-1 to geologic values ε&= 10-14 s-

1.  The transition between crystal plasticity and dislocation creep is documented by 

experiments on Madoc dolomite (data shown and strain-rate contours for dislocation 

creep are shown for assumed n = 7  and H* = 420 kJ/mol).  The transition between 

crystal plasticity and diffusion creep is documented by experiments on synthetic 

dolomite (for d = 2.5 µm) and calculated for d = 100 µm based on flow laws for crystal 

plasticity and diffusion creep (Table 9).   
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Figure 19.  Deformation mechanism map for dolomite.  With a grain size of 100µm,  
normalizing temperature by a melting temperature, Tm, of 1100°C (metastable extension 
from high pressure measurements; Wyllie and Huang, 1976) and normalizing differential 
stress by a shear modulus of 45.7GPa (Bass, 1995).  Dislocation glide and twinning is 
restricted to high stresses and (Coble) diffusion creep extrapolated to geologic strain 
rates is inferred to be predominate over a wide range of differential stress, temperature, 
and grain size.  The field of dislocation creep inferred from the measurement of H*/n = 
60 and a value of n ~ 7 (assuming a value similar to that reported for Carrara marble; 
Schmid et al., 1980)  is restricted to conditions of high stress and temperature for coarse 
dolomite marbles. Data shown for Madoc dolomite (squares are 10-5, yellow triangle is 
10-6, blue diamond 10-7, red circle is 10-4) and the high temperature Crevola dolomite 
(Purple circle 10-4). 
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 Deformation by crystal plasticity occurs only at very high stresses, irrespective of 

strain-rate, so it is unlikely to be common under geologic conditions.  The extent of the 

dislocation creep field is dependent on grain size, but at d = 100 µm, this field is limited 

to high temperature (T > 600°C) and relatively high stress.  Therefore, dislocation creep 

in dolomite is expected to be restricted to high temperature and high tectonic stress 

environments.  Over most geologic strain-rates, 10-10 s-1 to ε&= 10-14 s-1, and low tectonic 

stresses, the predominant deformation mechanism for dolomite is predicted to be 

diffusion creep. 

Comparisons with Naturally Deformed Dolomites 

 Studies of naturally deformed dolomites emphasize the roles of brittle fracture at 

low temperatures (Woodward et al., 1988; Erickson, 1994; Bestmann et al., 2000) and 

crystal plasticity and dislocation creep at higher temperatures (White and White, 1980; 

Leiss and Barber, 1999; Newman and Mitra, 1994).  Diffusion creep has been reported 

only once, for the fine grain size fraction of dolomites that were previously recrystallized  

(White and White, 1980).  The results of this study have implications for the conditions 

required to activate mechanical twinning and dislocation creep, and they suggest that 

diffusion creep has been under-reported as an important deformation mechanism. 

 The inferred high strength of dolomite in many tectonic settings  is consistent 

with the high stresses required for crystal plasticity and dislocation creep.  Similarly, 

examples of dolomites that deform by fracture without any evidence of intracrystalline 

slip (Woodward et al., 1988; Erickson, 1994; Bestmann et al., 2000) are consistent with 

the results of this study and imply deformation at low effective pressures.   
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 In dolomites surrounding fault rocks deformed at conditions of lower greenschist 

facies  (T < 300°C), Newman and Mitra (1994) reported twins and undulatory extinction 

associated with crystal plasticity.  Microstructures of dolomites within the fault zone 

include subgrains, serrated grain boundaries and fine recrystallized grains associated 

with dislocation creep.  Based on the results of this study, the activation of dislocation 

glide and mechanical twinning required large differential stresses. The evidence for 

dislocation recovery and recrystallization at low shear stress conditions, is difficult to 

reconcile with the limited range of conditions this study determined for dislocation 

creep.  However, the apparent strain localization of the fault zone may be explained by 

the development of fine (~10 µm) recrystallized grains that deformed by diffusion creep. 

 In carbonates of the Damara Orogen (of Namibia) deformed at upper greenschist 

facies conditions (~400 - 500°C), Leiss and Barber (1999) reported dislocation creep 

microstructures and lattice preferred orientations for dolomite porphyroclasts within a 

finely recrystallized matrix.  The coarse dolomite grains (~500 µm in diameter) exhibit 

undulatory extinction, f-twins and serrated grain boundaries.  Recrystallized grains, 30-

80 µm in size, exhibit lattice preferred orientations that are consistent with c-slip, while 

the finest recrystallized grains, 5-10 µm in size, exhibit only weak crystallographic 

alignments.  Again, the microstructures related to mechanical twinning and dislocation 

creep suggest that these rocks were deformed at high differential stresses.  Based on the 

results of this study, the finest recrystallized grains (d = 5-10 µm) of the Damara Orogen 

dolomites may have deformed by diffusion creep (Figure 16B) while the coarsely 
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recrystallized grains (d = 30-80 µm) may have been deformed by transitional 

dislocation/diffusion creep. 

 In metaconglomerates deformed in the amphibolite facies (T ~ 600°C), White 

and White (1980) reported creep microstructures in dolomite pebbles, including 

undulatory extinction, grain flattening, recrystallization, and dislocation of the c-slip, f-

slip, and r-slip systems.  Unlike the studies of dolomites deformed at lower 

temperatures, mechanical twins are not reported for these dolomites.  Moreover, 

dislocations were observed in the coarse dolomite grains (40-100 µm) but not in the 

finest recrystallized grains (~10 µm).  The highest temperatures of deformation for these 

rocks are consistent with the dislocation creep field of dolomite (Figure 19) and stresses 

were likely lower than for the other field examples for which mechanical twinning 

played a role in their crystal plastic response.  White and White (1980) proposed that the 

coarser dolomite grains of these metaconglomerates deformed by dislocation creep while 

the fine, dislocation free dolomite grains deformed by diffusion creep and grain 

boundary sliding.  These interpretations are consistent with the deformation mechanism 

map for dolomite, and we infer that once significant populations of fine grains were 

generated, deformation could continue at reduced differential stresses.  
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CONCLUSIONS 

 Deformation experiments performed on natural and hot isostatically pressed 

dolomite aggregates (grain sizes d = 2.5, 10, 80, 230 µm) at effective pressures  Pe = 50 

– 400 MPa, temperatures T = 400 – 850°C, and strain rates ε&  = 1.2x10-4 s-1 to 1.2x10-7 s-

1 define three fields of deformation: 1) crystal plasticity, 2) dislocation creep, and 3) 

diffusion creep.  Coarse- and fine-grained dolomite deformed at low temperature (T ≤ 

700°C for coarse-grained, T < 700°C for fine-grained) exhibit mechanical behavior that 

is nearly plastic and microstructures show that mechanical f-twinning and dislocation 

glide are important.  For coarse-grained dolomite, this behavior can be described either 

by a power law relationship with n = 49 (±7), or by an exponential law with α = 0.079 

(±0.01) MPa-1.  The mechanical behavior of fine-grained dolomite can be described 

similarly by n = 12 (±10), or α = 0.023 (±0.03 )MPa-1.  At low temperatures, coarse-

grained dolomite is somewhat stronger with increase of temperatures and fine grained 

dolomite exhibits strengths that are nearly independent of temperature. 

 At high temperatures (T ≥ 800°C), flow strengths of coarse- and fine-grained 

dolomite depend more strongly on strain-rate and exhibit pronounced temperature 

dependencies.  Coarse-grained dolomite samples deform by dislocation glide, 

accommodated by recovery and recrystallization while fine-grained dolomite samples 

appear to deform by diffusion creep.  The high temperature creep of coarse-grained 

dolomite is characterized by a highly nonlinear strain rate-stress relation (n ≤ 26 or α ≤ 

0.046 MPa-1) while creep of fine-grained dolomite is nearly linearly viscous (n = 1.28 

±0.15). 
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 The temperature dependence of coarse-grained dolomite strength is given by 

H*/n = 60 kJ/mol, or H*/α =  25447 kJ/mol but independent determinations of H* and n 

are still needed to fully characterize the rheology associated with dislocation creep.  The 

activation enthalpy for diffusion creep of fine-grained dolomite is H* = 280 ±45 kJ/mol. 

 This study confirms that coarse-grained dolomite deformed by intracrystalline 

mechanisms of dislocation glide and twinning is much stronger than calcite-rich 

limestone or marble deformed at comparable conditions.  However, when mechanical 

properties are not governed by lattice resistance to intracrystalline deformation 

mechanisms, as for diffusion creep involving grain boundary diffusion and sliding, 

strengths of fine-grained dolomite and calcite are more similar.  Fine-grained dolomite 

and calcite deformed by diffusion creep show little contrast in rheology. 

 Flow laws for coarse- and fine-grained samples constrain the deformation 

mechanism map for dolomite.  Crystal plasticity and twinning require high differential 

stresses, irrespective of strain rate.  The extent of the dislocation creep field depends on 

grain size, but at d = 100 µm, this field is limited to high temperatures and relatively 

high stresses.  Diffusion creep is predicted to be the most common mechanism of 

deformation for all but the coarsest polycrystalline dolomite over geologic strain rates of 

ε&  = 1.2x10-10 s-1 to 1.2x10-14 s-1. 
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