
INCOMPLETE GENE STRUCTURE PREDICTION WITH

ALMOST 100% SPECIFICITY

A Thesis

by

SEE LOONG CHIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Computer Science

INCOMPLETE GENE STRUCTURE PREDICTION WITH ALMOST 100%

SPECIFICITY

A Thesis

by

SEE LOONG CHIN

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Sing-Hoi Sze
(Chair of Committee)

Thomas Ioerger
(Member)

Jin Xiong
(Member)

Valerie E. Taylor
(Head of Department)

December 2003

Major Subject: Computer Science

iii

ABSTRACT

Incomplete Gene Structure Prediction with Almost 100%

Specificity. (December 2003)

See Loong Chin, B.S., Purdue University

Chair of Advisory Committee: Dr. Sing-Hoi Sze

The goals of gene prediction using computational approaches are to determine

gene location and the corresponding functionality of the coding region. A subset of

gene prediction is the gene structure prediction problem, which is to define the exon-

intron boundaries of a gene. Gene prediction follows two general approaches: sta-

tistical patterns identification and sequence similarity comparison. Similarity based

approaches have gained increasing popularity with the recent vast increase in genomic

data in GenBank.

The proposed gene prediction algorithm is a similarity based algorithm which

capitalizes on the fact that similar sequences bear similar functions. The proposed

algorithm, like most other similarity based algorithms, is based on dynamic program-

ming. Given a genomic DNA,X = x1 · · · xn and a closely related cDNA, Y = y1 · · · yn,

these sequences are aligned with matching pairs stored in a data set. These indexes

of matching sets contain a large jumble of all matching pairs, with a lot of cross

over indexes. Dynamic programming alignment is again used to retrieve the longest

common non-crossing subsequence from the collection of matching fragments in the

data set.

This algorithm was implemented in Java on the Unix platform. Statistical com-

parisons were made against other software programs in the field. Statistical evaluation

at both the DNA and exonic level were made against Est2genome, Sim4, Spidey, and

iv

Fgenesh-C. The proposed gene structure prediction algorithm, by far, has the best

performance in the specificity category. The resulting specificity was greater than

98%. The proposed algorithm, also has on par results in terms of sensitivity and

correlation coefficient. The goal of developing an algorithm to predict exonic regions

with a very high level of correctness was achieved.

v

To my family for their continuous support over all these years.

vi

ACKNOWLEDGMENTS

I would like to express my thanks and gratitude to Dr. Sze, Dr. Ioerger, and

Dr. Xiong for their guidance and advice. I would especially like to thank Dr. Sze for

his encouragements and patience with me. I would also like to thank Dr. Childs who

made all this possible.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Background . 1

1. Statistical Approach 1

2. Sequence Similarity Approach 2

II PROCEDURE . 6

A. Problem Statement . 6

B. Longest Common Subsequence Algorithm 7

C. Gene Structure Prediction Algorithm 9

D. Analysis of Results . 13

E. Software Implementation 16

III DISCUSSION . 19

A. Results . 19

B. Initial Evaluation . 22

C. Protein vs. DNA Only Versions 23

D. Benchmark Comparisons 23

IV SUMMARY AND CONCLUSION 28

V FUTURE WORK . 30

REFERENCES . 31

VITA . 33

viii

LIST OF TABLES

TABLE Page

I Data Set Classification . 19

ix

LIST OF FIGURES

FIGURE Page

1 DNA Structure . 6

2 Alignment of All X vs. Y Combinations 10

3 Retrieval of Longest Non-Crossing Subsequence 11

4 Eliminating Gaps in Preliminary Prediction 12

5 Refining Boundary Location with Acceptor/Donor Patterns 13

6 Nucleotide Level Accuracy . 15

7 Software Flowchart . 18

8 DNA Version Parameter Evaluation 20

9 Amino Acid Version Parameter Evaluation 21

10 DNA Only vs. Amino Acid Versions Comparisons 24

11 Tabulated Results of DNA only/Protein Version, Sim4, Est2genome,

Spidey, Fgenesh-C . 25

12 Comparison against Est2Genome, Sim4, Spidey, Fgenesh-c 27

1

CHAPTER I

INTRODUCTION

A. Background

The goals of gene prediction using computational approach are to determine gene

locations and the corresponding functionality of the coding region. A subset of gene

prediction is the gene structure prediction problem, which is to define the exon-intron

boundary of a genomic sequence. Gene prediction follows two general approaches:

statistical patterns identification and sequence similarity comparison. Coding exonic

regions of a genomic sequence display certain characteristic attributes, such as codon

usage, hexamer measure, and amino acid usage measure [1]. These statistical mea-

sures are collected and categorized from a known organism. A model trained with

statistical attributes from one organism can be used to predict the coding regions of

homologous species [2], [3], [4] and [5].

1. Statistical Approach

Burge and Karlin [2] proposed a general probabilistic model based on the Hidden

Markov Model approach. Transcriptional, translational, and splicing signals are sta-

tistical information used to train this model. Unlike most other approaches which

rely solely on independent statistical attributes, Burge and Karlin [2] introduced a

Maximal Dependence Decomposition method to keep track of dependencies between

signals. GENSCAN is the computer program implementation of this model.

Gelfand [3] introduced a method where the local prediction of splicing sites are

combined with global prediction to offer several possible best results. The predicted

The journal model is IEEE Transactions on Automatic Control.

2

results can be further refined with user input if certain information such as the number

of exons is known.

Uberbacher and Mural [4] used a combination of multiple sensing algorithm with

a neural network to find the best coding region. Each of the seven sensor algorithms

looks for specific attributes such as frame bias, regularity of 6-tuple words, and word

commonality. These results are passed through a neural network, that has been

trained with a homologous data set, to return a closest fit result.

Another exon prediction method was proposed by Solovyev et al. [5]. An algo-

rithmic prediction of donor and acceptor sites provides splice site information. Splice

site results are combined with triplet frequencies to return prediction of exon-intron

regions.

All these methods are statistical approaches that use previous known data to

predict future results. So, the obvious drawback of this approach is that the gene to

be predicted must have similar characteristics of the training set for good results.

2. Sequence Similarity Approach

With the advent of GenBank and the increasing availability of genomic data, the

sequence similarity approach has gained increasing feasibility. Similarity based ap-

proaches capitalize on the fact that similar nucleotide sequences have similar func-

tionality, and the splicing sites have splicing constraints. In the sequence similarity

approach, a cDNA sequence is used to identify the exonic regions of a genomic DNA

from a related organism. This method applied to closely related homologous organ-

isms can yield very good prediction of genomic exons.

Many of the sequence similarity based approaches implement some variant of

the global alignment algorithm by Needleman and Wunsch [6], or the local alignment

algorithm by Smith and Waterman [7]. Global alignment algorithms are useful for

3

comparing two sequences that are similar throughout the entire sequence, whereas

the local alignment algorithms are more suitable for comparing sequences with locally

similar regions. Both global alignment algorithm and local alignment algorithm are

dynamic programming algorithms. Dynamic programming is useful in circumstances

where the problem can be partitioned into non-independent subproblems which are

stored in a table to be reused.

Given any two sequences X = x1 · · · xn with length m, and Y = y1 · · · yn with

length n, the global alignment algorithm in equation 1.1 will return an optimal solu-

tion. The maximum score Si,j is selected from possible matches, mismatches, and in-

del cases. Matching pairs are usually assigned positive scores with mismatches/indels

assigned zero or negative scores. Compute the maximum score, Si,j for each (i,j)

position. Sm,n is the optimal score between two sequences using the global alignment

algorithm. The running time is proportional to m x n. The optimal aligned sequence

can be retrieved by storing the pointers, for each (i,j), of the location where the max-

imum Si,j was obtained. These pointers are stored in a separate table. Backtracking

from location (m,n), returns the maximum aligned sequence.

Si,j = max















































Si−1,j−1 + δmatch if ai = bj

Si−1,j−1 + δmismatch if ai 6= bj

Si−1,j + δindel

Si,j−1 + δindel

(1.1)

Smith and Waterman proposed modifications to the global alignment algorithm

to perform matching of subsequences. Local alignment, equation 1.2, allows matching

sequences to begin and end anywhere. The 0 case permits a new starting point at

4

any position (i,j) when all the other cases result in a negative score. The optimal

local alignment now starts at the maximum value of Si,j.

Si,j = max































































0

Si−1,j−1 + δmatch if ai = bj

Si−1,j−1 + δmismatch if ai 6= bj

Si−1,j + δindel

Si,j−1 + δindel

(1.2)

Gap3 by Huang and Chao [8] is a modified global alignment algorithm used for

comparing sequences with intermittent similarities. Gap3 is capable of finding regions

of low similarities at the expense of compute time.

Est2genome uses a combination of local alignment and global alignment to pro-

vide an optimal solution [9]. An initial alignment with Smith-Waterman algorithm is

used to find local subsequences. These subsequences are extracted and aligned with

the Needleman-Wunsch algorithm, if the product of the subsequence length is less

than the area parameter. If the subsequences are too long, then the EST is recur-

sively split until the extracted subsequences meets the area parameter threshold.

Sim4 [10] uses an algorithmic approach that is very similar to BLAST [11], a

local alignment search tool. An initial pass searches for local exact matches that

are then extended to achieve a maximal scoring gap-free segment. These highly

matching sections are further extended to neighboring unmatched fragments using

greedy algorithms.

Sze et al. [12] utilized the Las Vegas algorithm to maximize the specificity, and

correctness of the predicted regions. Las Vegas algorithms only return correct re-

5

sults and would not return any result otherwise. Thus, only correct exonic region

predictions are returned.

6

CHAPTER II

PROCEDURE

A. Problem Statement

Given a section of the genomic DNA, find the intron-exon regions when the homolo-

gous cDNA or EST is provided. The accuracy of the prediction is largely dependent

on the evolutionary distance between the genomic DNA and the cDNA. For closely

evolutionary related organisms, the exonic regions of an unknown organism can be

predicted using known cDNA of close relations. DNA’s are composed of exons, small

coding regions, separated by vast regions of non coding introns. Figure 1 shows the

DNA structure with exons and introns.

This biological problem can be represented as the comparison of two strings with

intermittent similar regions. These strings have short highly matching regions that

are separated by long dissimilar regions. Matching of two strings is a problem that

can be optimally solved using dynamic programming. Specifically, Longest Common

Subsequence(LCS), is a dynamic algorithm used to compare two similar strings.

Fig. 1. DNA Structure

7

B. Longest Common Subsequence Algorithm

The basic building block of this gene structure prediction algorithm is based on the

longest common subsequence (LCS) algorithm. LCS is a dynamic programming algo-

rithm that returns the longest common matching base pairs of two strings. Dynamic

programming algorithms have 4 fundamental steps [13]:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.

The proof of step 1 of the dynamic programming in characterizing the optimal

solution is in [13]. The next step, step 2, of the dynamic programming defining

the value of the optimal solution is satisfied with the following recursive formula,

equation 2.1, from [13].

Ci,j =































0 if i = 0 or j = 0

Ci−1,j−1 + 1 if i, j > 0 and xi = yj

max(Ci,j−1, Ci−1,j) if i, j > 0 and xi 6= yj

(2.1)

Step 3 of the dynamic programming constructs a table for storing the values of

all possible combinations of base pair matches. The following code fragment imple-

ments step 3. For a matching base pair, add one to the diagonal top-left value and

let this be the value of the current position. For non matching base pairs, take the

largest value of the horizontal or vertical positions.

8

for (int i=1; i<=m; i++) {

for (int j=1; j<=n; j++) {

if (x[i-1] == y[j-1]) {

C[i][j] = C[i-1][j-1]+1;

}

else if (C[i-1][j] >= C[i][j-1]) {

C[i][j] = C[i-1][j];

}

else {

C[i][j] = C[i][j-1];

}

}

}

The final step 4 constructs the longest matching base pairs; this is accomplished

with the following while loop. This step starts from the bottom right diagonal of the

table and walks up to the top left of the table taking the longest possible route. The

stop condition for this loop is the index of either i or j equals 0. This is the initial

index of the strings. The algorithm implemented selects the ”up” step over the ”left”

step for cases with equivalent values. So, decrementing the ith index along the xi

string is preferred.

9

while(1) {

if ((i==0) || (j==0)) {

break;

}

else if ((C[i-1][j] < C[i][j]) && (C[i][j] == C[i-1][j-1]+1)) {

System.out.print(C[i][j]+"diagonal ");

i--; j--;

}

else if ((C[i-1][j] >= C[i][j-1]) && (C[i][j] == C[i-1][j])) {

System.out.print(C[i][j]+"up ");

i--;

}

else {

System.out.print(C[i][j]+"left ");

j--;

}

} // end while

C. Gene Structure Prediction Algorithm

The following algorithmic approach will be used to achieve an exonic prediction with

correctness close to one hundred percent. Given a genomic DNA, X = x1 · · · xn

and a closely related cDNA, Y = y1 · · · yn; choose a fragment of size k from X and Y.

Compare all combinations of X and Y k-mers, using the longest common subsequence

algorithm, LCS. This step can be implemented using nested for loops and is illustrated

in figure 2.

10

Fig. 2. Alignment of All X vs. Y Combinations

For each k-mer in Genomic DNA {

For each k-mer in cDNA {

Find LCS

}

}

The indexes of k-mers matching pairs above a similarity threshold score, d, are

held in a data set. These indexes of matching sets contain a large jumble of all

matching pairs, with a lot of cross over indexes. The initial set of indexes with cross

over indexes is shown in figure 3. Again, apply LCS to retrieve the longest common

non-crossing subsequence from the collection of matching fragments in the data set.

These steps will be applied to both DNA and amino acid sequences. For the amino

acid sequence comparison, the DNA and cDNA codons will be converted to an amino

acid before applying LCS. For each DNA k-mer, convert to three corresponding amino

acid sequence fragment, taking into account the three frame shifts. Keep the highest

of the three frame shift index pairs surpassing the threshold score in the data set.

The preliminary predictions had many small gaps in the sequences. This gap

11

Fig. 3. Retrieval of Longest Non-Crossing Subsequence

sizes were usually between 2-4 base pairs apart. Three different methods were tried

in an attempt to alleviate this small gap size problem. The initial technique was

to select the entire indexes in a word if the threshold was met. For example, select

the entire 20 indexes for a 20-mer if the matching base pairs exceed a threshold of

15. The second method checks the indexes for small gaps and linking the fragments

separated by small gaps. The gap threshold, t, is provided by the user. The third

method combines the first two approaches. Take the whole array index for matching

word fragments and link any remaining gaps. Test cases showed that the first scheme

provided the best prediction results. Figure 4 illustrates this step of the algorithm.

At this stage of the algorithm, continuous exonic regions in the genomic DNA

have been predicted. The exon-intron boundary delineation can be refined by incor-

porating acceptor and donor sites information. Observation of the data showed a

trend where most of the false predictions were found at the end of an exon and the

beginning of an intron. The predicted regions did not stop cleanly at the end of the

exon region, but over predicted around 10-20 base pairs into the intron region. An

exon/intron boundary pattern matching was introduced to solve this problem. All

12

Fig. 4. Eliminating Gaps in Preliminary Prediction

the sub sequences were checked for the ”gt” exon/intron boundary pattern. Start at

the last index of a subsequence and walk to the front of the sequence looking for the

residue ”t”. If found, then check if the next immediate residue is ”g”. If found, then

remove all residues from ”gt” until the end of the sequence. The user has the option

to select how many residues starting from the back of the index to test for. The

implemented boundary recognition steps removes the very first acceptor/donor sites

found. Test cases have shown that removing from the very last acceptor/donor sites,

increases the specificity at the expense of sensitivity. This step of the algorithm is

illustrated in figure 5. These exons are furthered filtered by dropping exonic regions

below a threshold size provided by the user.

Comparative evaluations were made against programs solving similar problems

such as Sim4, Est2genome, Spidey, and Fgenesh-C. Est2genome is a dynamic pro-

gramming algorithm providing an optimal solution. Sim4 and Spidey are based on

the heuristic BLAST approach, using local alignment algorithms to find locally sim-

ilar regions. These local regions are extended until the similarity score can no longer

be improved. Fgenesh-C is a statistical based method using Hidden Markov Model

13

Fig. 5. Refining Boundary Location with Acceptor/Donor Patterns

with cDNA/EST as inputs. Both Sim4 and Est2genome have Unix versions that can

be downloaded. Sim4, Est2genome, and my gene structure prediction algorithm were

evaluated on 500 test cases. These test cases were grouped by similarity between the

cDNA and the genomic DNA. The organism evolutionary distances range from iden-

tical (human cDNA vs. human genomic DNA) to highly dissimilar (bacteria cDNA

vs. human genomic DNA). The web based programs (Fgenesh-C, and Spidey) were

performed on a small sample set of 30 test cases.

D. Analysis of Results

The performance parameters in measuring how well the predicted residues match the

actual residues utilize the method introduced by Burset and Guigo [14]. The residues

are false positive (wrong hit), false negative (missed hit), true positive (correct hit),

and true negative (correct miss). Figure 6 shows these regions of incorrect and correct

matches. The nucleotide level accuracy equations, 2.2 to 2.5, are used to calculate the

performance parameters. Sensitivity is a ratio of the number of correctly predicted

exons over the number of actual existing exons. Sensitivity gives an indication of

14

how well the program finds the exonic residues. Specificity is a ratio of the number

of correctly predicted residues over the number of predicted exonic residues. This

parameter shows the confidence level of predicted values. In other words, specificity

defines how correct the prediction is. Correlation coefficient provides the degree of

linear relationship between two variables with negative one meaning a negative rela-

tionship, and positive one meaning a positive relationship. A value of zero indicates

no relationship.

Nucleotide Level Accuracy Equations

TP - True Positive FP - False Positive

TN - True Negative FN - False Negative

Sn - Sensitivity Sp - Specificity

AC - Approximate Correlation

CC - Coefficient Correlation

Sn =
TP

TP + FN
(2.2)

Sp =
TP

TP + FP
(2.3)

AC = 0.5 ∗ (
TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN
)− 1 (2.4)

15

Fig. 6. Nucleotide Level Accuracy

CC =
(TP ∗ TN)− (FN ∗ FP)

(TP + FN) ∗ (TN + FP) ∗ (TP + FP) ∗ (TN + FN)
(2.5)

Results will also be presented in terms of sensitivity, specificity, and overall cor-

relation of the predicted against true exonic regions. True exons are exonic regions

where the predicted exonic regions match the actual exonic regions. Exon level sensi-

tivity indicates how well the exonic regions were predicted. The exon level specificity

indicates how correct the exonic regions were predicted. Correlation coefficient in

the exonic level is represented by the average of exon level sensitivity and specificity.

Missing exons are actual exons not predicted at all. Wrong exons are exons that are

incorrectly predicted. The exon level accuracy equations are provided in equations 2.6

to 2.10 below.

Exon Level Accuracy Equations

TE - True Exon AE - Actual Exon PE - Predicted Exon

ESn - Exon Sensitivity ESp - Exon Specificity

ME - Missing Exons WE - Wrong Exons

16

ESn =
TE

AE
(2.6)

ESp =
TE

PE
(2.7)

ESn+ ESp

2
(2.8)

ME =
AEnotoverlappedbyPE

AE
(2.9)

WE =
PEnotoverlappedbyTE

PE
(2.10)

E. Software Implementation

This algorithm was implemented using the Java programming language. Java was

selected because it provided good modular programming support with many built

in classes. Another Java advantage is that it is platform independent. All the code

was developed in the Unix environment using the Unix Java compiler. A flow chart

of the entire DNA version of the Java program broken down my modules is illus-

trated in figure 7. The main module is ”testlcs.java”. This module reads the input

strings (genomic DNA and cDNA), and all user set parameters (word size, match

threshold, gap threshold, exon/intron boundary cleanup threshold, and minimum

word fragment threshold). ”testlcs.java” calls all other modules for LCS analysis and

accuracy calculations. The second module, ”lcs.java”, performs the alignment of all

17

combination of the DNA word fragments against the cDNA. The matching indexes

are added to vectors of the object created by ”match.java”. ”match.java” serves as a

data storage module. ”lcs2.java” take the indexes of all the matching fragments and

finds the maximum non-crossing subsequence. ”lcs2.java” also links word fragments

separated by small gaps together, cleans up the exon/intron boundary region, and

remove any fragments less than the required minimum size. ”cc.java” does all the

data manipulation and analysis required to report statistical results.

The amino acid version of the program is very similar to the DNA version of the

program. The main difference is that ”lcs.java” of the amino acid version calls the

nucleotide to amino acid converter, ”translator.java”. Each genomic DNA fragment

is converted to its three equivalent frame-shifted amino acid sequences. The three

possible amino acids are aligned with the cDNA amino acid keeping the longest

alignment. The indexes of the best alignment are kept as nucleotide indexes. This

approach resulted in minimal changes to the other modules.

18

Fig. 7. Software Flowchart

19

CHAPTER III

DISCUSSION

A. Results

This gene structure prediction program was evaluated against other similar based

programs. Sim4, Est2genome, and Spidey are similarity based programs. Fgenesh-C

is a commercial program that uses the Hidden Markov Model statistical approach.

The average results were collected from running approximately 500 DNA-cDNA data

sets from Gelfand et al. [15]. The data sets shown in table I are grouped according to

evolutionary distance. The evolutionary distance between cDNA and DNA increases

from group 0 to group 3. Both the Sim4 and est2genome programs have copies that

could be downloaded to the local Unix machines. Spidey and Fgenesh-C are web

based. Only a small subset of the data set were evaluated on Spidey and Fgenesh-C.

Furthermore, the commercial software Fgenesh-C only allows 10 free runs per day.

Table I. Data Set Classification

Group DNA cDNA

0 Human Human

1 Human Mammalian

2 Human Vertebrae

3 Human Others

20

10 12 14 16 18 20 22 24 26 28 30 32
0.8

0.85

0.9

0.95

1
DNA Version Parameter Evaluation

S
p

e
c
if
ic

it
y

21
23
24
25
26
32
35

10 12 14 16 18 20 22 24 26 28 30 32
0.4

0.5

0.6

0.7

0.8

S
e

n
s
it
iv

it
y

21
23
24
25
26
32
35

10 12 14 16 18 20 22 24 26 28 30 32
0.5

0.6

0.7

0.8

0.9

Threshold

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

21
23
24
25
26
32
35

Fig. 8. DNA Version Parameter Evaluation

21

10 12 14 16 18 20 22 24 26 28 30 32

0.96

0.98

1

Amino Acid Version Parameter Evaluation
S

p
e

c
if
ic

it
y

21
23
24
26
32
35
36

10 12 14 16 18 20 22 24 26 28 30 32
0.5

0.6

0.7

0.8

S
e

n
s
it
iv

it
y

21
23
24
26
32
35
36

10 12 14 16 18 20 22 24 26 28 30 32
0.7

0.75

0.8

0.85

Threshold

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

21
23
24
26
32
35
36

Fig. 9. Amino Acid Version Parameter Evaluation

22

B. Initial Evaluation

Program performance is dependent on the word size, fragment threshold, gap link

threshold, boundary pattern search size, and the minimum fragment size. Word size

is the initial word fragment size used to find all possible matches. The fragment

threshold is the threshold that must be met in order for the returned word matches

to be stored in the matching vector. Large differences between word size and fragment

threshold increase sensitivity but decrease specificity. Fragments separated by gap

size less than the gap size threshold are linked together. Large fragment threshold

size will increase specificity but decrease sensitivity. The boundary pattern search size

is the number of nucleotides that will be searched for acceptor donor patterns from

the end of the fragments. Any fragment less than the minimum fragment size will

be dropped. Dropping small fragment sizes provided a big contribution in increasing

specificity with only a small hit in sensitivity. Initial evaluations were conducted on

a small subset to zone in on the parameters that will return optimal performance.

Figure 8 shows the effect of word size and fragment threshold on specificity, sensitivity

and correlation coefficient for the straight DNA version of the program. There is an

optimal threshold size for each word size. Cases with word size of 21, 23, 24, 32 and

35 clearly show an increase in performance in terms of sensitivity up to a certain

threshold value before decreasing. Word size of 25 with fragment threshold set at 21

returned the best specificity. Word size of 32 with fragment threshold of 25 returned

the best sensitivity. These results were used to choose word size of 32 and 25 with

corresponding fragment threshold of 25 and 21.

Figure 9 illustrates the results obtained with varying word size and fragment

threshold for the amino acid version of the program. The amino acid version shows

similar trend as the straight DNA version with increasing performance up to a certain

23

threshold. From these preliminary runs, word size of 36 and 24 with corresponding

fragment threshold of 30 and 18 were chosen for the full data set runs.

C. Protein vs. DNA Only Versions

A combination of the gene only version and the translated amino acid version results

are shown in figure 10. The runs with prefixes of ”P” are results from the gene to

amino acid translated version. The runs with prefixes of ”G” are straight genomic

DNA against cDNA alignments without any form of translation. The first number

following the prefix indicates the word size, with the second number indicating frag-

ment threshold. So, ”P-24-18” are results from the translated amino acid version with

word size parameters of 24 and word fragment threshold of 18. All the translated

amino acid runs has gap link threshold of 4, boundary pattern search size of 15, and

minimum fragment size of 20. The straight gene version, on the other hand, has gap

link threshold of 5, boundary pattern search size of 15, and minimum fragment size

of 35. The protein version consistently provided a higher specificity than the DNA

only version. This is especially true in the ”P-36-30” run which far surpasses the

other runs with specificity that is very close to 1. The large disparity in specificity

between ”P-36-30” and ”P-24-18” underlines the importance of choosing the correct

word and fragment threshold parameters. Sensitivity and correlation coefficient show

very similar trends with decreasing performance as the distance between the genomic

DNA and cDNA increases.

D. Benchmark Comparisons

This gene structure prediction program was evaluated against other similar programs

such as Sim4, Est2genome, Spidey, and Fgenesh-C. The tabulated results are pro-

24

0 0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.6

0.8

1

DNA Only vs. Amino Acid Versions Comparisons
S

p
e

c
if
ic

it
y

P−24−18
P−36−30
G−25−21
G−32−25

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

S
e

n
s
it
iv

it
y

P−24−18
P−36−30
G−25−21
G−32−25

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

Data Set

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

P−24−18
P−36−30
G−25−21
G−32−25

Fig. 10. DNA Only vs. Amino Acid Versions Comparisons

25

Fig. 11. Tabulated Results of DNA only/Protein Version, Sim4, Est2genome, Spidey,

Fgenesh-C

26

vided in figure 11. These results are plotted in figure 12. ”P-36-30” clearly has the

best specificity followed by Est2genome. Sim4 has high specificity for data sets with

closely related organism (data set 1), degrading into the least specific with increasing

distance. Fgenesh-C has comparable specificity with the rest of the programs with

data set 0. As the data set distance increased, Fgenesh-C was not able to provide

any prediction. Similarly, Spidey was only able to provide predictions up to data

set 1. For correlation coefficient and sensitivity, Est2genome outperformed all the

other programs. Sim4 has the second best performance in cases with close distances.

”P-36-30”, however, gave the second best sensitivity and correlation coefficient with

increasing data set distances. Both Fgenesh-C and Spidey has worse results than

”P-36-30”, Sim4, and Est2genome. It should be noted that only a small data set was

used to generate Spidey and Fgenesh-C data. At the exonic level, Est2genome has

the best specificity performance overall. Est2genome also has the best exonic level

sensitivity for all but the first data set.

27

0 0.5 1 1.5 2 2.5 3 3.5 4

0.6

0.8

1

Comparison against Est2Genome, Sim4, Spidey, Fgenesh−c
S

p
e

c
if
ic

it
y

P−36−30
G−32−25
est2genome
sim4
spidey
fgenesh−c

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

S
e

n
s
it
iv

it
y

P−36−30
G−32−25
est2genome
sim4
spidey
fgenesh−c

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

Data Set

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

P−36−30
G−32−25
est2genome
sim4
spidey
fgenesh−c

Fig. 12. Comparison against Est2Genome, Sim4, Spidey, Fgenesh-c

28

CHAPTER IV

SUMMARY AND CONCLUSION

The main purpose of this thesis is to design an algorithm that will return close to

100 percent correct prediction of the exonic regions. The proposed algorithm is a

similarity based algorithm which capitalizes on the fact that similar sequences bear

similar functions. Similarity based approaches have gained increasing popularity with

the recent vast increase in genomic data in GenBank. The proposed algorithm, like

most other similarity based algorithms, is based on dynamic programming.

Given a genomic DNA, X = x1 · · · xn and a closely related cDNA, Y = y1 · · · yn,

these sequences are globally aligned with matching pairs stored in a data set. These

indexes of matching sets contain a large jumble of all matching pairs, with a lot of cross

over indexes. Dynamic programming is again used to retrieve the longest common

non-crossing subsequence from the collection of matching fragments in the data set.

In order to improve the statistical performance of the algorithm, donor and acceptor

site pattern matching were used to refine the exon-intron boundary. Small fragments,

most of which are wrong matches, are dropped. Up to this point, a specificity of

very close to 1 was still not achievable. The last, and the most important step,

produced the desired specificity of 1 without compromising the correlation coefficient.

The initial DNA and cDNA k-mer are translated into amino acid sequences. The

translations are also frame shifted with the best match stored in the data set for the

second alignment.

This algorithm was implemented in Java on the Unix platform. Statistical com-

parisons were made against other software programs in the field. Statistical evaluation

at both the DNA and exonic level were made against Est2genome, Sim4, Spidey, and

Fgenesh-C. My proposed algorithm, by far, has the best performance in the specificity

29

category. The proposed gene structure prediction algorithm also has on par results in

terms of sensitivity and correlation coefficient. The goal of developing an algorithm

to predict exonic regions with close to a 100 percent confidence was achieved.

30

CHAPTER V

FUTURE WORK

The work done for this thesis has laid the groundwork for an approach to predict

incomplete exonic regions with a high level of correctness. There are a few additional

ways to enhance and improve this program.

The use of scoring matrices incorporates the empirical aspect of commonly sub-

stituted amino acid. The use of matrices such as the BLOSUM matrix for amino acid

will result in a more realistic alignment due to more judicious selection criteria.

Currently, cDNAs of a closely related organism are used as targets for exonic

region prediction. Linking the current program to BLAST searches for targets will

add to the practicality of the tool. Use the input genomic DNA as an input to BLAST

searches which will return several possible targets. Use these targets to align with the

genomic DNA with the algorithmic approach given in this thesis. Concatenate the

resulting predicted regions. This method should increase the quantity and quality of

the predicted exons.

31

REFERENCES

[1] J. W. Fickett, “Finding genes by computer: the state of the art,” Trends in

Genetics, vol. 12, pp. 316–320, August 1996.

[2] C. Burge, and S. Karlin, “Prediction of complete gene structures in human ge-

nomic DNA,” Journal of Molecular Biology, vol. 268, pp. 78–94, April 1997.

[3] M. S. Gelfand, “Computer prediction of the exon-intron structure of mammalian

pre-mRNAs,” Nucleic Acids Research, vol. 18, pp. 5865–5869, October 1990.

[4] E. C. Uberbacher, R. J. Mural, “Locating protein-coding regions in human DNA

sequences by a multiple sensor — neural network approach,” Proceedings of the

National Academy of Sciences USA, vol. 88, pp. 11261–11265, December 1991.

[5] V. V. Solvyev, A. A. Salamov, and C. B. Lawrence, “Predicting internal exons by

oligonucleotide composition and discriminant analysis of spliceable open reading

frames,” Nucleic Acids Research, vol. 22, pp. 5156–5163, December 1994.

[6] S. B. Needleman, C. D. Wunsch, “A general method applicable to the search for

similarities in the amino acid sequences of two proteins,” Journal of Molecular

Biology, vol. 48, pp. 443–453, March 1970.

[7] M. S. Waterman, T. F. Smith, W. A. Beyer, “Some biological sequence matrix,”

Advance Mathematics, vol. 20, pp. 367–387, 1976.

[8] X. Huang, and K. M. Chao, “A generalized global alignment algorithm,” Bioin-

formatics, vol. 19, pp. 228–233, September 2003.

32

[9] R. Mott, “EST GENOME: a program to align spliced DNA sequences to un-

spliced genomic DNA,” Computer Applications in the Biosciences, vol. 13,

pp. 477–478, August 1997.

[10] L. Florea, G. Hartzell, Z. Zhang, G. M. Rubin, and W. Miller, “A computer

program for aligning a cDNA sequence with a genomic DNA sequence,” Genome

Research, vol. 8, pp. 967–974, September 1998.

[11] S. .F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local

alignment search tool,” Journal of Molecular Biology, vol. 215, pp. 403–410, May

1990.

[12] S. -H. Sze, and P. A. Pevzner, “Las Vegas algorithms for gene recognition: subop-

timal and error-tolerant spliced alignment,” Journal of Computational Biology,

vol. 4, pp. 297–309, Fall 1997.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, Cambridge, Massachusetts: The MIT Press, Second Edition, 2001.

[14] M. Burset, and R. Guigo, “Evaluation of gene structure prediction programs,”

Genomics, vol. 34, pp. 353–375, Jun 1996.

[15] M. S. Gelfand, A. A. Mironov, and P. A. Pevzner, “Gene recognition via spliced

sequence alignment,” Proceedings of the National Academy of Sciences USA,

vol. 93, pp. 9061–9066, August 1993.

33

VITA

See Loong, Chin

Work Experiences

• Teaching Assistant, Computer Science, Texas A&M University, College Station,

TX, 2002 - 2003

• Propulsion Systems Engineer, United Space Alliance, Houston, TX, 1999 - 2001

• Aerodynamics Engineer, Boeing, Seattle, WA, 1997 - 1999

Education

• Master of Science, Computer Science, Texas A&M University, 2001 - 2003

• Bachelor of Science, Aeronautical & Astronautical Engineering, Purdue Univer-

sity, 1992 - 1996

Contact Addresses

• Permanent mailing address: 235 Margo St., San Antonio, TX 78223

• email: s0c7469@cs.tamu.edu s0c7469@genesun.tamu.edu schprock@yahoo.com

