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ABSTRACT 
 

Evaluation of Base Isolation and Soil Structure Interaction Effects on Seismic Response 

of Bridges. (August 2005) 

Wentao Dai, B. En., Tongji University, China; 

M.S., Tongji University, China 

Chair of Advisory Committee: Dr. Jose M. Roësset 

 

A continuous formulation to calculate the dynamic stiffness matrix of structural 

members with distributed masses is presented in detail and verified with some simple 

examples. 

 

The dynamic model of a specific bridge (the Marga-Marga bridge in Chile) was 

developed using this formulation, and the model was then used to obtain the transfer 

functions of the motions at different points of the bridge due to seismic excitation. The 

model included rubber pads, used for base isolation, as additional members. The transfer 

functions were obtained with and without rubber pads to investigate their effect. 

 

The dynamic stiffness of complete pile foundations was calculated by a semi-analytical 

solution with Poulos’ assumption. General observations on group effects under various 

conditions were obtained from the result of these studies. The dynamic stiffness of the 

pile foundations for the Marga-Marga bridge was then obtained and used to study the 

soil structure interaction effects on the seismic response of the bridge. 

 

Records obtained during a real earthquake were examined and interpreted in light of the 

results from all these analyses. Finally, conclusions and recommendations on future 

studies are presented.  
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CHAPTER I  

DESCRIPTION OF PROBLEM 

1.1 Objective 

The purpose of this work is to evaluate the effectiveness and efficiency of base isolation 

on the seismic response of bridges and the potential importance of soil-structure 

interaction effects. The dynamic stiffness of the complete system, including the 

structure, the foundations and the isolation pads, is obtained in the frequency domain. 

The transfer functions of the motions at some points on the bridge due to motions at the 

base of all the piers or only one pier are calculated to examine the frequency response 

characteristics of the system.  

 
The objective of this research is to evaluate through some parametric studies the effects 

of base isolation and soil structure interaction on the seismic response of bridges, with 

application to a particular bridge, the Marga-Marga bridge, in Chile, for which data were 

available, in order to use realistic parameters. This bridge uses hard rubber pads at the 

abutments and on top of each pier for base isolation and has pile foundations for five of 

its seven piers. 

 

1.2 Base Isolation 

Although I-Elastomeric bearings were first used in 1969 in Italy, base isolation 

techniques were not widely used in civil structures to resist lateral forces before the 

1990’s. Since the first design provisions appeared in the 1991 Uniform Building Code 

(UBC), the use of base isolators as a part of a structure in addition to conventional 

                                                 
This dissertation follows the style and format of the Journal of Geotechnical and 
Environmental Engineering, ASCE. 
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materials (steel, concrete, etc.) has become more and more popular in severe seismic 

hazard areas, and now base isolation plays an important part in the area of structural 

control. 

 

Extensive research has been done on the effect of base isolation on bridges since the 

1990’s, when the technique started to be widely used to protect bridges from the effect 

of seismic motions. Tan et al. (1993, 1996, 2000), Chaudhary et al. (1998, 2000, 2001a, 

2001b, 2002a), Shinozuka et al. (2001) and Crouse and McGuire (2001) worked on the 

system identification of base isolated bridges, in some cases considering the effect of 

soil structure interaction. Park et al. (2002), Chaudhary et al. (2002b) and Su et al. (1989, 

1990) used real earthquake records to investigate the behavior of base isolated bridges 

and compared the performance of different kinds of base isolators. 

 

 
Figure I.1 Normal Rubber Bearing (NRB) 

(Made of Alternating Layers of Rubber and Steel) 
 

The base isolators used in the Marga-Marga bridge are Normal Rubber Bearings (NRB). 

As shown in Figure I.1, they are made of alternating layers of steel and rubber to achieve 
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a low horizontal stiffness with a high vertical stiffness, to provide a uniform transfer of 

vertical load from the girder to the piers but to mitigate the horizontal load transfer from 

the piers to the girder during the earthquake. The NRBs can extend the natural period of 

the structure as well as absorb the earthquake energy though their hysteretic damping 

(Skinner et al. 1993). 

 

There have been many models proposed by researchers to study the behavior of the 

isolated structure or of the bearings by themselves. Most of them have been nonlinear 

models in the time domain to perform time history analysis. In some linear models, each 

rubber layer of the bearing has been considered to be linear, homogeneous and isotropic 

and treated as an equivalent column to calculate its stiffness matrix using beam theory 

(Haringx, 1949). All rubber and steel layers were then combined to get the stiffness 

matrix of the bearing pad and the matrix was then condensed to relate only end forces 

and displacements (Chang, 2002). Seki et al. (1987), Takayama et al. (1990), Billings 

(1993) and Matsuda (1999, 2001) developed two- or three-dimensional finite element 

models of the NRBs to investigate the internal stress-strain relationship under large 

deformations and gave some recommendations on the value of the hysteretic damping. 

In this research, the whole rubber pad will be considered as an equivalent structural 

member to evaluate its dynamic stiffness in the same way as for the structural members, 

using Timoshenko beam theory. 

 

1.3 Soil Structure Interaction (SSI) 

The conventional design method of a building or a bridge assumes that the foundations 

are fixed. The internal forces in the structural members, including the forces transferred 

from the base columns or the piers to the foundation, are calculated, and the strength of 

the foundation and settlements of the subsoil are then estimated. The problem is that the 

settlement of the foundation will change the internal forces in the superstructure. The 
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stiffness of the foundation should be incorporated in the model of the structure to 

perform a soil structure interaction analysis.  

 

The effects of soil structure interaction (SSI) on the dynamic response of bridges have 

been extensively studied. The superstructures were normally discretized into structural 

members with concentrated or consistent mass matrices, while the foundations could be 

modeled using different methods. The simplest model is to use Winkler’s assumption to 

model the soils as springs to support spread footings or piles (Crouse et al. 1987; Casas, 

1997; Mylonakis et al. 1997; McGuire et al. 1998; Hutchinson et al. 2004). With this 

model the effect of inertia forces of the soil and the radiation damping were not 

included. Other researchers (Levine and Scott, 1989; Spyrakos, 1990; Spyrakos and 

Loannidis, 2003; Harada et al. 1994; Makins et al. 1994, 1996; Chaudhry and Prakash, 

1998; Tongaokar and Jangid, 2003) modeled the soils or piles as a single degree freedom 

with coefficients for the mass, spring and dashpot, as recommended by Wolf (1988). 

Iwasaki et al. (1984) and Takemiya (1985) simplified the subsoil into a one-dimensional 

soil column to calculate its dynamic stiffness. Finite element (Kuribaya and Iida, 1974; 

Yamada and Kawano, 1979; Dendrou et al. 1984; Zheng and Takeda, 1995; Consolazio 

et al. 2003) or Boundary element formulations (Betti, 1995; Guin and Banerjee, 1998) 

were also widely used in the modeling of the soils and piles. Crouse and Price (1993), 

Takemiya and Yamada (1981) and Saadeghvaziri et al. (2000) used analytical or semi-

analytical formulations similar to the one used in this research. Lee and Dasgupta (1984) 

modeled the soil under the piers with nonlinear finite elements and the outer region with 

an analytical frequency dependent stiffness. Other studies concentrated on the nonlinear 

soil behavior (Hino and Tanabe, 1986; Zechlin and Chai, 1998; Carrubba et al. 2003). 

 

In this work, the dynamic stiffness of pile groups is investigated using an Elasto-

dynamic solution with Poulos’ method (1971) in the frequency domain. The dynamic 

stiffness of the surface foundations for the piers without pile foundations was calculated 
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using also an Elasto-dynamic solution. After combining the dynamic stiffness of the 

structure and the foundation, the effect of soil structure interaction is evaluated.  

 

1.4 Marga-Marga Bridge 

The Marga-Marga bridge, shown schematically in Figure I.2, is an actual bridge in 

Chile. The deck, which is 383 meters long, consists of 8 spans, all 50 meters long, except 

for the first one (connecting the south abutment and pier 1), which is 33 meters long. On 

top of each pier and of the two abutments are rubber pads (base isolators). The bridge 

has seven piers (P1~P7), five of them (P2~P6) with pile foundations. Each of the pile 

foundations consists of a 5 by 2 pile group (rows of 5 piles in the direction perpendicular 

to the figure and 2 in the longitudinal direction of the bridge). Piers P1 and P7 have 

surface mat foundations without any supporting piles. The bridge was instrumented after 

construction and a number of earthquake records were obtained.  

 

Pier

Girder

  Rubber Pad
(Base Isolator)

Pile Foundation

Surface
Foundation

 
Figure I.2 The Marga-Marga Bridge 
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1.5 Previous Studies 

Seismic analyses of the Marga-Marga bridge had been conducted by a number of 

students at the University of Chile. M.E. Segovia developed in 1997 a model to calculate 

the natural frequencies of the bridge with or without rubber pads; D. Romo (1999) 

develop in 1999 a different model using finite elements (shell elements), studying the 

effect of the boundary conditions at the two ends of the deck; Another finite element 

model has implemented by V.M. Daza in 2003 including soil structure interaction 

effects. 

 

1.6 Outline of Research 

The research conducted in this work consists of the following steps: 

 

• Development of a computational model for a three-dimensional bridge structure 

with distributed masses in the frequency domain. This model includes the piers, 

girders and slab as well as the isolation pads. It will accept as input the dynamic 

stiffness of the foundations, computed separately, as functions of frequency. The 

model was implemented in a computer program and tested for accuracy; 

 

• Determination of the dynamic stiffness terms for pile foundations. Some 

preliminary studies were conducted to investigate the nature and importance of 

group effects and the effect of limiting the interaction between piles when their 

separation exceeds a given distance. The program developed to determine the 

dynamic stiffness of pile groups was then used to compute the stiffness of the 

pile foundations of the Marga-Marga bridge. A separate program was used to 

compute the stiffness of the surface foundations of two piers; 
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• Parametric studies were conducted to assess the effectiveness of the base 

isolation assuming first rigid foundations, without soil structure interaction 

effects. The stiffness of the rubber pads was changed to study the effect of their 

properties on the seismic response of the bridge, looking at the transfer functions 

for the motions at various points due to unit motions at the base of the piers; 

 

• The same type of studies were carried out including now soil structure interaction 

effects to assess their potential importance; 

 

1.7 Dissertation Outline 

The formulation of the structural model in the frequency domain is presented in Chapter 

II with some simple analyses to validate it. Chapter III discusses the dynamic stiffness of 

pile groups. The results for the foundations of the Marga-Marga bridge are included in 

Chapter IV. The effect of the stiffness of the rubber pads is investigated and reported in 

Chapter V while Chapter VI presents the studies on soil structure interaction effects. 

Conclusions and recommendations for further work are included in Chapter VII. 



 8

CHAPTER II  

STRUCTURAL FORMULATION 

2.1 Dynamic Stiffness Matrix of a Prismatic Member 

The use of the dynamic stiffness matrices in the frequency domain for linear structural 

members with distributed masses provides a more efficient and accurate procedure for 

the dynamic analysis of frames than lumped or consistent mass matrices. The higher 

accuracy provided is a major consideration in the interpretation of dynamic non-

destructive tests based on impact loads and wave propagation. 

 

The dynamic stiffness matrix for linear structural members with distributed masses were 

first used by Latona (1969) and extended by Papaleontiou (1992) later to validate the 

accuracy of lumped and consistent mass matrices. Formulations for beam members and 

shell elements were then obtained by Kolousěk (1973), Banerjee and William (1985, 

1994a, 1994b), Doyle (1989a, 1989b), Gopalakrishnan and Doyle (1994) and Yu and 

Roësset (2001). Chen and Sheu (1993, 1996), Yu (1995, 1996) and Yu and Roësset 

(1998) used these formulations to carry out some studies on structural dynamics, soil 

structure interaction and non-destructive testing. In this chapter, the derivation of the 

dynamic stiffness matrix associated with the exact continuous solution is carried out 

using the same approach followed to obtain the static stiffness matrix. The following 

paragraphs give the main steps of this approach deriving the dynamic stiffness matrix of 

a prismatic flexural member.  

 

2.1.1 Dynamic Stiffness Matrix for Transverse Deflection 

For the transverse behavior of a flexural member, the Timoshenko beam theory includes 

the shear deformation and rotational inertia of the beam. The governing equations in the 

frequency domain are 
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2

2

ˆ ˆ ˆ

ˆ
ˆ

ˆˆ

ˆˆ ˆ( )

ˆˆ ˆ

M V I
x

Y Av
x

M EI
x

vV GA
x
vY V N
x

ω ρ ϕ

ω ρ

ϕ

κ ϕ

⎧∂
+ = −⎪ ∂⎪

⎪∂
= −⎪ ∂⎪

∂⎪ =⎨ ∂⎪
∂⎪ = −⎪ ∂⎪
∂⎪ = +

⎪ ∂⎩

.………………………..…………………………….……... (II.1) 

in which  

, ,E Gρ ………...………....density, Young’s modulus and shear modulus of the material; 

, ,I Aκ ...effective shear area coefficient, moment of inertia and area of the cross section; 

, , , ,M V Y vϕ ……………………….………………………….…..bending moment, shear 

force, vertical force, bending rotation and transverse displacement of the cross section; 

ˆ ˆ ˆ ˆ ˆ, , , ,M V Y ϕ ν ………………………..…... , , , ,M V Y vϕ in frequency domain, respectively; 

N ………………………………………………...………………………….…axial force. 

 

In this case, to obtain a linear ordinary differential equation with constant coefficients, 

all the material properties and cross-section properties are assumed to be constant along 

the beam. These properties include , , , , ,E G I Aρ κ  and N . 

 

After combining the above equations, we can get a governing equation with only one 

unknown- v̂ . 

2 2
2 2ˆ ˆ ˆ1 1 " 1 0IVN A N IEI v EI N I v A v

GA GA GA GA
ω ρ ω ρω ρ ω ρ

κ κ κ κ
⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − + + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠

……………...…………………………..…...…………………………….………… (II.2) 



 10

Solving this equation and finding v̂ as a function of x  andω , we can find M̂ ,V̂ , Ŷ  and 

ϕ̂  by substituting v̂ back into Equation II.1. 

Defining 

2 2

2 2
2

2
1 1

1
1

A N I
N N EIGA EI
GA GA

A I
N GAEI
GA

ω ρ ω ρβ
κ

κ κ

ω ρ ω ρα
κ

κ

⎧
= − +⎪ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎪ + +⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠

⎨ ⎛ ⎞⎪ ⎜ ⎟= −⎜ ⎟⎜ ⎟⎪ ⎛ ⎞ ⎝ ⎠⎜ ⎟+⎪ ⎜ ⎟
⎝ ⎠⎩

    

we get the characteristic equation 
4 2 22 0r rβ α+ + = …………...….…….………. (II.3) 

It is convenient to express the solution of Equation II.3 for three different cases. 

 

A. Static case without axial force, 0ω =  and 0N = ; 

In this case, 22 0β α= = . The governing equation becomes ˆ 0IVEIv = .  The solution 

of this equation is 2 3
1 2 3 4v̂ C C x C x C x= + + + . From Equation II.1, the expressions for the 

bending moment, shear force, transverse force and bending rotation can be derived in 

terms of the transverse displacement v̂ . Since 0Nω = = , the expressions are 

ˆ ˆ"
ˆ ˆ ˆ

ˆ ˆ ˆ'

III

III

M EIv

Y V EIv
EIv v
GA

ϕ
κ

⎧
=⎪

⎪
= =⎨

⎪
⎪ = +
⎩

.…………………………………………………………….……. (II.4) 

The end displacements { }û  of this case can be expressed in terms of the constants iC . 
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{ } [ ]{ }
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. 

The end forces { }F̂  can also expressed in terms of the constants iC . 

{ } [ ]{ }

1

2
2

3

4

ˆ ˆ(0) 0 0 0 6
ˆ ˆ (0) 0 0 2 0ˆ
ˆ ˆ 0 0 0 6( )

0 0 2 6ˆˆ ( )

A

A

B

B

Y Y C
CM M

F T C
CY Y L

L CM LM

⎧ ⎫ ⎧ ⎫− ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭⎩ ⎭

. 

The computation of the stiffness matrix fS⎡ ⎤⎣ ⎦  can be carried out numerically as 

{ } [ ]{ } [ ][ ] { } { }1
2 2 1

ˆ ˆ ˆfF T C T T u S u− ⎡ ⎤= = = ⎣ ⎦  

[ ][ ] 1
2 1fS T T −⎡ ⎤ =⎣ ⎦  

The result can be written in explicit form as 

3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6

6 2(2 ) 6 2(1 )

12 6 12 61 2

6 2(1 ) 6 2(2 )

f

L L L L

EI L L L LS

L L L L

L L L L

η η

η

η η

⎡ ⎤−⎢ ⎥
⎢ ⎥

+ −⎢ ⎥−⎢ ⎥
⎡ ⎤ = ⎢ ⎥⎣ ⎦ + ⎢ ⎥− − −

⎢ ⎥
⎢ ⎥− +

−⎢ ⎥⎢ ⎥⎣ ⎦

...…..……….……..……….……. (II.5) 

in which 2

6EI
GAL

η
κ

= . 
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B. For static case with axial force, 0ω =  and 0N ≠ ; 

In this case, 2 0α = , but 2 0
1

N
NEI
GA

β

κ

−
= ≠

⎛ ⎞+⎜ ⎟
⎝ ⎠

. The governing equation becomes 

ˆ ˆ1 " 0IVNEI v Nv
GAκ

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

.  

The solution to this equation is 1 2
1 2 3 4ˆ r x r xv C C x C e C e= + + + , in which 1 2 2r r β= − = − . 

The expressions of bending moment, shear force, transverse force and bending rotation 

in the frequency domain are 

ˆ ˆ1 "

ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ' ' 1

ˆ ˆ ˆ' 1

III

III

III

NM EI v
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NV EI v
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NY V Nv Nv EI v
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EI Nv v
GA GA
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κ
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ϕ
κ κ
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⎨

⎛ ⎞⎪ = + = − +⎜ ⎟⎪ ⎝ ⎠
⎪

⎛ ⎞⎪ = + +⎜ ⎟⎪ ⎝ ⎠⎩

……………….....……...…………….……. (II.6) 

The end displacements { }û  and end forces { }F̂  can be expressed in terms of the 

constants iC .  
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The computation of the stiffness matrix can be carried out numerically as before as 

[ ][ ] 1
2 1fS T T −⎡ ⎤ =⎣ ⎦ . 

 

C. Dynamic case with or without axial force, which means 0ω ≠ ; 

This is the most general case and neither α  nor β  are equal to zero, so the governing 

equation is the same as Equation II.2. The characteristic equation is 
4 2 22 0r rβ α+ + = . 

The roots are  

2 2
1 2

2 2
3 4

r r

r r

β β α

β β α

⎧ = − = − + −⎪
⎨
⎪ = − = − − −⎩

 

α  and β  were defined in Equation II.3. Then the solution to the governing Equation 

II.2 can be written as 31 2 4
1 2 3 4ˆ r xr x r x r xv C e C e C e C e= + + + . 

 

Substituting v̂  into Equation II.1, the most general expressions for bending moment, 

shear force, transverse force and bending rotation become 
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Equation II.7 can be simplified using the characteristic equation 
4 2 22 0r rβ α+ + =  as  
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∑

∑

∑

. 

The end displacements { }û  and end forces { }F̂  can also be derived in the same way as 

before. 
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1 2 3 4 4

ˆ ˆ 1 1 1 1(0)
ˆ ˆ(0)

ˆ
ˆ ˆ( )

ˆˆ ( )

A

A
r Lr L r L r L

B
r Lr L r L r L

B

Cv v
CR R R R

u T C
e e e e Cv v L

R e R e R e R eL C

ϕ ϕ

ϕϕ

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭ ⎩ ⎭
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{ }
31 2 4

31 2

2 2 2 2

1 2 3 4

1 1 2 2 3 3 4 4
2 2 2 2

1 2 3 4

1 1 2 2 3 3 4 4

ˆ ˆ(0)
ˆ ˆ (0)ˆ
ˆ ˆ( )

ˆˆ ( )

A

A

r Lr L r L r LB

B
r Lr L r L

A A A A
Y Y r r r r
M EIR r EIR r EIR r EIR rM

F
A A A AY Y L e e e e

r r r rM LM
EIR re EIR r e EIR r e EIR r e

ω ρ ω ρ ω ρ ω ρ

ω ρ ω ρ ω ρ ω ρ

⎧ ⎫ ⎧ ⎫−
⎪ ⎪ ⎪ ⎪

− − − −−⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ − − − −
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

[ ]{ }

4

1

2

3

4

2

r L

C
C
C
C

T C

⎡ ⎤
⎢ ⎥ ⎧ ⎫⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎨ ⎬
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎩ ⎭⎢ ⎥
⎢ ⎥⎣ ⎦

=

in which ( )
2

1 , 1, 2,3,4i i
i

N AR r i
GA GAr

ω ρ
κ κ

⎛ ⎞⎜ ⎟= + + =⎜ ⎟
⎝ ⎠

. The computation of the stiffness 

matrix can be carried out numerically again as [ ][ ] 1
2 1fS T T −⎡ ⎤ =⎣ ⎦ . 

 

The resulting stiffness matrices for case A and B can also be derived from the limit of 

fS⎡ ⎤⎣ ⎦  for this case as 
0
0N

ω →⎧
⎨ →⎩

 and 0ω → , respectively. 

 

In Equation II.7, if 2GA Iκ ω ρ= , the denominators of V̂ and ϕ̂  will become zero. So for 

this special case, the governing equation becomes  

( )ˆ ˆ1 ' 0IIINEI v EA GA v
GA

κ
κ

⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

………………...……...………..…..…… (II.8) 

The corresponding characteristic equation is ( )31 0NEI r EA GA r
GA

κ
κ

⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

 

with roots 

1

2 3

0

1

r

EA GAr r
NEI
GA

κ

κ

=⎧
⎪
⎪ +

= − =⎨
⎛ ⎞⎪ +⎜ ⎟⎪ ⎝ ⎠⎩

.  The solution to the governing Equation II.8 can 

be written as 32
1 2 3ˆ r xr xv C C e C e= + + . 
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Substituting v̂  into Equation II.1, the expressions for bending moment, shear force, 

transverse force and bending rotation can be written as 

( )

2 23
2

1
2

2 2 23

1 4
2

2
2

1

ˆ ˆ ˆ1 " 1

ˆ ˆ ˆ1 ' 1

ˆ ˆ ˆ '

i

i

r x
i

i

r x
i

i i

i
i

N A N AM EI v v EIC EI r e
GA GA GA GA

N A A N Av v dx C x r e C
GA GA GA GA GAr

AV GA v AC x Nr
r

ω ρ ω ρ
κ κ κ κ

ω ρ ω ρ ω ρϕ
κ κ κ κ κ

ω ρκ ϕ ω ρ

=

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + + = + + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞= + + = + + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= − − = − − +

∑

∑∫
3

4
2

23
2

1 4
2

ˆ ˆ ˆ '

i

i

r x

i

r x

i i

e GAC

AY V Nv AC x e GAC
r

κ

ω ρω ρ κ

=

=

⎧
⎪
⎪
⎪
⎪
⎪
⎨

⎛ ⎞⎪ −⎜ ⎟⎪ ⎝ ⎠⎪
⎪

= + = − − −⎪
⎩

∑

∑

... (II.9) 

The end displacements and end forces are 

{ } [ ]{ }
32

32

1

22 3
1

3

2 3 4

ˆ ˆ 1 1 1 0(0)
ˆ ˆ 0 1(0)

ˆ
ˆ ˆ 1 0( )

ˆˆ 1( )

A

A
r Lr L

B
r Lr L

B

Cv v
CR R

u T C
e e Cv v L

L R e R eL C

ϕ ϕ

ϕϕ

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

{ } [ ]
32

32

2 2

12 3

22 2 3 3
22 2

3

2 3 4

2 2 3 3

0ˆ ˆ(0)
ˆ ˆ 0(0)ˆ
ˆ ˆ( )

ˆˆ ( )
0

A

A

r Lr LB

B
r Lr L

A A GAY Y Cr r
CM EI EIR r EIR rM

F T
CA AY Y L GAL e e GA

r r CM LM
EI EIR r e EIR r e

ω ρ ω ρ κ

ω ρ ω ρκ κ

⎡ ⎤
⎢ ⎥⎧ ⎫ ⎧ ⎫− ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥− − −−⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = = =⎨ ⎬ ⎨ ⎬ ⎢ ⎥ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪− − − −
⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭ ⎢ ⎥

⎢ ⎥⎣ ⎦

{ }C  

in which ( )
2

1 , 1, 2,3,4i i
i

N AR r i
GA GAr

ω ρ
κ κ

⎛ ⎞⎜ ⎟= + + =⎜ ⎟
⎝ ⎠

. The computation of the stiffness 

matrix can be carried out numerically as [ ][ ] 1
2 1fS T T −⎡ ⎤ =⎣ ⎦ . 
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2.1.2 Dynamic Stiffness Matrix for Axial and Torsional Vibrations 

The basic governing equation for axial vibration in the frequency domain is  

2 2

2

ˆ ˆ 0u A u
x EA

ω ρ∂
+ =

∂
; 

and for torsional vibration 
22

2

ˆ ˆ 0pI
x GJ

ω ρθ θ∂
+ =

∂
 …..………....…………....………. (II.10) 

 

The derivation of the axial stiffness matrix is 

A. If 0ω ≠ , then the characteristic equation of is 
2

2 0Ar
EA

ω ρ
+ =  with roots 

2

1 2
Ar r ia i

EA
ω ρ

= − = = , and the solution to the governing equation is  

1 2
1 2ˆ r x r xu C e C e= + . 

 

Following the same procedure as for the flexural member, the resulting stiffness matrix 

in the frequency domain can be written as 

[ ] cos( ) 12
1 cos( )sin( )2

iaL iaL

a iaL iaL iaL iaL

aLe eiaEA aEAS
aLe e aLe e

−

− −

−⎡ ⎤+ − ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−− − + ⎣ ⎦⎣ ⎦

…......…. (II.11) 

 

B. If 0ω = , the solution to the governing Equation II.10 is 1 2û C C x= + . Based on this 

solution, the stiffness matrix can be derived as  

[ ] 1 1
1 1a

EAS
L

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

.……………………….…..……………….….……..….……. (II.12) 

This formula can also be derived computing the limit of Equation II.11 as 0ω → . 



 18

[ ]

[ ] ( )
( ) [ ]

0 0

0

0 0

0
0 0

cos( ) 1
lim

1 cos( )sin( )

cos( ) 1
lim

1 cos( )sin( )

lim cos( ) lim 1
lim

sin( ) lim 1 lim cos( )

1 1
1 1

a

a

a a

a
a a

aLaEAS
aLaL

aLaEA
aLaL

aLaEA
aL aL

EA
L

ω ω= →

→

→ →

→
→ →

⎛ − ⎞⎡ ⎤
= ⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

⎛ − ⎞⎡ ⎤
= ⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

⎡ ⎤−⎛ ⎞ ⎢ ⎥= ⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

 

The torsional stiffness matrix can be obtained just changing EA  and Aρ  into GJ and 

pIρ  in [ ]aS , respectively. 

 

After deriving the fS⎡ ⎤⎣ ⎦  , [ ]aS  and [ ]TS  matrices, they can be assembled to get the 

general stiffness matrix [ ]S  in three dimensions. 

 

2.2 Verification of the Program Spfram.for 

Using the formulation described above a FORTRAN program was implemented to 

perform dynamic analysis of three-dimensional frames. The program Spfram.for consists 

of two parts: 

• subroutines to compute the stiffness matrix of a single member; 

• subroutines to assemble the global stiffness matrix and solve the system of linear 

equations.  

To test the program, a case was run to find the natural frequencies and buckling load of a 

beam comparing the results with the analytical solution. 

 

For a three-dimensional beam pinned at two ends in one direction, as shown in Figure 

II.1, the natural frequencies and buckling load can be easily found analytically.  
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Figure II.1 A Beam Pinned at Two Ends 

 

At end A, the rotation around the Z axis is free; at end B, the rotation around the Z axis 

and the displacement along the X axis are free. All other end displacements are 

constrained. The governing equation of this beam is also Equation II.2. The mode shapes 

(Eigen-functions) of this pinned beam are 

( )ˆ sin , 1,2...........n
n xv C n

L
π

= = , 

because they satisfy both the boundary conditions
ˆ ˆ( 0) ( ) 0

ˆ ˆ( 0) ( ) 0
M x M x L
v x v x L

⎧ = = = =
⎨

= = = =⎩
 and 

governing Equation II.2. 

 

Substituting the first mode shape into Equation II.2 to find the first natural frequency and 

first buckling load, the resulting formula in implicit form is obtained 

4 2 2 2
2 2

4 21 1 1 0N A N IEI EI N I A
GA L GA GA L GA

π ω ρ π ω ρω ρ ω ρ
κ κ κ κ

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − − + + + − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠
.. (II.13) 

If we know the axial force N , we can compute the corresponding natural frequency ω  

from this equation. For a given frequency ω   one can compute on the other hand the 

buckling load N . 
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For a rectangular-cross-section with

10 3

2 4

1 10 , 0.25 , 1000 /
59 , 2.25 , 10 ,
6z

E Pa kg m

A m I m L m

ν ρ

κ

⎧ = × = =
⎪
⎨

= = = =⎪⎩

, 

the natural frequencies corresponding to different values of the axial load are 

summarized in Table II.1. 

 

Table II. 1 Natural Frequencies for Different Values of Axial Load 
 

Axial Load 
(N) 

Natural Frequency from 
Analytical Solution 

(HZ) 

Natural Frequency from 
Program Spfram.for 

(HZ) 
1000000000 28.8830 28.883 
500000000 26.4246 26.425 

0 23.7127 23.713 
-500000000 20.6475 20.647 
-1000000000 17.0395 17.039 
-1500000000 12.4244 12.424 
-2000000000 4.2881 4.288 
-2067612136 

(Buckling Load) 0 0.000 

 

With program Spfram.for, a unit bending moment was applied at end B as shown in 

Figure II.1. The output provided the end rotations as a function of frequency for a given 

axial load. When the rotation at end B became infinite, the frequency was the natural 

frequency. The results from the program are also tabulated in Table II.1. 

 

The results indicate that the program is working correctly. 
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2.3 Program Bridge.for 

2.3.1 Introduction to the Program 

The ultimate goal of this work was to study the seismic behavior of the Marga-Marga 

bridge (Figure II.2), assessing the effect of the isolation rubber pads between the girders 

and piers (Figure II.3) and the potential importance of soil structure interaction.  

 

A second program Bridge.for was implemented to analyze a bridge under seismic 

loading in the frequency domain using the direct stiffness method. The program mainly 

consists of three parts: 

• a main program to perform the nodal and element generation; 

• subroutines to compute the stiffness matrix of the members; 

• subroutines to assemble the global stiffness matrix and solve the linear equations.  

The last two parts are identical to those of the Spfram.for program. 

 

 

Figure II.2 Overview of the Marga-Marga Bridge in Chile 
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There are in general three kinds of structural members: deck, piers and rubber pads 

(Figures II.4 and II.5). To assess the effect of isolation pads the program allows 

including or omitting the rubber pads in order to compare the corresponding response. 

 

 
Figure II.3 Cross Section of the Bridge 

 

If there are n  piers, the deck will consist of 1n +  members, as shown in Figure II.2. If 

there are rubber pads, rubber pads are on the top of each pier. All the rubber pads on the 

top of one pier are regarded as one member in the program. In the program, each pier is 

divided into 3 members according to changes of the cross section to accommodate a 

situation as shown in Figure II.3, because the stiffness matrix derived before is only 

valid for prismatic members with constant cross section. 

 

Figures II.4 and II.5 show the nodal and element numbers of the bridge for the cases 

with and without rubber pads. In the two figures, dashed lines represent the deck 

members, while continuous lines and solid lines represent the pier members and rubber 

pads, if they exist, respectively.  
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Figure II.4 Nodal and Element Number of a Bridge with Rubber Pads 

 

5

6

1

7

12

8

9

11

10

2

13

3 4

Figure II.5 Nodal and Element Number of a Bridge without Rubber Pads 
 

2.3.2 Stiffness Matrix Transformation 

The deck members consist of the deck itself and the steel girders. They are modeled as 

an equivalent member. The centroidal axis of these equivalent members will be at some 

vertical distance from the top of the piers or the rubber pads. To account for this 

eccentricity rigid links are assumed between the centroidal axis of the equivalent deck 

member and the top surface of the rubber pads (points A  and 'A  in Figure II.6). 
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Figure II.6 Forces and Displacements Transformation of Deck Members 

 

One way to incorporate the rigid links is to transform the stiffness matrix of the deck 

members. If we assume that the cross section cannot deform out of the plane, the 

relationship between the displacements at A  and 'A  is 

( )
( )

( ) ( )
( ) ( )
( ) ( )

' 1 '

' 1 '

'

'

'

'

A A y A

A A x A

A A

x xA A

y yA A

z zA A

u u D

v v D

w w

θ

θ

θ θ

θ θ

θ θ

⎧ = +
⎪
⎪ = −
⎪

=⎪
⎨ =⎪
⎪ =⎪
⎪ =⎩

. 

The relationship in matrix form is 
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( )
( )
( )

( )
( )
( )

{ } [ ]{ }

'
1

'
1

'

'

'

'

'

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A A

A A

A A

x xA A

y yA A

z zA A

A U A

u uD
v vD
w w

U L U

θ θ

θ θ

θ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪−⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥

⎢ ⎥⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
=

.………….…....………..………….. (II.14) 

where [ ]UL is the transformation matrix. 

 

The transformation matrix for forces is derived in the same way as that of for 

displacements. 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

'

'

'

1' '

1 ''

'

x xA A

y yA A

z zA A

x x yA A A

y y x AA A

z zA A

F F

F F

F F

M M D F

M M D F

M M

⎧ =
⎪

=⎪
⎪

=⎪⎪
⎨

= +⎪
⎪

= −⎪
⎪

=⎪⎩

 

( )
( )
( )
( )
( )
( )

( )
( )
( )
( )
( )
( )

'

'

'

1 '

1
'

'

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 0 1

x xA A

y yA A

z zA A

x xA A

y yA A

z zA A

F F

F F

F F

DM M
DM M

M M

⎧ ⎫ ⎧ ⎫
⎡ ⎤⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥−
⎪ ⎪ ⎪ ⎪⎢ ⎥

⎢ ⎥⎣ ⎦⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

.………….……..…..…..……….. (II.15) 

{ } [ ]{ }'A F AF L F=  or  { } [ ] { } [ ] { }1
'

T
A F A U AF L F L F−= =  because [ ] [ ]1 T

F UL L− = . 
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We can then derive the transformed stiffness matrix for a span member as below in 

Figure II.7. 

 

 
Figure II.7 Stiffness Matrix Transformation of Deck Members 

 

{ } ( ) ( ) ( ) ( ) ( ) ( ){ } { }

{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
{ }

{ } ( ) ( ) ( ) ( ) ( ) ( ){ } { }
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' ' ' ' ' ' ' '' ' ' '' '

' ' ''

, , , , , , , , , , , ,

, , , , , , , , , , ,
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' , , , , , , , , , , , ,
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A A A x y z B B B x y z A BA A B BA B
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x y z x y z x y z x y zA A A A B B B BA A B B

T
A B

T T
A A A x y z B B B x y z A BA A B BA B

x y z x yA A AA A
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F F F F M M M F F F M M M

F F

U u v w u v w U U

F F F F M M

θ θ θ θ θ θ

θ θ θ θ θ θ
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=

=

= =
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' ' ' ' '' ' '
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, , , , , , ,

,

T

z x y z x y zA B B B BB B

T
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{ }
[ ]

[ ]
{ }
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[ ]{ }
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[ ] [ ]
[ ] { }
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[ ] { }
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1
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'
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0 00 0
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− −

− −
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−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

=
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Defining [ ] AA AB

BA BB

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and [ ] ' ' ' '

' ' ' '

' A A A B

B A B B

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

' '

' '

' '

' '

T
A A U AA UA A

T
A B U AB UA B

T
B A U BA UB A

T
B B U BB UB B

S L S L

S L S L

S L S L

S L S L

⎧ =
⎪
⎪ =⎪
⎨

=⎪
⎪

=⎪⎩

..…………...……….…..………………....………….…. (II.16) 

 

2.3.3 Program Bridge.for Verification  

To validate the program runs were conducted for the bridge sketched in Figure II.5, 

without rubber pads and with 3 piers. The properties are 

9 2 2

2 4 4 4

9 2 2

2 4 4 4

1 10 / , 0.25, 1000 / , 0.01
1 210 / , 2 , 0.85, , , 0.46
6 3

1 10 / , 0.25, 1000 / , 0.01
1 214 , 2 , 0.85, , , 0.46
6 3

y z

y z

E N m kg m
deck

L m span A m I m I m J m

E N m kg m
pier

L m A m I m I m J m

ν ρ µ

κ

ν ρ µ

κ

⎧ ⎧ = × = = =
⎪⎪ ⎨⎪ = = = = = =⎪⎪ ⎩

⎨
⎧ = × = = =⎪ ⎪⎪ ⎨

⎪ = = = = = =⎪⎩⎩

 

And the displacement boundary conditions in this case are: 

• the left end of the deck and the bottom of all piers are completely fixed, which 

means that all six possible displacements and rotations are constrained; 

• the right end of the deck is also fixed except for the displacement in the 

x direction. 

 

The excitations are unit harmonic motions at each of the supports in each of the three 

directions. 

 



 28

The same case was studied with the program ABAQUS to determine the natural 

frequencies and mode shapes. Because ABAQUS does not allow considering distributed 

masses each member was divided into a number of sub-elements (segments) to obtain 

comparable results to those of Bridge.for. In this case, the length of each segment is 

0.05m. 

 

The results are illustrated in Figures II.8, II.9 and II.10, which give the response 

(displacements) of node 11 in all three directions due to a unit excitation at node 1 in the 

same directions, respectively; and in Figures II.11, II.12 and II.13, showing the 

displacements of node 12 due to a unit excitation at node 4. In these figures, the peaks in 

the plots represent the natural frequencies from the program Bridge.for (for small values 

of damping ratio, as used in this case, the peaks are almost exactly the natural 

frequencies.), while the vertical dashed lines represent those calculated with the program 

ABAQUS using a very fine discretization of each member (0.05m/member). 

 

As we can see, the natural frequencies from the two programs are almost identical, 

which indicates that the program Bridge.for gives the correct results. Table II.2 also 

gives the natural frequencies and a brief description of the corresponding mode shapes 

from ABAQUS, and the mode shapes are also shown in Appendix (Figures A.1~A.30). 

 

In Figures II.8~II.13, some natural frequencies from ABAQUS do not correspond to any 

peaks in the plots. When referring to the mode shape corresponding to that natural 

frequency, one will find that in that mode, the displacement of node 11 has no 

components in that direction. For example, in Figure II.12, one cannot find the 

corresponding peaks to the 11th and 15th modes, because in these modes, the 

displacement of node 12 in the y  direction is zero (in Figures A.11 & A.15 in 

Appendix). 
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Figure II.8 Displacement at Node 11 in X Direction due to X Motion at Node 1 
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Figure II.9 Displacement at Node 11 in Y Direction due to Y Motion at Node 1 
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Figure II.10 Displacement at Node 11 in Z Direction due to Z Motion at Node 1 
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Figure II.11 Displacement at Node 12 in X Direction due to X Motion at Node 4 
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Figure II.12 Displacement at Node 12 in Y Direction due to Y Motion at Node 4 
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Figure II.13 Displacement at Node 12 in Z Direction due to Z Motion at Node 4 
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In the above analysis using ABAQUS, to get good results each member was divided into 

a number of very small 0.05m-long segments. But typically in engineering practice each 

number has one segment. Table II.3 gives the results obtained with this model using 

lumped masses at the joint. Comparing with Table II.2 which contains almost the exact 

solution, this model only gives a good approximation of the first two modes. From the 

3rd mode on, the results are no longer reliable. The accuracy of the usual model would 

improve somewhat using consistent mass matrices. 

 
Tables II.4 and II.5 list the natural frequencies obtained using lumped mass matrices and 

dividing each member into 2 segments ( good accuracy for 10 or 15 modes) and diving 

the members into 3m-long segments, which means each span is divided into 3 segments 

and pier into 5 segments. The approximation is then reasonable for the first 30 modes 

and the maximum error in the natural frequencies is about 3%. 
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Table II. 2 Natural Frequencies and Mode Shapes Description of the Bridge in Figure II.5 

(from ABAQUS, Length of each segment is 0.05m) 

Mode
Natural 

Frequency 
(Hz) 

Mode Shape 
Description Mode

Natural 
Frequency

(Hz) 
Mode Shape Description

1 1.4285 Transverse, in y direction;
symmetric 16 12.235 Longitudinal & Axial, 

in x-z plane 

2 3.0588 Transverse, in y direction;
anti-symmetric 17 12.650 Longitudinal & Axial, 

in x-z plane 

3 4.0408 Longitudinal, in x-z plane;
anti-symmetric 18 12.964 Longitudinal & Axial, 

in x-z plane 

4 4.1685 Longitudinal & Axial, 
mainly in x direction 19 13.686 Longitudinal & Axial, 

in x-z plane; symmetric 

5 4.3829 Longitudinal & Axial, 
in x-z plane 20 14.106 Transverse, in y direction;

symmetric 

6 4.9865 Transverse, in y direction;
symmetric 21 14.928 Longitudinal & Axial, 

in x-z plane 

7 6.2708 Longitudinal & Axial, 
mainly in x direction 22 16.176 Transverse, in y direction;

anti-symmetric 

8 6.7674 Longitudinal, in x-z plane
anti-symmetric 23 16.557 Longitudinal & Axial, 

in x-z plane; symmetric 

9 7.0866 Transverse, in y direction
symmetric 24 16.671 Transverse, in y direction;

anti-symmetric 

10 7.3603 Longitudinal & Axial, 
in x-z plane; symmetric 25 16.794 Transverse, in y direction;

symmetric 

11 7.4381 Transverse, in y direction;
anti-symmetric 26 17.755 Transverse, in y direction;

symmetric 

12 8.2621 Longitudinal, in x-z plane;
anti-symmetric 27 18.003 Longitudinal & Axial, 

mainly in x direction 

13 8.3444 Longitudinal & Axial, 
in x-z plane; symmetric 28 18.070 Transverse, in y direction;

anti-symmetric 

14 8.3851 Transverse, in y direction;
symmetric 29 19.796 Transverse, in y direction;

anti-symmetric 

15 10.333 Transverse, in y direction;
anti-symmetric 30 20.035 Longitudinal, in x-z plane;

anti-symmetric 
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Table II. 3 Natural Frequencies and Mode Shapes Description of the Bridge in Figure II.5 
(from ABAQUS, Each member is considered as one segment, which is 10~14m-long) 

Mode
Natural 

Frequency 
(Hz) 

Mode Shape 
Description Mode

Natural 
Frequency

(Hz) 
Mode Shape Description

1 1.3192 Transverse, in y direction;
symmetric 16 37.202 Longitudinal & Axial, 

in x-z plane 

2 3.9152 Transverse, in y direction;
anti-symmetric 17 41.589 Transverse, in y direction;

anti-symmetric 

3 4.7401 Transverse, in y direction;
symmetric 18 44.727 Longitudinal & Axial, 

in x-z plane, symmetric 

4 4.0711 Longitudinal & Axial, 
in x-z plan 19 51.143 Longitudinal & Axial, 

in x-z plane 

5 10.339 Longitudinal & Axial, 
in x-z plan, symmetric    

6 10.439 Longitudinal & Axial, 
in x-z plan, anti-symmetric    

7 10.609 Longitudinal & Axial, 
in x-z plan, symmetric    

8 14.304 Longitudinal & Axial, 
in x-z plan    

9 21.319 Transverse, in y direction;
symmetric    

10 21.577 Transverse, in y direction;
anti-symmetric    

11 22.702 Transverse, in y direction;
anti-symmetric    

12 23.776 Transverse, in y direction;
symmetric    

13 26.782 Longitudinal & Axial, 
in x-z plan    

14 27.754 Transverse, in y direction;
anti-symmetric    

15 35.386 Transverse, in y direction;
symmetric    
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Table II. 4 Natural Frequencies and Mode Shapes Description of the Bridge in Figure II.5 
(from ABAQUS, Each member is considered as two segments, which is 5~7m-long) 

Mode
Natural 

Frequency 
(Hz) 

Mode Shape Description Mode
Natural 

Frequency
(Hz) 

Mode Shape Description

1 1.4020 Transverse, in y direction;
symmetric 16 13.687 Longitudinal & Axial, 

in x-z plan, symmetric 

2 3.0551 Transverse, in y direction;
anti-symmetric 17 13.809 Transverse, in y direction 

symmetric 

3 4.1865 Transverse, in y direction;
anti-symmetric 18 14.435 Longitudinal & Axial, 

in x-z plan, anti-symmetric

4 4.3521 Longitudinal & Axial, 
mainly in x direction 19 14.833 Transverse, in y direction;

anti-symmetric 

5 4.5228 Longitudinal & Axial, 
in x-z plan 20 15.048 Transverse, in y direction;

anti-symmetric 

6 5.1644 Transverse, in y direction;
symmetric 21 15.205 Longitudinal & Axial, 

in x-z plane, symmetric 

7 5.9847 Longitudinal & Axial, 
mainly in x direction 22 15.241 Transverse, in y direction;

symmetric 

8 7.0123 Longitudinal & Axial, 
in x-z plan, anti-symmetic 23 16.490 Longitudinal & Axial, 

mainly in x direction 

9 7.0705 Transverse, in y direction;
symmetric 24 17.621 Transverse, in y direction;

anti-symmetric 

10 7.3389 Transverse, in y direction;
anti-symmetric 25 18.861 Transverse, in y direction;

symmetric 

11 7.6540 Longitudinal & Axial, 
in x-z plan, symmetric 26 19.998 Transverse, in y direction;

anti-symmetric 

12 7.8519 Transverse, in y direction;
symmetric 27 20.275 Transverse, in y direction;

symmetric 

13 8.5618 Longitudinal & Axial, 
in x-z plan, anti-symmetric 28 20.694 Transverse, in y direction;

symmetric 

14 8.6085 Longitudinal & Axial, 
in x-z plan, symmetric 29 21.011 Longitudinal & Axial, 

mainly in x direction 

15 10.398 Transverse, in y direction;
anti-symmetric 30 26.518 Longitudinal & Axial, 

mainly in x direction 
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Table II. 5 Natural Frequencies and Mode Shapes Description of the Bridge in Figure II.5 
(from ABAQUS, Each member is about 3m-long) 

Mode
Natural 

Frequency 
(Hz) 

Mode Shape Description Mode
Natural 

Frequency
(Hz) 

Mode Shape Description

1 1.4265 Transverse, in y direction;
symmetric 16 12.571 Longitudinal & Axial, 

in x-z plane 

2 3.0721 Transverse, in y direction;
anti-symmetric 17 12.950 Longitudinal & Axial, 

in x-z plane 

3 4.0973 Longitudinal, in x-z plane; 
anti-symmetric 18 13.345 Longitudinal & Axial, 

in x-z plane 

4 4.2309 Longitudinal & Axial, 
mainly in x direction 19 13.874 Longitudinal & Axial, 

in x-z plane; symmetric 

5 4.4585 Longitudinal & Axial, 
in x-z plane 20 14.180 Transverse, in y direction;

symmetric 

6 5.0452 Transverse, in y direction;
symmetric 21 15.115 Longitudinal & Axial, 

in x-z plane 

7 6.2748 Longitudinal & Axial, 
mainly in x direction 22 15.987 Transverse, in y direction;

anti-symmetric 

8 6.9318 Longitudinal, in x-z plane 
anti-symmetric 23 16.422 Transverse, in y direction;

anti-symmetric 

9 7.1017 Transverse, in y direction 
symmetric 24 16.584 Transverse, in y direction;

symmetric 

10 7.4487 Transverse, in y direction 
anti-symmetric 25 16.677 Longitudinal & Axial, 

in x-z plane; symmetric 

11 7.5645 Longitudinal & Axial, 
in x-z plane; symmetric 26 17.812 Transverse, in y direction;

symmetric 

12 8.3428 Transverse, in y direction 
symmetric 27 17.930 Longitudinal & Axial, 

mainly in x direction 

13 8.5337 Longitudinal & Axial, 
in x-z plane; anti-symmetric 28 18.251 Transverse, in y direction;

anti-symmetric 

14 8.6185 Longitudinal & Axial, 
in x-z plane; symmetric 29 19.398 Transverse, in y direction;

anti-symmetric 

15 10.420 Transverse, in y direction;
anti-symmetric 30 19.896 Transverse, in y direction;

symmetric 
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CHAPTER III  

DYNAMIC STIFFNESS OF PILE FOUNDATIONS 

The dynamic stiffness of pile foundations are obtained in this chapter using an Elasto-

Dynamics solution assuming linear strain-stress behavior for both piles and soil. The 

formulation assumes also that the piles (end bearing or floating piles) are welded to the 

soil in a horizontally layered soil deposit of finite depth. The contact between the piles 

and the soil is assumed to be continuous in all three directions, without any slippage or 

gap. This guarantees that the equations are linear.  

 

3.1 Formulation of Dynamic Stiffness of Pile Groups 

The dynamic stiffness of pile groups or complete pile foundations has been investigated 

using an Elasto-Dynamic solution and assuming linear behavior in the frequency 

domain. Solutions were obtained, by Gomez (1982) for small pile groups (2 by 2, 3 by 3 

or 4 by 4 piles) accounting for the complete interaction between all piles and enforcing 

compatibility of displacements between piles and surrounding soil in all three coordinate 

directions. Alternatively, one can get an approximate solution extending Poulos’ Method 

(1971), originally presented for the static case, to the dynamic case. Gomez (1982) 

showed that the results of this approximation were in very good agreement with those of 

the more accurate formulation for these small groups. This approach is the one followed 

in the present study. 

 

In this approach as shown in Figure III.1, one considers two piles (a cavity and a dot-

dashed line) at a time neglecting the presence of the other piles. Applying unit forces 

along a cylindrical cavity in the soil deposit, corresponding to the space to be occupied 

by a pile, one can determine the displacements at various points along this cavity and 

along the axis of a second cavity, using a formulation in cylindrical coordinates (Kausel, 
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1974). These displacements provide a flexibility matrix for the soil. Its inverse is a 

dynamic stiffness matrix to which one adds the dynamic stiffness matrices of the 2 piles. 

The sum provides the dynamic stiffness matrix of the combined soil-piles system. Using 

this dynamic stiffness matrix and applying unit forces at the head of each pile or just 

condensing the matrix, one can get the head displacements of the piles.  
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where h denotes the pile head degrees of freedom and r denotes the remaining degrees 

of freedom;  
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are the pile head forces and displacements. 
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Figure III.1 Interaction of Two Piles in Horizontally Layered Soil Deposit  

(Displacements of Two Cavities at Each Layer due to Unit Force Applied at Layer i) 

 

Alternatively, we can write the last equation in Equation III.1 into the following form. 

 

1 1,1 1 1,2 2 1,1 1 1,2 2

2 2,1 1 2,2 2 2,2 2,1 1 2

( )
( )

u u P u P u P P
u u P u P u P P

α
α

= + = +⎧⎪
⎨ = + = +⎪⎩

………………...……………….……………. (III.2) 

 

where ,i ju denotes the displacement at the head of pile i  due to a unit force at the head of 

pile j ; ,
,

,

i j
i j

i i

u
u

α =  are the interaction coefficients; iu  and iP  are the head displacement 

and force for pile i ; and { }, 1, 2i j ∈ . 

 

The above procedure is known as Poulos’ method. 

 

This procedure can be used with horizontal or vertical forces, rocking (around an axis in 

the horizontal plane) or torsional moments (around the vertical axis). The coupling 
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between them is relatively small and always ignored in the following derivation. 

Furthermore, for a pile group with a rigid cap, rocking and torsional stiffness of a single 

pile can be neglected because they are much smaller than the contribution of the vertical 

or horizontal stiffness multiplied by the distance squared. 

 

• Horizontal Stiffness of Pile Group 

Defining  

1,1 1,2 1,11

2,2 2,1 2,2

0 1 1/ 0
, ,

0 1 0 1/
u u

f A K f
u u

α
α

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, 

one can write  

1U fAP K AP−= =  or 1P A KU−= ……………………………….…...…....……(III.3)  

where ,1/ i iu denotes the pile head stiffness of pile i  alone and U and P are 

horizontal displacements and forces at the pile heads. If the external horizontal force 

is applied on the top of the rigid cap, all the piles have the same horizontal 

displacement at their heads. The external force applied on the cap Hp can be 

expressed as { } { } { }1 1 1
1,1 1,1 1,1

1H H Hg Hp P A KU A K u k u− − ⎧ ⎫
= = = =⎨ ⎬

⎩ ⎭
 or 

1T
Hgk I A KI−= , where Hu is the horizontal displacement of the rigid cap and 

1
1

I ⎧ ⎫
= ⎨ ⎬

⎩ ⎭
. 

 

Similarly, if the pile group consists of n piles, then  

1T
Hg H Hk I A K I−= …………………………………...…………...……….……… (III.4) 
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• Vertical Stiffness of Pile Group 

1T
Vg V Vk I A K I−= ……………………………………..………….……………… (III.5) 

where VA and VK  are similar to HA and HK  but correspond to the vertical interaction 

coefficients and vertical stiffness of an individual pile. 

 

• Rocking Stiffness of Pile Group 

1T
Rg V Vk D A K D−= …………………………………..……………..……….…… (III.6) 

where 

1
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D d
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⎪ ⎪
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⎪ ⎪
⎪ ⎪
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and ( 1,2.... )id i n= is the horizontal distance between the pile i and 

the center of the pile cross section. 
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3.2 Results 

Computer programs were developed implementing the above formulation. Results were 

then obtained for pile groups of 2 by 2, 4 by 4, 6 by 6, 8 by 8 and 10 by 10 piles. The 

soil properties used in the study were: 

3

100( / )
0.25
2000( / )
0.02

s

s

s

c m s

kg m
D

ν

ρ

=⎧
⎪ =⎪
⎨

=⎪
⎪ =⎩

,  

where 

sc ………………………………………………...…shear wave velocity of soil deposit; 

ν …………………………………………………..……..Poisson’s ratio of soil deposit; 

sρ  ………………………………………………………….mass density of soil deposit; 

sD  …………………………………...……….linear hysteretic damping of soil deposit. 

 

The piles were assumed to have a radius of 0.5 meters, pile spacing of 3 meters, a mass 

density of 2500 kg/m3 and 2% damping. The modulus of elasticity of the piles was 

changed to investigate the effect of the EP/ES ratio. The depth of the soil deposit was 

assumed to be 40 meters in all cases. End bearing and floating piles were considered. 

The end bearing piles had a length of 40 meters, the same as the depth of the soil 

deposit, while the floating piles were 20 meters long. 

 

3.2.1 Horizontal Stiffness 

The horizontal stiffness of the pile groups was calculated accounting for the full 

interaction coefficients computed from the elastic analyses and assuming no interaction 

for pile spacings larger than a limiting value. The reason to use a limiting distance is 
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that, a number of field tests showed that the interaction coefficients obtained from an 

elastic solution may be too large and that almost no interaction was observed 

experimentally for a spacing of 10 or even 5 diameters. Approximate nonlinear analyses 

considering separation effects also indicate that the interaction decreases for large 

spacing. The dynamic horizontal stiffness of a foundation can be expressed as 

1 1( )dynamic real imaginary real static
S

RK K i K K i C K k i c
c

Ω
= + = + Ω = +i ………......……..… (III.7)     

in which 

Ω …………………………………………………...….…..………......forcing frequency; 

C …………….…………………………………...…....…..…equivalent viscous dashpot; 

/R A π= …….…………...………………...………equivalent radius of the pile group; 

A ……..…………………......…….…equivalent area of the pile group (see Figure III.2); 

Sc ……….…………..…………………...…..……shear wave velocity of the soil deposit; 

11 ,ck …………………………………..…...…...……….…dynamic stiffness coefficients. 

 

 

Figure III.2 Definition of Equivalent Area (Shaded Area) for Pile Groups 
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We first consider the variation of the static stiffness staticK  for a pile group. 

 

(1) Static Stiffness 

Figure III.3 shows the static group factors for end bearing piles. The group factor is 

defined as the ratio of the group stiffness to that of a single pile multiplied by the total 

number of piles. 

G

S

KGF
n K

=
⋅

……………..………..………………………………………………... (III.8) 

where 2n N= for the case of N  by N  piles while GK and SK are static group stiffness 

and single pile stiffness, respectively. 

 

The ratio of Young’s modulus of the piles to that of the soil is 1000 for the results in 

Figure III.3. maxS is the threshold distance. From the figure we can conclude that, if no 

threshold distance is specified, the group factor is approximately inversely proportional 

to N , which implies that the static stiffness is proportional to N . This is very similar to 

the case of a rigid mat on an elastic foundation, whose horizontal stiffness is 

proportional to the radius and not to the area. When a threshold distance is imposed, the 

group factor decreases with increasing N initially but tends to become constant later, 

which implies that the horizontal stiffness increases proportionally to N initially and then 

proportionally to 2N . 

 

For floating piles 20 meters long, the group factors and the dynamic stiffness 

coefficients are almost exactly the same as those of 40 meters long end bearing piles. 

The reason is that the horizontal stiffness is only governed by the properties of the pile 

and soils near the surface (a few radii from the surface). So if the length of the pile is 

equal to or longer than 10 times its diameter, the horizontal stiffness will not change 

significantly when increasing the pile length. 
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 Figure III.3 Static Group Reduction Factors (EP/ES=1000) 

 

The group factors will depend, of course, on the pile spacing and on the ratio of the 

Young’s modulus of the pile to that of the soil. Basically, the group factor decreases  

with increasing EP/ES but only slightly. Figure III.4 shows the results for the case 

without threshold distance and values of EP/ES of 100, 500 and 1000, normally the range 

of practical interest. Similar variations were obtained for max 10S D=  and5D . 

 

To illustrate further the similarity between the horizontal static stiffness of a pile group 

when accounting for the full interaction coefficients (without a limit distance) and that of 

a rigid mat foundation with the same area (as defined in Figure III.2), results were 

obtained for circular mats with areas corresponding to the 2 by 2, 4 by 4, 6 by 6, 8 by 8 

and 10 by 10 piles.  
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Figure III.4 Effect of EP/ES on Group Factors (No Threshold Distance) 

 

For comparison purposes the stiffness of a mat was computed using the formula 

proposed by Elsabee and Morray (1977) 

8 1 2 51 1 1
2 2 3 4

m m
static

m

GR R E EK
H R Hν

⎛ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠
 

where G is the shear modulus of the soil deposit, and H , mR and E  are the depth of the 

soil deposit, the radius of the mat and the depth of embedment. As shown in Figure III.5, 

for small EP/ES, say 100, the static group stiffness is very similar to that of a rigid 

surface mat with the same radius. For EP/ES=500, the static pile group stiffness is 15% 

higher than that of the rigid mat; for EP/ES=1000, it is 20~30% higher.  

 



 47

For embedded rigid mats, the static stiffness increases substantially even for a small 

value of embedment. Figure III.5 shows that if the rigid mat is embedded 1.5 meters its 

static stiffness is similar to that of a pile group with EP/ES=500. 
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(2) Real and Imaginary Stiffness Coefficients 

The real stiffness coefficient 1k is nearly independent of frequency for a single pile, with 

a dip at the natural frequency of the soil deposit in shear (0.625 Hz in this case) and 

some small fluctuations around a horizontal line (with a value of 1) for higher 

frequencies. As the number of piles in the group increases the variation of 1k with 

frequency becomes more pronounced, as illustrated in Figure III.6.  

 

Basically, the real stiffness coefficients decrease with increasing frequency exhibiting a 

parabolic variation, especially for small groups (2 by 2, 4 by 4), which would indicate 
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that there is a soil mass entrapped between the piles vibrating in-phase with all the piles. 

For larger pile groups, the real coefficient 1k oscillates around a second degree parabola. 

The larger the pile group the bigger the fluctuations, as shown in Figure III.6. 
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Figure III.6 Effect of Number of Piles on Normalized Real Coefficients (k1)  

(EP/ES=1000, 2% Material Damping, No Threshold Distance, End Bearing Piles) 

 

Using a second degree parabola to fit each curve in Figure III.6, an equivalent mass can 

be determined to simulate the pile-soil system as a single degree of freedom system. For 

a single degree of freedom system as shown in Figure III.7, the dynamic stiffness can be 

expressed as 2
dynamicK k m i cω ω= − + , in which k is the stiffness of the spring, m is the 

mass and c is the viscous damping constant of the dashpot. One can fit the real part 

stiffness coefficients 1k of a pile group by an expression of the form 21 bω− as shown in 

Figure III.8, and the equivalent mass is then eq staticm K b= i . 
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Figure III.7 A Single Degree of Freedom System 

 

 
Figure III.8 Least Square Fit of the Real Stiffness Coefficients  
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Figure III.9 shows the equivalent mass resulting from a least squares fit as a function of 

the number of piles. Basically, it is a second degree parabola and proportional to ( )21N − , 

which implies that the equivalent mass is almost proportional to the number of piles or 

the equivalent area defined in Figure III.2. The equivalent mass for a single pile is 

almost zero. Its real stiffness does not change very much with frequency, and it is 

normally assumed to be constant. 

 

Figure III.10 shows the variation of the real stiffness coefficient 1k with frequency for a 6 

by 6 pile group when a limit (threshold) distance is imposed for the interaction 

coefficients. It can be seen that with the introduction of a limit distance the fluctuations 

decrease substantially, leading to a much smoother variation, and the curvature of the 

second degree parabola decreases also significantly, implying a smaller mass of the soil 

vibrating in phase with the foundation. The effect is relatively small for a threshold 

distance of 10 diameters but very pronounced for 5 diameters.  
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Figure III.9 Equivalent Mass from Least Square Fit 

(EP =1000ES=5E10, 2% Material Damping, No Threshold Distance, End Bearing Piles) 
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The imaginary stiffness coefficient c1, representing the radiation damping, after 

subtracting the effect of the internal soil damping, should be zero below the fundamental 

shear frequency of the soil layer (0.625 Hz in this case), then jump suddenly and 

oscillate around  a constant value. In reality, if there is some internal soil damping the 

jump is not sudden but there is a small amount of leakage of energy before the 

fundamental frequency.  
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Figure III.10 Effect of Smax on Real Stiffness Coefficients of a 6 by 6 Pile Group 

(EP=1000ES=5E10, 2% Material Damping, End Bearing Piles) 

 

Figure III.11 shows the variation of the coefficient c1  the number of piles for EP/ES 

equal to 1000. For frequencies larger than 1 the results oscillate around a value of 

approximately 0.7, the fluctuations increasing with increasing number of piles (as in the 

case of the real coefficient). For pile groups the coefficient c1 seems to continue to 

increase slightly with increasing frequency rather than oscillating around a constant 

value but use of this value should be reasonable over the range of frequencies of normal 
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interest. Figure III.12 shows the effect of the EP/ES ratio on the coefficient c1 for a single 

pile. It can be seen that c1 increases as the EP/ES ratio increases (as the soil became softer 

relative to the pile). When a limiting distance is imposed, neglecting the interaction 

coefficients beyond this distance, there will be less interaction between different piles in 

a group. So both the real and imaginary coefficients of pile groups will behave like those 

of a single pile, as previously discussed for the real coefficients (Figure III.10) and 

illustrated in Figure III.13 for c1. The value of c1above 1 Hz decreases significantly with 

decreasing value of the limiting distance. It should be noted, however, that since the 

equivalent dashpot is the product of the coefficient c1 by /static sR K ci  and the static 

stiffness, and the latter increases as the interaction coefficients are neglected, it would 

appear that the value of the dashpot is not affected much by the threshold distance 

(Figure III.14). 
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Figure III.14 Effect of Smax on Equivalent Dashpot Constant of a 6 by 6 Pile Group 

(EP=1000ES=5E10, 2% Material Damping, End Bearing Piles) 

 

3.2.2 Vertical Stiffness 

The vertical stiffness can also be expressed in the general form of Equation III.7. Unlike 

the horizontal cases in which the results are insensitive to the pile length and the tip 

conditions for most practical cases, the vertical stiffness is sensitive to the pile length 

and boundary conditions at the pile end , so in this section we consider primarily the 

vertical stiffness of floating piles and only that of end bearing piles for static loads. 

 

(1) Static Stiffness 

The group factor for the vertical stiffness is defined in the same way as for the horizontal 

stiffness by Equation III.8, except that GK and SK represent the static vertical group 

stiffness and static vertical stiffness of a single pile, respectively.  
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Figure III.15 Vertical Static Group Factors for Vertical Stiffness 

(EP/ES=1000, Floating Piles) 

 

The vertical group factors of floating and end bearing piles are illustrated in Figures 

III.15 & III.16 with the ratio of Young’s modulus of the piles to that of the soil (EP/ES) 

equal to 1000. The vertical group factors are much larger than1/ N for end bearing piles 

as shown in Figure III.16, but a little smaller than 1/ N for floating piles as shown in 

Figure III.15. The reason is that, unlike the horizontal static stiffness, the vertical static 

stiffness will increase substantially as the pile length increases and rigid rock is reached. 

For end bearing piles there will be a lower bound for the vertical stiffness corresponding 

to a value of ES equal to 0. In this case the total stiffness will be proportional to the 

number of piles. 

 

The limiting distance has the same effect on vertical group factors as on the horizontal 

ones. The limit distance decreases the interaction between different piles in a pile group, 

so the group factors increase substantially. The vertical group factors of end bearing 



 56

piles are always much larger than those for floating piles (with or without limit distance), 

as could be expected. The results for floating piles and a limit distance of 5 diameters 

show an unexpected fluctuation. 
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Figure III.16 Vertical Static Group Factors for Vertical Stiffness 

(EP/ES=1000, End Bearing Piles) 

 

Other factors, like pile spacing and ratio of Young’s modulus of the pile to that of the 

soil, will also have an effect on the vertical group factors. Figures III.17 & III.18 show 

the results when EP/ES varies from 100 to 1000, normally the range of engineering 

practice, without limit distance. The group factors decrease slightly with increasing 

EP/ES for both floating, while increase for end bearing piles. 
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(2) Real and Imaginary Stiffness Coefficients 
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Figure III.19  Effect of Number of Piles on Real Coefficients  

(EP=1000ES=5E10, 2% Material Damping, No Threshold Distance, Floating Piles) 

 

The real coefficient 1k of a single pile is nearly a constant for all frequencies with a dip at 

the dilatational natural frequency of the soil deposit (about 1.0 Hz in this case) for the 

assumed Poisson’s ratio of 0.25. As the number of piles increases the coefficient 1k  

exhibits a parabolic variation with frequency like that of the horizontal stiffness, as 

illustrated in Figure III.19, but with smaller fluctuations around the second degree 

parabola.  

 

Using the same method described earlier, one can find an equivalent mass for the 

vertical case. The results of LSF (Least Square Fit) for the vertical stiffness of floating 
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piles are shown in Figure III.20. For a single pile, the equivalent mass is essentially zero. 

As the number of piles increases, the equivalent mass increases and is proportional 

to 2( 1)N − , as illustrated in Figure III.21, which suggests that the equivalent mass for 

vertical vibration of floating pile groups is proportional to the equivalent area (as for the 

horizontal case). 
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Figure III.20 LSF of Equivalent Mass of Vertical Stiffness 
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Figure III.21 Equivalent Mass with Number of Piles 

 

Figure III.22 shows the variation of the real coefficient 1k with frequency for a 6 by 6 

pile group when a limit distance is imposed. It can be seen that the introduction of a limit 

distance of 5 or even 10 diameters will decrease the fluctuation, leading to a variation 

very similar to that of a smaller pile group with smaller equivalent mass, which results 

from the reduction of interaction between different piles. 

 

The imaginary stiffness coefficients 1c  of floating piles for different number of piles, 

shown in Figure III.23, remain zero below the fundamental frequency in dilatation 

compression (about 1 Hz in this case), then jump suddenly and decrease to a constant 

value for a single pile, but are nearly a constant  for pile groups in the normal range of 

interest. Figure III.24 shows the coefficients 1c of single floating piles for different 

values of the EP/ES ratio. The coefficient 1c for a single pile decreases with decreasing 

EP/ES. 
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Figure III.22 Effect of Threshold Distance on Real Coefficients of 6 by 6 Pile Groups 

(EP=1000ES=5E10, 2% Material Damping, Floating Piles) 
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Figure III.23 Effect of Number of Piles on Imaginary Coefficients 

(EP=1000ES=5E10, 2% Material Damping, No Threshold Distance, Floating Piles) 
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The effect of imposing a limit distance on the interaction coefficients in the imaginary 

coefficient 1c is similar to that discussed earlier for the horizontal case, the coefficient 

decreasing with decreasing limit distance. The same observations made earlier apply 

here. Although the coefficient decreases the static stiffness increases so that the 

equivalent dashpot may not change very much. 
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Figure III.24 Effect of EP/ES on Imaginary Coefficients of Single Piles 

(ES=Constant=5E10, 2% Material Damping, No Threshold Distance, Floating Piles) 

 

3.2.3 Rocking Stiffness 

As in the vertical case the rocking stiffness is affected significantly by the length and tip 

condition of the piles, since it is a function of the vertical stiffness of each pile. Only the 

dynamic case of floating piles is studied in this section. End bearing piles are considered 

for the static case for comparison purposes. 
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(1) Static Stiffness 

The definition of the static group reduction factor the for rocking stiffness is  

2

1

G
Rocking n

S i
i

KGF
K d

=

=

∑i
 

where  

n ……………………………….……………………………………...… number of piles; 

id …………………………...….....distance from i -th pile to the center of the pile group; 

GK …………………………….………………...static rocking stiffness of the pile group; 

SK …………………………..……………..……...static vertical stiffness of a single pile.  
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Figure III.25 Static Group Reduction Factor for Rocking Stiffness  

(EP/ES=1000, Floating Piles) 
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Figures III.25 & III.26 show the group factor for the rocking stiffness of floating piles 

and end bearing piles, respectively, with EP/ES=1000. The group factor is larger than 1 

for 2 by 2 pile groups, which implies the interaction between piles will increase the 

group static stiffness, while smaller than 1 for pile groups larger than 4 by 4.  

 

With the introduction of a limiting distance, the group factor of end bearing piles will 

decrease for smaller pile groups while increasing for larger groups. The group factor of 

floating piles for max 10S D= is almost the same as that without limit distance, while that 

for max 5S D= exhibits some unexpected fluctuations more pronounced for small pile 

groups. 
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Figure III.26 Static Group Reduction Factor for Rocking Stiffness  

(EP/ES=1000, End Bearing Piles) 
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Figure III.27 Effect of EP/ES on Static Group Factor  

(No Threshold Distance, Floating Piles) 
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Figure III.28 Effect of EP/ES on Static Group Factor  

(No Threshold Distance, End Bearing Piles) 
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The group factor also depends on other factors, like EP/ES, as shown in Figures III.27 & 

III.28. All curves in the two figures intersect at about 3N =  (It depends on pile spacing.). 

As EP/ES increases, the group factors decrease for 2 by 2 pile groups and increase for 

larger groups. 

 

The group factors of end bearing piles are larger than those of floating piles for larger 

pile groups while smaller for 2 by 2 groups. 

 

(2) Real and Imaginary Stiffness Coefficients 
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Figure III.29 Effect of Number of Piles on Real Coefficients 

(EP=1000ES=5E10, 2% Material Damping, No Threshold Distance, Floating Piles) 
 

The real stiffness coefficient 1k of the rocking stiffness, shown in Figure III.29, behaves 

like that of the single degree of freedom system in Figure III.7. Unlike the real 
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coefficient 1k of the horizontal stiffness, 1k of the rocking stiffness does not have large 

fluctuations even for large pile groups like 10 by 10. One can also fit (Least Square Fit) 

the coefficients 1k  by an expression of the form 21 b ω− ⋅ to find an equivalent mass 

moment of inertia ( eq staticI K b= i ), as in the case of horizontal and vertical stiffness.  

 

 
Figure III.30 Least Square Fit of Equivalent Inertia of Rotation of Rocking Stiffness 
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Figure III.31 Equivalent Inertia of Rotation with Number of Piles 

 

Figure III.30 shows the results of the LSF (Least Square Fit) for the real coefficient 1k . 

It can be seen that one can approximate the coefficient 1k of the rocking stiffness by a 

second degree parabola of the form of 21 b ω− ⋅ and the equivalent moment of inertia is 

proportional to 4( 2)N − , as illustrated in Figure III.31. This is very similar to a 

cylindrical rigid mass, whose rotational inertia is proportional to the radius to the fourth 

order.  

 

The introduction of a limiting distance will lead to an even smoother variation with 

frequency and decrease in the curvature of the second degree parabola, as illustrated in 

Figure III.32, indicating a smaller equivalent mass vibrating in phase with the 

foundation, but the reduction is not as marked as for the horizontal stiffness.  
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Figure III.32 Effect of Limit Distance on Real Coefficients of 6 by 6 Pile Groups 

(EP=1000ES=5E10, 2% Material Damping, Floating Piles) 

 

Figure III.33 shows the imaginary coefficient 1c of the rocking stiffness for different 

number of piles. The coefficient 1c  jumps at 1 Hz and keeps increasing slowly and 

smoothly for 2 by 2, 4 by 4 and 6 by 6 pile groups, while it oscillates around a constant 

(about 0.4 in this case) for 8 by 8 and 10 by 10 pile groups. It can be seen that the 

coefficient 1c of a 2 by 2 pile group is much smaller than that of larger pile groups. 

 

The effect of EP/ES on the imaginary coefficient 1c  for a 2 by 2 pile group is illustrated 

in Figure III.34. For EP/ES varying from 100 to 1000 in the normal range of engineering 

practice, 1c  increases a little bit for increasing EP/ES but the shape of the curves is very 

similar. 
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Figure III.33 Effect of Number of Piles on Imaginary Coefficients 

(EP=1000ES=5E10, 2% Material Damping, No Threshold Distance, Floating Piles) 
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Figure III.34 Effect of EP/ES on Imaginary Coefficients of 2 by 2 Pile Groups 

(2% Material Damping, No Threshold Distance, Floating Piles) 
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CHAPTER IV  

DYNAMIC STIFFNESS OF FOUNDATIONS OF MARGA-MARGA 

BRIDGE’S PIERS 

In this chapter, the procedures described in the previous one are applied to determine the 

dynamic stiffness of the pile foundations of piers P2 to P6 of the Marga-Marga bridge. 

The stiffness of the foundations for piers P1 and P7 were determined with an existing 

program for mat foundations. 

 

4.1 Introduction 

The Marga-Marga bridge, shown schematically in Figure IV.1, has seven piers (P1~P7), 

five of them (P2~P6) with pile foundations. Each of the pile foundations consists of a 5 

by 2 pile group (rows of 5 piles in the direction perpendicular to the figure and 2 in the 

longitudinal direction of the bridge). Piers P1 and P7 have surface mat foundations 

without any supporting piles. 

 

 
Figure IV. 1 Piers and Pile Groups of Marga-Marga Bridge 
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To calculate the stiffness of these pile groups, the interaction between two different pile 

groups was neglected, assuming each pile group embedded in a horizontal layered soil 

deposit extending to infinity in the two horizontal directions, based on the fact that the 

distance between pile groups is much larger than the horizontal dimension of the pile 

groups themselves.  

 

4.2 Dimensions of the Pile Groups and Soil Properties 

The dimensions of the piers and their pile foundations are illustrated in Figure IV.2 and 

Table IV.1. For piers P2~P6, which have pile foundations, the dimensions of the caps 

are the same,13.5 5× m. The pile spacings in the x and y directions are 3 and 4 meters 

respectively, as illustrated in Figure IV.3. The length and diameter of the piles are listed 

in Table IV.2. 

 

 
Figure IV. 2  A Pier and Its Pile Foundation 
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Table IV. 1 Dimension of the Pier and Cap 

Pier # 
H 

(m) 

H1 

(m) 

Width of Cap 

(m) 

1 21.865 1.5 10.5 

2 26.317 2.0 13.5 

3 27.138 2.0 13.5 

4 26.260 2.0 13.5 

5 26.082 2.0 13.5 

6 30.154 2.0 13.5 

7 30.086 1.5 10.5 

 

Y

X

Figure IV. 3 Dimensions of Cap and Pile Spacing 

 

The soil properties under each pier, including the thickness of each layer and its shear 

wave velocity, are shown in Tables IV.3 to IV.6. The soil under the dashed line at the 

bottom of Figure IV.1 is assumed to have a shear wave velocity of 550 m/s, while the 

layers above the line have shear wave velocities in the range of 200~400 m/s. All the 
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soils are assumed to have a Poisson’s ratio, mass density and internal damping of 0.25, 

2000 kg/m3 and 5%, respectively. 

 

Table IV. 2 Length and Diameter of Piles 

Pier #
L 

(m) 

Diameter

(m) 

2 19.50 1.0 

3 30.00 1.0 

4 15.06 1.0 

5 14.02 1.0 

6 31.70 1.0 

 

Table IV. 3 Soil Properties for Pier #2 

 
Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 7.20 7.20 240 

Layer 2 5.00 12.20 210 

Layer 3 27.80 40.00 550 

Layer 4 50.00 90.00 550 

 

The piles are made of concrete with a Young’s modulus of about 103 10× Pa. The mass 

density and internal damping are assumed to be 2500kg/m3 and 5%, respectively. This 

represents an EP/ES ratio of 75 to 100, indicating a stiffer soil than the one normally 

encountered with pile foundations. 

 

No limiting distance was used in the calculation of the dynamic stiffness terms. 
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Table IV. 4 Soil Properties for Pier #3 and #4 

 
Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 7.20 7.20 240 

Layer 2 5.00 12.20 210 

Layer 3 4.69 16.89 330 

Layer 4 13.11 30.00 360 

Layer 5 10.00 40.00 390 

Layer 6 50.00 90.00 550 

 

Table IV. 5 Soil Properties for Pier #5 

 
Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 7.20 7.20 240 

Layer 2 5.00 12.20 310 

Layer 3 4.69 16.89 330 

Layer 4 13.11 30.00 360 

Layer 5 10.00 40.00 390 

Layer 6 50.00 90.00 550 
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Table IV. 6 Soil Properties for Pier #6 

 
Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 1.35 1.35 240 

Layer 2 5.00 6.35 310 

Layer 3 4.69 11.04 330 

Layer 4 13.11 24.15 210 

Layer 5 10.00 35.15 390 

Layer 6 50.00 84.15 550 

 

4.3 Dynamic Stiffness of Pile Foundations  

The dynamic stiffness terms (real and imaginary parts) were computed by the programs 

described in the previous chapter using the data shown above. Figures IV.4 to IV.13 

show the dynamic stiffness of the pile foundations P2~P6. 

  

The real and imaginary parts of the horizontal dynamic stiffness in the X and Y 

directions are shown in Figures IV.4 to IV.7. The horizontal stiffness is similar in the 

two directions and slightly larger in the longitudinal direction of the bridge, because 

group effects are less important in this direction (only rows of 2 piles instead of 5). Since 

the horizontal stiffness depends only on the soil and pile properties near the surface, 

those of P3 and P4 are almost the same, though the length of the piles in the two groups 

is very different (P3 has piles 30m long but those of P4 are only 15.06m long). 

 

The real part of the horizontal stiffness is nearly constant, with some oscillations. The 

real part of the horizontal stiffness for pier P6 is the largest of the five with an apparent 

dip at the fundamental natural frequency in shear (about 1.4 Hz in this case), which 

results from the stiffer soil near the surface (Table IV.6).  
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Figure IV. 4 Real Part of Horizontal Stiffness in Y Direction 
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Figure IV. 5 Imaginary Part of Horizontal Stiffness in Y Direction 
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Figure IV. 6 Real Part of Horizontal Stiffness in X Direction 
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Figure IV. 7 Imaginary Part of Horizontal Stiffness in X Direction 
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Figure IV. 8 Real Part of Horizontal Stiffness of an Equivalent Surface Mat 
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Figure IV. 9 Imaginary Part of Horizontal Stiffness of an Equivalent Surface Mat 
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Figure IV. 10 Real Part of Vertical Stiffness 

 

The imaginary parts are constant below the fundamental natural frequency in shear, with 

a value representing the effect of the internal (material) damping, then increase almost 

linearly with frequency. 

 

As a matter of interest, Figures IV.8 & IV.9 show the horizontal stiffness for mat 

foundations representing the cap of the pile groups for each pier. It can be seen that the 

values are very similar to those of the pile foundations and just slightly smaller. In 

comparing these values, the rectangular mats are replaced by an equivalent circular 

foundation with the same area leading to the same value in both horizontal directions. 

 

From the real parts of the vertical stiffness shown in Figure IV.10, one can identify the 

dilatational fundamental frequency (2.4 Hz in this case). Basically, the real part 

decreases slowly with frequency, except for P6. P2 has the largest static vertical stiffness 

because the distance to the hard material is the smallest. The variation of the imaginary 
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parts of the vertical stiffness with frequency, shown in Figure IV.11, is very similar to 

that of the horizontal stiffness with the difference in the threshold frequency for radiation 

damping (from 1.4 to 2.4 Hz). 

 

Figures IV.12 & IV.13 show the vertical stiffness of the pile caps by themselves. As 

expected these values are much smaller than those of the pile groups by a factor of 

almost 2.5. 

 

The rocking stiffness, illustrated in Figure IV.14 to IV.17, has a much smoother 

variation with frequency than either the horizontal or the vertical stiffness. It is hard to 

identify from the figures for the real part the fundamental frequencies of the soil. The 

real part decreases with frequency in the normal range of engineering practice. The real 

parts of P2 and P6 are larger than those of the other piers, which implies that the rocking 

stiffness is sensitive to both pile tip conditions and soil properties. The imaginary parts 

follow the same shape as those of the horizontal and vertical stiffness but they have less 

variation with frequency. As could be expected, the rocking stiffness around an axis 

perpendicular to the longitudinal direction of the bridge is smaller than the stiffness 

around the longitudinal axis by a factor of about 3. 

 

Figures IV.18 to IV.21 show the rocking stiffness for the pile caps as surface 

foundations (without piles). The equivalent circular foundations had the radii selected so 

as to yield the same moment of inertia. Once again the pile foundations have a much 

larger stiffness by a factor of about 4. 
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Figure IV. 11 Imaginary Part of Vertical Stiffness 
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Figure IV. 12 Real Part of Vertical Stiffness of an Equivalent Surface Mat 
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Figure IV. 13 Imaginary Part of Vertical Stiffness of an Equivalent Surface Mat 
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Figure IV. 14 Real Part of Rocking Stiffness around X Axis 
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Figure IV. 15 Imaginary Part of Rocking Stiffness around X Axis 
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Figure IV. 16 Real Part of Rocking Stiffness around Y Axis 
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Figure IV. 17 Imaginary Part of Rocking Stiffness around Y Axis 
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Figure IV. 18 Real Part of Rocking Stiffness around X Axis of an Equivalent Surface Mat 
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Figure IV. 19 Imaginary Part of Rocking Stiffness around X Axis of an Equivalent Surface Mat 
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Figure IV. 20 Real Part of Rocking Stiffness around Y Axis of an Equivalent Surface Mat 
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Figure IV. 21 Imaginary Part of Rocking Stiffness around Y Axis of an Equivalent Surface Mat 

 

P1 and P7 only have surface mats without supporting piles. One can find an equivalent 

circular mat (having the same area as the rectangular mat shown in Figure IV.3) to 

calculate their horizontal stiffness (the same in the two directions) and vertical stiffness, 

while using a circle having the same moment of inertia as the rectangular mat to 

calculate the rocking stiffness. Results are shown in Figure IV.22, assuming that the 

subsoil is 90 meters deep with a shear wave velocity of 550m/s. 

 

It can be seen that the natural frequency in shear is about 1.6 Hz and the dilatational 

natural frequency is about 2.5 Hz for this case. 
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Figure IV. 22 Stiffness of Surface Mat of Pier #1 and Pier #7 

 

4.4 Dynamic Stiffness with Reduced Soil Shear Modulus 

To study further the potential SSI effects, the shear wave velocities were reduced over 

the top 12 meters to simulate some nonlinear soil behavior. Other properties of the soils 

are the same as used before. The foundation stiffness terms were calculated again for this 

case. The assumed properties and the calculated foundation stiffness are shown in Tables 

IV.7 - IV.10 and Figures IV.23 - IV.33.  
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Table IV. 7 Reduced Soil Properties for Pier #2 

 
Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 7.20 7.20 150 

Layer 2 5.00 12.20 150 

Layer 3 27.80 40.00 550 

Layer 4 50.00 90.00 550 

 

Table IV. 8 Reduced Soil Properties for Pier #3 and #4 

 
Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 7.20 7.20 150 

Layer 2 5.00 12.20 150 

Layer 3 4.69 16.89 330 

Layer 4 13.11 30.00 360 

Layer 5 10.00 40.00 390 

Layer 6 50.00 90.00 550 

 

Table IV. 9 Reduced Soil Properties for Pier #5 

 
Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 7.20 7.20 150 

Layer 2 5.00 12.20 150 

Layer 3 4.69 16.89 330 

Layer 4 13.11 30.00 360 

Layer 5 10.00 40.00 390 

Layer 6 50.00 90.00 550 

  



 90

Table IV. 10 Reduced Soil Properties for Pier #6 
 

 

Thickness

(m) 

Depth

(m) 

Shear Wave 

Velocity (m/s)

Layer 1 1.35 1.35 150 

Layer 2 5.00 6.35 150 

Layer 3 4.69 11.04 150 

Layer 4 13.11 24.15 210 

Layer 5 10.00 35.15 390 

Layer 6 50.00 84.15 550 

 

The new horizontal stiffness in both directions decreases by 50% because it depends on 

the properties of the soil near the surface, while the new rocking stiffness decreases by 

about 20%~30%. Only the vertical stiffness is almost the same as before. The shapes of 

the curves of the dynamic stiffness with frequency are very similar to those obtained 

before. The natural frequency in shear has been reduced from 1.6Hz to 1.4Hz while the 

dilatational natural frequency is almost the same as before. 
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Figure IV. 23 New Real Part of Horizontal Stiffness in X Direction 
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Figure IV. 24 New Imaginary Part of Horizontal Stiffness in X Direction 
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Figure IV. 25 New Real Part of Horizontal Stiffness in Y Direction 
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Figure IV. 26 New Imaginary Part of Horizontal Stiffness in Y Direction 
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Figure IV. 27 New Real Part of Vertical Stiffness  
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Figure IV. 28 New Imaginary Part of Vertical Stiffness 
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Figure IV. 29 New Real Part of Rocking Stiffness around X Axis 
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Figure IV. 30 New Imaginary Part of Rocking Stiffness around X Axis 
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Figure IV. 31 New Real Part of Rocking Stiffness around Y Axis 
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Figure IV. 32 New Imaginary Part of Rocking Stiffness around Y Axis 
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Figure IV. 33 New Stiffness of Mat under Pier #1 and Pier #7 
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CHAPTER V  

EFFECT OF RUBBER PADS’ STIFFNESS 

The formulation and computer software described in Chapter II were applied to the 

Marga-Marga bridge to estimate its frequency response characteristics due to base 

motions, ignoring first soil-structure interaction effects. The main objective was to study 

the effect of the stiffness of the rubber pads on the dynamic response of the bridge. 

 

5.1 Properties of Structure 

5.1.1 Deck 

The Marga-Marga bridge is shown schematically in Figure V.1.  

 

 
Figure V. 1 Overview of Marga-Marga Bridge 

 

The deck of the bridge consists of 8 spans, which are all 50 meters long except the span 

connecting the north abutment and pier 1, which is 33 meters long. The deck is 

composite with a concrete slab over 4 steel I-beams. It is modeled as an equivalent beam 

with a mass density, Poisson’s ratio and Young’s modulus of 2940kg/m3, 0.245 and 
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103.3 10× Pa, respectively. The centroid of the equivalent beam cross section is 2.65 

meters above the top of the base isolators (rubber pads) and 0.45 meters below the upper 

surface (as shown in Figure V.2).  
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Figure V. 2 Cross Section of Deck 

 

The properties of the deck cross section are: 
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in which A  is the area of the deck’s cross section; syA  and szA  are the shear areas of the 

composite cross section in the Y and Z direction, respectively; zI  and yI  are the bending 

moments of inertia in the Z and Y direction, respectively, and J  is the torsional moment 

of inertia. 
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5.1.2 Piers 

The piers and their dimensions are illustrated in Figure V.3. The formulation of the 

dynamic stiffness of prismatic members assumes a constant cross section. Each pier was 

therefore divided into three members according to the variation of the cross section. 

 

As shown in Figures V.3 and V.4, the top and bottom parts (members) are solid, while 

the long member in between is hollow. The mass density, Poisson’s ratio and Young’s 

modulus used in the analysis for the piers are 2500 kg/m3, 0.2 and 103.3 10× Pa, 

respectively. 

 

        
Figure V. 3 Transverse View of Pier and Its Dimensions 

 

 

 

Pier # 
H 

(m) 

H1 

(m) 

B 

(m) 

1 21.865 1.5 10.5 

2 26.317 2.0 13.5 

3 27.138 2.0 13.5 

4 26.260 2.0 13.5 

5 26.082 2.0 13.5 

6 30.154 2.0 13.5 

7 30.086 1.5 10.5 
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The properties of the pier cross sections are: 
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for the top member and the middle member, respectively. 
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Figure V. 4 Cross Sections of Pier 
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The properties of the bottom members’ cross-sections are: 
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for piers 2~6 and piers 1 & 7, respectively, where sxA  is the shear area in the X direction 

and xI  is the bending moment of inertia around the X axis. 

 

5.1.3 Rubber Pads 

The rubber pads in the structure act as base isolators to mitigate the motion of the deck 

due to earthquakes. On the top of each pier, four rubber pads (each under one of the four 

steel I-beams) were placed in a line, separately, along the Y axis, as shown in Figure 

V.5. They were combined into one structural member in the analysis. 
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Figure V. 5 Rubber Pads on Top of Pier 
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The rubber pads were made of alternating layers of rubber and steel, so they have a 

relatively high axial stiffness and lower shear stiffness. To model this, we selected 

equivalent Young’s modulus, eqvlE  and shear modulus, eqvlG to match the axial and shear 

stiffness according to 
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where  kE  , kG  and kL  represent the Young’s modulus, shear modulus and thickness of 

the k th layer; A  and sA  are the area and shear area of the cross section; i  denotes all 

rubber and steel layers while j  only denotes the rubber layers. 

 

Rubber is a non-linear material, so kE  and kG  of the rubber pads actually depend on the 

magnitude of the deformation. The equivalent Young’s modulus and shear modulus of 

the rubber pads corresponding to 5% shear deformation is 9108.1 × Pa and 61.85 10×  Pa. 

V.M. Daza (2003) suggested a variation of the shear modulus with shear strain given by 
3764.05100.6 −⋅×= γG .  

 

The length of the rubber pad members is 0.2 m and the mass density is 3000  kg/m3. 

 

The cross section properties of the rubber pad members are summarized as: 
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for rubber pads on top of the piers, at the north abutment and at the south abutment, 

respectively. 

 

5.2 Numbering of Structure 

 

 
Figure V. 6 Elements and Nodal Numbering of Marga-Marge Bridge (without Rubber Pads) 

 

Figure V.6 shows the numbering of the nodes and members of the model of the Marga 

Marga bridge without rubber pads while Figure V.7 shows the numbering with rubber 

pads. In these two figures, dashed lines represent the deck; solid normal lines and solid 

bold lines represent piers and rubber pads, respectively. The bridge is initially fixed at 

the bottom of all piers. (In the next chapter, the stiffness of the foundations is included.) 
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The left end of the deck (node 22 in Figure V.6) is fixed in all directions and the right 

end (node 30 in Figure V.6) is fixed in the transverse and vertical direction; for the 

model with rubber pads, the bottom faces of the two rubber pads (nodes 1 and 30 in 

Figure V.7) under the two ends of the deck are fixed in all directions.  

 

 
Figure V. 7 Elements and Nodal Numbering of Marga-Marge Bridge (with Rubber Pads) 

  

5.3 Results 

Running the program Bridge.for for the structural models of Figures V.6 & V.7, one can 

get the transfer functions of the displacements of each node due to a unit harmonic 

motion at the base of each pier or any combination of these motions. 

 

In the figures in this chapter and the next chapter, transfer functions of node 26 (top of 

pier 4) in Figure V.6 due to unit harmonic motion at base of pier 4 or of all piers will be 

illustrated for the case without rubber pads and transfer functions of node 17 (top of pier 

4) and node 35 (deck at pier 4) for the case with rubber pads. 
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A number of dynamic studies were conducted by students at the University of Chile 

using different structural models for the bridge. Their results provided natural 

frequencies and mode shapes rather than transfer functions as done here. 

 

The original design had assumed that under the design earthquake the shear deformation 

of the rubber pads might reach 30%. This yielded a first natural frequency in the 

longitudinal direction of 0.49 Hz and in the transverse direction 0.59 Hz. 

 

Table V. 1 Natural Frequencies of Marga-Marga Bridge from Former Studies (Hz) 
 Longitudinal Transverse Vertical 

Experimental Data 1 May 1996 1.86    1.17 1.42 2.1    

Experimental Data 2 July 1996 1.71    1.07 1.27 1.9    

no Rubber Pads 3.85    2 2.22 2.7    
M.E. Segovia (1997) 5% Deformation 1.54    0.71 1.02 1.85    

no Rubber Pads 2.01 2.13 2.39 2.77 1.29 1.79 2.67 3.36   

Free Deck 0.65 2.09 2.24  0.93 2.18  1.87   
D. Romo (1999) Constrained Deck 2.01 2.03 2.1 2.25 0.93 1.28 2.18    

V.M. Daza (2003)  0.67 2.5 2.8  0.96 1.5  1.88 2.1 2.56

 

The other studies gave some recommended values of the natural frequencies of the 

Marga-Marga bridge, as shown in Table V.1. Different studies used different models and 

assumptions and therefore yielded different results.  

 

The models of D. Romo and V.M. Daza used a finite element idealization of the bridge 

(with shell elements), so they may provide us better results. It can be seen from Romo’s 

results that whether or not the deck is constrained the first transverse natural frequency is 

the same as long as the amount of the shear deformation in the pads is the same. 
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5.3.1 Longitudinal Direction (X direction) 
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Figure V. 8 Displacement in X Direction at Top of Pier 4 due to Unit Motion at Base of All Piers 

(without Rubber Pads) 
 

 

Figure V.8 shows the transfer function of the top of pier 4 for the structure without 

rubber pads due to a unit harmonic motion in the longitudinal direction (X direction) at 

the bottom of all piers. It can be seen that, in the longitudinal direction, the first two 

significant peaks of the transfer function due to the same unit harmonic base motion at 

all piers are 2.15 Hz and 5.85 Hz, respectively. The first one is very similar to the first 

two modes reported by D. Romo (2.01Hz and 2.13Hz) for the same case. 

 

The use of rubber pads will change the frequency response characteristics of the 

structure. Figure V.9 shows the transfer functions of the deck and the top of pier 4 for 

the structure with rubber pads. In this case, the equivalent tangent shear modulus of the 

rubber pads is 6.0 Mpa, which corresponds to a shear deformation of 0.23% according to 
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the result of a regression analysis of experimental data ( 3764.05100.6 −⋅×= γG ). It can be 

seen from Figure V.9 that the first two significant peaks have been reduced to 0.65 Hz 

and 2.75 Hz. It should be noted that, the peak at 0.65Hz is larger for the deck than for the 

top of the pier, whereas at 2.75 Hz, the displacement at the deck has been greatly 

reduced compared with that at the top of the pier, showing the effect of the rubber pads. 

The third peak for this case is around 10 Hz. The first significant peak agrees well with 

the first natural frequency reported by both V.M. Daza and D. Romo (for a free deck). 

The second peak occurs at a frequency in between the second and third natural 

frequencies of V.M. Daza’s model. 

 

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

0 1 2 3 4 5 6 7 8 9 10

Frequency(Hz)

D
is

pl
ac

em
en

t

DECK
TOP OF PIER

 
Figure V. 9 Displacement in X Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6100.6 ×=G Pa, Free Deck) 
 

It appears that some of the natural modes reported by D. Romo are not excited by an 

equal base motion of all the piers in the longitudinal direction. 
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Figure V.10 shows the transfer function due to motion only at the base of pier 4. For this 

case the first peak is much smaller. The amplitudes of the second peak are however very 

similar for both cases, implying the response at this frequency (particularly on top of the 

pier) is essentially controlled by the motion at the base of pier 4. Figures V.11 and V.12 

show the transfer functions due to unit motions at the bottom of all piers with smaller 

shear modulus of the rubber pads of 1.8Mpa and 1.0 Mpa, which correspond to shear 

deformations of 5% and 26%, respectively. The first two significant peaks occur now at 

0.45 Hz, 1.95Hz and 0.35Hz, 1.7Hz, respectively. The displacements at the deck are 

always smaller than those at the top of the pier for all frequencies except at the first 

peak. 
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Figure V. 10 Displacement in X Direction due to Unit Motion at Base of Pier 4 

(with Rubber Pads, 6100.6 ×=G Pa, Free Deck) 
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Figure V. 11 Displacement in X Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6108.1 ×=G Pa, Free Deck) 
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Figure V. 12 Displacement in X Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6100.1 ×=G Pa, Free Deck) 
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In all these cases it was assumed that the deck was free to displace at the ends in both 

directions on top of the rubber pads. A more realistic assumption is that the motions of 

the ends of the deck are partly prevented. The results obtained fixing the left end of the 

deck (node 1 in Figure V.7) in both longitudinal and transverse directions and the right 

end (node 30 in Figure V.7) in the transverse direction are shown in Figures V.13 to 

V.16.  The true situation is likely somewhere in between these 2 extreme cases. 

 

For the case of rubber pads with a shear modulus of 6.0Mpa and a constrained deck, the 

first significant peak occurs at 1.7 Hz (rather than the 0.65Hz for free deck). This value 

agrees well with some experimental data. It is followed by two small peaks at 2.5Hz and 

2.85Hz at the top of pier 4, as shown in Figure V.13. But the motion of the deck is 

apparently amplified at 6.5Hz in this case. When the motion of the deck is constrained at 

the ends the amplitude of the first peak is again dramatically reduced when only the base 

of pier 4 is excited and the amplitude of the second peak on top of the deck at 2.85Hz is 

amplified (compare Figures V.13 and V.14). It should be noticed that the frequency and 

amplitude of this peak are essentially in unaffected by the boundary conditions at the 

ends of the deck. 

 

Figures V.15 and V.16 also show the results for rubber pads with shear modulus of 

1.8Mpa and 1.0Mpa. In these two cases, the transfer functions of both the deck and the 

top of the pier have several peaks between 1.5Hz and 2.0Hz. 
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Figure V. 13 Displacement in X Direction due to Unit Motion at Base of All Piers 

 (with Rubber Pads, 6100.6 ×=G Pa, Constrained Deck) 
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Figure V. 14 Displacement in X Direction due to Unit Motion at Base of Pier 4 

 (with Rubber Pads, 6100.6 ×=G Pa, Constrained Deck) 
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Figure V. 15 Displacement in X Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6108.1 ×=G Pa, Constrained Deck) 
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Figure V. 16 Displacement in X Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6100.1 ×=G Pa, Constrained Deck) 
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5.3.2 Transverse Direction (Y direction) 

In the transverse direction, without rubber pads, the first three significant peaks would be 

at 1.85Hz, 2.70Hz and 4.90Hz, respectively, as shown in Figure V.17, which illustrates 

the transfer function at the top of pier 4 due to a unit harmonic motion in the transverse 

direction at the bottoms of all the piers. The first two significant peaks are in relatively 

good agreement with those of the second and third mode in D. Romo’s model for the 

same case (1.79Hz and 2.67Hz). 

 

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

D
is

pl
ac

em
en

t

 
Figure V. 17 Displacement in Y Direction at Top of Pier 4 due to Unit Motion at Base of All Piers 

(without Rubber Pads) 

 

Figure V.18 shows the transfer functions for a free deck and a shear modulus of the 

rubber pads of 6.0Mpa. It can be seen that the motion of the deck has a significant peak 

at 0.90 Hz and two small peaks at 1.15Hz and 5.7Hz, while the motion of the top of the 

pier has a significant peak at 5.7Hz and a small one at 0.9Hz. As the shear modulus 

reduces to 1.8Mpa and 1.0Mpa as shown in Figure V.18 and Figure V.19, the significant 



 114

peak for the deck decreases to 0.55Hz and 0.45Hz, respectively; while that of the top of 

the deck takes place at 5.3Hz and 5.25Hz, respectively. The peak at 0.90Hz frequency 

agrees with the results of D. Romo and the V.M. Daza (0.93Hz and 0.96Hz) while the 

1.15Hz frequency agrees with the experimental data (1.17Hz and 1.07Hz). 
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Figure V. 18 Displacement in Y Direction due to Unit Motion at Base of All Piers 

 (with Rubber Pads, 6100.6 ×=G Pa, Free Deck) 
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Figure V. 19 Displacement in Y Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6108.1 ×=G Pa, Free Deck) 
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Figure V. 20 Displacement in Y Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6100.1 ×=G Pa, Free Deck) 
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If the motion of the deck is constrained at the ends, the transfer function of the motion of 

the deck exhibits more peaks. With the shear modulus of the rubber pads equal to 

6.0Mpa as shown in Figure V.21, the peaks for the deck are at 0.9Hz, 1.85Hz and 

4.30Hz. The frequencies of these peaks change to 0.55Hz, 1.75Hz, 4.30Hz and 0.45Hz, 

1.70Hz, 4.30Hz for 1.8Mpa and 1.0Mpa rubber pads, as shown in Figure V.22 and 

Figure V.23, respectively. But the peaks for the transfer functions of the motion at the 

top of the pier occur at almost the same frequency as in the case of a free deck. 
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Figure V. 21 Displacement in Y Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6100.6 ×=G Pa, Constrained Deck) 
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Figure V. 22 Displacement in Y Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6108.1 ×=G Pa, Constrained Deck) 
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Figure V. 23 Displacement in Y Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 6100.1 ×=G Pa, Constrained Deck) 
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5.3.3 Vertical Direction (Z direction) 

The frequency response in the vertical direction depends on the Young’s modulus of the 

rubber pads rather than their shear modulus. Since the rubber pads are made of 

alternating layers of rubber and steel, they are not isotropic. Some studies indicated that 

the rubber pads used in the Marga-Marga bridge have a Young’s modulus between 

1.35Gpa and 2.40Gpa. 
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Figure V. 24 Displacement in Z Direction at Top of Pier 4 due to Unit Motion at Base of All Piers 

(without Rubber Pads) 

 

Without rubber pads, the transfer function of the displacement at the top of pier 4 due to 

a unit vertical harmonic motion at the bottoms of all piers is shown in Figure V.24. It can 

be seen that the first significant peak occurs around 3.55Hz. This value agrees well with 

the first natural frequency of 3.36Hz reported by D. Romo for the same case. 
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With the introduction of rubber pads with a Young’s modulus of 6.0Gpa or 1.8Gpa, the 

first significant peak still happens around 3.55Hz although there are some small 

fluctuations between 2.20Hz and 2.80Hz, as shown in Figures V.25 and V.26. A peak at 

2.20Hz would be consistent with the natural frequency of 2.18Hz reported by D. Romo 

and frequencies of 1.88Hz and 2.10Hz obtained by V.M. Daza. The largest amplification 

occurs however at 3.55Hz, a frequency not reported in their studies. It can be concluded 

that the frequency at which the significant peak happens is almost independent of the 

introduction of the rubber pads or their Young’s modulus. But as the Young’s modulus 

decreases, the amplitude of the peak corresponding to the displacement at the deck 

increases. 
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Figure V. 25  Displacement in Z Direction due to Unit Motion at Base of All Piers 

 (with Rubber Pads, 9108.1 ×=E Pa, Free Deck) 

 



 120

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

0 1 2 3 4 5 6 7 8 9 10

Frequency(Hz)

D
is

pl
ac

em
en

t

DECK
TOP OF PIER

 
Figure V. 26 Displacement in Z Direction due to Unit Motion at Base of All Piers 

(with Rubber Pads, 9100.6 ×=E Pa, Free Deck) 

 

5.4 Conclusions 

1. When comparing the results of the present study to those reported by previous 

researchers at the University of Chile one should take into account that, in 

addition to the difference in the structural models, the results presented here are 

transfer functions reflecting the natural frequencies and also the participation 

factors of various modes, while the previous studies provided the natural 

frequencies of all the modes. Some of these modes might have a very small 

participation factor, not get excited by the assumed base motions, and not show 

as a result in the transfer functions; 

 

2. In the longitudinal direction, this study yields results very similar to those of D. 

Romo, except that if the deck is free and the rubber pads have a 5% shear 
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deformation, the first natural frequency from this work (0.45Hz) is much lower 

than that from the model of D. Romo (0.65Hz). This study has 0.65Hz as the first 

longitudinal natural frequency when the shear modulus of the rubber pads is 

6.0Mpa, which corresponds to a shear deformation of only 0.23%; 

 

3. In the transverse direction, this research gives smaller natural frequencies than 

the model of D. Romo. But when the shear modulus of the rubber pads is 6.0Mpa 

(0.23% shear deformation), the results from this research are again very similar 

to the model of D.Romo with 5% shear deformation; 

 

4. For the cases with rubber pads, the transfer function at the top of the pier 

assuming a constrained deck are almost the same as for a free deck. This implies 

that the constraints on the ends of the deck will not change the motion at the top 

of the pier very much. Actually, the two ends of the deck are neither entirely 

fixed in the two horizontal directions, nor absolutely free. The abutments will 

restrain the motion of the deck but the deck can still slide over the abutments; 

 

5. The constraints on the two ends of the deck will not change the first transverse 

natural frequency, in which mode the deck slides over the relatively soft rubber 

pads. This is because the deck is very long so the bending strain energy in the 

first mode (half harmonic shape) is very small if the two ends of the deck are 

fixed transversely compared with the strain energy associated with the shear 

deformation of the rubber pads. For smaller values of the shear modulus of the 

rubber pads, restraining the motion of the deck at the ends will have a larger 

effect on the first natural frequency. 
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CHAPTER VI  

EFFECT OF SOIL STRUCTURE INTERACTION 

The transfer functions in the previous chapter were obtained assuming rigid foundations. 

This assumption may not be very realistic in some cases, especially for soft soils. To 

account for the finite stiffness of the foundations, soil structure interaction (SSI) analyses 

are conducted in this chapter. 

 

The numbering of the structure’s model is the same as shown in Figures V.6 & V.7. The 

nodes on the south and north abutment (nodes 22 and 30 in Figure V.6 or nodes 1 and 30 

in Figure V.7) are still fixed for all 6 degrees of freedom, while the nodes under each 

pier (nodes 1, 4, 7, 10, 13, 16 and 19 in Figure V.6 or nodes 2, 6, 10, 14, 18, 22 and 26 in 

Figure V.7) are fixed against rotation around the Z  axis but supported by springs with 

finite stiffness for the other 5 degrees of freedom to model the finite stiffness of the 

foundation. The properties and stiffness of the pile foundations (at the pile heads) of the 

Marga-Marga bridge were obtained in Chapter IV. The properties of the deck, piers and 

rubber pads are the same as those used in Chapter V.  

 

The computer software described in previous chapters was applied again to the Marga-

Marga bridge, but including the stiffness of the pile foundations, to compare the results 

with those without SSI and, to evaluate its potential importance. 

 

6.1 Assumptions 

Two important assumptions were made to calculate the transfer functions of the system 

in this chapter. First, each pile cap has 6 degrees of freedom (DoFs), and the application 

of a unit force in any direction may cause displacements in the others. This is known as 

the coupling between the different DoFs, such as the coupling between the horizontal 
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and the rocking stiffness. In this study, the coupling terms were neglected because they 

are relatively unimportant. (The coupling term between the horizontal and the rocking 

stiffness is very small compared with the horizontal or rocking stiffness themselves.) 

The stiffness matrix of a pile foundation used here is a diagonal matrix, and all the non-

diagonal terms are zero, as shown in equation VI.1. 
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in which xS , yS , zS , xR  and yR denote the horizontal dynamic stiffness in the X  and 

Y directions, the vertical stiffness in the Z  direction, and the rocking stiffness around 

the X  axis and around the Y axis, respectively; zT  represents the torsional stiffness 

around the Z  axis, assumed to be infinite in this case. 

 

The other simplifying assumption is that in calculating the dynamic stiffness of one pile 

group, the existence of the other pile groups can be neglected, because the distance 

between two pile groups (about 50 meters for the Marga-Marga bridge) is much larger 

than the horizontal dimension of the pile groups themselves (5.5 meters in the X  

direction).  

 

6.2 Loads 

In the previous chapter, for the structure with rigid foundations, a unit harmonic 

displacement was applied at the bottom of each pier. In this chapter, the bottoms of the 

piers are not fixed any more due to the finite stiffness of the pile foundations. The unit 

displacement would be applied at the bottom of the equivalent springs representing the 
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foundation. Because we neglect the coupling effect between different DoFs, this is 

equivalent to applying a harmonic load at the bottom of each pier with magnitude equal 

to the dynamic stiffness of the pile foundation in that direction. For example, in the 

vertical direction, the equivalent vertical force is applied at the bottom of each pier with 

a magnitude of zS , which is the vertical stiffness of the pile foundation under that pier. 

 

6.3 Results 

6.3.1 Longitudinal Direction (X direction) 
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Figure VI. 1 Displacement in X Direction at Top of Pier 4  

due to Unit Motion at Bottom of All Foundations (without Rubber Pads) 
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Table VI. 1 Effect of SSI on Peaks of Transfer Function in Longitudinal Direction (Hz) 
Without SSI With SSI 

Shear Modulus of 
Rubber Pads First 

Peak 

Second 

Peak 

Third 

Peak

First 

Peak 

Second 

Peak 

Third 

Peak 

No Rubber Pads 2.15 5.85  2.13 5.75  

6.0Mpa(free deck) 0.65 2.75  0.60 2.65  

1.8Mpa(free deck) 0.45 1.95  0.40 1.80  

1.0Mpa(free deck) 0.35 1.70  0.35 1.60  

6.0Mpa(constrained deck) 1.70 2.50 2.85 1.70 2.45 2.60 

1.8Mpa(constrained deck) Between 1.5 and 2.0 Between 1.5 and 2.0 

1.0Mpa(constrained deck) Between 1.5 and 2.0 Between 1.5 and 2.0 

 

Due to the finite stiffness of the foundations, the natural frequencies of the soil structure 

system are expected to be smaller than those of the structure on rigid foundations. 

 

Figure VI.1 shows the transfer function at the top of pier 4 in the X direction without 

rubber pads. It can be seen that the two significant peaks are at 2.13Hz and 5.75Hz, 

which are only slightly smaller than those of the case without SSI (2.15Hz and 5.85Hz). 

Figures VI.2 to VI.9 show the transfer functions at the top of pier 4 and the deck for the 

case with rubber pads and SSI. The change in the frequencies of the significant peaks 

due to the consideration of the SSI is summarized in Table VI.1.  

 

It can be concluded that the effect of SSI is very small in the longitudinal direction in 

relation to the first few natural frequencies of the structure because the positions of the 

peaks change very little. Even some small peaks appear at the same frequencies as in the 

case without SSI. (For example, there is also a small peak for the motion of the deck 

around 6.6Hz for the constrained deck.) 

 

The SSI effects are more pronounced for high frequencies. Whether the deck is 

constrained or not, the motion at the top of the pier has a large peak around 10.0Hz 
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without SSI. This peak is greatly de-amplified and shifted to a value between 8Hz to 

9Hz (shown in Figures VI.2 to VI.9) when the SSI effect is included. Figures VI.10 & 

VI.11 show the transfer functions for the motion at the base of pier 4 in the longitudinal 

direction when the same harmonic motion is applied at the base of all foundations. It can 

be seen that the motion is a function of the frequency, rather than a constant of 1 as 

would be obtained without SSI effect. The base motion of the pier can be amplified up to 

30% or de-amplified up to 40%. Between 0.0 and 3.0 Hz the SSI effect results in small 

changes in the frequencies of the peaks resulting in a relatively sharp peak followed by a 

valley. The motion increases smoothly between 3.0 and 7.5 Hz. Between approximately 

8.0 and 10.0 Hz there is a significant reduction in the amplitude of the motions. This is 

the range of frequencies over which the flexibility of the foundations would have the 

most significant effect in the longitudinal direction. 
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Figure VI. 2 Displacement in X Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.6 ×=G Pa, Free Deck) 
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Figure VI. 3 Displacement in X Direction due to Unit Motion at Base of Foundation under Pier 4 

(with Rubber Pads, 6100.6 ×=G Pa, Free Deck) 
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Figure VI. 4 Displacement in X Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6108.1 ×=G Pa, Free Deck) 



 128

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

0 1 2 3 4 5 6 7 8 9 10

Frequency(Hz)

D
is

pl
ac

em
en

t DECK
TOP OF PIER

 
Figure VI. 5 Displacement in X Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.1 ×=G Pa, Free Deck) 
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Figure VI. 6 Displacement in X Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.6 ×=G Pa, Constrained Deck) 
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Figure VI. 7 Displacement in X Direction due to Unit Motion at Base of Foundation under Pier 4 

(with Rubber Pads, 6100.6 ×=G Pa, Constrained Deck) 
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Figure VI. 8 Displacement in X Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6108.1 ×=G Pa, Constrained Deck) 
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Figure VI. 9 Displacement in X Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.1 ×=G Pa, Constrained Deck) 
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Figure VI. 10 Motion of the Base of Pier 4 When All Foundations Are Excited in the X Direction 

(Free Deck) 
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Figure VI. 11 Motion of the Base of Pier 4 When All Foundations Are Excited in the X Direction 

(Constrained Deck) 
 

6.3.2 Transverse Direction (Y direction) 

The effects of the SSI on the frequencies of the peaks of the transfer functions in the 

transverse direction are summarized in Table VI.2 and illustrated in Figures VI.12 to 

VI.18. It is somewhat larger than in the longitudinal direction. The reason is that the 

bending stiffness of the 7 piers is larger transversely than longitudinally. 

 

For the structure without rubber pads, the effect is very clear. The first three significant 

peaks change from 1.85Hz, 2.70Hz and 4.90Hz to 1.45Hz, 2.45Hz and 4.75Hz. With the 

introduction of the rubber pads, the effect of soil structure interaction is less pronounced. 

Table VI.2 shows that the change in the frequency of the peaks for the isolated system is 

very small for the first peak (about 10% with a free deck and less when the deck is 

restrained). It is more significant on the motion and peaks of the pier than those of the 

deck (comparing the fourth peak without SSI and the third peak with SSI). Both for the 
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Figure VI. 12 Displacement in Y Direction at Top of Pier 4  

due to Unit Motion at Bottom of All Foundations (without Rubber Pads) 

 

Table VI. 2 Effect of SSI on Peaks of Transfer Function in Transverse Direction (Hz) 

Without SSI With SSI 
Shear Modulus of 

Rubber Pads 1st 

Peak

2nd 

Peak

3rd Peak

(Deck)

4th Peak

(Pier) 

1st 

Peak

2nd 

Peak

3rd Peak 

(Pier) 

4th Peak

(Deck)

No Rubber Pads 1.85 2.70 4.90  1.45 2.45  4.75 

6.0Mpa(free deck) 0.90   5.70 0.85 1.12 4.05  

1.8Mpa(free deck) 0.55   5.30 0.50  3.70  

1.0Mpa(free deck) 0.45   5.25 0.40  3.60  

6.0Mpa(constrained deck) 0.90 1.85 4.30 5.70 0.85 1.85 4.05 4.45 

1.8Mpa(constrained deck) 0.55 1.75 4.30 5.30 0.55 1.75 3.70 4.30 

1.0Mpa(constrained deck) 0.45 1.70 4.30 5.25 0.45 1.70 3.60 4.27 
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pier and the deck the main interaction effects in the transverse direction occur in the 

frequency range between 3 and 6Hz, whereas in the longitudinal direction the range was 

8 to 11Hz. 

 

From Figures VI.19 & VI.20, it can also be seen that the SSI effect is more prominent in 

the transverse direction than in the longitudinal direction, because the base motion of 

pier 4 is amplified or de-amplified more in the transverse than in the longitudinal 

direction. 
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Figure VI. 13 Displacement in Y Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.6 ×=G Pa, Free Deck) 
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Figure VI. 14 Displacement in Y Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6108.1 ×=G Pa, Free Deck) 
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Figure VI. 15 Displacement in Y Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.1 ×=G Pa, Free Deck) 
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Figure VI. 16 Displacement in Y Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.6 ×=G Pa, Constrained Deck) 
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Figure VI. 17 Displacement in Y Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6108.1 ×=G Pa, Constrained Deck) 



 136

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

0 1 2 3 4 5 6 7 8 9 10

Frequency(Hz)

D
is

pl
ac

em
en

t

DECK
TOP OF PIER

 
Figure VI. 18 Displacement in Y Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 6100.1 ×=G Pa, Constrained Deck) 
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Figure VI. 19 Motion of the Base of Pier 4 When All Foundations Are Excited in the Y Direction 

(Free Deck) 
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Figure VI. 20 Motion of the Base of Pier 4 When All Foundations Are Excited in the Y Direction 

(Constrained Deck) 
 

6.3.3 Vertical Direction (Z direction) 

As shown in Figures VI.21 to VI.23, the effect of SSI in the vertical direction is still very 

small. The position of the only significant peak decreases from 3.55Hz to 3.45Hz due to 

the effect of SSI, and the introduction of the rubber pads has a negligible effect on it. 

The major effect of SSI is to increase the amplification ratio, an effect very similar to 

that of the rubber pads. For the case without rubber pads the ratio increases from 1.8 to 

2.4 due to SSI. As the Young’s modulus of the rubber pads decreases, the effect of SSI 

becomes smaller. 
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Figure VI. 21 Displacement in Z Direction at Top of Pier 4  

due to Unit Motion at Bottom of All Foundations (without Rubber Pads) 
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Figure VI. 22 Displacement in Z Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 9100.6 ×=E Pa, Free Deck) 
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Figure VI. 23 Displacement in Z Direction due to Unit Motion at Base of All Foundations 

(with Rubber Pads, 9108.1 ×=E Pa, Free Deck) 

 

6.3.4 Effect of Soil Properties 

To study further the potential SSI effects, the soil properties were reduced over the top 

12 meters to simulate some nonlinear soil behavior. The foundation stiffness terms were 

calculated again for this case. The assumed properties and the calculated foundation 

stiffness were shown in Tables IV.7 ~ IV.10 and Figures IV.23 ~ IV.33. The new 

foundation stiffness terms with reduced soil shear modulus were discussed in §4.4.  

 

Tables VI.3 & VI.4 show the change of the frequencies of the peaks of the transfer 

functions due to the new soil profile. The decrease in the frequencies for the structure on 

the new, softer, soils is larger than that on the original soils, as could be expected but it is 

still very small in the longitudinal direction and only a little larger in the transverse 

direction.  
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Table VI. 3 Effect of SSI on Peaks of Transfer Function in Longitudinal Direction (Hz) 

(with New Soil Properties) 

Without SSI 
With SSI 

(New Soil Properties) Shear Modulus of 
Rubber Pads 1st 

Peak

2nd 

Peak 

3rd 

Peak 

1st 

Peak 

2nd 

Peak 

3rd 

Peak 

No Rubber Pads 2.15 5.85  2.10 5.62  

6.0Mpa(free deck) 0.65 2.75  0.60 2.60  

1.8Mpa(free deck) 0.45 1.95  0.40 1.75  

1.0Mpa(free deck) 0.35 1.70  0.35 1.55  

6.0Mpa(constrained deck) 1.70 2.50 2.85 1.70 2.40 2.60 

1.8Mpa(constrained deck) Between 1.5 and 2.0 Between 1.5 and 2.0 

1.0Mpa(constrained deck) Between 1.5 and 2.0 Between 1.5 and 2.0 

 

Table VI. 4 Effect of SSI on Peaks of Transfer Function in Transverse Direction (Hz) 
(with New Soil Properties) 

Without SSI 
With SSI 

(New Soil Properties) Shear Modulus of 
Rubber Pads 1st 

Peak

2nd 

Peak

3rd Peak

(Deck) 

4th Peak

(Pier) 

1st 

Peak

2nd 

Peak

3rd Peak 

(Pier) 

4th Peak

(Deck)

No Rubber Pads 1.85 2.70 4.90  1.30 2.35  4.60 

6.0Mpa(free deck) 0.90   5.70 0.80 1.10 3.85  

1.8Mpa(free deck) 0.55   5.30 0.50  3.40  

1.0Mpa(free deck) 0.45   5.25 0.40  3.35  

6.0Mpa(constrained deck) 0.90 1.85 4.30 5.70 0.80 1.80 3.85 4.30 

1.8Mpa(constrained deck) 0.55 1.75 4.30 5.30 0.55 1.75 3.40 4.30 

1.0Mpa(constrained deck) 0.45 1.70 4.30 5.25 0.45 1.70 3.35 4.27 
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6.4 Conclusions 

1) Generally, soil structure interaction (SSI) changes the frequencies of the peaks of 

the transfer functions. The effects of SSI on the first natural frequencies are very 

small for the conditions of the Marga-Marga bridge. These conclusions had also 

been reached by V.M. Daza in his work. They are somewhat larger in the 

transverse than in the longitudinal direction; 

 

2) For the structure without rubber pads, the effect of soil structure interaction is 

more pronounced. The frequencies of the peaks of the transfer functions decrease 

clearly; 

 

3) For the structure with rubber pads, SSI has some small effects on the motion at 

the top of the pier, but since the deck has been isolated by rubber pads, the 

motions of the deck are affected much less; 

 

4) The main SSI effects are in the range of frequencies between 3.0 and 5.0 Hz in 

the transverse direction and above 8.0Hz in the longitudinal direction. 
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CHAPTER VII  

CONCLUSIONS AND RECOMMENDATIONS 

7.1 General Observations 

The studies carried out and described in Chapters V and VI indicate that: 

1) The presence of the isolation pads reduces considerably the amplitude of the 

longitudinal deck motions with respect to those at top of the pier except at the 

first natural frequency of the system, which varies from 0.35Hz to 1.7Hz 

depending on the assumed conditions at the ends of the deck (free deck or 

constrained deck). At this frequency the motion of the deck seems to be larger 

than that of the top of the pier for a free deck (the frequency is that of the deck 

vibrating as a free body on top of the rubber pads). For a constrained deck, the 

amplitude of the motion of the deck is much smaller than that of the pier for the 

smaller values of the assumed shear modulus (as the level of excitation and 

therefore the level of deformation of the rubber pads increase). The only other 

exception is at around 6.5Hz when the deck is constrained and the same motion 

is applied at the base of all the piers.  

 

Comparing the transfer functions for the motion of the deck in Figures VI.2 ~ 

VI.9 with that for the case without rubber pads (Figure VI.1) one can reach the 

same conclusion. The inclusion of the rubber pads will reduce the motions of the 

deck over most ranges of frequencies (except for the fundamental frequency).  

 

If the energy of the earthquake is not around the fundamental frequency of the 

deck (Chilean earthquakes tend to have predominant frequencies of 3.0Hz to 

4.0Hz) the effect of the rubber pads on the seismic motions of the deck in the 

longitudinal direction will be very beneficial. Comparing on the other hand the 
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transfer functions of the motion on the top of pier 4 with and without rubber pads 

(same figures) it can be seen that the main effect is in the change in the natural 

frequencies but there is no longer a reduction over most of the frequency range: 

the amplitudes decrease at the frequencies of the structure without rubber pads 

and increase instead at the frequencies (more than one) of the structure with 

rubber pads; 

 

2) The effect of the rubber pads on the motion of the deck in the transverse direction 

is less pronounced than in the longitudinal direction. While there are important 

reductions in amplitude with respect to the top of the pier or with respect to the 

deck without rubber pads, there are now several frequency ranges over which the 

motion of the deck may be larger than that of the pier (several peaks associated 

with the motion of the deck); 

 

3) Comparing the motion at the top of the pier without rubber pads with that with 

rubber pads, one can conclude that the presence of the rubber pads increases the 

amplitude of the transfer functions around the first vertical natural frequency 

(about 3.3Hz for the Marga-Marga bridge). Over the other frequency ranges, the 

value of the transfer functions is almost 1. Around the first vertical natural 

frequency, the amplitude of the motion at the deck with rubber pads is always 

larger than that at the top of the pier. 

 

7.2 Data from a Real Earthquake 

Figures VII.1, VII.2 and VII.3 show the Power spectra (square of the amplitude Fourier 

spectra of the motions) recorded on the Marga-Marga bridge in the longitudinal, 

transverse and vertical directions under an earthquake that occurred on July 24, 2001. In 

these three figures, the motion at the free field (on rock at the left of the left abutment) is 

shown at the upper-left corner, the motion at the bottom of pier 4 at the upper-right 
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corner, the motion at the top of pier 4 at the lower-left corner, and the motion on top of 

the deck at the lower-right corner. 

 

These experimental data show: 

1) In the longitudinal direction: 

a) A considerable reduction in the motion above 3.0Hz at the three locations 

(compared to the free field); 

 

b) A significant peak at about 1.5Hz in the base motion of the pier, which is 

considerably reduced on top of the pier and on the deck (square of the 

amplitude is 8105.1 ×  at the base, 7100.2 × at the top of the pier and 
6100.6 × on the deck. (a reduction in amplitude by factors of 

74.25.7 = at the top of the pier and 0.525 = on the deck); 

 

c) A significant amplification at about 2.7Hz on top of the pier, which is not 

present on the deck. (amplification ratio of the amplitude is about 

2.3)104/()104( 78 ≈××  from the base to the top of the pier). The 

amplitude at the base of the pier at this frequency was slightly smaller 

than in the free field; 

 

The first natural frequency in shear of the soil deposit itself is about 1.4Hz from the 

analysis in Chapter IV, which explains the peak at about 1.5Hz in the base motion of the 

pier. As for the amplification at 2.7Hz, one can find from Figures VI.2 or VI.3 that this 

is a natural frequency of the structure and the motion at the top of pier 4 is amplified 

very much while the motion of the deck is not. The analysis conducted cannot explain, 

on the other hand, the large reductions in motion above 3Hz. 
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Figure VII. 1 FFT of Recorded Longitudinal (X) Motion of Marga-Marga Bridge 

during the Earthquake of July 24, 2001 

 

 
Figure VII. 2 FFT of Recorded Transverse (Y) Motion of Marga-Marga Bridge 

during the Earthquake of July 24, 2001 
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2) In the transverse direction, 

a) A considerable reduction in the motion above 3.5Hz (especially around 

4.0Hz) at the base of the pier and on the deck (compared to the free field). 

On the top of the pier the amplitude of motion around 4Hz is similar to 

that in the free field; 

 

b) A peak at about 1.3Hz at the base of the pier with an amplitude squared 

of 7105.7 × . It is only 7100.4 × at the top of the pier and 7100.2 × on the 

deck, a reduction in amplitude by factors of 7.5 / 4.0 1.37≈ at the top of 

the pier and 7.5/ 2.5 1.73≈ on the deck; 

 

c) A number of small peaks around 1.0Hz and a more significant peak at 

1.5Hz on the deck motions with an amplitude squared of 8105.1 × . This 

peak is not present on the motion on top of the pier; 

 

d) A peak at the base and on top of the pier at about 2.8~2.9Hz, with 

amplification ratios with respect to the motion at the free field of 

35.22/11 ≈ (for the base of the pier) and 32.32/22 ≈ (for the top of 

the pier), while the motion is greatly de-amplified on the deck. 

 

The reduction in the motions between 3.5 and 4.5Hz at the base of the pier is 

consistent with the reported SSI effect in the transverse direction, but the 

reduction above 4.5Hz is not explained by this research. The peak in the base 

motion at 1.3Hz is also very close to the shear natural frequency of the soil 

deposit calculated in Chapter IV (1.4Hz). For the case with a constrained deck, 

Figures VI.16 ~ VI.18 show that the structure has a natural frequency at about 

1.7~1.85Hz, where the motion of the deck is greatly amplified (not too far from 

the 1.5Hz of the data). From Figure VII.4, which shows the transfer function for 

one-dimensional soil amplification, one can find that around 2.8~2.9Hz the 
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amplification ratio of the motion from the outcrop of rock to the free surface is 

about 2.2. As one can find from Figures VI.13 ~ VI.20, the amplification ratio at 

this frequency from the free surface to the bottom of the pier is about 1.1, to the 

top of the pier 2.0 to 2.5 and to the deck 0.25 to 0.35, depending on the shear 

modulus of the rubber pads. So the amplification from rock outcrop to the base of 

the pier is about 2.4 to 2.7, to the top of the pier about 4.0 and to the deck about 

0.55. While these figures do not coincide exactly with those reported from the 

experimental data, they follow the same general trend. It should be noticed that 

the amplification values will depend on the assumed values of damping. 

 

3) In the vertical direction, 

a) These are peaks in the free field motion at 4.0Hz and 4.8Hz. These two 

peaks have a very similar amplitude in the motions recorded at the base 

and on top of  the pier but are amplified on the deck by factors of  

0.25.1/6 ≈ (for 4.0Hz) or 9 / 3.5 1.6≈  (for 4.8Hz); 

b) A peak at about 2.6Hz at the base, the top of pier and the deck with an 

amplitude square of 7105.1 × . 

 
The soil deposit has a dilatational natural frequency of about 2.4Hz as stated in 

Chapter IV. The amplitude of the transfer functions at this frequency is nearly 

equal at all three locations in the bridge, as shown in Figures VI.22 & VI.23. The 

amplification in the motion of the deck at 4Hz and 4.8Hz cannot be explained in 

the studies conducted. 
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Figure VII. 3 FFT of Recorded Vertical (Z) Motion of Marga-Marga Bridge 

during the Earthquake of July 24, 2001 
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Figure VII. 4 One-dimensional Horizontal Soil Amplification of the Soil Deposit 

 



 149

7.3 Recommendation for Future Studies 

1) Nonlinear one-dimensional or two dimensional soil amplification analyses in the 

time domain may be needed to give a better estimate of the natural frequencies of 

the soil deposit and soil amplification effects; 

 

2) Because the amplification ratio depends strongly on the damping, iterations may 

be needed in a linearized analysis of the complete soil-structure-rubber pads 

system to get better estimates of the effective hysteretic damping and shear 

modulus; 

 

3) The transfer functions are sensitive to the modeling of the rubber pads, which 

means that more realistic, nonlinear models of the rubber pads and time domain 

nonlinear analyses would improve the prediction of the structural response; 

 

4) The transfer functions can change substantially if the motions at the base of the 

various peers are different. In this study it was assumed in most cases that all 

supports had the same motion although the program allowed to consider and 

combine different motions. On would need however more information on the 

potential variations in the motions of the supports. 
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APPENDIX 

MODE SHAPES OF THE BRIDGE IN FIGURE II.5 

 
 

 
Figure A.1 The 1st Mode Shape of the Bridge in Figure II.5 
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Figure A.2 The 2nd Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.3 The 3rd Mode Shape of the Bridge in Figure II.5 
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Figure A.4 The 4th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.5 The 5th Mode Shape of the Bridge in Figure II.5 
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Figure A.6 The 6th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.7 The 7th Mode Shape of the Bridge in Figure II.5 
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Figure A.8 The 8th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.9 The 9th Mode Shape of the Bridge in Figure II.5 
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Figure A.10 The 10th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.11 The 11th Mode Shape of the Bridge in Figure II.5 
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Figure A.12 The 12th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.13 The 13th Mode Shape of the Bridge in Figure II.5 
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Figure A.14 The 14th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.15 The 15th Mode Shape of the Bridge in Figure II.5 
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Figure A.16 The 16th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.17 The 17th Mode Shape of the Bridge in Figure II.5 
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Figure A.18 The 18th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.19 The 19th Mode Shape of the Bridge in Figure II.5 
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Figure A.20 The 20th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.21 The 21st Mode Shape of the Bridge in Figure II.5 
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Figure A.22 The 22nd Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.23 The 23rd Mode Shape of the Bridge in Figure II.5 
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Figure A.24 The 24th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.25 The 25th Mode Shape of the Bridge in Figure II.5 
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Figure A.26 The 26th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.27 The 27th Mode Shape of the Bridge in Figure II.5 
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Figure A.28 The 28th Mode Shape of the Bridge in Figure II.5 

 

 
Figure A.29 The 29th Mode Shape of the Bridge in Figure II.5 
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Figure A.30 The 30th Mode Shape of the Bridge in Figure II.5 
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