
DISTRIBUTED SERVICES FOR MOBILE AD HOC NETWORKS

A Dissertation

by

GUANGTONG CAO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2005

Major Subject: Computer Science

DISTRIBUTED SERVICES FOR MOBILE AD HOC NETWORKS

A Dissertation

by

GUANGTONG CAO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jennifer L. Welch
Committee Members, Riccardo Bettati

Narasimha Reddy
Yoonsuck Choe

Head of Department, Valerie E. Taylor

August 2005

Major Subject: Computer Science

iii

ABSTRACT

Distributed Services for Mobile Ad Hoc Networks. (August 2005)

Guangtong Cao, B.E., Beijing University of Aeronautics & Astronautics;

M.E., Beijing University of Aeronautics & Astronautics

Chair of Advisory Committee: Dr. Jennifer L. Welch

A mobile ad hoc network consists of certain nodes that communicate only

through wireless medium and can move arbitrarily. The key feature of a mobile ad

hoc network is the mobility of the nodes. Because of the mobility, communication

links form and disappear as nodes come into and go out of each other’s communica-

tion range. Mobile ad hoc networks are particularly useful in situations like disaster

recovery and search, military operations, etc. Research on mobile ad hoc networks

has drawn a huge amount of attention recently. The main challenges for mobile ad

hoc networks are the sparse resources and frequent mobility. Most of the research

work has been focused on the MAC and routing layer. In this work, we focus on

distributed services for mobile ad hoc networks. These services will provide some

fundamental functions in developing various applications for mobile ad hoc networks.

In particular, we focus on the clock synchronization, connected dominating set, and

k-mutual exclusion problems in mobile ad hoc networks.

iv

To My parents

v

ACKNOWLEDGMENTS

First, I would like to thank my advisor Dr. Jennifer L. Welch. Without her

inspiration, guidence and encouragement, this dissertation would not be possible. She

led me into the exciting field of distributed computing and taught me how to approach

problems in a rigorous way. The methodology and philosophy that I learned in my

research will definitely benefit my career for life.

I want to express my gratitude to the members of my advisory committee, Dr.

Riccardo Bettati, Dr. Yoonsuck Choe, and Dr. Narasimha Reddy, for their valuable

comments and earnest help. Special thanks to Dr. Jennifer Walter for many helpful

discussions.

I also thank the fellow students in my research group, Yu Chen, Cheng Shao,

Nicholas Neuman, Sangeeta Bhattacharya, Rajan Chandra and Vijay Balasubrama-

nian for their collaborations.

Finally, I would like to thank my parents and my family. I could not have gone

through this long journey without their constant love and support. I owe them so

much.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Mobile Ad Hoc Networks 1

B. Distributed Services for Mobile Ad Hoc Networks 2

C. Organization of the Dissertation 5

II CLOCK SYNCHRONIZATION INMOBILE AD HOC NET-

WORKS . 6

A. Motivation . 6

B. Related Work . 8

C. Challenges for Clock Synchronization in Mobile Ad Hoc

Networks . 12

D. System Model and Definitions 14

E. Reference Broadcast Synchronization 16

F. Synchronization Backbone: Approximate MCDS 19

1. The Algorithm . 19

2. An Example of the Algorithm 22

3. Correctness and Performance Analysis 24

4. Maintaining the CDS in the Presence of Mobility . . . 27

G. Multi-hop Synchronization 28

1. The Algorithm . 28

2. Performance Analysis 32

H. Simulation . 35

1. Simulation Model . 36

2. Simulation Results . 37

III A RANDOMIZED CONNECTED DOMINATING SET AL-

GORITHM IN WIRELESS AD HOC NETWORKS 43

A. Introduction . 43

B. Related Work . 44

C. System Assumptions and Definitions 46

D. The Algorithm . 46

1. Finding a Maximal Independent Set 47

2. Finding Connectors 49

vii

CHAPTER Page

E. CDS Recomputation . 55

F. Simulation . 57

G. A Routing Algorithm Based on Randomized CDS 63

IV A TOKEN FORWARDING K-MUTUAL EXCLUSION AL-

GORITHM FOR AD HOC NETWORKS 66

A. Introduction . 66

B. Related Work . 67

C. System Model and Assumptions 69

D. KRLF Algorithm . 72

1. Overview of KRL . 73

2. KRLF Algorithm . 77

E. Correctness of KRL and KRLF Algorithms 79

F. Simulation Results . 82

1. Comparison of KRL and KRLF to Static Distributed

k-Mutex Algorithm 83

2. Comparison of KRL and KRLF on ns-2 86

V CONCLUSION AND FUTURE WORK 92

A. Clock Synchronization . 92

B. Connected Dominating Set 93

C. k-Mutual Exclusion . 94

REFERENCES . 96

APPENDIX A . 107

VITA . 110

viii

LIST OF FIGURES

FIGURE Page

1 Distributed Services without Mobility Awareness 3

2 Distributed Services with Mobility Awareness 3

3 A Typical NTP Network Topology 11

4 An Illustration of Message Exchange in NTP Synchronization 13

5 Reference Broadcast Synchronization 17

6 Pseudo-code of the Approximate MCDS Algorithm 21

7 An Example of the Execution . 23

8 A Synchronization Graph for a Mobile Ad Hoc Network 29

9 Pseudo-code for Clock Synchronization Algorithm 31

10 A Resynchronization Round . 34

11 Average CDS Size vs. Number of Nodes with No Mobility 37

12 Average CDS Size vs. Number of Nodes with Mobility 38

13 Synchronization Error vs. Layer with No Drift 39

14 Synchronization Variance vs. Layer with No Drift 40

15 Synchronization Error vs. Layer with Drift 41

16 Step 1: Finding a Maximal Independent Set 48

17 An Illustration of the Connector Selection: Case 1 51

18 An Illustration of the Connector Selection: Case 2 52

19 Step 2: Finding Connectors . 53

ix

FIGURE Page

20 CDS Size vs. Number of Nodes . 58

21 Average Message vs. Number of Nodes 59

22 A Snapshot of the Network . 60

23 Network Lifetime vs. Number of Nodes 61

24 Standard Deviation of Remaining Energy vs. Number of Nodes . . . 63

25 The k-Mutual Exclusion System Architecture 71

26 Operation of KRL Algorithm on a Dynamic Network with 2 Tokens . 76

27 Idle Token Problem in KRL Algorithm 77

28 Operation of KRL Algorithm with Token Forwarding. “V” on

Wireless Link Indicates That Token Has Previously Been For-

warded over Link . 78

29 Pseudocode Modifications for Token Forwarding 80

30 Load vs. Time Units/CS Entry for 20% Connectivity at (a) Zero,

(b) Low (1 Link Change every 500 Time Units), and (c) High

(1 Link Change every 50 Time Units) Mobility with k = 3 (BV

= Bulgannawar and Vaidya Algorithm, KRL = Basic k-Mutual

Exclusion Algorithm, KRLF = KRL with Token Forwarding) 85

31 Load vs. Messages/CS entry for 20% Connectivity at (a) Zero,

(b) Low (1 Link Change every 500 Time Units), and (c) High

(1 Link Change every 50 Time Units) Mobility with k = 3 (BV

= Bulgannawar and Vaidya Algorithm, KRL = Basic k-Mutual

Exclusion Algorithm, KRLF = KRL with Token Forwarding) 86

32 Request Interval vs. Waiting Time/CS Entry for 500m × 500m

Box at (a) Zero, (b) Low (5 m/sec), and (c) High (10 m/sec)

Mobility with k = 3 (KRL = Basic k-Mutual Exclusion Algorithm,

KRLF = KRL with Token Forwarding) 88

x

FIGURE Page

33 Request Interval vs. Std. of the Waiting Time/CS Entry for

500m × 500m Box at (a) Zero, (b) Low (5 m/sec), and (c) High

(10 m/sec) Mobility with k = 3 (KRL = Basic k-Mutual Exclusion

Algorithm, KRLF = KRL with Token Forwarding) 89

34 Request Interval vs. Messages/CS Entry for 500m × 500m Box

at (a) Zero, (b) Low (5 m/sec), and (c) High (10 m/sec) Mobility

with k = 3 (KRL = Basic k-Mutual Exclusion algorithm, KRLF

= KRL with Token Forwarding) . 90

35 Pseudocode Triggered by Input Events from Application Process . . 107

36 Pseudocode Triggered by Recv(j, Request) Network Input Events . . 107

37 Pseudocode Triggered by Recv(j, Token) Network Input Event 108

38 Pseudocode Triggered by Recv(j, LinkInfo) Network Input Event . . 108

39 Pseudocode Triggered by LinkDown and LinkUp Network Enput Events108

40 Procedures of KRL Algorithm . 109

1

CHAPTER I

INTRODUCTION

A. Mobile Ad Hoc Networks

The last decade has witnessed great advances in distributed computing and communi-

cation technologies. The advances in miniaturization and low-cost, low-power design

have had a huge impact in distributed computing and networking. A new kind of

network called mobile ad hoc network (MANET) emerged. A mobile ad hoc network

([1]) is formed by a set of nodes that communicate only through wireless medium.

A node can communicate directly with another node only if they are within each

other’s transmission range. Otherwise, the message may traverse multiple hops to

reach the destination node, and each node in the network functions as a router to

relay messages.

Unlike traditional wired networks or cellular networks, a mobile ad hoc network

does not have any infrastructure or central control. In a mobile ad hoc network,

each node is free to move arbitrarily. Because of the mobility, communication links

form and disappear as nodes come into and go out of each other’s communication

range. The frequent topology changes due to the mobility poses a serious challenge

to algorithms for mobile ad hoc networks. A mobile ad hoc network is particularly

useful in some “ad hoc” environments such as disaster recovery and search, military

operation, game, etc. Another big application area of ad hoc network is the sensor

network, which a large amount of tiny sensors are deployed in a certain area, and

computing is done by collaboration of the data by each autonomous sensor. Sensor

networks usually have less mobility than mobile ad hoc networks.

The journal model is IEEE Transactions on Automatic Control.

2

B. Distributed Services for Mobile Ad Hoc Networks

Due to various application areas, research on mobile ad hoc networks has drawn

huge attention in recent years. However, these unique features of mobile ad hoc

networks bring a lot of new challenges. First, as each node in a mobile ad hoc

network is powered by battery, energy consumption is the first and foremost issue in

any algorithm design. The message complexity of an algorithm should be as small as

possible to save the battery. Second, because of the mobility, many existing algorithms

for wired networks which assume a stable network topology become inapplicable in

mobile network networks. Algorithms for mobile ad hoc networks must be adaptable

to the frequent topology changes and partitions due to the mobility.

So far, most of the research work has been focused on the MAC [1] and routing

layer [2], which provides the fundamental functionality for communication. However

on the other hand, little research has been done on distributed services for mobile ad

hoc networks. Distributed services provide some fundamental functionalities for many

applications and algorithms for mobile ad hoc networks. These services are usually sit

above the routing layer and beneath the application layer in the layer system design

infrastructure. Distributed services and middleware have been extensively studied in

traditional networks, including, for example, the Transis group communication system

[3]. However, the unique features of mobile ad hoc networks bring new challenges for

distributed services.

Most early works on distributed services and applications for mobile ad hoc net-

works simply apply existing services for wired networks directly to mobile ad hoc

networks ([1]), assuming that the network layer provides the fundamental functional-

ity. This approach follows exactly the existing layered system architecture of network

protocols, as shown in Figure 1.

3

Distributed Service

Routing layer

Physical layer

Application layer

MAC layer

Fig. 1. Distributed Services without Mobility Awareness

However, some researchers found that simply applying the existing services to

MANET is not efficient and sometimes even not correct ([4, 1]). Instead, distributed

algorithms with “mobility awareness” is much more efficient. Figure 2 illustrates the

new system architecture. Distributed services in the new system architecture can

directly utilize some MAC layer functionalities such as broadcast to get the updated

topology information without going through the complicated routing layer. In this

dissertation, we study distributed services for mobile ad hoc networks. In particular,

we focus on three distributed services: clock synchronization, connected dominating

set and k-mutual exclusion in mobile ad hoc networks.

Routing layer

MAC layer

Physical layer

Application layer

Distributed Services

Fig. 2. Distributed Services with Mobility Awareness

4

Synchronized clocks are important for many distributed applications. Mobility

and constraints in wireless communication bring new challenges for clock synchro-

nization in mobile ad hoc network, making existing clock synchronization algorithms

inapplicable in mobile ad hoc networks. In the first part of the dissertation, we in-

troduce a new clock synchronization algorithm for mobile ad hoc networks ([5]). Our

algorithm uses a synchronization technique called Reference Broadcast Synchroniza-

tion (RBS) [6] in a single broadcast domain and extends RBS to the entire network

using a connected dominating set (CDS). Our algorithm has the advantage of high

accuracy in synchronization and adaptability to the mobility and requires fewer mes-

sages than existing algorithms.

Our clock synchronization algorithm is not the only place in which a connected

dominating set is useful. In fact, a connected dominating set (CDS) can act as a

general backbone in a mobile ad hoc network for many purposes like broadcasting,

routing, information management, etc. Most of the algorithms to find a CDS require

expensive message exchange and do not consider energy efficiency, which is a very

important issue in wireless networks. In the second part of this dissertation, we

introduce a randomized connected dominating set algorithm which can reduce the

message overhead in finding the CDS and balance the energy consumption ([7]).

Although the size of the CDS found by our algorithm is larger than the best CDS

algorithms developed ([8]), it has more redunduncy in routing. We also show that a

routing algorithm using a CDS as a backbone can always find a routing path whose

length is within a constant of that of the path found by using the same algorithm on

the whole network.

In the third part of this dissertation, we study the problem of k-mutual exclu-

sion. Mutual exclusion is a fundamental concept in operating system for resource

sharing and task management ([9]). K-mutual exclusion extends mutual exclusion

5

by allowing at most k shared resources to be accessed simultaneously in the system.

Mutual exclusion and k-mutual exclusion deal with exclusive access to shared infor-

mation. One application is data fusion in mobile ad hoc networks. In the third part

of our research, we propose an algorithm called K-reversal Link with token forwarding

(KRLF). KRLF is based on the KRL algorithm[4]. We show that KRLF provides

more concurrency than KRL such that a request to enter the critical section is granted

even if at most k − 1 processors are in the critical section forever.

C. Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter II presents our work

on clock synchronization in mobile ad hoc networks. Chapter III discusses the ran-

domized connected dominating set for mobile ad hoc networks. In Chapter IV, we

present our k-mutual exclusion algorithm, in which we will define a new property for

k-mutual exclusion. Chapter V concludes this dissertation and discusses future work.

6

CHAPTER II

CLOCK SYNCHRONIZATION IN MOBILE AD HOC NETWORKS

A. Motivation

Many distributed systems need synchronized clocks to work correctly For example,

bank transaction systems need synchronized clocks to do snapshots and transaction

commitment, and network protocols rely on synchronized clocks to measure message

delay. Clock synchronization is listed as a core service for middleware systems by the

Internet RFC ([10]).

Clock synchronization is also important in mobile wireless networks. As we

mentioned in chapter I, energy efficiency is one of the most important design issue

in wireless networks. MAC layer protocols for wireless networks are designed to put

the wireless interface into a “sleep” mode when there is no communication going on

in order to save energy. Wireless nodes wake up periodically to communicate with

each other ([11]). But in order to do that, each node should be aware when it should

wake up and start the communication. This requires clock synchronization. In sensor

networks, a key application is event monitoring in which a large number of sensors

are deployed in a designated area, and coordinate to monitor a certain event ([12]).

Usually the data observed by each sensor will be collected and correlated for further

analysis and processing, and synchronized clocks are critical for getting the correct

result.

Though the clock synchronization problem for wireless networks can be solved by

equipping each node with a device like a GPS receiver, a GPS receiver’s functionality

is limited due to its geographical constraints, high energy consumption and cost.

Therefore, studying clock synchronization algorithms for mobile ad hoc networks has

7

great significance.

The clock synchronization problem has been well studied in wired networks. Vari-

ous synchronization bounds have been derived under many message delay assumptions

and network topologies. NTP is the most widely deployed clock synchronization pro-

tocol in the Internet ([13]). However, mobile ad hoc networks bring new challenges to

many network protocols and services. Particularly for clock synchronization, mobility

can cause a pre-configured synchronization hierarchy (as in NTP) to become invalid.

Moreover, since messages between nodes usually traverse multiple hops and because

of the contention for the wireless communication medium among the mobile nodes,

the round trip time of a message is very hard to measure. These uncertainties make

the existing clock synchronization protocols and algorithms like NTP inapplicable in

mobile ad hoc networks. Researchers tried to develop some new clock algorithms that

overcome these uncertainties. Elson et al. ([6]) have proposed a clock synchronization

algorithm for wireless sensor networks called Reference Based Synchronization (RBS).

By taking advantage of the property of the physical layer broadcast communication

in the wireless network, RBS can achieve much higher accuracy for synchronization

than traditional synchronization schemes. But RBS only works within one broad-

cast domain, and the “time routing” method proposed in [6] for synchronization in

multiple broadcast domains does not work in the case of mobility.

In this chapter, we propose a new clock synchronization algorithm for multi-

hop mobile ad hoc networks. Our approach works in two tiers. First, we still take

advantage of broadcast like RBS does to synchronize the clocks within one broad-

cast domain. In synchronization of multiple hops, we use an approximate Minimum

Connected Dominating Set (MCDS). Only CDS nodes send out reference broadcast

messages, and synchronization is relayed between neighboring broadcast domains of

CDS nodes and extended to multiple hops. The size of the CDS generated by our

8

algorithm is within a constant factor of the optimal, and message complexity is linear

in the number of nodes in the network. Using a CDS greatly reduces the number

of broadcast messages for synchronization as compared with other algorithms like

[14]. In fact, our clock synchronization algorithm can be applied on any connected

dominating set. In the next chapter, we introduce a randomized CDS algorithm that

finds a larger CDS, but using fewer messages. Applying our clock synchronization

algorithm on the randomized CDS could give a larger synchronization error because

of the larger CDS size. We give an upper bound for our algorithm on how closely

clocks can be synchronized to the reference clock in the presence of clock drift and

mobility. Simulation shows that our approach can achieve very good synchronization

accuracy in the entire network.

The rest of the chapter is organized as follows. Section B discusses the related

work. In section C, we briefly review NTP and discuss the challenges which make

NTP not applicable in mobile ad hoc networks. System model and definitions are

given in Section D. Section E briefly introduces the Reference Broadcast Synchro-

nization (RBS). In Section F, we present our algorithm to generate and maintain

an approximate Minimum Connected Dominating Set (MCDS) in mobile ad hoc

networks. Section G discusses how to use the approximate MCDS and RBS to syn-

chronize clocks in multiple hops and the performance analysis. Simulation results are

presented in Section H.

B. Related Work

The clock synchronization problem has been well studied both theoretically and in

practice. Synchronization of physical clocks was first introduced by Lamport ([15]).

Algorithms have been developed for a variety of system models and failure assump-

9

tions. Upper and lower bounds on how closely the clocks can be synchronized have

been proved.

Lundelius and Lynch [16] prove an upper bound of u(1− 1
n
) on how closely clocks

can be synchronized in a fully connected network, where u is the uncertainty in the

message delay and n is the number of nodes in the network. Halpern et al. prove a

lower bound for an arbitrary network topologies with arbitrary symmetric message

delay uncertainties ([17]). Cristian studies the clock synchronization problem when

there is no bound for message delay and proposes a probabilistic clock synchronization

mechanism which achieves a better precision of estimating remote processor’s clock

with a high probability ([18]). [18] also shows that high precision of clock synchro-

nization requires more message exchange. Patt-Shamir and Rajsbaum study the best

synchronization that is achievable for a given message pattern ([19]), so it is quite a

different model, or approach, than the others.

In practice, NTP ([13]) has been widely used as the Internet clock synchroniza-

tion protocol. NTP has a self-organized hierarchical synchronization infrastructure

and is scalable to networks as large as the Internet. NTP uses unreliable unicast mes-

sage exchange (UDP) to synchronize clocks. Fine-grained statistical algorithms are

designed to filter messages with uncertain and large delays. Because of its robustness

and self configurablity, NTP has become the most widely used time synchronization

protocol in the Internet. According to a survey in 1999, NTP networks contains at

least 175,000 hosts ([20]), that does not include hosts behind firewalls or only run

NTP occasionally. Synchronization using global time sources like GPS in a broadcast

LAN is studied in [21]. [21] is the first work that uses physical layer broadcast to

synchronize computer clocks.

[22] and [6] study the clock synchronization in wireless networks using reference

broadcast, but none of the algorithms works in multi-hop mobile ad hoc networks.

10

Mitra and Rabek ([23]) propose a cluster service for clock synchronization in sen-

sor networks. The algorithm is similar to the cone-based topology control algorithm

proposed by [24]. In their work, they assume every node can sense the direction of

the incoming message, which is different with the system model in our research. [14]

proposes a probabilistic clock synchronization algorithm for sensor networks based on

RBS. [25] adopts a on-demanding strategy combining a push and pull mechanism to

avoid unnecessary clock synchronization. [26, 27, 28] study the time synchronization

in wireless sensor networks using unicast message exchange. [26, 27] use the same

message delay estimation technique as NTP. [28] bounds the drift and offset esti-

mation by a linear envelope. All of these algorithms synchronize clocks in multiple

hops by a spanning tree in the network. In another direction, Römer proposes a time

transformation function for multiple hop synchronization in [29].

[30] studies a new property called the gradient property in clock synchronization,

which requires the synchronization error between two nodes in the network to be a

function of the distance between the two nodes in terms of message uncertainty. [30]

gives a lower bound which indicates that clock synchronization is not a local property,

in that the worst case synchronization error between two nodes depends not only on

the distance between the two nodes, but also on the diameter of the network.

Our approach to synchronize clocks in multiple hop ad hoc networks is based on

the notion of a Minimum Connected Dominating Set (MCDS). A connected domi-

nating set (CDS) can serve as a virtual backbone for mobile ad hoc networks and is

widely used in broadcast and routing ([31, 32]). A CDS can reduce the number of

broadcast messages dramatically. However, finding the minimum connected dominat-

ing set in a general graph and in a unit disk graph1 are both NP-complete ([33, 34]).

1Unit disk graphs, defined in Section D, model the type of mobile ad hoc network
we consider.

11

Many approximation algorithms have been proposed to generate a dominating set in

general graphs ([35, 36, 37, 38]). Most of the algorithms reduce the problem of finding

a dominating set to a set cover problem. If the set has to be connected, some heuris-

tics are used to connect the set generated in the first stage. [37] gives two distributed

implementations of the algorithm of [36], both of which have approximation ratio

O(ln(∆)), where ∆ is the maximal degree of the graph. There are several algorithms

developed to approximate the MCDS in unit disk graphs ([39, 8, 40, 41]). Most of

these algorithms use the relationship between the size of the maximum independent

set and minimum connected dominating set proved in [39]. [39] and [8] both generate

an independent set and connect the set using a spanning tree. The approximation

ratios are both 8 times the optimal solution, and both of the algorithms end within

O(n) time, and have message complexity O(n log n). However, neither of the two

papers discusses how to maintain the approximate MCDS in the mobile situation.

1

2

1

2 2

3
3

Fig. 3. A Typical NTP Network Topology

12

C. Challenges for Clock Synchronization in Mobile Ad Hoc Networks

In this section, we briefly review the Network Time Protocol (NTP) and analyze

the challenges for synchronization techniques like NTP in mobile ad hoc networks.

As shown later in the chapter, our clock synchronization algorithm creates a syn-

chronization hierarchy that is similar to NTP. However, we use a broadcast based

synchronization scheme instead of unicast message exchange in NTP to reduce the

uncertainty in the synchronization.

Each NTP node has a variable called stratum indicating its distance to the top

of the hierarchy. At the top of the tree are the stratum 1 clocks, which are nodes

that have accurate time device (typically a GPS or WWVC receiver). Nodes that

synchronize to the stratum 1 clocks become stratum 2 clocks. Each NTP node select

a peer to synchronize with, and each node has several backup peers. All NTP nodes

form a hierarchical synchronization network which is similar to the Domain Name

Service in the Internet. Figure 3 illustrates a typical NTP network. Each node has a

synchronization peer (denoted in the solid line) in the NTP network, and has several

backup synchronization peers (in dash lines).

The basic procedure of synchronization in NTP is to use a two-way unicast

message exchange to synchronize the clock to its peer. As shown in Figure 4, when a

NTP node synchronizes its clock with its peer, it sends out a request message to the

peer, with the timestamp of request t1 in its own clock. When the peer receives the

request, it records the reception time of the request in its own clock t2, and sends a

response in t3, the node receives the response at t4 in its own clock. Assuming that

the clock drift and the propagation delay do not change in this small synchronization

time span, NTP calculate the clock offset of the NTP node to its synchronization peer

as (t2−t1)−(t4)−(t3)
2

. (t2 − t1)− (t4 − t3) indicates the difference in the message delay.

13

t3t2

t1 t4
NTP node

peer

Fig. 4. An Illustration of Message Exchange in NTP Synchronization

The accuracy of NTP is dependent on the uncertainty in the communication.

Kopetz et.al. characterizes the message delivery latency into four distinct components

in [42], which are defined as critical path:

• send time – the time spent at the sender to construct the message. This in-

cludes the time for kernel processing, context switches, and system call over-

head incurred by the synchronization application and is hence highly variable

depending on the current system load.

• access time – delay incurred waiting for access to the transmit medium. This

time depends on the MAC protocol in use and its methods to handle congestions.

Typical wireless MAC protocols like IEEE 801.11 networks exchange RTS/CTS

before the actual exchange of the message. Depending on the congestion in the

network, this waiting time is most significant in terms of the total delay latency.

• propagation time – the time needed for the message to transit from sender to

receiver. If the sender and receiver are in the same broadcast region, this time

is typically very small. This time can be approximately calculated by dividing

the distance between the sender and receiver by the speed of light. This time

is negligible compared to the other delays.

14

• receive time – processing required for the receiver’s network interface to receive

the message from the channel and notify the host of it arrival. If the time-stamp

of the reception can be done at a suitable low level, this delay can be made very

small, and more importantly, deterministic.

Because of the contention in the MAC layer, the uncertainty in message delay in

a mobile ad hoc network is much larger than that in the wired network. In addition, in

a mobile ad hoc network, the hierarchical structure of NTP synchronization network

is always violated by the frequent mobility of nodes. Therefore, synchronization

algorithms for wired networks like NTP is not applicable in mobile ad hoc networks. A

broadcast-based synchronization scheme is more applicable in mobile ad hoc networks,

as introduced later.

D. System Model and Definitions

In this section, we introduce the notation and system model we use throughout the

paper. First we model a mobile ad hoc network as a graph G = (V,E), in which

the set of vertices V represents the nodes in the network and the set of edges E

represents the links between nodes. We assume that each node in the network has

the same transmission power, so the network can be modeled as a unit disk graph,

which is an undirected graph whose vertices are points in the 2-dimensional plane

with an edge between any pair of nodes whose Euclidean distance is at most 1.

A dominating set D of G is a subset of V such that each node not in D has

at least one neighbor in D. We call the nodes in D dominators, and the nodes in

V − D dominatees. If the induced subgraph of D is a connected graph, then D is

called a Connected Dominating Set (CDS). A Minimum Connected Dominating Set

(MCDS) is a CDS that has the minimum cardinality. An independent set I of G is

15

a subset of V such that no nodes in I are neighbors. A maximum independent set

is an independent set that has the maximum cardinality. Notice that a maximum

independent set is also a dominating set, but not necessarily a minimum dominating

set.

An algorithm that returns near-optimal solutions of a problem is called an ap-

proximation algorithm. The relative error bound of an approximation algorithm is

defined as |C−C
∗|

C∗ , where C is the cost of the solution by the approximation algorithm,

and C∗ is the cost of the optimal solution. For many NP-complete problems, includ-

ing finding the minimum connected dominating set, approximation algorithms that

have a constant relative error bound and run in time polynomial in the size of the

input are desirable.

Each node Pi is assumed to have a hardware clock HCi(t), which is a function

from the real numbers (real times) to real numbers (the hardware clock times). We

assume that the hardware clock for a node Pi is within a linear envelope of the real

time. For all times t1 and t2, t2 > t1, (1 − ρ)(t2 − t1) ≤ HCi(t2) − HCi(t1) ≤

(1 + ρ)(t2 − t1), ρ is a constant positive constant. The node Pi cannot change its

hardware clock time; in order to set its clock, it alters an offset variable, offseti, which

is added to the hardware clock to produce the node’s virtual clock value. Formally,

the virtual clock V Ci(t) of Pi is equal to HCi(t)+offseti(t), where offseti(t) is the

value of the variable offseti at real time t. We assume there is a distinguished node

P0 equipped with GPS in the system whose clock serves as the “reference clock”.

The synchronization error of node Pi at time t is |V Ci(t) − V C0(t)|. The clock

synchronization problem with parameter γ is to update the offset variables at each

node Pi (other than P0) in order to bound the largest synchronization error by γ.

Obviously we would like γ to be as small as possible.

We make some assumptions about the behavior of the mobile ad hoc network G:

16

• Every node maintains its one hop neighbor information. We denote the neigh-

bor set as N . Neighbor information can be realized by each node periodically

broadcasting and gathering hello messages from its one hop neighbors.

• Every node in G has a unique id.

• A node can receive every broadcast message from its neighbors, which means

that broadcast message delivery is reliable. However, [31] shows that the de-

liverability of broadcast can go as low as 80% because of the hidden terminal

problem, the contention of the broadcast channel, and the noise. Reliable broad-

cast is not the topic we are focused on here. We also assume that a node can

receive all broadcast messages from neighbors within a finite time interval. We

call this the broadcast timeout interval.

E. Reference Broadcast Synchronization

For synchronizing clocks in a single hop, we use the Reference Broadcast Synchroniza-

tion (RBS) proposed in [6]. The goal of RBS is to eliminate the uncertainty in estimat-

ing remote clocks. As we mentioned earlier, due to the mobility and contention-based

communication in mobile ad hoc networks, the message delay is even more difficult

to measure than in the Internet. Instead of estimating the message delay as in tra-

ditional clock synchronization schemes like NTP, RBS takes an alternative approach

by taking advantage of the following property of the broadcast-based communication

medium: The difference in the reception time for the same broadcast message by two

nodes is very small in a wireless network. The reason is the relatively short distance

between nodes within a broadcast domain and the extremely fast propagation speed

of a wireless communication channel.

In a broadcast domain, there is a specific node sending out reference broadcast

17

Sender

Pi

Pj

Pn

.

.

.

Message process Channel access

Ti

Tj

Tn

Fig. 5. Reference Broadcast Synchronization

messages. Nodes inside the broadcast domain synchronize their clocks using the

reception time of the reference broadcast messages. RBS works as follows.

1. A node in the network periodically broadcasts reference beacons.

2. When a node in the broadcast domain receives a reference beacon, it records

its virtual clock value at the time of reception of the reference beacon.

3. Nodes exchange their virtual clock values for the reference beacon arrival time.

4. Each node calculates the offset from the other nodes using the virtual clock

values for the same reference beacon. As an example shown in Figure 5, node

Pi’s offset to Pj is V Ci− V Cj, where V Ci and V Cj are the virtual clock values

of Pi and Pj for the same reference beacon.

As shown in [6], by using the physical layer broadcast, the most uncertain part

for the synchronization, which is packet sending time and channel access time, is

eliminated. Now the only uncertainty affecting synchronization is the difference in

18

propagation time and the time spent to receive a reference beacon, which should be

very small in a wireless network. As a result, the accuracy of estimating the offset

between two nodes is much higher. [6] also shows that the difference in reception

time of the broadcast packet follows a Gaussian distribution with high confidence

statistically. By receiving multiple reference beacons and taking the average of the

difference in the reception time for multiple reference beacons, the variance of the

offset is smaller. Thus nodes can increase the precision of synchronization. Now Pi’s

offset to Pj is
1
m

∑m
k=1(Ti,k−Tj,k), where Ti,k is the time on Pi’s virtual clock when Pi

receives the kth reference beacon, and Tj,k is defined analogously for Pj. where m is

the number of reference beacons, Ti,k and Tj,k are the the reception times on virtual

clocks for the kth reference beacon by Pi and Pj respectively.

However, RBS only works within one broadcast domain. For multiple hops,

[6] proposes a “time routing” scheme by picking some special nodes to broadcast

reference beacons, such that the neighboring broadcast domains are guaranteed to

overlap. Since nodes that are overlapped by two broadcast domains can receive

reference beacons from both broadcast domains and calculate the offset of their clocks

to the nodes within all the nodes within the two broadcast domains, they can act as

the “time routing nodes” in the network. But [6] does not discuss how these special

nodes are selected or how to deal with mobility. In a mobile ad hoc network, since all

the nodes can move arbitrarily, the pre-selected special nodes can move so that there

is no overlap between their broadcast domains, making this approach infeasible. Our

work proposes a solution to the selection of these special nodes by using the connected

dominating set and synchronizes clocks in multi-hop ad hoc networks, as introduced

next.

19

F. Synchronization Backbone: Approximate MCDS

In this section, we introduce a distributed algorithm to approximate a minimum

connected dominating set (MCDS) in a mobile ad hoc network. As shown later

in Section G, we use the connected dominating set (CDS) to broadcast reference

beacons and synchronize the clocks in multiple hops. Each node in the CDS has a

layer variable indicating its hop distance to the root node of the network. The layer

variable is used for the clock synchronization as will be explained. Our algorithm can

achieve a constant approximation ratio in CDS size. Then we discuss how to maintain

the connected dominating set under mobility. We argue that our algorithm is more

suitable for clock synchronization because other algorithms with similar performance

([8, 39]) either are not adaptive to the mobility or do not have the layer information

needed for synchronization. [43] generates a CDS whose size is within a constant

factor of the optimal and is able to adjust to mobility, but the algorithm is fairly

complicated and it requires neighbor information up to three hops, which is hard to

achieve in highly mobile networks.

1. The Algorithm

Our algorithm is executed in a distributed fashion. Every node in the network runs

a copy of the algorithm. The pseudo-code of the algorithm is shown in Figure 6.

Each node Pi has these local variables:

• state: The current state of the node, the state of a node can be active, inac-

tive, dominator or dominatee. Initially state is set to inactive.

• layer: The shortest hop distance from Pi to the root P0 in the spanning tree.

• dominator: the dominator of the current node.

20

• inactive degree: the number of inactive neighbors of the node.

• N : Pi’s neighbor set. A set of tuples (id, state, layer, inactivedegree) which

stores Pi’s neighbors’ id, state, layer and inactive degree. We define sev-

eral operations on N . N [i] returns the tuple in N in which i = id. N.id,

N.state, N.layer and N.inactivedegree return the set of id, state, layer and

inactivedegree of N , and N [i].j is the element j of the tuple N [i]. N is initially

empty.

Our algorithm finds an approximate MCDS by generating a spanning tree in

the network. Every node has a layer in the tree which indicates its shortest hop

distance to the root node P0 in the tree, whose layer is 0. Every node except P0 has

a dominator in the tree which is the parent of the node in the tree. The dominator’s

layer is one less than the layer of the node. The algorithm starts by the root node

P0 setting its state to dominator and broadcasting a dominator message to all its

neighbors. After each neighbor node receives a dominator message, it sets its state

to active, its layer to one plus the layer of the sender of the dominator message,

and broadcasts an active message. After each active node receives the active mes-

sages from all its active neighbors, it will calculate the number of neighbors which

are not active, and broadcast an inactive degree message. We assume that a node

can receive all broadcast messages from neighbors within a finite time interval. We

call this the broadcast timeout. After a broadcast timeout, the node which has the

maximum inactive neighbors among all its active neighbors will be set to a domi-

nator. If two neighbor nodes have the same inactive degree, the one with smaller id

will become a dominator. If a node is not selected as a dominator at first, it will

continue to compare the inactive degree with its newly found active neighbors and

make the decision again. If it doesn’t have any inactive neighbors, it will become a

21

dominatee. A node may receive dominator messages from all its neighbors, it sets

its own dominator to the neighbor which has the minimum (layer, id) tuple, and its

layer to be one greater than the layer of its dominator.

Code for P0:

1 layer ← 0;

2 state ← dominator;

3 broadcast(dominator, P0, layer);

Code for Pi:

recv(dominator, q, layer)

1 N [q].state ← dominator;

2 N [q].layer ← layer;

3 if(state == inactive) {
4 state ← active;

5 broadcast(active, Pi);

6 wait a broadcast timeout;

7 }

recv(active,q)

8 if(Pi.state == active and N [q].state == inactive)

9 {
10 inactive degree← inactive degree− 1;
11 }
12 N [q].state ← active;

recv(inactive degree, q, inactdgr)

13 N [q].inactivedegree ← inactdgr;

at broadcast timeout

14 dominator ← dominator neighbor with the minimum (layer, id);
15 layer ← N [dominator].layer + 1;
16 inactive degree ← number of inactive neighbors;

17 if (inactive degree == 0) state ← dominatee;

18 if(the first broadcast timeout after Pi’s state change to active)

19 {
20 broadcast(inactive degree, Pi, inactive degree);

21 wait a broadcast timeout;

22 }
23 else if (Pi has the maximum (inacitve degree, id) among its active neighbors)

24 {
25 state ← dominator;

26 broadcast(dominator, Pi, layer);

27 }
28 else wait a broadcast timeout;

Fig. 6. Pseudo-code of the Approximate MCDS Algorithm

22

2. An Example of the Algorithm

Figure 7 illustrates an execution of the algorithm. In the graph, the numbers are the

IDs of the nodes, node 0 is the root node. The solid lines are the edges of the graph

induced by the resulting approximate MCDS, such that if there are two dominator

nodes Pi and Pj, and Pj sets its dominator to Pi according to the algorithm, there is

a solid line linking Pi and Pj. The dashed lines are the other edges of the graph.

• Initially, node 0 sets its state to dominator and broadcasts a dominator

message to its neighbors. We mark the dominator nodes black. Nodes 8, 1 and

3 receive the dominator message and set their states to active, which we mark

with gray. The above procedure is shown in Figure 7(a).

• At the first broadcast timeout after the sending of the active message, nodes 8,

1 and 3 receive active messages from all their neighbors and calculate their own

inactive degree. Nodes 8 and 3 become dominator after another broadcast

timeout because they have the maximum inactive degree among their active

neighbors. Then 8 and 3 broadcast dominator messages, which will make

node 4, 10, 5 and 2 set their states to active. After this phase, the dominator

set is {0, 3, 8} and active nodes are {1, 4, 10, 5, 2}. The result is shown in

Figure 7(b).

• When receiving active messages within a broadcast timeout, the active nodes

1, 4, 10, 5, 2 broadcast inactive degree messages and compare their own

inactive degree with the inactive degrees of their active neighbors. As a re-

sult, nodes 4, 5, 2 become the dominators and broadcast dominator messages,

making nodes 6, 9, 7, 11 set their states to active. Node 1 finds it has no in-

active neighbors, so 1 sets its state to dominatee. Node 10 remains in the

23

Fig. 7. An Example of the Execution

active state. After this phase, the dominator set is {0, 3, 8, 4, 5 ,2}, active

nodes are {10, 6, 9, 7, 11}, and the dominatee set is {10}. This is shown in

Figure 7(c).

• After broadcast timeout, every active node (10, 6, 9, 7, 11) finds it has no

inactive neighbors, so they all set their states to dominatee, the dominator

nodes are {0, 3, 8, 4, 5, 2}, and the dominatee nodes are {1, 10, 6, 9, 7, 11}.

The finding of the approximate MCDS ends as Figure 7(d).

24

3. Correctness and Performance Analysis

In this section, we analyze our algorithm. We first prove that the algorithm finds a

connected dominating set, and then we prove that the size of the connected dominat-

ing set generated by our algorithm is within a constant factor of the MCDS. Also, we

show that the time and message complexity of the algorithm are both linear in the

number of nodes in the network.

Theorem 1 Our algorithm generates a connected dominating set.

Proof. To prove this, we first show that eventually, all the nodes in the network with

the state dominator form a dominating set, which means every node in the network

will have at least one neighbor whose state is dominator. From the pseudo-code, if a

node has the maximum inactive degree among all its active neighbors, it will be added

into the dominating set. Otherwise, the node is going to wait for another timeout and

then decides if it’s going to be a dominator by comparing its inactive degree with

its neighbors. Eventually, the node will either become a dominator or a dominatee.

Every dominatee will have at least one dominator neighbor.

Next we show that the set is connected. Since every node in the resulting domi-

nating set is set by changing its state from active to dominator (except P0), and every

active node has a dominator, this indicates that every dominator will have at least

one neighbor which is also a dominator, so the resulting dominating set is connected.

Lemma 1 In every broadcast timeout, the newly generated dominators are indepen-

dent.

25

Proof. At each timeout interval, a node will compare the number of its inactive

neighbors to all its neighbors, and sets itself to dominator if it has the maximal

inactive neighbors. Since we break ties using node id, this eliminates the possibility

that two neighbor nodes become dominator at the same time.

To prove the constant factor of approximation, we rely on the result of [39], which

shows the relation between the size of a minimum connected dominating set and the

size of a maximum independent set.

Lemma 2 In a unit disk graph, the size of a maximum independent set is at most

4× opt+ 1, where opt is the size of a minimum connected dominating set.

Proof. The detailed proof is given by Alzoubi et.al. in [39], which basically finds

the largest possible independent set given any MCDS and uses the fact that a single

node in a unit disk graph can have at most 5 independent neighbors. Here we assume

that the network topology does not change during the generation of the approximate

MCDS. Note this assumption is only for the convenience of the approximation ratio

analysis. As we show later in this section, the heuristic we propose is able to maintain

the connectivity of the dominating set in the presence of mobility, but the size of the

CDS in a mobile situation may not be within the bound we prove.

Theorem 2 The size of the connected dominating set generated is at most 8×opt+2.

Proof. To prove this, we use the result of Lemma 2 , which quantifies the rela-

tionship between the size of a maximum independent set and the size of a minimum

connected dominating set.

Let S be the dominator set that our algorithm finds. We divide S into two

subsets S1 and S2. S1 is the set of nodes that are directly generated at the first

26

broadcast timeout after changing their states to active, S2 is the set of nodes that

are generated by taking extra timeout (see line 28 of the pseudo code in Figure 6),

which means they are not selected as the member of the connected dominating set

at first because there are neighbors which have larger inactive degree. We further

divide the nodes in S1 according to their value of the layer into odd layers and even

layers, denoting as Sodd
1 and Seven

1 .

Now we claim that Sodd
1 and Seven

1 are two independent sets. This is easy to

verify. Each node in Sodd
1 is selected as a dominator at the first broadcast timeout

after its state changed to active, which means it doesn’t have any neighbor belong in

Sodd
1 , so Sodd

1 is an independent set. The same argument holds for Seven
1 .

Then we look at a node Pj in the set S2. Without loss of generality, we assume

Pj is in an odd layer. Pj is not selected for the dominating set at first because it

has at least one neighbor, say Pi, that has more inactive neighbors. Pj is selected for

the dominating set later because there are still neighbors which are not activated by

the neighbors of the same layer or the next layer. We pick a node from these, Pk.

Note Pk and the nodes in Sodd
1 are independent. Let R = Sodd

1 ∪ {Pk}. According to

Lemma 2, we have |R| ≤ 4×opt+1. We then replace Pk by its dominator Pj, and

we get |Sodd
1 ∪ {Pj}| = |R|. If Pj is in Seven

1 , we also have the same argument. So we

have at most 2× (4×opt+1) = 8×opt+2 nodes in our connected dominating set.

Theorem 3 The message complexity of the algorithm is O(n log n), and the time

complexity is O(n).

Proof. In the algorithm, every dominator node broadcasts three messages, active,

inactive degree and dominator message, except the root node, which only broadcasts

dominator messages. The dominatees only broadcast a constant number of active

and inactive degree messages. Since each message only includes a node’s state, id

27

and degree, each message is O(log n) bits, so the message complexity is O(n log n).

The approximate MCDS found by our algorithm induces a spanning tree in the

network. Since at least one new dominator node is found in every two broadcast

timeouts and there are n nodes in the network, the time complexity of finding an

approximate MCDS is O(n).

4. Maintaining the CDS in the Presence of Mobility

In a mobile ad hoc network, each node can move around with an arbitrary speed and

direction. Due to the mobility, the existing connected dominating set may become

disconnected or redundant. In this section, we discuss how to maintain a connected

dominating set dynamically. We assume that the mobility does not cause a partition

of the network, otherwise a connected dominating set is not possible. Our goal here

is to keep the size of the dominating set small and keep it connected.

The update procedure works as follows.

• When a dominatee node moves and is not the neighbor of its original dominator,

as long as it has dominator neighbors, it resets its dominator to the one with

the minimal (layer, id) value. In this case, the dominating set is not changed.

• When a dominator node loses connection to its dominator, as long as it has

a dominator neighbor whose layer is less than its own, it still maintains its

dominator state and sets it dominator to the dominator neighbor with the

minimal (layer, id) and its layer to 1 plus the new dominator’s layer.

• When a dominator or a dominatee node moves and has no dominator neighbor,

it will choose a neighbor with the minimal (layer, id) as its new dominator

and send out a notification to that neighbor. After receiving the notification

message, the neighbor will become a dominator node.

28

• At each broadcast timeout, if a node finds it has no neighbors setting itself

as the dominator, which means all of its neighbors have other dominators, it

changes to a dominatee.

As shown in the above procedure, if a dominator is not the neighbor of its original

dominator, as long as it has a dominator neighbor, it only takes one broadcast timeout

interval to get the CDS reconnected. Dominatee moves do not impact the connectivity

of the CDS. The worst situation is when a dominatee moves and it has no dominator

neighbors. In this case, the node will request one of its neighbors to be a dominator,

and it will take two broadcast timeout interval to reconstruct the CDS. As shown in

section H, our heuristic can keep down the size of the CDS by eliminating redundant

dominators from the CDS.

G. Multi-hop Synchronization

1. The Algorithm

Our clock synchronization algorithm works in two tiers. For synchronization in mul-

tiple hops, we use the approximate MCDS generated in section F as a hierarchical

synchronization infrastructure. The layer of the GPS node is 0. Inside a broadcast

domain of a CDS node, we still use RBS. Synchronization is started by the root node

broadcasting reference beacons and is propagated along the spanning tree induced by

the approximate MCDS. Each node in the first layer synchronizes its clock with the

GPS node after receiving the reference beacon from first layer CDS nodes.

Figure 8 illustrates a synchronization graph for a mobile ad hoc network. Every

dominator node has a broadcast domain represented by a disk, and a layer is assigned

to each broadcast domain by the approximate MCDS algorithm. The solid lines are

the edges between dominator nodes. The dotted lines represent the synchronization

29

�

�

�

��

�

�

�

�

Fig. 8. A Synchronization Graph for a Mobile Ad Hoc Network

inside the broadcast domain of the dominator nodes. The pseudo-code of the clock

synchronization algorithm is shown in Figure 9. Recall that we denote by V Ci the

virtual clock of a node Pi, and by offseti the offset variable of Pi. The procedure of

clock synchronization is as follows.

1. The root node P0 broadcasts m reference beacons in sequence to all its neigh-

bors. The layer of the dominator node is also included in the reference beacons.

Note that m is a parameter that can be adjusted.

2. All the nodes within the broadcast domain receive the reference beacons from

a dominator. Each records the reception times on its virtual clock for each of

the m reference beacons.

30

3. If a node’s layer is less than the layer of the dominator, it sends its reception

time (on its virtual clock) for each of the m reference beacons back to the

dominator node. For the first layer, the GPS node sends its reception time of

the GPS clock for each of the reference beacons back to the dominator node.

4. For each k, 1 ≤ k ≤ m, after the dominator node receives all the reception times

from its neighbors with lower layers or from the GPS node for the kth reference

beacon, it broadcasts the average of the virtual clocks to all its neighbors as a

reference clock for the kth reference beacon.

5. The node dominated by the dominator node receives all the m reference clocks

from the dominator and calculates its m offsets to each reference clock. Then

it sets its offset to be the average of the offsets. If it is a dominator node, it

broadcasts m reference beacons and synchronizes the clocks of the nodes in the

next layer using the procedure above.

As we see from the above procedure, the nodes with higher layers use the re-

ception time of lower layer nodes to calculate their clock offsets and achieve synchro-

nization. The nodes in lower layers can achieve more accuracy in synchronization

than the nodes in higher layers. This approach creates a layered synchronization

network similar to NTP. Meanwhile, the high accuracy in synchronization using ref-

erence broadcast is preserved and extended to the whole network through the CDS.

But since only CDS nodes send reference beacons, the number of broadcast messages

is lowered, and the synchronization infrastructure is adaptive to mobile situations.

Also notice that our synchronization algorithm can be easily integrated with

the other CDS algorithms used by many backbone based routing algorithms. If

the reference beacons can be piggybacked in other packets for routing purposes, the

overhead of the clock synchronization is reduced even further.

31

Code for P0:

start clock synchronization

1 for (seqno from 1 to m)

2 broadcast(Reference Beacon, 0, seqno);

Code for a dominator node Pi:

recv(Reference Ack, V Cj, seqno) from Pj

1 Reference Clock[j, seqno] ← V Cj;

2 if(received Reference Acks from lower layer neighbors or GPS node

for the seqnoth reference beacon)

3 {
4 avg ← Average(

∑
k
Reference Clock[k,seqno]),

such that Pk is a lower layer neighbor or the GPS node

5 broadcast(Reference Clock, avg, seqno);

6 }

Code for a node Pj:

recv(Reference Beacon, l, seqno) from Pi

1 if(layer < l)

2 send(Reference Ack, V Cj, seqno) to Pi;

3 else if(Pi is my dominator)

4 reception time[seqno] ← V Cj;

recv(Reference Clock, avg, seqno) from Pi

5 if(Pi is my dominator)

6 {
7 offset[seqno] ← reception time[seqno]− avg;

8 if(received reference clocks for all m reference beacons)

9 offsetj ← 1

m

∑m

k=1
offset[k]

10 if(I am a dominator node)

11 for(seqno from 1 to m)

12 broadcast(Reference Beacon, layer, seqno);

13 }

Fig. 9. Pseudo-code for Clock Synchronization Algorithm

Our algorithm also can be modified easily for synchronizing a subset of the nodes

only, in which CDS nodes act as the “time routing” nodes in [6] for the time trans-

formation. In this case, only CDS nodes in the time routing path broadcast syn-

chronization beacons. This will also reduce the number of broadcast messages when

network-wide synchronization is not necessary.

32

2. Performance Analysis

In this section, we analyze the relation between the synchronization error and layer.

As we mentioned earlier, a node’s layer is the number of hops to P0, which is main-

tained in our approximate MCDS algorithm. We first assume the synchronization

error within one broadcast domain is bounded by σ using RBS. This assumption is

justified by [6], in which the authors observe that the variance of the reception time

of a reference beacon by nodes within the same broadcast domain follows a normal

distribution with average of 0 and variance of 11.1 µsec with confidence level of 99.8%.

For each k ≤ 1, We define δk(l) to be the maximum synchronization error immedi-

ately after the kth resynchronization is finished for any node Pi such that Pi is in

layer l. First, without considering clock drift, we show that δ1(l) increases with l as

follows.

Theorem 4 If each di=1, δ1(l) is at most σ × d l
2
e.

Proof. According to our algorithm, suppose a dominator node of layer l broadcasts

a reference beacon. The nodes at layer l − 1 will send their reception times back to

the dominator and these reception times will be used to synchronize the clocks of the

dominatees at layer l + 1. Given that the nodes in layer l − 1 have synchronization

error bounded by δ1(l−1), the synchronization error of the l+1 layer nodes is bounded

by δ1(l+1) ≤ δ1(l− 1)+ σ. Nodes in the first layer synchronize their clocks with the

GPS node, so δ1(1) ≤ σ and δ1(0) = 0. Putting the two claims above together, we

get the synchronization error of a layer l node, δ1(l), is at most σ × d l
2
e.

Now we analyze δ(l) with clock drift. Due to the clock drift, the clock value in

each node will drift apart after synchronizing the upper layer nodes. To analyze the

synchronization error with clock drift, we bound the time for the synchronization in

33

one broadcast domain by β. β is reasonably small (within a few seconds) considering

that only a few messages are sent by each node in a single broadcast domain.

Theorem 5 With clock drift, δ1(l) is bounded by (σ + ρβ)× d l
2
e.

Proof. In our algorithm, after a dominator node in layer l broadcasts a reference

beacon, the nodes at layer l−1 will send their reception times back to the dominator,

but due to the clock drift, the synchronization error of the layer l − 1 nodes will

increase after the synchronization with upper layer nodes. Since the drift rate is

bounded by ρ, the maximum synchronization error of the layer l−1 nodes during the

synchronization with the nodes in layer l+1 is at most δ1(l− 1)+ ρβ. Therefore, the

synchronization error of the l+1 layer nodes is bounded by δ1(l+1) ≤ δ1(l−1)+ρβ +σ.

Since δ1(0) = 0 and δ1(1) ≤ σ + ρβ, we have δ1(l) ≤ (σ + ρβ)× d l
2
e.

As clock drifts are always subject to environmental changes, it is necessary to

resynchronize clocks periodically. A resynchronization begins when P0 broadcasts a

reference beacon. We assume that P0 starts resynchronizations periodically, with a

period of τ as measured on its clock. Since P0 is assumed to have a perfect clock, τ

is also the amount of real time that elapses between resynchronizations. A sequence

number for each synchronization round is included in the reference beacons. Now we

analyze the synchronization error for a node Pi between the two consecutive resyn-

chronizations. Suppose Pi is in layer l at the kth resynchronization, and Pi is in layer

l′ at the k+1th resynchronization. Due to the mobility, l′ is not necessarily the same

as l.

Theorem 6 Suppose node Pi is in layer l during the kth resynchronization round and

is in layer l′ during the k+1th resynchronization round. Then the maximum synchro-

nization error experienced by Pi between the kth and the k + 1th resynchronizations

is at most δk(l) + ρ(τ − lβ + l′β).

34

t k

tx t
k+1

y

t
GPS node starts resynchronization GPS node starts resynchronization

Pi resynchronizes clock in layer l Pi resynchronizes clock in layer l’

Fig. 10. A Resynchronization Round

Proof. As shown in Figure 10, after the GPS node starts the kth resynchronization

round at real time tk, Pi finishes synchronization at real time tx. As Pi is in layer l and

the time for synchronization in each layer is bounded by β, tx is bounded by tk+lβ. At

the k+1th resynchronization round, which starts at real time tk+1, Pi is in layer l′ and

Pi finishes its resynchronization at real time ty. Note that ty ≤ tk+1+l′β. Thus ty−tx,

the amount of real time that elapses between subsequent resynchronization by Pi is

at most (τ + l′β− lβ). As clock drift is bounded by ρ, the error caused by clock drift

before the next resynchronization is at most ρ(τ− lβ+ l′β). Pi’s synchronization error

at the kth resynchronization is by δk(l). Therefore, the maximum synchronization

error before the next resynchronization is δk(l) + ρ(τ − lβ + l′β).

In the worst case, l′ is n− 1, which is the highest layer, and Pi’s synchronization

error after the k+1the resynchronization is δk(l) + ρ(τ + (n− 1− l)β). By induction

from Theorem 5 and Theorem 6, the upper bound of δk(l) is a monotonic increasing

function. However, this upper bound may not be tight. Our intuition is that after

each resynchronization, a nodes adjusts its virtual clock value according to the offset

computed at the resynchronization, which prevents the continuous increase of the

clock offset. As shown in the simulation, the synchronization error after each resyn-

chronization is within a certain range, which is consistent with our intuition. Deriving

a tight upper bound for our algorithm is left for future work. Also notice that our

result is related to the synchronization error after each resynchronization, which is

35

different than the the result of [30], which gives a lower bound on the worst case

synchronization error for any two node in the network at any time, stating that the

worst case the synchronization error is a global property depending on the diameter

of the network.

H. Simulation

In this section, we describe the results of simulating our clock synchronization al-

gorithm in a mobile ad hoc network. First, we compare the performance of our

approximate MCDS algorithm with the MinID and MaxDegree algorithms presented

in [8]. The reason we pick the algorithms in [8] is that both of the algorithms in [8]

also have an approximation of 8 to the optimal solution in the unit disk graph model,

which are the best algorithms developed in the literature so far. Both MinID and

MaxDegree assume a spanning tree with a root node in the network, and compute

the CDS based on each node’s id or degree. The two algorithms proposed in [39]

also have constant approximation ratio, but [8] also shows that the algorithms in [8]

outperform the algorithms in [39] in simulation. So in this work, we only compare

our algorithm with [8].

We then simulate our clock synchronization algorithm using the approximate

MCDS generated by our algorithm. As a comparison, we simulate a synchronization

scheme similar to NTP in a mobile ad hoc networks in [44]. The synchronization error

with that scheme is within the scale of 10−3 seconds, whereas our synchronization

scheme is much better in terms of synchronization error.

36

1. Simulation Model

The simulation is implemented using the ns-2 network simulator from USC/ISI/LBNL

[45], with wireless extensions from the CMU Monarch project [46]. IEEE 802.11 is

the MAC layer protocol. For every wireless node, the bandwidth is 2Mbps and radio

transmission radius is 250 meters. We set the initial position of every wireless node

randomly in a 1000 × 1000 meter simulation box. The number of nodes varies from

25 to 200, which covers the typical simulated scenarios for a mobile ad hoc network.

All of the algorithms are implemented in the agent layer. The agents use DSR

as the routing protocol. A neighbor discovery agent is implemented to maintain

the latest neighbor information. The neighbor discovery agent sends and receives

HELLO messages to neighbors using MAC layer broadcast at a hello timeout. The

hello timeout is set to 2 seconds in this simulation. The mobility pattern follows

the Random Way Point (RWP) model of the ns-2. We simulate nodes moving with

average speed of 5, 10 and 15 meters per second. For each speed, we create 5 random

mobility files, each of which is 1000 seconds long.

For synchronization, we set the parameter m to 3, which is similar to [6]. Every

node is initialized with an offset value randomly chosen between -0.001 and 0.001

seconds. First, we simulate our algorithm with zero drift. The node’s clock value is

the sum of the clock of the ns-2 simulator and the offset. The results are relevant to

the behavior of the algorithm after a single resynchronization. Then we simulate with

non-zero drift, the results are relevant to the behavior of the algorithm in the long

run. The GPS node’s clock value is set equal to the clock value of the ns-2 simulator

(thus has offset 0).

37

2. Simulation Results

As mentioned earlier, the size of the connected dominating set is the most important

factor of the approximate MCDS algorithm. A smaller connected dominating set

means that fewer broadcast messages are sent. Furthermore, reducing the number of

dominators reduces the number of layers, and thus the bound in Theorem 5 is smaller.

We also measure the size of the connected dominating set maintained under different

average moving speeds of the nodes in the network. In measuring the CDS size, we

take the snapshot of the network by having each node report its status (dominator

or dominatee) periodically after the CDS is generated. The CDS size is calculated

by counting the number of dominator nodes. Each plotted point is the average of 30

snapshots, which is shown in Figures 11 - 12.

0

2

4

6

8

10

12

14

16

18

20

25 50 75 100 125 150 175 200

Number of Nodes

A
ve

ra
g

e
C

D
S

 s
iz

e

Our Algorithm
MinID
MaxDegree

Fig. 11. Average CDS Size vs. Number of Nodes with No Mobility

Figure 11 shows the size of the approximate MCDS versus the number of nodes

with no mobility. As shown in Figure 11, the size of the connected dominating set

38

generated by our algorithm is smaller than that of the first algorithm in [8] and a

little bigger than that of the second algorithm in [8]. The curve of our algorithm

is similar to the second algorithm in [8]. The reason for the similarity in the size

of the approximate MCDS between our algorithm and the second algorithm of [8] is

that both of the algorithms use the degree of neighbors to determine the dominating

set, while the first algorithm of [8] only uses node id and layer information. The

average size of the dominating set in a 1000 × 1000 square meters simulation box

is around 13 in most of the simulation scenarios, which reflects the number of grid

squares (250× 250 square meters) covering the simulation box. And as shown in the

plot, the size of the connected dominating set does not increase as the number of the

nodes increases in the network. This indicates that the size of the dominating set

only depends on the area which the mobile nodes are within.

0

2

4

6

8

10

12

14

16

18

25 50 75 100 125 150 175 200

Number of Nodes

A
ve

ra
g

e
C

D
S

 S
iz

e

CDS size, average speed 0
CDS size, average speed 5
CDS size, average speed 10
CDS size, average speed 15

Fig. 12. Average CDS Size vs. Number of Nodes with Mobility

Figure 12 shows the approximate MCDS sizes under different average speeds. As

39

expected, the size of the CDS with high speeds is bigger than the size with low speeds.

However, the maintenance heuristic eliminates the redundant dominator nodes which

do not have any dominatees while choosing new dominators, which keeps the size of

the CDS from increasing unreasonably in the mobile case.

For synchronization, we measure for each layer, the average synchronization error

after synchronization is complete, taken over all the nodes in that layer. We also

measure, for each layer, the difference between the largest and smallest virtual clock

in that layer, which we call the synchronization variance.

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

3.50E-07

4.00E-07

1 2 3 4 5 6
Layer

S
yn

ch
ro

n
iz

at
io

n
 E

rr
o

r
(s

ec
o

n
d

s)

Average speed 0 m/s
Average speed 5 m/s
Average speed 10 m/s
Average speed 15m/s

Fig. 13. Synchronization Error vs. Layer with No Drift

Figure 13 and Figure 14 are the simulation results with no clock drift. Each

plotted point shown in Figures 13 - 14 is the average of 50 executions. Figure 13

shows the synchronization error under different average speeds. The curve of the fig-

ure does not show the relation between synchronization error and layer as described

in Theorem 5. This is because Theorem 5 provides a worst case bound, and the

40

0.00E+00

2.00E-07

4.00E-07

6.00E-07

8.00E-07

1.00E-06

1.20E-06

1.40E-06

1 2 3 4 5 6
Layer

S
yn

ch
ro

n
iz

at
io

n
 V

ar
ia

n
ce

 (
se

co
n

d
s)

Average speed 0m/s
Average speed 5m/s
Average speed 10m/s
Average speed 15m/s

Fig. 14. Synchronization Variance vs. Layer with No Drift

error in most situations does not increase as much as in the worst case. However, the

synchronization error does increase as the layer number increases, and the synchro-

nization error in higher average speeds is bigger than that in lower average speeds.

The synchronization error is within the scale 10−7 seconds, which is smaller than the

result in [6]. The reason is that the difference in the reception times of a reference

beacon in the ns-2 simulator is smaller than that in the real experimental platform

used in [6]. The synchronization error and variance in a real mobile ad hoc network

could be larger than our simulation results.

Figure 14 shows the synchronization variance versus the layer under different

average speeds. As shown in Figure 14, the synchronization variance increases as the

layer increases, and synchronization variance for higher layer nodes is bigger than for

lower layer nodes. This is consistent with the statistical property of the RBS men-

tioned in [6]. However, the curve for the case with average speed of 15m/s does not

41

show the increase in synchronization variance as expected. This is because the syn-

chronization is done at the same time as the update of the approximate MCDS. Since

nodes move fairly fast in this case, some nodes may have outdated layer information

during the synchronization.

Fig. 15. Synchronization Error vs. Layer with Drift

We also simulated our algorithm with clock drift. We model each node’s clock

drift rate as a uniform random function between (1−10−6, 1+10−6). At the beginning

of each resynchronization, each node calculates its new clock drift according to the

uniform random function. The average speed in the simulation is 5m/s. Resynchro-

nization interval is set to 40s. Simulation runs in 1000 seconds. The plotted data

is an average of 20 runs. In our simulation, we calculate the synchronization error

after each resynchronization. Figure 15 shows the synchronization error in different

layers. Note that the synchronization error increases with the layer number, which is

the same trend observed in Figure 13. Our algorithm still keeps the synchronization

42

error within 10−6 seconds after the resynchronization. The synchronization error after

each resynchronization does not increase as compared to Figure 13 because the main

factor that impacts the synchronization error is the difference in the reception of the

broadcast messages, which are the same in both cases.

43

CHAPTER III

A RANDOMIZED CONNECTED DOMINATING SET ALGORITHM IN

WIRELESS AD HOC NETWORKS

A. Introduction

In Chapter II, we use a connected dominating set as the synchronization backbone

to broadcast reference beacons and relay the synchronization hierarchically In fact,

the usage of a connected dominating set can go far beyond clock synchronization.

For various applications such as routing ([47]), broadcasting ([41]) and information

gathering ([48]), a connected dominating set (CDS) often serves as a virtual backbone.

Having a virtual backbone provides a relatively stable topology in the network and

reduces a great number of routing request messages. However, since all network nodes

are free to move, the connected dominating set has to be recomputed every so often to

keep its size small and maintain connectivity. Developing ways to find and maintain

a connected dominating set will have a great impact in mobile ad hoc networks.

Although many existing algorithms can find a connected dominating set whose

size is within a constant ratio of the optimal, it is often expensive in terms of messages

and time to maintain the connected dominating set in the presence of mobility. In

addition, since backbone nodes usually do more transmission and computing than

other nodes in the network, they consume more power. Having a fixed set of nodes

act as the backbone will make the battery of these nodes be consumed much faster

than the other nodes, and as a result, disconnect the network. To extend the network

lifetime, it is desirable to let all nodes in the network share the responsibility of being

in the connected dominating set by switching nodes in and out of the connected

dominating set, while at the same time keep the size of the CDS small.

44

In this chapter, we present an algorithm to randomly construct and maintain a

connected dominating set in mobile ad hoc networks. Each node runs the algorithm

periodically to determine whether it is a CDS node based only on its local information.

Our algorithm periodically switches the connected dominating set nodes by selecting

new nodes for the CDS and removing nodes from the old CDS. A random delay

function is used for the selection of such new nodes to keep the size of the newly

selected set small. The random delay function ensures that newly selected CDS

nodes have the most remaining battery power with high probability. By periodically

switching CDS nodes, our algorithm makes the energy consumption of the CDS evenly

distributed among all nodes in the network, thereby extending the network lifetime.

Meanwhile, the size of the CDS found by our algorithm is small enough for efficient

routing and the number of messages sent by our algorithm is fewer than that in the

existing algorithms. Simulation shows that our algorithm has good performance in

terms of the CDS size and number of messages.

The remainder of the chapter is organized as follows. In Section B, we review

the related work on connected dominating set and energy-efficiency design in wireless

ad hoc networks. The system model and assumptions are discussed in Section C.

Section D presents our randomized CDS algorithm. In section G, we discuss a further

optimization on the result of our algorithm. In particular, we discuss the efficiency of

a routing algorithm based on the randomized connected dominating set. Section E

discusses how to recompute the CDS. Simulation results are shown in Section F.

B. Related Work

A connected dominating set is widely used as a virtual backbone in wireless ad hoc

networks. [47, 49, 32] show through simulation that routing on a connected domi-

45

nating set can reduce the number of routing request messages significantly. [31] and

[50] both study the problem of broadcasting in wireless networks, and both point out

that using a dominating set based broadcast can reduce the number of redundant

broadcast messages. [48] uses a backbone which is a connected dominating set in

essence to manage distributed data in a wireless network.

The connected dominating set problem has been extensively studied both in

general graphs and in unit disk graphs, which are commonly used to model wireless

networks. Some related work on connected dominating set has been discussed in

Chapter II ([37, 36, 51, 39, 8, 41, 40]). As finding the Minimum Connected Dominat-

ing Set (MCDS) is an NP-complete problem ([33, 34]), all algorithms above find an

approximate MCDS.

[52] first studied the issue of balancing clusters in a wireless ad hoc network.

The heuristic they proposed is based on a virtual id and timer for each node. No

analysis is given in their paper. [53] proposes a randomized algorithm called Span to

find and maintain the backbone nodes. Span uses a random delay function in each

node to decide whether it is a backbone node. The random delay function takes the

node’s remaining battery level and the number of pairs of nodes it can connect into

account. Our algorithm uses the random delay similarly, but in a much simpler form.

In [54], the network is divided into fixed grids. Nodes inside each grid switch between

sleeping and listening mode to forward messages. The grids are divided in a way such

that each pair of nodes inside a grid can communicate with each other directly. Our

algorithm is different in that we do not use the geographic information.

In another direction, many topology control protocols have been proposed to

adjust the transmission power in order to minimize the energy consumption and

achieve high performance ([55, 24]). The main idea of topology control is to adjust the

transmission power for each wireless node in order to generate a network topology with

46

certain properties. In particular, many geometric graphs are used for topology control

purposes, including relative neighborhood graph (RNG), Gabriel Graph (GG), and

Delauny triangulation, etc. These graphs have certain properties such as planarity

and low neighborhood cardinality that are attractive for communications in wireless

networks. However, there are some drawbacks in the power control algorithms. First,

most of the algorithms generate unidirectional links in the network, which makes most

of the existing routing algorithms inapplicable. In order to generate bidirectional

links, extra steps have to be taken which brings more complexity to the algorithms.

Second, the dependencies on volatile information, such as location information, signal

strength or angular positions, contribute to the instability of the topology control

algorithms based on power control ([56]). Third, it is hard to tell whether these

algorithms really benefit in terms of performance. Some researchers found that using

power control algorithms does not help the network throughput ([57]).

C. System Assumptions and Definitions

The system model is the same as Chapter II. A mobile ad hoc network is modeled

as a unit disk graph, and each node learns its neighbors by broadcasting HELLO

messages. We assume that each message is reliable delivered in the network, and there

is an upper bound in the message delay between two neighboring nodes, denoted as

T . Each node estimates the density λ locally by counting the number of different

nodes from which it receives HELLO messages. Also, each node is able to measure

its initial and remaining energy, denoted by EIi and ERi respectively.

D. The Algorithm

Our algorithm has four goals.

47

• First, it ensures that the algorithm quickly finds a connected dominating set

with relatively small size. Many existing algorithms ([51, 39, 8]) find a smaller

CDS, but the time and messages required to find the CDS are much larger.

Quickly finding a connected dominating set with relatively small size may be

more applicable in a highly mobile ad hoc network.

• Second, it uses few messages to find and maintain the CDS.

• Third, the algorithm adapts to the mobility efficiently both in terms of message

and time. A single movement of a CDS node should not impact the whole

network.

• Fourth, it periodically rotates the CDS nodes to allow each node to be a CDS

node every so often. This will distribute the energy consumption of the CDS

to all nodes in the network, achieving load balancing and energy efficiency.

The construction of the CDS has two steps. First, we find a maximal independent

set, then we select some nodes in the network to connect the nodes in the independent

set.

1. Finding a Maximal Independent Set

To find a maximal independent set, we can directly apply the algorithms in [51, 39,

8, 41, 40]. The differences between these algorithms are mainly in the criteria for a

node to be in the independent set according to their id, degree, etc.

Our algorithm uses the remaining energy level and id to determine the maximal

independent set. A node that has the maximum value of (Er, id) among all its neigh-

bors broadcasts a Dominator message. All nodes receiving the Dominator message

broadcast a Dominatee message. A node selects one of the neighboring nodes to be its

48

dominator, and broadcasts a Dominatee message. The Dominatee message includes

the id of the node and id of its dominator. After this step, all dominator nodes form

an independent set, and all other nodes in the network have at least one neighboring

node as a dominator. Figure 16 shows the formation of a maximal independent set in

a network. The tuple of each node i is its remaining energy level ERi

EIi
and its id i. In

the network, nodes 10, 9 and 7 are selected for the maximal independent set because

they have the largest ER among their neighbors.

(1, 10)

(0.7, 8)

(0.8, 11)

(0.5, 9)

(0.9, 9)

(0.6, 12)

(0.8, 7)

(0.5, 13)

(0.7, 6)

(0.4, 5)

(0.5, 3)

Fig. 16. Step 1: Finding a Maximal Independent Set

Lemma 3 After step 1, for each dominator u, there exists a dominator node v such

that the number of hops between u and v is 2 or 3.

Proof. We prove by contradiction. Pick a dominator node u in the network after

step 1. Suppose there is no dominator node within three hops of u. Find a path from

u to a dominatee node v which is three hops to u, denoted as (u, x, y, v), where x and

49

y are intermediate nodes in the path. Node y is a dominatee and has no dominator

neighbor. According to our algorithm, after step 1, each node should have at least one

neighboring node in the maximal independent set. Therefore, this is a contradiction.

2. Finding Connectors

After generating the independent set, the next step is to find a set of nodes called

“connectors”. These “connectors” will connect the independent set nodes, and the

two sets will join together as the connected dominating set.

Ideally, the number of connectors should be kept as small as possible, and the

messages sent by each node should be as few as possible. In [51], in order to select

such “connector” nodes, each dominatee node sends a request message with its id and

the ids of the dominator nodes it connects. If the node has the smallest id among all

dominatee nodes which connect the same pair of dominators, it will be a connector

node. We argue that if the nodes are dense enough in the network, a randomly picked

node can act as a connector. Such observation is also used in the design of cluster

algorithms as [58] and [54].

In [53], each node waits a randomized delay before announcing itself as a back-

bone node. If a node learns that one of its neighbors has already announced itself

as a connector node and it does not connect any additional pair of nodes, the node

will not change to a connector. The purpose of the random delay is to avoid the con-

tention in the announcement of connector and keep the number of connectors small.

The randomization is based on the remaining energy level and the number of pairs

of nodes that it can connect. However in order to calculate the random delay in [53],

each node should know whether all pairs of its neighbors can communicate directly

or through another connector.

50

The random delay used in our algorithm is similar to [53]. However, we do not

require that the node know all pairwise connections of the neighbors. Instead, we

use the geometric property of the unit disk graph to determine the random delay.

The only information that a node needs is the ids of the dominator neighbors and

the dominators of its neighbors, which can be acquired by listening to the HELLO

messages. The procedure for finding connectors for a dominatee node works as follows.

1. If a dominatee node i has more than one dominator neighbors or has a neigh-

boring dominatee whose dominator is different than itself, it waits a random

delay equal to the function Delay(i) (discussed later in this section).

2. After waiting the random delay without receiving any Connector message dur-

ing the delay, it broadcasts a Connector message, which includes its id, its

dominator neighbor list, and its neighbor’s dominators.

3. If a dominatee node is waiting for its random delay to end and receives a

Connector message from its neighboring node, if it learns that that node will

connect the same set of dominators as itself, it cancels the random delay and

does not announce itself as a connector.

4. If two Connector messages collide, the nodes recalculates the delay and repeats

the above procedure.

The randomized delay functionDelay(i) for a dominatee i is calculated as follows.

Delay(i) = ((1− ERi

EIi
) + P)× E(ci)× T

P is a random variable uniformly distributed between 0 and 1, T is the upper

bound on the message delay between two neighbors, ERi and EIi are the remaining

and total energy in i respectively. If a node has more remaining energy, it is more

51

likely to be a connector. E(ci) is the expected number of nodes that can connect the

same pair of dominators as i does. Now, we calculate the value of E(ci).

u v

B

A

i

Fig. 17. An Illustration of the Connector Selection: Case 1

Case 1: Node i has two dominator neighbors, u and v, which are two hops away

from each other, as shown in Figure 17. First notice the minimum distance between

u and v is greater than 1, otherwise they could communicate with each other directly.

So the maximum area in which connectors could reside is the intersection lune of

the disks centered at u and v, which is hatched in Figure 17. Define the Euclidean

distance between two nodes u and v as dist(u, v). Since dist(u, v) is at least 1 and

dist(u,A), dist(u,B), dist(v, A) and dist(v,B) are all 1, it is easy to verify that

the angles of 6 Auv, 6 Avu, 6 Buv and 6 Bvu are at most π
3
. Let S

ÂuB
be the area

surrounded by the line uA, the line uB and the arc AB. Let S4AuB be the area

of the triangle AuB. Then the maximum area of the lune (the hatched region) is

2× (S
ÂuB

− S4AuB) =
2π
3
−
√

3
2
.

Case 2: A dominatee node i has one dominator neighbor u, but it has another

dominatee neighbor j whose dominator is w, so u and w are three hops away from each

other, as illustrated in Figure 18. Obviously, i and j can not be in the intersection

52

u

j

i

w

C

D

Fig. 18. An Illustration of the Connector Selection: Case 2

lune of the disks centered at u and w. And dist(w, i) and dist(u, j) are both at least

1. The maximum area that could have a node connecting i and w is the intersection

lune of the disks centered at w and i, as hatched in Figure 18. Since dist(w, i) is

at least 1, and dist(w,C) and dist(w,D) are both 1, then the maximum area of the

intersection lune (the hatched region) is 2× (S
ÂuB

− S4AuB) =
2π
3
−
√

3
2
, which is the

same as Case 1.

Since each node knows the density of the network is λ, the random delay function

for node i is

Delay(i) = ((1− Eri

Emi

) + P)× (
2π

3
−
√
3

2
)× λ× T

Figure 19 illustrates the process of step 2. Node 11 connects 9 and 10, node 12

53

connects 7 and 10. There are two eligible connectors for 7 and 9, which are nodes 6

and 13. By applying the random delay function, node 6 has a better chance to be

the connector because it has more remaining energy. After step 2, nodes 6, 11 and

12 are added into the CDS as connectors, which are colored in gray.

(1, 10)

(0.7, 8)

(0.8, 11)

(0.5, 9)

(0.9, 9)

(0.6, 12)

(0.8, 7)

(0.5, 13)

(0.7, 6)

(0.4, 5)

(0.5, 3)

Fig. 19. Step 2: Finding Connectors

After finding the connectors, the maximal independent set and connectors form

a connected dominating set. Notice that for each pair of dominators, our algorithm

may find more than one pair of connectors. However, as we show next, the number

of connectors for each pair is a constant.

Theorem 7 The size of the randomized connected dominating set is within a constant

multiple of the optimal.

Proof. According to our algorithm, if there are multiple nodes that can connect

the same pair of dominators u and v, the node which has the least random delay will

54

announce its legitimacy first, making all its neighboring nodes abort their attempt

to be a connector. But there may be other connector nodes which are not in its

neighborhood. So the problem is reduced to finding a maximal independent set of

the set of nodes that are adjacent to both u and v.

If the two dominator nodes are two hops away from each other, there are at most

two connectors which are independent. To see why, consider the lune intersected by

the disk of u and v in Figure 17. Since 6 Auv and 6 Buv are both at most π
3
, 6 AuB

is at most 2π
3
. dist(u,A) and dist(u,B) are 1. The maximum distance between any

two nodes in the lune is dist(A,B), which is

√
dist(u,A)2 + dist(u,B)2 − 2× dist(u,A)× dist(u,B)× cos(6 AuB) =

√
3.

So there are at most two connectors.

If the two dominator nodes are three hops away from each other, according to

[51], the size of the maximal independent set is a constant, but the exact value of the

constant is still to be discovered.

Therefore, for each pair of nodes in the maximal independent set which are two

or three hops away, there are a constant number of connectors in between. So, the

total number of connectors is within a constant multiple of the size of the maximal

independent set at the first step. We know that the size of a minimum connected

dominating set is within a constant factor of the size of any maximal independent set

([43]), so the size of the CDS by our algorithm is within a constant of the optimal.

Theorem 8 The message complexity of our algorithm to find a connected dominating

set is O(n log n).

Proof. It is easy to see that in the first step, each node sends one message indicating

55

whether it is a dominator or a dominatee. At the second step, only the connector

nodes will send a message. So the total number of messages sent in our algorithm is

O(n). Because each message contains the sender’s id and ids of the sender’s dominator

neighbors up to two hops, which is constant according to the result [43], the size of

each message is within O(log n). So the total message complexity is O(n log n).

Although the message complexity of our algorithm is asymptotically the same as

many other algorithms, our simulation results in Section F indicate that in practice

the message complexity of our algorithm could be much better than that of existing

algorithms. In fact, many of the dominatee nodes only send one dominatee message.

And many connector nodes only send one dominatee message at the first step, because

their attempt to be a connector is canceled when overhearing connector messages with

the same purpose from neighboring nodes. Therefore, the total number of messages

to find a CDS for our algorithm is much smaller than for other algorithms, especially

when the network size is big, as shown in the simulation results in Section F.

E. CDS Recomputation

As CDS nodes usually consume energy faster than the other nodes, having a fixed

CDS will make the battery of those nodes deplete very quickly, and as a result,

partition the network. Therefore, the CDS needs to be recomputed in order to let

each node take the responsibility of being a CDS node to balance the energy load.

A dominator node, after serving T time, can quit the CDS by sending out a quit

message, which triggers its neighboring nodes to recompute a new dominator and

its connectors to update their local data structure. T is a system parameter that

can be tuned according to various conditions, including the node’s battery level, and

the network density. A key observation here is CDS nodes should be recomputed

56

asynchronously in order to avoid abrupt backbone change. The dominator nodes will

jitter themselves in quitting the CDS, either by setting a randomized jitter value, or

using a hash function to assign each node a specific time slot, which is the approach

in [56]. After its dominator quits the CDS, all dominatees become eligible dominator

candidates, and they use the same procedure in Section D to reselect a new dominator

and connectors. The original connectors will update their local data structure and

become dominatee if they do not connect any pair of dominators. Here we assume

each node can get the update information of neighboring nodes by receiving HELLO

messages, and the HELLO messages are accurate enough to reflect the latest state of

the neighboring nodes.

Another factor triggering the CDS recomputation is the mobility. Mobility can

cause the formed connected dominating set to become invalid, redundant, or even

partitioned. Recomputation of the CDS should keep the impact of the mobility as

small as possible. The change of the CDS due to the movement of a single node

should be as small as possible. The idea is to recompute the dominator nodes first,

and then find the connectors.

• Dominatee movement. A dominatee’s movement does not impact the connec-

tivity of the CDS. If it moves to the neighborhood of another dominator, it

remains in the dominatee state and sets its dominator to the new dominator

neighbor. If it moves to a place with no dominator neighbor, it enters an unde-

cided state and uses our randomized CDS algorithm in Section D to decide its

next state. If its original dominator node finds it no longer has any dominatees,

it changes to an undecided state and recompute its next state.

• Dominator movement. A dominator’s movement will change the states of its

dominatees and connectors. If a dominatee node learns that its dominator

57

node has moved away, it changes its state to undecided and recomputes a new

dominator. A connector will remove the related entry in its local data structure

and if it connects other pairs of dominators, it will not change its state, otherwise

it will change its state to undecided and recompute a new dominator.

• If a connector moves out of the range of the dominators it connects, it changes

its state to undecided and decides its new state according to our algorithm in

Section D. All eligible connectors use the random delay function to decide a

new connector.

F. Simulation

In this section, we discuss the simulation results of our randomized CDS algorithm.

As we mentioned earlier, the main focus of our simulation is the performance of our

CDS algorithm in terms of CDS size, number of messages sent to find the CDS, and

energy efficiency. A lot of work in the literature studied the routing performance

using CDS [47, 32, 49]. We will discuss a routing algorithm and its performance in

Section G. In this work, we skipped the simulation of the routing performance with

CDS.

We developed an event driven simulator with a graphical user interface that can

show the geometric display of the CDS. Our simulation is set up in a 1000m by 1000m

grid. Nodes are uniform randomly distributed in the simulation grid initially. Each

node has a transmission radius of 250m, and each node follows the random way point

mobility model ([45]). In this model, a node uniform picks a destination at random

inside the grid and moves to that location at a uniformly random speed between 0 and

10m/s. After reaching the destination, the node picks another random destination

and moves again. The number of nodes in the network scales from 50 to 400. To

58

measure the energy consumption of our randomized connected dominating set, we

set a different energy consumption rate for different types of nodes. A dominator

consumes 0.05% of the total energy per time unit, a connector consumes 0.02%, a

dominatee node consumes 0.01%. This is comparable to existing works, e.g. [53, 56].

Fig. 20. CDS Size vs. Number of Nodes

In order to evaluate the performance, we compare our algorithm with two CDS

algorithms in [8], which claims to have the best approximation and performance in

the literature. Both algorithms in [8] assume a spanning tree with a root node in the

network, and compute the CDS based on each node’s id or degree. We denote these

two algorithms as MinID and MaxDegree. The simulation data plotted in our figures

59

Fig. 21. Average Message vs. Number of Nodes

is the average of 20 executions, each of which runs for 10,000 seconds. To measure the

CDS size, we take the snapshot of the network by having each node report its status

(dominator, connector or dominatee) 10 seconds after each CDS recomputation. The

CDS recomputation interval is set to 50 seconds in the simulation. The CDS size is

calculated by counting the number of dominator nodes. The message is the average

number of messages taken over in each CDS recomputation.

Figure 20 shows the simulation results of the CDS sizes. Not surprisingly, the

CDS size of our algorithm is around twice the CDS size of MinID and MaxDegree in

most cases. The reason is that our algorithm finds more than one connector for the

60

Fig. 22. A Snapshot of the Network

same pair of dominator nodes as discussed earlier, while both MinID and MaxDegree

find the CDS along with a spanning tree, so the CDS subgraph is a tree essentially.

But on the other hand, since our algorithm usually finds more than one connector, it

has more disjoint paths for routing, which provides more robustness and redundancy

in a mobile ad hoc network.

Figure 21 shows the number of messages per node to find a CDS (the total number

of messages divided by the number of nodes). We do not count the HELLO messages

because all CDS algorithms assume neighbor information is available at each node.

Our algorithm uses only about half of the messages of MinID and MaxDegree to

find a CDS. This is because in our algorithm, after each node sends a DOMINATOR

or DOMINATEE message, only the connector nodes will eventually send another

61

message. As the density of the network increases, the number of connectors is roughly

the same, which makes the average number of messages even smaller. On the contrary,

since MinID and MaxDegree find the CDS by establishing a spanning tree, each

node has to be activated before the CDS selection, and each node at least sends two

messages. In the MaxDegree algorithm, each node sends an extra message containing

its degree after it is activated.

Figure 22 shows a snapshot of an execution of our algorithm. In the snapshot,

we only draw links between dominator nodes. Notice the subgraph consisting of the

CDS nodes is not a planar graph in general, but it provides a useful infrastructure

for further optimization.

Fig. 23. Network Lifetime vs. Number of Nodes

Figure 23 shows the difference in network lifetime. The network lifetime is the

time elapsed in the simulation till the first node runs out of energy. As shown in

62

the graph, the network lifetime for our algorithm is significantly longer than for

MinID and MaxDegree. Also, our algorithm extends the network lifetime as the

number of nodes increases. This is because as the number of nodes in the network

increases, more nodes are eligible to be a dominator or connector, which distributes

the energy consumption of the CDS more evenly across the entire network, preventing

a particular node from running out of energy quickly. The network lifetime for MinID

does not increase with the number of nodes at all. This is because the MinID uses

the id of nodes to compute the CDS. The node with the minimum id in the network

is always a dominator node, and its energy is consumed at exactly the same rate in

any scenario. The network lifetime for MaxDegree increases slightly as the number of

nodes. MaxDegree adjusts the CDS nodes by each node’s degree, which may change

over time due to the mobility, but it does not capture the energy consumption nature

of the CDS nodes.

Figure 24 shows the standard deviation of the remaining energy for each node

when one node runs out of battery. The standard deviation indicates the differences

of the remaining energy for each node in the network. A small standard deviation is

desirable because it means the difference of each node’s energy consumption is small.

As shown in Figure 24, the standard deviation of the remaining energy for our algo-

rithm is significantly less than MinID and MaxDegree, because our algorithm rotates

the CDS nodes periodically according to nodes’ remaining energy, therefore balanc-

ing the energy consumption of the CDS among all network nodes. MaxDegree has

slightly less deviation than MinID because more nodes get a chance to be dominators

due to the mobility.

63

Fig. 24. Standard Deviation of Remaining Energy vs. Number of Nodes

G. A Routing Algorithm Based on Randomized CDS

In this section, we describe a routing algorithm based on our randomized connected

dominating set. The number of hops found by this routing algorithm is within a

constant factor of that by using the same routing algorithm on the whole network.

Most of the routing work is done on the backbone of the connected dominating set.

To find a path between a source s and a destination t, the routing algorithm works

as follows.

• If s and t are immediate neighbors, the path is (s, t).

• If s and t are not immediate neighbors, s sends a routing request to its dominator

node u.

64

• After receiving a request from its dominatee, the dominator node u finds a path

to t’s dominator node v using any existing routing protocol for mobile ad hoc

networks such as DSR([59]) or AODV ([60]).

• Messages are forwarded along the path (s, P (u, v), t), where P (u, v) is the path

found in the previous step from u to v.

Theorem 9 The number of hops in the path found by the routing algorithm applied

on our RCDS is within 3 times the number of hops in the path found by using the

same routing algorithm on the whole network.

Proof. Suppose there is a path between the source s and t in a routing algorithm,

denoted as p = (u1, u2, ..., un), where u1 = s and un = t. We denote the alternative

path as p′ = (s, v1, ..., v2, .., v3, ..., vn, t) for routing with CDS, where v1 is s’s dom-

inator, and vn is un’s dominator. Now we look at any hop (ui, ui+1) in the path

p.

• Case 1: Both ui and ui+1 are CDS nodes. Then (ui, ui+1) is equal to (vi, vi+1)

because ui=vi and ui+1=vi+1.

• Case 2: Either ui or ui+1 is a CDS node, but the other is not. Without loss of

generality, suppose ui is a CDS node. Since ui+1 is within one hop of ui, ui+1’s

dominator, denoted as vi+1, must be within the two-hop neighborhood of ui.

According to our algorithm, there must be a connector connecting ui and vi+1,

denoted as ci. Therefore, for (ui, ui+1) in path p, we can find a path (ui, ci, vi+1),

which is twice as long as (ui, ui+1) in the number of hops.

• Case 3: Neither ui or ui+1 is a CDS node. Then ui and ui+1’s dominator vi and

vi+1 are at most three hops away. There must be two connectors ci and ci+1

65

that connect vi and vi+1. So for (ui, ui+1), we can find a path (ui, ci, ci+1, vi+1)

in p′, which is three times as long as (ui, ui+1) in the number of hops

Therefore, for each hop (ui, ui+1) in the path (u1, u2, ..., un), the number of

hops in the path (vi, ..., vi+1) is at most 3. So the total number of hops in the

path (s, v1, ..., v2, .., v3, ..., vn, t) is at most 3 times the number of hops in the path

(u1, u2, ..., un).

Theorem 9 shows that a routing algorithm using a CDS as a backbone can always

find a routing path whose length is within a constant of that of the path found by using

the same algorithm on the whole network. However, since only backbone nodes keep

the routing table and send routing requests, and the CDS is only small portion of the

network nodes given enough density of the network, the overall messages and space

usage is reduced. [47] gives a more detailed simulation results for backbone based

routing. In this chapter, we are more focused on the CDS construction, therefore the

simulation of the routing performance is omitted.

66

CHAPTER IV

A TOKEN FORWARDING K-MUTUAL EXCLUSION ALGORITHM FOR AD

HOC NETWORKS

A. Introduction

Providing shared access to resources through mutual exclusion is a fundamental prob-

lem in computer science, and is therefore worth considering for any type of dynamic

network In particular, since wireless mobile nodes are power constrained and are of-

ten deployed in emergency situations, the processors may have the need to restrict

concurrent access to a limited set of services, e.g., wireless channels [61] or remote

sensors. The k-mutual exclusion problem is an extension of the mutual exclusion

problem, which is a fundamental concept in concurrent and shared resource alloca-

tion and access in distributed systems. The k-mutual exclusion problem involves

a group of n processes, each of which intermittently requires access to an identical

resource or piece of code called the critical section (CS). At most k, 1 ≤ k ≤ n,

processes may be in the CS at any given time. A typical application of k-mutual

exclusion problem in a mobile ad hoc network is data fusion when there are k data

centers in the network and each wireless node updates the data centers exclusively

such that there is at most one update for each data center at any time.

In this chapter, we propose a k-mutual exclusion algorithm called K-Reversal

Link with token Forwarding (KRLF). KRLF extends the K-Reversal Link algorithm

(KRL) proposed by Walter [4]. KRL induces a logical directed acyclic graph (DAG)

on the network, dynamically modifying the logical structure to correspond to the

actual physical topology in the ad hoc environment. The algorithm ensures that all

requesting processors eventually gain access to the CS once the network topology

67

changes cease. This algorithm is intended to run on top of a lower level protocol that

provides reliable message delivery on an ad hoc network (e.g., TCP[62, 63]). However,

we show that the KRL algorithm may cause tokens not to be accessed when there

are nodes requesting the token. KRLF adds a new token forwarding technique to

the original KRL algorithm. If a token is idle, the token will be forwarded in the

network according to some designated rules. When the token is forwarded to a node

which is requesting a token, it is accessed by the node immediately. We prove that

KRLF provides more concurrency than KRL by using the token forwarding technique.

Through simulation, we show that by forwarding the token even when it is idle, the

average access time of the token is reduced, which means the waiting time for each

node to enter the critical section is reduced.

The next section discusses related work. In Section C, we briefly describe our sys-

tem models and assumptions. Section D describes our KRLF algorithm. Simulation

results are presented in Section F.

B. Related Work

Distributed k-mutual exclusion algorithms are studied in both static and dynamic

networks. In permission based algorithms (e.g., [64, 65]), a processor requesting ac-

cess to the CS must ask for and be granted explicit permission from all or some subset

of the processors in the system. In token based algorithms (e.g., [66, 67, 68]), the pos-

session of a unique token or tokens allows access to the CS. Existing work ([69])

shows that token based algorithms outperform permission based algorithms in terms

of waiting time to get in the critical section and message complexity, because token

based algorithms usually require less direct inter-processor communication. However,

each of the existing distributed token based algorithms ([66, 67, 68]) for static, wired

68

networks assume that the network is reliable and logically fully connected (i.e., the

dynamic nature of the network is hidden by the routing protocol, making the net-

work appear fully connected to the application), allowing any processor to directly

communicate with any other. These assumptions make them poorly suited to the ad

hoc environment, where links form and fail as a consequence of mobility.

Related work on development of mutual exclusion algorithms for ad hoc networks

includes recent work by Chen and Welch [70], Baldoni et al. [61] and Jiang [71]. Chen

and Welch [70] present a self-stabilizing mutual exclusion algorithm that circulates

the token on a dynamic ring topology. Baldoni et al. [61] present another mutual

exclusion algorithm for dynamic logical rings. Both these algorithms are distributed

token-based mutual exclusion algorithms, but differ from ours by the fact that they

maintain a logical ring on the network. Another difference from the work in this paper

is that the algorithm in [61] requires messages to be sent to a round coordinator which

uses an underlying routing protocol to determine the next node to receive the token.

Jiang [71] presents an algorithm derived from the algorithm of Walter et al. [69] for

the h-out-of-k-mutual exclusion problem on ad hoc networks. In this paper, only one

token is used to allocate up to k resources, whereas our algorithm uses k separate

tokens, providing greater system fault tolerance.

The token based 1-mutual exclusion algorithm of [69] uses the partial reversal

technique from [72] to maintain a token oriented DAG with a dynamic destination.

Like the algorithms of [73, 74, 75], each processor in this algorithm maintains a request

queue containing the identifiers of neighboring processors from which it has received

requests for the token.

The KRL algorithm maintains k tokens in the system as in [66, 68]. When

k = 1, the algorithm ensures that the current token holder is a “sink” toward which

all requests are sent (the exact technique by which this is accomplished is explained

69

later). When k > 1, there may be multiple sinks in the system. However, our

algorithm ensures that all non-token holding processors will always have a directed

path to some token holding processor and that all token holders have an incoming

directed path. In the KRL algorithm, each node dynamically chooses a neighboring

node as its preferred link to a token holder (cf. [69]). Nodes sense link changes

to immediate neighbors and reroute requests based on the status of the previous

preferred link to the token holder and the current contents of the local request queue.

All requests reaching a token holder are treated symmetrically, so that requests are

continually serviced while the DAG is being re-oriented and blocked requests are being

rerouted. It is possible for processors to receive requests while they are in the CS.

If this happens, the processors may satisfy these requests immediately if they hold

multiple tokens, increasing concurrent access to the CS.

The k-mutual exclusion problem shares some similar properties such as mutual

exclusion, no starvation and concurrency with the dining and drinking philosophers

problems ([76]), which are well known resource allocation problems in distributed

systems. However, in the dining and drinking philosophers problems, a processor

requests exclusive access to a specific set of resources to enter the critical section. In

the k-mutual exclusion problem, there is only one resource, but up to k processors

may access the resource concurrently.

C. System Model and Assumptions

The system contains a set of n independent mobile nodes, communicating by message

passing over a wireless network. We make the following assumptions about the mobile

nodes and the network.

1. Nodes have unique node identifiers in the range 0 . . . n− 1.

70

2. Each node is aware of its neighbors, i.e., the set of nodes with which it can

currently directly communicate. A link layer protocol provides indications of

link formations and failures. Also, nodes can only communicate with their

current neighbors.

3. Communication links are bidirectional and FIFO.

4. Incipient link failures and message collisions are detectable at the link layer,

providing reliable neighbor-to-neighbor communication,

5. Nodes do not fail.

Note that assumptions 4 and 5 ensure that no token will be lost during execution. Our

algorithm is robust to network partitions, in the sense that any connected component

that contains k′ tokens will solve k′-mutual exclusion.

Each mobile node runs an application process and a k-mutual exclusion pro-

cess that communicate with each other to ensure that the node cycles between its

REMAINDER section (not interested in the CS), its WAITING section (waiting for

access to the CS), and its CRITICAL section. The k-mutual exclusion runs on top of

the network layer. Communication between different processes are modeled as events

in the system.

The k-mutual exclusion process is modeled as a state machine (see Fig. 25), with

the usual set of states, some of which are initial states, and a transition function.

A step of the k-mutual exclusion process at node i is triggered by the occurrence

of an input event. The effect of a step is to apply the process’ transition function,

taking as input the current state of the process and the input event, and producing

as output a (possibly empty) set of output events and a new state for the process.

Referring to Fig. 25, the application I/O events at the k-mutual exclusion process

71

Application Process

Network

K−Mutual Exclusion Process

node i

ReleaseCSRequestCS
EnterCS

Recv(m)LinkUp Send(m) LinkDown

Fig. 25. The k-Mutual Exclusion System Architecture

are:

1. RequestCSi: (input) request for access to CS.

2. ReleaseCSi: (input) release of CS.

3. EnterCSi: (output) permission to enter CS.

The network I/O events at the k-mutual exclusion process are:

1. Sendi(j,m): (output) node i sends message m to j.

2. Recvi(j,m): (input) message m from node j received at i.

3. LinkUpi(l): (input) link l incident on i has formed.

4. LinkDowni(l): (input) link l incident on i has failed.

An execution is a sequence of the form C0, in1, out1, C1, in2, out2, C2, . . ., where

the Ci’s are configurations, the ini’s are input events, and the outi’s are sets of output

events. The execution must satisfy the assumptions in Section C. An execution must

72

end in a configuration if it is finite. A positive real number is associated with each

ini, representing the time at which that event occurs.

We require that any k-mutual exclusion algorithm satisfies the following proper-

ties:

1. k-mutual exclusion: At any time during the execution of the algorithm, at most

k processes can be in the CS.

2. no starvation with concurrency: Consider any infinite execution C0, in1, out1,

C1, in2, out2, C2, . . . with a finite number of link changes. For every m ≤ 1, if

inm = RequestCSi, and if at most k − 1 processors stay in the critical section

forever, then there exists l > m such that outl contains EnterCSi.

As we show later in the chapter, KRL does not satisfy the no starvation with

concurrency property. In KRL, a token currently not being used by any node may

not be accessed by a requesting node. KRLF adds a token forwarding technique to

allow the token to be forwarded in the network and eventually the token reaches the

requesting processor. Thus KRLF does satisfy the no starvation with concurrency

property.

D. KRLF Algorithm

In this section, we introduce our KRLF algorithm. As we mentioned earlier, KRLF is

based on the KRL algorithm ([69]). First, we give a general overview of the operation

of the KRL algorithm. Then we discusses a scenario which KRL can cause a free token

not to be accessed. We then introduce our KRLF algorithm and discuss how the token

forwarding technique of KRLF solves the problem. Then we show that KRLF satisfies

the no starvation with concurrency property of the k-mutual exclusion problem.

73

1. Overview of KRL

In KRL, each processor maintains a number of local data structures as part of the

k-mutual exclusion process. Details are given in [4]. Here we only list some key data

structures for the overview of the KRL algorithm.

• status: Indicates whether node is in the WAITING, CRITICAL, or REMAIN-

DER section. Initially, status = REMAINDER.

• N : The set of all nodes in direct wireless contact with node i. Initially, N

contains all of node i’s neighbors.

• myHeight: A three-tuple (h1, h2, i) representing the height of node i. Links

are considered to be directed from nodes with higher height toward nodes with

lower height, based on lexicographic ordering. E.g., if myHeight1 = (2, 3, 1) and

myHeight2 = (2, 2, 2), then myHeight1 > myHeight2 and the link between these

nodes would be directed from node 1 to node 2. Initially at node 0, myHeight0

= (0, 0, 0) and, for all i 6= 0, myHeighti is initialized so that the directed links

form a DAG in which every node has a directed path to some token holder and

in which every token holder has at least one higher neighbor.

• height[j]: An array of tuples representing node i’s view of myHeightj for all

j ∈ Ni. Initially, height[j] = myHeightj, for all j ∈ Ni. In node i’s viewpoint,

if j ∈ N , then the link between i and j is incoming to node i if height[j] >

myHeight, and outgoing from node i if height[j] < myHeight.

• tokenHolder: Flag set to true if node holds token and set to false otherwise.

Initially, tokenHolder = true if 0 ≤ i < k, and tokenHolder = false otherwise.

• next: Indicates the location of a token in relation to i or the node to which i

74

last sent a request. When node i holds the token, next = i, otherwise next is

the node on an outgoing link. Initially, next = i if 0 ≤ i < k (i.e., if i holds a

token), and next is an outgoing neighbor otherwise.

• Q: “Request queue”, containing identifiers of requesting neighbors and i if

RequestCSi was last application input event.

The key idea of KRL is to maintain a logical Directed Acyclic Graph (DAG) in the

network. In KRL, A DAG is maintained on the physical wireless links of the network

throughout algorithm execution as the result of a three-tuple, or triple, of integers

representing the “height” of the node, as in [72]. Links are considered to be directed

from nodes with higher height toward nodes with lower height, based on lexicographic

ordering of the triples. A link between two nodes is outgoing at the higher height

node and incoming at the lower height node.

Node i’s height triple is included with every message sent by the k-mutual ex-

clusion process on processor i, 0 ≤ i < n, where n is the number of participating

processors. The three types of messages recognized by the algorithm are Request,

Token, and LinkInfo. The purpose of each type of message should become clear in

the discussion and examples below.

The algorithm maintains k tokens in the system. Initially the token holders are

nodes 0 . . . k − 1. We assume that k < n.

As described in the last section, the k-mutual exclusion algorithm is event-driven.

When the application process on node i makes a request for the CS, i’s identifier is

enqueued on its own request queue (Qi). Request messages received at node i from

“higher” physical neighbors cause the k-mutual exclusion process at i to enqueue the

identifiers of those neighbors on Qi in the order in which the Requests were received.

A non-token holding node i sends a Request message to its lowest neighbor whenever

75

an identifier is enqueued on an empty request queue at i. When i receives a Token

message, it dequeues the top element on its request queue and either gives permission

for its application process to enter the CS (if its own identifier was just dequeued) or

sends a Token message to its neighboring node whose identifier was just dequeued.

Each token recipient i modifies the first two integers in its height triple if neces-

sary each time it receives a Token message so that its height is lower than the height

of the node that sent the Token message. This is not necessary when the node receiv-

ing the Token is already lower than the sender (which may be the case if the receiver

holds or previously held a token that gave it a lower height.)

Non-token holding nodes must ensure that they have at least one “lower” neigh-

bor at all times because requests for the token are always sent on outgoing paths. If a

non-token holding node finds itself with no “lower” neighbor, it uses the partial rever-

sal technique of Gafni and Bertsekas [72] (found inside the RaiseHeight() procedure

of Fig. 40) to change the first two integers in its height triple, raising its height in

relation to at least one of its neighbors and creating at least one outgoing link. Each

time a node raises its height, it sends LinkInfo messages to all its neighbors containing

its new height. Request queue entries are deleted when the link to the requester fails

or reverses. The reason requests are not lost as a result of these deletions is that

a processor never deletes its own id from its request queue. Therefore, the request

always has a chance to “repropagate” on a new route toward a token holder.

Token holders must ensure that they have at least one “higher” neighbor at all

times, since Request messages will not reach a token holder with only outgoing links.

If a token holder finds itself with no “higher” neighbors, it uses the “reverse” of the

Gafni and Bertsekas partial reversal technique [72] (found inside the LowerHeight()

procedure of Fig. 40) to change the first two integers in its height triple, lowering its

height in relation to at least one of its neighbors and creating at least at least one

76

incoming link. Each time a node lowers its height (including when it receives a Token

message), it sends LinkInfo messages on all its outgoing links. Pseudocode for the

KRL algorithm can be found in Figs. 35 through 40 of Appendix A.

Token holding node

Request queue (top down priority)

Non−token holding node Wireless link outgoing at node i, incoming at node j

Value of next at node i = j

Height triple at node i(#, #, i)

0

2

1
4 4

4
(0, 2, 2)

(0, 3, 4)
(0, 2, 1)

2

(0, 0, 0)3
(0, 1, 3)

3

(b)

2 0

2

1
4 4

4
(0, 2, 2)

(0, 3, 4)
(0, 2, 1)

2

(0, 0, 0)3

3
2

(1, 1, 3)

3

(c)

0

2

1
4

(0, 0, 0)3

3

(1, 1, 3)

1

3 (0, −1, 2)

(0, 1, 4)(0, 2, 1)

(d)

0

2

1
4

(0, 0, 0)3

(0, −1, 2)

(0, 1, 4)

(e)

(0, 0, 1)

(0, −1, 3)

i

i

j

j

0
3

2

1
4 4

4
(0, 2, 2)

(0, 2, 1)

(0, 1, 3)

2

2
3 3

(0, 0, 0)

(a)
(0, 3, 4)

Fig. 26. Operation of KRL Algorithm on a Dynamic Network with 2 Tokens

An illustration of algorithm operation on a dynamic network with two tokens is

shown in Fig. 26. In Fig. 26(a), nodes 2, 3, and 4 have requested access to the CS (note

that nodes 2, 3, and 4 have enqueued themselves on Q2, Q3, and Q4, respectively)

and nodes 2 and 3 have sent Request messages to node 0, which enqueued them on

Q0 in the order in which the Request messages were received. Node 4 sent a Request

to node 1, since node 1 is node 4’s lowest neighbor. Fig. 26(b) depicts the system

configuration after node 3 has moved in relation to the other nodes in the system,

resulting in a network that is temporarily not token oriented, since node 3 has no

outgoing links. Node 0 has adapted to the lost link to node 3 by removing 3 from

its request queue. Node 2 takes no action as a result of the loss of its link to node

77

3, since the link to next2 was not affected and node 2 still has one outgoing link. In

part (c), node 3 has adapted to the loss of its link to node 0 by raising its height and

has sent a Request message to node 1. Parts (d) and (e) show the system after node

0 has sent a token to node 2 and node 4 has sent a token to node 1, which then sent

it to node 3.

2. KRLF Algorithm

The goal of KRLF is to increase the concurrent access of tokens in the network.

Within a connected component of the network, a token is idle if it is at some node

i that is in its REMAINDER section with |Qi| = 0 but there is a non-token holding

processor j in its WAITING section.

6

4

4
6

Token holding node

Request queue (top down priority)

Non−token holding node Wireless link outgoing at node i, incoming at node j

Value of next at node i = j

Height triple at node i(#, #, i)

i

i

j

j

2
(0, 0, 2)

3
0

(0, 0, 0)

1

4

5

6 (0, −1, 3)

(0, 0, 1)

(0, −1, 4)

(0, −2, 5)

(0, −1, 6)

Fig. 27. Idle Token Problem in KRL Algorithm

Fig. 27 shows why tokens may frequently be idle in the KRL algorithm when

demand for tokens is low. The figure gives a snapshot of KRL execution in which

there are 2 token holders, nodes 3 and 5. Nodes 4 and 6 have made requests and have

sent Request messages to node 5. The application process at node 5 is currently in

the CS, so node 5 has enqueued the identifiers of node 6 and node 4 on its request

queue. The application process at node 3 has already released the CS and node 3 is

in its REMAINDER section with an empty request queue. Therefore, node 3 holds

78

an idle token. Node 3 will not send its token to any other node until it receives a

Request message. Meanwhile, nodes 6 and 4 must wait their turns for the token being

used by node 5.

We try to alleviate the idle token problem by having each token holder forward

the token to other parts of the network in case no processor close to it needs access

to the CS. The strategy we use is to mimic the action taken by processors when

forwarding a request for a token, i.e., choose the “lowest” neighboring node and send

the token to that neighbor. Choosing the lowest height neighbor results in the lowest

number of link reversals because the lower the height of a neighbor, the fewer outgoing

links that neighbor will need to reverse when it receives the token. Nodes keep track

of which of their neighbors they have forwarded tokens to or received tokens from

when their request queue is empty by marking the link “visited”.

V

V

(b)

V

V

V

(a)

Token holding node

Request queue (top down priority)

Non−token holding node Wireless link outgoing at node i, incoming at node j

Value of next at node i = j

Height triple at node i(#, #, i)

2
(0, 0, 2)

3
0

(0, −2, 0)

2
(0, −3, 2)

1
(0, −4, 1)

(0, −5, 3)

3
0

(0, 0, 0)

(0, −1, 3)
1

(0, 0, 1)

i

i

j

j

Fig. 28. Operation of KRL Algorithm with Token Forwarding. “V” on Wireless Link

Indicates That Token Has Previously Been Forwarded over Link

Fig. 28 illustrates this modification during an execution of the algorithm. In

Fig. 28(a), node 3 is a token holder but no neighbor of node 3 needs access to the CS.

Fig. 28(b) shows a snapshot of the algorithm execution after the application process

on node 3 has released the CS, and the token has been forwarded through processors

0, 2, 1, and 3 to the left portion of the network. The V on each wireless link signifies

79

that the link has been marked “visited” by both the node forwarding and the node

receiving the token. If node 3 receives the token at a later time, while it has an

empty request queue, it will mark all its links as “unvisited” and start the forwarding

process over.

The modifications made to the pseudocode of the KRL algorithm to implement

token forwarding are shown in Fig. 29. For every node, we add the following local

data structure:

• visited[j]: boolean array indicating whether a token has been circulated to node

j. Initially set to false for all j ∈ N .

E. Correctness of KRL and KRLF Algorithms

Now we will show the correctness of the KRLF algorithm. We first show that KRLF

does preserve the correctness of the KRL algorithm, which means that KRLF satisfies

all the properties which KRL satisfies. Then we show that KRLF ensures the no

starvation with concurrency property.

Theorem 10 KRLF does not violate the correctness of the KRL algorithm.

Proof. The detailed proof of the correctness of the KRL algorithm is given in [4].

Here we give a sketch of the proof. First, [4] shows that after link changes cease, even-

tually processors will stop raising their heights and the DAG will be token oriented.

Then any sequence of propagated requests (i.e., every ”request chain“) beginning at

any requesting processor will eventually include some token holder. Last, using a vari-

ant function argument, it is shown that a token will be delivered to every requesting

node.

80

When node i releases the CS:

1. if (|Q| > 0) GiveTokenToNext()
2. else

3. PickLowest&ForwardToken()
4. status := REMAINDER

When Token(h) received at node i from node j:

// h denotes j’s height when message was sent

1. visited[j] := true

2. tokenHolder := true

3. numTokens++
4. height[j] := h

5. if (myHeight > h)

6. Send LinkInfo(h.h1,h.h2 - 1,i) ∀ outgoing k ∈ N 6= j

7. myHeight.h1 := h.h1
8. myHeight.h2 := h.h2 - 1 // lower my height

9. Send LinkInfo(h.h1,h.h2 - 1, i) to j

10. if (|Q| > 0) GiveTokenToNext()
11. else

12. PickLowest&ForwardToken()

When formation of link to j detected at node i:

1. Send LinkInfo(myHeight) to j

2. forming[j] := true

3. formHeight[j] := myHeight
4. visited[j] := false

Procedure PickLowest&ForwardToken():
1. if (visited[j] = true ∀j ∈ N)

2. visited[j] := false ∀j ∈ N
3. next := l ∈ N : ((height[l] ≤ height[j])

and (visited[j] = false) ∀j ∈ N)

4. visited[next] := true

5. numTokens--
6. if (numTokens = 0)

7. tokenHolder := false

8. height[next] := (myHeight.h1, myHeight.h2−1, next)
9. receivedLI[next] := false

10. Send Token(myHeight) to next

Fig. 29. Pseudocode Modifications for Token Forwarding

81

As shown in the pseudocode in Fig. 29, KRLF ensures that a node that receives

an idle token will lower its height relative to the node that forwarded the token.

Therefore, the DAG is still token oriented in KRLF, which ensures that every request

chain beginning at any requesting processor will eventually include some token holder.

The rest of the proof is the same as in [4].

Theorem 11 KRLF algorithm ensures no starvation with concurrency.

Proof. Consider an infinite execution with finite number of link changes, in which

at most k− 1 nodes are in the critical section forever, and some node m is requesting

to enter the critical section. Each node stuck in its critical section has a token, so

there is at least one additional token. Suppose an additional token is at node i in the

network.

Now we argue that this token will be forwarded to each node in the network.

Suppose in contradiction that the token is only forwarded among a part of nodes in

the network. There must be a node j in the network which has some neighbors that

receive the token and some neighbors that never receive the token. According to the

pseudocode of KRLF, the token will be forwarded to node j’s “lowest neighbor” and

that neighbor will be marked as “visited”. The next time node j receives a token,

it will choose the “lowest unvisited” neighbor to forward the token to each time

it receives a token. Eventually, the idle token will be forwarded to each unvisited

neighbor of j. Therefore, the token will be forwarded to each node in the network.

Therefore, if there is a request, eventually the token will be forwarded to that

requesting node and the request to enter the critical section is granted, even the other

k − 1 tokens are held by other nodes forever.

82

F. Simulation Results

In this section, we present the results of experiments designed to test the performance

of our algorithms on two different simulators.

Section 1 presents the results of experiments comparing the performance of the

KRL and KRLF algorithms to a “static” distributed k-mutual exclusion algorithm

that is not topology sensitive, developed by Bulgannawar and Vaidya [66] (hereafter

called the BV algorithm). For this comparison, we used a simulator first presented in

[69] and used on the Reverse Link mutual exclusion algorithm. We simulated the BV

algorithm as if it were running on top of an ideal routing protocol that always found

shortest routes between any two nodes in the network. Since the KRL and KRLF

algorithms need only neighbor-to-neighbor communication and require no underlying

routing protocol, all costs (time per CS entry and number of messages sent) incurred

during the simulation were recorded during executions of both the KRL and KRLF

algorithms. Conversely, we did not charge the BV algorithm for the total cost used

by the ideal routing protocol to find shortest path routes when links were disrupted

by topology changes. Instead, we charged the BV algorithm for only the number of

messages and time units required for re-routing the algorithm messages “in-transit”

on disrupted shortest paths over new shortest paths. Our intention in using our

“perfect world” simulator for this set of experiments was that it would reduce the

effects of the routing protocol on algorithm performance. Therefore, if our algorithms

performed better than the BV algorithm in this simulation, KRL and KRLF would

certainly have better performance when the routing protocol could not guarantee

finding shortest paths.

In Section 2, we present the results of simulating our algorithms on the ns-2

simulator [77] with CMU extensions for mobility [78]. The intention of using the ns-2

83

simulator is to get a more ”realistic” result since ns-2 has a well implemented MAC

layer that reflects the message delay in a real mobile ad hoc network.

1. Comparison of KRL and KRLF to Static Distributed k-Mutex Algorithm

In this section, we show results produced by a discrete event simulator first developed

and tested in [69]. We simulated a 30 node system with k = 3 tokens under varying

scenarios. We chose to simulate on a 30 node system because we envision ad hoc

networks to be much smaller scale than wired networks like the Internet and because

typical numbers of nodes used for simulations of ad hoc networks range from 10 to

50 [61, 79, 78, 80, 81, 82, 83]. In our simulator, the network was modeled as a graph

with processors for nodes and edges between nodes that currently had a wireless

connection. Edges were initially created at random at the desired connectivity. Link

formations and failures occurred when edges were added to or removed from the

graph.

Connectivity was measured as the percentage of possible links that were present

in the graph throughout the execution. In our simulation, connectivity was main-

tained at approximately 20% and link failures did not partition the network. This

represented a fairly well-connected network in which each node had an average of 6

neighbors.

We varied the following parameters during the simulation trials:

• Mobility: Link changes were modeled as a Poisson process. The expected in-

tervals for link formations and failures are 500 seconds representing low mobility

and 50 seconds representing high mobility. Each change to the graph consisted

of the deletion of a link chosen at random (whose loss did not disconnect the

graph) and the formation of a link chosen at random.

84

• System load: The inter-arrival time of requests for the CS was modeled as a

Poisson process. We varied the expected interval between requests, recording

executions with intervals of 100, 80, 60, 40, 20, 10, and 1 seconds between

requests.

In our experiments, each CS execution took one time unit and each message

delay was one time unit. In the graphs of the results in this section, each plotted

point represents the average of 20 repetitions of the simulation. The variance between

executions was small and is not shown in the figures.

In each execution, we measured the average waiting time for CS entry, that is,

the average number of time units that nodes spent in their WAITING sections, and

the average number of messages sent per CS entry. Each algorithm started with

nodes 1, 2 and 3 holding tokens. In KRL and KRLF, we initially adjusted the height

of each token holder to ensure that it had at least one incoming link. A connected

graph whose initial edges were chosen at random with the desired number of links was

generated, node heights and link directions were initialized, and then the algorithm

and performance measurements were started. For BV, we initially created 3 logical

trees of depth 1 on the network, rooted at each token holder, with an edge directed

from each non-token holder to some root node. The BV algorithm maintained these

logical trees (with links changing as token holders changed) throughout the execution,

with the underlying routing protocol masking link changes from the application.

Figs. 30 and 31 are plots of the average number of time units and the average

number of messages per CS entry for the BV, KRL, and KRLF simulations, respec-

tively. We chose 1 for the highest load value because at this rate each node would

have a request pending almost all the time. The low load value represents a much

less busy network, with requests rarely pending at all nodes at the same time. Our

85

choice for the value of the low mobility parameter corresponds to the situation where

nodes remain stationary for up to a few minutes after moving and prior to making

another move. The value of the high mobility parameter represents a much more

volatile network, where nodes remain static for less than a minute between moves.

1 1 120 20 2040 40 4060 60 6080 80 80100 100 100
0 0 0

20 20 20

40 40 40

60 60 60

80 80 80

100 100 100

120 120 120

140 140 140

KRL
KRLF

BV
KRL
KRLF

BV

KRL
KRLF

BV

(b)(a) (c)

Load Load Load

T
im

e
U

n
it

s/
C

S
 E

n
tr

y

T
im

e
U

n
it

s/
C

S
 E

n
tr

y

T
im

e
U

n
it

s/
C

S
 E

n
tr

y

Fig. 30. Load vs. Time Units/CS Entry for 20% Connectivity at (a) Zero, (b) Low (1

Link Change every 500 Time Units), and (c) High (1 Link Change every 50

Time Units) Mobility with k = 3 (BV = Bulgannawar and Vaidya Algorithm,

KRL = Basic k-Mutual Exclusion Algorithm, KRLF = KRL with Token

Forwarding)

Fig. 30 shows that KRLF results in executions with lower average time per CS

entry than either the KRL or BV algorithms.

Part (c) of Fig. 30 also shows that the BV algorithm is not well-suited for high

mobility scenarios, whereas the time per CS entry for the KRLF algorithm is unaf-

fected by increasing mobility and the time per CS entry for the KRL algorithm is

actually improved when nodes are mobile. This reflects the ability of the KRL and

KRLF algorithms to maintain high levels of token usage even when the topology is

very dynamic. By allowing a token holder to “forget” requests that arrive on links

that subsequently fail, our algorithms are able to provide uninterrupted access to

other neighbors of that token holder. Notice that KRL’s time per CS entry goes

down at the very high load. The reason is the newly generated requests in the high

86

load scenarios will follow the request chain of the previous requests, which shorten

the time of maintaining the token oriented DAG.

1 11 20 2020 40 4040 60 6060 80 8080 100 100100
0 00

10 1010

20 2020

30 3030

40 4040

50 5050

60 6060

70 7070

KRLF
KRL
BV

KRLF
KRL
BV

KRLF
KRL
BV

M
es

sa
g

es
/C

S
 E

n
tr

y

M
es

sa
g

es
/C

S
 E

n
tr

y

M
es

sa
g

es
/C

S
 E

n
tr

y

(b) (c)
Load
(a)

Load Load

Fig. 31. Load vs. Messages/CS entry for 20% Connectivity at (a) Zero, (b) Low (1

Link Change every 500 Time Units), and (c) High (1 Link Change every 50

Time Units) Mobility with k = 3 (BV = Bulgannawar and Vaidya Algorithm,

KRL = Basic k-Mutual Exclusion Algorithm, KRLF = KRL with Token

Forwarding)

Fig. 31 shows that the number of messages sent in the BV simulation is not

affected to a large extent by mobility. This is because the BV algorithm was intended

for static networks and is oblivious to topology changes. Also, the number of messages

used to find new routes in the BV simulation was not counted. The KRL and KRLF

algorithms both send fewer messages per CS entry than the BV algorithm, except at

the highest mobility when system load is low. When load is low and mobility is high,

most messages in KRL and KRLF are LinkInfo messages, sent to repair the paths to

token holders.

2. Comparison of KRL and KRLF on ns-2

To evaluate the relative performance of the KRL and KRLF algorithms in a “real

world” scenario, we used the ns-2 simulator [77] with CMU extensions for mobility

[78]. We did not simulate the BV algorithm on the ns-2 simulator since the simulation

87

results from Section 1 indicate that both the KRL and KRLF algorithms outperform

the BV algorithm in most situations and it is likely that the performance of the BV

algorithm would be worse when run on top of a real routing protocol. Also, the BV

algorithm assumes that that each node knows the global information of the network,

which makes it poorly suited for ad hoc networks.

To model the mobility of the nodes, we used the random waypoint mobility model

[78]. In each mobility scenario generated, the 30 nodes were initially placed at random

positions on a two-dimensional grid. Nodes had identifiers 1 . . . n and initially, nodes

1, 2 and 3 were token holders. The transmission radius at each node was uniform with

a length of 250m. Communication links formed when nodes were separated by 250m

or less and links failed when the distance between them became greater than 250m.

The algorithms ran as applications on top of the Dynamic Source Routing protocol

(DSR) [59] and the IEEE 802.11 MAC layer. Each node gets its neighbor information

by broadcasting Hellomessages. The Hello interval is set to 2 seconds. The simulation

box size was chosen to 500m × 500m to represent moderate connectivity. Average

node speeds of 10, 5, and 0m/sec were used to represent high, low, and no mobility,

respectively. We modeled the inter-arrival time of requests for the CS at each node

as a Poisson process, and varied the expected interval between requests, recording

executions with intervals of 100, 80, 60, 40, 20, and 10 seconds between requests.

In our performance evaluation, we measured: the average time, in seconds, for

nodes to enter the CS after making a request (average time spent in WAITING

section), the standard deviation of the waiting time to enter the CS and the average

number of messages sent per CS entry. Each node spent exactly 1 second in the CS

before releasing the token. Results reported here are averaged over 20 executions,

each simulation run lasts for 1000 seconds. Simulation results using ns-2 are plotted

in the graphs of Figures 32, 33 and 34.

88

Fig. 32. Request Interval vs. Waiting Time/CS Entry for 500m × 500m Box at (a)

Zero, (b) Low (5 m/sec), and (c) High (10 m/sec) Mobility with k = 3 (KRL =

Basic k-Mutual Exclusion Algorithm, KRLF = KRL with Token Forwarding)

Figure 32 shows the average waiting time for each node to enter the CS under

different request intervals and mobililties. Part (a) indicates that at 0 mobility and

long request interval, nodes enter the CS with very little delay in both KRL and

KRLF. This is caused, to a large extent, by the continual circulation of each token

within its own disjoint subset of the network in KRL. Because nodes send requests

to their lowest neighbors, the same place they last sent the token, requests tend to

follow the same routes and nodes tend to repeatedly receive the same token. Since

tokens are confined to a subset of processors in KRL, the paths over which Request

and Token messages travel are short. Also, token holding nodes often enter the CS

after negligible message delivery time, particularly at long request interval due to

lack of contention. As mobility gets higher, the average waiting time increases. This

is because the mobility causes the topology of the network and the DAG changed

frequently, making the original request chain invalid. In most cases, the waiting time

in KRLF is less than KRL because KRLF keeps forwarding the idle tokens in the

network. KRLF does not help to reduce the waiting time in the low request interval

because there are few number of requests in the system and the possibility of having

89

idle tokens is less, token forwarding in this case seems to be an overkill.

Figure 33 shows the standard deviation of the waiting time for each node under

different request intervals and mobilities. The standard deviation of both KRL and

KRLF increases with system load and mobility. KRLF has smaller standard deviation

value than KRL under the same request interval and mobility, especially in moderate

system loads (request intervals of 80, 60 and 40s). This is because idle tokens in the

system is forwarded by KRLF, which reduces the waiting time for requesting nodes.

KRL does not forward tokens if there is no request in the queue. This may cause

part of the network is jamed with requests, and the other part of the network with

tokens does not have request, which results larger deviation in the waiting time.

Fig. 33. Request Interval vs. Std. of the Waiting Time/CS Entry for 500m × 500m

Box at (a) Zero, (b) Low (5 m/sec), and (c) High (10 m/sec) Mobility with k

= 3 (KRL = Basic k-Mutual Exclusion Algorithm, KRLF = KRL with Token

Forwarding)

Figure 34 shows the average number of messages to enter the critical section.

KRLF sends more messages than KRL, because KRLF keeps forwarding the token

even if there is no request in the network in order to reduces the waiting time to

enter the critical section. Especially in low load cases, the number of messages sent

by KRLF is significantly higher than KRL. But it does not really help reducing the

90

waiting time as shown in Figure 32. This suggests a “smarter” token forwarding

heuristic which is aware of the system load is more desirable. The average number of

messages in high mobility case is higher because there are more link change messages

due to the mobility. As the request interval gets shorter, the average number of

messages decreases.

Fig. 34. Request Interval vs. Messages/CS Entry for 500m × 500m Box at (a) Zero,

(b) Low (5 m/sec), and (c) High (10 m/sec) Mobility with k = 3 (KRL =

Basic k-Mutual Exclusion algorithm, KRLF = KRL with Token Forwarding)

It should be noted that the difference between the results for the KRL and KRLF

algorithms shown in Section 1 and those of the ns-2 simulator in this section are in

part due to the following factors:

• The simulation in Section 1 had no message contention or collision. Messages

delay in the simulations in Section 1 were always delayed by 1 second, which is a

normalized value in the simulator, whereas in the ns-2 simulation, the message

delay was variable, depending on the state of the wireless channel. In general,

the message delay in ns-2 was much less than 1 second when the system load

was low.

• Whereas the connectivity in our simulation was allowed to vary from 10 to 30%,

91

nearly any connectivity was possible in ns-2, depending on the distribution of

nodes on the two-dimensional grid.

In summary, our results from using the ns-2 simulator suggest that token for-

warding improves performance, in terms of time per CS entry, when the network the

topology is changing. However, there is a trade-off involved with this improvement

because nodes send more messages when the topology is changing.

92

CHAPTER V

CONCLUSION AND FUTURE WORK

Studying fundamental services is necessary and important for building new dis-

tributed systems for mobile ad hoc networks. In this work, we studied some dis-

tributed services for mobile ad hoc networks, namely the clock synchronization, con-

nected dominating set and k-mutual exclusion problems.

A. Clock Synchronization

Our clock synchronization algorithm exploits an advantage of the wireless commu-

nication medium and extends high synchronization accuracy to the whole network.

Our algorithm takes advantage of the Reference Broadcast Synchronization (RBS),

which can achieve high precision in synchronizing clocks within one broadcast domain,

and generates a connected dominating set. By using the CDS as the synchronization

backbone, synchronization is extended to multiple hops. This approach is adaptive to

the mobile situations through the maintenance of the approximate MCDS. Through

simulation, we show this algorithm can achieve good accuracy in synchronization (in

microseconds). Our paper is published in the 2004 International Workshop on Mobile

and Wireless Networking [5] (MWN04).

In the future work, we would like to prove a tight upper bound for our algorithm.

Although our algorithm can achieve high accuracy in the synchronization, many ap-

plications in ad hoc networks do not need synchronized clocks all the time. We would

like to develop an on-demand synchronization algorithm based on our present al-

gorithm that still preserves the high quality in synchronization, but rather smaller

energy consumption. Also, we are interested in combining techniques for estimating

clock drift with our algorithm to provide even better synchronization accuracy.

93

B. Connected Dominating Set

In the second part of this work, we presented a randomized connected dominating

set algorithm in mobile ad hoc networks. Our algorithm uses a randomized delay

function for each node based only on its local information. Our algorithm uses fewer

messages to find and maintain a CDS. We show that our algorithm can still find a

CDS with a constant approximation of the optimal in terms of size. Moreover, our

algorithm rotates the CDS nodes and distributes the energy consumption evenly in

the whole network. Our simulation results show that our randomized CDS can extend

the network lifetime and balance the energy consumption as compared to previous

works. We also show how our CDS can be used as a routing backbone. This work is

published in the International Conference on Wireless Networking [7] (ICWN04).

In future work, we will continue to study energy efficient communication in ad

hoc networks. Energy efficiency is the most important issue in wireless networking.

Currently there are two categories of approaches for energy efficient communication.

The first category is topology control algorithms by power control, in which each

individual node computes its own transmission power in order to generate a desired

network topology for communication. However, there are some drawbacks in power

control algorithms. First, most of power control algorithms generate unidrectional

links in the network, which makes many of the existing routing algorithms inappli-

cable. In order to generate bidirectional links, extra steps have to be taken which

brings more complexity to the algorithms. Second, it is hard to tell whether power

control algorithms really benefit in terms of performance. Some distributed imple-

mentations of power control algorithms can hardly improve the throughput of mobile

ad hoc networks [55].

The second category is based on a virtual backbone in the network. Backbone

94

based communication has an advantage over power control techniques in that it avoids

unidirectional links, which is important for many routing algorithms. Our current

work on randomized CDS algorithm falls in this category. The simplicity and effi-

ciency of randomized algorithms makes them more applicable to dynamic networks

like mobile ad hoc and sensor networks. However, different communication primitives

may require different backbones. Our future work is to develop efficient backbone

algorithms that are efficiently adaptive to different service specifications and compre-

hensive performance analysis of the two energy efficient communication approaches.

This can also be applied to sensor networks, which share numerous similarities with

mobile ad hoc networks. Another issue is load balancing of the backbone. Since

backbone nodes consume more energy than the other nodes in the network, rota-

tion of the backbone is needed to prolong the overall network lifetime. The current

work on randomized CDS rotates backbone nodes to achieve load balancing. How-

ever, the performance is evaluated only through simulation. Future work will include

mathematical analysis on the load balancing of different backbone algorithms and

developing backbone algorithms that can optimize the load balance.

C. k-Mutual Exclusion

In the third part of work, we studied the k-mutual exclusion problem. We presented a

topology sensitive k-Reversal Link with Token Forwarding (KRLF) algorithm. KRLF

is an extension of the k-Reversal Link (KRL) algorithm ([69]). The key idea of KRLF

is to add a token forwarding technique to an idle token. By forwarding the idle token,

nodes can access tokens more concurrently. We show that an idle token is guaranteed

to be forwarded to all nodes in the network. Through simulation, we showed that at

mid-range loads, the token forwarding technique does improve the time per CS entry

95

without using more messages than the basic KRL algorithm when nodes are mobile.

This work is published in the ACM Workshop on Principles of Mobile Computing in

2001 [9] (POMC01).

In future work, we would like to continue to experiment with heuristic modifica-

tions to the token forwarding strategy. A “self-adjusting” version of KRLF in which

processors hold the token before forwarding it would allow processors to dynamically

adjust the amount of time they hold an idle token before forwarding, based on their

local view of the load on the system. The lower the detected system load, the longer

the nodes would wait prior to forwarding the token. Our simulation results suggest

that this strategy will not degrade performance even if the node has a temporarily

incorrect view of the system load.

96

REFERENCES

[1] I. Stojmenovic, Handbook of Wireless Networks and Mobile Computing, New

York, NY: Wiley Series on Parallel and Distributed Computing, 2002.

[2] J. Broch, D. A. Maltz, Y. Hu D. B. Johnson, and J. Jetcheva, “A performance

comparison of multi-hop wireless ad hoc network routing protocols,” in Proceed-

ings of the Fourth ACM Annual International Conference on Mobile Computing

and Networking (MobiCom 98), Dallas,TX, October 1998.

[3] The Transis Project, “The transis group communication system,” http://www.

cs.huji.ac.il/labs/transis/. Accessed on July, 2004.

[4] Jennifer E. Walter, “Distributed algorithms for mobile computing systems,”

Ph.D. dissertation, Department of Computer Science, Texas A&M University,

College Station, December, 2000.

[5] G. Cao and J. L. Welch, “Accurate multihop clock synchronization in mobile ad

hoc networks,” in Proceedings of the 2004 International Workshop on Mobile

Wireless Networking (MWN04), Montreal, Quebec, Canada, August 15-18, 2004,

pp. 13–20.

[6] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization

using reference broadcasts,” in Proceedings of the Fifth Symposium on Operat-

ing Systems Design and Implementation(OSDI), Boston, MA, 2002, pp. 147–164.

[7] G. Cao, “A randomized connected dominating set algorithm in wireless ad hoc

networks,” in Proceedings of the 2004 International Conference on Wireless

Networks (ICWN04), Las Vegas, Nevada, USA, June 21-24, 2004, pp. 16–21.

97

[8] X. Cheng and D.-Z. Du, “Virtual backbone-based routing in ad hoc wireless

networks,” Department of Computer Science and Engineering, University of

Minnesota, Technical Report 02-002, 2002.

[9] J. E. Walter, G. Cao, and M. Mohanty, “A k-mutual exclusion algorithm for

wireless ad hoc networks,” in Workshop on Principles of Mobile Computing,

Newport, RI, 2000.

[10] B. Aiken, J. Strassner, Cisco Systems, B. Carpenter, IBM, I. Foster, Argonne Na-

tional Laboratory, C. Lynch, Coalition for Networked Information, J. Mambretti,

ICAIR, R. Moore, UCSD, B. Teitelbaum, and Inc. Advanced Networks & Ser-

vices, “Internet RFC 2768,” February 2000, http://www.faqs.org/rfcs/rfc2768.

html. Accessed on August 31, 2004.

[11] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Commu-

nication of the ACM, vol. 5, no. 43, pp. 51–58, 2000.

[12] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless

sensor networks for habitat monitoring,” in First ACM Workshop on Wireless

Sensor Networks and Applications (WSNA), Atlanta, GA, 2002, pp. 88–97.

[13] D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE

Transaction on Communications, vol. 39, no. 10, pp. 1482–1493, 1991.

[14] S. PalChaudhuri, A. Saha, and D. B. Johnson, “Adaptive clock synchronization

in sensor networks,” in 3rd Symposium on Information Processiong in Sensor

Networks (IPSN), Berkeley, CA, 2004, pp. 340–348.

[15] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”

Communications of the ACM, vol. 7, no. 21, pp. 558–565, 1978.

98

[16] J. Lundelius and N. A. Lynch, “An upper and lower bound for clock synchro-

nization,” Information and Control, vol. 62, pp. 190–204, 1984.

[17] J. Y. Halpern, N. Megiddo, and A. A. Munshi, “Optimal precision in the presence

of uncertainty,” Journal of Complexity, vol. 1, pp. 170–196, 1985.

[18] F. Cristian, “Probabilistic clock synchronization,” Distributed Computing, vol.

3, pp. 146–158, 1989.

[19] B. Patt-Shamir and S. Rajsbaum, “A theory of clock synchronization,” in

Proceedings of 26th Annual ACM Symposium of Theory of Computing (STOC),

1994, pp. 810–819.

[20] Nelson Minar, “A survey of the ntp network,” MIT Media Lab, 1999,

http://www.media.mit.edu/ nelson.

[21] P. Veŕısśımo, L. Rodrigues, and A. Casimiro, “Cesiumspray: a precise and accu-

rate global time service for large-scale systems,” Journal of Real-Time Systems,

vol. 3, no. 12, pp. 243–294, May 1997.

[22] M. Mock, R. Frings, E. Nett, and S. Trikaliotis, “Clock synchronization for

wireless local area networks,” in Proceedings of the 12th Euromicro Conference

on Real Time Systems, Stockholm, 2000, pp. 183–189.

[23] S. Mitra and J. Rabek, “Power efficient clustering for clock

synchronization in dynamic multi-hop sensor networks,” 2003,

http://theory.mit.edu/ mitras/courses/6829/project/final-report.ps.

[24] R. Wattenhofer, L. Li, P. Bahl, and Y. M. Wang, “Distributed topology control

for power efficient operation in multihop wireless ad hoc networks,” in IEEE

INFOCOM, 2001, pp. 1388–1397.

99

[25] H. Dai and R. Han, “Tsync: A lightweight bidirectional time synchronization

service for wireless sensor networks,” Mobile Computing and Communications

Review, vol. 8, no. 1, pp. 125–139, 2004.

[26] S. Ganeriwal, R. Kumar, S. Adlakha, and M. Srivastava, “Network-wide time

synchronization in sensor networks,” Department of Electrical Engineering,

UCLA, NESL Technical Report 01-01-2003, 2003.

[27] J. V. Greunen and J. Rabaey, “Lightweight time synchronization for sensor

networks,” in Proceedings of the 2nd ACM International Conference on Wireless

Sensor Networks and Applications (WSNA), 2003, pp. 11–19.

[28] M. L. Sichitiu and C. Veerarittiphan, “Simple, accurate time synchronization for

wireless sensor networks,” in IEEE Wireless Communications and Networking

Conference (WCNC), New Orleans, LA, March 2003, vol. 2, pp. 1266–1273.

[29] Kay Römer, “Time synchronization in ad hoc networks,” in The ACM Sympo-

sium on Mobile Ad Hoc Networking & Computing (MobiHoc), Long Beach, CA,

2001, pp. 173–182.

[30] R. Fan and N. Lynch, “Gradient clock synchronization,” in 23rd Annual Sym-

posium on Principles of Distributed Computing (PODC04), St. John’s, Canada,

2004, pp. 320–327.

[31] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem in a mobile

ad hoc network,” in Proceedings of the ACM/IEEE Internation Conference on

Mobile Computing and Networking (MOBICOM), 1999, pp. 151–162.

[32] P. Sinha, R. Sivakumar, and V. Bharghavan, “Enhancing ad hoc routing with

dynamic virtual infrastructures,” in INFOCOM, Anchorage, Alaska, 2001, pp.

100

1763–1772.

[33] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the

theory of NP-completeness, San Francisco: Freeman, 1978.

[34] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz,

“Simple heuristics for unit disk graphs,” Networks, vol. 25, pp. 59–68, 1995.

[35] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of

Operation Research, vol. 4, no. 3, pp. 233–235, 1979.

[36] S. Guha and S. Khuller, “Approximation algorithms for connected dominating

sets,” in Proceedings of 4th Annual European Symposium on Algorithyms, 1996,

pp. 179–193.

[37] T. Grossman and A. Wool, “Computational experience with approximation algo-

rithms for the set covering problem,” European Journal of Operational Research,

vol. 101, no. 1, pp. 81–92, 1997.

[38] L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed algorithm for con-

stucting small dominating sets,” in Twentieth ACM Symposium on Principles

of Distributed Computing (PODC), Newport, RI, 2001, pp. 33–42.

[39] K. M. Alzoubi, P. J Wan, and O. Frieder, “Distributed heuristics for connected

dominating sets in wireless ad hoc networks,” Journal of Communications and

Networks, vol. 4, no. 1, pp. 22–29, 2002.

[40] J. Wu and H. Li, “On calculating connected dominating set for efficient routing

in ad hoc wireless networks,” in Proceedings of the 3rd international workshop on

Discrete Algorithms and Methods for Mobile Computing and Communications,

Seattle, Washington, United States, 1999, pp. 7–14.

101

[41] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating sets and neighbor

elimination-based broadcasting algorithms in wireless networks,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 13, no. 1, pp. 14–25, 2002.

[42] H. Kopetz and W. Schwabl, “Global time in distributed real-time systems,”

Technische Universität Wien, Technical Report 15/89, 1989.

[43] K. M. Alzoubi, P. J Wan, and O. Frieder, “Message-optimal connected dom-

inating sets in mobile ad hoc networks,” in Proceedings of The Third ACM

International Symposium on Mobile Ad Hoc Networking & Computing (Mobi-

Hoc), 2002, pp. 157–164.

[44] G. Cao and J. L. Welch, “A clock synchronization service in mobile ad hoc

networks,” Tech. Rep., Dept. of Computer Science, Texas A&M University,

2003, http://students.cs.tamu.edu/g0c7670/TechReport03.pdf.

[45] VINT Group, “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns.

Accessed on November, 2003.

[46] The CMU Monarch Project, “Wireless and mobility extension to ns,” http:

//www.monarch.cs.cmu.edu. Accessed on October, 2004.

[47] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum con-

nected dominating sets,” in IEEE International Conference on Communications

(ICC), Richardson, TX, 1997, pp. 376–380.

[48] B. Liang and Z. J. Haas, “Virtual backbone generation and maintenance for ad

hoc network mobility management,” in Proceedings of 2000 IEEE INFOCOM,

Tel Aviv, Israel, 2000, pp. 1293–1302.

102

[49] R. Sivakumar, P. Sinha, and V. Bharghavan, “Cedar: a core-extraction dis-

tributed ad hoc routing algorithm,” IEEE Journal of Selected Areas in Commu-

nications, vol. 17, no. 8, pp. 1454–1465, August 1999.

[50] B. Williams and T. Camp, “Comparison of broadcasting techniques for mobile

ad hoc networks,” in Proceedings of the ACM International Symposium on

Mobile Ad Hoc Networking and Computing (MobileHOC), 2002, pp. 194–205.

[51] K. Alzoubi, X. Y. Li, Y. Wang, P. J. Wan, and O. Frieder, “Geometric spanners

for wireless ad hoc networks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 14, no. 4, pp. 408–421, 2003.

[52] A. D. Amis and R. Prakash, “Load-balancing clusters in wireless ad hoc net-

works,” in The 3rd IEEE Symposium on Application-Specific Systems and Soft-

ware Engineering Technology (ASSET), Richardson, TX, 2000, pp. 25–32.

[53] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An energy-

efficient coordination algorithm for topology maintenance in ad hoc wireless net-

works,” ACM Wireless Networks Journal, vol. 8, no. 5, pp. 481–494, 2002.

[54] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation

for ad hoc routing,” in Seventh Annual ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom), Rome, Italy, 2001, pp. 70–84.

[55] R. Ramanathan and R. Hain, “Topology control of multihop wireless networks

using transmit power adjustment,” in IEEE INFOCOM, Tel-Aviv, Israel, 2000,

pp. 404–413.

[56] L. Bao and J. J. Garcia-Luna-Aceves, “Topology management in ad hoc net-

works,” in Proceedings of the ACM Symposium on Mobile Ad Hoc Networking

103

& Computing (MobiHoc), 2003, pp. 129–140.

[57] C. C. Chiang, H. K. Wu, W. Liu, and M. Gerla, “Routing in clustered multihop,

mobile wireless networks with fading channel,” in IEEE Singapore International

Conference on Networks (SICON’97), 1997, pp. 14–17.

[58] Y. Xu, J. Heidemann, and D. Estrin, “Adaptive energy-conserving routing for

multihop ad hoc networks,” Information Sciences Institute, University of South-

ern California, Technical Report 527, 2000.

[59] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless

networks,” in Mobile Computing, T. Imielinski and H. Korth, Eds., chapter 5,

pp. 153–181. Boston, MA: Kluwer Academic Publishers, 1996.

[60] C. E. Perkins and M. Belding-Royer, “Ad-hoc on-demand distance vector rout-

ing,” in Second Workshop on Mobile Computing Systems and Applications

(WMCSA99), New Orleans, LA, 1999, pp. 90–100.

[61] R. Baldoni, A. Virgillito, and R. Petrassi, “A distributed mutual exclusion

algorithm for mobile ad hoc networks,” in Proc. of 7th Intl. Symp. on Computers

and Communications, 2002, pp. 539–544.

[62] D. Kim, C.-K. Toh, and Y. Choi, “Improving tcp performance in wireless ad

hoc networks,” in Proc. of IEEE Intl. Conf. on Communications, 2000, vol. 3,

pp. 1707–1713.

[63] D. Sun and H. Man, “Enic - an improved reliable transport scheme for mobile

ad hoc networks,” in Proc. of IEEE Global Telecommunications Conf., 2001,

vol. 5, pp. 2852–2856.

104

[64] S. T. Huang, J. R. Jiang, and Y. C. Kuo, “K-coteries for fault-tolerant k entries

to a critical section,” in Proc of IEEE Intl. Conf. on Distributed Computing

Systems, 1993, pp. 74–81.

[65] K. Raymond, “A distributed algorithm for multiple entries to a critical section,”

Information Processing Letters, vol. 30, pp. 189–193, Feb. 1989.

[66] S. Bulgannawar and N. H. Vaidya, “A distributed k-mutual exclusion algo-

rithm,” in Proc. of IEEE Intl. Conf. on Distributed Computing Systems, 1995,

pp. 153–160.

[67] K. Makki, P. Banta, K. Been, N. Pissinou, and E. Park, “A token based dis-

tributed k mutual exclusion algorithm,” in Proc. of IEEE Symp. on Parallel and

Distributed Processing, 1992, pp. 408–411.

[68] P. K. Srimani and R. L. Reddy, “Another distributed algorithm for multiple

entries to a critical section,” Information Processing Letters, vol. 41, pp. 51–57,

1992.

[69] J. E. Walter, J. L. Welch, and N. H. Vaidya, “A mutual exclusion algorithm for

ad hoc mobile networks,” Wireless Networks, vol. 4, no. 6, pp. 585–600, 2001.

[70] Y. Chen and J. Welch, “Self-stabilizing mutual exclusion using tokens in mobile

ad hoc networks,” in Proc. of Dial-M for Mobility Workshop, 2002, pp. 34–42.

[71] J. R. Jiang, “A distributed h-out of-k mutual exclusions algorithm for ad hoc mo-

bile networks,” in Proc. of the Intl. Parallel and Distributed Processing Symp.,

2002, pp. 196–202.

[72] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-free

routes in networks with frequently changing topology,” IEEE Transactions on

105

Communications, vol. C-29, no. 1, pp. 11–18, 1981.

[73] Y. Chang, M. Singhal, and M. Liu, “A fault tolerant algorithm for distributed

mutual exclusion,” in Proc. of 9th IEEE Symp. on Reliable Dist. Systems, 1990,

pp. 146–154.

[74] D. M. Dhamdhere and S. S. Kulkarni, “A token based k-resilient mutual exclu-

sion algorithm for distributed systems,” Information Processing Letters, vol. 50,

pp. 151–157, 1994.

[75] K. Raymond, “A tree-based algorithm for distributed mutual exclusion,” ACM

Transactions on Computer Systems, vol. 7, no. 1, pp. 61–77, 1989.

[76] J. L. Welch and N. A. Lynch, “A modular drinking philosophers algorithm,”

Distributed Computing, vol. 6, pp. 233 – 244, 1993.

[77] V. P. Team, “The network simulator – ns-2,” VINT Project Team, available at

http://www.isi.edu/nsnam/ns/, 2000.

[78] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and J. Jetcheva, “A performance

comparison of multi-hop wireless ad hoc network routing protocols,” in Proc. of

ACM/IEEE Intl. Conf. on Mobile Computing and Networking, 1998, pp. 85–97.

[79] S. Basagni, I. Chlamtac, and V. R. Syrotiuk, “A distance routing effect algorithm

for mobility (dream),” in Proc. of ACM/IEEE Intl. Conf. on Mobile Computing

and Networking, 1998, pp. 76–84.

[80] R. Casteneda and S. R. Das, “Query localization techniques for on-demand

routing protocols in ad oc networks,” in Proc. ACM/IEEE Intl. Conf. on Mobile

Computing and Networking, 1999, pp. 186–194.

106

[81] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark,

“Scenario-based performance analysis of routing protocols for mobile ad hoc net-

works,” in Proc. ACM/IEEE Intl. Conf. on Mobile Computing and Networking,

1999, pp. 195–206.

[82] Y. B. Ko and V. H. Vaidya, “Location-aided routing (lar) in mobile ad hoc

networks,” in Proc. of ACM/IEEE Intl. Conf. on Mobile Computing and Net-

working, 1998, pp. 66–75.

[83] E. M. Royer and C. E. Perkins, “Multicast operation of the ad hoc on-demand

vector routing protocol,” in Proc. ACM/IEEE Intl. Conf. on Mobile Computing

and Networking, 1999, pp. 207–218.

107

APPENDIX A

PSEUDOCODE FOR KRL ALGORITHM

When node i requests access to the CS: When node i releases the CS:

1. status := WAITING 1. if (|Q| > 0) GiveTokenToNext()
2. Enqueue(Q, i) 2. status := REMAINDER

3. if (!tokenHolder) 3. if (myHeight > height[k],∀k ∈ N)

4. if (|Q| = 1) ForwardRequest() 4. LowerHeight()
5. else GiveTokenToNext()

Fig. 35. Pseudocode Triggered by Input Events from Application Process

Request(h) received at node i from node j:

(h denotes j’s height when message was sent)
1. if (receivedLI[j])
2. height[j] := h

3. if (myHeight < height[j]) Enqueue(Q, j)
4. if (tokenHolder)
5. if ((|Q| > 0) and

((status = REMAINDER) or ((status = CRITICAL) and (numTokens > 1))))
6. GiveTokenToNext()
7. else // not tokenHolder

8. if (myHeight < height[k], ∀ k ∈ N)

9. RaiseHeight()
10. else if ((Q =[j]) or ((|Q| > 0) and (myHeight < height[next]))
11. ForwardRequest() //reroute request

Fig. 36. Pseudocode Triggered by Recv(j, Request) Network Input Events

108

Token(h) received at node i from node j:

(h denotes j’s height when message was sent)
1. tokenHolder := true

2. numTokens++
3. height[j] := h

4. if (myHeight > h)

5. Send LinkInfo(h.h1,h.h2 - 1,i) to all outgoing k ∈ N except j

6. myHeight.h1 := h.h1
7. myHeight.h2 := h.h2 - 1 // lower height

8. Send LinkInfo(h.h1,h.h2 - 1, i) to j

9. if (|Q| > 0) GiveTokenToNext()
10. else next := i

Fig. 37. Pseudocode Triggered by Recv(j, Token) Network Input Event

LinkInfo(h) received at node i from node j:

(h denotes j’s height when message was sent)
1. N := N ∪ {j}
2. if ((forming[j]) and (myHeight 6= formHeight[j]))
3. Send LinkInfo(myHeight) to j

4. forming[j] := false

5. if (receivedLI[j]) height[j] := h

6. else if (height[j] = h) receivedLI[j] := true

7. if (myHeight > height[j]) Delete(Q, j)
8. if (tokenHolder)
9. if (myHeight > height[k],∀k ∈ N)

10. LowerHeight()
11. if ((myHeight < height[k],∀k ∈ N) and (not tokenHolder))
12. RaiseHeight()
13. else if ((|Q| > 0) and (myHeight < height[next]))
14. ForwardRequest() // reroute request

Fig. 38. Pseudocode Triggered by Recv(j, LinkInfo) Network Input Event

Failure of link to j detected at node i:

1. N := N − {j}
2. Delete(Q, j)
3. receivedLI[j] := true

4. if (not tokenHolder)
5. if (myHeight < height[k],∀k ∈ N)

6. RaiseHeight() // reroute request

7. else if ((|Q| > 0) and (next 6∈ N))

8. ForwardRequest()
9. else if (myHeight > height[k],∀k ∈ N)

10. LowerHeight()

Formation of link to j detected at node i:

1. Send LinkInfo(myHeight) to j

2. forming[j] := true

3. formHeight[j] := myHeight

Fig. 39. Pseudocode Triggered by LinkDown and LinkUp Network Enput Events

109

Procedure ForwardRequest():
1. next := l ∈ N : height[l] ≤ height[j] ∀ j ∈ N

2. Send Request(myHeight) to next

Procedure LowerHeight():
1. myHeight.h1 := maxk∈N{height[k].h1} − 1
2. S := {l ∈ N : height[l].h1 = myHeight.h1}
3. if (S 6= ∅) myHeight.h2 := maxl∈S{height[l].h2}+ 1
4. Send LinkInfo(myHeight) to all incoming k ∈ N

Procedure RaiseHeight():
1. myHeight.h1 := 1 + mink∈N{height[k].h1}
2. S := {l ∈ N : height[l].h1 = myHeight.h1}
3. if (S 6= ∅) myHeight.h2 := minl∈S{height[l].h2} − 1

4. Send LinkInfo(myHeight) to all k ∈ N
5. for (all k ∈ N such that myHeight > height[k]) do

6. Delete(Q, k)
7. if (|Q| > 0) ForwardRequest()

Procedure GiveTokenToNext():
1. next := Dequeue(Q)

2. if (next 6= i) // send token

3. numTokens--
4. if (numTokens = 0)

5. tokenHolder := false

6. height[next] := (myHeight.h1,myHeight.h2−1, next)
7. receivedLI[next] := false

8. Send Token(myHeight) to next
9. if ((numTokens = 0) and (|Q| > 0))

10. Send Request(myHeight) to next
11. else // keep token

12. status := CRITICAL

13. Enter CS

Fig. 40. Procedures of KRL Algorithm

110

VITA

Guangtong Cao was born in Jia MuSi, Hei LongJiang Province, China. He

received his B.E. and M.E. degree in Computer Science from Beijing University of

Aeronautics & Astronautics in 1994 and 1997. He began pursuing a Ph.D. degree in

Computer Science at Texas A&M University in 2000. Since then, he has worked as

a graduate teaching assistant and research assistant for Dr. Jennifer L. Welch in the

Department of Computer Science, Texas A&M University. His permenant address

is: Department of Computer Science, Texas A&M University, 301 Harvey R. Bright

Bldg, College Station, TX 77843-3112.

