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ABSTRACT 

 

Impact of the Red Imported Fire Ant upon Cotton Arthropods. (May 2003) 

Rodrigo Rogelio Diaz Galarraga, B.S., Escuela Agricola Panamericana, Zamorano 

Co-Chairs of Advisory Committee:  Dr. Allen Knutson 
                               Dr. Julio Bernal 
 
 

Inclusion/exclusion field experiments demonstrated that the red imported fire ant, 

Solenopsis invicta Buren, did not affect the abundance of 49 groups of insects and 

spiders collected in pitfall traps. However, arthropod diversity was significantly greater 

(H’ = 2.829) in exclusion plots relative to inclusion plots (H’ = 2.763). Moreover, this 

study demonstrated that S. invicta can have an important impact upon cotton arthropod 

communities, including key predator species. Densities of ground beetles (Carabidae), 

spiders, lacewings (Chrysoperla spp.), and minute pirate bugs (Orius spp.) were 

significantly lower in the presence of S. invicta. However, populations of aphidophagous 

insects such as Hippodamia spp. and Scymnus spp. increased with cotton aphid (Aphis 

gossypii Glover) density early in the season. Abundance of cotton aphids was ca. 5× 

greater in inclusion plots, likely due to protection and tending by S. invicta. This increase 

was observed early in the season, though aphid populations did not reach economic 

levels. Predation of sentinel bollworm [Helicoverpa zea (Boddie)] and beet armyworm 

(Spodoptera exigua Hubner) eggs increased 20-30%, when S. invicta was present. Most 

predation of sentinel beet armyworm egg masses, measured via direct nocturnal 

observations, was due to S. invicta (68%) and cotton fleahopper [Pseudatomoscelis 
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seriatus (Reuter)] (21%) in plots with S. invicta, and by the mite Abrolophus sp. (52%), 

spiders (13%) and minute pirate bug (13%) in plots without S. invicta. The frequencies 

of minute pirate bug, cotton fleahopper, S. invicta and native ants in beat bucket samples 

did not accurately reflect the frequency with which they were observed feeding on 

sentinel noctuid eggs. Overall, the results of these studies demonstrated that S. invicta 

was associated with declines in the abundances of minute pirate bug, spiders, and 

lacewing and with an increment in cotton aphid populations, though they did not reach 

the economic threshold. Moreover, S. invicta significantly increased predation of 

bollworm and beet armyworm eggs. All together, the results suggested that S. invicta has 

a net positive impact on cotton pest management. 
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CHAPTER I 

 

INTRODUCTION 

 

The red imported fire ant, Solenopsis invicta Buren, presumably arrived in the 

port of Mobile, Alabama, from Brazil between 1933 and 1945 (Callcott and Collins 

1996). Since that time, it has spread at a rate of 1.47 × 105 ha per yr, and is now 

established in more than 114 million ha, in 670 counties in 11 states in the US and 

Puerto Rico (Callcott and Collins 1996). Recently, S. invicta expanded into, California 

and New Mexico, and its spread seems to be restricted only by cold temperatures and 

low humidity (Korzukhin et al. 2001). S. invicta preferentially inhabits disturbed areas in 

general (Taber 2000). Several biological factors including a venomous sting and its 

aggressive foraging activity in human-inhabited areas make fire ant an important pest.  

S. invicta is a powerful competitor compared to other invertebrates species. 

Porter and Savignano (1990) provide a list of characteristics that contribute to the 

success of fire ants: (1) preference for disturbed habitats; (2) tolerance of a wide range of 

temperatures; (3) use of a wide variety of food resources; (4) workers highly variable in 

size; and, (5) colonies with a high reproductive capacity. 

The impact of S. invicta in agricultural landscapes is the subject of debate 

because the uncertainty of impacts. On one hand, S. invicta can have negative impacts  

___________ 

This thesis follows the style and format of the Journal of Economic Entomology. 
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such as feeding on seed and plants of corn, citrus, okra and soybeans, damaging  

harvesting equipment, and interfering with the activities of agricultural field workers 

(Taber 2000). On the other hand, S. invicta is an aggressive predator, reducing 

populations of ticks, chiggers, boll weevil, the sugar cane borer, and corn earworm 

(Vinson 1997), and their mounds enrich pasture soils with micronutrients (Showler and 

Reagan 1987). 

 Cotton, Gossypium hirsutum L., is the most important field crop in Texas with 

ca. 2.27 millions ha cultivated in 2002 (Texas Agricultural Statistical Service 2003). 

However, pest management in cotton is a prime example of over-reliance of chemical 

control of pests, leading to unsustainable cotton production:  

“The history of cotton insect control has been marked by waste, misery, death and destruction. 

Yet we seem incapable of learning from a pattern of disaster” (Van den Bosch 1978). 

 Due to many problems associated with sole reliance on chemical pest control, 

cotton pest management has evolved in recent decades to an integrated approach where 

biological control, cultural control and crop management play crucial roles. Biological 

control of pests in cotton is mainly exerted by a complex of generalist predators that 

prevents potential pests from causing economic loss (Sterling et al.1989). Indeed, the 

evaluation of predators in crop systems is a high priority for scientists developing IPM 

strategies:  

“ To better understand the value of endemic biological control agents, more research is needed to 

measure and quantify their mortality effects on pests. The rates at which predators consume prey will help 

to establish their efficiency as mortality agents. Once these efficiencies are understood, sampling the 
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number of predators relative to prey will be more useful in making pest management decisions” (Frisbie et 

al. in 1989). 

S. invicta has been recognized as important predator in southern United States 

cotton. S. invicta is a generalist predator, feeding on pests as well as natural enemies. 

Early in the season, S. invicta protect cotton aphids from predation, mainly by lady 

beetles and syrphids, allowing aphid populations to increase (Kaplan and Eubanks 

2002). Later in the season, S. invicta may control important pests such as boll weevil and 

bollworms (McDaniel and Sterling 1982, Fillman and Sterling 1983).  

Thus, the presence of S. invicta in cotton fields presents a dilemma: Do S. invicta 

favor or disrupt biological control of pests? To date, most available studies address only 

the impact of S. invicta on a few temporary pests. Consequently, there is a need to 

understand their role during the entire cotton season, including the roles of other 

predators and the levels of pest control achieved. The objectives of this research were to 

assess the impacts of S. invicta upon cotton aphid, bollworm and beet armyworm, and on 

cotton insect diversity with emphasis on key predator species.  
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CHAPTER II 

 

EFFECT OF THE RED IMPORTED FIRE ANT, Solenopsis invicta Buren 

(HYMENOPTERA: FORMICIDAE), ON ARTHROPOD AND KEY 

PREDATORS COMMUNITIES IN COTTON  

 

Introduction  

The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), 

is a polyphagous predator whose prey includes pest and beneficial insects making its 

presence in cotton fields controversial. According to Whitcomb et al. (1972), S. invicta 

preys on other insects and generally reduces arthropod diversity, thus affecting 

ecosystem stability. However, after being present for decades in the southern United 

States, S. invicta has become an important food web component. According to Vinson 

(1994), S. invicta have the potential to become a keystone species and possibly the 

dominant regulator of insect populations. Invasive ants such as S. invicta may displace 

other important predators in agroecosystems, either via intraguild predation or 

competition for prey (Risch and Carrol 1982).  

 Though its role in agroecosystems is not entirely clear, S. invicta is currently 

targeted by control efforts. Insecticide bait products are routinely used to reduce fire ant 

populations, and quarantine areas are established in Texas to slow their spread. Recently, 

phorid flies [Pseudacteon tricuspis Borgmeier (Phoridae)] were released in Central 

Texas as S. invicta biological control (USDA-ARS 2003). However, Vinson (1994) 
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suggested that S. invicta suppression could potentially lead to outbreaks of species 

previously suppressed by a complex of natural enemies, which S. invicta has supplanted. 

For example, S. invicta displaced other ants such as Monomorium minimum (Buckley), 

Pheidole spp., and Pogonomyrmex barbatus (F. Smith) (Cook 2003), making the 

polygyne form of S. invicta the most common fire ant species in Texas (Porter et al. 

1991). However, no pest outbreaks associated with this displacement have been 

documented. 

 S. invicta impacts on cotton insect diversity are important if populations of 

predators and parasitoids of cotton pests are reduced. Using D-Vac samples and pitfall 

traps, Sterling (1979) failed to detect impacts on predator populations in east Texas 

cotton. However, Reilly and Sterling (1983) found positive relationships between S. 

invicta numbers and cotton aphid (Aphis gossypii Glover), damsel bug (Nabis spp.), 

cotton fleahopper [Pseudatomoscelis seriatus (Reuter)] and minute pirate bug (Orius 

spp.), and concluded that S. invicta may eliminate cues such as exuviae, excreta and 

honeydew used by natural enemies of these species. Lofgren (1986) and Vinson (1994) 

listed reports of S. invicta predation on beneficial and other insects in different crops and 

ecosystems. Eubanks (2001) found negative correlations between densities of S. invicta 

and 16 of 16 herbivores and 22 of 24 natural enemies encountered in cotton and soybean 

fields. More recently, Eubanks et al. (2002) reported that fire ant densities were 

negatively correlated with the abundance of 12 of 13 natural enemies in cotton fields 

sampled in 1999, and 8 of 8 sampled in 2000.  
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The role of S. invicta predation and the potential impacts of its suppression in 

cotton agroecosystems are not well understood. Therefore, the main objectives of this 

research were to evaluate the impacts of S. invicta on cotton arthropod diversity and 

abundance, with special emphasis on species of predatory insects and spiders.  

 

Materials and Methods 

Study site. The study was conducted in a ca. 50 ha cotton field on the Texas 

A&M Stiles Farm Foundation in Williamson County, TX. Standard agricultural 

practices were used during the season. Eight plots of 3 ha each, arranged in two rows of 

four plots, were outlined in the cotton field. Four alternating plots were treated with 

broadcast applications of S-methoprene fire ant bait (Extinguish, Wellmark 

International, Bensenville, IL) at a rate of 1.12 kg/ha during fall of 2000 and once with 

hydramethylnon fire ant bait (Amdro, Ambrands, San Ramon, CA) at a rate of 1.68 

kg/ha in early spring of 2001 to eliminate S. invicta (hereafter “exclusion plots”). The 

remaining four plots were left untreated (hereafter “inclusion plots”). Both bait products 

are known to be highly specific to ants and degrade within 2-3 days in the field, and 

were therefore expected to have minimal effects on other arthropods. The sampling area 

consisted of a subplot of 25 m by 25 m in the center of each plot. Foliar insecticides 

were not applied in subplots. 

Ground dwelling arthropods. S. invicta foraging on the ground was sampled in 

exclusion and inclusion plots using bait vials containing one piece of candy (Jolly 

Rancher, Hershey Foods' Jolly Rancher Candy Co., Golden, CO) and one piece of cat 
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food (Purina Cat Chow, Nestle, St. Louis, MO). Sixteen vials were placed on the 

ground in each plot, ca. 15 cm distant from the base of a cotton plant, early in the 

morning when S. invicta were foraging. Vials were collected after one hour and the 

number of S. invicta captured was recorded. Other ground-active arthropods were 

sampled by placing one pitfall trap at each corner of each subplot. Pitfall traps consisted 

of a large cup (12 cm height × 9.7 cm diameter) with an internal funnel (7.5 cm height × 

9.2 cm diameter) leading to a small collecting cup (5 cm height × 7.5 cm diameter) 

containing ethylene glycol (LowTox antifreeze, Prestone, Danbury, CT). Samples 

were collected weekly from May 3 to August 3, 2001, which covered most of the 

cropping season. Samples were not taken on May 11 and June 7 due to heavy rainfall. 

Pitfall trap samples were processed in the laboratory using a mesh with 500-micron 

openings to separate soil. All arthropods were preserved in 70% alcohol and sorted and 

identified to family or ordinal level with the aid of a dissecting microscope and the keys 

of Borror et al. (1989).  

Large numbers (> 1630 per trap) of false chinch bug, Blissus sp. (Lygaeidae), 

were attracted to pitfall traps during mid-July, and were excluded from calculations of 

diversity and evenness indices to avoid bias. Similarly, S. invicta was excluded from 

calculations of diversity and evenness indices because they were deliberately eliminated 

from exclusion plots. 

Canopy-dwelling predators. Ten species of canopy-dwelling predators were 

sampled weekly from June 20 to August 3 using the beat bucket technique (Knutson and 

Wilson 1999), which consists of shaking cotton plants inside a 5 gal white plastic bucket 
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and counting all recovered predatory insects. Fifteen “stations” located in a diagonal 

transect were sampled per subplot. A sample of three consecutive plants was taken early 

in the morning (8:00-10:00 am) at each station. Predators that were recorded included 

minute pirate bug, cotton fleahopper, S. invicta, crab spider (Thomisidae), jumping 

spiders (Salticidae), “other” spiders, bigeyed bug (Geocoris spp.), green lacewing 

(Chrysoperla spp.), lady beetles (Hippodamia spp., Coleomegilla spp., Coccinella spp., 

others), damsel bug, and Scymnus spp. 

Statistical analysis. Diversity indices of arthropods in exclusion and inclusion 

plots were calculated using all identified families of arthropods from pitfalls traps. The 

Shannon-Weiner diversity index (H’) was calculated as H’ = -Σ pi × ln (pi) where pi is 

the proportion of individuals of the ith family relative to total families (Magurran 1998). 

The Shannon evenness index (E) was calculated as E = H’ / ln (S), where S is the number 

of families identified (Magurran 1998). The diversity index H’ was compared between 

exclusion and inclusion plots using a t-test (Magurran 1988), which yields non-unitary 

degrees of freedom. Cumulative mean arthropod numbers (per order or family) collected 

in pitfall traps were compared between exclusion and inclusion plots via t-tests (Zar 

1999). The numbers of ants in bait vials and the predators collected in beat bucket 

samples were compared between exclusion and inclusion plots via repeated measures 

ANOVA (Zar 1999). Mean numbers of ants in bait vials per date in exclusion plots were 

compared against a hypothesized mean of zero using one-sample t-tests (Zar 1999). The 

relative abundances of predators, estimated as the total numbers of a given predator 
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species relative to the total of all predators, were compared between inclusion and 

exclusion plots via χ2 -tests (Zar 1999). 

 

Results 

Ground-dwelling arthropods. The insecticide baits applied to exclusion plots 

were effective in reducing the number of foraging S. invicta to near-nil levels (P < 

0.001) (Fig. 1). Moreover, the mean number of S. invicta per vial differed significantly 

from zero on only two of eight sampling dates (Fig. 1). The total numbers of arthropods 

collected in pitfall traps in exclusion and inclusion plots, were 13,871 and 18,325 

respectively, and represented 57 orders or families (Table 1). Ground beetle (Carabidae) 

densities were ca. 2× (P = 0.010), spider wasps (Pompilidae) about 3.5×  (P = 0.042), 

false crab spiders (Philodromidae) about 4× (P = 0.031), and jumping spiders 

(Salticidae) about 2× (P = 0.048) greater in exclusion plots relative to inclusion plots. 

Densities of wolf spiders (Lycosidae), the most abundant spider family, did not differ 

between treatments (P = 0.066). Difference in mean densities was not significant (P > 

0.058) for the remaining 49 groups of arthropods (Table1). 

Arthropod diversity was significantly greater (H’ = 2.829) in exclusion plots 

relative to inclusion plots (H’ = 2.763) (t = -1.99; d.f. = 5837.97; P < 0.025). Similarly, 

evenness appeared to be greater in exclusion (E = 0.384) versus inclusion (E = 0.329) 

plots.  

Canopy-dwelling predators. Season long, a total of 1,278 S. invicta were 

collected in the cotton canopy in inclusion plots, while 29 S. invicta were collected in 
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exclusion plots (P < 0.001) (Fig. 2a). The densities (P ≤ 0.016) and relative abundances 

(P ≤ 0.001) of cotton fleahopper and lady beetles were significantly greater in inclusion 

plots versus exclusion plots (Fig. 2b, c, Fig. 3). In contrast, the densities (P ≤ 0.001) and 

relative abundances (P ≤ 0.001) of spiders and minute pirate bugs were greater in 

exclusion versus inclusion plots (Fig. 2d, e, Fig. 3). The season-long composition of 

spiders in exclusion plots was jumping spiders 4.5%, crab spiders 26.5% and “other 

spiders” 69.0%, while the corresponding numbers in inclusion plots were 4.1%, 26.4% 

and 69.5% (data not shown).  

Scymnus spp., damsel bug, bigeyed bug and green lacewing were the least 

frequently collected predators in beat bucket samples (Fig. 4). Bigeyed bug densities (P 

< 0.015)(Fig. 4a) and relative abundance (P < 0.001)(Fig. 3) were significantly greater 

in inclusion versus exclusion plots. In contrast, green lacewing densities (P < 

0.013)(Fig. 4c) and relative abundance (P = 0.05)(Fig.3) were significantly greater in 

exclusion compared with inclusion plots. Seasonal densities and relative abundance of 

damsel bug did not differ between exclusion and inclusion plots (Fig. 4b, Fig. 3). 

Scymnus spp. densities did not differ between exclusion and inclusion plots (Fig. 4d), 

while relative abundance was greater in inclusion plots (P < 0.001) (Fig.3). 
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Fig. 1. Mean numbers of S. invicta per bait vial in S. invicta exclusion and S. invicta inclusion plots, Williamson Co., 

Texas, 2001. Exclusion plots were treated with fire ant bait to eliminate S. invicta, while inclusion plots were left 

untreated. Mean number of S. invicta was not significantly different from zero on all dates (t = 1.83; d.f. = 64; P ≥ 

0.071) except July 4 (t = 2.37; d.f. = 64; P = 0.021) and August 2 (t = 2.57; d.f. = 64; P = 0.012). 
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Table 1. Mean (± SE) cumulative abundance of arthropods per pitfall trap in plots with 

and without S. invicta between May and August, 2001, Williamson Co., Texas. Degrees 

of freedom = 6. 

 
Order: Family     with S. invicta        without S. invicta         t          P 

Collembola: Entomobridae 70.75 ± 33.29 41.25 ± 20.02 0.76 0.476
Orthoptera: Acrididae 69.50 ± 40.22 19.50 ± 2.99 1.24 0.302
Orthoptera: Gryllidae 226.25 ± 20.73 181.00 ± 23.63 1.44 0.200
Blattaria: Blattidae 0.25 ± 0.25 0.25 ± 0.25 0.00 1.000
Dermaptera: Carcinophoridae 1.50 ± 0.87 2.25 ± 0.75 -0.65 0.537
Hemiptera: Tingidae 0.00 ± 0.00 0.25 ± 0.25 -1.00 0.391
Hemiptera: Miridae 27.00 ± 4.69 40.50 ± 11.00 -1.13 0.302
Hemiptera: Nabidae 0.50 ± 0.29 0.50 ± 0.29 0.00 1.000
Hemiptera: Anthocoridae 1.50 ± 0.96 0.75 ± 0.25 0.76 0.477
Hemiptera: Reduviidae 1.25 ± 0.63 2.50 ± 1.26 -0.89 0.409
Hemiptera: Berytidae 0.25 ± 0.25 0.00 ± 0.00 1.00 0.356
Hemiptera: Lygaeidae 1683.50 ± 1246.18 2489.25 ± 1587.90 -0.40 0.704
Hemiptera: Cydnidae 3.50 ± 2.02 3.50 ± 2.84 0.00 1.000
Hemiptera: Thyreocoridae 4.00 ± 1.22 7.25 ± 1.25 -1.86 0.113
Hemiptera: Pentatomidae 17.00 ± 10.74 23.75 ± 15.27 -0.36 0.730
Homoptera: Cicadellidae 17.25 ± 1.65 13.50 ± 3.97 0.87 0.417
Homoptera: Aphididae 4.75 ± 3.09 1.00 ± 0.70 1.18 0.315
Thysanoptera 0.50 ± 0.29 0.00 ± 0.00 1.73 0.182
Neuroptera: Chrysopidae 0.75 ± 0.48 0.50 ± 0.50 0.36 0.730
Coleoptera: Carabidae 29.75 ± 6.99 61.75 ± 4.97 -3.73 0.010 
Coleoptera: Staphylinidae 14.00 ± 1.47 17.25 ± 7.08 -0.45 0.680
Coleoptera: Scarabaeidae 15.25 ± 3.30 16.00 ± 3.34 -0.16 0.878
Coleoptera: Elateridae 4.00 ± 0.71 6.00 ± 2.38 -0.81 0.471
Coleoptera: Coccinellidae 6.75 ± 1.49 3.50 ± 1.19 1.70 0.140
Coleoptera: Mordellidae 1.00 ± 0.40 0.25 ± 0.25 1.57 0.168
Coleoptera: Tenebrionidae 5.75 ± 1.18 5.25 ± 1.10 0.31 0.768
Coleoptera: Meloidae 15.00 ± 5.31 17.75 ± 6.57 -0.33 0.756
Coleoptera: Anthicidae 20.00 ± 5.31 17.25 ± 5.04 0.38 0.720
Coleoptera: Chrysomelidae 19.00 ± 8.95 7.50 ± 2.78 1.23 0.295
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Table 1 (cont.).  

Order: Family    with S. invicta            without S. invicta      t           P 
 
 

 

Coleoptera: Curculionidae 1.50 ± 0.65 2.75 ± 0.75 -1.26 0.253 
Coleoptera: Phalacridae 14.50 ± 3.62 10.25 ± 3.68 0.82 0.442 
Diptera 59.00 ± 10.50 86.50 ± 13.64 -1.60 0.161 
Lepidoptera  9.00 ± 2.86 8.50 ± 2.87 0.91 0.906 
Parasitic Hymenoptera 16.25 ± 1.89 14.25 ± 3.065 0.60 0.599 
Hymenoptera: Halictidae 23.25 ± 5.75 35.75 ± 5.17 -1.62 0.157 
Hymenoptera: Apidae 0.75 ± 0.25 0.00 ± 0.00 3.00 0.058 
Hymenoptera: Mutillidae 2.75 ± 0.25 3.00 ± 0.91 -0.26 0.302 
Hymenoptera: Pompilidae 1.75 ± 0.63 4.50 ± 0.87 -2.57 0.042 
Hymenoptera: Vespidae 0.25 ± 0.25 0.25 ± 0.25 0.00 1.000 
Hymenoptera: Formicidae 2025.00 ± 355.88 172.25 ± 31.70 5.19 0.013 
    
Araneae: Dictynidae 8.25 ± 2.29 11.50 ± 3.84 -0.73 0.495 
Araneae: Linyphiidae 17.75 ± 2.25 12.00 ± 1.22 2.24 0.391 
Araneae: Araneidae 0.25 ± 0.25 0.00 ± 0.00 1.00 0.391 
Araneae: Corinnidae 1.25 ± 0.63 1.00 ± 1.00 0.21 0.839 
Araneae: Gnaphosidae 20.75 ± 4.17 14.75 ± 1.49 1.35 0.224 
Araneae: Hahniidae 23.25 ± 5.75 35.75 ± 5.17 -1.62 0.391 
Araneae: Lycosidae 72.25 ± 6.90 73.75 ± 13.35 -0.10 0.066 
Araneae: Miturgidae 1.75 ± 0.63 0.50 ± 0.29 1.81 0.121 
Araneae: Oxyopidae 3.00 ± 0.71 4.00 ± 0.71 -1.00 0.356 
Araneae: Philodromidae 1.25 ± 0.95 5.50 ± 1.19 -2.79 0.031 
Araneae: Salticidae 6.00 ± 2.94 15.00 ± 2.12 -2.48 0.048 
Araneae: Tetrangathidae 0.25 ± 0.25 0.25 ± 0.25 0.00 1.000 
Araneae: Theridiidae 0.00 ± 0.00 0.25 ± 0.25 -1.00 0.391 
Araneae: Thomisidae 0.25 ± 0.25 0.00 ± 0.00 1.00 0.391 
Araneae 0.25 ± 0.25 0.50 ± 0.50 -0.45 0.670 
Acari 10.50 ± 1.55 4.00 ± 1.68 2.84 0.030 
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Fig. 2. Mean numbers of the predators most frequently collected in beat bucket samples, Williamson Co., Texas, 2001. 

Lines with filled circles correspond to S. invicta inclusion plots and lines with empty circles to S. invicta exclusion 

plots. Exclusion plots were treated with fire ant bait to eliminate S. invicta, while inclusion plots were left untreated. 

(a) Solenopis invicta Buren. (b) Pseudatomoscelis seriatus (Reuter). (c) Hippodamia spp., Coleomegilla spp., 

Coccinella spp., other coccinellidae.  (d) Salticidae, Thomisidae, other families. (e) Orius spp. 
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Fig. 3. Relative abundance of predators collected during June to August using beat bucket samples in S. invicta 

inclusion and S. invicta exclusion plots, Williamson Co., Texas, 2001. Exclusion plots were treated with fire ant bait 

to eliminate S. invicta, while inclusion plots were left untreated. χ2-tests were performed: minute pirate bug, χ2 = 17.5; 

d.f. = 1; P < 0.001; cotton fleahopper, χ2 = 10.8; d.f. = 1; P < 0.001; spiders χ2 = 13.9; d.f. = 1;  P < 0.001; lady 

beetles, χ2 = 31.0; d.f. = 1; P < 0.001; Scymnus spp., χ2 = 7.86; d.f. = 1;  P < 0.001; bigeyed bug, χ2 = 18.0; d.f.= 1;  P 

< 0.001; and, lacewing, χ2 = 5.21; d.f.= 1;  P = 0.05. 
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Fig. 4. Mean numbers of the less abundant predators collected in beat bucket samples, Williamson Co., Texas, 2001. 

Lines with filled circles correspond to S. invicta inclusion plots and lines with empty circles to S. invicta exclusion 

plots. Exclusion plots were treated with fire ant bait to eliminate S. invicta, while inclusion plots were left untreated. 

(a) Geocoris spp. (b) Nabis spp. (c) Chrysoperla spp. (d) Scymnus spp.  
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Discussion 

 The results of this study demonstrated that S. invicta had a significant impact 

upon arthropod diversity, and density of several important predators in cotton. The 

presence of S. invicta significantly reduced the density of false crab (Philodromidae) and 

jumping (Salticidae) spiders and ground beetles (Carabidae) among ground-dwelling 

arthropods, and significantly reduced densities of minute pirate bug, spiders and green 

lacewing among canopy-dwelling predators. Lady beetle densities increased in the 

presence of S. invicta, likely due to a greater abundance of cotton aphids (Aphis gossypii 

Glover) (Homoptera: Aphididae) (see fig. on p. 33). These results suggest that while 

some arthropods, including important predator species, are impacted by S. invicta, most 

others are not significantly affected by this species, and some predators such as lady 

beetles may benefit from population increases of prey such as cotton aphid. 

 Ground dwelling arthropods. Previous work showed that S. invicta are 

aggressive predators that strongly impact distribution and abundance of arthropod 

populations in different ecosystems (Reagan et al. 1972, Whitcomb et al. 1972, Howard 

and Oliver 1978, Porter and Savignano 1990, Gotelli and Arnett 2000, Eubanks 2001, 

Eubanks et al. 2002, Morrison 2002, Cook 2003). In this study, the diversity of 

arthropods was greater and more evenly distributed in the absence of S. invicta, 

indicating that its presence negatively affected ground-dwelling arthropod assemblages. 

In contrast, S. invicta affected the abundances of only six of fifty-five recorded arthropod 

families.  
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Ground beetle numbers were lower in inclusion plots, and this was likely 

intraguild predation and competition for prey. Other studies found similar effects of S. 

invicta on ground beetle assemblages (Brown and Goyer 1982, Lee et al. 1990, Eubanks 

2001, 2002). In addition, S. invicta and ground beetles share foraging areas and prey, 

including small invertebrates such as lepidopteran and coleopteran larvae, crickets, 

slugs, collembolans, and seeds (Best et al. 1977, Vogt et al. 2001).  

The numbers of jumping (Salticidae) and false crab (Philodromidae) spiders were 

significantly lower in the presence of S. invicta, which may have been due to 

competition for prey. Moreover, jumping spiders actively predate on ants (Jackson et al. 

1998, Clark et al. 2000, Jackson and Daiqin 2001), while the reverse is unlikely due to 

high mobility of jumping spiders (R. D., pers. observ.). Common prey of S. invicta and 

jumping spiders include fleahoppers, boll weevil, bollworm, tobacco budworm, and 

cotton leafworm (Breene et al. 1993, Taber 2000). 

Canopy dwelling predators. Spider densities were higher in the absence of S. 

invicta, which may have been due to competition for prey and/or intraguild predation of 

spider egg sacs by S. invicta. Eubanks et al. (2002) suggested that spiders are more 

affected by S. invicta competition than by intraguild predation, while other studies 

suggest that spiders are not affected by S. invicta. Sterling et al. (1979) reported that the 

densities of nine families of canopy-dwelling spiders were not affected by S. invicta. 

However, samples were taken on only two dates and thus did not reflect season-long 

patterns. Other studies show that S. invicta do not affect spider densities in pastures, and 

wooden and grassy fields (Howard and Oliver 1978, Porter and Savignano 1990). 
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Riechert and Bishop (1990) suggested that spiders may have more refugees to escape 

predation in these spatially complex environments. Though studies addressing direct 

predation on spiders by S. invicta are not available, egg sac predation is likely because 

its intrinsic vulnerability to predator attacks (Guarisco 2001).  

Minute pirate bug was the most abundant predator season-long, and was more 

abundant in the absence of S. invicta. According to Sansone et al. (1997), minute pirate 

bug is a key predator of bollworm eggs due to its abundance and predatory capacity. 

Previous studies suggested that minute pirate bug densities are negatively (Eubanks 

2001) or positively (Eubanks et al. 2002) correlated with S. invicta density in cotton. The 

results reported in this study suggest that S. invicta may reduce densities of minute pirate 

bug via intraguild predation or competition for prey. 

Early in the season, density and relative abundance of lady beetles was higher in 

the presence of S. invicta than in its absence. The results of previous studies showed that 

lady beetles densities could be negatively (Eubanks 2001, Eubanks et al. 2002, Kaplan 

and Eubanks 2002) or not (Sterling et al. 1979) correlated with S. invicta densities. 

However, in a study related to this one, cotton aphid densities significantly increased 

early in the season in the presence of S. invicta (see pg. 38, Fig. 5), probably because of 

tending and guarding (Kaplan and Eubanks 2002). Lady beetles have chemical and 

behavioral adaptations that reduce predator attacks (Vinson and Scarborough 1989, 

Völkl 1995). Thus, ladybeetles densities likely increased in response to higher cotton 

aphid densities in the presence of S. invicta (see pg. 38, Fig. 5) and adaptations to avoid 

predation by S. invicta. 
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Cotton fleahopper can be a serious cotton pest early in the season, and may be a 

key predator of bollworm and budworm in mid and late season (McDaniel and Sterling 

1982). Fleahopper densities were (marginally) higher throughout the season, and its 

abundance relative to other predators was higher in the presence of S. invicta. Similar to 

this study, Sterling et al. (1979) found significantly more fleahopper nymphs in cotton in 

the presence of S. invicta. The greater abundance of cotton fleahopper in the presence of 

S. invicta may be explained by their high mobility, which can facilitate the escape from 

ant predation, and a lower density of important predators such as spiders (Breene et al. 

1989, 1990; Nyffeler et al. 1992) in the cotton canopy. 

Several studies in Texas cotton fields demonstrate that bigeyed bug, lacewings, 

Scymnus spp., and damsel bugs occur in low numbers compared with other natural 

enemies (Sterling et al. 1979, Pyke et al. 1980, Knutson and Wilson 1999). Lacewing 

densities were significantly lower in the presence of S. invicta, suggesting that S. invicta 

preys on immature lacewings as suggested by Tedders et al. (1990). It is unclear why 

bigeyed bug populations were higher in the presence of S. invicta. Damsel bug and 

Scymnus spp. densities were not affect by the presence of S. invicta throughout the 

season, though the latter was relatively more abundant in the presence of S. invicta. 

Scymnus spp. population peaks coincided with cotton aphid peaks in the presence of S. 

invicta (see pg. 38, Fig. 5) suggesting that densities of this predator increased with aphid 

densities.  

Conclusion. Though the densities of predators such as ground beetles, spiders 

and minute pirate bugs were lower in the presence of S. invicta, it is unclear whether 
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reductions in their densities negatively impacts biological control of cotton pests. On the 

other hand, S. invicta predation of important pest such as boll weevil (Fillman and 

Sterling 1983), cotton fleahopper (Breene et al. 1990), bollworm (Nueslly and Sterling 

1994) and beet armyworm (see Chapter III) may compensate the effects of intraguild 

predation. The results of several studies demonstrate that S. invicta is an important 

predator in crops in southern United States (Reagan et al. 1972, Sterling 1978, McDaniel 

and Sterling 1979, McDaniel et al. 1981, Breene et al. 1989, Vogt et al. 2001, Woolwine 

and Reagan 2001). While S. invicta can cause damage to some crops (Lofgren 1986, 

Shatters and Vander-Meer 2000), it is important to consider its role as a key predator in 

agroecosystems. Finally, cotton growers should take advantage of the beneficial effects 

of S. invicta while minimizing their negative impacts because S. invicta suppression is 

presently uneconomical. 
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CHAPTER III 

 

EFFECT OF THE RED IMPORTED FIRE ANT, Solenopsis invicta Buren 

(HYMENOPTERA: FORMICIDAE) ON COTTON APHID POPULATIONS AND 

PREDATION OF BOLLWORM AND BEET ARMYWORM (LEPIDOPTERA: 

NOCTUIDAE) EGGS 

 

Introduction 

 The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), 

arrived in the US between 1933 and 1945 from Brazil, and currently is found in >114 

million ha in the southern states (Callcott and Collins 1996). Mass foraging, a venomous 

sting, territoriality, large colony sizes, and alate dispersal are among the biological 

factors facilitating its range expansion (Showler and Reagan 1987). 

 Cotton, Gossypium hirsutum L., is the most important field crop in Texas with 

ca. 2.3 million ha cultivated in 2002 (Texas Agricultural Statistical Service 2003). 

Cotton fields are colonized by foraging S. invicta workers from colonies outside cotton 

fields, and by immigrant queens after mating flights (Lopez et al. 1996). Within its 

geographic range, S. invicta is among the key insect predators present in cotton (Sterling 

1978, McDaniel and Sterling 1982, Fillman and Sterling 1983) and according to Lopez 

et al. (1996) may be the most important species of Solenopsis in US cotton 

agroecosystems because of its distribution, abundance, and predatory aggressiveness. 

The impacts of S. invicta in agricultural landscapes were reviewed by Lofgren (1986), 
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and include predation on beneficial insects, pest arthropods and wildlife, and crop 

damage. 

Cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is a common pest 

of cotton in the US. According to Henneberry et al. (2000), damage is due to direct 

feeding on leaves, which reduces yield, contamination of lint by honeydew and growth 

of associated fungi, and transmission of more than 50 plant viruses. S. invicta is known 

to interact with cotton aphids. For example, Reilly and Sterling (1983) found a positive 

association between cotton aphids and S. invicta densities in east Texas cotton, while 

Sterling et al. (1979) suggested that S. invicta tends cotton aphids on cotton early in the 

growing season. In a recent study, Kaplan and Eubanks (2002) found that S. invicta 

enhanced cotton aphid survival and density in the field by interfering with predators.  

 In contrast to their apparently positive influence on cotton aphid populations, S. 

invicta is known to prey on eggs and larvae of lepidopteran insects, including pests 

species such as bollworm [Helicoverpa zea (Boddie)], tobacco budworm [Heliothis 

virescens (F.)], velvetbean caterpillar (Anticarsia gemmatalis Hubner) and soybean 

looper [Pseudoplusia includens (Walker)] (Lofgren 1986). Using radioactively tagged 

eggs, McDaniel and Sterling (1979, 1982) found that S. invicta was the most common 

predator of tobacco budworm eggs on cotton plants in east Texas cotton, and S. invicta 

workers were observed preying on third and fourth instar larvae. Nuessly and Sterling 

(1994) found that predation of radioactively tagged bollworm eggs was higher toward 

the top of cotton plants, and that S. invicta was responsible for 86% of egg mortality 

attributable to specific arthropods. Furthermore, management of sugarcane borer 
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(Diatraea saccharalis Fabricius) in Louisiana partially depends on the predatory activity 

of S. invicta (Reagan 1981). 

S. invicta is present during most of the cotton growing season, thus interacting 

with pests whose damage is in many cases restricted to portions of the season. The 

objectives of this research were to assess the influence of S. invicta on cotton aphid 

population dynamics early in the season, and evaluate its importance as a predator of 

bollworm and beet armyworm (Spodoptera exigua Hubner) later in the season.  

 

Materials and Methods 

Central Texas. The study was conducted in 2001 in a cotton field located on the 

grounds of the Texas A&M Stiles Farm Foundation in Williamson Co., TX. The 

important cotton pests at this location are thrips (Frankiniella spp.), cotton fleahopper 

[Pseudatomoscelis seriatus (Reuter)], and cotton aphids early in the season, and 

bollworm and boll weevil (Anthonomus grandis Boheman) late in the season. Standard 

agricultural practices were used during the cropping season.  

Eight plots of 3 ha each, arranged in two rows of four plots, were outlined in a > 

50 ha cotton field. Four alternating plots were treated with broadcast applications of S-

methoprene (Extinguish, Wellmark International, Bensenville, IL) fire ant bait at a rate 

of 1.12 kg/ha during fall of 2000 and once with hydramethylnon (Amdro, Ambrands, 

San Ramon, CA) fire ant bait at a rate of 1.68 kg/ha early in spring of 2001 to eliminate 

S. invicta present in each plot (hereafter “exclusion plots”). The remaining four plots 

were left untreated (hereafter “inclusion plots”). Both bait products are known to be 
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highly specific to ants and degrade within 2-3 days in the field, and therefore were 

expected to have minimal effects on other arthropods in the study plots. The sampling 

area consisted of a 25 m by 25 m subplot in the center of each plot; foliar insecticides 

were not applied to subplots. S. invicta foraging on the ground was sampled in each plot 

using vials (45 ml) containing a piece of candy (Jolly Rancher, Hershey Foods' Jolly 

Rancher Candy Co., Golden, CO) and a piece of cat food (Purina Cat Chow, Nestle, 

St. Louis, MO). Sixteen vials were placed on the ground, ca. 15 cm distant from the base 

of a cotton plant, early in the morning when S. invicta workers were foraging. Vials were 

collected after one hour and the number of S. invicta was recorded. 

Cotton aphid dynamics. Cotton aphid populations were sampled from June to 

August using a modified key leaf technique (Hardee et al. 1994). Sampling consisted in 

counting aphids on leaves as follows: i) all leaves during first three weeks after planting; 

ii) fourth fully expanded leaf from the terminal during 4th through 6th week after planting 

(fourth leaf to pinhead square); iii) first main stem green leaf about one-third the 

distance from the terminal during 7th through 9th week after planting (pinhead square to 

first-bloom); and iv) first main stem green leaf above the first basal fruiting branch 

during the remainder of the season (first bloom to end of season). Ten sampling stations, 

each consisting of five consecutive plants, were sampled per subplot, starting in one 

corner of the subplot and crossing diagonally to the opposite corner. 

 Bollworm predation. This experiment was conducted between the first week of 

June and the first week of August, which corresponds to the period when bollworms 

infest cotton in central Texas (Lopez et al. 1995). One single sentinel bollworm egg was 
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placed on a terminal leaf of each of 25 plants, per subplot. Plants with sentinel eggs were 

in a single row and separated at least by 2 meters from each other. Each egg was handled 

using a fine brush, and glued to leaves with gum arabic (Tragacanth Powder, Acros 

Organics, NJ). Five randomly selected eggs per subplot were surrounded by a ring of 

Tangle foot (The Tanglefoot Co., Grand Rapids, MI) to correct for loss of eggs due to 

factors other than predation. The proportion of lost surrounded eggs was subtracted from 

the totals of eggs placed on plants, and subsequent analyses used corrected totals. 

Presence or absence of eggs was recorded after 24 hours. This experiment was repeated 

on 18 different days beginning ca. 9:00 am on each day. 

Beet armyworm predation. Night observations were made to identify predator 

species and determine timing of predation events on lepidopteran eggs. During the 

summer, in Central Texas insect activity in cotton fields is greatest during the cooler 

hours of the day, from 6:00 pm to 7:00 am (R.D. pers. observ.). Thirty-six beet 

armyworm egg masses (each 40-50 eggs) were deployed one per plant each night 

between 6:00 to 7:00 pm. Each egg mass was then observed for a period of five seconds 

every 15 minutes. Predators feeding on egg masses were identified to genus in the field, 

and the frequencies and timing of predatory events were scored for a period between 

7:00 pm and 1:00 am. A predation event was recorded when a predator was seen 

eating/removing eggs from egg masses. This experiment was repeated thrice in 

exclusion plots and thrice in inclusion plots between July 12 and August 1. 

Statistics. The mean numbers of S. invicta in baited vials and mean aphids per 

leaf were compared between exclusion and inclusion plots via repeated measures 
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ANOVA (Zar 1999). In addition, mean numbers of S. invicta in baited vials in exclusion 

plots were compared against a hypothesized mean of zero using one-sample t-tests to 

confirm whether S. invicta was eliminated from these plots. The proportions of 

bollworm eggs absent per plot after 24 h were arcsine transformed and plot means were 

compared via two-way (treatments, dates) ANOVA. In this case, the treatment × date 

interaction was significant (Ftreatment × date = 1.95; d.f. = 1, 17; P = 0.021), therefore, 

comparisons were made within individual dates using χ2- tests (Zar 1999).  

North Texas. The study was conducted in 2002 at the Texas A&M University 

Research and Extension Center, Dallas, because a severe thunderstorm destroyed the 

cotton field in the Texas A&M Stiles Farm planted for this experiment. Among the 

important pests are thrips, cotton aphid, cotton fleahopper, bollworm and beet 

armyworm. Standard agricultural practices were used during the season.  

Exclusion plots consisted of six contiguous plants from which S. invicta was 

excluded by applying a 6 cm band of Tangle Foot to the base of each plant. Tangle 

Foot was applied during the warmest part of the day (2:00 – 3:00 pm) when ants were 

not foraging on plants. Inclusion plots consisted of six contiguous plants without Tangle 

Foot. Sixteen exclusion and 16 inclusion plots were outlined within a 4 ha cotton field.  

Bollworm predation. One bollworm egg was placed in the upper canopy of one 

cotton plant per plot. Each egg was handled using a fine brush and glued to leaves with 

gum arabic. Eggs were recorded as either present absent after 24 h. This experiment was 

repeated on six dates between July 22 and August 7, 2002.  
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Beet armyworm predation and predator abundance. One beet armyworm egg 

mass (40-50 eggs) was placed in the upper canopy of one cotton plant per plot. 

Observations were conducted as described above (Central Texas, Beet armyworm 

predation). This experiment was repeated six times each in exclusion and inclusion plots 

between July 22 and August 7, 2002. The densities of ten predator species [Hippodamia 

spp., Orius spp., cotton fleahopper, lacewings (Chrysoperla spp.), spiders (Thomisidae, 

Salticidae, Others), damsel bugs (Nabis spp.), big eyed bugs (Geocoris spp.), S. invicta 

and native ants] present in the canopy of the two cotton plants immediately adjacent to 

the plant harboring the beet armyworm egg mass were recorded by taking beat bucket 

samples at the end of the experiment (~ 1:00 am). These data were used to assess beet 

armyworm egg disappearance rates, correlate predator density (as per beat bucket 

samples) with egg disappearance rate, and assess predator activity on cotton plants. Egg 

masses were recorded as either present or absent 24 h after being placed on plants.  

Statistics. The proportions of bollworm eggs and beet armyworm egg masses 

absent after 24 h were arcsine transformed and compared between plots using two-way 

(treatment, dates) ANOVA (Zar 1999). Frequencies of predators collected in beat bucket 

samples and predators observed feeding on beet armyworm egg masses were compared 

using log-likelihood ratios with Yatés correction for continuity (Zar 1999). Mean 

numbers of S. invicta in exclusion plots were compared against a hypothesized mean of 

zero using one-sample t-tests to confirm whether S. invicta was eliminated from these 

plots.  
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Results 

Central Texas. The ant bait treatments were effective in substantially reducing 

S. invicta populations in exclusion plots  (P < 0.001) (Fig. 1). Moreover, the mean 

number of S. invicta per vial differed significantly from zero on only two of eight 

sampling dates (Fig. 1). 

Cotton aphid densities were significantly higher in inclusion plots relative to 

exclusion plots (P < 0.001) (Fig. 5). Overall, cotton aphid densities were ca. 5.5× higher 

in inclusion plots (Fig. 5).  

Significantly fewer bollworm eggs were present in inclusion relative to exclusion 

plots after 24 h on 14 of 18 dates (P ≤ 0.05) (Fig. 6). Overall, twice as many bollworm 

eggs (58.5 ± 0.1 %) were absent in inclusion plots relative to exclusion plots (28.2 ± 0.1 

%) after 24 h. 

Forty-seven predation events on beet armyworm egg masses were observed in 

inclusion plots versus 69 events in exclusion plots during 18 h of observations in each 

plot type. Most predation events in inclusion plots were by S. invicta (~2/3) and cotton 

fleahopper (~1/5), followed by other predators (Fig. 7). In contrast, the majority of 

predation events in exclusion plots were by a mite (~1/2), Abrolophus sp. (Acari: 

Erythraeidae), followed by spiders, minute pirate bug and cotton fleahopper (each <1/8) 

(Fig. 7). S. invicta was the first predator to arrive at egg masses (~70 min.) in inclusion 

plots, and recruits removed all eggs in a mass within 15-30 min. In contrast, Abrolophus 

sp. arrived first at egg masses (~150 min.) in exclusion plots, and fed on one or two eggs 

for ca. 1 h. 



 30

North Texas. Beat bucket samples demonstrated that S. invicta was effectively 

excluded from foraging in the canopy of exclusion plots (Fig. 8, 9). Mean S. invicta 

densities in inclusion plots were 0.80 ± 0.14 ants per sample while in exclusion plots 

they were 0.04 ± 0.03 ants per sample and not significantly different from zero (t = 1.46; 

d.f. = 6; P ≥ 0.164). 

Bollworm egg disappearance in inclusion plots (62.5 ± 4.0 %) was significantly 

greater than in exclusion plots (42.5 ± 8.3 %) after 24 h (Ftreatments = 6.93; d.f. = 1, 5; P = 

0.046; F date = 1.80; d.f. = 1, 5; P = 0.266). Beet armyworm egg mass disappearance in 

inclusion plots (38.5 ± 5.0 %) was significantly greater than in exclusion plots (9.4 ± 2.7 

%) after 24 h (Ftreatments = 20.07; d.f. = 1, 5; P = 0.007; F date = 0.55; d.f. = 1, 5; P = 

0.7384). Minute pirate bug, cotton fleahopper, spiders, and S. invicta were the most 

frequently collected predators in beat bucket samples in inclusion plots (Fig. 8). The 

proportions of minute pirate bug and cotton fleahopper were significantly greater in beat 

bucket samples compared to direct observations, while the reverse was true for S. invicta 

and native ants (P ≤ 0.05) (Fig. 8). Similarly, minute pirate bug, cotton fleahopper, and 

spiders, but not S. invicta, were the most frequently collected predators in beat bucket 

samples in exclusion plots (Fig. 9). The proportion of minute pirate bug was 

significantly greater in beat bucket samples relative to direct observations (P < 0.05) 

(Fig. 9).  
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Fig. 5. Mean number of Aphis gossypii per cotton leaf in S. invicta inclusion and S. invicta exclusion plots, 

Williamson Co., Texas, 2001. Exclusion plots were treated with fire ant bait to eliminate S. invicta, while 

inclusion plots were left untreated. 
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Fig. 6. Proportion of bollworm eggs absent after 24 h in S. invicta inclusion and S. invicta exclusion plots, 

Williamson Co., Texas, 2001.  Individual dates were compared using χ2 tests, and χ2 values are inset, and 

all have one degree of freedom.  *, P < 0.05; **, P < 0.025; ***, P < 0.0001. Exclusion plots were treated 

with fire ant bait to eliminate S. invicta, while inclusion plots were left untreated. 
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Fig. 7. Proportions of observed predation events on beet armyworm eggs corresponding to individual 

predator species, Williamson Co., Texas 2001. (a) S. invicta inclusion plots (n=47). (b) S. invicta exclusion 

plots (n=69). Exclusion plots were treated with fire ant bait to eliminate S. invicta, while inclusion plots 

were left untreated. 
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Fig. 8. Relative frequencies (shown as proportions) of predators observed in S. invicta inclusion plots 

based on beat bucket samples (n = 96) and visual observations of sentinel egg predation (n = 44), Dallas, 

Texas, 2002. Inclusion plots consisted of six contiguous plants. Proportions were compared using log-

likelihood ratio-tests. G values are inset, and all have one degree of freedom. *, P < 0.05; **, P < 0.025; 

***, P < 0.0001.  
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Fig. 9. Relative frequencies (shown as proportions) of predators observed in S. invicta exclusion plots 

based on beat bucket samples (n = 96) and visual observations of sentinel egg predation (n = 37), Dallas, 

Texas, 2002. Exclusion plots consisted of six contiguous cotton plants treated with a band of Tangle 

Foot® at their base to exclude S. invicta. Proportions were compared using log-likelihood ratio-tests. G-

values are inset, and all have one degree of freedom. *, P < 0.05. 
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Discussion 

The results of this study show that S. invicta positively influences the population 

growth rate of cotton aphid populations though these did not reach economic levels, and 

that it is an important predator of bollworm and beet armyworm eggs. Specifically, this 

study showed that cotton aphid populations were favored by S. invicta early in the 

season, and that S. invicta increased predation of bollworm and beet armyworm eggs by 

20-30% during mid and late-season. Moreover, on the basis of direct observations, the 

results suggest that S. invicta is the most frequent predator of beet armyworm eggs in 

cotton fields, and that its density estimates are not correlated with frequency of observed 

predation. Overall, the results suggested that S. invicta has a net positive effect in cotton 

agroecosystems. 

Influence on cotton aphid populations. Previous studies showed that S. invicta 

is associated with numerous honeydew-producing homopterans, and that these 

associations are characterized by a variety of positive outcomes on homopterans 

populations (Scarborough 1984, Michaud and Browning 1999, Helms and Vinson 2002, 

Kaplan and Eubanks 2002, Hill and Hoy 2003). Nevertheless, negative outcomes had 

been reported in other ant-homopteran interactions (Way 1963, Sakata 1994, 1995; 

Offenberg 2001). The increase in cotton aphid densities suggests a net positive balance 

between tending and guarding versus predation by S. invicta, though aphid densities did 

not reach the economic threshold level of 50 aphids per leaf (Moore et al. 2002). Beat 

bucket samples demonstrated that lady beetles responded numerically to aphid increase 

early in the season (see pg. 19, Fig. 2), consequently, they could prey on aphid 
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populations despite the protection of S. invicta. In a similar study, Kaplan and Eubanks 

(2002) reported that cotton aphid densities were 1.7× more abundant in plots with high 

(3.5 ± 0.3 ants per six cotton plants) versus low (1.8 ± 0.3 ants per six cotton plants) S. 

invicta densities. In contrast, Scarborough (1984) found in greenhouse bioassays that S. 

invicta did not directly affect the density of cotton aphids. Further research is necessary 

to elucidate which factors, e.g. honeydew removal, protection from natural enemies, or 

direct predation by S. invicta more strongly affects cotton aphid population dynamics.  

Predation on bollworm and beet armyworm eggs. Disappearance of noctuid 

eggs in cotton fields is largely attributed to predation by predators with chewing 

mouthparts such as ants and ladybeetles (Whitcomb and Bell 1964, McDaniel and 

Sterling 1982). In this study, S. invicta was the most important predator of bollworm and 

beet armyworm eggs in both years. Presence of S. invicta led to increased rates of 

disappearance of bollworm and beet armyworm eggs by 20-30% and 27%, respectively. 

Several studies show that S. invicta is an active predator of noctuid eggs (McDaniel and 

Sterling 1979, 1982; Agnew and Sterling 1982, Nuessly and Sterling 1986, 1994), larvae 

(McDaniel et al. 1981, Stewart et al. 2001) and pupae (Ruberson et al. 1994). 

Furthermore, nocturnal observations confirmed that S. invicta was responsible for 68 % 

of beet armyworm egg masses predation. Nocturnal observations also showed that S. 

invicta was the first to encounter beet armyworm egg masses, and recruited workers 

quickly removed all eggs. The mite Abrolophus sp. was the most frequent predator in the 

absence of S. invicta during 2001. However, this mite consumed few eggs, one or two 

eggs over periods of 2-3 h. Whitcomb and Bell (1964) found that the mites Erythraeus 
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sp. and Balaustium sp. preyed on bollworm eggs and only three egg shells were 

dislodged during 31 feeding observations. In contrast, S. invicta consumed or removed 

entire egg masses (40-50 eggs) in short periods of time (ca. 15-30 min). 

 Comparisons of beat bucket samples and nocturnal observations during 2002 

suggested that S. invicta is underrepresented, while minute pirate bug and cotton 

fleahopper are over-represented, in beat bucket samples relative to their corresponding 

egg encounter frequencies. Minute pirate bug and cotton fleahopper were the most 

common predators in beat bucket samples, yet were infrequently observed preying on 

eggs. In contrast, S. invicta was less common in beat bucket samples, yet were the 

predator most frequently observed preying on eggs.  

Other field studies confirm that S. invicta reduces numbers of eggs and 

immatures of important pests in different crops. In soybeans, S. invicta reduced egg 

densities (Brown and Goyer 1982) and preyed on larvae (Elvin et al. 1983) and pupae 

(Lee et al. 1990) of velvetbean caterpillar, and are important predators of southern green 

stink bug, Nezara viridula (L.) (Ragsdale et al. 1981, Krispyn and Todd 1982, Stam et 

al. 1987). In cowpea, S. invicta reduced egg densities of Leptoglossus phyllopus (L.) 

(Abudulai et al. 2001) and preyed on pupae of cowpea curculio, Chalcodermus aeneus 

Boheman (Russell 1981). In peanuts, Vogt et al. (2001) found that most S. invicta food 

items were rednecked pea-nutworms, Stegasta bosqueella Chambers. S. invicta  in 

sugarcane is recognized as a controlling agent of sugarcane borer, Diatrea saccharalis 

F., and their presence is promoted through conservation practices (Adams et al. 1981, 

Fuller and Reagan 1988, Bessin and Reagan 1993). Finally, S. invicta added 44 % to boll 
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weevil predation in cotton fields (Agnew and Sterling 1981). Thus, S. invicta clearly 

plays an important role as a natural enemy of key pests in field crops. 

Conclusion. Though the presence of S. invicta in cotton fields led to an increase 

in cotton aphid populations early in the season, they were also shown to be important 

predators of noctuid eggs. Moreover, this study showed that S. invicta may be the most 

important predator of bollworm and beet armyworm eggs in cotton fields considering 

behavioral factors such as mass foraging, recruitment and aggressiveness. The predatory 

role of S. invicta is increasingly relevant in recent years because beet armyworm is 

becoming a persistent and serious pest in southeastern and mid-southern states, 

especially in regions under boll weevil eradication programs (Ruberson et al. 1994, 

Parajulee and Slosser 2000). Their widespread distribution, high densities and frequent 

predation of key pests make S. invicta an important component of cotton 

agroecosystems.  Thus, proper management of S. invicta populations should be 

encouraged so that their negative impacts can be ameliorated and their positive effects 

enhanced. Future research should focus on developing techniques to minimize the 

increase in cotton aphid populations early in the season and enhance S. invicta predatory 

activity later in the season. 
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CHAPTER IV 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The cotton industry plays important roles in the economies of Texas, the United 

States, and other countries. Pest losses reduce the profitability of cotton production. 

Texas cotton production is mostly affected by thrips, cotton aphid, cotton fleahopper, 

bollworm and beet armyworm. Currently, transgenic cotton varieties are available that 

protect plants from bollworm and tobacco budworm, and other lepidopteran pests. 

However, growers still rely on insecticide applications for control of thrips, cotton 

aphids, cotton fleahopper and lygus bug. Moreover, outbreaks of beet armyworm are a 

concern due to wide-scale applications of malathion in efforts to eradicate the cotton boll 

weevil. Even though cotton insect pest management is rapidly changing, natural enemies 

remain important components of cotton pest management and thus warrant conservation 

and encouragement 

 Generalist predators have some unique features absent in specialists. For 

example, they can have immediate impacts on immigrant pests, and reduce the rate of 

pest resistance evolution to transgenic crops (Symondson et al. 2002). S. invicta is the 

most abundant generalist predator in southern US cotton fields and their predatory 

activity can strongly influence populations of some cotton insect pests. 

The results of the first year of study demonstrate that S. invicta did not affect the 

abundance of 49 groups of ground-dwelling insects and spiders collected in pitfall traps. 
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However, cotton fields with S. invicta had lower densities of ground-active predators 

such as carabids, and canopy-dwelling spiders, green lacewing and minute pirate bugs. 

Populations of aphidophagous insects such as lady beetles and Scymnus spp. increased 

apparently due to the availability of cotton aphids early in the season. The results 

suggested that a greater abundance of aphids in the presence of S. invicta increased 

convergent lady beetle movement into cotton, which contributed to suppression of aphid 

densities below economic thresholds.  

The foraging activity of S. invicta increased during the season both years of 

study. This was particularly important in the context of pest predation. Though S. invicta 

tended and guarded cotton aphids early in the season, aphid populations did not reach 

damaging levels. Later in the season, aphid populations decreased apparently due to 

predation by lady beetles and other predators, fungal diseases, and abiotic factors such as 

heavy rain. The results of both years of study demonstrated that S. invicta is an important 

predator of bollworm and beet armyworm during most of the cropping season. 

Therefore, the increase of S. invicta foraging activity during mid and late season 

enhances to their predatory role at a critical time. 

Ants of various species play important roles in pest management in different 

crops. Beneficial predatory ants include at least seven ant genera: Oecophylla, 

Dolichoderus, Anoplolepis, Wasmania, and Azteca in the tropics, Solenopsis in the 

tropics and subtropics, and Formica in temperate regions (Way and Khoo 1992). 

Attempts to control the spread of S. invicta in different ecosystems have failed, and its 

control or suppression may aggravate pest problems (Long et al. 1958; Hensley et al. 
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1961; Reagan et al. 1972; Adams et al. 1981). Cotton growers in the southern US should 

take advantage of this ant through conservation practices when its impact is beneficial. If 

future research confirms the net benefit of S. invicta to cotton pest management, then 

methods to manage of S. invicta densities and their impact should be developed.  

More studies are needed to understand the ecology of S. invicta in cotton fields. 

Some areas of study that merit consideration include the impacts of tillage practices on 

mound density, nutritional ecology and food dynamics of colonies during the cropping 

season, impacts of insecticides on foraging activities, and effects of crop rotations on ant 

populations. 
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APPENDIX 

 

Impact of the red imported fire ant, Solenopsis invicta Buren, on cotton 

aphids and aphidophagous insects. 

 

This appendix describes the outcome of a failed field study and makes a number 

of recommendations for future similar studies. 

Description. During summer of 2001 we observed an increase in the densities of 

cotton aphids in plots with S. invicta. This increase could be explained by at least two 

hypotheses: a) tending of S. invicta has direct beneficial effect on the cotton aphid 

survival and reproduction, and b) guarding of S. invicta from aphidophagous arthropods 

significantly increases cotton aphid survival.  

We conducted an inclusion/exclusion experiment in the field to evaluate the 

interaction between S. invicta, aphids and natural enemies. We used an experimental 

cotton field located in the Research Farm at Texas A&M University in College Station, 

Texas. Cages with “windows” that selectively allowed free movement of natural 

enemies into and out of the cages were used for this experiment.  

In the first week of May and July of 2002, cotyledon stage plants were manually 

cleaned of all insects and inoculated with adult cotton aphids (4 aphids per seedling) 

from a laboratory colony. Forty cylinder-shaped cages with stainless steel wire frames, 

and fine polyester mesh netting (diameter 32 cm; height 35 cm) (“Fiber-Air Sleeve”, 

Kleen Test Products, Milwakee, Wis. USA) were placed over groups of aphid-inoculated 
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plants (3-7 seedlings per cage). The cage mesh had an irregular fine weave, with pores 

small enough to allow air flow, but excluded all aphid predator and parasitoids. The 

aphid populations were allowed to increase for 18 days free of natural enemies and other 

herbivores. The cages were opened every 4-5 days and any herbivores and natural 

enemies were manually removed. 

Eighteen days after cage deployment, ten cages were randomly allocated to each 

of three treatments: 1) aphids only, with mesh cages retained to prevent insect migration 

and allow aphid population growth unaffected by natural enemies (ants were previously 

eliminated using diatomaceous earth); 2) aphids plus S. invicta, with fine mesh cages 

containing a “window” (dimensions: 6 cm height) at the base of the frame, covered with 

a medium-mesh screen (pores 1.5 mm x 1.5 mm), which allowed S. invicta to move in 

and out of cages, but excluded lady beetles (Hippodamia convergens); 3) aphids plus S. 

invicta plus natural enemies, with fine mesh cages containing a window (dimensions: 6 

cm height) covered with a coarse-mesh screen (pores 8mm x 8mm), which allowed S. 

invicta, H. convergens and other aphidophagous arthropods to move in and out of cages; 

and 4) no-cage control, to determine if the presence of the mesh cage influenced aphid 

population growth, natural enemy efficacy, or plant growth. Replicates were blocked by 

initial aphid density to control statistically for any influence of initial aphid abundance 

on treatment effects.  

Sampling techniques. Non-destructive sampling techniques were used to 

estimate the number of nymphal and adult cotton aphids, the number of intact aphid 

mummies, the number of consumed aphid mummies (mummies that were severely 
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damaged from coccinellid feeding but were dislodged from the leaf), and the total leaf 

area in each cage. All nymphal, adult and mummified aphids and S. invicta on the upper 

and lower surfaces of all leaves were counted every 3-5 days for 24 days. 

Problems presented and potential solutions. During this experiment fire ant 

workers were found entering cages, mainly from the soil underneath the cage. Also, 

cotton aphid parasitoids were able to enter through the fine mesh. Therefore, it was 

difficult to have parasitoid- and ant-free cages. 

Since S. invicta is very difficult to eliminate from underneath the plant, having 

“potted” plants in the field may help to control ants. The insect trap coating (Tangle foot 

) kept ants from crawling on the plants only for two days; ants placed several pieces of 

dirt and /or soil on the surface and thus had access to the plant. 

The size of the window was large, which made it difficult to completely seal 

cages. Consequently, it is recommended to have smaller windows (e.g. 8cm × 15cm) to 

facilitate checking and repair during sampling. 
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