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ABSTRACT 

Chemical Inhibition of the Thyroid Gland and Its Effects on E. coli O157:H7 Fecal 

Shedding Patterns in Sheep.  (August 2005) 

Sasha Brooke Schroeder, B.S., Texas A&M University 

Chair of Committee:  Dr. Shawn Ramsey 
                                                        
 

Due to the seasonal nature of E. coli O157:H7 shedding and of hormone 

production by the thyroid gland, two studies were initiated to determine whether 

chemical inhibition of the thyroid gland influences fecal shedding of Escherichia coli 

O157:H7.  Twenty-four crossbred sheep (68.6 kg BW) were randomly assigned to pen 

and either 0.0 mg/kg BW PTU or 20 mg/kg BW PTU for 5, 11, or 14 days.  Sheep were 

experimentally infected (d 0) with E. coli O157:H7 11 days prior to PTU treatment.  

Fecal and serum samples were collected for bacterial enumeration and for analysis of T3 

and T4, respectively.  Sheep were humanely euthanized and tissue and content samples 

were collected from the rumen, ileum, colon and rectum.    Detection of E. coli O157:H7 

increased toward the terminal end of the GI tract.  In the treatment group, serum T3 

levels decreased to an overall lower level than the control group.  A correlation was seen 

between T3 levels and daily O157:H7 bacterial shedding (P=0.003; r=0.37).  In 

experiment 2, 12 growing lambs (41.04 kg BW) were exposed to either 0.0 mg/kg BW 

PTU or 40 mg/kg BW PTU for 21 days.  Fecal samples were collected for analysis of 

generic E. coli and body weights were recorded on days 0, 7, 14, and 21.  Feed intake 

was recorded throughout the experiment.  Animals were experimentally infected with E. 

coli O157:H7 on day 15.  Sheep were humanely euthanized on day 21 and GI tract tissue 



                                 

 

iv

and content was collected from the rumen, ilium, colon and rectum.  A date by treatment 

interaction was observed for T4 (P=0.0016) and hormone levels decreased in treated 

animals.  Thyroxine and E. coli O157:H7 display a multivariate treatment (P=0.0005) 

and date effect (P=0.0174) but no significant interaction.  Triiodothyronine and E. coli 

O157:H7 shedding have a slight date trend (P=0.065) but no significant treatment or 

treatment by date interaction.  Generally, the treatment group shed genreric E. coli at 

higher levels throughout the study period with slightly more than a log count difference 

between groups at the last collection point (control = 3.8 CFU/gram of feces (log10); 

treatment = 4.9 CFU/gram of feces (log10)).  Results from these experiments suggest that 

correlations exist between both E. coli O157:H7 and generic E. coli shedding in sheep.                    
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INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

 It is estimated that nearly 76 million people are infected with a foodborne illness 

in the United States every year.  Recent estimates of these cases attribute 74,000 to E. 

coli O157:H7 (Mead et al., 1999; CDC, 2004).  At an estimated cost of $2.9 to $6.7 

billion in productivity losses and medical costs annually (Buzby et al., 1996),  

Escherichia coli O157:H7 is the leading cause of both acute kidney failure in children 

and bacterial bloody diarrhea.  This pathogen has been isolated from cattle at all stages 

of production (Laegreid et al., 1999; Elder et al., 2000) and ruminants are considered 

primary reservoirs for these bacteria.  Infected animals are typically asymptomatic while 

shedding these pathogens into the environment (Hancock et al., 1997; Bach et al., 2002). 

The seasonality of E. coli O157:H7 shedding patterns are well established with shedding 

levels higher in the summer months in both sheep and cattle (Hancock et al., 1997; 

Chapman et al., 2001; Barkocy-Gallagher et al., 2003).  

  Thyroid hormone production is also seasonal in nature with concentrations being 

highest during the winter months and lowest during the long days of summer (Karsch et 

al., 1995; Souza et al., 2002).  The thyroid gland plays an important physiological role in 

the body.  Through secretion of triiodothyronine (T3) and thyroxine (T4), the thyroid 

gland is integral in controlling the body�s metabolic rate, and regulation of the growth,  

______________ 
This thesis follows the style and format of the Journal of Animal Science. 
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energy and development of tissues, regulation of heart rate, lipid, carbohydrate and 

nitrogen metabolism, as well as maintenance of the immune system and myelination of 

nervous tissue (Wilson et al., 1998; Sherwood, 2001).  Thyroid hormones are also 

responsible for regulation of the growth and differentiation of the epithelial cells in the 

gastrointestinal tract (Wilson et al., 1998).     

Escherichia coli O157:H7 

 Escherichia coli O157:H7 was first recognized as a foodborne bacterial pathogen 

in 1982 (Barkocy-Gallagher et al., 2003).  Each year nearly 74,000 people are infected 

with E. coli O157:H7 resulting in approximately 61 deaths annually.  In addition, this 

bacteria is the leading cause of acute kidney failure in children, haemolytic uremic 

syndrome and bacterial bloody diarrhea in both children and adults (CDC, 2004).   

In 1993, the first multistate outbreak involving E. coli O157:H7 occurred, 

spanning Washington, California, Idaho and Nevada.  Of nearly 700 individuals 

affected, there were 195 hospitalizations and four deaths (Salyers and Whitt, 2002).    

Fifty-five individuals developed hemolytic uremic syndrome (HUS) as a result of 

consuming contaminated hamburger meat.  Hemolytic uremic syndrome is a disease 

caused by Shiga toxin producing enterohemorrhagic E. coli (EHEC).  Disease is 

characterized by microangiopathic haemolytic anemia, thrombocytopenia, renal failure 

and increased levels of tumor necrosis factor-α (TNF-α), an inflammatory cytokine 

released by macrophages, in the brain and neural cell apoptosis (Salmon and Parry, 

1997).  The 1993 outbreak was traced back to 73 Jack in the Box  restaurants.  It was 

determined that contaminated ground beef was undercooked prior to being served to the 
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public (Salyers and Whitt, 2002).  Jack in the Box  incurred $160 million dollars in 

losses as a result of the outbreak. 

In 1994, E. coli O157:H7 became the first microorganism considered an 

adulterant of ground beef by the U.S. Food Safety and Inspection Service (FSIS) 

(Barkocy-Gallagher et al., 2003).  Improper handling and cooking of contaminated meat 

is an important source of human infection.  The bacteria is highly resistant to acids, yet 

fairly susceptible to heat (Salyers and Whitt, 2002).  Therefore, the United States 

Department of Agriculture (USDA) mandates labeling of all meat and poultry products 

with safe handling instructions including thorough cooking of meat to kill bacteria 

(Morbidity and Mortality Weekly Report, 1994).   

Costs 

Since its emergence, E. coli O157:H7 has been responsible for $29 to $60 million 

dollars in medical costs annually.  Losses due to decreased productivity in infected 

individuals results in an additional $200 to $600 million annually.  Each year the total 

costs of E. coli O157:H7 in the human sector is $301 to $726 million (Buzby et al., 

1996).  Significant costs have resulted in the cattle sector because of this bacteria as 

well.  Losses are due to decreased beef demand following recalls ($1.6 million 

annually), packer expenses ($400 million), recall costs ($100 million), plant closure and 

research costs (Kay, 2003).   
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Prevalence 

Sheep and cattle are considered major reservoirs for E. coli O157:H7 and are 

typically asymptomatic while shedding these pathogens into the environment (Kudva et 

al., 1996; Hancock et al., 1997; Bach et al., 2002).  Escherichia coli O157:H7 has been 

isolated from cattle at all stages of production (Laegreid et al., 1999; Elder et al., 2000).  

Elder et al. (2000) examined the overall prevalence of this bacteria at slaughter and 

found a 28% prevalence rate on beef carcass swabs, much higher than previously 

estimated for E. coli O157:H7 in cattle.  Chapman et al. (2001) reported a much lower 

prevalence rate of 12.9% for beef cattle at slaughter.  Obviously, the presence of bacteria 

at slaughter affects the possibility of contamination of meat products going to the 

consumer.  Hides are considered a major source of carcass contamination with up to 

51% of feedlot cattle hides found to be positive for E. coli O157:H7 (Barkocy-Gallagher 

et al., 2003).  It has been demonstrated that the bacteria can be transferred from the hide 

to the carcass during processing (Barkocy-Gallagher et al., 2003).  Alternately, the 

prevalence of E. coli O157:H7 in sheep at slaughter was determined to be 1.4% 

(Chapman et al., 2001).  However, contamination at the retail level for beef and sheep 

products was found to be 0.44% with sheep products contaminated more often than beef 

(Chapman et al., 2001), indicating slaughter techniques and sanitation methods are 

largely successful in eliminating this pathogen at the abattoir.   Kudva et al. (1996) 

demonstrated prevalence levels of up to 4% in naturally infected sheep carcasses and up 

to 35% in free ranging sheep.    
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Season 

Reported human cases of E. coli O157:H7 infection tend to be highest in the 

warmer months of the year (Barkocy-Gallagher et al., 2003).  A surveillance of 

foodborne disease outbreaks by the Center for Disease Control (CDC) revealed 

outbreaks of E. coli O157:H7 frequently occur between March and August.  In addition, 

beef was the most common vehicle of transmission of foodborne illness (Morbidity and 

Mortality Weekly Report, 2000).  This lead researchers to examine the seasonal 

prevalence of E. coli O157:H7 in sheep and cattle.  At commercial abbatoirs and at 

various production settings, E. coli O157:H7 is isolated at higher rates from May to 

September in both sheep and cattle (Kudva et al., 1996; Hancock et al., 1997; Chapman 

et al., 2001; Barkocy-Gallagher et al., 2003).  An intermittent shedding pattern for this 

bacteria has also been documented (Kudva et al., 1996; Hancock et al., 1997; Chapman 

et al., 2001; Barkocy-Gallagher et al., 2003).  When sampling carcasses at slaughter, 

prevalence rates were highest during the spring and summer and lowest during the 

winter months for hides, preevisceration, and postintervention beef carcasses (Barkocy-

Gallagher et al., 2003).  In order to estimate the overall herd prevalence of E. coli 

O157:H7 before reaching slaughter, fourteen dairy cattle herds were sampled monthly 

for one year.  A seasonal pattern with the majority of samples testing positive in the 

summer months was reported by Hancock et al. (1997).  The same trend has been seen in 

free range ewes with 31% testing positive in June, 5.7% positive in August, and 0% 

testing positive in November (Kudva et al., 1996).   
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Thyroid Gland        

 Located caudal to the larynx and lying across the trachea, the two-lobed thyroid 

gland acts via hormone receptors present in all tissues of the body (Sherwood, 2001).  

The thyroid gland is an important endocrine gland responsible for secretion of the 

hormones triiodothyronine (T3) and thyroxine (T4).  In the body, T3 and T4 help to 

regulate the basal metabolic rate, the growth, energy and development of tissues, as well 

as lipid, carbohydrate and nitrogen metabolism.  These hormones are also responsible 

for regulation of the heart rate, maintenance of the immune system, myelination of 

nervous tissue and, in the gastrointestinal tract, regulation of the growth and 

differentiation of the epithelial cells (Wilson et al., 1998).                

Hormone Synthesis and Secretion 

 The thyroid hormones T3 and T4 have a variety of functions in the body.  

Genetically, the synthesis of T3 and T4 is efficiently regulated by the thyroglobulin gene 

(Wilson et al., 1998).  Within the thyroid gland itself, the availability of exogenous 

iodine is crucial to the synthesis of T3 and T4.  Iodine participates in metabolic reactions 

within the thyroid gland to produce the active hormones.  During iodine deficiency, 

levels of type II iodothyronine 5� deiodinase increases in the brain and enhances the 

conversion of T4 to T3 (Oppenheimer and Schwartz, 1997).  Hormone synthesis begins 

via oxidation of iodide by hydrogen peroxide and thyroid peroxidase (Wilson et al., 

1998).    Initially, the reactions result in the incorporation of iodine intermediates into 

monoiodotyrosine (MIT) and diiodotyrosine (DIT), two inactive tyrosine molecules 
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(Wilson et al., 1998).  The active hormone, thyroxine is formed by the coupling reaction 

in which two DIT molecules are joined via an ether bridge (Wilson et al., 1998)  

(Figure 1).   

In the body, thyroid hormone levels are maintained via two pathways.  The 

hypothalamohypophyseal negative feedback loop is activated when levels of T3 increase 

and inhibit thyrotropin-releasing hormone (TRH) secretion from the anterior pituitary 

(Cole et al., 1994; Sherwood, 2001).  Hormone levels are also maintained by 3 

iodothyronine deiodinase enzymes that activate or metabolize T3 and T4 (O�Shea and 

Williams, 2002).  The three enzyme system consists of type I (D1), type II (D2), and 

type III D3) deiodinases.  Type I enzymes are responsible for cleaving one iodine from 

T4 to form an active T3 molecule.  Type II enzymes form the inactive rT3 from T4 and 

convert rT3 to its active form.  Lastly, the type III enzyme system converts T3 to T2.  

Each enzyme system is important for maintaining the hormone balance within the 

system (Malik and Hodgson, 2002).  The type I deiodinases are responsible for roughly 

30-40% of the extrathyroidal production of T3 and are located primarily in the liver and 

kidney.  The remainder of the extrathyroidal production of T3 can be attributed to the 

type II enzyme system located in the pituitary, the central nervous system and in the 

skeletal muscle (Malik and Hodgson, 2002).        
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Inactive Iodine (I-) + Thyroid Peroxidase (TPO) + Hydrogen Peroxide (H2O2) 
 

↓ 
 

Active Iodine (I+) → I+ + Thyroglobulin 
 

                       ↓ 
 

Diiodotyrosine (DIT) and →Coupling Reaction (TPO + H2O2) 
 

                             ↓ 
 

                                                  T4  and T3 

 

                             ↓ 
 

                                                   T4  + Type I 5� deoidinase → T3 

 

Figure 1.  Thyroxine and triiodothyronine biosynthesis. 
 
 

 

Thyroid Hormones 

 The chemical structures of T3 and T4 are presented in Figure 2. Thyroxine is 

produced at a much higher rate in the body than T3.  There are three to four T4 molecules 

produced per mole of thyroglobulin.  Thyroxine is the predominant hormone in the 
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peripheral circulation and is directly secreted by the thyroid gland (Wilson et al., 1998).  

This hormone is more stable in the peripheral circulation and helps to stabilize and 

regulate circulating levels of T3.  However, it is often thought of as a �prohormone� 

because it does not have the metabolic effects of T3 (Capuco et al., 2001).  

Triiodothyronine is more metabolically active than T4 because of its affinity for its 

nuclear receptor.   The hormone binds more strongly to the T3R receptor and therefore 

remains in the circulation for a longer period of time (Oppenheimer and Schwartz, 

1997).       

 

 

                                                 
                  Thyroxine                                                                  Triiodothyronine 
 

 

Figure 2.  Chemical structures of the two major thyroid hormones thyroxine (T4) and 

triiodothyronine (T3). 
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Muscle Tissue 

 In the body, thyroid hormones have a variety of functions and act on all tissues.  

Thyroid hormones are responsible for maintaining the basal metabolic rate, lipid 

metabolism, carbohydrate metabolism, nitrogen metabolism and regulation of energy, 

growth and development (Sokkar et al., 2000).  In muscle tissue, hormones repress or 

activate myosin heavy chain (MHC) genes.  Mysosin heavy chain I genes are 

responsible for slow twitch fibers while MHC II genes control fast twitch fibers.  

Changes in plasma T3 alter the maximum shortening velocity and also the isometric 

twitch contraction and/or relaxation times.  In muscle tissue, thyrotoxicosis results in a 

shift toward MHC II.  Alternatively, hypothyroidism causes a shift to MHC class I.  

Hypothyroidism also results in decreased calcium transport in the muscle sarcoplasmic 

reticulum (O�Shea and Williams, 2002).  Hyperthyroidism induces an increase in the 

amount of sarcoplasmic reticulum present in the muscle tissue, and also the percent of 

fibers expressing the slow type of sarcoplasmic reticulum (SERCa2).  In the heart, 

muscle growth, cardiac output, conductance and heart rate are all affected by thyroid 

hormone levels.  Low hormone levels lead to bradycardia, or slow heart rate, while 

higher hormone levels lead to tachycardia, or fast heart rate.   

Central Nervous System 

In the central nervous system, T3 affects the brain, neurons and glial cells in a 

positive manner.  Hypothyroid individuals experience depressed myelination of nervous 

tissue, decreased proliferation and migration of cells, decreased branching of the 

dendrites and axons, and inhibition of the synapse formation responsible for conduction 
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of signals across nerve cells within the nervous system (Gilbert, 2004).  Normal brain 

development during fetal and neonatal life is dependent upon healthy thyroid hormone 

levels as well.  Late brain development in particular is influenced by thyroid hormones 

(Schoonover et al., 2004).  Myelination of nerve cells is a key function of thyroid 

hormones.  Thyroidectomy of rats has been shown to depress cerebral myelination.  In 

sheep infected with Border disease, a pestivirus that infects the thyroid gland, depressed 

myelination of the central nervous system is a characteristic symptom (Anderson et al., 

1988).  During late brain development, neurons begin to mature and become myelinated.  

This process is of particular importance in the interhemispheric space between the two 

halves of the brain.  Information transfer across this space is crucial for higher brain 

functions such as learning and memory (Schoonover et al., 2004).  In hypothyroid 

individuals, the number of myelinated axons in the interhemispheric space as well as the 

thickness of the myelin sheath is decreased.  Myelination in the interhemispheric space 

is controlled by oligodendrocytes.  The proliferation, survival and myelin production by 

these cells is dependent upon thyroid hormones (Schoonover et al., 2004).           

Temperature Regulation 

Triiodothyronine is also responsible for metabolism, regulation of body 

temperature, and thermogenesis (Golozoubova et al., 2004).  Mice lacking all viable 

thyroid hormone receptors (TR ablated mice) were examined to determine the role of 

thyroid hormones in temperature acclimation and metabolism.  Mice lacking hormone 

receptors displayed a depressed body temperature and a significantly decreased basal 

metabolic rate.  Traditionally, when mammals are exposed to cold temperatures the 
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secretion of thyroid hormones increases (Dauncey, 1990).  However, TR ablated mice 

are unable to adequately produce heat at low temperatures and thus become cold 

sensitive (Golozoubova et al., 2004).  During hypothyroidism, there is a reduced 

consumption of oxygen and lower heat production (O�Shea and Williams, 2002).  

Alternately, during hyperthyroid states, an increased oxygen consumption trend is seen.  

Thus, the excessive weight loss in hyperthyroid individuals can be attributed to 

accelerated catabolism of food and an increased metabolic rate (Dauncey, 1990).                  

Liver 

The liver is the main peripheral organ for metabolism and storage of thyroid 

hormones (Miller et al., 1978).  Cirrhosis of the liver is a disease state characterized by 

an increase of scar tissue within the organ that replaces normal healthy tissue, which 

inhibits normal blood flow through the liver.  Cirrhosis of the liver results in a decrease 

of total T3 and T4.  This reduction is similar to that observed in chronically ill patients 

and most likely reflects a reduction in type I deiodinase activity (Malik and Hodgson, 

2002).  Interestingly, when assessing 118 patients suffering from cirrhosis of the liver, a 

17% increase in thyroid gland size was observed (Bianchi et al., 1991).  

Triiodothyronine accumulates in the liver more quickly than T4 because it is not as 

strongly bound in the serum (Miller et al., 1978).  As a result, there is more T3 secreted 

in the bile than T4.  Bile is secreted into the GI tract by the liver and is responsible for 

digestion of fat and fat soluble vitamins.  The liver is also the main site of cholesterol 

and triglyceride metabolism (Malik and Hodgson, 2002).  Triiodothyronine affects 

hepatic uptake and synthesis of cholesterol.  During states of hypothyroidism, serum 
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cholesterol increases (O�Shea and Williams, 2002).  Low density lipoprotein (LDL) 

receptors are enhanced in the presence of thyroid hormones.  In addition, the activity of 

lipid-lowering liver enzymes is increased which lowers serum LDL levels.  In the 

presence of T3 and T4, the expression of high density lipoproteins (HDL) is enhanced 

(Malik and Hodgson, 2002).  This affect of thyroid hormones in the liver may help 

reduce the onset of atherosclerosis (hardening of the arteries) if managed correctly 

(Malik and Hodgson, 2002).        

Immune System 

 Thyroid hormones also have strong effects on the immune system.  During 

prolonged cold stress, hormones increase in order to counteract the negative effects of 

glucocorticoids (Davis, 1998).  This mechanism allows for maintenance of immune 

system homeostasis.  Thyroid hormones also stimulate the thymus, which is responsible 

for T cell production, and the bone marrow, responsible for B cell production (O�Shea 

and Williams, 2002).  This stimulation maintains the innate and cell mediated immune 

systems.  During cold stress, hormones also stimulate lymphocytes, the spleen and 

lymph nodes (Davis, 1998).  In sheep, thyroid status at birth has been shown to 

dramatically affect passive immunity.  Hyperthyroid lambs were less able to absorb 

immunoglobulin G (IgG) from maternal colostrum and thus had depressed passive 

immunity in the first twelve hours of life (Cabello et al., 1983).  A decrease in 

circulating lymphocytes was linked to hypothyroidism (Comsa et al., 1979).  In calves, 

infectious bovine rhinotracheitis virus challenge was shown to depress plasma T3 levels 

and circulating lymphocytes.  When treated with T3 injections, infected calves responded 
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with higher antibody titers when compared to controls (Cole et al., 1994).  In addition, 

the phagocytic immune cells, neutrophils, are strongly affected by thyroid hormone 

levels.  The ability of neutrophils to kill and digest bacteria is enhanced when they 

degrade T3 and T4 (Inan et al., 2003).   

 During most chronic illness, the metabolism of thyroid hormones is affected 

(Malik and Hodgson, 2002).  A condition known as sick euthyroid syndrome is 

characterized by a reduction in D1 enzyme activity causing normal T4 levels, but 

depressed T3 levels.  It is thought that this reduction in circulating T3 levels is beneficial 

and actually increases survivability of affected individuals.  The decrease in circulating 

thyroid hormone levels reduces the basal metabolic rate, thereby reducing caloric 

requirements of chronically ill individuals (Malik and Hodgson, 2002).         

Intestinal Immune System 

 Thyroxine has been shown to affect intestinal intraepithelial lymphocytes (IEL), 

a distinct population of CD8 T cells.  Interestingly, T4 supplementation negatively 

affected developing, but not mature IEL in mice.  In addition, γδ T cells, the 

predominant T cells in the GI tract of ruminants, directly stimulate the development and 

growth of intestinal enterocytes (Wang and Klein, 1996).  The immunosuppressive 

effects of T4 were not observed in peripheral T cells. The small intestine is an important 

site of thyroid stimulating hormone (TSH) secretion (Wang et al., 1997).  Thyroid 

stimulating hormone is inhibited by T4 and is capable of altering antibody production by 

B cells (Wang and Klein, 1996).  This could have a profound effect during times of 

infection when B cells must target invading cells with the proper antibodies.    
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Gastrointestinal Tract 

 Thyroid hormones have a profound effect on the gastrointestinal (GI) tract.  The 

lumen of the rat gut contains 1950% as much T3 and 60% as much T4 as the entire 

periphery circulation (Hays, 1988).  Thyroid hormones are secreted into the GI tract via 

bile and through the mesenteric capillary bed (Hays et al., 1992).  The GI tract is clearly 

an important site of hormone absorption.  The colon and ileum are the most efficient 

sites of absorption while these hormones are incompletely absorbed in the jejunum and 

duodenum (Miller et al., 1978).  A variety of factors affect the rates of absorption of 

thyroxine in the gut such as intraluminal proteins, gut flora, germ-free intestinal contents 

and other dietary substances.  These factors do not seem to play a role in T3 absorption 

(Miller et al., 1978).  Thyroxine indirectly affects the maturation of intestinal enzymes 

responsible for efficient functioning and digestion (Morisset, 1993).  Stimulation of cell 

mitosis and growth of the intestinal mucosa crypt zones is an important function of T3 

and T4 (Middleton, 1971).  These hormones also regulate the growth, differentiation, and 

barrier function of the mucosa of the GI tract (Hodin et al., 1996).  This helps to control 

the ingestion of food and the actual chemical and physical presence of food in the gut 

(Morisset, 1993).  Hyperthyroidism results in increased jejunal secretions and intestinal 

mucosa hypertrophy (Miller et al., 1978).  Triiodothyronine in adults is trophic for crypt 

cells and is able to alter the expression of brush border enzymes (Hodin et al., 1996).  

Removal of the thyroid gland early in development has been shown to prevent normal 

maturation of the small intestine (Middleton, 1971).  The small intestine is lined by 

epithelium, 95% of which are enterocytes.  These enterocytes are constantly being 
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renewed and are responsible for nutrient digestion and absorption.  The most important 

regulator of enterocyte growth and differentiation is T3 (Hodin et al., 1996).  Miller et al. 

(1974) demonstrated that in cattle, T4 enhances alimentary tract mobility.  Cattle with 

damaged thyroid glands consistently have higher rumen fill.  Throughout the 

experimental period, thyroid damaged cattle consumed less and so it can be assumed that 

the greater rumen fill is due to prolonged feed retention (Miller et al., 1974).  The motor 

activity of the GI tract is greatly increased during periods of hyperthyroidism and 

depressed during hypothyroidism.  Depressed activity during hypothyroidism can lead to 

constipation, atrophy and/or obstruction of the bowels.  The duodenum and colon can 

become enormously distended and structurally altered during hypothyroidism 

(Middleton, 1971).  Kennedy et al. (1977) demonstrated that GI tract digestibility was 

altered during cold stress as well.  An increased rate of passage was found to be due in 

part to increased levels of thyroid hormones in the gut (Kennedy et al., 1977).   

Factors Affecting Thyroid Hormone Levels 
 
Other Hormones 
 
 Physiological thyroid hormone levels are affected by a large number of factors.  

Other circulating hormones, for instance, can influence T3 and T4.  Melatonin, a pineal 

hormone released at night, is generally considered to be responsible for regulation of the 

circadian rhythm.  It is often used in humans to regulate sleep disorders and as a remedy 

for �jet lag�.  Melatonin acts directly on the hypothalamus and the pituitary glands to 

inhibit the secretion of follicle stimulating hormone (Wilson et al., 1998).  Altered 

thyroid physiology has been observed in species undergoing daily melatonin injections.  



                                 

 

17

Daily melatonin injections reduced serum T4 levels.  It is hypothesized that T4 is reduced 

when melatonin acts directly on the hypothalamus altering the hypothalamic-pituitary-

endocrine axis (Champney, 2001).  Additionally, in lactating dairy cattle, administration 

of somatotropin increased serum concentrations of T4 by 12% (Capuco et al., 2001).   

Nutrition 

 Plane of nutrition has been shown to affect circulating levels of T3 and T4.  

During starvation, tumor necrosis factor-α decreases deiodinase activity and reduces 

conversion of T4 to T3 (Abecia et al., 2001; Capuco et al., 2001).  In lambs, a decrease in 

circulating T3 and T4 has been observed during restrictive feeding.  Interestingly, during 

refeeding, T3 levels rose to control levels within two weeks, but T4 levels remained low.  

This is perhaps due to an inhibition of T4 synthesis during restrictive feeding (Wester et 

al., 1995).  In cattle, restricted nutrition has had a similar effect on circulating hormone 

levels (Hammond et al., 1984; Murphy and Loerch, 1994; Hersom et al., 2004).  A 36% 

reduction in T4 was observed in cattle on restricted diets.  In addition, T3 rebounded 

more completely during the refeeding phase (Hayden et al., 1993).  The reduction in 

plasma T3 levels during restriction feeding may serve to reduce the maintenance energy 

requirements and protein degradation.  This may help to explain the increased feed 

efficiency observed during this time (Murphy and Loerch, 1994; Hersom et al., 2004).   

Stress 

 The thyroid gland has been shown to respond to various stressors (Hennessy and 

Prichard, 1981).  Serum T3 levels decrease in response to feed and water restriction, 

protein deficiency, heat, parasitic infection, dexamethasone injections, and non-thyroidal 
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illness (Cole, 1994).  Immediately following stressful situations that cause an increase in 

adrenal hormone secretion, thyroid hormone levels increase (Falconer and Jacks, 1975).  

Although, short term administration of physiological levels of corticosteroids to sheep 

was unable to increase circulating thyroid hormone levels.  It was thus determined that 

corticosteroids do not directly act to increase thyroid hormone levels (Falconer and 

Jacks, 1975).  During heat stress, thyroid hormone levels in sheep have been shown to 

drop below levels observed in nutrient restricted sheep.  However, heat stressed sheep 

demonstrate a faster recovery period, with T4 levels rebounding more quickly than in 

feed restricted sheep (Valtorta et al., 1982).  According to Little (1985), the decrease in 

thyroid hormones during illness may serve to prolong survival by conserving metabolic 

energy and maintaining homeostasis.  In fact, T4 supplementation during infection with 

S. pneumoniae increased mortality rates when compared to controls (Little, 1985).  

Similar results have been seen in other species.  In chickens, supplementing T3 and T4 in 

the feed resulted in lower thyroid gland weights and decreased ability to fight off 

infection.  Escherichia coli endotoxin resulted in an increased rate of mortality in T4 

treated chicks (Heller and Perek, 1972).  The thyroid gland is often infected during 

disease progression depressing circulating thyroid hormone levels (Anderson, 1987; 

Sawyer and Osborn, 1993).  Parasitic infection of sheep is able to depress circulating 

levels of T4 (Hennessy and Prichard, 1981).  Sepsis conditions can also affect thyroid 

hormone levels.  Richmond et al. (1980) demonstrated a portion of the drop in thyroid 

hormone levels during sepsis is due to the depressed nutritional status of septic patients.  

While Little (1985) demonstrated increased mortality during thyroid hormone 
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supplementation, Inan et al. (2003) found an increased level of survival during 

supplementation of septic individuals.  Thyroid hormones target bacterial killing via 

neutrophils.  Interestingly, Inan et al. (2003) found extremely low levels of serum T4 

increased mortality from 64 to 84%.  Therefore, the ability of thyroid hormones to affect 

mortality during sepsis does not depend upon the mere presence or absence of hormones, 

it depends on the level present in the circulation.         

Season 

 The seasonal effects of thyroid hormones are well known, particularly in species 

known as �seasonal breeders� like sheep.  Circulating concentrations of T4 have been 

shown to be inversely correlated with ambient temperature.  Valtorta et al. (1982) 

examined the effects of heat stress and feed restriction on circulating thyroid hormone 

levels.  Sheep stressed at 35°C had decreased feed intake when compared to controls and 

lower thyroid hormone levels.  In order to determine if the depressed hormone level was 

due to decreased feed intake or heat, the feed stressed group was fed at the level of 

intake of the heat stressed sheep.  While the feed restricted sheep did display a decrease 

in circulating hormone levels, the heat stressed sheep exhibited a larger decrease 

(Valtorta et al., 1982).  The authors concluded the decrease in hormones was due to heat 

rather than feed intake (Valtorta et al., 1982).  Hormone levels have been shown to be 

higher during the winter months when temperatures are lower and decrease in the 

summer months when temperatures are high (Souza et al., 2002).  Changes in ambient 

temperature during a 24 hour period also affect hormone secretion with the highest 

levels detected in the afternoon hours (Souza et al., 2002).  In sheep, thyroidectomy 
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inhibits normal seasonal changes in the reproductive cycle (Karsch et al., 1993; Souza et 

al., 2002).  In rams, the absence of thyroid hormones routinely suspends normal 

reproductive function.  Thyroxine is thought to regulate this response by inhibiting an 

essential energy source, hexosemonophosphatase, during steroidogenesis and by actually 

depressing the number of gonodotropin receptors in testicle cells (Souza et al., 2002).  

Interaction between the thyroid and the reproductive neuroendocrine axis is also 

important in the ewe.  Triiodothyronine and thyroxine are necessary for inhibition of 

gonadotropin releasing hormone (GnRH) secretion that is responsible for transition to 

anestrus.  This occurs via a change in the GnRH neurosecratory system.  In 

thyoidectomized ewes, the pulsatile secretion of GnRH into the hypophyseal portal 

blood circulation during anestrus is not blocked by estradiol.  This allows for an 

extended breeding season (Moenter et al., 1991).  Like rams, ewes experience the 

highest levels of circulating thyroid hormones in the winter months when anestrus 

occurs (Thrun et al., 1997).  In addition, thyroid hormones are only required during the 

late stages, the last 2 months, of the breeding season for anestrus to occur (Thrun et al., 

1997).  Photoperiodic cues are necessary for anestrus to begin following the breeding 

season.  Thyroxine must also be present at this time for successful transition to occur 

(Webster et al., 1991).    

Chemical Inhibition 

 A variety of naturally occurring substances have antithyroid properties.  

Contaminated drinking water has been found to harbor strains of E. coli that produce 

antithyroid compounds (Vought et al., 1974).  Propylthiouracil (PTU) is a known 
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chemical inhibitor of thyroid function in many species (Figure 3).  It is used in humans 

to control hyperthyroidism and is often used experimentally to induce hypothyroid states 

(Sherwood, 2001).  During hypothyroid states, the release of thyrotropin-releasing 

hormone (TRH) is inhibited in the hypothalamus.  Propylthiouracil is able to create a 

hypothyroid state by both decreasing the release of T4 and T3 from the thyroid gland and 

inhibiting the conversion of T4 to T3 in the peripheral circulation (Achmadi and 

Terashima, 1995).  The release of T4 and T3 from the thyroid is reduced because PTU 

directly affects thyroid utilization of iodine.  In the periphery, PTU acts by inhibiting the 

type I 5�-monodeiodination.  This type I monodeiodinase is responsible for activating the 

reverse T3 (rT3), an inactive intermediate in the conversion of T4 to active T3 (Villar et 

al., 1998).  Sheep and goats are much more resistant to the effects of the antithyroid drug 

than cattle (Achmadi and Tershima, 1994; Villar et al., 1998).  Serum thyroxine has been 

reduced in cattle using doses as low as 4 mg PTU/kg BW, whereas in sheep, higher 

doses are required.  Propylthiouracil doses from 20 to 40 mg/kg of BW have been used 

for varying time periods to sufficiently lower serum thyroxine (Hernandez et al., 2003).  

It is hypothesized that the dose of PTU may affect hormone circulation in different ways.  

Low doses of PTU are thought to act on circulating levels of T4 and T3 and inhibit the 

type I 5�-monodeiodinase, thereby decreasing circulating T3 levels (Villar et al, 1998).  

On the other hand, high PTU doses are thought to act directly on the thyroid gland and 

reduce circulating levels of T4 (Villar et al., 1998).  Serum hormone levels tend to 

recover quickly following termination of PTU treatment; with serum levels of T3 

rebounding more quickly than T4 levels (Wells et al., 2003).  In addition, high doses of 
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PTU tend to affect younger lambs more than mature sheep as indicated by greater 

decreases in circulating T4 levels (Wells et al., 2003).   

 

 

Figure 3.  Chemical structure of anti-thyroid compound propylthiouracil (PTU). 

 

 

Hypothesis and Objective 

The seasonal patterns displayed by E. coli O157:H7, with levels being highest in 

the summer months and lowest in the winter months is inversely correlated with seasonal 

fluctuations in thyroid hormone levels.  This led us to hypothesize that thyroid function, 

and more specifically, production of T3 and T4, may play a role in the seasonality of E. 

coli O157:H7 shedding in ruminants.  Therefore we designed two studies with the 

objective of determining if chemical inhibition of the thyroid gland in sheep 

experimentally infected with E. coli O157:H7 would affect fecal shedding or gut 

populations of this pathogen.   
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MATERIALS AND METHODS 
 
 

 
Animal Care and Use 
 

Experiments were conducted at the USDA, ARS, Food and Feed Safety Research 

Unit in College Station, TX.  In experiment one, twenty-four 12-16 month old crossbred 

ewes (average weight of 68.6 kg) were purchased locally from a commercial source.  

Sheep were allowed to adjust to pens, diet and photoperiod for 16 days.  All animals 

were individually housed in 2.74 m long and 1.83 m wide concrete floored pens with 

visual access to neighboring sheep and a controlled photoperiod consisting of 16h light 

and 8h dark for both experiments.  Pens were washed daily at 0700 hours after fecal 

sample collection for experiment 1 and at 1400 hours for experiment 2.  Sheep were fed 

and received fresh water following cleaning.  The diet consisted of a moderate quality 

coastal grass hay, and 1.13 kg per head per day of a 15% protein commercial sheep and 

goat pellet (Producers Cooperative Association, Bryan, TX) (Table 1), and ad libitum 

water.    

In experiment 2, twelve 5-7 month old growing whether lambs of mixed breeding 

(average BW of 41.04 kg) were purchased from a local commercial source.  Sheep were 

all individually housed in 2.74 m long and 1.83 m wide concrete floored pens with visual 

access to neighboring sheep and a controlled photoperiod consisting of 16h light and 8h 

dark.  Animals were allowed to adjust to diet for 6 days before beginning treatments.  

Individual feed intake was recorded following pen cleaning and all animals received 
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fresh feed and water at this time.  The study diet consisted of an 80% concentrate, 20% 

forage diet.  The concentrate portion of the diet was comprised of a 15% protein 

commercial sheep and goat pellet (Producers Cooperative Association, Bryan, TX) 

(Table 1) and moderate quality coastal grass hay at 3.8% of body weight on an as fed 

basis with ad libitum access to water.      

 

Table 1.  Diet composition for experiment 1 and 2 sheep. 

 

 

 

Experiment 1 
 

   Treatment and sheep were randomly assigned to pen.  Treatment consisted of 

0.0 mg/kg BW PTU (CON) or 20 mg/kg BW 6-N-propyl-2-thiouracil (PTU) for 5, 11, or 

15 days.  Following the 16 day acclimation period, sheep were experimentally infected 

Ingredients Guaranteed Analysis 

Crude Protein (Min) 15.00% 
Crude Fat (Min) 2.50% 

Crude Fiber (Max) 14.50% 
Calcium (Min) 0.80% 
Calcium (Max) 1.30% 

Phosphorus (Min) 0.40% 
Salt (Min) 0.25% 
Salt (Max) 0.50% 

Copper (Min) 8 ppm 
Copper (Max) 13 ppm 

Selenium (Min) 0.3 ppm 
Vitamin A (Min) 15,000 IU/LB 
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(d 0) via oral gavage with E. coli O157:H7 (strain 2029; 10 mL of 1.2x 1010 CFU/mL).  

The inoculation strain was selected for resistance to naladixic acid and rifampicin 

(Sigma Chemical Company, St. Louis, MO) in our laboratory through successive 

cultivation in tryptic soy broth (TSB) (Difco�, Sparks, MD) containing 20 µg naladixic 

acid/mL and 25 µg rifampicin/mL.  The anti-thyroid compound 6-N-propyl-2-thiouracil 

(Sigma Chemical Company, St. Louis, MO) was administered to sheep via oral gavage 

in gelatin capsules at 0700 hours (Torpac, Inc., Fairfield, NJ) once daily beginning on 

day 10.  Sheep were experimentally infected 10 days prior to beginning PTU treatment, 

so that fecal shedding of bacteria could normalize to a more physiological level of 1x 102 

CFU/gram.  Daily fecal samples were collected rectally from each sheep with clean 

gloves and placed into individual Whirlpacks� (Modesto, CA) from day 0 to either day 

15, 21, or 24 in order to monitor shedding of the experimental strain.  Sheep were 

humanely euthanized (Euthasol®, euthanasia solution, Del Marva Laboratories, Inc., 

Midlothian, VA) at three separate time points, days 15 (n=8), 21 (n=8) or day 24 (n=7).  

Approximately 5-10 grams of gut luminal contents and tissue from the rumen, ileum, 

colon and rectum were removed at harvest for bacterial enumeration. 

Experiment 2 

 Experiment 2 was designed to evaluate the effects of a PTU dose twice that of 

the 20 mg/kg BW dose used in experiment 1.  Lambs were again randomly assigned to 

treatments and treatment was randomly assigned to pen.  Treatments consisted of 0.0 

mg/kg BW PTU (CON) or 40 mg/kg BW PTU (PTU) for 21 days.  Lambs were orally 

dosed daily at 0700 hours with PTU via a gelatin capsule beginning on day 0.  Fecal 
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samples were obtained via rectal palpation with clean gloves for each lamb and placed 

into individual Whirlpacks� for isolation of generic E. coli (GEC) on days 0, 7, 14, and 

21.  Body weights were also recorded at these times.  All sheep were allowed to respond 

to PTU treatements before being experimentally infected with E. coli O157:H7 via oral 

gavage on day 15 (strain 933; 10 mL of 1.97x 109 CFU/mL).  The inoculation strain was 

made resistant to naladixic acid and novobiocin (Sigma Chemical Company, St. Louis, 

MO) in our laboratory via successive cultivation in TSB containing 20 µg/mL naladixic 

acid and 25 µg/mL novobiocin.  Fecal samples were obtained daily via rectal palpation 

with new gloves and individual Whirlpacks� for each lamb thereafter for isolation of 

the experimental strain (d16-21).  All sheep were sacrificed (Euthasol®, euthanasia 

solution, Del Marva Laboratories, Inc., Midlothian, VA) on day 21 for collection of 

rumen, ileum, colon and rectal tissue and content.          

Bacterial Enumeration 

 One gram of fecal material was diluted in 9 mL of sterile phosphate buffered 

saline (PBS) (Sigma Chemical Company, St. Louis, MO) and then serially diluted to a 

105 concentration.  Samples were then plated onto MacConkey agar (Difco�, Sparks, 

MD) supplemented with 20 µg/mL naladixic acid and 25 µg/mL rifampicin for 

experiment one or 20 µg/mL naladixic acid and 25 µg/mL novobiocin for experiment 

two and incubated overnight at 37° C in a Revco B0D50A14 incubator.   

 For GEC quantification during experiment 2, one gram of feces was serially 

diluted in 9 mL of sterile PBS and plated onto CHROMager E. coli agar (CHROMagar 

Microbiology, Paris, France).  Plates were then incubated lid down overnight at 37° C.   
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 One gram of luminal content from each section of the GI tract was serially 

diluted and plated as previously described for each experiment. Content samples from 

experiment two were also enriched and plated as described for tissue samples.     

Tissue samples were placed directly into 20 mL of GN Hajna broth (Difco�, 

Sparks, MD) supplemented with 20 µg/mL Naladixic acid and 25 µg/mL rifampicin.  

Samples were incubated overnight in 50 mL sterile polypropylene centrifuge tubes 

(Fisher Scientific International, Pittsburgh, PA) at 37° C before being plated onto 

MacConkey agar supplemented with 20 µg/mL naladixic acid and 25 µg/mL rifampicin 

for experiment one.   During experiment two, tissue samples were placed directly into 25 

mL of sterile PBS to remove excess content.  Samples were then enriched in 20 mL of 

GN Hajna broth supplemented with 20 µg/mL Naladixic acid and 25 µg/mL novobiocin 

and plated as previously described.   

Serum Collection and Analysis 

Blood was collected via jugular venipuncture for quantification of serum T3 and 

T4 using Vacutainer� SST� gel and clot activator tubes (Fisher Scientific 

International, Pittsburgh, PA).  Blood was allowed to clot at room temperature for 30 

minutes, centrifuged (Sorvall® legend RT centrifuge, 3000 x g, 20 minutes, 4° C) and 

serum was removed and stored at -20° C for later analysis.  Serum T3 and T4 were 

analyzed by an independent laboratory using RIA components of commercial kits 

(Diagnostic Products Inc., Los Angeles, CA).  The T3 and T4 assays were validated for 

use in ruminant serum as previously described (Richards et al., 1999; Wells et al., 2003).  

The within and between assay coefficients of variation were less than 15%.   
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Statistical Analysis 

 Gut tissue and content data was analyzed using categorical data analysis 

techniques using Proc Freq and Proc Logistic analysis in SAS  version 8.2 (Allison, 

1991).  Body weight, feed intake, T3, T4 and bacterial log count data for generic E. coli 

and E. coli O157:H7 was analyzed using mixed model analysis with repeated measures 

using Proc Mixed of SAS  version 8.2.  A P-value less than 0.1 was declared significant. 
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RESULTS 
 
 

 
Experiment 1 
 
Gut Tissue and Content 
 
 Treatment consisted of 0.0 mg/kg BW PTU (CON) or 20 mg/kg BW 6-N-propyl-

2-thiouracil (PTU) for 5, 11, or 15 days.  Anti-thyroidal PTU treatment had minimal 

effect on presence of E. coli O157:H7 in GI tissue samples.  Detection of E. coli 

O157:H7 in luminal content dilutions increased from rumen, ilium, colon to rectum 

(Figure 4).  The greatest difference in O157:H7 isolation between groups was seen in the 

ileum with roughly 0.05 log CFU difference between groups.  However, more O157:H7 

were isolated from the rectum in both groups.  Isolation method affected the probability 

of detecting E. coli O157:H7 in content samples.  Enrichment of content samples 

increased the detection of O157:H7 bacteria in roughly 50% of the animals.  In the 

colon, detection was 4.5 times more likely if samples were enriched before plating rather 

than just serially diluting samples and plating (P=0.06).  Detection of O157:H7 increased 

six-fold in rectal samples if enrichment was used (P=0 .02).  This data indicates that if 

sheep are shedding at low levels, enrichment of samples greatly increases the probability 

of detection. 
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Figure 4.  E. coli O157:H7 (CFU, Log10) enumeration of gut content dilutions of samples 
collected from the rumen, ileum, colon and rectum at the time of harvest (n=22). 

 

Serum 

 Prior to treatment, triiodothyronine levels for control and treated animals were 

similar (2.69 ± .95 ng/mL and 2.62 ± .16 ng/mL respectively) (P=0.40).  In the control 

group, T3 and T4 were strongly correlated to each other (P < 0.0001) and regression 

analysis revealed a slope of 0.028 for the T3/T4 relationship (R2=0.6).  This relationship 

between T3 and T4 was not seen in the treatment group (P=0.38).  

Twelve days of PTU treatment decreased treated animal�s serum T3 levels to 1.57 

± 0.30 ng/mL whereas control group levels remained at 2.06 ± 0.09 ng/mL.  A treatment 

by date interaction (P=0.03) was detected in which T3 levels decreased over the course 

of the experiment.  In the treatment group, T3 levels decreased to an overall lower level 

than the control group (Figure 5).  With the exception of day 9 of serum collection, T3 
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levels were numerically different between groups and were statistically lower in the 

treated group on the final day of collection (P=0.058).  Thyroxine was not affected by 

treatment (P=0.39).  However, there was a date effect (P=0.0006).  Thyroxine levels did 

not decrease from beginning to end as with T3 levels (Figure 6).  The date effect may 

have been influenced by one animal sampled on the second collection day that exhibited 

a very high T4 level.  This was interpreted to be a non-biological finding.  
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Figure 5.  Serum T3 (ng/mL) levels across time for sheep (n=22) receiving either 0.0 
mg/kg BW 6-N-propyl-2-thiouracil (PTU) or 20 mg/kg BW PTU for 15 days. 
*P=0.01 
*P=0.058 

 

 

A correlation between T3 levels and daily bacterial shedding was seen in the 

treatment group (P=0.003; r=0.37).  When T3 and shedding were modeled as a 
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multivariate response, there was a significant multivariate treatment effect (P=0.001), 

multivariate date effect (P<0.0001), as well as a significant multivariate interaction 

(P=0.05).  There was a decreased rate of shedding across the experiment from 1.8 

CFU/gram of feces (log10) on d1 to .3 CFU/gram of feces (log10) on d12 (P = 0.02) 

(Figure 7).  Average treatment shedding was 1.54 ± 2.37 CFU/gram of feces (log10) 

while average control group shedding equaled .82 ± 3.0 CFU/gram of feces (log10) 

across the experiment (P=0.06). 
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Figure 6.  Serum T4 (ng/mL) levels across time for sheep (n=22) receiving either 0.0 
mg/kg BW 6-N-propyl-2-thioruacil (PTU) or 20 mg/kg BW PTU for 15 days.   
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Figure 7.  E. coli O157:H7 (CFU, Log10) fecal shedding patterns from d 0 to d 24 for 
sheep (n=22) receiving either 0.0 mg/kg BW PTU or 20 mg/kg BW PTU.    
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Experiment 2 

Gut Tissue and Content 

 There was no statistical difference across treatments for bacteria for gut tissue or 

content samples.  Mean bacterial levels in the rumen, ileum and rectal samples were 

numerically, but not statistically, higher in the treatment group (Figure 8).  Enrichment 

of samples increased the likelihood of detecting E. coli O157:H7 by a factor of 6 in the 

rumenal content samples (P=0.05) and by a factor of 15 in the colon content samples 

(P=0.02).  When comparing tissue and content samples, the likelihood of detecting E. 

coli O157:H7 was greater in enriched rectal content samples (P=0.05) than in rectal 

tissue samples.   
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Figure 8.  Bacterial (E. coli O157:H7) counts from gut content dilutions collected at the 
time of harvest from sheep (n=12) receiving either 0.0 or 40 mg/kg BW 6-N-propyl-2-
thiouracil (PTU).   
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Body Weight and Intake 

 Body weight data displayed a treatment by date interaction (P=0.036) in both 

groups by initial weight loss in the first two weeks followed by weight gain in the 

following weeks.  Treated animals had higher average body weights (41.5 ± 6.4 kg) 

compared to control animals (36.8 ± 4.7 kg) with both groups gaining weight over the 

experimental time course (Control=39.9 kg; Treatment=44.7 kg) than beginning weights 

(Control=36.2 kg; Treatment=41.7kg) (Figure 9).   
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Figure 9.  Recorded body weights of sheep (n=12) receiving 0.0 or 40 mg/kg BW 6-N-
propyl-2-thiouracil (PTU).  
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 Average recorded daily feed intake in both groups was similar throughout the 

study with control animals consuming slightly less (1.48 ± 0.20 kg) than treatment 

animals (1.51 ± 0.22 kg) on average.   

Serum 

 Prior to treatment triiodothyronine levels for control and treatment animals were 

similar (0.89 ± 0.05 ng/mL and 0.96 ± 0.02 ng/mL respectively).  Thyroxine levels were 

comparable in control animals at 48.5 ± 3.28 ng/mL and treatment animals at 49.5 ± 7.13 

ng/mL.  Strong correlations were observed between T3 and T4 in the control group 

(r=0.68; P<0.0001).  Similar correlations were seen for the treatment group (r=0.72; 

P<0.0001).  Further analysis revealed a significant date effect for T3 (P<0.001) with 

hormone levels decreasing over time with no significant treatment (P=0.91) or treatment 

by date interaction (P=0.26) between groups.  A date by treatment interaction 

(P=0.0016) was observed for T4.  Hormone levels for the control group increased over 

time (T3=0.89 ng/mL (Begin) to 1.05 ng/mL (End); T4=48.5 ng/mL (Begin) to 60.5 

ng/mL (End)) (Figure 10) while decreasing in the treatment group (T3=0.96 ng/mL 

(Begin) to 0.87 ng/mL (End); T4=49.5 ng/mL (Begin) to 33.83 ng/mL (End)) (Figure 

11). 
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Figure 10.  T3 (ng/mL) analysis from sheep (n=12) serum collections from sheep 
receiving either 0.0 or 40 mg/kg BW 6-N-propyl-2-thiouracil (PTU) for 21 days. 
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Figure 11.  Serum T4 (ng/mL) analysis from sheep (n=12) receiving either 0.0 or 40 
mg/kg BW 6-N-propyl-2-thiouracil (PTU).  
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Generic E. coli  

 A date effect was observed for the shedding of generic E. coli (P=0.005) due to 

initial decreasing then increasing log counts.  There was also a significant treatment 

effect (P=0.1).  In general, the treatment group shed at higher levels throughout the study 

period (Figure 12) with slightly more than a log CFU difference between groups at the 

last collection point (control=3.8 ± 0.59CFU/gram of feces (log10); treatment=4.9 ± 0.43 

CFU/gram of feces (log10)).  No treatment by date interaction was observed (P=0.49).       
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Figure 12.  Fecal shedding of generic E. coli for sheep (n=12) receiving 0.0 or 40 mg/kg 
BW 6-N-propyl-2-thiouracil (PTU). 
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E. coli O157:H7 

 Analysis indicated a date effect, but no treatment by date effect and while log 

CFU�s decreased over time, there was no significant difference between treatment 

groups.  Further MANOVA analysis indicated a multivariate response between T3 and T4 

(p=0.03).  In addition, T4 and E. coli O157:H7 shedding have a multivariate treatment 

(p=0.0005) and date effect (P=0.0174) but no significant interaction.  A date trend 

(P=0.065) in O157:H7 shedding (Figure 13) and T3 was observed, however no 

significant treatment or treatment by date interaction.  A treatment effect (p=0.0004) and 

a date effect (p=0.0359) were observed for T3, T4 and bacterial log counts.   
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Figure 13.  Fecal shedding of E. coli O157:H7 for sheep (n=12) receiving either 0.0 or 
40 mg/kg BW 6-N-propyl-2-thiouracil (PTU).      
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DISCUSSION 

E. coli O157:H7 

 Sheep and cattle are considered major reservoirs for E. coli O157:H7 and are 

typically asymptomatic while shedding these pathogens into the environment (Kudva et 

al., 1996; Hancock et al., 1997; Bach et al., 2002).  Naturally infected animals shed 

bacteria into the environment at levels lower than that of experimental infection and in a 

transient nature.  Kudva et al. (1996) while sampling healthy, free ranging sheep, 

detected levels of 1 CFU/10 g of feces on average.  Robinson et al. (2004) reported 

average levels of 103 CFU/1 g of feces in naturally infected cattle.  High inoculation 

doses used for experimental infection can increase the amount of O157:H7 bacteria shed 

in the feces of an animal and thus increase the probability of detection for tracking 

purposes.  Animals typically remain asymptomatic throughout infection even when 

exposed to inoculation doses as high as 1010 CFU of E. coli O157:H7 (Cray and Moon, 

1995; Brown et al., 1997; Wales et al., 2001; Cornick et al., 2002).  In addition, bacterial 

shedding has been shown to dramatically decrease in the first two weeks following 

experimental infection with E. coli O157:H7 (Cray and Moon, 1995; Brown et al., 1997; 

Cornick et al., 2002).  These findings are consistent with results seen in both 

experiments 1 and 2 with sheep rapidly shedding bacteria following infection and 

remaining asyptomatic throughout the study period.   

The seasonal patterns displayed by E. coli O157:H7, with levels being highest in 

the summer months and lowest in the winter months is inversely correlated with seasonal 
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fluctuations in thyroid hormone levels.  At commercial abbatoirs and at various 

production settings, E. coli O157:H7 is isolated at higher rates from May to September 

in both sheep and cattle (Kudva et al., 1996; Hancock et al., 1997; Chapman et al., 2001; 

Barkocy-Gallagher et al., 2003).  To estimate the overall herd prevalence of E. coli 

O157:H7 before reaching slaughter, fourteen dairy cattle herds were sampled monthly 

for one year.  A seasonal pattern with the majority of samples testing positive in the 

summer months was reported by Hancock et al. (1997).  The same trend has been seen in 

free range ewes with 31% testing positive in June, 5.7% positive in August, and 0% 

testing positive in November (Kudva et al., 1996).  An intermittent shedding pattern for 

this bacteria has also been documented (Kudva et al., 1996; Hancock et al., 1997; 

Chapman et al., 2001; Barkocy-Gallagher et al., 2003).  Variability of E. coli O157:H7 

shedding within an individual animal has been shown.  Robinson et al. (2004) found 

bacterial shedding variation between 20 and 90% in calves sampled 5 times per day for 5 

days and up to twice daily for 15 days.   

Isolation of bacteria from content and tissue samples was not consistent across 

experiments.  For each experiment, bacterial isolation from tissue samples yielded no 

statistical differences between control and treated animals.  However, E. coli O157:H7 

was detected more often in tissue samples from animals in experiment 2 than samples 

from experiment 1.  Grauke et al. (2002) found that with longer infection times, bacterial 

detection decreased in both tissue and content samples from the gastrointestinal tract.  

For sheep experimentally infected for 22 days, E. coli O157:H7 was isolated from fecal 

samples of only half of the sheep sacrificed and not detected in any other tissue or 
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content samples.  In contrast, researchers were able to isolate bacteria from all tissue 

samples and from fecal as well as lower ileum, cecum, and colon content samples from 

sheep experimentally infected for only 7 days (Grauke et al., 2002).  These experimental 

results are consistent with findings from both experiments.  The sheep from experiment 

1 were experimentally infected up to 25 days.  One sheep tested positive for bacteria in 

content samples and only three tested positive in enriched tissue samples.  Content and 

tissue samples from experiment 1 displayed a clear trend with O157:H7 bacteria absent 

in the rumen and increasing toward the terminal end of the gastrointestinal tract with 

levels highest in rectal samples.  This finding is consistent with previously reported data 

(Cookson et al., 2002; Grauke et al., 2002; Naylor et al., 2003).  Grauke et al. (2002) 

experimentally infected sheep and found during harvest when E. coli O157:H7 was 

present, it was most often present in the lower gastrointestinal tract, cecum, and 

ascending colon.  Samples obtained from sheep in experiment 2 at the time of harvest 

displayed many more positives than negatives in both tissue and content samples 

collected from the rumen, ileum, colon and rectum.  In addition, unlike experiment 1, 

bacteria was detected in content samples from the rumen, ileum, colon and rectum and 

did not display the trends previously recorded.  However, these findings are consistent 

with Grauke et al. (2002) for sheep experimentally infected for a short time.  While 

Grauke et al. (2002) did not detect bacteria in rumen content samples, they did detect it 

in rumen tissue samples of sheep infected for a short time.  This data helps to support the 

findings of experiment 2 and the lack of a clear trend of bacterial levels increasing 

toward the terminal end of the gastrointestinal tract.              
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  The established inconsistent shedding pattern of E. coli O157:H7 (Cookson et al.,  

2002) makes it difficult to detect differences across time throughout either experimental 

group.  However, a variety of factors could help explain the differences in detection of 

bacteria between experiment 1 and 2.  1) Different bacterial strains were used for 

experimental infection for each study, 2) the sheep from experiment 1 were mature 

sheep while younger, growing lambs were used for experiment 2, 3) the sheep from 

experiment 1 were infected for a much longer time period than the sheep in experiment 2 

and 4) the diets between the two experiments varied slightly.   

 Two different strains of bacteria were used for these experiments.  Sheep in 

experiment 1 were inoculated with E. coli O157:H7 strain 2029 selected for resistance to 

rifampicin and naladixic acid while experiment 2 sheep were infected with E. coli 

O157:H7 strain 933 was selected for resistance to novobiocin and naladixic acid.  Both 

strains were selected for resistance to antibiotics for ease of detection following 

sampling.  It is possible that the strains became slightly attenuated during this process 

which might contribute to possible differences in the bacteria�s ability to establish 

infection.  Cornick et al. (2000) evaluated different pathogenic E. coli serotypes and 

their ability to persistently infect sheep.  Animals were experimentally infected and 

evaluated for 60 days post-innoculation.  The two E. coli O157:H7 strains evaluated 

(strain 86-24 and strain 3081) differed in persistence of infection in vivo.  By day 60 of 

infection, strain 86-24 was recovered from 2 of the 6 infected sheep.  On the other hand, 

at the same time point, strain 3081 was recovered from 4 of six infected sheep.  Wales et 

al. (2001) reported similar results when evaluating the �hardiness� of different E. coli 
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O157:H7 strains in sheep.  Bacterial strains EC157 (streptomycin resistant), 140065 

(naladixic acid resistant), 218 (rifampicin resistant) and 222 (nalidixic acid/rifampicin 

resistant) were combined in a cocktail and sheep were orally inoculated.  Marked 

differences in recovery of bacterial strains were reported perhaps due to inter-strain 

competition, or perhaps due to decreased ability of some strains to colonize the 

gastrointestinal tract of the ovine host.  Interestingly, the nalidixic acid/rifamicin 

resistant strain was recovered at lower levels than the rifamicin or nalidixic acid resistant 

strains (Wales et al., 2001).  Incidentally, the strain used in experiment 1 was also a 

rifampicin/naladixic acid resistant strain.        

Another distinct difference between the sheep of each experiment was age.  

Mature 12-16 month old sheep were used for experiment 1, while growing 5-7 month 

old lambs were the experimental unit for experiment 2.  The ability of E. coli O157:H7 

to colonize the sheep used in either experiment could have been affected by the very 

nature of immunity.  Two types of immunity are responsible for protection of the 

gastrointestinal tract, innate and adaptive immunity.  It is likely that both the mature and 

the growing lambs had an established innate immune system that would provide for a 

certain level of protection against invading organisms.  Innate immunity includes those 

defense mechanisms such as epithelial cells, mucus, and phagocytic cells capable of 

consuming bacterial cells.  Adaptive immunity, on the other hand, is based primarily on 

antibodies developed either from exposure to certain antigens either through natural 

infection or through vaccination.  This type of immunity provides a stronger immune 

response against invading organisms, and is enhanced via repeated exposure to infection 
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or antigens through vaccination protocols (McClure, 2000).  It can be assumed that the 

older sheep used for experiment 1 would have a more strongly developed adaptive 

immune system based upon exposure.  In addition, the natural commensal bacteria of the 

gastrointestinal tract play an important role in immunity.  It is documented that the gut 

flora change as animals mature in order to provide a stronger level of protection as well 

as to enhance the overall function of the gastrointestinal tract especially for ruminant 

animals (Draksler et al., 2002).  The well established microbial flora of the mature sheep 

in experiment 1 could have inhibited colonization of E. coli O157:H7 simply by out 

competing it.  Significant differences have been observed between E. coli O157:H7 

infection of calves versus adult cattle (Cray and Moon, 1995).  Animals were 

experimentally infected with a 1010 CFU dose of E. coli O157:H7.  At the time of 

necropsy, all animals were histologically normal.  However, through the course of the 

experiment, calves shed higher numbers of the bacteria and shed them for a longer 

period of time than the adult cattle.  The authors concluded that the differences in rumen 

microbe development between the calves and adult cattle was most likely responsible for 

some of the observed differences in shedding patterns (Cray and Moon, 1995).   

Duration of infection also differed between experiments.  For experiment 1, some 

sheep were infected up to 25 days before harvest.  The ability to detect bacteria both in 

fecal and gastrointestinal tissue and content samples has been shown to decrease as 

infection time increases (Grauke et al., 2002). At the time of harvest, experiment 1 sheep 

were shedding at an average rate of .87 CFU/g of feces (Log10) whereas experiment 2 

sheep at the time of harvest were shedding nearly a log count higher at 1.86 CFU/g of 
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feces (Log10).  The consistent decline in bacterial shedding for both control and treated 

animals in experiment 1 caused isolation to be more difficult and contributed to fewer 

differences across treatments.  However, it was clearly demonstrated across both 

experiments 1 and 2 that enrichment of samples increased the likelihood of detecting 

bacteria.  

Lastly, the sheep in both studies were maintained on slightly different diets.  In 

experiment 1, sheep were fed a coastal grass hay and 1.13 kg per head per day.  

Experiment 2 sheep were fed an 80% concentrate, 20% forage diet at 3.8% of body 

weight.  Sheep in experiment 2 received a higher concentrate diet which has been shown 

to increase fecal shedding of E. coli O157:H7.  Lema et al. (2002) examined the effects 

of varying levels of acid-detergent fiber (ADF).  Diets were formulated with ADF levels 

in increments of 5 from 5% to 35%.  The 5% ADF diet was formulated to simulate a 

pure concentrate diet while the 35% ADF diet was to represent a forage diet.  Feed 

consumption was similar across groups, however, fecal shedding of bacteria differed.  

Treatment groups receiving the 10% ADF to 35% ADF all had similar pathogen 

shedding levels.  However animals recieving the 5% ADF, or high concentrate, diet, 

bacterial shedding was significantly higher (Lema et al., 2002).  Similar results were 

seen in calves receiving either a high grain or high roughage diet (Tkalcic et al., 2000).  

Calves receiving high grain diets displayed increased fecal bacterial shedding as 

compared to calves maintained on high forage diets.  Conflicting results were reported 

by Kudva et al. (1995) and Kudva et al. (1997).  These studies reported increased and 

sustained levels of E. coli O157:H7 fecal shedding following experimental infection of 



                                 

 

47

sheep maintained on high forage diets.  However, bacterial levels in these studies were 

shown to increase when sheep were abruptly switched from a high grain to a high forage 

diet or when feed was abruptly withheld.  It is unknown whether the high forage diet or 

the abrupt diet changes were responsible for the observed shedding patterns.             

Generic E. coli  

 Generic E. coli, or total fecal coliforms, were evaluated in experiment 2 to 

determine if PTU treatment was able to affect other naturally occurring E. coli of the 

gastrointestinal tract.  Sheep fecal samples were evaluated every seven days beginning 

on d 0.  On d 0, E. coli populations were slightly lower in both groups compared to those 

reported for cattle on high grain diets.  Diez-Gonzalez et al. (1998) reported log counts 

of 6.8 log cells/g of feces for cattle on moderate grain diets and 6.9 log cells/g of feces 

for cattle on high grain diets.  The sheep from experiment 2 maintained on a high grain 

diet exhibited average E. coli populations of 5.8 log cells/g of feces.  By day 21 of 

treatment, counts in both groups had declined, however, control group shedding declined 

much more rapidly and to a lower level than that observed for treated animals.  Control 

group shedding decreased to 3.8 log cells/g of feces while treated levels remained at 4.9 

log cells/g of feces.  The treatment effect (P=0.1) observed indicates a possible direct 

interaction between PTU treatment and generic E. coli shedding.    

Body Weight and Intake 

 Weight loss has been reported for sheep receiving PTU.  Hernandez et al. (2003) 

reported decreased body weight gains for sheep receiving 20 mg/kg BW PTU as 

compared to controls and body weight losses for sheep receiving 40 mg/kg BW PTU.  In 
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addition, Wells et al. (2003) reported lower body weight for young lambs receiving 

either 20 or 40 mg/kg BW PTU as compared to controls.  However, Wells et al. (2003), 

did not see differences in weight across treatments until 3 weeks post treatment.   

Similarly, Hernandez et al. (2003) reported differences in weight 8 weeks post treatment.  

Body weights were recorded during both experiments to monitor animal health.  With 

the exception of six sheep in experiment 1, all sheep lost weight over the course of the 

experiment.  Control sheep tended to lose more weight on average over time than treated 

animals (Control: 3.7 kg; Treated: 1.9 kg).  It is unknown why sheep exhibited lower end 

weights than beginning weights for experiment 1.  All sheep consumed the experimental 

ration entirely and appeared in good health.  The indicated weight loss could be due in 

part to the collection method.  Sheep were all weighed prior to the acclimation phase of 

the trial and again on the day of harvest.  Prior to the experiment, sheep were all 

maintained on pasture and the noticeable difference in beginning and end weight could 

be due to initial loss of gut fill due to the change in diet.    This initial loss was also seen 

in experiment 2, but only for the first two weeks of the trial after which weights in both 

groups quickly rebounded.  The difference seen in the two studies could be due to the 

difference in sheep types (the growing lambs used for experiment 2 versus the mature 

sheep of experiment 1) or perhaps due to the difference in feeding regimens.  Sheep in 

experiment 2 were maintained on an 80% grain 20% forage ration with amount fed 

increasing as consumption increased.  All of these factors could have contributed to 

sheep in experiment 2 displaying weight gains rather than weight losses. 
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Serum 

 All animals were housed indoors with controlled photoperiod of 16h light and 8h 

dark in order to simulate long day length as experienced during the summer months 

when thyroid hormones are low and E. coli O157:H7 is typically high.  Sheep in both 

experiments were treated with the antithyroidal compound, PTU and serum T3 and T4 

were quantified.  Propylthiouracil is able to create a hypothyroid state by decreasing the 

release of T4 and T3 from the thyroid gland or inhibiting the conversion of T4 to T3 in the 

peripheral circulation or both (Achmadi and Terashima, 1995).  The release of T4 and T3 

from the thyroid is reduced because PTU directly affects thyroid utilization of iodine.  In 

the periphery, PTU acts by inhibiting the type I 5�-monodeiodination.  This type I 

monodeiodinase is responsible for activating the reverse T3 (rT3), an inactive 

intermediate in the conversion of T4 to active T3 (Villar et al., 1998).   

In these experiments, at least one thyroid hormone was affected by treatment.  

The 20 mg/kg of BW PTU dose used for the first experiment did not have a significant 

effect on serum T4 levels, however, T3 levels decreased over time in the PTU treated 

group.  The higher dose of 40 mg/kg of BW PTU used for experiment 2 decreased both 

thyroid hormones in the treatment group, however the effects on T4 were more profound 

and began to decline earlier during treatment.  Hernandez et al. (2003) found that with 

20 mg of PTU/kg of BW a much longer time period was necessary to lower serum T4 to 

desired levels than with the higher 40 mg dose.  Ewes were treated with either 20 or 40 

mg/kg BW PTU and serum T4 was evaluated over time.  It is unknown what effect on T3 

the two different PTU doses had because this hormone was not measured, however, it 
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was determined that at least 30 d of treatment were necessary to lower serum T4 to levels 

below 20 ng/mL.  Forty mg/kg BW PTU was able to elicit this response in 

approximately 18 days (Hernandez et al., 2003).  It is possible based on these results that 

sheep from experiment 1 could have exhibited differences in T4 levels across treatments 

had dosing continued beyond 15 days.  It is hypothesized that the dose of PTU 

administered may affect hormone circulation in different ways.  Low doses of PTU are 

thought to act on circulating levels of T4 and T3 directly and inhibit the type I 5�-

monodeiodinase, thereby decreasing circulating T3 levels (Villar et al, 1998).  On the 

other hand, high PTU doses are thought to act directly on the thyroid gland and reduce 

circulating levels of T4 (Villar et al., 1998).  Villar et al. (1998) demonstrated differences 

in thyroid function with varying PTU doses in goats.  Different groups of goats were 

orally administered low doses of PTU including 1.1, 2.2, 4.4, 8.8, and 17.5 mg/kg BW 

and a high group was given 35 mg/kg BW.  Goats receiving the high PTU dose exhibited 

increased thyroid gland size (goiter) indicating a hypothyroid state and decreased type I 

5�monodeiodinase activity (Villar et al., 1998).  High doses of PTU tend to affect 

younger lambs more than mature sheep as indicated by greater decreases in circulating 

T4 levels (Wells et al., 2003).   When administering 20 and 40 mg/kg BW PTU to six 

month old ewes, serum T4 levels were reduced below 20 ng/mL in only seven days.  

Indicating that in younger animals, a smaller PTU dose may be necessary over a shorter 

time period to elicit a strong response in lowered thyroid hormone levels.  In cattle, low 

PTU doses have been shown to inhibit type I 5�-monodeiodination in extrathyroidal 

tissues and not directly in the thyroid gland (Rumsey et al., 1985; Elsasser et al., 1992).  
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Therefore, lower PTU doses are more likely to elicit decreases in serum T3 leaving T4 

virtually unaffected.  This effect was clearly seen in experiment 1 where a lower PTU 

dose of 20 mg/kg of BW was administered resulting in only decreased T3 levels.      

Thyroid Hormones and E. coli O157:H7 

For both experiments as expected, thyroid hormone levels decreased following 

PTU treatment.  Experiment 1 sheep displayed a correlation between T3 levels and E. 

coli O157:H7 shedding.  As hormone levels decreased in treated animals, bacterial 

shedding increased as compared to controls.  Similar results were seen for experiment 2 

with T4 and E. coli O157:H7 displaying a significant multivariate treatment (p=0.0005) 

and date (p=0.0174).  Additionally, as hormone levels decreased in treated animals, 

generic E. coli shedding increased as compared to control animals.  For both 

experiments, correlations were seen between decreasing thyroid hormone levels and 

increased fecal shedding of both generic E. coli and E. coli O157:H7 in experimentally 

infected sheep.   
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SUMMARY AND CONCLUSIONS 

 
A thorough understanding of the complexity of pathogen carriage and shedding 

in the ruminant is necessary due to the continuing contamination of the human food 

supply.  Results from these experiments suggest that correlations do exist between both 

thyroid hormones and E. coli O157:H7 shedding.  However, small sample size and noisy 

data make a clear interpretation difficult.  The generic E. coli data does show increased 

bacterial shedding with decreasing T4 levels.  It is clear that chemically suppressing 

thyroid hormone levels affects bacterial shedding, but the extent is unclear.  Further 

investigations are needed to evaluate the exact role of thyroid hormones in the 

gastrointestinal tract of ruminants as well as the possible role thyroid hormones may 

have in the life cycle of bacteria like E. coli O157:H7.       
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