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Preface (First Edition)

This textbook is intended to introduce engineering graduate students to the essentials of
modern Continuum Mechanics. The objective of an introductory course is to establish certain
classical continuum models within a modern framework. Engineering students need a firm
understanding of classical models such as the linear viscous fluids (Navier-Stokes theory) and
infinitesimal elasticity. This understanding should include an appreciation for the status of the
classical theories as special cases of general nonlinear continuum models. The relationship of the
classical theories to nonlinear models is essential in light of the increasing reliance, by engineering
designers and researchers, on prepackaged computer codes. These codes are based upon models
which have a specific and limited range of validity. Given the danger associated with the use of
these computer codes in circumstances where the model is not valid, engineers have a need for an
in depth understanding of continuum mechanics and the continuum models which can be
formulated by use of continuum mechanics techniques.

Classical continuum models and others involve a utilization of the balance equations of
continuum mechanics, the second law of thermodynamics, the principles of material frame-
indifference and material symmetry. In addition, they involve linearizations of various types. In
this text, an effort is made to explain carefully how the governing principles, linearizations and
other approximations combine to yield classical continuum models. A fundamental understanding
of these models evolve is most helpful when one attempts to study models which account for a
wider array of physical phenomena.

This book is organized in five chapters and two appendices. The first appendix contains
virtually all of the mathematical background necessary to understand the text. The second
appendix contains specialized results concerning representation theorems. Because many new
engineering graduate students experience difficulties with the mathematical level of a modern
continuum mechanics course, this text begins with a one dimensional overview. Classroom
experience with this material has shown that such an overview is helpful to many students. Of
course, more advanced students can proceed directly to the Chapter Il. Chapter Il is concerned
with the kinematics of motion of a general continuum. Chapter Ill contains a discussion of the
governing equations of balance and the entropy inequality for a continuum. The main portion of
the text is contained in Chapter IV. This long chapter contains the complete formulation of various
general continuum models. These formulations begin with general statements of constitutive
equations followed by a systematic examination of these constitutive equations in light of the
restrictions implied by the second law of thermodynamics, material frame-indifference and material
symmetry. Chapter IV ends with an examination of the formal approximations necessary to
specialize to the classical models mentioned above. So as to illustrate further applications of
continuum mechanics, the final chapter contains an introductory discussion of materials with
internal state variables.

The book is essentially self contained and should be suitable for self study. It contains
approximately two hundred and eighty exercises and one hundred and seventy references. The
references at the end of each chapter are divided into References and General References. The
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References are citations which relate directly to the material covered in the proceeding chapter.
The General References represent additional reading material which relate in a general way to the
material in the chapter.

This text book evolved over an extended period of time. For a number of years, early
versions of the manuscript were used at Rice University. | am indebted for the assistance my many
students gave me as the lecture notes evolved into a draft manuscript. The final manuscript has
been utilized at the University of Kentucky by my colleague, Professor Donald C. Leigh, in an
introductory graduate course. | am indebted to him for his many comments and suggestions.

Ray M. Bowen
Lexington, Kentucky

Preface (2004 Revised Edition)

This electronic textbook is a revision to the textbook, Introduction to Continuum Mechanics
which was published by Plenum Press in 1989. A small amount of new material has been added in
Chapters 1, 3 and 4. In addition, an effort has been made to correct numerous typographical errors
that appeared in the first edition. It is inevitable that other typographical errors creep into the
manuscript when it is retyped. | hope there has been a net reduction in these kinds of errors from
the first edition to this revised edition

I remain indebted to my colleagues that have pointed out errors over the years. A special
mention needs to be made to my good friends Dr. C.-C. Wang of Rice University and Dr. Donald
C. Leigh of the University of Kentucky. Not only were they kind enough to adopt the first edition
as a textbook, they informed me of many corrections and improvements that could be made.

I am also indebted to my students at Texas A&M University that endured my teaching from
the revised edition after being out of the classroom for many years.

It is my desire and intention that this revised textbook be made available for free to anyone
that wishes to have a copy. For the immediate future, the access will be provided by posting it on
the website of the Mechanical Engineering Department of Texas A&M University. | would
appreciate being informed of any typographical and other errors that remain in the posted version.

Preface (2007 Revised Edition)

The 2007 revisions mainly involve the correction of typographical errors that have entered
the text as it has been retyped and revised over the years. A small amount of new material has been
added in Chapter 1. The index and Table of Contents have been revised to reflect the addition of
this material. For those that acquire the text as a pdf file, the search utility within Adobe Acrobat
provides an excellent alternative to the index.

Ray M. Bowen
rbowen@tamu.edu
College Station, Texas
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One-Dimensional Continuum Mechanics

It is often not clear to engineering students that there is a common basis for their courses in
thermodynamics, fluid mechanics and elasticity. The pace of most undergraduate curriculums is
such that there is no opportunity to stress the common features of these courses. In addition, many
undergraduate engineering students have limited skill with vector analysis and Cartesian tensor
analysis. These problems make it awkward to teach a modern introductory course in Continuum
Mechanics to first year engineering graduate students. Experience has shown that an elementary
preview of the modern course can be a great asset to the student. This chapter contains such a
preview. It is a brief survey of the elements of continuum mechanics presented for one
dimensional continuous bodies. This survey allows the student to encounter a new notation and
several new concepts without the problem of learning three dimensional vector and tensor analysis.

This chapter contains a development of the one dimensional forms of the equations of
balance of mass, momentum and energy. The entropy inequality is presented, and it is utilized to
derive the thermodynamic restrictions for a particular material model.

1.1. Kinematics of Motion and Strain

We shall denote by 23" the one dimensional body. The symbol X denotes an element or
particle of the body 23". It is useful at this point not to distinguish between the body @5 and the
portion of one dimensional space it occupies. Thus, X is a real number. It is customary to refer to
X as the material or Lagrangian coordinate of the particle. The set of material coordinates is a
subset of the real numbers called the reference configuration. If t denotes the time and ©#" is the
set of real numbers, then the deformation function is a function y(,,t):% — ©# which, for each t,

maps @43 into its present configuration. We write
x= y(X,t) (1.11)

where X is the spatial position or coordinate of the particle X at the time t. The spatial
coordinates are also called Eulerian coordinates. We shall assume that for each t, y has an

inverse y' such that
X = 7 (x1) (1.1.2)

Theses assumptions insure that X and x are in one to one correspondence for each t and are, in
effect, a statement of permanence of matter. The particle X cannot break into two particles as a
result of the deformation, and two particles X, and X, cannot occupy the same spatial position x

at the same instant of time.

The velocity of X at time t is
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g = 2X.0 (1.13)
ot
The acceleration of X at the time t is
L 0P x(X,1)
X=—22"1r 1.1.4
6t2 ( )
The displacement of X at the time t is
w=y(X,t)- X (1.1.5)

Because of (1.1.2), we can regard x, X and w to be functions of (x,t) or (X,t). The pair (X,t)
are called material variables, and the pair (x,t) are called spatial variables. Clearly, by use of

(1.1.1) and (1.1.2) any function of one set of variables can be converted to a function of the other
set.

If v isa function of (X,t), then its material derivative, written v, is defined by

. ow(X,t)
St i SAL A/ 4 1.1.6
v - (1.1.6)
If the function w of (x,t) is defined by
y(x )=y (xt)1) (1.1.7)

an elementary application of the chain rule yields

J e Oy (X,t) _op(xt)  dy(xt) . (1.1.8)
ot ot X

Equation (1.1.8) gives the material derivative in terms of spatial derivatives. For notational
simplicity, we shall write (1.1.8) as

. Oy Oy .
=——+—-X 1.1.9
V=t (1.1.9)

where it is understood that oy /ot is computed at fixed x, and dw /ox is computed at fixed t. As
an illustration of (1.1.9), we can take y = x and obtain
OX OX

X=—+—X (1.1.10)
ot OX
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The deformation gradient is defined by

Foox(X (1.1.11)
oX

Since y has an inverse, it is trivially true that y(x " (x,t),t) = x and, thus,

-1
oX OX

Equation (1.1.12) shows that F = 0and

=]
gl _dr(xt) (1.1.13)
F OX

The displacement gradient is defined by

b = WX, (1.1.14)
oX
It follows from (1.1.11), (1.1.14), and (1.1.5) that H and F are related by
H=F-1 (1.1.15)

If dX denotes a differential element of the body at X , then it follows from (1.1.1) and
(1.1.11) that

dx = FdX (1.1.16)

Equation (1.1.16) shows that if dX is a material elementat X then FdX =dx is the deformed
element at x. Therefore, F measures the local deformation of material in the neighborhood of
X.

If X is expressed as a function of (x,t), then

X

L=2
OX

(1.1.17)

is the velocity gradient. Because

0 9r(X,0) _ 3k _axax(X.)

(1.1.18)
X ot aX ax  oX
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it follows from (1.1.11), (1.1.17) and (1.1.6) that
F=LF (1.1.19)
Exercise 1.1.1

Show that

F'=—F1'L (1.1.20)

Next we shall state and prove an important result known as Reynold’s theorem or the
transport theorem. Consider a fixed portion of the body in X, < X < X,. The deformation
function, for each t, deforms this portion into a region in 272" . Without loss of generality, we can
take this region to be x, < x<x,, where x, = y(X,,t), x, = y(X,,t) and x= y(X,t). Reynold’s
theorem states that if ¥ is a sufficiently smooth function of x and t, then

IXXZ‘I’(x,t)dx = jf%dxwmxz,tmxz,t)-\P(xi,t)X(xi,t) (1.1.21)

The derivation of (1.1.21) is best approached by utilizing a formalism which does not
depend upon the use of a deformation function, and its associated motion. We first let d(x,t) be

the indefinite integral, with respect to x, of a function W (x,t) . In other words, let

CD(x,t):'[‘I’(x,t)dx+ constant (1.1.22)
It follows then that
a0(x.) _ P (x,1) (1.1.23)
OX
and, for two points x, and Xx,,
LXZ‘P(X,t)dx = D(X,,1) - D(X, 1) (1.1.24)

If we allow the limits in (1.1.24) to be functions of time, i.e.,

[0 0tk = @06, 1), 5 - 004 (0.1 (11.25)

The total derivative of sz(:;)‘P(x,t)dx is
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L)‘P( Hx dq)();t(t) 0 dq)()((jlt(t) Y
_ 00611, A0 (1)) di (1) (11.26)
ot OX dt o
_0D(x,(t), 1) oD (x (1), 1) dx,(t)
ot OX dt
If (1.1.23) and (1.1.24) are used, (1.1.26) can be written
d pem 8<D(x2(t),t) dx (t) 0P (x,(t),1) dx, (t)
atho W(x,t)dx = + ¥ (X, ().1) o - (t).t) —— o 11
_ j“”\y( X, t)dx + ¥ (x, (t), t)dx 2y (x,1), t)d (t)

The next formal step is to interchange the order of integration on x with the partial differentiation
with respect to t. The result of this final step is

dx (t)

d w0y J»z(t) a‘P(x '[)OI

E Xl(t) % () —P(x(1),t) ——= Xm(t) (1.1.28)

+¥(x(1)1)

The result (1.1.28) is a mathematical identity that holds for the function W of (x,t) and functions
X, and X, of t that are sufficiently smooth that the various derivatives above exist. In calculus, it

sometimes goes by the name Leibnitz’s rule. It is one of the standard results one needs in applied
mathematics for the differentiation of integrals. We have not been precise about the smoothness
assumptions sufficient to give the result (1.1.28). More rigorous derivations of this result can be
found in many Calculus textbooks. References 1 and 2 contain this derivation. In any case, we are
interested in this result in the special case where the functions x, and x, of t are derived from the

deformation function y . In this case, (1.1.28) immediately becomes (1.1.21)

Exercise 1.1.2

Show that (1.1.21) can be derived by a change of variables in the integral J. o )‘P( X,t)dx. The

x=x (Xt
first step is to write

Xo=x(X3.t)

j ¥ (x,t)dx = j L P dx= j P (y(X,t),t)FdX (1.1.29)

Differentiate (1.1.29) and rearrange the result to obtain (1.1.21).

The name "transport theorem” is suggested by viewing the last two terms in (1.1.21) as the net
transported out of the spatial region X, < x < x, by the motion of the material.



6 Chapter 1

Equation (1.1.28) and its special case (1.1.21) assume that @ is differentiable and, thus,
from (1.1.23), ¥ continuous as a function of x in x, < x <X,. Next we wish to remove the

assumption that ¥ is continuous in X, < x < X, and derive a generalization of (1.1.21). The

derivation simply utilizes the general result (1.1.28) in two different intervals and carefully joins
the results so as they apply to the interval x, <X < x,. We assume ¥ is continuous except at a

point y(t) inthe interval x, < x<x,. As shown in the following figure, at the point y(t) the
function W is allowed to undergo a discontinuity as a function of x at a fixed time t.

As indicated on the figure

¥ = lim P(x,t) (1.1.30)
xTy(t)
and
Y = lim W(x,t 1.1.31
Jim (x,t) ( )

We use the notation [\V] to denote the jump of W defined by

[P]=¥ —¥" (1.1.32)

x yn X

Figure 1.1.1
Exercise 1.1.3

If ¥ and @ undergo jump discontinuities at y(t) show that
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[YD]=[V]D +V'[D]=V [®]+[¥]D"
=[Y][@]+ ¥ [@]+[V]D"
and

:%(qﬁ +\P)[c1>]+%[\¥](q>* + o) (1.1.33)

Exercise 1.1.4

If W undergoes a jump discontinuity at y(t), show that

j aa—ildx =W (X,,t) - P (x,1) +[¥] (1.1.34)

Given a function ¥ which undergoes a jump discontinuity at y(t), Reynold’s theorem
takes the form

j ‘P(x t)dx _j za—\PdH‘P(Xz,t)X(Xz,t) (1.1.35)

=P (%, X(x, ) +[¥]y

where y(t) is the velocity of the point y(t). The derivation of (1.1.35) is elementary. Because ¥
is differentiable in x, <x < y(t) and in y(t) < x<X,, (1.1.27) yields

% " (x,1)dx _jyaqj(x D G Py — W, R0 1) (1.1.36)
and

d ¢ x OF X, t . o

ajv ‘P(x,t)dx:J.y %dx#l’(xz,t)x(xz,t)—\{’ y (1.12.37)

The addition of (1.1.36) and (1.1.37) yields (1.1.35). If (1.1.34) is used, (1.1.35) can also be
written

J':lp(x,t)dx j (‘Z—T %)d [¥(x- V)] (1.1.38)

1.2. Balance of Mass

In this section we shall state the one dimensional form of the equation of balance of mass.
This equation is the first of four fundamental principles which form the basis of continuum
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mechanics. The others are balance of momentum, balance of energy and the entropy inequality.
These equations of balance will be discussed in subsequent sections.

We shall denote by p the mass density (mass/length) of @3 in its deformed configuration.
Therefore,

p=p(X,t) (1.2.1)

The corresponding quantity in the reference configuration is

Pr = pPr(X) (1.2.2)

Balance of mass is the simple physical statement that the mass of the body and any of its parts are
unaltered during a deformation. If an arbitrary part of the body is defined by X, < X <X, , then it

is deformed into x, < X < X, by the deformation, where x, = y(X,,t)and x, = y(X,,t). Balance of
mass is the assertion that

" pedX = [ pax (1.2.3)

for all parts of the one dimensional body <5 . Because the left side of (1.2.3)is independent of t,
an alternate form of balance of mass is

[ pdx =0 (1.2.4)

Next we shall derive the local statement of balance of mass. The statement is local in the
sense that it holds at an arbitrary point X at an arbitrary time t rather than for an interval
X, <X < X,. Byuse of (1.1.16), (1.2.3) can be written

[ (pF - pg)dx =0 (1.2.5)

If we assume the integrand pF — p; is a continuous function of X , the fact that (1.2.5) must hold
for every interval X, < X < X, forces the following local statement of balance of mass:

PF = p, (1.2.6)

For reasons that will become clear later, we shall refer to (1.2.6) as the material form of the local
statement of balance of mass. Other local statements follow by differentiation of (1.2.6). It follows
from (1.2.6) that

oF = pF+ pFE =0 1.2.7)
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If we now use (1.1.19) and the fact that F =0, (1.2.7) yields
p+pL=0 (1.2.8)
Exercise 1.2.1

Show that (1.2.8) can be written in the alternate forms

[lj 1 (1.2.9)
p) P
and
P PX_g (1.2.10)
ot oX

Equations (1.2.8), (1.2.9) and (1.2.10) are local statements of balance of mass which hold at
points where p and x are differentiable. If there is a point for which p and X undergo a jump

discontinuity, we must proceed from (1.2.3) more carefully. If p and x suffer a jump
discontinuity at y(t), it follows from (1.2.4) and (1.1.38) that

I @—f+%jd><—[p(x—w]=0 (1.2.11)

Equation (1.2.11) holds for all (x;,X,). The integrand is assumed to be continuous at all points
except y(t). If (x,x,) isan arbitrary interval which does not contain y(t), then (1.2.11) implies
(1.2.10). Given (1.2.10), (1.2.11) then yields

[p(X-y)]=0 (1.2.12)

at x = y(t). The physical meaning of (1.2.12) is quite clear. It simply states that the flux of mass
across the point y(t) is continuous.

Exercise 1.2.2

Use (1.2.12) and show that the jump in specific volume, [1/ p], is given by

p (X =YL/ p]=[X] (1.2.13)

Exercise 1.2.3
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Use (1.2.10) and show that

_op¥ N opPx

v 1.2.14
PR T T ax (1.2.14)
where W is any function of (x,t).
Exercise 1.2.4
Use (1.2.14) and show that
j PP (x t)dx = j PPAx —[p¥ (X - V)] (1.2.15)

1.3. Balance of Linear Momentum

In the three dimensional theory, the statement of balance of momentum consists of two
parts. The first is the statement concerning the balance of linear momentum, and the second is a
statement concerning the balance of angular momentum. For a one dimensional theory the concept
of angular momentum does not arise.

The linear momentum of the part of 23" in x, <x<X, is
'[Xz pxdx

The rate of change of linear momentum is required to equal to the resultant force on the part of
24" . The formal statement is written

j pxdx = f (1.3.1)

for all parts of the body 24", where f is the resultant force acting on the part. We shall assume
that f consists of two contributions and write

f :T(xz,t)—T(xl,t)+IXX2 pbdx (1.3.2)

The quantity b(x,t) is called the body force density (body force/mass), and the integral of pb is the
resultant body force acting on the part of 23" in x, <X <X,. The quantity T(x,t) is a contact
force. It results from the contact of the part of 23" in x, <X < x, with that notin x, <X < X,.

T(x,t) is the one dimensional counterpart of stress. If T (x,t) >0 (<0) the material point is in
tension (compression). If we combine (1.3.1) and (1.3.2), we obtain
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j pxdx =T (%,,t) =T (%, t) + j phadx (1.3.3)

Next, we wish to deduce from (1.3.3) a local statement of balance of linear momentum. For the
sake of generality, we allow T, p and x to suffer jump discontinuities at a point y(t) in 23". It

easily follows from (1.1.34) that

X2 8T
T(X,,t)-T(x,t)=| —dx-— 1.34
06 =T 0,0 = [ —dx~[T] (13.4)
and, from (1.2.15), that

j pXdx = Ll pXdx —[pX(X=Y)] (1.3.5)

These results allow (1.3.3) to be written

X2 . oT e .

Ll (px—a—pbjdx—[px(x— W]+[T]1=0 (1.3.6)

Since (1.3.6) must hold for all parts of 25, it follows by the same argument that produced (1.2.10)
and (1.2.12) from (1.2.11) that

px=L i pb (1.3.7)
OX
forall x= y(t), and
[ox(x=y)]-[T]=0 (1.3.8)

at x=y(t)
Exercise 1.3.1

Show that an alternate form of the acceleration X is

. .2
_ opX N opX

,
r ot OX

(1.3.9)

Exercise 1.3.2

Show that (1.3.8) can be written
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[p(x—y)*=T1=0 (1.3.10)
and
y[x]1-[T]=0 (1.3.11)
where y = p" (X" —y)=p (X —Y).
Exercise 1.3.3
Show that
7 =% (1.3.12)

Equation (1.3.12) shows that [T] and [1/ o] must have the same sign. Equation (1.3.12) is known
as the Rankine-Hugoniot relation.

Just as (1.2.6) is the material version of balance of mass, equation (1.3.7) can be manipulated into a
material version of balance of linear momentum. This material version is

. oOT
PrX :&Jt‘pr (1313)

Equation (1.3.13) follows by multiplication of (1.3.7) by F and making use of (1.2.6).
1.4. Balance of Energy
Balance of energy, or the First Law of Thermodynamics, is the statement that the rate of

change of total energy equals the rate of work of the applied forces plus the rate of heat addition.
The total energy includes the sum of the internal energy and the kinetic energy. If g(x,t) is the

internal energy density (internal energy/mass),
J.XXZ ple+ %Xz)dx

is the total energy of the part of 23" in x, < x < x,. The rate of work or power of the applied forces
IS

T (%,, ) X(%,, 1) = T (%, )X (%, 1) + j oXbdx
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The rate of heat addition arises from heat generated at points within the body 24" and from contact
of the part of 23 in x, <X <X, with that not in x, < x <x,. If r(x,t) denotes the heat supply

density (rate of heat addition/mass), then
sz prdx
is the rate of heat addition resulting from heat generated within the body. The rate of heat addition
from contact is written
q(x, 1) —q(x,1)

where q(x,t) is the heat flux. The mathematical statement which reflects balance of energy is
therefore

J.szp(8+%)'(2)dx =T (X, ) X(%,, 1) —T(xl,t)X(xl,t)+j:2 oXbdx

(1.4.2)
+0(%,8) =A%)+ [ prx
Exercise 1.4.1
Show that (1.4.1) implies
,o(g—i-lf(2 = @—a—q+p)'(b+pr (1.4.2)
2 OX  OX
forall x= y(t) and
1.,.,. . :
[p(5+5x )(X—y)-Tx+q]=0 (1.4.3)
at x=y(t).
Exercise 1.4.2
Show that when [q] =0 (1.2.12) and (1.3.8) can be used to write (1.4.3) in the forms
-+ - y1-0 (1.4.4)
p 2

and
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[g]—%(r +T*)[%] -0 (1.4.5)

Equation (1.4.5) is known as the Hugoniot relation. It is often written in terms of a different
thermodynamic quantity than the internal energy density ¢. The quantity that is used is the
enthalpy density defined by

st (1.4.6)

Exercise 1.4.3

Given the definition (1.4.6), show that (1.4.5) takes the form

[z]+%(i+ 1+J[T]:O (1.4.7)
PP

Exercise 1.4.4
Derive a material version of (1.4.2).

Next we shall use (1.3.7) to derive from (1.4.2) a thermodynamic energy equation. If
(1.3.7) is multiplied by x, the result can be written

,ol 2 =xLs pXb (1.4.8)
2 OX

If this equation is subtracted from (1.4.2), the result is

pé=TL —Z—j+ or (1.4.9)

where the definition (1.1.17) has been used. The term ? in (1.4.2) arose from the rate of work of
X

the contact forces. Since

X _ 3T 11 (1.4.10)
OX OX
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this rate of work decomposes into a part which changes the mechanical energy, xZ—T and a part
X

which changes the internal energy, TL. The term TL is sometimes called the stress power.
Exercise 1.4.5

Derive the material version of (1.4.9).

Exercise 1.4.6

On the assumption that none of the field quantities undergo jump discontinuities, show that

j pedx =q(x,t)—q(x,,t)+ j ordx+ j:Tde (1.4.11)

and

ﬁ ' ) %o
[, PRI =T (6, 0%06,) =T (4, X0, B + [ 7 pXox (1.4.12)

. jXXZTde

Equations (1.4.11) and (1.4.12) show how the stress power couples the internal energy and the
kinetic energy of the part of the body “3'in x, < x <X, .

1.5. General Balance

The reader has probably noticed a formal similarity between the three balance equations
discussed thus far in this chapter. Each balance equation is a special case of the following equation
of general balance:

j pydx =T(x,t)—T(x,t)+ j Ppdx (1.5.1)

In equation (1.5.1) the left side represents the rate of change of the amount of y in x, <x<x,. The
term I'(x,,t) —IT'(x,,t) represents the net influx of y, and the last term presents the supply of i .
The following table shows the choices of y, " and ¢ appropriate to the equations of balance of
mass, momentum and energy.
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4 r @
Mass 1 0 0
Momentum X T b
1 )
Energy g+5>'<2 TX—q | r+xb

Exercise 1.5.1

Derive the following local statements of the general balance:

. or
PY ==+ PP (1.5.2)
X
for x = y(t), and
Loy (X-y)-T]=0 (1.5.3)

for x = y(t). Equation (1.5.3) is a one dimensional version of a result known as Kotchine's
theorem.

Exercise 1.5.2
Derive a material version of (1.5.2).
1.6. The Entropy Inequality

The entropy inequality is the mathematical statement of the Second Law of
Thermodynamics. In order to state this inequality, we introduce three new quantities. The entropy
density (entropy/mass) is denoted by 7(x,t). The entropy flux is denoted by h(x,t), and the

entropy supply density is denoted by k(x,t). These three quantities are required to obey the
following entropy inequality or Clausius-Duhem inequality:

j pndx > h(x,t)—h(x,,t) + j okdx (1.6.1)

for all parts of the body 24'. The temperature is introduced by forcing the ratio of entropy flux to
heat flux to equal the ratio of entropy supply density to heat supply density. The temperature
6(x,t) is defined to be the common value of these two ratios, i.e.,

0(x,t) =%=£ (1.6.2)
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We also require & to be a positive number and, thus,

h(xt) =%

and

r(xt)

D=5

Given (1.6.3) and (1.6.4), (1.6.1) becomes

S 9061 9% t) e pr g

" ondx >
J,, Pn O(x,1) O(x,.1) % @

By a now familiar argument, (1.6.5) can be written

Xa . 6q/9 pl’j S q
+————|dx - X—y)+—=]=0
[ (pn > o Lon(x=y)+-1

for all parts of @3 . The following local inequalities are valid:

77+_8q/6?_p_r20
OX %

for x = y(t), and

[on(x— y)+%]so

for x = y(t)

If (1.6.7) is written

. g 06 l(aq j
999 A rlso
PI=07 o Talax P

aq

the term 6——pr can be eliminated by use of (1.4.9). The result of this elimination is
X

o q o6
0r—&)+TL-—=2>0
p(On—¢) 2 o

17

(1.6.3)

(1.6.4)

(1.6.5)

(1.6.6)

(1.6.7)

(1.6.8)

(1.6.9)

(1.6.10)
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A more convenient version of (1.6.10) results if we introduce the Helmholtz free energy density
defined by

w=c-n0 (1.6.11)
This definition allows (1.6.10) to be written

—p(l/'/+779)+TL—%g—fz 0 (1.6.12)

Exercise 1.6.1

If 6, is a positive number, show that

J.sz(y/+77(¢9—t90)+%)'(2)dx <T (X, )X (X, 1) =T (X, ) X(X,, )

X

‘90 _ _ 90
+q(x1,t)(1—6(Xi’t)] q(xz,t)(l H(XZ,t)] (1.6.13)

X3 X2 o,
+ X-bdx+| | 1-=2 | prdx
J pxebdes], ( o jp
Equation (1.6.13) is a useful representation of the entropy inequality (1.6.5) when one wants to
study the stability of certain types of bodies.
Exercise 1.6.2

Use (1.6.12) and prove that the Helmholtz free energy density cannot increase in an isothermal
constant deformation process.

Exercise 1.6.3
The enthalpy density y was defined by equation (1.4.6). The Gibbs function is defined by

T

2
Use these definitions and show that
p(07— ) -T-99% 59 (1.6.15)
0 ox

and
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. .. qoo
(e +nf) T —%& >0 (1.6.16)

Exercise 1.6.4

Use (1.6.16) and prove that the Gibbs function cannot increase in an isothermal constant stress
process.

Exercise 1.6.5

Use the definition (1.6.11) and show that (1.4.9) can be written

pOn =—p(y +n0)+TL —‘2—q+ pr (1.6.17)
X

Exercise 1.6.6

Show that material versions of (1.6.7), (1.6.12) and (1.6.17) are

. 0q/0 pgr

+ R >0 1.6.18
v ( )

) : . qo6
— +1n0)+TF———2>0 1.6.19
Pr(y +10) X ( )

and

. ) : . 0q

PrON =—pp (W +10)+TF — TR (1.6.20)

respectively.
Exercise 1.6.7

Throughout this chapter, we have developed jump expressions which govern balance of
mass, momentum and energy across a jump discontinuity. We have also, with (1.6.8), developed a
jump inequality which follows from the entropy inequality. It is interesting to develop material
versions of these jump equations. As a first step, combine (1.2.6) and (1.2.12) and show that

[F(x-y)]=0 (1.6.21)

The physical quantity Y* = F~* (y — x*) is the velocity in the reference configuration of the image

of the spatial discontinuity. The notation + means that the equation Y* = F* (y — X*) is really
two equations, one evaluated on the + side of the discontinuity and one evaluated on the — side.
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In any case, it follows from (1.6.11) that conservation of mass forces [Y]=0. Thus, the physical

quantity Y is actually continuous across the discontinuity. Show that material versions of
equations (1.3.8), (1.4.3) and (1.6.8) are

peY[X]+[T]=0 (1.6.22)
peVle+— X1+ [TX1-[g] =0 (16.23)

and
P r]-1]20 (1.6.24)

Exercise 1.6.8

Use the definition of Y given above and show that the jumps [X] and [F] are related by
[X]=-Y[F] (1.6.25)

Exercise 1.6.9

Derive the material version of the Rankine-Hugoniot relation

v 1.6.26
Pr [F] ( )
Equation (1.6.26) is useful in the study of one dimensional shock waves in certain types of
materials. It gives the velocity of the shock in the reference configuration in terms of jumps in
stress and jumps in deformation. It is, in reality, the material version of (1.3.12).
Exercise 1.6.10

Show that material versions of (1.4.5) and (1.4.7) are

pR[s]—%(T FTOF]=0 (1.6.27)

and
pR[;(]+%(F‘+F+)[I']:O (1.6.28)

As with (1.4.4) and (1.4.5), these results also assume [q]=0.
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1.7. Example Constitutive Equations

The equations of balance are indeterminate in that they involve more variables than there
are equations. This indeterminacy is to be expected since the balance equations apply to every
continuous body. Experience shows that continuous bodies behave in radically different ways.
There must be equations of state or constitutive equations which distinguish various types of
materials. An important part of continuum mechanics is the study of constitutive equations. In this
section we shall give examples of constitutive equations which define certain well know types of
materials.

The first example is taken from gasdynamics. The material defined by the constitutive
equations to be listed below is a heat conducting compressible gas with constant specific heats.
The constitutive equations which define this material are

e=cl0+¢" (1.7.1)
n=c,Nn0-RInp+n" (1.7.2)
T=-7=-pRO (1.7.3)
and
q=-x22 (1.7.4)
OX

where c, is a positive constant that represents the specific heat at constant volume, R is a positive

constant that represents the gas constant, ¢ is a constant representing the reference internal
energy, n" is a constant representing the reference entropy, 7z is the one dimensional pressure and
x(8, p) is the one dimensional thermal conductivity. The one dimensional pressure is the force of
compression on the gas. It is a property of the thermal conductivity that

x(0, p) >0 (1.7.5)

As our notation indicates, x can depend upon @ and p. It follows from (1.7.1), (1.7.2) and
(1.6.11) that

w=c0-60c,In60+O0RInp+¢e" —6n" (1.7.6)

It follows from (1.7.6), (1.7.2) and (1.7.3) that

oy
= 1.7.7
n=">, (1.7.7)
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and
r=p? Y (1.7.8)

Therefore, the Helmholtz free energy, as a function of (@, p), determines  and 7. Thus, v isa
thermodynamic potential for the material defined by (1.7.1) through (1.7.4). Given i, then 7 and

7 are determined by (1.7.7) and (1.7.8). The internal energy density & is then determined from
(1.6.11).

It is reasonable to question why (1.7.7) and (1.7.8) happen to hold. Other questions one

could ask are why is it only the heat flux that depends upon 2—9 why does g vanish when 2—9
X

X
vanishes, and why must the thermal conductivity be nonnegative. In the next section we shall show
that the entropy inequality places restrictions on the constitutive equations. In particular, the
restrictions (1.7.5), (1.7.7) and (1.7.8) are consequences of the entropy inequality. How one
establishes these results will be explained in the next section. It is important to note that certain of
the features of (1.7.1) through (1.7.4) are not a consequence of the entropy inequality. For
example, ¢, is required to be a positive number. This requirement is a consequence of

thermodynamic stability considerations.

For reference later, we shall give several other example constitutive equations. The
example stress constitutive equations are the following:

1. Linear elasticity

T_gM (1.7.9)
oX

where E is a material constant called the one-dimensional modulus of elasticity.
2. Linear viscoelasticity (\VVolterra material)

aw(x )

T =E(0) +[EGs )Md (1.7.10)
where E(S) is the stress relaxation modulus.
3. Linear Viscous Material (Voight or Kelvin Material)
ow oW
T=E—+u— 1.7.11
ox  Hox (L.7.11)

where E and g are material constants. The constant u is the coefficient of viscosity.
4. Maxwellian Material
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- el (1.7.12)
oX
where 7 and E are material constants.
5. Linear Themoelasticity
ow
T=E—-pB(0-6 1.7.13
> BO-6,) ( )

where E is the isothermal modulus of elasticity and £ is a constant that can be related to the
coefficient of thermal expansion.

Example constitutive equations for the heat flux are the following:

1. Nonconductor

q=0 (1.7.14)
2. Fourier Heat Conductor
gq= —K% (1.7.15)
OX
3. Maxwell-Cattaneo Heat Conductor
TQ+Q=—K§Q (1.7.16)
OX
4. Gurtin-Pipkin Heat Conductor
® 00(x,t—s)
=—| a(s)—————=ds 1.7.17
q=-}, 80—~ (1.7.17)

In the formulation of any theory of material behavior there are certain principles which
restrict constitutive equations. The first is a requirement of consistency. This requirement is that
constitutive assumptions must be consistent with the axioms of balance of mass, momentum and
energy and with the entropy inequality. This requirement will be the one we begin to investigate in
the next section. When we consider three dimensional models, the requirements of material frame
indifference and material symmetry will be used to restrict constitutive equations. As an operating
procedure, we shall utilize the concept of equipresence. This concept states that an independent
variable present in one constitutive equation should be present in all unless its presence can be
shown to be in contradiction with consistency, and, for three dimensional models, material frame
indifference or material symmetry.
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1.8. Thermodynamic Restrictions

In this section we shall establish the type of thermodynamic restrictions described in the last
section. We shall illustrate our results by examining the thermodynamic restrictions which follow
for a particular set of constitutive assumptions.

By a thermodynamic process, we mean a set consisting of the following nine functions of
(X,t): 7,0,w,n,T,q,p,r and b. The members of this set are required to obey balance of mass,

balance of momentum and balance of energy. It is convenient to introduce a special symbol for the
function whose value is € and write

0=0(X,t) (1.8.1)

The constitutive equations we shall study in this section are characterized by requiring v,7n,T and
g to be determined by the functions ® and y . Formally, we shall write

The function f is called the response function. An admissible thermodynamic process is a
thermodynamic process which is consistent with (1.8.2). If we regard p,(X) as given, then for
every choice of ® and y there exists an admissible thermodynamic process. To prove this
assertion, we must construct from ® and y the seven remaining functions v,7n,T,q, o,r and b
such that balance of mass, momentum and energy are satisfied. Given (1.8.2), ® and y determine
the four functions w,7, T and q. The function p is determined by balance of mass (1.2.6) written

p=pglF (1.8.3)
The function b is determined by balance of linear momentum (1.3.7) written

b=y LT (1.8.4)
p OX

Finally, the function r is determined by balance of energy (1.6.17) written

r=60n+y +n9—1TL+£a—q (1.8.5)
Y2

£ OX

The impact of the last argument is that when (1.8.2) is given, the balance equations are always
satisfied no matter how we select ® and y .

As yet, we have not made use of the entropy inequality. The inequality (1.6.12), rewritten,
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—p(y)+n9)+TL—%qg >0 (1.8.6)
where
g =% (1.8.7)
OX

If we were to substitute (1.8.2) into (1.8.6), the resulting inequality depends, in a complicated way,
on ® and y, and the response function f . We can view (1.8.6) as a restriction of the response

function f or arestriction on the functions ® and . We shall require that (1.8.6) be a restriction
on f.

As an illustration, consider the case where (1.8.2) specializes to

v =y(0,9,F,F) (1.8.8)

n=n(6.9,F,F) (1.8.9)

T=T(0.9,F,F) (1.8.10)
and

q=q(6,9,F,F) (1.8.11)

These constitutive assumptions clearly contain (1.7.1) through (1.7.4) as a special case. They
define a nonlinear one dimensional material that is compressible, viscous and heat conducting. Our
objective is to determine how (1.8.6) restricts the functions y,7,T and q. First we differentiate

(1.8.8) to obtain

:6y/t9-+61//g+81//':-+6y(|-:- (1.8.12)
0o og oF oF

W
If this result, along with (1.8.9), (1.8.10) and (1.8.11), are substituted into (1.8.6), the result is

ow(0,9,F,F) .
o v (0,9 )g

_ (oy(6.9.F.F)
p( o

0,9,F,F)|0-
PY: +1(0,9 )J

+(T 0,9,F,F)—pF —a’/’(e’;:’ F, F)] FF- —p—al//(e’a?:.' LN (1.8.13)

—%gq(@,g,F,F’)zo
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Equation (1.8.13) is required to hold for every choice of the functions ® and y. By selecting a

family of functions ® and y each having the same 6, g,F and F , the quantities 6, gand F can

be assigned any value. In particular they can be assigned values which violate the inequality
(1.8.13) unless

oy (6.9.F,F)

= +1(0,9,F,F)=0 (1.8.14)
w(0.9.F.F) _, (1.8.15)
a9
and
oy(0.9.F.F) _, (1.8.16)
oF
Therefore,
v =w(0,F) (1.8.17)
and
n:n(gyp):_% (1.8.18)

Thus, 7 is determined by  and both quantities cannot depend upon gand F . Given (1.8.17)and
(1.8.18), (1.8.13) reduces to

(T(@,g, F,F)-oF %j FFI—%gq(H,g, F,F)>0 (1.8.19)

Because T can depend on g and g can depend on F , it is not possible to conclude that the two
terms in (1.8.19) are separately positive. It does follow from (1.8.19) that

(T(@,O,F,F‘)—pF%jF‘Flzo (1.8.20)
and

-2 ga(0,9,F,0)20 (1821)
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Equation (1.8.21) shows that when F =0, the heat flux must be opposite in sign from the

temperature gradient. We shall show below that pF —6'//('6:” F)

is the stress in a state of

thermodynamic equilibrium. Equation (1.8.20) shows that, when g =0, the stress in excess of

pF % necessarily has a nonnegative stress power.

Next we shall derive the equilibrium restrictions from (1.8.19). As a function of

(0,9,F,F), the left side of (1.8.19) is a minimum at (8,0, F,0) forall # and F . Because of this
fact, the material defined by (1.8.8) through (1.8.11) is said to be in thermodynamic equilibrium

when g =F =0. If we define a function ® of (9,g,F,F) by

(0,9, F,F’):(T(e,g, F, F’)—pFMJ FF‘l—%gq(e,g, F,F)>0  (1.8.22)

oF

then @ isa minimum at (¢,0,F,0). Therefore,

do(0,4a,F,AA|
a2
and
d°0(0, 28 F.AA

dA’

|/'{:O

for all real numbers a and A. Since

(9,48 F,AA  _aD(9,0.F,0) D(6,0,F,0)

A
dA Lo a9 oF

(1.8.23) is equivalent to

o®(0,0,F,0) o®(,0,F,0)
a9 oF

0

Equation (1.8.24) is equivalent to the requirement that the 2x2 matrix

(1.8.23)

(1.8.24)

(1.8.25)

(1.8.26)
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8°®(0,0,F,0) &°D(8,0,F,0)

ag° dgoF
o*°®(0,0,F,0) &°®(6,0,F,0)
dgoF oF?

is positive semi-definite. It easily follows from (1.8.22) and (1.8.26) that

q(0,0,F,0)=0 (1.8.27)
and
T(0.0,F,0)= pr V0. F) (1.8.28)
oF
_— . —_ oy (0,F)
Thus, the equilibrium heat flux must vanish and the equilibrium stress must equal pF Y
If we define a function T°(6, F) by
T°(0,F) = pF ¥ 0.F) (1.8.29)
oF
and a function T¢(6,g,F,F) by
T°,9,F,F)=T(6,9,F,F)-T°(0,F) (1.8.30)

then TCis the equilibrium stress and T° is the dissipative or extra stress. The result (1.8.28) shows
that T° vanishes in equilibrium.

Exercise 1.8.1

Calculate the elements of 2x2 matrix defined above and show that the matrix is positive semi-
definite if and only if

24(0,0,F,0) _,

1.8.31
P (1.8.31)

and
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—EF‘l 0q(#,0,F,0) oT¢(6,0,F,0)
0 a9 oF
) (1.8.32)
1 oT%(6,0,F,0) F,l_iaq(e,O,F,O)
T4 a9 0 oF
Note, in passing, that (1.8.31) and (1.8.32) combine to yield
F1dT (0070, 4 (18.33)

oF

Exercise 1.8.2

Show that when the constitutive equations (1.8.8) through (1.8.11) are independent of F , that
(1.8.17), (1.8.18),

T(0,F)=pF oy(0.F) (1.8.34)
oF
and
1
——94(0,9,F) >0 (1.8.35)

are the thermodynamic restrictions.
Exercise 1.8.3

Show that when the constitutive equations (1.8.8) through (1.8.11) are independent of g, that
(1.8.17), (1.8.18),

q=0 (1.8.36)
and
T¢(6,F,F)FF >0 (1.8.37)
are the thermodynamic restrictions.
Exercise 1.8.4

Express the formula (1.8.29) in terms of the variables ¢ and p and show that
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T =—7 (1.8.38)
where
ﬂ:pZM (1.8.39)
op

Exercise 1.8.5

If (1.8.18) and (1.8.29) are used, the derivative of (1.8.17) is
. TO .
w=-nl+—FF™" (1.8.40)
Y2
Equation (1.8.40) is called the Gibbs relation. Show that
TO .
E=0n+—FF™ (1.8.41)
2

Also, on the assumption that (1.8.18) can be solved for @ as a function of (77, F), show that

o= 2201 F) (1.8.42)
on
and
T°(n,F) =pF—agg;F) (1.8.43)

Exercise 1.8.6

Use the results of Exercise 1.8.5 and show that the energy equation (1.6.17) (or (1.4.9)) reduces to
pOn :TeL—g—q+pr (1.8.44)
X

Exercise 1.8.7

Show that the material version of (1.8.44) is
. e OQ
prn=T"F e + Pl (1.8.45)

Exercise 1.8.8
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Derive the thermodynamic restrictions for a material whose constitutive equations are

v =(6,6,9,F,F) (1.8.46)

n=n(0.0,9,F,F) (1.8.47)

T=T(6,6,9,F,F) (1.8.48)
and

q=9(6.6,9,F,F) (1.8.49)

The material model defined by these constitutive equations could possibly yield a hyperbolic
partial differential equation for ¢. The model defined by (1.8.8) through (1.8.11) yields a
parabolic equation which has the undesirable feature that thermal disturbances propagate with
infinite speed. Will the above model yield a hyperbolic equation?

1.9. Small Departures from Thermodynamic Equilibrium

The mathematical model which results from the constitutive equations (1.8.8) through
(1.8.11) is quite complicated. A less complicated model results if we assume that the departure
from thermodynamic equilibrium is small. In this case we can derive approximate formulas for q

and T°. Departures from the state (0,0, F,0) are measured by a positive number < defined by

e=g*+F? (1.9.1)
Given
T°=T°(0,9,F,F) (1.9.2)
and
q=q(6,9,F,F) (1.9.3)

we can write the following series expansions

Te

_TOOF0 dT.0F.0 o\ o2 (1.9.4)
a9

oF

and
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09(6.0,F,0)  &q(6,0,F,0
q=2u ) g+ 240.0.F,0)

F +0(&? 1.9.5
pe F +0(€") (1.9.5)

The leading terms in both expansions vanish because of the equilibrium results (1.8.27) and
(1.8.28). The coefficients in the expansions (1.9.4) and (1.9.5) correspond to material properties of
the body. We shall write

x(0,F)= _w (1.9.6)
a9
A(6,F)=F aT’(0.0.F.0 (1.9.7)
oF
a(0,F) = — Q40,0 F.0) (1.9.8)
oF
and
v(6,F) :w (1.9.9)
ag
Therefore, (1.9.4)and (1.9.5)can be rewritten
T¢=AL+vg+0(e?) (1.9.10)
and
q=-xg—alL+0(e?) (1.9.11)

where (1.1.19)has been used. The quantity « is the coefficient of thermal conductivity and A is
the bulk coefficient of viscosity. The coefficients v and « are zero in many of the standard
applications of our model and, thus, are not given names which will be familiar to the reader.
Material symmetry considerations, which we have not discussed, show that v and « must vanish
for materials with a center of symmetry. This means that the constitutive equations are invariant
under an inversion in the reference configuration. In any case, the material coefficients in (1.9.10)
and (1.9.11)must obey the restrictions (1.8.31) and (1.8.32). These restrictions yield

x(6,F) =0 (1.9.12)

and
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KaanRaF)zie(v+%) (1.9.13)

Because of (1.9.12), it follows from (1.9.13)that
A(6,F)=0 (1.9.14)

Equations (1.9.12)and (1.9.14)are the classical results that the thermal conductivity and the
viscosity cannot be negative.

When the remainder terms are omitted from (1.9.10) and (1.9.11), the result is a material
model with linear dissipation. The field equations which result from utilizing these
approximations are still nonlinear. In the next section we shall proceed one additional step and
assume the departure from a static solution & = constand F —1 is small. The resulting
constitutive equations are linear and yield a set of linear governing partial differential equations.
1.10. Small Departures from Static Equilibrium

If we consider the state of constant temperature and constant deformation defined by
O(X,t)=6" (1.10.1)
and

x(X,t)=X (1.10.2)

it follows that, in this state, F =1, F =0and g =0. It immediately follows from (1.8.17), (1.8.18)
and (1.8.29)that i,  and T°are constants in the state defined by (1.10.1) and (1.10.2). Also,

from (1.8.27), (1.8.28), (1.8.29) and (1.8.30) it follows that gand T° vanish. It follows from
(1.3.7) that, in the state defined by (1.10.1)and (1.10.2),

b=0 (1.10.3)
Likewise, the energy equation (1.8.44) yields

r=0 (1.10.4)
Therefore, given (1.10.1)through (1.10.4), the field equations are identically satisfied. Such a
solution is appropriately called a static solution. Our objective in this section is to derive the

approximate constitutive and field equations which are valid near the static solution.

Departures from the static solution are measured by a positive number €, defined by
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=(0-6")+9°+(F -1)> +F? (1.10.5)

Note that the static solution is trivially a thermodynamic equilibrium state. In order to obtain
expressions for 77 and T° which are correct up to terms of order O(e,), we must have a

representation for y (6, F) correct up to terms O(€’). The necessary expansion of (1.8.17) is

oy (0.1

1 A
— g (0-0)+

w(0.F)=y(0' 1)+ D

2 +
2 89

10%w (07,1
2%0: -1 +0(<))

M(e 0" )(F -1) (1.10.6)

For the sake of a simplified notation, (1.10.6) shall be written

V(0.F)=y' —n*(e—e*)+1(F -

Pr

1S ooy Boo_oVE-
5 9+ (H 6")? o, 6-60")(F -1 (1.10.7)
+%i(F -1y +O(el)

Pr

where
v =01 (1.10.8)

. oy (67,1)
Y7V 1.10.9
7 00 ( )

oy (67,1)

T =m0

(1.10.10)
(1.10.11)

(1.10.12)

and
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o'y (6'.)
From (1.8.18)and (1.8.29), " and T* are the entropy and stress in the equilibrium state. The
coefficient c, is the specific heat at constant volume, A is the isothermal modulus of elasticity and
[ is a constant that is related to the coefficient of thermal expansion. The exact relationship to the

coefficient of thermal expansion is not important to us at this point. As follows from (1.2.6), p; is
the density in the static equilibrium state. Given (1.10.7), it follows from (1.8.18)and (1.8.29)that

n=n++%(9—e+)+ﬁ(|: ~1)+0(e2) (1.10.14)

R

and
T =T - f(0-0")+A(F 1) +O(e?) (1.10.15)

Next, we need expressions for T¢and q valid near the static solution. Recalling that both
T¢ and g must vanish whenever g and F are zero, we obtain from (1.9.2) and (1.9.3)

e OT(0°.010) o OTH00L0) ey (1.10.16)
o9 oF
and
q= 20,010 o, 40,010 2y (1.10.17)
oy oF
By use of (1.8.7) and (1.1.11),
go20 0 . 00 1
ox Z); oX 1+(F-1) (1.10.18)
:8_X+O(€12)

This result, along with (1.9.6) through (1.9.9) allows equations (1.10.16) and (1.10.17) to be
written

T® =v+2—>‘f+2+F’ +0(€) (1.10.19)
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and
q=-x" S—f—oflf +0(e?) (1.10.20)
where
v =v(6",1) (1.10.21)
1 =1(6"2) (1.10.22)
k' =x(0"1) (1.10.23)
and
at=a(0°1) (1.10.24)

Equations (1.10.14), (1.10.15), (1.10.19) and (1.10.20) are the basis for our linear
constitutive equations. If we simply drop the remainder terms in these equations, the following
linear constitutive equations are obtained:

77:77++%(6’—9+)+ﬁ(F _1) (1.10.25)

R
TO=T*-B(O-60")+A(F -1 (1.10.26)
Te o 99, Jop (1.10.27)

X
and

o0 :
="' —-a'F 1.10.28
q=-K — @ ( )

If follows from (1.9.12), (1.9.13) and (1.10.14) that
k>0 (1.10.29)

KA
9+

z%(w V% (1.10.30)

and



One-Dimensional Continuum Mechanics 37

1'>0 (1.10.31)

The field equations which result from these linear constitutive equations follow by
substitution into the material statements of balance of momentum and energy. Because of (1.10.3),
balance of momentum (1.3.13) yields

2
pser B & g2, 20

oX oX?

(1.10.32)

The material statement of balance of energy for our material is (1.8.45). This equation repeated
here, is

005 =T°F —g—ngr (1.10.33)

If (1.10.4), (1.10.25), (1.10.27) and (1.10.28) are used, the energy equation (1.10.33) reduces to

2
pRch9+9ﬂF'=/c*ae - OF +( - 90

> T a’
oX oX X

A*Fj F (1.10.34)
Note that (1.10.34) is not a linear partial differential equation because of the products

00, 0F (S}f]F and FF . If (1.10.34) is linearized, the result is

0’0 oF

+ - 1.10.35
X2 % ax ( )

PrCO+6 BF ="

Since we have formally linearized our constitutive equations, it is reasonable to utilize the linear
partial differential equation (1.10.35) rather than (1.10.34) as the equation governing balance of
energy. The coupled partial differential equations (1.10.32) and (1.10.35), along with suitable
initial and boundary data, determine y and & for our model.

Exercise 1.10.1

As in elementary thermodynamics, it is sometimes convenient to use independent variables other
than @ and F . Solve (1.10.25) for —-6" interms of 7—7"and F —1 and use this result to
eliminate & in favor of 7 in (1.10.26). The result should be

0 B

v

T°=

(n-n") (1.10.36)
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where

H+
PRC,

A=At —— (1.10.37)

Recalling that A is the isothermal modulus of elasticity, the coefficient 1™ is the isentropic
modulus of elasticity.

Exercise 1.10.2

Express ¢ interms of » and F and show that

- N 1 o
=& +0" (n—-n n')?
) Pr ; ﬂv (1.10.38)
B —n")F-1)+=—(F-1)°
PrGy 2 pg
and, from (1.8.42),
A A
0=0"+—n-n")-—— B(F -1) (1.10.39)
CV pR \

Also show that (1.8.43) yields (1.10.36).
1.11. Some Features of the Linear Model

It is interesting to investigate certain features of the model formulated in Section 1.10. For
simplicity, we shall assume that the material is such that none of the constitutive equations depend

upon F . This special case is achieved by taking

It=a"=0 (1.11.1)

This assumption implies, from (1.10.30), that
v =0 (1.11.2)
Therefore, T° vanishes and the constitutive equations reduce to

,6’8W

+—<9 07 )+
n=n ( )+ X

(1.11.3)
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oW

T=T"-p(0-60")+1— 1114
pO-07)+A— (L11.4)
and
00
=—K— 1.115
4=-K— ( )

where (1.1.14) and (1.1.15) have been used to express the results in terms of the displacement

gradients. In order to simplify the notation, we have written « rather than x* for the thermal
conductivity. Of course from (1.9.12), x is restricted by

x>0 (1.11.6)

The field equations in our special case follow from (1.11.1), (1.11.2), (1.10.32) and (1.10.35).
They are

o°w o°w 00
OW_,9W_ 500 1117
Pr g e B X ( )
and
. 0p ow _ 0% (1.11.8)
PR o X ox? o

where the displacement has been introduced from (1.1.15).

Exercise 1.11.1

Show that for the special case of a nonconductor (x =0) that (1.11.8) yields 7 =0.
Exercise 1.11.2

Show that for a nonconductor with initially uniform entropy that the displacement is a solution of
the following wave equation:

o*w o*w
= a* e (1.11.9)
where
ax =2 (1.11.10)

Pr



40 Chapter 1

Because (1.11.9) is a wave equation, a* is called the isentropic wave speed.
Exercise 1.11.3

Show that in the limit of very large conductivity (x — o) that suitable boundary conditions can

always be prescribed such that & = const. Note that in this case the displacement satisfies the
following wave equation:

o’w , o°w
=a 1.11.11
ot? X ? ( )
where
2=t (1.11.12)
Pr

is the isothermal wave speed squared.
Exercise 1.11.4

The definitions (1.11.10) and (1.11.12) presume that both 4 and A* are non-negative quantities.
Show that if ¢, > 0, the isentropic wave speed is larger than the isothermal wave speed. Calculate

the ratio a*/a for the case where the material is air modeled as a heat conducting compressible
perfect gas with constant specific heats.

Certain properties of the solutions to (1.11.7) and (1.11.8) are revealed by deriving the
single partial differential equation obeyed by w(X,t). This equation, which is also obeyed by

O(X,t) is the result of expanding the following 2x2 operator determinant.

2 5
Prod A axo v
0 (1.11.13)
o p o C 2—K o
aox a Foxe

If this determinant is expanded and rearranged, the result is the following fourth order partial
differential equation:

2 2 2 2 2
El a\;v_a*zavxz/ K 82 ﬁ\iv_aza"‘z’ _0 (1.11.14)
ol at oX? | pac, OX2\ ot oX
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where a and a* are the wave speeds defined by (1.11.12) and (1.11.10), respectively. Itis
convenient to define a characteristic time z,_ by

K
T . =—o0 1.11.15
" e, ( )
and rewrite (1.11.14)as
2 2 2 2 2
O OW w2 OW ) o, O [OW 52 0W)_ (1.11.16)
ot ot oX oX“\ ot oX

The characteristic time z_can be used to assign meaning to the expressions "short time" and "long
time". For fixed t, the dimensionless time t/z_ is large if z_is small and is small if z_ is large. A
short time approximation to (1.11.16) is a solution valid for small t/z_. A long time
approximation to (1.11.16) is a solution valid for large t/z,_. For large z_ the second term in
(1.11.16) dominates and, as a result, disturbances propagate with the isothermal wave speed.
Likewise, for small z,_ the first term in (1.11.16) dominates and disturbances propagate with the
isentropic wave speed. It is reasonable to expect that short time approximations to the solutions of
(1.11.16) approach solutions of (1.11.11) and long time approximations approach solutions of
(1.11.9). The intuitive argument which is sometimes used to support this assertion is that for short
times the heat conduction has not yet influenced the material, and the material acts as if it is in an

isothermal process. For long times, the dissipative effects of heat conduction have taken place and,
after this, the material acts as if it is in an isentropic process.

It is helpful when one tries to get some general feelings about the behavior of the one

dimensional material defined by (1.11.16) to look at some representative numerical values. The
following table is adapted from one in Ref. 3.

Properties of Four Metals at 20°C

Quantity Aluminum Copper Iron Lead
a (m/sec) 6320 4360 5800 2140
a’(m/sec) 6432 4396 5801 2217
7._(sec) 2.15(10) % 5.78(10) ™ 571(10) ™ 5.24(10) ™"
Table 1.11.1

To the extent that these metals are typical, the small characteristic time z_ would cause solutions of
(1.11.16) to behave like long term approximations.
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Exercise 1.11.5

Calculate the three parameters a, a” and . for the two materials defined by the following table:

Chapter 1

Quantity Air (as a Perfect Gas) AL 2024-T3
6 (°C) 20 20
P (kg/m?) 1.205 2770
c, (J/kg°K) 717.4 963
K (W /m°K) .0257 190.5
A (Pa) 101400 108308270700
S (Pal’K) 346 4876

Additional insight into the behavior of the material described by (1.11.7) and (1.11.8) can
be obtained by investigating the propagation of harmonic waves defined by solutions of the form

wW(X,t) = de X g!@/DX-a) (1.11.17)

and

O(X,t)—0" = fe g/ (1.11.18)

In (1.11.17) and (1.11.18), it is understood that the real part of the assumed solution is used. The
quantity « is a real number and represents the frequency of the harmonic wave. The quantity qis

a real number which represents the phase velocity of the wave. The quantity ¢ is a real number
called the attenuation coefficient. The coefficients d and f are complex numbers which
correspond to the amplitudes of the wave. The wave number is defined by

k=2 +tip (1.11.19)
q
This definition allows (1.11.17) and (1.11.18) to be written
w(X,t) = de'®*- (1.11.20)
and
O(X,t)—0" = fe't*-) (1.11.21)

In order that (1.11.20) and (1.11.21) represent a solution of (1.11.7) and (1.11.8), k and @ cannot
be independent. Since @ is a prescribed real number, k will be determined as a function of .
Such a relation is known as the dispersion relation.
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Exercise 1.11.6

Substitute (1.11.20) into (1.11.16) and show that the dispersion relation k(@) is a solution of
a’r k*(@’k’ —0’)—iow(@a** k* -»*) =0 (1.11.22)

Equation (1.11.22) is a quadratic in k*. Therefore, there are four modes of propagation of the form
(1.11.20). Since high frequency corresponds to short time, the phase velocity in the high frequency
approximation for two of the modes is easily shown to be +a and —a. Likewise, the low
frequency approximation yields phase velocities +a* and —a*.

In circumstances where the two limiting cases of high and low frequency does not apply,
the phase velocities and the attenuation coefficients depend upon the frequency. A dispersion
relation which yields a frequency dependent phase velocity is called a dispersive mode. The
approximations just cited correspond to the nondispersive limits of the solutions k(@) . The other
modes are dispersive and, roughly speaking, correspond to the propagation of the thermal
disturbance.

The explicit formulas for k implied by (1.11.22) are complicated but can be derived. The
details can be found in the work of P. Chadwick in Ref. 3

Exercise 1.11.7

Show that the roots of (1.11.22) can be written

N2 N2
Z;ak:i \/a)-i-ia),((a—J +(1+i)J20.0 iJw+in(iJ —(1+10)y20.® (1.11.23)
Vo a y a
where wK:% .

In equation, (1.11.23) the first pair of + symbols corresponds to waves propagating in the +x
direction. We shall only consider this + case below. The second pair of + symbols correspond to
two possible modes of propagation.

If one adopts the properties of air as given in Exercise 1.11.5 above, equation (1.11.23) can
be used to calculate the phase velocity and the attenuation coefficient as a function of frequency for
each mode. The results of this calculation yield the following plots.
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For the elastic mode, the first figure shows how the phase velocity begins at a” and, as the
frequency is increased, approaches a. For this same mode, the attenuation coefficient begins at
zero and grows, as the frequence is increased, to a constant value. It is possible to use (1.11.22) to
derive the following high frequency approximation for the attenuation coefficient in this case. The
result is

. o a* -a’

Chadwick gives approximations for k(w) . One family of approximations to (1.11.23)
involves the assumption that a and a” are close. The formal way this approximation is generated

2 a2
is to expand (1.11.23) for small values of the ratio PERRE It is readily established from (1.10.37)
a*2 _ a2 €+ a*2 _ A2
, (1.11.10) and (1.11.12) that —=— . Therefore, small values of ~— correspond
a PRC, a

to small values of the coefficient S. Itis £ which couples the equation of motion (1.11.7) and the

energy equation (1.11.8). Table 1.11.1 shows that for the metals given, the isothermal wave speed
and the isentropic wave speeds are very close. This type of approximation would not be good for

air, where, the ratio 3%2 is approximately the ratio of the specific heat at constant pressure to the

specific heat at constant volume. If air is modeled as a perfect gas, this ratio is 1.4. Exercise 1.11.4
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asks that the ratio a”/a be calculated in the case where air is modeled as a perfect gas with constant
specific heats.

The other family of approximations is one where the ratio % issmall. Table 1.11.1

shows that 7, is small, and, thus, o= % is large. The characteristic time for air, as calculated

K

in Exercise 1.11.5, is approximately 3.5(10) *° sec. As a result, an approximation based upon the
assumption that the corresponding ratio % is small appears to be broadly useful. Chadwick

gives the following results for the two phase velocities and the associated attenuation coefficients.

. ?/a’-1)(7-3a"/a’ 2 ]
Oy =2 [1_(61 /as(azz(/azya '3 (0, +0((0f ) )j (1.11.25)
U2y =%/2(a>/a),() (1—%‘7‘)1)@/@) +O((a)/a),()2)] (1.11.26)
*2 2_1 ) A
Pw =%((2a(a{2617)2)(w/w,() +0((w/ o) )j (1.11.27)
and
(2) a’ x 2(a*2/a2)2 (3 3 et

These approximate expressions display the two modes of propagation. The first mode depends
upon the frequency through second order terms, while the second mode has a stronger dependence.

It is the first mode that propagates with a phase velocity near the isentropic speed a”. Additional
discussion of plane harmonic waves in thermoelastic materials can be found in references 4, 5 and
6.

In the last four sections, we have examined the constitutive equations of a special one
dimensional material. Our thermodynamic results, along with the approximations introduced in
Sections 9 and 10, allowed a brief consideration of the behavior of waves propagating in the one
dimensional material. If one were interested in the behavior of a broader class of initial boundary
value problems, one would need some sort of existence and uniqueness theorem. Uniqueness
theorems in elasticity usually arise from some sort of energy argument. An illustration, in the
context of the one dimensional material being discussed here, is provided by the following
exercise.

Exercise 1.11.8
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Use (1.11.4), (1.11.5), (1.11.7) and (1.11.8) and show that

Lo (g gy o 1 0) ., LAWY
j{ O-0") Zz(axijz(atﬂdx
aw(bt) (@ -T )6W((;:1t)

0(b,t) - 0" o(a,t) - 6"
—(TJ q(b,t) + [Q—J a(a,t)

2
_J‘bﬁ(%J dx
a @\ oX

where a and b are fixed positions.

=(Tb)-T")

(1.11.29)

Exercise 1.11.9

Consider a boundary-initial value problem for (1.11.7) and (1.11.8) where the velocity and heat
flux vanish at each end of the material. Show that

2 2
_.[ 1 ,OR Prv (9 97)? + ;A(S_)v:j +%pR (%j j|dX <0 (1.11.30)

Exercise 1.11.10

Assume that ¢, >0 and 4 >0. For initial conditions, assume that

0(X,0)=6" (1.11.31)
(X, 0) =0 (1.11.32)
oX
and
(X.,0) =0 (1.11.33)
ot
Show that (1.11.30) implies that
O(X,t)=6" (1.11.34)
WX,Y _ g (1.11.35)

oX
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and

WX, 1) =0 (1.11.36)
ot

for all t >0. The argument used in this exercise provides a uniqueness theorem for solutions of

(1.11.7) and (1.11.8). Given the assumptions made in the problem, it is necessary that (1.11.34),

(1.11.35) and (1.11.36) hold. Notice that ¢, >0 and A >0 were among the assumptions made.

These stability results are not consequences of the second law of thermodynamics.
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Kinematics of Motion

This chapter is concerned with the three dimensional kinematics of motion and strain. The material
presented represents the three dimensional generalization of the material contained in Section 1.1.
After the introduction of the concepts of deformation, velocity, acceleration and deformation
gradient in Sections 2.1 and 2.2, Section 2.3 contains a discussion of the transformation of linear,
surface and volume elements which are induced by a deformation. This discussion leads naturally
to a discussion of nonlinear strain kinematics in Section 2.4 and linear, or infinitesimal, strain
kinematics in Section 2.5.

2.1. Bodies and Deformations

Given the limited mathematical background established in the Appendix A, it is convenient
here to regard a body @8" to be a primitive concept. Precise mathematical definitions of a body can
be found, for example, in Reference 1, 2 and 3. Roughly speaking a body is a set @8" endowed
with a topological and differentiable structure. In addition, a body is endowed with a family of
functions, called configurations, which map @38" into a subset of <& . The structure of @" is such
that it is meaningful to require configurations to be diffeomorphisms. In addition, bodies are
required to be connected. We shall denote the elements of @8, called particles, by X. If y isa

configuration, then
x=x(X) (2.1.1)

is the position in <& occupied by X in @8".
Definition: A motion of the body @8 is a one parameter family of configurations.

The parameter is the time t and a motion is written
x=x(X,t) (2.1.2)

for all (X, t) in @8 x (—o0,0). Since a configuration is a diffeomorphism, for each t the motion
has a smooth inverse such that
X=x"(x1) (2.1.3)

for all (x,t) in 1(03‘)><(—oo,oo). The point x is the place occupied by the particle X at the time t.

Physical observations can never be made on a body except in some region of physical space & . In
many cases it is convenient to reflect this fact by use of a fixed configuration, called a reference
configuration. We shall denote this fixed configuration by k. The configuration k may be, but
need not be, a configuration actually occupied by the body in the course of its motion. The position
of X in x will be denoted by X. Thus,

48
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X =k(X) (2.1.4)
Figure 2.1.1 shows the geometric arrangement reflected in equations (2.1.2) and (2.1.4).
The function yx,_ defined by
x:Z(K’l(X),t) (2.1.5a)

= 7. (X.1) (2.1.5)

for all (X,t) in x(@8") x (—oo,oo) is called the deformation function relative to the reference

configuration k. As the above notation suggests and the definition (2.1.5) shows, the deformation
function depends upon the choice of the reference configuration.

X
Figure 2.1.1

The coordinates of the point X, denoted by ( X,, X,, X;), are called the material coordinates

of the particle at X, while the coordinates of the point x, denoted by (x,,x,,X,) are called the

spatial coordinates of the particle at x. As a matter of convention, the subscripts on the material
coordinates will always be in Latin majuscules and those on the spatial coordinates will be Latin
minuscules. Therefore, in components, (2.1.2) and (2.1.5b) can be written

X =7 (X,t) (2.1.6)

and
X =7, (X3, X, X5, )= 7, (X)) (2.1.7)
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where
X =(x- 0)-i, (2.1.8)

and
X, =(X-0)-, (2.1.9)

In the following sections it will be assumed, without comment, that the diffeomorphisms y
and v, have sufficient smoothness in order to allow for the existence of any derivatives that

appear.
2.2.  Velocity, Acceleration and Deformation Gradients

Given a motion y, there are several kinematic quantities which can be calculated. In this
section several of these quantities are defined.

Definition: The velocity of the particle X, written x is defined by

= (X 2.2.1)
ot
It follows from (2.1.5) and (2.2.1) that
X=M (2.2.2)
ot

Of course, the velocity computed by (2.2.2) does not depend upon the special configuration x.

Definition: The acceleration of the particle X, writtenx, is defined by

2
X:%'[Xt) (2.2.3)
Also, it is true that
%y (Xt
x:% (2.2.4)

Definition: The displacement of X relative to the configuration « is defined by

w=y, (X1)-X (2.2.5)
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Any time dependent scalar, vector, or tensor field Wcan be regarded as a function of (X t),
(X, t) or (x, t) whenever the motion x= (X ,t)=g, (X,t) isgiven. If we regard ¥ to be a

function of (X, t), we are using material variables. If we regard ¥ to be function of (x, t), we are
using spatial variables. For the sake of notational simplicity, it is convenient to use the same
symbol for the three possible functions whose value is . For example, the following equations
should not be confusing:

Y= (X t) (2.2.62)

Y=¥(Xt) (2.2.6h)
and

Y=w(xt) (2.2.6¢)

It should be remembered also that the function ¥ in (2.2.6b) will depend upon the configuration .
Definition: The material derivative of \P, written ¥ is defined by

T:a\y(x,t):a\y(x,t)

" o (2.2.7)
It follows from (2.2.5) and the above definitions that
W=% (2.2.8)
and
W=x (2.2.9)

The material derivative can be expressed in terms of lP(x,t). By the chain rule, it follows
that
oY (x,t)

¥ = p +(grad ¥ (x,t))x (2.2.10)

In components, (2.2.10) is

s 0¥y, (th)+a‘}’hjz~~1p (x1)
iy = p ox,

X, (2.2.11)

As an example of (2.2.10), consider the velocity, x. Then, the acceleration can be written
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8X(x,t)

X=

+(grad x(x,t))x (2.2.12)
or
L 0% (xt) e (x,1)

X
! ot OX,

X, (2.2.13)

In (2.2.10) and (2.2.12) the gradient with respect to spatial coordinates (x,, X,, X ) has been

denoted by "grad”. The gradient with respect to material coordinates will be denoted by "GRAD".
The divergence with respect to spatial coordinates will be denoted by "div", and the divergence
with respect to material coordinates will be denoted by "Div".

Definition: The deformation gradient at (X, t) is a linear transformation in & (9;9")
defined by

F=GRADY, (X,t) (2.2.14)
In those cases where no confusion can arise, F(X t) will be written F(t) or, simply, F.

Since the functions y and « are diffeomorphisms, the composition of ¥ and k™, which is
X., isadiffeomophism. The differentiability of y_ has been used in the definition (2.2.14).

The fact that x_and x_' are one-to-one has an important and clear physical significance. It

omits the possibility of a material point at X being mapped into more than one point x, and,
conversely. It is a well known theorem of general topology that a homeomorphism maps connected
sets into connected sets. [Ref. 4]. If this theorem is applied to the function g, it follows that a point

is mapped into a point, a line into a line, a surface into a surface and a region into a region.
Exercise 2.1.1

Show that
F(X,t)grady'(x,t)=grad ' (x,t)F(X,t)=I (2.2.15)

Equation (2.2.15) shows that grad Zj(x,t) is the inverse of the linear transformation F. In the

following, this linear transformation will be denoted by F~. It follows from (2.2.15) and (A.5.22)
that
detF=0 (2.2.16)

forall (X, t) in y(28")x(—o0, ).
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The component representation of the deformation gradient F follows from (A.8.14), (2.1.5b)
and (2.2.14). The result shall be written

F= oX;

i ®i, (2.2.17)

J

In addition, if the component version of X=y.*(x,t) is written

X, :Z;Jl (Xl’ X2 Xs't) (2.2.18)
we can write
F'= X, i, ®i (2.2.19)
OX.

Definition: The displacement gradient at (X, t) is a linear transformation in & (9;9")
defined by

H(X,t) =GRADw(Xt) (2.2.20)
It easily follows from (2.2.5) and (2.2.14) that
H=F-1I (2.2.21)
Definition: The velocity gradient at (x, t) is a linear transformation in & (9 ;9 ") defined by
L(x,t)=gradx(x,t) (2.2.22)
Often, we shall write L or L(t) for L(x,t).

The component representation for L. can be shown to be

L=—1i ®i, (2.2.23)

k

Given (2.2.14) and (2.2.22), we shall prove that
F=LF (2.2.24)

The argument necessary to establish (2.2.24) is as follows:



54 Chapter 2

: : oz, (Xt
F=GRAD 7, (X1) :GRAD%
=grad xGRAD g, (X,t)
=LF
Exercise 2.1.2
Show that
trL=divx (2.2.25)
and
F'=—FL (2.2.26)
Equation (2.2.24) implies that
(detF) =(detF)trL (2.2.27)
Equation (2.2.27) follows by the following argument.
By the definition (A.5.19), we can write
(detF)u-(vxw):Fu-(vaFw) (2.2.28)

where u, v and w are arbitrary vectors in @ . If (2.2.28) is differentiated, the result is

(detF) u-(wa)zFu-(vaFw)+Fu-(vaFw)—i-Fu-(vaFw)
=LFu-(FvxFw)+Fu-(LFvxFw)+Fu-(FvxLFw)
=(trL)Fu-(FvxFw)

where (A.5.36) and (2.2.24) have been used. Because u, v and w are arbitrary the result (2.2.27)
is obtained.

Exercise 2.1.3

Use (2.2.27) and show that

O(detF)

—(detF)F™ 2.2.29
OF (detF) ( )

It is also true that
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Div((detF)F™ )=0

and
div((detF'l)FT)=0

(2.2.30)

(2.2.31)

The proof of these results is rather complicated and will be summarized in the following exercises.

Exercise 2.1.4
Show that (2.2.30) is equivalent to the component formula

2 {(detF)éXJ }:0
X a

X;

Exercise 2.1.5

Use equation (A.5.27) and show that

0X OX;
oy (detF)—2=¢ i 9%

ox, M 0X, 0X,

Exercise 2.1.6

Multiply equation (2.2.33) by &, and show that

OX.
(detF) 0Xy; 1 X; OX,
OX

E E.W —
2 RTIOX ) aX

q

Exercise 2.1.7

(2.2.32)

(2.2.33)

(2.2.34)

Use (2.2.34) and prove the validity of (2.2.30).The proof of (2.2.31) follows an identical argument

with x and X interchanged.
Exercise 2.2.8

Use (2.2.31) and show that
div((det F")Fu) = (det F ) Divu

for an arbitrary vector field u.

(2.2.35)



56 Chapter 2

2.3. Transformation of Linear, Surface and Volume Elements

It follows from (2.2.14) that
dx=FdX (2.3.1)

The vector dX at X represents an infinitesimal segment of material in the reference configuration,
and the vector dx at x represents an infinitesimal segment of material in the deformed
configuration. Equation (2.3.1) represents the transformation law for linear elements of material

under the deformation x=y, (Xt).

If dV is a material element of volume at X and dv denotes its image under the mapping
x=7, (X,t) then we wish to show that

dv=|det F|dV (23.2)
By definition, the volume elements dV and dv are given by

dV =[dX, -(dX, x dX, )| (2.3.3)
and
dv=|dx, -(dx, x dx, | (2.3.4)

where dx, =FdX, dx, =FdX, and dx,=F dX,. Therefore, by (A.5.19),

dv=|FdX, -(FdX,xFdX, )|
=|(det F)dX, -(dX, x dX, )| =|det F|dV

Equation (2.3.2) shows us again the physical importance of (2.2.16). By (2.3.2), we see that
(2.2.16) is in reality a statement about the permanence of the material.

Next, we wish to obtain a formula that relates a material element of area at X to its image at
x. It will not be possible to discuss here, in a careful fashion, the idea of an oriented surface

element. However, we can obtain the desired result by the following argument. If dS denotes a
material element of area at X, we require that

dv =dX,-dS (2.3.5)
If we compare (2.3.3) and (2.3.5), it is seen that dS must be given by

dS=+ dX, x dX, (2.3.6)
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where the plus or minus sign is used, depending upon the orientation of the vectors dX, and dX,
relative to dX;. A formula similar to (2.3.5) can be written to define ds, the image of dS, at x. Itis

dv=dx, -ds (2.3.7)
where dx, = FdX, . Therefore, by (2.3.2),
dx, -ds=|det F|dX, -dS (2.3.8)
or
(FdX,)-ds= dX, -(F"ds)=|det F|dX, -dS (2.3.9)
Therefore, equation (2.3.9) can be written,
dX, -(F'ds—|det F|dS)=0 (2.3.10)

If we now regard dX, as arbitrary, equation (2.3.10) yields the transformation law for material
surface elements,

ds=|det F|F™ dS (2.3.11)

The next formulas we shall discus