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ABSTRACT 
 

Simulation of Naturally Fractured Reservoirs Using Empirical Transfer Functions. 

(December 2003) 

Prasanna K. Tellapaneni, B. Tech., Indian School of Mines 

Chair of Advisory Committee: Dr. David. S. Schechter 
 
 
 

This research utilizes the imbibition experiments and X-ray tomography results for 

modeling fluid flow in naturally fractured reservoirs. Conventional dual porosity 

simulation requires large number of runs to quantify transfer function parameters for 

history matching purposes. In this study empirical transfer functions (ETF) are derived 

from imbibition experiments and this allows reduction in the uncertainness in modeling 

of transfer of fluids from the matrix to the fracture.   

The application of the ETF approach is applied in two phases. In the first phase, 

imbibition experiments are numerically solved using the diffusivity equation with 

different boundary conditions. Usually only the oil recovery in imbibition experiments is 

matched. But with the advent of X-ray CT, the spatial variation of the saturation can also 

be computed. The matching of this variation can lead to accurate reservoir 

characterization. In the second phase, the imbibition derived empirical transfer functions 

are used in developing a dual porosity reservoir simulator. The results from this study are 

compared with published results. The study reveals the impact of uncertainty in the 

transfer function parameters on the flow performance and reduces the computations to 

obtain transfer function required for dual porosity simulation. 
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1  

CHAPTER I 

INTRODUCTION 

1.1 Naturally Fractured Reservoirs (NFRs) 

  Fractures are defined as �a macroscopic planar discontinuity in rock which is 

interpreted to be due to deformation or diagenesis1�. These fractures may be due to 

compactive or dilatent processes and may have a positive or negative impact on fluid 

flow.  Naturally fractured reservoir can be defined as any reservoir in which naturally 

occurring fractures have, or are predicted to have, a significant effect of flow rates, 

anisotropy, recovery or storage. The porous system of any reservoir can usually be 

divided into two parts: 

 

• Primary Porosity: - This porosity is usually inter-granular and is controlled by 

lithification and deposition.  

• Secondary Porosity: - Post lithification processes cause this porosity. 

 

The post-lithification processes that cause secondary porosity are general in the form 

of solution, recrystallization, dolomotization, fractures or jointing. Naturally fractured 

reservoirs form a challenge to the reservoir-modeling world due to its complexities. 

Substantial research has been accomplished in the area of geo-mechanics, geology and 

reservoir engineering of fractured reservoirs.2, 3, 4, 5, 6 Recently7 new areas of research are 

being explored, including the origin and development of fracture systems, fracture 

detection methods, efficient numerical modeling of fluid flow and methodologies to test 

these models.  

1.2 Dual Porosity Method of Modeling Fluid Flow in NFRs 

In a NFR, the primary porosity contributes significantly to fluid storage but negligibly 

to fluid flow whereas the secondary porosity has a significant impact on fluid flow and no  

 
T
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or very less role in fluid storage. Hence dual porosity formulation was developed. This 

formulation consists of a dichotomy of the internal pores as follows: 

 

• Primary Porosity (Matrix): - Matrix is the portion of the porous system that is the 

inter-granular and controlled by deposition methods. This media contributes 

significantly to fluid storage but because of low permeability, its contribution to 

fluid flow is low.  

• Secondary Porosity (Fracture): - Fractures are the portion of the porous system 

that is caused by fractures, solution or other post-depositional phenomenon. These 

are highly permeable and hence contribute significantly to the fluid flow but as 

they are not very porous, their contribution to fluid storage is negligible. 

 

Most of the petroleum reservoirs show dichotomy of porous space but with varying 

degree of matrix and fracture presence. A low fractured reservoir is one in which the 

fracture media is not significant. But most NFRs are highly fractured and consist of a 

significant amount of secondary porosity. Hence this dichotomy for NFRs is justified. 

Dual porosity formulation superimposes the secondary or fracture media on the primary 

or matrix media and this superimposition is idealized as primary porosity coupled with 

the secondary porosity as shown in Fig 1.1. The following are the main assumptions 

made in dual porosity formulation:  

 

• The matrix blocks are isotropic and homogeneous. 

• The secondary porosity can be idealized as orthogonal, uniform and continuous 

sets of fractures that are parallel to the principle axes of permeability. 

• Flow occurs only through the secondary porosity although flow through the 

primary porosity to the secondary porosity is possible. 
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  (a) Actual Reservoir       (b) Ideal Reservoir. 

Fig. 1.1-  Idealization of dual porosity reservoir21. 

 

Most of the research in terms of naturally fractured reservoirs has been done to model 

accurately the inter-porosity flow between the matrix and the fracture continua. NFRs are 

characterized by very high initial production and after a very brief period of time they 

reach a plateau in the production. This plateau is controlled by the inter-porosity flow 

between the matrix and the fracture. Hence efficient modeling of this phenomenon is 

necessary for efficient reservoir modeling. Also in the modeling of secondary and tertiary 

production schemes, the inter-porosity flow plays an important role. But the inter-

porosity flow is highly complex to model and therefore there are large number of 

phenomenons proposed by various workers to idealize this flow. Some of the main 

phenomenons: 

 

• Gravity and Capillary effects8, 9 

• Reinflitration10, 11 

• Capillary Continuity12, 13 

• Counter-Current and Co-Current Imbibition14, 15 

 

Some field and laboratory observations have been studied through numerical 

simulation, which typically assumes that there are two continua, matrix and fractures, 

within each simulation grid-block. Flow equations are written for each system with a 
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matrix/fracture transfer function to relate the loss or gain of matrix fluids to or from the 

fracture (inter-porosity flow). This fluid transfer rate is commonly calculated as a 

function of the pressure difference between the matrix and fracture systems, matrix flow 

capacity and matrix geometry considered through a constant shape factor. However, in 

spite of the great level of current model sophistication, the highly anisotropy and 

heterogeneous nature of a fractured formation makes fractured reservoir modeling a 

challenging task, frequently with uncertain results in forecasting. 

This study uses the counter-current imbibition phenomenon to model inter-porosity 

flow. This model allows integration of the laboratory imbibition experiments and dual 

porosity simulation to simulate fluid flow. This approach is shown to be an improved 

way to model naturally fractured formations because it translates laboratory experiments 

into inter-porosity flow. The definition of naturally fractured reservoirs can be extended, 

without loss of generality, to any reservoir in which secondary porosity is significant16,17. 

In this report the study has been divided into chapters. In chapter II, a detailed 

literature review of the present models to simulate fluid flow in NFRs is presented. 

Chapter III consists of derivation of the lab experiment modeling and integration of these 

experiments with dual porosity formulations. Relevant equations are used to describe 

both the numerical modeling of the imbibition experiments and also the proposed dual 

porosity formulation. In chapter IV, imbibition experiments are modeled and the 

extension to dual porosity formulations is tested using a commercially available 

simulator. Chapter V details the conclusions derived from this study. 
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2  

CHAPTER II 
 

LITERATURE REVIEW 
 

      With increasing number of deep-water exploration, more number of fractured, 

vuggular and heterogeneous reservoirs are being explored and developed. This has 

increased the attention of the petroleum industry towards unconventional and fractured 

reservoir modeling. With the advent of faster computers with large amount of memory 

space, the industry is now able to model complex reservoirs faster and with much 

accuracy. In this section, commonly used approaches for naturally fractured reservoir 

modeling and inter-porosity flow estimation are reviewed and analyzed. 

2.1 Fluid Flow Modeling in NFRs 

Modeling of fluid flow in naturally fractured reservoirs can be broadly classified into 

the following models7: 
 

1. Discrete Fracture Network Models. 

2. Equivalent Continuum Models. 

3. Hybrid Models. 

 

Discrete networks consist of modeling of a population of fractures. Equivalent 

continuum methods, model reservoirs by assigning equivalent rock and fluid parameters 

to large rock masses. Hybrid models are a combination of both discrete fracture networks 

and equivalent continuum methods. The selection of any particular model depends, not 

only on the reservoir and the type of fluid flow behavior to be numerically simulated, but 

also on the amount of computer memory and speed available for the project. Due to the 

ease of computation, the equivalent continuum modeling approach is the most favored to 

model fluid flow in NFRs. But whenever models are to be solved very accurately with 

very reliable data, the other two models may be applied. It has been shown that the 

equivalent continuum methods are sufficient to model reservoir rocks that have 

undergone multiple and extensive deformations (high fracture density) and/or any 

formations where matrix permeabilities are large enough that fluid flow is not influenced 
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by any individual fracture or series of fractures that form a conducting channel18. Because 

of the relevance to this study, the most important equivalent continuum models � single-

porosity and dual-porosity models � are briefly reviewed. 

2.1.1 Single Porosity Modeling 

Single porosity modeling is the most common method of modeling non-fractured 

reservoirs. This model does not differentiate between the matrix and fracture continua 

and equivalent rock and fluid properties are assigned to both the continuum. Since this 

methodology doesn�t differentiate between the continua, this is the most accurate 

modeling method. But its accuracy is dependent on the number of grid-blocks used 

therefore can lead to large computational times.  

Agarwal et al.19 have used the single continuum method to model a carbonate 

reservoir with large number of fractures in the North Sea. To circumvent the problem of 

computation, Agrawal used psuedo-relative permeability functions. To generate these 

curves, dual porosity simulation was done on a stack of matrix blocks and matched with 

fine grid simulation. This method receives special consideration because of the ease of 

computation and accuracy generated by this methodology. This methodology, however, 

cannot be used for reservoir management as new sets of dynamic pseudo-functions had to 

be calculated for every change in operating conditions. 

2.1.2 Dual Porosity Modeling 

Dual porosity simulation is the most commonly used method for fluid flow modeling 

in reservoirs with significant secondary porosity. In general, to model fluid flow in NFRs, 

it is necessary to spatially define the secondary porosity. Since secondary porosity is 

inherently complex and cannot be easily quantified, an idealization is made. This 

idealization was initially proposed by Barenblatt et al.20 for single-phase fluid flow and 

consisted of dividing the porous media in two superimposed continua, a continuous 

continuum of fractures (secondary porosity) and a discontinuous matrix (primary 

porosity) continuum. The fracture system is further assumed to be the primary flow paths 

but have negligible storage capacity. Also the matrix is assumed to be the storage 

medium of the system with negligible flow capacity. Warren and Root21 who presented 

an analytical solution for the single-phase radial flow in a reservoir with significant 
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secondary introduced this idealization to the petroleum engineering. The idealization 

made the following assumptions: 

 

• The primary porosity is isotropic and is contained in a symmetric array of 

identical parallelepipeds. 

• All the secondary porosity is contained in a set of orthogonal fractures, which are 

oriented in a direction parallel to the axis of permeability. 

• Flow can occurs in the secondary porosity and from the primary porosity to the 

secondary porosity but not in the primary porosity.  

 

The idealization can be visualized as in Fig. 1.1. Both the primary and fracture media 

are consistent in neither orientation nor continuity in Fig. 1.1 (a), which is the actual 

reservoir. This actual reservoir is idealized as shown in Fig. 11 (b). The idealized 

reservoir can be viewed as a series of primary porosity contained in the parallelepipeds, 

which are disconnected from each other, by a series of continuous secondary porosities. 

Other idealizations include parallel horizontal fracture22
 and matchstick column4 models. 

Multi-porosity models are a special case of dual porosity models, which assume that the 

fracture set interacts with two groups of matrix blocks with distinct permeabilities and 

porosities23. 

2.2 Transfer Function 

The primary and secondary porosities are coupled by a factor called the transfer 

function or the inter-porosity flow. Physically, this can be defined as the rate of fluid flow 

between the primary and the secondary porosities. Since the secondary porosity is the 

only fluid path and it lacks in fluid storage, the dual porosity simulation method can be 

imagined as a system of secondary porosity with the primary porosity as the only source 

of fluids. The transfer function can be regarded as the �heart� of dual porosity since it is 

the parameter that is changed to effect the transition from the actual reservoir as shown in 

Fig. 1.1 (a) to the ideal reservoir as shown in Fig. 1.1 (b). Transfer functions can be 

broadly classified to be of four types: 
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1. Empirical Transfer Functions. 

2. Scaling Transfer Functions. 

3. Diffusivity Transfer Functions. 

4. Transfer Functions That Use Darcy Law. 

2.2.1 Empirical Transfer Functions 

Empirical models assume the transfer or inter-porosity flow can be attributed to 

imbibition phenomenon. They assume an exponential decline function to describe the 

time rate of exchange of oil and water for a single matrix block when surrounded by 

fractures with high water saturation. Empirical transfer functions usually consist of two 

parts:  

 

1. A curve fitting expression to express recovery as a function of time. 

2. A scaling equation to express the time in terms of rock and fluid properties. 

 

The first empirical oil recovery function was given by Aronofsky24. He showed that 

the rate of transfer of fluids from the matrix can be approximated by an exponential 

decline function as shown 

)1( teRR λ−
∞ −=          (2.1) 

deSwaan25 used the above relation to derive an analytical expression for the water oil 

ratio and the cumulative oil production from a linear reservoir with water flooding. His 

theory also accounts for the fact that in a reservoir exploited by water flooding, the matrix 

blocks downstream from the waterfront are subject to varying degree of saturation of 

fractures due to the water imbibition of the matrix blocks upstream. His theory modifies 

the well-known Buckley-Leverett formulation by addition of a term for the interporosity 

flow or transfer function.  

θ
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φ τθ dSeN
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Also assuming that the fractional flow coefficient is the same as the mobile water 

saturation, he derived an analytical solution for the above equation. The analytical 

solution contains an integro-differential term as shown below. 







>−
<

=
∫ −−

LFo
yt

Lf
w ttdytyIee

tt
S

,)/2(1
,0

/ ττ       (2.3) 

Kazemi et al.26 solved the analytical expression derived by deSwaan by using explicit 

finite difference and trapezoidal rule. Reis and Cil27 proposed a new relation for oil 

recovery function  

( ) )1( 69.0 nteRR λ−
∞ −=         (2.4) 

Civan28 extended the arfonsky relation by addition of an exponential term as shown in 

equation 2.5. 

)1( 21 tt eeRR λλ −−
∞ −−=         (2.5) 

The second exponential term was justified by the fact that the collection of oil droplets in 

the fracture consist of two different irreversible processes, namely: 

 

1. Expulsion of oil droplets from the matrix into the fracture. 

2. Entraining of the oil droplets in the fracture by the fluid present in the fracture. 

 

The equation 2.5 was used in the Buckley-Leverett equation similar to deSwaan and a 

numerical solution was developed. This numerical solution used the quadrature solution. 

He showed that the quadrature solutions are easily computed than the finite difference 

solutions for the case of end point mobilites. Civan and Gupta29 proposed an additional 

term to the equation 2.5 as shown below 

)1( 321 ttt eeeRR λλλ −−−
∞ −−−=        (2.6) 

The third term was added to include the �dead-end� pores of the matrix but the results 

obtained did not justify the need for the inclusion of this third term30. The above said 

empirical methods suffer from the following limitations: 
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1. This method is limited to water flooded reservoirs. 

2. The capillary pressure role in oil recovery is neglected. 

3. Gravity is neglected. 

4. This method is limited to two phases only. 

2.2.2 Scaling Transfer Functions 

Scaling transfer functions are used to predict recovery in field size cases with the results 

from lab experiments. Rapoport31 proposed the �scaling laws� applicable in case of 

water-oil flow. Using these laws Mattax and Kyte32 presented the dimensionless time to 

scale up laboratory data to field size cases. The dimensionless time is given as 









=

cw
D L

ktt 2/
µ

σφ         (2.7) 

Du Prey33 performed imbibition experiments on cores within centrifuges to account for 

gravity effect on imbibition. He showed that the dimensionless time defined by the 

previous equation couldn�t be used to model the experiments. He also showed that the 

dimensionless equation 2.7 couldn�t be used for matrix blocks of different sizes. He 

defined three more dimensionless parameters:  

 

• Dimensionless Shape factor 

• Dimensionless mobility 

• Capillary to gravity ratio 

 

The dimensionless time was defined for two cases: namely, low capillary to gravity ratio 

and for high capillary to gravity ratio. His definitions are as follows 

max

max

2

o

o
g

oct

o
c

gk
SHt
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SHt
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µφ

µφ

∆
∆=

∆=
         (2.8) 

Where 

 tc   Dimensionless time factor for high capillary gravity ratio 
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 tg   Dimensionless time factor for low capillary gravity ratio 

 

Ma et al.34 studied the relationship between water wetness and the oil recovery from 

imbibition. The characteristic length to scale up time was also defined for various cases. 

The authors also defined �effective viscosity� to remove the condition of comparable 

viscosities between the lab and field cases. 

2

1

cg
D L

ktt
µ
σ

φ
=          (2.9) 

Where 

nwwg µµµ =          (2.10) 

Although the scaling transfer functions are the best transfer function representations, the 

following are the requirements for the correct formulation of scaling transfer functions: 

 

1. The shapes of the matrix blocks of the field and lab cases must be of the same 

shape. 

2. The fluid mobilites must be comparable. 

3. The initial and boundary conditions for both the lab and matrix cases must be the 

same. 

4. The capillary pressures must be directly proportional 

 

Because of these inherent assumptions the scaling transfer functions are not widely used. 

2.2.3 Transfer Function Using Darcy�s Law 

Transfer functions that use �Darcy�s Law�, assume that the transfer of fluids from the 

matrix to the fracture can be adequately be described by Darcy�s law with an appropriate 

geometric factor that accounts for the characteristic length and the flow area between the 

matrix and the fracture.  

The first model was proposed by Barenblatt et al. which is analgous to a model used 

for heat transfer in a heterogeneous medium. They assumed that the outflow of fluids 

from matrix blocks into the fractures is steady-state and that the fluid transfer rate is a 
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function of the viscosity of the fluid, the pressure drop between the matrix and fracture 

systems, and matrix-rock properties related to geometry and porous interconnectivity in 

the matrix block. According to Barenblatt et al., the fluid transfer rate per unit volume of 

rock is calculated from the following expression: 

)( fm
m ppKq −=

µ
σ         (2.11) 

Where σ  is a shape factor related to the specific surface of the fractures, pm and pf are 

the average pressures in the matrix and fracture domains, respectively, and q is the fluid 

transfer rate between the matrix and fracture. Although this transfer function is the most 

popular, there is hardly any agreement between various researchers regarding the shape 

factor. Bourbiaux et al.35
 presented a comparison of shape factors found in the literature. 

Table 2.1 is a modified version of the Bourbiaux table as reported by Penula-Pineda36. 

Although the transfer functions of this family are the most popular they suffer from the 

following limitations: 

 

1. These assume a linear gradient of pressures between the matrix and the fractures 

centers. 

2. They also assume that the whole storage is present in the matrix blocks only. 

3. These transfer functions lack a lab background that the other methods enjoy. 

4. They also assume that all the matrix blocks exist at the same saturation. 

5. Recovery from �n� number of matrix blocks is equal to �n� times the recovery 

from a single matrix blocks. 

6. Linear relative permeability is assumed in the fracture media. 
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Table 2.1- Shape Factors as Reported by Penula-Pineda. 

 

Mathematical 

Approximations 
Slab Geometry Square Geometry Cube Geometry 

Warren And Root 12 32 60 

Kazemi et al. 4 8 12 

Thomas et al.37 - - 25 

Coats38 8 16 24 

Kazemi and 

Gilman39 - - 29.6 

Limm and Aziz40 9.9 19.7 29.6 

Quintard and 

Whitaker41 12 28.4 49.6 

Noetinger et al.42 11.5 27.1 - 

Bourbiaux et al. - 20 - 

 

 

2.2.4 Diffusivity Transfer Functions 

These transfer functions assume that the inter-porosity flow can be approximated by 

�diffusion� phenomenon. These functions are based on incompressible flow and assume 

that diffusivity equation43 is sufficient to model the inter-porosity flow between the 

matrix and the fracture media. Hernandez and Rosales44 proposed the first diffusivity 

transfer function. They developed an analytical equation for the oil production from 

water flooded reservoirs and verified the same from imbibition experiments on Berea 

cores.   

])12(exp[
)12(

181 2

0
22 D

n
pn tn

n
N +−

+
−= ∑

=

α

π
     (2.12) 

Hayashi and Rosales45 developed a technique for making visual observations of water 

imbibition processes in porous media saturated with oil. They found that the spontaneous 

penetration of the water by imbibition was similar to diffusion phenomenon. Also based 
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on experimental results, a theoretical model is proposed for explaining imbibition 

processes. 

2
2

22

0
22 ])12(exp[

)12(
18[1

L
tnD

n
N

n
pn

π
π

α +−
+

−= ∑
=

     (2.13) 

D is a coefficient to be estimated by trial and error.  
 

The transfer functions of this family suffer from the following limitations: 

 

1. They assume diffusion phenomenon is sufficient for inter-porosity flow.  

2. This method can be used only for two-phase (water-oil) cases. 

3. Compressibility of fluids is ignored. 

2.2 Comparison of Transfer Functions 

Reis and Cil27 have made comparisons between the various transfer functions on 

several imbibition experiments with different boundary conditions and found the 

following: 

 

1. The match between the diffusivity models and the experimental data were found 

to be good except at early times. 

2. The scaling function was found to match the experiments within experimental 

errors. 

3. The empirical function was found to have a good agreement with the 

experimental values. 

 

For single-phase inter-porosity flow, Najurieta46
 showed that deSwaan�s analytical model 

results were equivalent to numerical solutions provided by Kazemi, which accounted for 

pressure transient effects by assuming non-steady state flow at the matrix/fracture 

interface.  

The procedure developed in this study is intended for implementation in existing 

simulators without significantly increasing computational work while representing 

pressure transient and saturation gradient effects on the inter-porosity flow as accurately 
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as possible. In the following chapter, the conceptual model that is the basis for this 

procedure is presented. 

2.3   Flow Visualization Using X-ray Tomography 

Computerized tomography is a non-destructive technique that utilizes X-rays and 

mathematical reconstruction algorithms to generate a cross-sectional slice of an object47. 

Hounsfield48 patented the first X-ray CT technique and was initially used for medical 

purposes. The applications of X-ray CT in the petroleum industry have ranged from 

detection of rock heterogenties49, 50,51 to determination of bulk densities52. But the main 

use of CT has been found in flow visualization.  

A detailed explanation of the principles and application of X-ray CT can be found 

in the literature49. 
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3  
                                    CHAPTER III 

FORMULATION OF MODELS 

 

The objective of this chapter is to derive the formulations for:  

 

1. Diffusivity Equations that are used to model imbibition experiments. 

2. Derivation of empirical transfer function from imbibition experiments. 

 

3.1 Derivation of the Diffusivity Equation 

3.1.1 Conservation of Mass 

From Darcy�s Law for multiphase flow in a porous media, we have that 

)( ghpkkkku ww
w

rw
w

w

rw
w ρ+∇

µ
−=Φ∇

µ
−=r

      (3.1) 

)( ghpkkkku oo
o

ro
o

o

ro
o ρ+∇

µ
−=Φ∇

µ
−=r

      (3.2) 

From the definition of capillary pressure, the water phase pressure can be expressed in 

terms of oil phase pressure as 

)( wcwoc SPppP =−= ; cow Ppp −=       (3.3) 

Thus 3.1 can be re-written as  

)( ghPpkku wco
w

rw
w ρ

µ
+−∇−=r            (3.4) 

Consider a control volume of dimensions ∆x, ∆y as shown in Fig. 3.1. 

From conservation of mass principle, we have that 

[Rate of change of mass in Control Volume = Rate of Net Influx] 
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Fig. 3.1- Conservation of mass in a control volume. 

 

Consider the control volume in Fig 3.1, for the phase water we have 

Rate of change of mass of water in X direction  

   yxu
x

uyu wxwwxwwxw ∆∆
∂
∂+−∆ ))(( rrr ρρρ  

Similarly for the Y direction 

   xyu
x

uxu wywwywwyw ∆∆
∂
∂+−∆ ))(( rrr ρρρ      

Rate of accumulation of water  

   )( yxS
t ww ∆∆

∂
∂ ρφ        

Thus the conservation of mass can be written in the following form 

)))(((

)))((()(

yxu
x

uyu

xyu
x

uxuyxS
t

wxwwxwwxw

wywwywwywww

∆∆
∂
∂+−∆

+∆∆
∂
∂+−∆=∆∆

∂
∂

rrr

rrr

ρρρ

ρρρρφ
   (3.5) 

yxu
x

xyu
x

yxS
t wxwwywww ∆∆

∂
∂+∆∆

∂
∂=∆∆

∂
∂ )()()( rr ρρρφ     (3.6) 

Mass In  

Y-Dir 

Mass In  

X-Dir 

Mass Out  

Y-Dir Mass Out 

X-Dir 

Accumulation 
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yxu
x

xyu
x

yxS
t wxwwywww ∆∆

∂
∂+∆∆

∂
∂=∆∆

∂
∂ )()()( rr ρρρφ     (3.7) 

)()()( wxwwywww u
x

u
x

S
t

rr ρρρφ
∂
∂+

∂
∂=

∂
∂       (3.8) 

).()( ww uS
t

r∇=
∂
∂φ          (3.9) 

Similarly for oil phase we have 

).()( oo uS
t

r∇=
∂
∂φ          (3.10) 

Adding 1.9 and 1.10 we have 

).()( wowo uuSS
t

rr +∇=+
∂
∂φ        (3.11) 

But by definition we have that the sum of saturations is one. Therefore 3.11 can be 

written as 

0).( =+∇ wo uu rr          (3.12) 

3.1.2 Diffusivity Equation 

Substituting equation 3.1 and 3.2 in 3.12 we have 

0))()(.( =+∇−+−∇−∇ ghpkkghPpkk
oo

o

ro
wco

w

rw ρ
µ

ρ
µ

    (3.13) 

Defining mobilites as  

owT
w

rw
w

o

ro
o

kkkk λλλ
µ

λ
µ

λ +=== ;;        (3.14) 

Substituting in 3.13 and rearranging terms we have 

0))(.( =∇++∇−∇∇ hgPp wwoocwoT ρλρλλλ      (3.15) 

Now neglecting gravity terms we have 

0).( =∇−∇∇ cwoT Pp λλ         (3.16) 
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0).( =∇−∇∇ c
T

w
o Pp

λ
λ         (3.17) 

).().( c
T

w
o Pp ∇∇=∇∇

λ
λ         (3.18) 

From equation 3.10 we have that 

).()( oo uS
t

r∇=
∂
∂φ          (3.19) 

).()( ooo pS
t

∇∇=
∂
∂ λφ          (3.20) 

).()( oow pS
t

∇∇=
∂
∂− λφ          (3.21) 

)(.()( C
T

w
ow PS

t λ
λλφ ∇∇=

∂
∂− )       (3.22) 

0)().( =
∂
∂+∇∇ wC

T

wo S
t

P φ
λ
λλ        (3.23) 

0)().( =
∂
∂+∇∇ ww

w

C

T

wo S
t

S
dS
dP φ

λ
λλ        (3.24) 

0)().( =
∂
∂+∇∇ ww S
t

SD         (3.25) 

Where 

D  = 
w

c

T

wo

dS
dP)(

φλ
λλ +  

3.1.3 Discretization of the Diffusivity Equation 

3.1.3.1 Initial and Boundary Conditions 

Equation 3.25 is the final form of the diffusivity equation. In order to simulate the 

core imbibition experiments, boundary and initial conditions are required. The following 

are the initial and boundary conditions used. 
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Initial Condition 

0,1),,( =−= tStyxS oiw         (3.26) 

Boundary Condition 

Depending on the boundaries modeled the boundary condition as shown below 

can be utilized. For example if the core is completely surrounded by the wetting phase 

then the boundary condition would be 

xw

yw

w

w

LxtyxS

LytyxS
ytyxS
xtyxS

==

==
==
==

,1),,(

,1),,(
0,1),,(
0,1),,(

             (3.27) 

And if the core is surrounded by the wetting phase only at the bottom as in Garg et al. 

case then the boundary conditions are as follows 

0,1),,( == ytyxSw         (3.28) 

3.1.3.2 Finite Difference Form of Diffusivity Equation 

Consider a spatial control volume that has been divided into a mesh of grid blocks 

of equal dimensions ∆ x. and ∆ y (two dimensions) as shown in Fig. 3.2. So the objective 

of this exercise is to discretize equation 1.25 on this control volume.  
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Fig. 3.2- Example gridded control volume. 

 

 

By definition Taylor�s Series can be written as  

)()()( 2xO
x
fxxfxxf ∆+

∂
∂∆+=∆+        

)()()( 3
13

2
2 xO

x
fx

x
fxxfxxf ∆+

∂
∂∆+

∂
∂∆+=∆+      (3.30) 

Where 

O(x) is the truncation error of order 2. 

O1(x) is the truncation error of order 3. 

Thus rewriting 3.29 to obtain the partial derivative we have that 

x
xfxxf

x
f

∆
−∆+=

∂
∂ )()(         (3.31) 

 

Also using Taylor�s Series, we can also write  

)(
!2

)()( 3
13

22

xO
x
fx

x
fxxfxxf ∆+

∂
∂∆+

∂
∂∆+=∆+      (3.32) 

X Dir 

Y Dir 

x∆

y∆
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)(
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)()( 3
12

22

xO
x

fx
x
fxxfxxf ∆+

∂
∂∆+

∂
∂∆−=∆−      (3.33) 

adding 3.33 and 3.34 we have that 

)(
!2

2)(2)()( 3
12

22

xO
x
fxxfxxfxxf ∆+

∂
∂∆+=∆++∆−     (3.34) 

22

2 )(2)()(
x

xfxxfxxf
x
f

∆
−∆−+∆−=

∂
∂       (3.35) 

Thus from equation 3.31 we have that 

t
SS

t
S n

w
n
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∆
−=

∂
∂ +1

                (3.36) 

Where 

 n  Time step 

 n + 1  Incremented time step 

Also,  

y
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       (3.37) 

Where 

 i  Grid Block Number in X Direction 

 j  Grid Block Number in Y direction 

Consider equation 3.25, writing it in finite difference form we have that 

0)()()( =
∂
∂+∇

∂
∂+∇

∂
∂
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t
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x

      (3.38) 

Using equation 1.31 we can write above as 
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Where 

i-1/2, i+1/2, j-1/2, j+1/2 are the averaged values of D as explained in the next section. 

Using equation 3.36, 3.39 can be transformed as  
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3.1.3.3 Averaging of the Diffusivity Coefficient 

Consider the definition of the diffusivity coefficient. 

D  = 
w

c

ow

ow

dS
dPk )(

λλ
λλ

φ +       (3.41) 

Hence averaging of the diffusivity coefficient includes averaging: 

 

1. Absolute permeability 

2. Relative permeability of both phases 

3. Viscosity of both phases 

4. Porosity  

5. Slope of capillary pressure curve with saturation. 

 

For example the average value Di+1/2 can be written as 

Di+1/2  = 
2/12/12/1

2/12/1

2/1

2/1 )(
+++

++

+

+

+
iw

c

ioiw

ioiw

i

i

dS
dPk

λλ
λλ

φ     (3.42) 

 

The definition of the average diffusivity coefficients is as presented in Table 3.1. 
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Table 3.1- Averaging of the Diffusivity Coefficient. 

 

Averaged Parameter Parameter 1 Parameter 2 

Di+1/2 Di Di+1 

Di-1/2 Di Di-1 

Dj+1/2 Dj Dj+1 

Dj-1/2 Dj Dj-1 

 

 

There is no unique way to choose the values of 2/12/1 , ++ ii kλ  etc. In general the values are 

averaged in such a way that they give the most accurate values possible for the flow rate 

and accumulation terms. In this case, from literature the properties are averaged as given 

in Table 3.2. 

 

Table 3.2- Averaging of Parameters. 

 

Averaged Parameter Method of Averaging Units 

Absolute Permeability Harmonic Averaging md 

Relative Permeability Up-stream Weighting - 

Porosity Arithmetic Averaging - 

Viscosity Arithmetic Averaging cp 

Slope of capillary pressure 

curve 
Arithmetic Averaging psi 

 

The methodology of averaging is presented in Aziz and Settari53.  
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3.1.3.3.1  Harmonic Averaging 

 

 

 

 

 

 

Fig. 3.3 - Averaging of permeability - harmonic averaging. 

Consider a simple case of two grid blocks as shown in Fig. 3.3. Let us assume that the 

permeability is piece wise constant with interface at the block boundary. Then in case of 

a single fluid flow, the flow rate from grid center i to block boundary i+1/2 can be written 

as  

i

iii
ii

ppAkq
∂

−= +
+ µ

)( 2/1
2/1,        (3.43) 

Similarly the flow rate from block boundary i+1/2 to block center i+1 can be written as 
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2/111
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ppAkq
µ

       (3.44) 

Since both the flow rates are equal, equating 3.43 and 3.44 and also defining an average 

permeability and writing the equation for flow rate from i to i+1, we have that  
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Eliminating p i+1/2 we have that  
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+
+ ∂+∂
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ii
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kk

k         (3.46) 

By definition this type of averaging is called as harmonic averaging. Hence to accurately 

model flow, permeability needs to be harmonically averaged. 

 

i i+1

i∂ +∂ i
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3.1.3.3.2 Arithmetic Averaging 

The pressure dependent properties are assumed to be arithmetic averaged since 

these properties are not variable in the present case. The pressure is constant for the 

length of the imbibition experiment.  

The capillary pressure curve slope is assumed to be arithmetic averaged54
. 

3.1.3.3.3 Upstream Weighting 

Upstream weighting of relative permeability and capillary pressure is a 

consequence of the hyperbolic nature of the problem. Raithby55 showed that the upstream 

weighting leads to an accurate solution. The upstream weighting is defined as follows. 

)( wirlrw Skk =  if flow is from i to i+1. 

and rwk = )( 1+wirw Sk if flow is from i+1 to i. 

 

3.2 Derivation of Dual Porosity Flow Equations 

3.2.1 Flow Equations 

3.2.1.1 Fracture Flow Equations 

Stating Darcy�s Law for multiphase flow in porous media, we have 

)( ghpkkkku ww
w

rw
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w

rw
w ρ+∇

µ
−=Φ∇

µ
−=r

       (3.47) 

)( ghpkkkku oo
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o

ro
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µ
−=Φ∇

µ
−=r

      (3.48) 

Since the primary flow path in dual porosity formulation is the fracture we have the 

Darcy�s Law as follows 

)( ghp
B

kk
u wwf

wfwf

rwff
wf ρ

µ
+∇−=r        (3.49) 
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From the definition of capillary pressure, the water phase pressure can be expressed in 

terms of oil phase pressure as 

)( wcwoc SPppP =−= ; cow Ppp −=       (3.51) 

Thus 3.47 can be re-written as   

)( ghPp
B

kk
u wcfof

wfwf

rwff
wf ρ

µ
+−∇−=r            (3.52) 

Consider a control volume (Secondary Porosity) of dimensions ∆x, ∆y as shown 

in Fig. 3.1. For the sake of brevity the subscript f is dropped in the derivation of the 

conservation of mass. 

 

From conservation of mass principle, we have that 

[Rate of change of mass in Control Volume = Rate of Net Influx] 

 

Consider the control volume in figure 3.1, for the phase water we have 

 

• Rate of change of mass of water in X direction  

   yxu
x

uyu wxwwxwwxw ∆∆
∂
∂+−∆ ))(( rrr ρρρ  

• Similarly for the Y direction 

   xyu
x

uxu wywwywwyw ∆∆
∂
∂+−∆ ))(( rrr ρρρ      

• Rate of accumulation of water  

   τρφ +∆∆
∂
∂ )( yxS
t ww    

Where  τ  is the rate of flow of water from the matrix to the fracture, since the primary 

porosity also contributes to the accumulation of water in the fractures. Thus the 

conservation of mass can be written in the following form 
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Simplifying equation 3.53 similar to the conservation of mass as described in the earlier 

chapter we have, 

).()( www uS
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Similarly for oil phase we have 
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Substituting equations 3.50 and 3.49 in equations 3.54 and 3.55 we have that  
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We know that the sum of the saturations is unity. Hence  

t
S
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Simplifying equation 3.60 and 3.61 and using 3.62 in 3.61 we have that 
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Multiplying both sides of the equation by the bulk volume we have 
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Where 

 a  Symmetric coefficient defined as     

 aw  b
wfwf

rwff V
B

kk
µ

 

The above equations don�t consider source and sink terms like injection wells, 

production wells etc. To include wells into equation 3.65 and 3.66 the flow rate is added 

to the RHS with the convention of positive for production and negative in case of an 

injector. Therefore equations 3.65 and 3.66 can be rewritten as 

))(.()( ghpaqVS
t

V oofooobwfp ρτ +∇∇=−−
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∂       (3.63) 

))(.()( ghPpaqVS
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∂
∂−     (3.64) 

3.2.1.2 Matrix Flow Equations 

Consider a control volume of matrix similar to fig. 3.1. The rate of inflow into the 

matrix is zero as there is no flow into the matrix while the rate of outflow from the matrix 

into the transfer function, the conservation of mass can be written as 

)(0 S
t

φτ
∂
∂=−          (3.65) 

wmaw S
t

)(φτ
∂
∂=−          (3.66) 

omao S
t

)(φτ
∂
∂=−          (3.67) 

3.2.2 Empirical Transfer Function 

The empirical equations are derived from the imbibition experiments that are 

conducted on the matrix core. To scale the time from the imbibition experiments to the 

field size Mattax and Kyte proposed the following transformation. 
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Therefore time can be converted to dimensionless time as  
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From the imbibition data, a table of the recovery versus time is already obtained. 

Converting the time from the imbibition experiments to dimensionless as given by 

equation 3.50, and also the recovery can be converted into dimensionless form using the 

following equation 

R
D V

RR =           (3.70) 

Therefore, from the numerical simulation of the imbibition experiment, a table of the 

recovery and time in dimensionless units can be obtained. Now the problem resolves in 

expressing the dimensional recovery in terms of the transfer function. 

 

3.2.2.1 Expression of Transfer Function in Terms of Imbibition Recovery  

DeSwaan proposed that the rate of imbibition into the fracture from the matrix could 

be expressed as  
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He also derived the Buckley-Leverett solution for the 1-D, 2-Phase water flooding 

displacement process. Considering the integral as shown above, the transfer function can 

be written as 
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Simplifying equation 3.76 we have 
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{ }1 Dntn eSumR ∆−−= λ
α λτ         (3.73) 

Where  
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3.2.2.2 Implementation of Transfer Function in Terms of Recovery 

Equation 3.65 and 3.66 combined with equation 3.77 can be written as 
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Therefore now the problem is reduced to a two-unknown two-equation problem. 

3.2.3 Discretization of the Equations  

Equation 3.67 and 3.68 can be discretized as shown in the previous chapter using the 

finite difference technique and the following equation can be arrived 
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Where 

a   Symmetric Coefficient 

    Φ    Potential. Defined as  

  ∆ Φ w   ∆ (p-Pc) - Hgw ∆ρ   

  ∆ Φ o   ∆ (p) - Hgo ∆ρ   

      Operator ∆   Defined as 
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Writing the equations 3.81 and 3.82 after finite difference discretization, neglecting 

gravity we have 
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The equations 3.83 and 3.84 are highly non-linear. With the advent of faster computers 

the conventional IMPES formulation of the above equation is not necessary as the 

IMPES method are known for their stability problems. Hence the fully implicit option is 

applied. To solve the equations mentioned, Newton-Raphson�s method of solution can be 

applied. 

3.2.3.1 Newton-Raphson�s Solution of Non-Linear Equations 

Consider equations 3.83 and 3.84. They can be posed in the matrix form as shown 

below 
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     b
r

   Right Hand Side Matrix 

Since both �A� and �b� matrices in 3.85 are functions of �X� matrix the system of 

equations is non-linear. Rewriting the equation  

bXAR
rrrr

−=          (3.81) 

Where R matrix is called the residual matrix. Using the Taylor�s series expansion the 

residual matrix can be written as 
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Setting Rn+1 to zero as the objective is to reduce the residual to zero, the following 

equation can be derived 
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Where  

∆ xk+1  xk+1-xk 

   k  Iteration counter 

Equation 3.88 is similar to 3.86. Therefore the equations 3.83 and 3.84 can be posed in 

the form of residuals and the partial derivative in the equation 3.88 can be computed as 

the coefficient of the change in residual with respect to a variable and the difference 

matrix is to be computed.  

In order to solve equation 3.88 at the beginning of every time step the value of the 

iteration counter is made to unity and the residuals are computed at the previous time 

step. Then the Jacobian matrix or the partial derivative is computed at the iteration level. 

The equation 3.88 is solved. With the new difference matrix, the variables is updated and 

checked for convergence. If not converged, the iteration counter is incremented and the 

process is repeated till convergence. A flow diagram is presented in Fig. 3.4. 

 

 

 

 



  34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4- Flow chart for Newton-Raphson�s method of solution. 

Initialize pressure and 

saturation from previous 

values. 

Calculate the residuals and the 

Jacobian matrix. 

Solve equation 3.38 to obtain 

change in variables. 

Update the pressures and 

saturations from the results of 

the previous step. 

Verify 

Convergence 

Yes No 



  35 

 

 

 

3.2.3.2 Posing Equations in the Residual Form 

We know that both the relative permeability and capillary pressures are a function of 

water saturation. Therefore the coefficient �a� is not a constant but is a spatial variable of 

water saturation. Also using the  
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Where 

 n   Time step counter 

 k   Iteration counter 

 `   Prime operator 

Therefore the symmetric coefficient can be written as  
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Therefore equation 3.83 can be written as (ignoring gravity) 
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Now converting the unknowns to difference terms we have 

w
n

w
k

wS S S+ * =   +  1          (3.89) 

n kp p p+ * =   +  1          (3.90) 

Rewriting equation 3.93 in terms of these unknowns we have 
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Now consider the first term on the left hand side of equation 3.93 
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The third term is a product of two differences and as the differences are small the third 

term can be neglected. Expanding each term in equation 3.96 and bringing the unknowns 

to the left hand side, the equation 3.96 can be rewritten as  
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The right hand side of equation 3.97, which doesn�t contain any unknowns can be 

construed as being the residual. So the equation 3.97 can be written as  
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The Jacobian matrix can be computed from the coefficients of individual variables in 

equation 3.97. A similar equation for the water phase is  
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3.2.3.3 Numerical Method of Estimating the Jacobian 

In order to estimate the Jacobian, an alternate method can also be used. Jacobian matrix 

can be estimated from numerical methods as opposed to analytical methods. Consider 

equations 3.97 and 3.99. The Jacobian matrix for equation 3.97 (only 3.97 is considered 

for brevity) can be written as 



































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

***
1

*
1

***
1

*
1

*
1

*
1

*
1

1
*
1

1

*
1

*
1

*
1

1
*
1

1

..

..
......
......

..

..

nw

nw

n

nw

w

nwwn

nw

n

n

n

w

nn

nw

w

n

w

w

ww

nwnw

S
R

p
R

S
R

p
R

S
R

p
R

S
R

p
R

S
R

p
R

S
R

p
R

S
R

p
R

S
R

p
R

J
r

      (3.95) 

Consider the term in row 1 and column 1 of the Jacobian matrix, by definition, the partial 

differential can be written as 
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The user can specify the value of �h� in the above equation and the limit of the ratio can 

be approximated as the ratio. Since the residual is continuous at zero. Therefore the 

partial differential can be written as 
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Writing similarly for all the elements in the Jacobian matrix.  

3.2.3.4 Method of Solution of the System of Equations 

To solve the system of equations as posed by equation 3.98 for both the water and the oil 

phases, the Gaussian elimination method is proposed. Gaussian elimination is briefly 

described in this section. 

To solve a system of equations as shown below,  
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Gaussian elimination�s objective is to rewrite the above equation in the following form 
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To obtain this transformation the following matrix rules are applied: 

 

1. Interchanging of the order of the equations. 

2. Multiplication of any equation by a non-zero number. 

3. Addition of any equation with a multiple of any other. 

 

After the system of equations is posed in the form indicated by 3.104, the value of 

xn is first calculated using the last equation of the system, then xn-1 and so on till x1 is 

calculated. To effect the above transformation the following method or algorithm is used: 
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1. Starting with the first equation, divide the equation by a11 to get one in the 

first term. 

2. Subtract a1i times the first equation from all the equations below the first 

equation to make the first term in all those equations zero. 

3. Repeat the step for the second equation and so on till the last equation consists 

of only one term. 
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4  

CHAPTER IV 

DISCUSSION AND RESULTS 

The objective of this chapter is to present results from the numerical models 

presented in the previous chapters. The results are divided into two parts: 

 

1. The results from the imbibition experiments 

2. The results from the dual porosity simulation using empirical transfer functions. 

4.1 Imbibition Experiments 

The formulations derived in Chapter III were used to numerically simulate the imbibition 

experiments of the following workers: 

• Garg et al.58 

• Muralidharan59 

4.1.1 Garg Imbibition Experiment 

4.1.1.1 Brief Description of Garg et al. Imbibition Experiment 

Garg et al. performed a one-dimensional imbibition study on a Berea sandstone 

core. The properties of the core are provided in Table 4.1. The core was heated at 7500 C 

to remove the effects of clay swelling and migration during the imbibition experiment. 

The core was epoxied on the sides so that imbibition occurs only from bottom to top. The 

fluid used was normal tap water at room temperature. The schematic of the experiment is 

presented in Fig. 4.1 The Berea core was suspended from a weight balance using a steel 

wire into an acrylic container. The container is connected to a water tank through a 

rubber tube. The weight balance is connected to a data acquisition system that reads the 

weight of the core every second.  

The water level in the container is always maintained at the bottom of the core. 

The weight data was acquired for 120 minutes. 
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4.1.1.1.1 Flow Visualization Using CT Methodology 

X-ray CT was employed to map the fluid distribution in a longitudinal section of 

the core every 40 seconds. The core was scanned at an energy level of 140 keV and a 

field size of 13 cm. Slice thickness of 3 mm and a scan angle of 3980 was used to scan the 

core. Before the commencement of the experiment the core was scanned to get the dry 

core CT number. CT scans were done every 40 seconds to obtain the CT values for a total 

of 520 seconds. After fully saturated with water, a CT scan was again performed to 

obtain the value of the CT number of the core fully saturated with water. The following 

equation was used to find the water saturation at any given time 

 

drywater

water
w CTCT

CTCT
S

−
−

= exp         (4.1) 

 

 

 

 

 

 

 

 

Fig. 4.1 - Experimental Setup of Garg et al. imbibition experiment. 
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Table 4.1- Properties of Garg�s Experimental Core. 

 

Property of the core Value Units

Diameter 5.46 cm 

Length 6.7 cm 

Porosity 0.22 - 

Permeability 300 md 

Initial Fluid Air - 

Fluid Imbibed Tap Water - 

Temperature Room Temperature - 

 

4.1.1.2 Numerical Simulation of the Imbibition Experiment 

In order to numerically simulate the experiment the following approximations/changes 

were made: 

 

1. The core was changed from a cylindrical to cuboid shape for ease of 

numerical simulation. 

2. The initial fluid in the core was assumed to be oil.  

3. Boundary conditions were changed to reflect the one-dimensional nature of 

the experiment. 

4. The reported imbibition was changed from weight gain to recovery of oil for 

matching purposes. 

4.1.1.2.1 Change in Shape 

The core was modified from cylindrical to cuboid for computational ease. As 

shown in Fig. 4.2, the following rules were found to be necessary and sufficient for this 

transformation: 

 

1. The surface area to flow remains the same. 
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2. The fluids in place remain the same. 

 

In order to keep the surface area the same, the following conversion was used. 

2
2

4
ad =π          (4.2) 

Where 

 d  Diameter of the core (cm) 

 a  Side of the equivalent square (cm) 

 

In order to keep the fluids in place the same the following transformation was employed. 

haLd 2
2

4
=π           (4.3) 

Where 

  

 L   length of the cylindrical core 

 h   height of the equivalent cuboid. 
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Fig. 4.2- Transformation of dimensions to accommodate change in shape. 

 

4.1.1.2.2 Changes in the Initial Fluid Properties 

Since the numerical models were developed for oil-water case, to transform it into an 

air-water case, the following transformations were effected: 

 

1. Relative permeability of oil is given a value of 1 for all water saturation values. 

2. Viscosity of oil is assigned a value that of air at standard conditions. 

3. Density of oil is the given a value of air at standard conditions. 

4. Absolute permeability was reduced to account for Klinkenberg�s effect. 

4.1.1.2.3 Changes in Boundary Conditions 

Since Garg et al. performed one dimensional imbibition experiment; the boundary 

conditions expressed by equation 3.27 are not valid. 

The core is in contact with water only at the bottom most face. Hence only the bottom 

most face is at constant water saturation of 1.0. All the rest of the core, prior to the 

experiment is at constant initial water saturation as expressed by the initial condition. 

Hence the boundary condition for this experiment would be  

0,1),,( == ytyxSw         (4.4) 

L 

d 

a 

h
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4.1.1.2.4 Changes in Reported Imbibition 

The imbibition of water was reported as a function of weight gain (grams) for this 

experiment. Therefore, it was necessary to transform this to saturation of wetting phase. 

In order to obtain this transformation the following equation was used. 

hda
WSS wiavgw 2

429.62+=         (4.5) 

Where 

W  Weight gain (gms) 

d  Density of water (lb/cu.ft) 

a  Side of the cuboid (cm) 

h  Height of the cuboid (cm) 

 

Also the CT scanned water saturation was reported as a function of normalized height. To 

obtain this transformation the following was used. 

h
hh actual

norm =          (4.6) 

Where 

 hnorm   Normalized height  

 hactual   Actual Height (cm) 

 h   Total Height of the cuboid (cm) 

4.1.1.3 Discretization of the Experiment 

In order to numerically simulate the experiment, after the above transformations, the core 

was dicretized into a 1x1x10 grid model. An extra grid block of very small dimensions 

was added at the bottom to account for the boundary condition. This grid block was 

assigned a water saturation value of 1.0 at all times. This represents the contact of water 

with the core. Gravity was toggled to find the effect of gravity on the numerical 

simulation. The properties of the numerical case for the modeling of this experiment are 

as shown in Table 4.2. 
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4.1.1.4 Results from the Numerical Simulation 

4.1.1.4.1 Effect of Gravity on Modeling of Imbibition Experiments 

The user was given an option to include gravity in the simulation of the numerical 

simulation. The effect of gravity is shown in Fig. 4.3. For a small height of 11 cm, the 

effect of gravity is not prominent. The effect of gravity is not so prominent on the Garg�s 

experiment case as the height of the core is not more than 48.3 cm. A comparison of the 

capillary and gravity forces is given in Fig. 4.4. It shows that initially the maximum 

capillary force is high but with time the capillary force decreases but not to an extent 

where it is negligible. On the other hand the maximum gravity force remains constant at 

3.0E-04.  

 

 

 

 

Table 4.2- Properties of the Core for Numerical Simulation. 

 

Property Value Units 

Number of grids blocks in X-Direction 1 - 

Number of grids blocks in Y-Direction 1 - 

Number of grids blocks in Z-Direction 11 - 

Grid Block Dimension X-Direction 4.83 cm 

Grid Block Dimension Y-Direction 4.83 cm 

Grid Block Dimension Z-Direction 0.67 cm 

Density of Oil 0.0006 Lb/cu.ft 

Density of Water 62.4 Lb/cu.ft 

Permeability X-Direction 300 md 

Permeability Z-Direction 300 md 

Porosity 0.22 - 

Initial Water Saturation 10*0.1, 1.0 - 

Boundary Condition Bottom Most - 
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Fig. 4.3- Effect of gravity on imbibition response (Garg�s imbibition experiment). 
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Fig. 4.4- Comparison of gravity and capillary forces. 

4.1.1.4.2 Effect of Relative Permeability 

Relative Permeability is modeled using a non-linear function. The function is as shown 

below 

w
no

rwrw Skk =          (4.7) 

The air relative permeability is assigned a value of one. Also the value of n is varied from 

2 to 16 to match the recovery and also the spatial distribution of saturation. Fig. 4.5 is a 

graph of the effect of relative permeability exponent �n� on the recovery. The initial 

portion of the experimental data, i.e from time 0 to time 100 seconds the recovery was 

influenced by the buoyancy forces. With sudden immersion of the core into water, the 

buoyancy force masked accurate values for water saturation for first 100 seconds.. From 

the figure, it is clear that a value of n = 8 gives the best recovery match. For all the 

exponents the initial portion of the recovery curve can be seen to be a straight line. 

Handy57 proposed this straight-line portion. This numerical modeling proves Handy�s 

equation. Also with increasing relative permeability exponent it can be seen that the slope 
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of the straight-line portion decreases. It can be seen that with change in relative 

permeability exponent there is no change in the final water saturation value. This final 

water saturation value is obtained from mass balance as 0.85, which is consistent with the 

reported value in the paper.  
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Fig. 4.5- Effect of relative permeability end point on the recovery. 

 

4.1.1.4.3 Effect of Capillary Pressure on Imbibition 

Capillary Pressure is also modeled using a non-linear function. The function is as 

shown below 

wcc SPP ln0=          (4.8) 

The capillary pressure is traditionally known to be a logarithmic function of water 

saturation. In this model the initial value capillary pressure or Pc
0 is varied to obtain a 

match of the recovery. With low capillary pressure the waterfront takes longer to reach 

the other end of the core. By trial and error solution the value of capillary pressure �end 
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point value� was found to be 40. Fig 4.6 shows the response of imbibition experiments 

with change in the �end point value� of the capillary pressure.  
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Fig. 4.6- Effect of capillary pressure on imbibition. 

 

4.1.1.4.4 Match of the Spatial Variation of Saturation 

Spatial variation of water saturation was obtained from the CT of the core during the 

experiment. In order to model the experiment correctly, the spatial as well as the temporal 

variation of the saturation should be modeled.  

The spatial variation of saturation showed that there exists heterogeneity in the core at 0.3 

and 0.5 times the total height. The permeability of the core was reduced to 200 md to 

model this heterogeneity. Fig. 4.7 shows the match between the saturations with time as a 

function of normalized height as discussed in equation 4.6. The initial time steps are 

neglected for the match as the initial time is influenced by buoyancy as discussed in 

previous sections. 
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Fig. 4.7- Match between simulated and exponential variation of saturation.  

 

4.1.2 Muralidharan Imbibition Experiment 

4.1.2.1 Brief Description of Muralidharan�s Experiment 

Muralidharan performed a static imbibition test on Berea sandstone core (Table 

4.3) with refined oil. His experiments dealt with overburden pressure and its effect on 

imbibition process. Since overburden pressure is not modeled in this study, the case for 

no overburden pressure is modeled using the diffusion equations generated in the 

previous chapter.  

The air-saturated core was inserted in the �Hassler-Type� core holder. An initial 

overburden pressure of 500 psi was applied in the radial direction. This was followed by 

core flooding with the brine solution at flow rates of 5, 10, 15 and 20cc/min. The pressure 

drop across the core was recorded in a transducer for permeability determination. The 
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experiments were repeated for overburden pressures of 1000 psi and 1500 psi and the 

corresponding pressure drops were recorded. Subsequently, the core was flooded with oil 

to displace the brine. The core flooding was done till the irreducible brine saturation is 

achieved.  

The core was then taken out of the core holder and introduced in the imbibition 

cell. The imbibition cell was filled with brine solution (Table 4.4). A simple glass 

container equipped with a graduated glass cap was used to gauge the imbibition 

experiment. The recovery of oil initially was noted every half an hour. Later the reading 

was taken once every 24 hours. Fig. 4.8 shows the experiment apparatus.  

  

   

 Table 4.3- Physical Properties of Berea Core. 

 

Property Value Unit 

Diameter 3.602 Cm 

Length 4.684 Cm 

Area 10.190 Cm2 

Bulk Volume 47.727 Cm3 

Pore Volume 11.514 Cm3 

Porosity 24.12 Percent

    

 

 

Table 4.4- Brine Composition. 

 

Salts Content
Salt Concentration

(mg/L) 

NaCl 122699 

CaCl2.H2O 749 

TDS 130196 
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Fig. 4.8- Experimental apparatus for Muralidharan�s imbibition experiment. 

 

4.1.2.2 Numerical Simulation of Imbibition Experiment 

Similar to Garg�s imbibition experiment, Muralidharan�s imbibition experiment 

was modeled using the equations derived in Chapter III. Unlike Garg�s experiment, 

Muralidharan�s experiment was not one-dimensional but three-dimensional. Hence, in 

order to numerically simulate the experiment the only change that was necessary was the 

change in shape of the core was changed from cylindrical to cuboid. The boundary 

conditions were the same as that stated in Chapter III.  

4.1.2.2.1 Change in Shape 

The core was modified from cylindrical to cuboid for computational ease. This 

transformation was affected using the same rules as that applied to Garg�s experiment. 

After the transformation the numerical model for the core is as shown in Table 4.5. 
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Table 4.5- Properties of the Core for Numerical Simulation. 

 

Property Value Units 

Number of grids blocks in X-Direction 12 - 

Number of grids blocks in Y-Direction 1 - 

Number of grids blocks in Z-Direction 12 - 

Grid Block Dimension X-Direction 0.3130493 cm 

Grid Block Dimension Y-Direction 3.19214817 cm 

Grid Block Dimension Z-Direction 0.4621 cm 

Density of Oil 48.0 Lb/cu.ft

Density of Water 62.4 Lb/cu.ft

Permeability X-Direction 68 md 

Permeability Z-Direction 68 md 

Porosity 0. 2092 - 

Initial Water Saturation 12*1,10*(1,10*0.46,1), 12*1 - 

Boundary Condition All Sides - 

 

 

4.1.2.3 Results From the Imbibition Experiment 

The numerical modeling was done for the water imbibing into oil rich core case. 

The water is initially present in irreducible state inside the core (46%). With the start of 

the imbibition the oil is expelled and since there is no X-ray CT observation on this core 

only the recovery of oil is measured. This is matched with the experimental data by trial 

and error estimates of relative permeability and capillary pressures. The match of the 

recovery is as shown in Fig. 4.9. Table 4.6 shows the relative permeability and capillary 

pressure obtained for this match. 
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Fig. 4.9- Match of the recovery from the lab with the simulated recovery. 

Table 4.6- Table of Relative Permeability. 

 

Water 

Saturation

(Fraction) 

Water 

Relative 

Permeability

Oil Relative 

Permeability

0.0 0.33 0. 

0.2 0.22 0.15 

0.4 0.18 0.37 

0.5 0.1 0.4 

0.635 0. 0.44 

0.76 0. 0.44 

0.8 0. 0.44 
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Table 4.7- Table of Capillary Pressure. 

 

Water Saturation

(Fraction) 

Capillary Pressure

(psi) 

0.14 2.0 

0.2 1.71 

0.4 0.91 

0.5 0.653 

0.6 0.518 

0.635 0.46 

0.76 0.11 

0.8 0.1 

 

4.2 Simulation Using Empirical Transfer Functions 

Empirical transfer functions were used to model naturally fractured reservoirs and the 

results so obtained were compared with ECLIPSE, a commercially available simulator, 

which uses shape factor and Darcy�s Law to model transfer of fluids. The following test 

cases were run: 

• A one-dimensional (1x10), one well synthetic test case with two production 

schemes 

o Very low production rate of 1 bbl/day. 

o High production rate of 10 bbls/day. 

• The one-dimensional case was converted to a two-dimensional (10x10), one well 

synthetic test case with very high production scheme. 
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4.2.1 Estimation of Empirical Parameters 

To estimate the empirical parameters, a synthetic case of matrix block surrounded 

by water was numerically solved using the diffusion equation. This method gave the 

recovery as shown in Fig. 4.17. This recovery was curve fitted using the arfonsky�s 

equation as stated in the previous chapter. To statistically match the arfonsky�s equation, 

an add-in feature of Microsoft Excel called �Solver� was used. Solver was used to 

minimize the sum of the square of the differences to estimate the values of the empirical 

parameters.  

4.2.2  Comparison of Results From Eclipse 

To compare the results from the empirical models with ECLIPSE, the following is 

assumed to be necessary and sufficient to prove a good match: 

1. Comparison of �Spatial Variation� of pressure. 

2. Temporal variation of production rate. 

3. �Spatial Variation� of water saturation. 

By producing wells under a constant rate, assumption 2 is taken care of. So it is necessary 

to match the pressure and saturations only. 

4.2.2.1 Comparison of One Dimensional Cases  

After the empirical parameters were estimated, an ECLIPSE case was prepared 

with the petro-physical properties of the matrix block in the previous model assigned to 

the matrix media. Same properties were assigned to the fracture media in both the 

ECLIPSE case and the empirical case. A 1x10 grid block was used with a single well 

located at 1x1. This well was produced with two production schemes and the results 

compared. 

Fig. 4.11 shows the pressure profile after 75 days of production from the well at 

1bbl/day. The pressure profile obtained by modeling using empirical transfer function can 

be verified to be of the same trend and approximately of the same value as that obtained 

from ECLIPSE. Fig. 4.11 also shows the comparison of the two model�s water saturation 

at the end of 75 days. The results can be verified to be similar in trend and value.  
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Fig. 4.11- Pressure and water saturation profiles compared with ECLIPSE. 

 

The same reservoir model was tested for a high production rate of 10 bbls/day and the 

results obtained are shown in Fig. 4.12. The pressure of the empirical model and 

ECLIPSE are within error limits. Also the water saturation was found to be within the 

error limits for this model. 

4.2.2.2 Comparison of Two-Dimensional Case 

The same basic fracture system was modeled in two dimensions using a 10x10 

grid. The well was placed in the center of the grid system to observe symmetry. After 

producing 10 bbls/day for 75 days, the results were compared with those obtained from 

ECLIPSE. Fig. 4.13 shows the pressure surface of both the empirical model and 

ECLIPSE. It can be inferred from this figure that the pressure �effect� is greater in 

eclipse than from the empirical model. However the pressure profiles along a line parallel 

to both X and Y axes (Fig. 4.14, Fig. 4.15) show that the difference in pressures is within 

tolerable limits. 
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Fig. 4.12- Comparison of pressure and water saturation profiles. 
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Fig. 4.13- Pressure surfaces generated by both empirical and ECLIPSE models. 
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Fig. 4.14- Pressures of empirical, ECLIPSE models in a line passing parallel to X axis. 
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Fig. 4.15- Pressures of empirical, ECLIPSE models in a line passing parallel to Y axis. 
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Both Fig. 4.14 and 4.15 are identical. This is because of the symmetry of the model. This 

identicalness is necessary for the formulation to be correct. 

Fig. 4.17 shows the saturation surface generated by both the empirical and 

ECLIPSE models. It can be seen that the saturation difference is more significant than the 

pressure difference. This can be attributed to the difference in formulation of transfer of 

fluids from the matrix to the fracture.  
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Fig. 4.16- Curve fitting recovery with exponential decline equation.  
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Fig. 4.17- Water saturation surfaces from both empirical and ECLIPSE models. 
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4.2.3 Comparison with Sub-Domain Method 

Kazemi and Gilman26 presented a 5 spot synthetic water flooding case. From this 

case, a grid block was selected and synthetic imbibition experiments were performed. 

The matrix was initially filled with recoverable oil and completely surrounded by 

fractures. The fracture spacing was selected in such a manner that the matrix block is of 

the same size as that of the grid block. Fractures that surround the matrix block were 

saturated with water and a field size imbibition experiment was thus created. A graphical 

representation of this model is shown in Fig. 4.18.  

This model was simulated using a commercially available simulator CMG and 

also by the developed empirical transfer function dual porosity simulator. Fig. 4.19 

shows the matrix saturation results from the commercially available simulator and the 

developed simulator. �Sub-Domain� method, which is a refinement of dual porosity 

simulation, was also used for this test case. Sub-domain method reports the matrix 

saturation slightly less than that of the conventional dual porosity simulation. This is 

because of matrix block refinement in case of sub-domain method. In this test case, a 5 

level sub-domain method was used, that is, matrix was divided into five different blocks 

and the average saturation of these divisions were reported as the matrix saturation.  

The empirical transfer function model compares well with both these models. In the 

initial portion of Fig. 4.19, it can be seen that the empirical transfer function�s results are 

within error of sub-domain method while offset from the conventional dual porosity 

results. This is because the conventional transfer functions formulations do not honor the 

initial time behavior of transfer of fluids56. The later time behavior of empirical transfer 

function model is within acceptable limits of both conventional transfer function model 

and sub-domain models. 
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Fig. 4.18- Grid block39 modeled using empirical and sub-domain methods. 
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Fig. 4.19- Comparison of ETF with sub-domain method and conventional methods. 
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4.2.4 Limitations of Empirical Transfer Function 

In its present formulation, the empirical transfer function can be used for 

simulation of two phase (oil-water) fluid flow. In order to extend this theory to cases 

where gas is also present, compressibility of gas, which is also a driving force needs to be 

considered. Similarly three phase flow cannot be simulated using this transfer function. 

Another limitation of this theory is the limited �time step ability�, that is present 

with this case. The integration is equation 3.71 is computed numerically using a 

summation term as shown in equations 3.72 and 3.73. This assumption that an integral 

can be accurately represented by a summation is valid only when the time steps are small. 

Hence very large time steps can lead to inaccurate results. A comparison of the material 

balance error obtained when using large steps is shown in Fig. 4.20. As can be seen from 

this graph, the oil material balance for the two dimensional case presented earlier, 

increases linearly with time.  

Since this theory is based on Aronofsky�s equation, all the assumptions inherent 

in Aronofsky�s equation can also be extended to this theory. 

 

4.2.5 Correlation to Well-Test Parameters 

 Dual porosity systems need two additional parameters for characterization than 

the homogeneous and isotropic reservoirs. These are called the interporosity flow 

coefficient and the storativity ratio usually denoted by λ and ω respectively. The 

storativity ratio is a measure of the fluid stored in the fracture system compared to the 

total fluid in the reservoir. The interporosity flow coefficient determines the inter-relation 

between matrix and fracture continua.  
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Fig. 4.20- Material balance error when using large time steps (10 days). 

  

 

These two parameters, λ and ω, are usually calculated from pressure transient 

analysis. Their relations to the reservoir parameters are given by: 

 

 2
w

m r
k

kαλ =              (4.9) 
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=           (4.10) 

α is a geometric factor that depends on the shape of the matrix blocks and has dimensions 

of lenght-2. The subscripts m and f refer to matrix and fracture systems respectively. 

Higher interporosity flow coefficients indicate ease of transfer of fluids from the 

matrix to the fracture continua. This means that it takes lesser time for fluids to move 

from matrix to fracture. Recalling Aronofsky�s equation, the time taken to reach the 
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maximum recovery value is higher in case of high exponential coefficients. (Fig. 4.21) 

Therefore proportionality can be derived between the inter-porosity flow coefficient and 

the exponential decay coefficient.  
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Fig. 4.21- Recovery of matrix fluid with various values of EDC. 

 

Higher storativity ratio indicates a higher presence of fluid in fractures. For the 

same amount of fluid in place, an increase in storativity ratio means a reduction in the 

fluid in place present in the matrix blocks. But since the transfer function is expressed in 

terms of recovery and not actual fluid volumes, proportionality cannot be concluded 

between Aronofsky�s parameters and storativity ratio.  Further study on the relationship 

between these parameters is suggested as a future recommendation. 
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5  

CHAPTER V 
 

CONCLUSIONS 

The following conclusions can be derived from this study: 

 

• Diffusivity equation is sufficient to model imbibition experiments. 

• Imbibition experiments provide us with empirical transfer functions that can be 

used to model dual porosity simulation. 

• Empirical dual porosity simulation is inherently faster, since the number of 

unknowns per grid block is reduced to two from four. 

• Empirical transfer functions model transient flow of fluids from matrix to 

fractures.  

• Synthetic imbibition experiments can be created and modeled using diffusivity 

equation. Thus there is no necessity of imbibition experiments for this dual 

porosity formulation. 

• History matching can be done by �tweaking� only one empirical transfer function 

parameter.  
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NOMENCLATURE 

 

a = Side of a cuboid, cm 

b
r
= Right hand side matrix 

ct = CT number  

d = Diffusivity coefficient 

e = Exponential constant, 2.7182 

g = Acceleration of gravity, ft/sec2 

h = Height of core, cm 

h = Formation thickness , ft 

k = Absolute permeability, md 

kro = Relative permeability to oil, dimensionless 

krw = Relative permeability to water, dimensionless 

krwo = End-point of the relative permeability to water, dimensionless 

n = Exponent of the relative permeability to water, dimensionless 

Nma= Number of matrix blocks 

L = Fracture spacing, ft 

Lf = Fracture length, ft 

q = Inter-porosity flow rate, rb/day 

Q = Flow rate, STB/D 

p = Pressure, psia 

Pc = Capillary pressure, psia 

R = Recovery of oil from matrix, dimensionless 

R
r

 = Residual matrix 

S = Saturation of phase, fraction 

t = Time, days 

tD = Dimensionless time 

VR = Bulk volume, ft3 

VP = Pore volume, ft3 

xr  = Matrix of unknowns in residual form 
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X
r

= Matrix of unknowns in conventional form 

α  =  Coefficients for Gaussian elimination method 

β  = Residuals in Gaussian elimination method. 

wλ  = Mobility of water, md/cp 

oλ  = Mobility of oil, md/cp 

Tλ  = Total Mobility, md/cp 

λ  = Exponential decline exponent 

3,2,1λ = Civan�s exponential decline constant 

ur  = Flow rate, rb/ft2-day 

τ  = Inter-porosity flow rate, ft3/day 

φ = Porosity, fraction 

µ = Viscosity, cp 

ρ = Density, lb/ft3 

Φ = Flow potential, psia 

σ = Shape factor, ft-2 

 

Subscripts 

D = Dimensionless 

f = Fracture 

i = Initial value 

m = Matrix 

o = Oil phase 

w = Water phase 

x = x-direction 

y = y-direction 

z = z-direction 

avg = Average 

water  = Value of water 

dry = Value of dry sample 
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