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ABSTRACT 

 

 

Bulk-Flow Analysis for Force and Moment Coefficients of a Shrouded  

Centrifugal Compressor Impeller.  (May 2005) 

Manoj Kumar Gupta, B.Tech., Indian Institute of Technology-Madras 

Chair of Advisory Committee: Dr. Dara W. Childs 

 

 An analysis is developed for a compressible bulk-flow model of the leakage path 

between a centrifugal compressor�s impeller shroud and housing along the front and back 

side of the impeller. This is an extension of analysis performed first by Childs (1989) for 

a shrouded pump impeller and its housing considering an incompressible fluid, and then 

later by Cao (1993) using a compressible bulk flow model for the shroud of a cryogenic 

fluid pump. The bulk-flow model is used to develop a reaction force and moment model 

for the shroud of a centrifugal compressor by solving the derived governing equations 

and integrating the pressure and shear stress distribution. Validation is done by 

comparing the results to published measured moment coefficients by Yoshida et al. 

(1996). The comparison shows that the shroud casing clearance flow and the fluid force 

moment can be simulated by the bulk flow model fairly well. An Iwatsubo-based 

labyrinth seal code developed by Childs and Scharrer (1986) is used to calculate the 

rotordynamic coefficients developed by the labyrinth seals in the compressor. Tangential 

force and transverse moment components acting on the rotor are found to have a 

destabilizing influence on the rotor for a range of precession frequencies. Rotordynamic 

coefficients are derived for a single stage of a multistage centrifugal compressor, and a 

comparison is made to stability predictions using Wachel�s coefficient using the XLTRC 

(rotordynamic FEA code). For the model employed, Wachel�s model predicts a slightly 

lower onset speed of instability. The results also show that leakage that flows radially 

inwards on the back shroud has a greater destabilizing influence than leakage flow that is 

radially outwards.  Seal rub conditions are simulated by increasing the clearance and 

simultaneously decreasing the tooth height, which increased the leakage and the swirl to 
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the eye seal inlet; and therefore reduced stability. Calculated results are provided for 

different seal clearances and tooth height, for seal and shroud forces and moments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v

DEDICATION 

 

 

 This work is dedicated to my professor Dr. Dara Childs, in special recognition for 

the guidance, support and enthusiasm he gave me throughout my stay at Texas A&M 

University. His knowledge, guidance, energy, humour, openness, companionship and 

inspiration will always serve as an example of the perfect supervisor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi

ACKNOWLEDGEMENTS 

 

 I would take this opportunity to express my sincere thanks and gratitude to Dr. 

Dara Childs for providing the opportunity to work on this special project. The guidance, 

support, and wisdom given by Dr. Childs has been of great personal benefit. He has been 

an ever-present force in helping me mature as a student and as a researcher.  His 

dedication to helping me succeed and his patience and tolerance continue to amaze me.  

 I would also like to thank Dr. John Vance for his support and knowledge, 

especially in the field of rotordynamics, and Dr. Hamn Ching Chen for serving on my 

thesis panel.  I must thank Dr. Bart Childs for helping me with stiff ordinary differential 

equations and Stephen Philips for helping with software. Dr. Yoshida and Dr. Tsujimito 

deserve a special mention for their immediate response with the emails. 

 Many thanks to my  friends at the Texas A&M for all the fun and collaboration: 

Avijit Bhattacharya (who also helped so much in discussions and technical matters), 

Ganesh Mohan, Ashwin, Zachary Zutavern, Amit Pandey, Rowan Gontier, Yusuke 

Kawato, and Eric Hensley. These are only a few names, since I cannot adequately 

acknowledge all of the people to whom I am indebted. I hope the rest will know who they 

are and that I thank them very much. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii

TABLE OF CONTENTS 

               Page 

ABSTRACT�����.�����������������.��.............       iii      

DEDICATION������������������������...........       v 

ACKNOWLEDGEMENTS����������������������      vi 

TABLE OF CONTENTS�����������������.......................       vii 

LIST OF FIGURES������������������............................      ix 

LIST OF TABLES�������������������. ������      xi 

NOMENCLATURE�������������������������     xiii 

INTRODUCTION �������������������������.      1 

 Centrifugal Compressor Type�����������������....       1 
 Shunt Hole Injection���������������...........................      5 

LITERATURE REVIEW�����������������������     7 

BULK FLOW MATHEMATICAL MODEL FOR SHROUD 
CLEARANCE FLOW������������������������     12 

 General Governing Equations���������..�����..............      12 
 Nondimensionalization and Perturbation Analysis�.���������    15 
 Zeroth-Order Equations��������������������..     16 
 First-Order Equations������������. ���........................     18 
 Boundary Conditions���������������������..     22 

VALIDATIONS��������������������������.     25 

BASIC GEOMETRY AND OPERATING CONDITIONS���������..     33 

FRONT SHROUD�������������������������..    35 

BACK SHROUD��������������������������    41 

LABYRINTH SEALS������������������������    47 

 Radially Inward Leakage Flow��������������..............     49 

FULL-STAGE PREDICTIONS��������������������     51 

WACHEL�S MODEL��������������� ���������    53 

DATA EXTRAPOLATION���������������..........................     54 

 

              

 

 



 

 

viii

              Page  

XLTRC COMPARISON�����������������.......................     59 

INFLUENCE OF SURGE CONDITIONS���������............................     70 

CODE APPLICATIONS�������������������...............     73 

SUMMARY AND CONCLUSIONS����������������.........    74 

REFERENCES��������������������������...    76 

APPENDIX A���������������������������.   79 

APPENDIX  B���������������������������    81 

APPENDIX  C���������������������������    91 

VITA�������������������������������   95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ix

LIST OF FIGURES 

 

FIGURE              Page 

1      Multistage centrifugal compressor ������������� ���     1 

2       (a) Flowthrough or series and (b) back-to-back or parallel compressor 
  designs ���������������������������    2 

3 Back-to-back centrifugal compressor nomenclature ���������      3 

4  Centrifugal closed-faced impeller ��������................................      4 

5  Schematic of the centrifugal impeller with seals ����������..     4 

6  Shunt hole configuration canceling flow �������������.      12 

7  Impeller surface geometry ���������� ���������     14 

8  Local attitude angle of impeller surface ����..���������..      15 

9  Basic test impeller geometry �����.������� ������     26 

10  Impeller outlet height ��������������������....      27 

11  Measured transverse moment ������������������     30 

12  Calculated transverse moment using compressible code �������..      30 

13  Measured direct moment ���������������..����.      31 

14  Calculated direct moment using compressible code �����.................     31 

15  Basic clearances and pressure conditions of the impeller �������      33 

16  Nondimensional radial force coefficients for the front shroud �����.      37 

17 Nondimensional tangential force coefficients for the front  shroud ���..     38 

18 Nondimensional transverse moment coefficients for the front shroud��....    39 

19 Nondimensional direct moment coefficients for the front shroud����..     40 

20  Nondimensional radial force coefficients for the back shroud�����...     43 

21  Nondimensional tangential force coefficients for the back shroud ..���.     44 

22 Nondimensional transverse moment coefficients for the  back shroud��.      45 

23 Nondimensional direct moment coefficients for the back shroud..................     46 

24  Typical compressor speed-torque curve ��������������     55 

25  Typical compressor performance characteristics ����������..     56 

26  Semi-cantilevered impeller model���������������......    60 

 



 

 

x

FIGURE              Page 

27  1st  backward mode shape plot at the running speed of 11,218 rpm 
with Wachel�s  model ���������������������    61 

28  3D 1st  backward mode shape plot at the running speed of 11,218 rpm 
with Wachel�s  model�������.��������������.   61 

29  3D 1st forward mode shape plot at the running speed of 11,218 rpm 
with Wachel�s  model���������������������.    62 

30  3D 1st forward mode shape plot at 11,218 rpm with  radially outward 
leakage on the back shroud for complete force and moment model���..     63 

31  3D 1st forward mode shape plot at 11,218 rpm with radially inward 
leakage on the back shroud for complete force and moment model���.     65 

32  3D 1st forward mode shape plot at 11,218 rpm with a force-only 
model having outward flow on the back shroud ����������..     66 

33  3D 1st forward mode shape plot at 11,218 rpm with a force-only 
model having inward flow on the back shroud�����������..     68 

34 3D 1st forward mode shape plot at 11,000 rpm with a moment-only 
model having outward flow on the back shroud �����������    69 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

xi

LIST OF TABLES 

 

TABLE              Page 

1      Geometry and operating conditions of the test������������    26 

2       Comparison of theory versus measured results for different ξ �����..    29 

3 Operating conditions of the impeller stage ����������.............    34 

4  Front shroud basic impeller geometry ���������������    35 

5  Eye seal results �������������������..................     48 

6  Interstage seal results ���������������������      49 

7  Operating conditions and rotordynamic coefficients for different interstage 
seal exit pressures with radially inward flow������������.     50 

8  Complete rotordynamic coefficients for eye seal, interstage  seal, and front 
and back shrouds�����������������������      52 

9  Impeller data for Wachel�s coefficient calculation at 11,218 rpm.................     53 

10  Operating conditions and calculated rotordynamic coefficients for various 
speeds for front shroud and eye seal ��������������.....      57 

11  Operating conditions and calculated rotordynamic coefficients for various 
speeds for back shroud and interstage seal  with leakage upward ����     57 

12  Operating conditions and rotordynamic coefficients for various speeds 
for back shroud and interstage seal  with leakage inward �������      58 

13  Damped eigenvalues with Wachel�s model�������������     60 

14  Damped eigenvalues with radially outward leakage on the back shroud for 
complete force and moment model����������������.    63  

15 Damped eigenvalues with radially inward leakage on the back shroud for 
complete force and moment model������������.���...      64 

16  Damped eigenvalues with leakage upward on the back shroud and 
considering only the forces due to displacement perturbations�����      66 

17  Damped eigenvalues with leakage inward on the back shroud and 
considering only the forces due to displacement perturbations�����      67 

18  Damped eigenvalues with leakage outward on the back shroud and 
considering only the moments due to slope perturbations�������      68 

19  Damped eigenvalues with leakage inward on the back shroud and 
considering only the moments due to slope perturbations�������      69 
 

 



 

 

xii

TABLE              Page 

20  Front shroud � eye seal results for varying clearance and tooth heights �...     71 

21  Back shroud � interstage seal results for varying clearance and tooth heights 
with flow upwards ����������������������..     71 

22 Back shroud � interstage seal results for varying clearance and tooth heights 
with flow inwards�����������������������     72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xiii

NOMENCLATURE 
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INTRODUCTION  

 

 A centrifugal compressor is a device that pressurizes a working fluid, and the 

basic aim of using a centrifugal compressor is to compress the fluid and deliver it at a 

pressure higher than its original pressure. Centrifugal compressors are an integral part of 

the petrochemical industry, finding extensive use because of their higher reliability 

compared to other types of compressors.  Fig. 1 shows a typical multistage centrifugal 

compressor.  

 

 

 
Fig. 1 Multistage centrifugal compressor [1] 

 

Centrifugal Compressor Type 

 High-pressure compressors can use either the straight, flow-through (series) or 

back-to-back (parallel) designs as shown in Fig. 2. In the through-flow design, flow 

enters from the left and proceeds directly from impeller to impeller, discharging to the 

right. 

 

___________________ 

The journal model is the Journal of Engineering for Gas Turbines and Power. 

 



 

 

2

 For the back-to-back design, flow enters at the left and proceeds from left to right 

through the first four stages, then follows a crossover duct to the right-hand side of the 

machine, and proceeds from right to left through the last four stages, discharging at the 

center. The advantages and disadvantages of the two configurations can best be described 

by paraphrasing Childs [2]: �Back-to-back machines obviously react a smaller axial 

thrust than series machines, but the back-to-back compressors are more sensitive to the 

forces from the central labyrinth than are the series machines to forces from the balance-

drum labyrinth.� The central labyrinth seal of Fig. 2 is normally called a division wall 

seal. 

 

 

 
Fig. 2 (a) Flowthrough or series and (b) back-to-back or parallel compressor 
 designs  [2] 
 

 

 Fig. 3 shows various parts of a typical multistage centrifugal compressor with the 

standard nomenclature. Some of the important parts of a centrifugal compressor from the 

current research�s point of view are: shrouded impellers, and eye-packing, interstage, 

balance-piston, and division wall seals. 
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Fig. 3 Back-to-back centrifugal compressor nomenclature [3]  

 

                 

 Shrouded impellers, as shown in Fig. 4, are the rotating parts that accelerate fluid 

to a high speed and imparts energy to the fluid. Flow enters the impeller in the axial 

direction and leaves in the radial direction. Fig. 5 shows the leakage path for front and 

back shroud along with the eye packing labyrinth and the shaft seal labyrinth. Eye 

packing seals restrict leakage flow along the front side of the impeller from impeller 

discharge to impeller inlet, and the interstage seal restricts flow along the shaft between 

stages. Balance piston labyrinth restricts leakage on the discharge end of the machine and 

in a series compressor, leakage flow through the balance piston is returned to the inlet; 

hence; the balance piston absorbs the full ∆ P of the compressor. The division wall seal in 

a back-to-back compressor is employed to minimize leakage from the last stage of the 

compressor and the last stage of the initial series of impellers. Thus the division wall 
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absorbs about one half of compressor ∆ P and is at a smaller diameter than a balance 

piston. Flow on the back shroud of impellers is normally radially outwards, but the 

leakage direction for the last stage is generally inwards.  

 

 
                   Fig. 4 Centrifugal closed-faced impeller [4] 

 

 
Fig. 5  Schematic of the centrifugal impeller with seals [2]  
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Shunt Hole Injection 

 Shunt holes (Fig. 6) are defined as a feature to bring gas from the discharge volute 

or diffuser to the entrance of the balance piston or division wall labyrinth seal. The intent 

is to prevent entry of swirling flow from the back of the impeller into the seal, since the 

destabilizing cross-coupling forces of the labyrinth seals are strongly dependent on inlet 

swirl of the leakage flow. Because of the diffuser�s gain in static pressure, the shunt 

causes the flow behind the last impeller to go from the seal to the larger radius of the 

impeller tip, reversing the direction it would go without the shunt. The gas supplied by 

the shunt holes to the labyrinth comes in either radially or against the shaft rotation. 

 

 

 
Fig. 6 Shunt hole configuration canceling flow  

 

 In the oil and gas sector of the petroleum industry, instability problems can be 

particularly acute for multistage centrifugal compressors used to inject natural gas into oil 

wells at pressures ranging from 100 bar (1500 psi) to 700 bar (10000 psi.). The instability 

problem is economically significant to both compressor manufacturers and users. Usually 

design changes are required to remedy the problem, and delays of several months are not 
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unusual. The only protection available today is full-pressure, full-speed factory testing. 

Thus it is important to predict instability and avoid costly downtime.  
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LITERATURE REVIEW 

 

 Unstable rotor vibrations in centrifugal compressors continue to occur and have 

caused costly downtime for several large projects. One of the earliest rotor instability 

vibrations in centrifugal compressors was at Chevron's Kaybob Gas Plant in west central 

Alberta, Canada in 1971 [5]. Destructive vibration whose frequency was substantially 

below the running speed of a centrifugal compressors delayed startup. Many minor 

design changes were tried, but major redesign was finally required, and it took 29 weeks 

to successfully run at the full speed. Another costly experience involving rotor instability 

was the Ekofisk case in the Norwegian sector of the North Sea in 1974 [6], where a 

reinjection compressor of back-to-back design (Fig. 2) could never reach the rated 

discharge pressure of 625 bar due to excessive subsynchronous rotor vibrations. 

 Rotordynamic stability of turbomachinery is of continuing interest, particularly 

predicting and avoiding instabilities. The following elements influence rotor stability: (1) 

hydrodynamic cross coupling in fluid film bearings, seals, and labyrinths, (2) cross 

coupling forces from seals in turbines and compressors due to change in clearance, (3) 

hysteretic or internal friction damping, (4) pulsations, (5) pulsating torque and axial 

loads, (6) asymmetric shafting, (7) fluid trapped in rotor, (8) stick-slip rubs and chatter, 

(9) dry friction whip. Of these, the influence of cross coupling impeller forces in pump 

vibration has gained a special momentum. There are two categories of forces acting on 

the impeller. One comes from the mechanical system, such as rotor mass unbalance, etc., 

the other one comes from the working fluid, called fluid-induced forces.  

 Several sources have been identified as contributing to the fluid-induced forces. 

One area that has received attention is the force generated by fluid in the annular seals 

separating the high pressure discharge from the relatively low pressure inlet fluid. Childs 

[7] developed a general model to define the reaction forces and moments for a long 

incompressible seal arising from small motion of the seal about its centered position, 

which is defined in equation (1) as:  
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where (FX, FY), (X,Y) define the components of the seal reaction forces and relative 

displacements, and (MY, MX), ),( XY αα define the components of the reaction moments 

and seal rotation (small yaw and pitch angles) vectors. Elements of the above square 

matrices in equation (1) are the rotordynamic coefficients. Childs [8] later extended the 

above model in equation (1) to define force and moment coefficients for pump impellers. 

 If the moments and the coupling between the forces and rotations, i.e. forces 

induced by rotations are neglected, then the resultant reduced equations to account only 

for forces due to displacement perturbations are given as: 
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 Considering the θ−r  polar coordinates are precessing at the precession rateΩ , 

the reaction-force components in this system are: 
tj

YqXqqrq ejFFjFF Ω−+=+ )(θ       (3) 

 Simplifying the algebra in equation (3) gives the comparable results in terms of 

rotordynamic-coefficients definition of equation (2) as: 

qMcKFrq )()( 2Ω−Ω+−=Ω       (4) 

qmCkF q )()( 2Ω−Ω−=Ωθ ,       (5) 

where q is the amplitude of rotor precessional motion. 

 The tangential force )(ΩqFθ  in equation (5) is important for stability 

consideration, as it acts on the rotor in the tangential direction; feeding energy into the 
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rotor in the direction of rotor precession. The added mass matrix in equation (2) is 

negligible for gas labyrinth seals in compressors (Childs [2]). 

 Fulton [9] used test results from Picardo et al. [10] and [11] for labyrinth seals to 

obtain the effective cross-coupled stiffness aeroQ , defined as 

 Ω−== Ck
g

F
Q q

aero
θ ,      (6) 

where g is the eccentricity, and suggested that the labyrinth effective cross-coupled 

stiffness model be used to calculate an empirical stability map, which plots mean gas 

density versus rotor flexibility ratio. He assumed that the destabilizing forces on the rotor 

are due solely to the tangential forces from the labyrinth seals on the balance piston and 

impeller eyes, and treated the impeller shroud forces and smaller labyrinths near the 

casing seals as negligible. He concluded that the labyrinth effective cross-coupled 

stiffness model suffices to calculate a stability map, and no change is recommended to 

the currently used API stability map. 

 A second source of fluid-induced forces for impellers is the hydrodynamic force 

that arises from the interaction between the impeller and its accompanying volute (Jery et 

al. [12]). A third area is the hydrodynamic force and moment caused by fluid trapped 

between the front and back shroud and the stationary casing of the rotating impeller, that 

is, the forces and moments generated by the shroud leakage flow, and disk friction 

(Childs [8], and Guinzburg et al.[13]). Hergt and Krieger, [14] measured the force on a 

centrifugal impeller centered and at various eccentric locations in a vaned diffuser. The 

measured force was directed radially outward with a small tangential component.  

Measurements of the unsteady force matrix have been made by Bolleter, et al. [15], from 

Sulzer Brother, Ltd., Shoji and Ohashi [16], from the University of Tokyo, and the 

researchers at the California Institute of Technology. Franz and Arndt [17] and Franz, et 

al. [18] demonstrated that the large shroud clearances reduce the magnitude of the 

rotordynamic forces for reverse whirl and for the region of destabilizing forward whirl. 

Bolleter et al. [19] presented the first test results for impellers with tighter clearances 

between the shroud and the housing.  

 A bulk-flow model of the leakage path between an impeller shroud and a pump 

casing was developed by Childs [8]. Rotordynamic coefficient predictions from his 
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analysis are in reasonable agreement with test results from Bolleter, et al. [19], for direct 

damping and cross-coupled stiffness coefficients. The model also predicted a resonance 

phenomenon of the fluid system at inlet tangential velocities higher than approximately 

half of the impeller tip speed. In this model the clearance between the impeller shroud 

and pump casing was assumed to be circumferentially symmetric, and the bulk-flow 

nature of the analysis restricts its applicability to impellers having fairly small clearances 

between the impeller shroud and casing.  

 Thomas [20], concerned with instability problems in steam turbines, initially 

suggested that nonsymmetric clearance caused by eccentric operation of a turbine can 

create destabilizing forces which he called glterregnunasp && (clearance-excitation) 

forces. Later Alford [21] identified the same mechanism when analyzing stability 

problems of aircraft gas turbines; hence, in the United States, excitation forces due to 

clearance changes around the periphery of a turbine are regularly called �Alford 

forces�.  Thomas� and Alford�s formula for an unshrouded axial turbine stage is given 

by: 

DH
Tk β=          (7) 

where k  is the cross-coupled stiffness,  β  is the change in the thermodynamic efficiency 

per unit of rotor displacement, expressed as a fraction of blade height, T is the stage 

torque, D is the pitch diameter, and  H is the vane height. 

 Wachel and Von Nimitz [22] converted Thomas� and Alford�s formula for 

unshrouded axial turbine to the shrouded impellers for centrifugal compressors and 

proposed an empirical formula known as Wachel�s cross-coupling coefficient [23] to 

evaluate the destabilizing forces. Wachel�s empirical formula to calculate the cross-

coupling coefficient k  for the single stage in the compressor which includes the effects 

of eye seal labyrinth, front and back shrouds, and the interstage labyrinth is defined as: 

 

S

D

fhD
MWPwrBk

ρ
ρ×=

))()((
))()((       (8) 

 
where, 

k  = cross-coupled stiffness coefficient, N/m (lb/in) 
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B = cross coupling constant, 16 SI Units (105 English Units) 

Pwr = power, KW (HP) 

MW = molecular weight of gas 

D = impeller outside diameter, m (in)  

h = restrictive dimension in flow path, m (in)  

f =speed, Hz 

Dρ  = density of fluid at discharge, Kg/m3 (lb/cu ft) 

Sρ  = density of fluid at suction, Kg/m3 (lb/cu ft) 

 

 While Alford�s force is caused by the variation of blade tip clearance around an 

unshrouded axial turbine and is appropriate, Wachel�s extended formula is incorrect as 

there is no comparable blade clearance in the shrouded centrifugal compressor. 

Therefore, this research on the bulk-flow analysis for rotordynamic coefficients of a 

shrouded centrifugal compressor impeller aims to develop a more rational alternative for 

predicting the influence of impeller stages on the rotordynamic stability of shrouded 

centrifugal compressors. Rotordynamic coefficients are derived separately for both front 

and back shrouds, eye seal labyrinth, and interstage seal labyrinth, to examine the 

contribution of each part separately.  

 Ohashi et al. [24] and Yoshida et al [25] showed that fluid moments on the back 

shroud of a centrifugal impeller can have destabilizing effects, and stated that Childs� [8] 

model predicts these coefficients reasonably well. This research on the bulk-flow analysis 

for rotordynamic coefficients of a shrouded centrifugal compressor impeller investigates 

the rotordynamic fluid forces and moments on an impeller-shroud with labyrinth seals. 

Reaction forces and moments are determined for a range of precession frequency, and 

second order curves are fitted to the results to determine the rotordynamic coefficients of 

equation (1). 
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BULK FLOW MATHEMATICAL MODEL FOR SHROUD  

CLEARANCE FLOW 

 

 Childs� [8] governing equations are modified to account for compressibility using 

real gas properties. As in Childs� [8], and Cao�s [26] analysis, these equations are 

nondimensionalized, and a perturbation expansion of the governing equations in the 

eccentricity ratio yields a set of zeroth and first-order governing equations.   

 

General Governing Equations 

 Following the approach taken by Childs [8] using the path coordinate S and 

circumferential coordinate Rθ, as shown in Fig. 7, to locate a fluid differential element of 

thickness H(s,θ,t), the governing equations are derived as: 

 

Continuity equation 

0
)(1)(

=
∂
∂+

Θ∂
∂

+
∂

∂
+

∂
∂

S
S U

S
R

R
HHU

RS
HU

t
H ρρρρ θ  ,    (9) 

where Us and Uθ are the path and circumferential bulk-velocity components, and H is the 

clearance function. 

 

The path momentum equation 

)(
2

S
SSS

srss U
S

U
R

UU
t

U
H

dS
dR

R
U

H
S
PH

∂
∂

+
Θ∂

∂
+

∂
∂

+++−=
∂
∂− θθ ρττρ .  (10) 

 The first subscripts (s,θ) in the shear stress definitions ( ssτ , srτ ), ( sθτ , rθτ ) denote  

path and θ directions, respectively; the second subscripts (s,r) denoting stator and rotor 

surfaces respectively.  

          

The circumferential momentum equation 

)(
S
R

R
UU

U
S

U
R

UU
t

U
HP

R
H S

Srs ∂
∂+

∂
∂

+
Θ∂

∂
+

∂
∂

++=
Θ∂

∂− θθθθθ
θθ ρττ  .  (11) 

 



 

 

13

 An additional governing equation is obtained by using a thermophysical property 

code to obtain the properties of the working fluid. 

The additional equation can simply be stated as: 

),( 0TPρρ =           (12) 

),( 0TPµµ =           (13) 

where ρ  is the density, and µ  is the viscosity of the working fluid. The above governing 

equations are the same as Childs� [8], with the equation of state now being dependent on 

the thermophysical property code. The variation in density of the working fluid is 

modeled as a function of pressure and a constant temperature only. By providing pressure 

and temperature to the thermophysical property code, density and viscosity of the 

working fluid are obtained. 

 Hir�s [27] definitions were used to define the shear stress components of the rotor 

and stator surfaces. The equations shown below define the shear stress acting on the 

impeller and its housing. The first subscript in the equations denotes the direction of fluid 

flow (path and circumferential), and the second subscript refers to the surface (stator and 

rotor), respectively. 

2
1

22 ])/(1[
2

+

+=
ms

S
ms

Sss UURUns
θαρτ        (14) 

2
1

22 }]/)[(1{
2

+

−+=
mr

S
mr

Ssr URURUnr ωρτ θα       (15) 

2
1

2 ])/(1[
2

+

+=
ms

S
ms

Ss UURUUns
θαθθ ρτ       (16) 

2
1

2}]/)[(1{)(
2

+

−+−=
mr

S
mr

Sr URURRUUnr ωωρτ θαθθ     (17) 

where υα /2 SHUR = , is the path Reynolds� number.     (18) 

 The empirical coefficients (ns,ms), (nr,mr) account for different surface roughness 

on the stator and rotor, respectively, and mr = ms = -0.25 and nr = ns = 0.079 account for 

the smooth impeller. 

 Similar to Childs� [8] analysis, an assumption is made that the impeller is 

nominally centered in its housing. Hence, in the centered position, the clearance function 

H0 is only a function of the path coordinate S and does not depend on Rθ. The inlet 
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clearance function H0(0), the inlet path velocity Us(0), and the inlet radius R(0) are 

denoted, respectively, by Ci, Vi, and Ri. In terms of these variables, leakage volumetric 

flowrate is defined by: 

iii VCRQ π2=&  .         (19) 

The length of the leakage path along the impeller face is defined by: 

∫
+







+=

LZ

Z
S

I

I

dz
dZ
dRL

2

1 .        (20) 

As per Childs� [8], the clearance function between the impeller and the housing is given 

as: 

θγαγα
θγαγαθ

sin]sincos)[(
cos]sincos)[()(),,( 0

RZY
RZXSHtSH

XX

YY

+−−
−+−=

    (21) 

where X and Y gives the displacement of the impeller, Xα  and Yα  gives the pitch and 

yaw rotations of the impeller, and the angle γ shown in Fig. 8 is defined as: 

dS
dR

dS
dZ

dZ
dR −==−= γγγ sin,cos,tan .      (22)  

 

 
Fig. 7 Impeller surface geometry [8] 
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Fig. 8 Local attitude angle of impeller surface [8] 

 

 

Nondimensionalization and Perturbation Analysis 

 The governing equations define the bulk-flow velocity components (Us,Uθ) and 

the pressure P as a function of the coordinates (Rθ,S) and time, t. They are conveniently 

nondimensionalized by introducing the following variables: 

iSs VUu /= ,   ωθθ iRUu /= ,    2/ iiVPp ρ= ,  iρρρ /~ =  

iCHh /= ,       SLSs /= ,                   iRRr /=        (23) 

tωτ = ,         ωii RVb /=     iS VLT /=   

 The present analysis examines the changes in (us, uθ, p) due to changes in the 

clearance function h(θ,s,t) caused by small motion of the impeller within its housing.  

Perturbation variables used to obtain zeroth and first-order equations are defined as: 

10 sss uuu ε+=  , 10 hhh ε+= , 10
~~~ ρερρ +=       (24) 

10 θθθ εuuu += , 10 ppp ε+=  

where ε  is the perturbation coefficient defined as iCe /=ε .  
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Zeroth-Order Equations 

 Zeroth-order equations define the leakage rate and the circumferential and path 

velocity distributions and pressure distributions for a centered impeller position.  The 

zeroth-order equations are given as: 

Continuity equation 

   

   1~
000 =ρsurh .      (25) 

Path-momentum equation 

 

   2
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00

0
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0 2
)(1

~
1

s
rss

s u
b

u
ds
dr

rds
du

u
ds

dp σσ
ρ

θ +
+






−=−  . (26) 

Circumferential-momentum equation 

 

   [ ] 0)(22 00
00 =+−++ θθ

θθ σσ uru
ds
dr

r
u

ds
du

sr   (27) 

where the quantities sσ and rσ  are defined as 

( ) sss HL λσ 0/= , ( ) rsr HL λσ 0/=        (28) 

where sλ and rλ  are dimensionless stator and rotor friction factors defined by  

2
1

2
000 ])/(1[

+

+=
ms

s
ms

s buunsR θαλ ,       (29) 

2
1

2
000 }]/)[(1{

+

−+=
mr

s
mr

r burunrR θαλ .      (30) 

 

For a known flowrate, the continuity equation (25) completely defines 0su  to obtain 
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This equation when substituted into the zeroth order path-momentum equation (26) yields 
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Thus the governing zeroth-order equations are now reduced to two governing 

equations consisting of equations (27) and (32). Density 0
~ρ  is obtained by the equation 

of state (12) which is solely a function of pressure and temperature. 

 Equations (27) and (32) are coupled and nonlinear and are solved iteratively. The 

initial condition for the circumferential velocity )0(0θu is obtained from the exit flow 

condition of the impeller. The inlet and discharge pressure of the impeller are known and 

serve, respectively, as the exit (Pe) and supply (Ps) pressures for the leakage flow along 

the impeller face. The inlet condition for p0 is obtained from the inlet boundary condition 

(s=0) given by inlet pressure drop as: 

2/),,0()1(),,0( 2
00 tUtPP SS θξρθ +=− ,      (33) 

where ξ is the inlet loss coefficient. From the above relationship, the zeroth-order 

pressure relationship is obtained as: 

2/)0()u1(/)0( 2
s0

2
0 ξρ +−= iis VPp .                                                               (34) 

 The solution to the zeroth-order equations (27) and (32) are obtained iteratively 

since all of the coefficients depend on the local path velocity Us0. An initial (s=0) fluid 

velocity Vi is estimated which then defines us0(s). A specified uθ0(0) and the calculated p0 

from equation (34) are used to numerically integrate the zeroth-order equations (27) and 

(32) from the path entrance (s=0), to the path exit (s=1). The exit labyrinth seal at the 

leakage path exit also provides restriction, yielding a relationship of the form  

),,(
2

),,( 2 tLUCPtLP SSdeeS θρθ =−  ,                 (35)  

where Cde is the discharge coefficient , obtained by using the leakage rate through the 

labyrinth seal. The leakage through the labyrinth seal of the compressor is calculated 

using a labyrinth seal code developed by Childs and Scharrer [28], and this value is used 

to calculate the discharge coefficient at specific impeller operating conditions. The seal 

leakage code uses the geometry of the seal and the operating conditions, i.e. inlet and exit 

pressures, temperature, viscosity, density, etc. to calculate the leakage rate through the 

seal. Several discharge coefficients are tested in the model to match the flow rate through 

the impeller leakage path and the flow rate through the seal. Once the two flow rates 

converged, the resulting Cde is used in the model as an exit restriction boundary condition. 
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 Based on the difference between a calculated exit pressure and the prescribed exit 

pressure, a revised value of Vi is calculated, and the procedure is repeated until 

convergence is achieved between the prescribed and the calculated exit pressure. 

 

First-Order Equations 

 The first-order equations define the perturbations in the velocity and pressure 

distributions due to either a radial-displacement perturbation or a tilt perturbation of the 

impeller. Integration of the perturbed pressure and shear-stress distribution acting on the 

rotor yields the reaction forces and moments acting on the impeller face. 

First order equations obtained by the perturbation expansion of equations (9), (10) and 

(11) are: 

Continuity equation 
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Path momentum equation 
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where 1ssτ  and 1srτ  are shear stress perturbation definitions. 
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Circumferential momentum equation 
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The dependency of ρ~  with respect to s, τ , and θ in equations (36), (37) and (38) are 

eliminated by considering the following equation of state: 
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Since the temperature is considered constant, the density is only a function of pressure. 

The perturbed clearance function h1 can be stated from equations (21) and (23) as 
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  = θτθτ sin),(cos),( 11 shsh sc + . 

Following Childs� [8] approach, the theta dependency of the dependent variables 

is eliminated by assuming the following, comparable solution format to the perturbed 

clearance function 

θθ sincos 111 sscss uuu += , θθ θθθ sincos 111 sc uuu += , θθ sincos 111 sc ppp +=    (41) 

 Substituting these into equations (36), (37) and (38) and equating like coefficients 

of cosθ and sinθ yields six equations in the independent variables s,τ . By introducing the 

complex variables 

sscss juuu 111 += , sc juuu 111 θθθ += , sc jppp 111
+= , sc jhhh 111 += ,   (42) 

the six real equations can be reduced to three complex equations. Further simplification 

can be made by using the following definitions provided by Childs� [8]  
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01 G
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where jyxq += , XY jααα −= ,       (44) 
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From equation (43) the following result is obtained: 

12

2
1 F

ds
zd

L
Lq

s
h

s

αε −







−=

∂
∂         (46) 

where F1 is defined in Appendix A. 

The time dependency of equations (36), (37) and (38) can be eliminated by assuming 

harmonic seal motion of the form 
τjfeqq 0= , ταα jfe0= , τjfehh 101 = , ω

Ω=f      (47) 

where Ω  is the seal precession frequency, and 0q and 0α are real constants. The 

associated harmonic solution can then be stated as 
τjf

ss euu 11 = , τ
θθ

jfeuu 11 = , τjfepp 11
= .      (48) 

Substitution from equations (43-48) into the governing partial differential equations (36-

38) yields the following three complex ordinary differential equations in s 
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• Path-momentum equation   

 ( ) ( ) ( ) SSSSs
s

s AhApAuAju
ds
ud

u
ds
pd

101412013001
1

00
1 ~~~~~ ρρρρρ θ =+++ΤΓ++ . (50)  

 

 



 

 

21

• Circumferential-momentum equation 
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where iSA  and θiA coefficients are defined in the Appendix A. 

Further simplification leads to the resulting matrix equation 
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Elements used in equations (53-55) can be found in appendix A. In the system 

matrix [A] in equation (53), the centrifugal acceleration term
ds
dr

rb
u

2
02 θ  from the 

SA2 definition of Appendix A, is of the order of 105, while some terms in the matrix are 

of the order of 10-3. This centrifugal acceleration term 
ds
dr

rb
u

2
02 θ  makes the system of 

equations stiff as there are three different scale first-order differential equations, and 

stiffness occurs in a problem where there are two or more very different scales of the 

independent variable on which the dependent variables are changing. These very different 

scales of the independent variables make the system of equations stiff and costly in 

computation with ordinary Runge-Kutta method or Predictor-Corrector methods.  

Therefore crucial to the success of a stiff integration scheme is an automatic stepsize 

adjustment algorithm and thus a multi-step automatic stepsize adjustment integrator is 

used. For better stability a user-supplied jacobian matrix obtained by analytic 

differentiation of the right hand side of equations )(sfy =′   is used instead of computing 

it by numerical differencing with appropriate increments in s. Further details in stiff 

integrators are given in [29]. 

 

Boundary Conditions 

 Three nondimensional first-order boundary conditions are given, and the first of 

these is that the entrance loss is defined by equation (34), and the corresponding 

perturbation-variable relationship is: 
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The relationship at the exit is provided by equation (35) and yields the following 

perturbation relationship: 
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 Additionally, the entrance-perturbation, circumferential velocity is zero; i.e. the 

impeller motion does not perturb the inlet circumferential velocity, which can be stated 

as: 

0)0(1 =θu .          (58) 

 These first order complex differential equations (52) can be solved by using a 

transition-matrix approach, while satisfying the boundary conditions of equations (56-

58). Using the same procedure followed by Childs� [8], the homogenous version of 

equations (52) are solved successively with the initial conditions (1,0,0), (0,1,0), (0,0,1) 

to obtain the transition matrix [ ].),( sfΦ  The particular solution is then solved for zero 

initial conditions. Further details of the solution can be found in Childs� [2]. The solution 

to equations (52), due to displacement perturbation, is obtained by setting 00 =α , and can 

be stated as: 
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The solution due to angular perturbations is obtained by setting 00 =q and can be stated 

as:  
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 After the perturbations in pressure and shear stress are known by solving the 

governing equations, the perturbed pressure and shear-stress distribution acting on the 

impeller are integrated to yield the reaction forces and moments. The integral equations 

and the corresponding definitions for obtaining the reaction forces and moments are 

given in Childs� [8]. Rotordynamic coefficients are obtained by carrying out a least-

square curve fit for the reaction forces and moments due to displacement and slope 

perturbations.  
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Rotordynamic coefficients for displacement perturbations: 

)~~~()()( 2

00
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Rotordynamic coefficients for slope perturbations: 

)~~~()()( 2

00
αεαεαα α

MfcfK
F
fFff r

r −+−==  

)~~~(
)(

)( 2

00
εαεαεα

θ
θα α

mfCfk
F
fF

ff −−==       (62) 

)~~~(
)(

)( 2

00
αααα α

MfcfK
LF
fM

fm d
d −+=

−
=−  

)~~~(
)(

)( 2

00
αααα α

mfCfk
LF
fM

fm t
t −−=−=−  

All the above are defined in Childs [8]. 
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VALIDATIONS 

 

 A check on the validity of the program was made by comparing the numerical 

results to the experimental results by Yoshida et al. [25]. Yoshida et al. made flow and 

pressure measurements in the back shroud/casing clearance of a precessing centrifugal 

impeller. They integrated the unsteady pressure distribution between the radii r=47.5mm 

and r=165mm to obtain the fluid moment on the precessing impeller shroud for 

nondimensional precessing frequency ratio ω/Ω  ranging from -1.4 to 1.4.  The leakage 

flow in the back shroud clearance was radially inward. Since the seal data is unknown, 

but the leakage rate is known; initial path velocity Vi is calculated by using the given 

leakage rate.  

 Three important unsteady boundary conditions in this analysis are: the entrance 

loss was defined by equation (34), and the corresponding perturbation-variable 

relationship was defined in equation (56). This boundary condition assumes that there is 

leakage occurring, i.e. the path velocity Su  is non-zero. Tsujimoto et al. [30] used zero-

leakage rate, which results in zero pressure fluctuation (p1=0) by equation (56), and made 

a comparison between the theoretical predictions and the experimental results. They 

showed that for zero-leakage rate, the predicted moments were significantly smaller than 

the measured moments. With non zero leakage rate, the pressure fluctuation p1 is never 

zero; thus, zero inlet pressure perturbation condition would not occur. This boundary 

condition is very similar to the boundary condition used by Tsujimoto et al. [30], except 

that it is valid only for non-zero leakage rate. 

 Since the leakage flow exits to a relatively large space without flow restriction, it 

is assumed to have zero pressure loss at the exit. This yields the exit boundary condition 

as: 

0),,( =− eS PtLP θ          (63) 

Taking the perturbation of equation (63) gives the exit perturbed pressure as: 

0)1(1 =p           (64) 

 As stated in equation (58), the entrance-perturbation circumferential velocity is 

zero. The impeller data and operating conditions are given in Table 1. Fig. 9 shows the 

impeller geometry for this test. 
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Fig. 9    Basic test impeller geometry [21]  

 

 Table 1 Geometry and operating conditions of the test 

Supply pressure Ps (s=0) 1.1375 bar 

Exit pressure Pe (s=1) 1.1329 bar 

Running speed  677 rpm 

Temperature 305 K 

Working fluid Air 

Inlet tangential velocity ratio uθ0 0.5 

Leakage flow rate 3.0036x10-3 m3/sec 

Impeller outlet height b2 28 mm 

Impeller outer radius Ri 165 mm 

Shroud casing clearance 7.5 mm 
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 The following reduced model from equation (1) was used to define the reaction 

moments: 
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where αM  is the direct added inertia, αC  is the direct damping, αK  is the direct 

stiffness, αm  is the cross-coupled inertia, αc  is the cross coupled damping and αk  is the 

cross-coupled stiffness. Equation (65) is nondimensionalized by 2ωI , where I is the 

moment of inertia of hypothetical fluid disk of thickness 2b  (Fig. 10) and radius iR  

around the diameter, and is given as: 
2

2
2 ibRI iρπ=           (66) 

where i is the radius of gyration: 

 12/4/ 2
2

2 bRi i +=  .        (67) 

   
  Fig. 10     Impeller outlet height  
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 In this study, the geometrical condition around the impeller is symmetric, and 

therefore the nondimensional fluid moment is represented with its nondimensional 

transverse ( tm ) and nondimensional direct ( dm ) components as: 

α
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where the rotation vector α  is related to the yaw and pitch angles ),( XY αα by  

tX Ω−= sinαα          (70) 

tY Ω= cosαα .         (71) 

 By using the leakage flow coefficient lφ =8.85x10-3, and gap between impeller 

side plate and casing Sg=2mm, rotordynamic coefficients were predicted using the 

compressible code. Leakage flow coefficient lφ  is defined as,  

lφ = volumetric leakage flow rate/ ωπ 2
22 bRi .      (72) 

  Table 2 gives the comparison of the measured results [25] to the calculated 

results for different inlet loss coefficientξ . Figs. 11 and 12 show the comparison for the 

transverse moment coefficients, and Figs. 13 and 14 show the comparison for the direct 

moment coefficients for different inlet loss coefficientξ . A moment-only whirl frequency 

ratio wMf  is useful in characterizing stability due to slope perturbations and is defined as: 

ωα

α

C
k

f wM = .           (73) 
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Table 2 Comparison of theory versus measured results for different ξ  

Coefficients Measured Theoryξ =0.1 Theoryξ =0.3 Theoryξ =1.1 Theoryξ =1.5

αM ( Kgm2) 0.32x10-3 0.430x10-3 0.428x10-3 0.419x10-3 0.414x10-3 

αm   (Kgm2) 0.41x10-5 0.12x10-4 0.15x10-4 0.25x10-4 0.30x10-4 

αC (NmS/rad) 0.022 0.009 0.011 0.016 0.019 

αc  (NmS/rad) 0.016 0.049 0.049 0.048 0.048 

αK (Nm/rad) 0.258 -1.835 -1.870 -2.033 -2.132 

αk (Nm/rad) 1.016 0.811 0.904 1.276 1.460 

wMf  0.651 1.27 1.159 1.125 1.08 

 

 Table 2 shows that at lower values of inlet loss coefficient ξ , a close match is 

obtained between the prediction and measurement for the cross-coupled stiffness αk . The 

calculated direct damping αC is small compared to the measured coefficient at lower 

values ofξ , but the prediction improves at unrealistic high inlet loss coefficientξ . The 

moment-only whirl frequency ratio wMf  decreases with increasing ξ . The calculated 

moment-only whirl frequency ratio wMf  is higher and is thus more destabilizing.  Thus at 

lower values of ξ , the predicted moments are more destabilizing than the measured 

moments. Fig. 12 shows that the predicted transverse moment is sensitive to the inlet loss 

coefficientξ .  Figs. 11 and 12 show that the predictions match closely for the measured 

transverse moment especially at higherξ . Fig.12 shows the predicted direct moment to be 

insensitive toξ ; thus the direct mass αM , and direct stiffness αK does not change with 

increasingξ . 
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       Fig. 11   Measured transverse moment [25]  

 

 

 
 Fig. 12 Calculated transverse moment using compressible code 
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       Fig. 13    Measured direct moment [25] 

 

 

 
 Fig. 14 Calculated direct moment using compressible code 
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 For stability, the transverse moment plays the important role; thus, a bulk flow 

model does a reasonable job in predicting αk  and αC , which are important for stability 

analysis. This shows that the bulk flow model provides a reasonable approximation of the 

pressure distribution especially for small clearances. Yoshida et al. [25] showed that the 

unsteady flow in the back shroud/casing clearance caused by the precessing motion is 

basically a 2-D inviscid flow with minor effects of unsteady wall shear stress. A 

reasonable match of the cross-coupled stiffness αk  and the direct damping αC  indicates 

that the bulk-flow model can simulate the destabilizing moments fairly well. 
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BASIC GEOMETRY AND OPERATING CONDITIONS 

 

 

 Fig. 15 shows the basic clearances of the front and back shroud along with 

operating pressures obtained from a compressor manufacturer. Operating conditions and 

working fluid are given in Table 3. 

 

 
 Fig. 15  Basic clearances and pressure conditions of the impeller  
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Table 3 Operating conditions of the impeller stage 

Impeller inlet pressure 8.55 MPa 

Impeller exit pressure 10.03 MPa 

Impeller eye seal entrance pressure 9.42 MPa 

Impeller eye seal exit pressure 8.57 MPa 

Interstage seal exit pressure 9.88 MPa 

Interstage seal entrance pressure 10.22 MPa 

Operating temperature 115.50C 

Operating Gas Methane 

Inlet Tangential Velocity uθ0 0.48 

Running Speed 11,218 rpm 

Eye seal number of teeth 5 

Eye seal radial clearance 1.52x10-4 m 

Eye seal tooth height 2.79x10-3 m 

Eye seal tooth pitch 2.79x10-3 m 

Interstage seal number of teeth 5 

Interstage seal radial clearance 1.27x10-4 m 

Interstage seal tooth height 1.78x10-3 m 

Interstage seal tooth pitch 1.78x10-3 m 
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FRONT SHROUD 

 

 Leakage on the front shroud is inward as shown by the arrow in the Fig. 5. Basic 

impeller geometry for the front shroud is given in Table 4. Basic theory and boundary 

conditions used are the same as discussed in bulk-flow mathematical model in equations 

(52), and (56-58). 

 

Table 4  Front shroud basic impeller geometry 

Z-coordinate (m) Radius R (m) Clearance H (m) 

1.1000e-02 0.2545e+00 0.6199e-02 

1.2500e-02 0.2280e+00 0.6100e-02 

1.4000e-02 0.2010e+00 0.6200e-02 

1.5500e-02 0.1810e+00 0.8300e-02 

1.7000e-02 0.1749e+00 1.0380e-02 

2.3000e-02 0.1656e+00 1.3910e-02 

2.9000e-02 0.1615e+00 1.3200e-02 

3.5000e-02 0.1600e+00 1.2460e-02 

3.8000e-02 0.1600e+00 0.9130e-02 

4.1000e-02 0.1597e+00 0.9000e-02 

4.7000e-02 0.1597e+00 0.9200e-02 

 

 

 Figs. 16 and 17 illustrate the predicted radial and tangential force coefficients 

rqf and qfθ , for displacement perturbations, versus the frequency ratio ω/Ω=f  for the 

front shroud. A comparison is shown between the compressible and incompressible 

predictions, and there is not much difference except for some sharper peaks in the 

compressible predictions. Fig. 17 shows that the tangential force qfθ has a destabilizing 

influence for a nondimensional frequency range of 0.0 to 0.71, in which both the 

tangential force qfθ  and the frequency ratio are positive; therefore acting in the direction 

of whirling. 
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 Figs. 18 and 19 illustrate the predicted transverse and direct moment coefficients 

αrm and θαm , for slope perturbations, versus the precession frequency ratio ω/Ω=f  for 

the front shroud. Fig. 18 shows that the transverse moment Mt has a destabilizing affect 

as both the transverse moment Mt and the precession frequency ratio ω/Ω=f  are of the 

same sign except for the precession frequency ratio  6.00 ≤≤ f  , where they are of 

opposite sign. Also the transverse moment Mt increases with increasing precession 

frequency ratio f.  The sharp peaks predicted occur because of the centrifugal acceleration 

term in the path-momentum equation. If the term 
ds
dr

rb
u
2

02 θ  is dropped from the SA2  

definition of appendix A, the peaks are substantially eliminated. These peaks which were 

first predicted by Childs [8] in the force coefficients; however, measurements from 

Caltech researchers [13] did not show these peaks. Since the bulk-flow model neglects 

any variation in dependent variables across the fluid, and takes the average between the 

tangential velocity at the stationary wall and the tangential velocity at the rotating shroud, 

recirculating flow in the leakage path cannot be predicted. Calculated rotordynamic 

coefficients are given in equations (74-76). 

   

The rotordynamic coefficient matrix for the front shroud in SI units: 

 

[ ]





















=

1-5-1-4-

5-1-4-1-

1-3-1-3-

-3-1-3-1

0.16908x100.46401x10-0.15057x100.70180x10
0.46401x100.16908x100.70180x100.15057x10-
0.15958x100.18064x10-0.27767x100.86271x10
0.18064x10-0.15958x10-0.86271x10-0.27767x10

FSm  (74) 

   

 

 

  [ ]


















=

3.616122.3579.679221.232- 
22.357-3.616121.232-9.6792- 
8.0607  22.43329.084  43.000- 
22.4338.0607- 43.00029.084

FSc      (75) 
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[ ]


















=

57.997- 2218.44283.6-6853.3- 
2218.4-57.997-6853.3-4283.6 
2806.5-   5635.37507.9-   21972.-  

5635.3 2806.5 219727507.9- 

FSk               (76) 

Force-only whirl frequency ratio wf  =0.64 

Moment-only whirl frequency ratio wMf =0.52 

Max. Mach no. M=0.28 

Reynolds no. αR =50,450. 

 

 
 Fig. 16   Nondimensional radial force coefficients for the front shroud 
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  Fig. 17   Nondimensional tangential force coefficients for the front shroud 
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 Fig. 18  Nondimensional transverse moment coefficients for the front shroud 
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  Fig. 19  Nondimensional direct moment coefficients for the front shroud 
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BACK SHROUD 

 

 Flow on the back shroud can be either radially inward, i.e., down the back shroud 

or radially outward, up the back shroud with circulation taking place. Based on the 

pressure conditions supplied from a compressor manufacturer, flow on the back shroud 

was upward. Three important first order boundary conditions for the back shroud are 

different from that of the front shroud. Interstage labyrinth seal provides restriction, 

yielding a relationship of the form given by equation (35) and the corresponding 

perturbation-variable relationship was defined in equation (57). Equations (64) and (58) 

define the other two boundary conditions for the perturbed pressure and circumferential 

velocity. 

 Figs. 20 and 21 give the predicted radial and tangential force coefficients rqf and 

qfθ  for displacement perturbations, versus the precession frequency ratio ω/Ω=f  for 

the back shroud.  Rotordynamic force coefficients for the back shroud are much smaller 

when compared to the front shroud. Fig. 21 illustrate that the tangential force has a 

destabilizing affect on the shroud for a range of precession frequency ratio ω/Ω=f , but 

then these coefficients are much smaller when compared to the front shroud. This 

outcome is explained by the small projected area of the back shroud in the z-x and y-z 

plane. Figs. 22 and 23 give the predicted transverse and direct moment coefficients 

αrm and θαm , for slope perturbations, versus the precession frequency ratio ω/Ω=f  for 

the back shroud. Again these coefficients are much smaller in comparison to the front 

shroud rotordynamic coefficients. By carrying out a least-square curve fit to the plotted 

graphs in Figs. 20-23 and using the equations (57) and (58), rotordynamic coefficients are 

obtained for the back shroud. Second order curve fits for the back shroud results are 

difficult compared to the front shroud results. 
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Rotordynamic coefficients for back shroud in SI units: 

 

[ ]





















=

6-6-6-6-

6-6-6-6-

4-4-4-4-

-4-4-4-4

0.52222x100.70749x10-0.42060x10-0.55974x10- 
0.70749x100.52222x100.55974x10-0.42060x10
0.28338x100.16291x100.22724x10-0.12167x10 
0.16291x100.28338x10-0.12167x10-0.22724x10-

BSm  (77) 
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=

3-3-2-3-

3-3-3-2-

2-1-1-1-

-1-2-1-1

0.67944x10   0.65192x10   0.14386x10-  0.50673x10
0.65192x10-  0.67944x10   0.50673x10   0.14386x10

0.62297x10   0.34362x10   0.68020x10   0.26607x10
0.34362x10   0.62297x10-0.26607x10-0.68020x10 

BSc  (78) 

 

 

[ ]


















=

0.740272.97070.56878-1.2018
2.9707- 0.740271.2018  0.56878

49.786147.41- 40.933-31.527-
147.41-49.786-31.52740.933-

BSk      (79) 

 

Force-only whirl frequency ratio wf  =0.39 

Moment-only whirl frequency ratio wMf =0.42 

Max. Mach no. M=0.25 

Reynolds no. αR =33,205. 

 



 

 

43

 
     Fig. 20  Nondimensional radial force coefficients for the back shroud 
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 Fig. 21  Nondimensional tangential force coefficients for the back shroud 
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  Fig. 22  Nondimensional transverse moment coefficients for the back shroud 
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 Fig. 23  Nondimensional direct moment coefficients for the back shroud  
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LABYRINTH SEALS 

 

 Forces developed by the labyrinth seals are roughly proportional to the pressure 

drop across the seals and the fluid density within the seal. Fig. 5 illustrates a typical 

sealing arrangement for a multi-stage centrifugal compressor. The eye-packing seal limits 

return-flow leakage down the front of the impeller, and the shaft seal restricts leakage 

along the shaft to the preceding stage. Labyrinths have negligible added-mass terms and 

are typically modeled by the reaction-force/motion model defined in equation (2) (Childs 

[2]). 

 The first model containing essential physical elements to predict the seal 

coefficients was published by Iwatsubo [31]. Iwatsubo wrote the circumferential-

momentum and continuity equations to define the average (bulk-flow) circumferential 

velocity within a labyrinth cavity. He used a leakage equation to define the axial velocity. 

Childs and Scharrer [28] used Iwatsubo�s analysis and included variation of the area in 

the circumferential direction and also presented measurements of both stiffness and 

damping coefficients used in rotordynamic analysis.  

 Considering sX , sY  and sX& and sY& as the displacement and velocity of the seal�s 

center in the x and y directions, sX and sY  are related to impeller�s relative displacements 

(X,Y) and impeller�s relative small pitch and yaw rotation vectors ( Xα , Yα ) by the 

following relations: 

Ys lXX α+=           (80) 

Xs lYY α−= , 

where l  is the z distance between the seal center and the origin of the impeller axis 

system of Fig. 15. 

Differentiating the above relations we get: 

Ys lXX α&&& +=           (81) 

Xs lYY α&&& −=  

Also, considering the moment about impeller�s origin, we get 

lFM
SS XY =           (82) 
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lFM
SS YX −=  

Therefore the resulting rotordynamic matrix becomes 
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 Basic geometry and operating conditions of the eye seal and interstage seal are 

given in Table 3. Table 5 gives the rotordynamic coefficients for the eye seal considering 

zero inlet perturbations in the pressure 1p  and tangential velocity 1θu . Table 6 gives the 

leakage rate and rotordynamic coefficients for the interstage seal with leakage upward. 

By comparison of eye seal and interstage seal coefficients, we see that the eye seal 

coefficients are bigger than the interstage seal, and thus eye seal has greater influence on 

the stability. Since the origin of the inertial co-ordinate system is between the two seals, 

the moment caused by the two seals are in opposite direction. Thus l  in equation (74) is 

positive for eye seal, and is negative for interstage seal. The labyrinth seal code predicted 

high force whirl frequency ratio wf  than is seen experimentally for short seals; therefore 

the cross-coupled stiffness k was modified such that )0(0θuf w ≅ . 

 

Table 5  Eye seal results  

Leakage rate m&  (Kg/sec) 0.539 

Seal inlet tangential velocity uθ0 0.6 

Direct stiffness K (N/m) 0.12627x106  

Cross-coupled stiffness k (N/m) 7.734x105 

Direct damping C (N-sec/m) 1097.5 

Cross-coupled damping c (N-sec/m) -247.28 

Whirl frequency ratio wf  0.6 

l  z-length from origin (m) 0.0549 

Cross-coupled stiffness αk (N-m/rad) 2331.03 

Direct damping αC (N-m-s/rad) 3.308 
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Table 6  Interstage seal results 

Leakage rate m&  (Kg/sec) 0.226 

Seal inlet tangential velocity uθ0 0.5 

Direct stiffness K (N/m) 4152.8 

Cross-coupled stiffness k (N/m) 0.1736x10 6 

Direct damping C (N-sec/m) 306.06 

Cross-coupled damping c (N-sec/m) -5.4530 

Whirl frequency ratio wf  0.48 

l  z-length from origin (m) -0.0265 

Cross-coupled stiffness αk (N-m/rad) 121.9 

Direct damping αC (N-m-s/rad) 0.214 

 

 Tables 5 and 6 show that seals produce greater direct stiffness K than the 

impeller. It is also seen that the cross-coupled stiffness k and direct damping C are greater 

for the seals. Thus for displacement perturbations, seals influence the stability more than 

the impellers.  

 

Radially Inward Leakage Flow 

 Based on the data provided, the leakage on the back shroud was found to be 

radially  outward. Inward leakage flow was forced by dropping the exit pressure at the 

interstage seal. Table 7 gives the rotordynamic coefficients and leakage rate for different 

exit pressures and shows that the leakage rate increases, and the seal inlet tangential 

velocity 0θu decreases with additional decreases in the seal exit pressure. A high pressure 

at the interstage seal exit reduces the stability of the rotor, which is evident from the high 

whirl frequency ratio. Predicted rotordynamic coefficients are larger for radially inward 

leakage than with radially outward leakage. Stability of the system is reduced with 

inward leakage because of high swirl entering the seal which increases as it approaches 

the impeller hub on the back side. The cross-coupled stiffness k in Table 7 was modified 

so that )0(0θuf w ≅ . 
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Table 7 Operating conditions and rotordynamic coefficients for different interstage      
seal exit pressure with radially inward flow 
Seal Exit Pressure  97 bar (down) 95 bar (down) 90 bar (down)  (upward) 
m& (Kg/sec) 0.290377 0.345 0.4139 0.226 
Seal inlet 0θu  0.8973 0.881 0.8478 0.5 
Seal k (N/m) 3.994E+05 4.403E+05 5.15E+05 1.736x105 
Seal C (N-s/m) 379.17 425.55 517.22 306.06 
Impeller k (N/m) 134.57 141.62 169.62 31.527 
Impeller C (N-s/m) 0.20535 0.22266 0.25311 0.068 
Impeller WFR wf  0.55784 0.54142 0.57048 0.39 

Seal WFR wf  0.897 0.881 0.847 0.48 
Seal αk (N-m/rad) 280.47 309.2 361.65 121.9 
Seal αC (N-m-s/rad) 0.266 0.298 0.363 0.214 
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FULL-STAGE PREDICTIONS 

 

 Rotordynamic coefficients derived for individual components are assembled to 

get the full-stage predictions. Forces and moments due to front and back shroud add, but 

the forces for the seals add and, the moments subtract. Table 8 gives the complete 

rotordynamic coefficients for eye seal, interstage seal, and front and back shroud. Table 8 

shows that the eye-seal has bigger rotordynamic coefficients followed by the interstage 

seal, and therefore seals are more likely to influence stability than the shrouds. 

Rotordynamic coefficient matrices including eye seal, interstage seal, and front and back 

shrouds are given in SI units in equations (84-86). 
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Table 8 Complete rotordynamic coefficients for eye seal, interstage seal, and front  
and back shroud 

Coefficients Eye seal Interstage seal Frontshroud Backshroud Total (Σ) 

K (N/m) 1.263x105   4.152x103 -7.507x103 -40.933 1.229x105  

k (N/m) 7.734x105 1.736x105 2.197x104 31.527 9.69x105 

C (N-s/m) 1097.5 306.06 29.084 0.068 1.43x103 

c (N-s/m) -247.28 -5.453 43.000 -0.026 -209.8 

M (Kg) 0.0 0.0 0.027 -0.22x10-4 0.0270 

m (Kg) 0.0 0.0 -0.86x10-3 -0.12x10-4 -8.72x10-4  

αK (N-m/rad) 380.66 2.915 -57.997 0.74027 326.32 

αk (N-m/rad) 2331.03 121.9 2.218x103 2.9707 4.67x103  

αC (N-m-s/rad) 3.308 0.214 3.6161 0.67x10-3 7.138 

αc (N-m-s/rad) -0.75 -0.004 22.357 0.65x10-3 21.60 

αM (Kg-m2) 0.0 0.0 0.016 0.52x10-6 0.016 

αm (Kg-m2) 0.0 0.0 -0.46x10-5 -0.70x10-6 -5.3x10-6  

εαK (N/rad) 6.93x103 -110 2.806x103 -49.786 9.58x103  

εαk (N/rad) 4.25x104 -4.6x103 -5.635x103 147.41 3.241x104  

εαC (N-s/rad) 60.25 -8.11 -8.0607 -0.006 44.07 

εαc (N-s/rad) -13.57 0.14 -22.43 -0.034 -35.89 

εαM (Kg-m) 0.0 0.0 -0.016 -0.28x10-4 -0.016 

εαm (Kg-m) 0.0 0.0 0.18x10-3 -0.16x10-4 1.64x10-4  

αεK (N) 6.93x103 -110 4.283x103 0.56878 1.11x104  

αεk (N) 4.25x104 -4.6x103 -6.853x103 1.2018 3.10x104  

αεC (N-s) 60.25 -8.11 -9.6792 0.001 42.46 

αεc (N-s) -13.57 0.14 -21.232 0.5x10-3 -34.6 

αεM (N-s2) 0.0 0.0 -0.015 0.42x10-6 -0.015 

αεm (N-s2) 0.0 0.0 0.7x10-4 -0.55x10-6 6.95x10-5  
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WACHEL�S MODEL 

 

Wachel�s coefficient defined by equation (8) is calculated by using the parameters 

given in Table 9.  

 

Table 9 Impeller data for Wachel�s coefficient calculation at 11,218 rpm 

B: cross coupling constant (SI) 16 

hp: power (KW) 1256.48 

MW: molecular weight 16 

D: impeller diameter (m) 0.5064 

h: restrictive dimension in flow path (m) 0.0152 

f: speed (Hz) 186.96 

Dρ : density of fluid at discharge conditions, kg/m3 50.43 

Sρ : density of fluid at suction conditions, kg/m3 43.02 

 

 

 From the values given in Table 9, Wachel�s coefficient is calculated to be: Kxy 

=2.62006x105 N/m. This model does not give damping; thus, a comparison for stability 

predictions between Wachel�s model and the compressible model is difficult. XLTRC is 

used to make a comparison between the two models. Data for lower speeds are obtained 

by extrapolation by using the compressor performance curves which are discussed in the 

next topic. 
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    DATA EXTRAPOLATION 

 

 Since the impeller stage data given are only for a single running speed, pressure 

conditions are extrapolated by using the typical centrifugal compressor performance 

curves with respect to speed. Fig. 24 shows that for a typical centrifugal compressor, the 

compressor torque varies linearly with speed, especially at higher speeds near the design 

speed.  When a curve fit was done for the pressure ratio and the speed points obtained 

from Fig 25, which gives the flow rate versus the pressure ratio for different speeds, a 

linear fit was obtained. Thus the pressure is assumed to rise linearly with the increasing 

speed. This assumption is further justified as we are interested in the static pressure at the 

impeller discharge and not the total stagnation pressure, which can change quadratically 

with speed because of the dynamic pressure coming from the kinetic energy which 

squares with speed. Since power is defined as product of torque and the running speed, 

i.e. ωTPower = , power is assumed to vary quadratically with speed.  

  Table 10 gives the pressure conditions, rotordynamic coefficients and Wachel�s 

coefficient for various speeds for front shroud and eye seal. Pressure conditions and 

rotordynamic coefficients for various speeds for the back shroud and interstage seal with 

flow upward and downward are given in Tables 11 and 12 respectively. Most of the 

rotordynamic coefficients are proportional to p∆ across the impeller. Increasing p∆  also 

increases the leakage. 

 



 

 

55

 
  Fig. 24 Typical compressor speed-torque curve [4] 
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     Fig. 25 Typical compressor performance characteristics [4] 
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Table 10 Operating conditions and calculated rotordynamic coefficients for various 
speeds for front shroud and eye seal 
Running speed ! 11,218 rpm 8,000 rpm 6,000 rpm      4,000 rpm 
Psupply (Bar) 100.347 71.52 53.67 35.78 
Pseal-exit (Bar) 85.72 61.05 45.84 30.56 
m& (Kg/sec) 0.542 0.425 0.331 0.227 
Seal inlet 0θu  0.646 0.699 0.740 0.793 
Seal k (N/m) 8.335E+05 4.715E+05 2.768E+05 1.275E+05 
Seal C (N-s/m) 1098.5 804.63 595.46 383.50 
Impeller k (N/m) 21972 13210. 8044.5 3767.7 
Impeller C (N-s/m) 29.084 21.558 16.129 10.486 
Impeller WFR wf  0.643 0.731  0.793 0.857 
Seal WFR wf  0.646 0.699 0.74 0.793 
Power (KW) 1256.48 639.005 359.44 159.75 
Wachel�s Coeff. Kxy (N/m) 2.62E+05 1.867E+05 1.399E+05 9.3267E+04 

 

 

Table 11  Operating conditions and calculated rotordynamic coefficients for various 
speeds for back shroud and interstage seal with leakage upward 
Running speed ! 11,218 rpm 8,000 rpm 6,000 rpm      4,000 rpm 
Psupply (Bar) 100.347 71.52 53.67 35.78 
Pseal-exit (Bar) 102.2 72.88 54.662 36.441 
m& (Kg/sec) 0.226 0.161 0.1211 0.0808 
Seal inlet 0θu  0.5 0.5 0.5 0.5 
Seal k (N/m) 1.736E+06 9.625E+04. 4.9118E+04 2.109E+04 
Seal C (N-s/m) 306.06 213.25 156.38 100.72 
Impeller k (N/m) 31.527 26.464 15.424 6.1314 
Impeller C (N-s/m) 0.6802E-01 0.26029E-01 0.117E-01 0.3988E-02 
Impeller WFR wf  0.39454 1.2136   2.0950 3.6733 
Seal WFR wf  0.4829 0.5388 0.5 0.5 
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Table 12  Operating conditions and rotordynamic coefficients for various speeds for 
back shroud and interstage seal with leakage inward 
Running speed ! 11,218 rpm 8,000 rpm 6,000 rpm      4,000 rpm 
Psupply (Bar) 100.347 71.52 53.67 35.78 
Pseal-exit (Bar) 97  69.13 51.87 34.586 
m& (Kg/sec) 0.290377 0.188 0.1298 0.083 
Seal inlet 0θu  0.8973 0.8891 0.8809 0.862 
Seal k (N/m) 3.996E+05 1.741E+05 8.974E+04  3.621E+04 
Seal C (N-s/m) 379.17 233.87 162.17 100.31 
Impeller k (N/m) 134.57 61.612 31.590 12.560 
Impeller C (N-s/m) 0.20535 0.12058 0.7784E-01 0.4406E-01 
Impeller WFR wf  0.55784 0.60993 0.64586 0.68052 
Seal WFR wf  0.897 0.889 0.88 0.862 
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XLTRC COMPARISON 

 

 A semi cantilevered rotor carrying the impeller with a first backward critical at 

5389 cpm i.e. about one half running speed was developed for the comparison. One end 

of the rotor is fixed for both displacement and rotation, represented by bearing 1 as 

shown in the geoplot (Fig. 26). Direct stiffness YYXX KK = = 1.05x108 N/m for 

displacement constraint and yyxx KK αααα = =1.14x106 N-m/rad for rotation constraint are 

used to constraint both the displacement and rotation at bearing 1. External damping  Cxx 

= Cyy = 6650 N-s/m and 15.1== yyxx CC αεαα  N-ms/rad are considered at the bearing 1, so 

that Wachel�s cross-coupled stiffness KXY caused it to become just unstable at the 

running speed.  Another dummy bearing is placed at station 3 with zero stiffness for 

displacement and rotation, i.e. YYXX KK = = 0 N/m and yyxx KK αααα = =0 N-m/rad, and a 

direct damping Cxx = Cyy = 0 N-s/m. Table13 gives the damped natural frequencies for 

different running speeds with Wachel�s model. The rotor goes unstable at the design 

running speed with the log decrement 0004.0−=δ  and a 1st forward whirling frequency 

of 7093 cpm. First backward and forward modes of the cantilevered rotor at the running 

speed are shown in Figs.27-29. 
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Fig. 26  Semi-cantilevered impeller model 

 
 

Table 13  Damped eigenvalues with Wachel�s model  
Speed logd1 cpm1 logd2 cpm2 

1000. 0.025 6159.8 0.020 6313.8
2000. 0.028 6082.9 0.017 6390.9
3000. 0.031 6006.2 0.015 6467.9
4000. 0.034 5929.8 0.013 6544.9
5000. 0.037 5853.6 0.010 6621.7
6000. 0.041 5777.7 0.008 6698.3
7000. 0.044 5702.3 0.006 6774.7
8000. 0.048 5627.2 0.005 6850.8
9000. 0.051 5552.6 0.003 6926.5

10000. 0.055 5478.6 0.001 7001.9
11000. 0.059 5405.1 -0.0001 7076.8
11218. 0.060 5389.1 -0.0004 7093.1
13000. 0.067 5259.9 -0.003 7225.3
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Damped Eigenvalue Mode Shape Plot
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Fig. 27  1st  backward mode shape plot at the running speed of 11,218 rpm with 
Wachel�s  model 
  

 

Damped Eigenvalue Mode Shape Plot

f=5389.1 cpm
d=.0599 logd
N=11218 rpm

forward
backward

 
Fig. 28 3D 1st backward mode shape plot at the running speed of 11,218 rpm with  
Wachel�s model 
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Damped Eigenvalue Mode Shape Plot

f=7093.1 cpm
d=-.0004 logd
N=11218 rpm

forward
backward

 
Fig. 29 3D 1st forward mode shape plot at the running speed of 11,218 rpm with 
Wachel�s  model 
 

 

 XLTRC analysis of the same rotor model is done with the compressible code 

model having radially upward flow on the back shroud,  and the rotordynamic matrices 

for changing speed is given in Appendix B. Damping used to make the rotor go unstable 

at the design running speed is retained and Wachel�s model is replaced by the 

compressible code model. Table 14 gives the damped natural frequencies for different 

running speeds with the compressible code model having upward flow on the back 

shroud.  The compressible code model predicts a higher margin of stability. At a speed of 

11,218 rpm, the log decrement δ  is still positive with the 1st forward critical at 7093 cpm 

as shown in Fig. 30. Thus the Wachel�s model predicts a lower onset speed of instability 

when compared to the full model of force and moment with radially outward flow.  
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Table 14 Damped eigenvalues with radially outward leakage on the back shroud 
 for complete force and moment model 

Speed logd1 cpm1 logd2 cpm2 
1000. 0.048 6157.6 0.024 6315.5
2000. 0.062 6078.7 0.039 6388.5
3000. 0.083 6001.3 0.049 6461.9
4000. 0.111 5925.1 0.054 6535.7
5000. 0.144 5849.9 0.056 6610.0
6000. 0.182 5775.5 0.055 6685.0
7000. 0.224 5701.7 0.051 6760.9
8000. 0.267 5628.5 0.047 6837.7
9000. 0.311 5555.5 0.041 6915.7

10000. 0.356 5482.8 0.035 6994.9
11000. 0.399 5410.2 0.030 7075.4
11218. 0.407 5394.4 0.029 7093.2
13000. 0.474 5264.7 0.021 7241.1

 
 

Damped Eigenvalue Mode Shape Plot

f=7093.2 cpm
d=.0286 logd
N=11218 rpm

forward
backward

 
Fig. 30 3D 1st forward mode shape plot at 11,218 rpm with radially outward leakage 
on the back shroud for complete force and moment model 
 
 
 To examine the influence of leakage downward on the back shroud, XLTRC 

analysis of the same rotor model with the damping  Cxx = Cyy = 6650 N-s/m and 

15.1== yyxx CC αεαα  N-ms/rad retained at the bearing 1, and rotordynamic matrices 
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replaced by new rotordynamic matrices (Appendix B) corresponding to upward leakage 

on back shroud is done. Table 15 gives the damped eigenvalues with compressible code 

model with radially inward leakage on the back shroud. Table 15 shows that at about 

11,218 rpm, the log decrement δ  corresponding to first forward mode is 0.005, which is 

smaller than that predicted for the radially outward flow at the same speed (δ = 0.029). 

Thus the model predicts a greater destabilizing affect with flow downward on the back 

shroud than with flow upward on the back shroud. Mode shape plot at 11,218 rpm for the 

1st forward is shown in Fig. 31, which is a typical cantilever mode shape having 

maximum displacement at the free end. 

 

 

Table 15 Damped eigenvalues with radially inward leakage on the back shroud  
for complete force and moment model  

Speed logd1 cpm1 logd2 cpm2 
1000. 0.039 6155.1 0.033 6314.4
2000. 0.058 6075.9 0.043 6386.4
3000. 0.084 5997.9 0.049 6459.2
4000. 0.115 5921.1 0.052 6533.1
5000. 0.152 5845.4 0.052 6608.2
6000. 0.193 5771.0 0.050 6684.8
7000. 0.239 5697.8 0.045 6763.3
8000. 0.288 5626.0 0.038 6843.8
9000. 0.340 5555.7 0.029 6926.5

10000. 0.395 5486.8 0.019 7011.8
11000. 0.451 5419.5 0.008 7099.8
11218. 0.464 5405.1 0.005 7119.3
13000. 0.566 5290.2 -0.018 7284.6
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Damped Eigenvalue Mode Shape Plot

f=7119.3 cpm
d=.0049 logd
N=11218 rpm

forward
backward

 
Fig. 31 3D 1st forward mode shape plot at  11,218 rpm with radially inward leakage 
on the back shroud for complete force and moment model 
 
  

 Since Wachel�s model only considers the forces acting on the rotor and neglects 

any moment acting on the rotor, it would raise a simple question; �what affect would only 

a force model (equation 2) have on the rotor neglecting the moments from the complete 

force and moment compressible code model?� Therefore to examine the influence of only 

the forces, only the rotordynamic force coefficients in equation (1) are retained. The 

rotordynamic matrices used for this case is given in Appendix B. Table 16 gives the 

damped eigenvalues for this reduced model with upward leakage on the back shroud. At 

about 11,218 rpm, the predicted log decrement δ  is 0.041, which is higher than that 

predicted by the complete force and moment model (δ =0.029) in Table 14. Thus a 

reduced model for forces due to displacement perturbations only predicts a higher margin 

of stability (bigger log decrementδ ). Mode shape plot of the rotor (Fig. 32) with the 

force-only model at 11,218 rpm shows a forward precession of 7084 cpm and a typical 

cantilever mode shape. 
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Table 16 Damped eigenvalues with leakage upward on the back shroud and 
considering only the forces due to displacement perturbations  

Speed logd1 cpm1 logd2 cpm2 
1000. 0.046 6160.2 0.023 6317.2
2000. 0.057 6083.2 0.038 6391.3
3000. 0.073 6008.0 0.049 6465.5
4000. 0.096 5934.3 0.055 6539.8
5000. 0.123 5861.9 0.059 6614.2
6000. 0.153 5790.6 0.060 6688.9
7000. 0.187 5720.1 0.059 6763.8
8000. 0.223 5650.2 0.056 6839.1
9000. 0.260 5580.8 0.052 6914.8

10000. 0.298 5511.6 0.047 6991.1
11000. 0.334 5442.3 0.042 7068.0
11218. 0.342 5427.2 0.041 7084.9
13000. 0.401 5303.1 0.033 7224.1

 
 
 
 

Damped Eigenvalue Mode Shape Plot

f=7084.9 cpm
d=.041 logd
N=11218 rpm

forward
backward

 
Fig. 32 3D 1st forward mode shape plot at  11,218 rpm with a force-only   model 
having outward flow on back shroud 
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 Having answered the question that the reduced model including only forces has a 

higher margin of stability with flow upward on the back shroud, we will now check if the 

same result is true for the case with flow downward. Table 17 gives the damped 

eigenvalues with reduced force model considering only the forces due to displacement 

perturbations and leakage on back shroud inward. The model predicts the rotor will go 

unstable at 13,000 rpm, and the log decrement δ  is 0.017 at the design speed. Thus a 

force-only model is less conservative than the complete force and moment model. 1st 

forward mode shape plot in Fig. 33 predicts that at 11,218 rpm the rotor would have a 

forward precession at 7085 cpm. 

 

 
Table 17 Damped eigenvalues with leakage inward on the back shroud and 
considering only the forces due to displacement perturbations 

Speed logd1 cpm1 logd2 cpm2 
1000. 0.037 6158.8 0.032 6317.1
2000. 0.052 6083.1 0.041 6390.9
3000. 0.073 6009.2 0.049 6464.8
4000. 0.098 5936.8 0.053 6538.7
5000. 0.127 5865.9 0.055 6612.9
6000. 0.161 5796.4 0.054 6687.3
7000. 0.198 5728.0 0.051 6762.2
8000. 0.238 5660.7 0.046 6837.6
9000. 0.282 5594.4 0.039 6913.7

10000. 0.328 5529.0 0.030 6990.6
11000. 0.377 5464.4 0.020 7068.4
11218. 0.388 5450.4 0.017 7085.5
13000. 0.480 5337.2 -0.007 7227.5
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Damped Eigenvalue Mode Shape Plot

f=7085.5 cpm
d=.0169 logd
N=11218 rpm

forward
backward

 
Fig. 33 3D 1st forward mode shape plot at the 11,218 rpm  with a force-only model 
having inward flow on back shroud 
 
 If only the moment due to slope perturbations (equation 65) were considered on 

the rotor system with no damping retained from the original model at bearing 2, we see 

that the model predicts the rotor to go unstable at 11,000 rpm (Table 18) with radially 

outward leakage. Thus the moments due to slope perturbations have a destabilizing 

influence on the rotor. 1st forward mode shape at 11,000 rpm is shown in Fig. 34. 

Negative log decrement is not seen if damping is retained. 

 

Table 18 Damped eigenvalues with leakage outward on the back shroud and 
considering only the moments due to slope perturbations  

Speed logd1 cpm1 logd2 cpm2 
1000. 0.001 6156.1 0.000 6310.8
2000. 0.002 6077.3 0.001 6387.5
3000. 0.003 5997.8 0.001 6464.3
4000. 0.005 5917.8 0.001 6541.4
5000. 0.007 5837.5 0.001 6618.8
6000. 0.009 5757.0 0.000 6696.4
7000. 0.012 5676.4 0.000 6774.4
8000. 0.014 5596.0 0.000 6852.7
9000. 0.017 5515.8 0.000 6931.3

10000. 0.020 5436.0 0.000 7010.3
11000. 0.022 5356.9 -0.001 7089.6
11218. 0.023 5339.8 -0.001 7107.0
13000. 0.027 5201.2 -0.001 7249.3
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Damped Eigenvalue Mode Shape Plot

f=7089.6 cpm
d=-.0006 logd
N=11000 rpm

forward
backward

 
Fig. 34 3D 1st forward mode shape plot at the 11,000 rpm  with a moment-only 
model having outward flow on back shroud 
 
 With a moment-only model for the inward leakage on the back shroud, and no 

damping retained from the original model at bearing 2, rotor is predicted to be stable 

(Table 19). Thus the moment due to slope perturbations are less destabilizing for the 

inward leakage on the back shroud than the upward leakage on the back shroud. 

 

Table 19 Damped eigenvalues with leakage inward on the back shroud and 
considering only the moments due to slope perturbations 

Speed logd1 cpm1 logd2 cpm2 
1000. 0.001 6155.1 5.77E-04 6309.8
2000. 0.002 6074.6 9.61E-04 6385.8
3000. 0.003 5993.3 1.18E-03 6462.4
4000. 0.005 5911.4 1.28E-03 6539.7
5000. 0.007 5829.1 1.28E-03 6618.0
6000. 0.010 5746.9 1.22E-03 6697.3
7000. 0.013 5664.8 1.11E-03 6777.7
8000. 0.016 5583.3 9.90E-04 6859.2
9000. 0.019 5502.5 8.73E-04 6941.9

10000. 0.022 5422.8 7.79E-04 7026.0
11000. 0.025 5344.5 7.24E-04 7111.3
11218. 0.025 5327.6 7.19E-04 7130.1
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INFLUENCE OF SURGE CONDITIONS 
 

 
 Surge is a phenomenon of considerable interest; yet is not fully understood.  It is a 

form of unstable operation and unfortunately it occurs frequently in the process industry, 

sometimes with damaging results. This condition occurs when there is sufficient 

aerodynamic instability from the cross-coupling forces within the compressor that the 

compressor is unable to produce adequate pressure to deliver continuous flow to the 

downstream system. The underlying cause of surge is aerodynamic stall, which may 

occur in either the impeller or the diffuser. With high-pressure compressors, operation in 

the incipient surge range  is accompanied by asynchronous vibrations which can reach 

predominant amplitudes, and result in thrust and journal bearing failure, impeller and seal 

rub, impeller hub and/or shroud failures. Surge conditions frequently result in rubbed 

labyrinth seals. A labyrinth seal rub condition is simulated by simultaneously increasing 

the labyrinth clearance and reducing the tooth height. Table 20 shows the change in the 

leakage rate, seal inlet tangential velocity, and the rotordynamic coefficients for the front 

shroud and eye seal with increased clearance and reduced tooth height for the eye seal. 

Note that both the leakage rate m&  and the eye seal inlet tangential velocity 0θu  increases 

with the simultaneous increase in clearance and decrease in tooth height for the eye seal. 

Whirl frequency ratio wf , which is a direct measure of stability, also increases with the 

increase in leakage and the tangential velocity 0θu . This result predicts that a surge event 

that rubs the labyrinths will decrease the system�s margin of stability. 

 For the back shroud and interstage seal, Table 21 shows the change in the leakage 

rate, rotordynamic coefficients and the whirl frequency ratio with increased clearance and 

reduced tooth height of the interstage seal having an upward flow. It is seen that the 

leakage rate m&   increases but the whirl frequency ratio wf  of the combined impeller and 

seal nearly remains constant, because in the case of upward flow on the back shroud, the 

seal inlet tangential velocity 0θu does not change.  
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Table 20 Front shroud � eye seal results for varying clearance and tooth height 
Clearance (Cr) 
Tooth Height (B) 

Cr x1=0.1524 mm 
B/1=2.794mm 

Cr x2=0.3048 mm 
B/2=1.397mm 

Cr x3=0.4572 mm 
B/3=0.9313mm 

m& (Kg/sec) 0.539 1.1364 1.722 
Seal inlet 0θu  0.646 0.80 0.895 
Seal k (N/m) 8.3348E+05 5.375E+05 3.793E+05 
Seal C (N-s/m) 1098.5 571.99 360.79 
Impeller k (N/m) 21972 48684 74411 
Impeller C (N-s/m) 29.084 48.684 67.646 
Impeller WFR wf  0.64309 0.85124 0.93637 
Seal WFR wf  0.646 0.8 0.895 
 
 
 
Table 21 Back shroud � interstage seal results for varying clearance and tooth 
height with flow upwards 
Clearance (Cr) 
Tooth Height (B) 

Cr x1=0.127 mm 
B/1=1.778mm 

Cr x2=0.254 mm 
B/2=0.889mm 

Cr x3=0.381 mm 
B/3=0.5926mm 

m& (Kg/sec) 0.226 0.493 0.764 
Seal inlet 0θu  0.5 0.5 0.5 
Seal k (N/m) 0.17361E+06 82076 53689 
Seal C (N-s/m) 306.06 146.72 93.840 
Impeller k (N/m) 31.527 25.583 9.6746 
Impeller C (N-s/m) 0.68020E-01 0.12937E-01 0.51717E-01 
Impeller WFR wf  0.39454 1.6833 0.15924 
Seal WFR wf  0.4829 0.4762 0.4870 
Combined WFR wf  0.482 0.4764 0.4874 

 

 

 Table 22 shows the change in the leakage rate, rotordynamic coefficients and the 

whirl frequency ratio with increased clearance and reduced tooth height of the interstage 

seal having an inward flow. It is seen that the leakage rate m&   increases but the whirl 

frequency ratio wf  of the combined impeller and seal decreases. This is because in the 

case of inward flow on the back shroud, the seal inlet tangential velocity 0θu decreases. 

The overall influence of seal rub is increased leakage and reduced stability as the eye seal 

coefficients are bigger than the interstage seal coefficients. 
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Table 22 Back shroud � interstage seal results for varying clearance and tooth 
height with flow inwards 
Clearance (Cr) 
Tooth Height (B) 

Cr x1=0.127 mm 
B/1=1.778mm 

Cr x2=0.254 mm 
B/2=0.889mm 

Cr x3=0.381 mm 
B/3=0.5926mm 

m& (Kg/sec) 0.290377 0.6182 0.944 
Seal inlet 0θu  0.8973 0.796 0.715 
Seal k (N/m) 3.996E+05 1.73E+05 9.767E+04 
Seal C (N-s/m) 379.17 185.82 116.31 
Impeller k (N/m) 134.57 222.50 308.43 
Impeller C (N-s/m) 0.20535 0.30426 0.39152 
Impeller WFR wf  0.55784 0.62249 0.67059 
Seal WFR wf  0.897 0.796 0.715 
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 CODE APPLICATIONS 

 

Some of the important applications of this code are: 

1. Destabilizing forces and moments due to eye seal, interstage seal, and front and 

back shroud obtained separately, as opposed to Wachel�s all in one force-only 

model. 

2. Influences of surge conditions can be examined by changing the seal clearances 

and decreasing the tooth height to simulate rub conditions. 

3. Shunt hole injection feature can be examined for the balance piston or division 

wall labyrinth seal. 

4. Impeller geometry and clearances can be optimized. 

5. Reasonable estimation of the leakage can be known. 

6. Labyrinth seal design can be optimized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

74

SUMMARY AND CONCLUSIONS 

 

 An analysis has been developed for the forces and moments on the shroud of an 

impeller using a compressible bulk flow model. Validation steps include making direct 

comparisons to measured moment coefficients by Japanese researchers at Osaka 

University [25] and [30]. The comparison show that the bulk-flow model can simulate the 

flow fairly well, and a reasonable match is obtained for the cross-coupled stiffness k and 

the direct damping C. Keeping in mind that the cross-coupled stiffness k and direct 

damping C are important for stability; the bulk-flow model does an adequate job. The 

compressible flow model is also verified by comparing to Child�s [8] incompressible 

flow model.   

 Stability predictions of Wachel�s empirical model and the compressible code 

model are done by using XLTRC. It is shown that there is a reasonable match between 

the two models, especially if inward leakage is considered. It is also found that inlet swirl 

can increase the cross-coupled stiffness and therefore influence stability, something 

Wachel�s model does not account for. Based on the analysis done, the following 

conclusions can be made: 

1) Wachel�s model predicts a slightly lower onset speed of instability.  

2) Fluid forces become more destabilizing with increasing leakage due to increase in 

the eye seal clearance and decrease in tooth height. 

3) Increasing interstage seal clearance with radially outward flow on the back shroud 

is insensitive to interstage seal whirl frequency ratio wf . 

4) Swirl and mass flow rate increases with increasing eye seal clearances. 

5) Rotordynamic force coefficients for the back shroud are negligible compared to 

the front shroud and seal coefficients. 

6) Interstage seal coefficients are comparable to the eye seal coefficients and cannot 

be ignored, as otherwise suggested by Fulton [9] 

7) Front shroud rotordynamic coefficients are small compared to the labyrinth seals, 

but the values become comparable for increased seal clearances. 

8) Radially inward flow on the back shroud is more destabilizing than radially 

outward flow. 
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9) Good estimation of the cross coupled stiffness k and direct damping C is possible 

using bulk-flow model. 

10) Reasonable estimation of the destabilizing transverse moment is possible using 

the bulk-flow model. 

11) Based on the predictions, shunt hole injection has the affect of changing the flow 

field of the division wall or balance piston, and has no major influence on the 

back shroud. This change of flow field can easily be accomplished by a swirl 

brake. 

 By using variable impeller geometry and calculating the pressure and velocity 

distribution along the impeller and seal leakage path, a physically meaningful 

interpretation of what happens inside the leakage path can be known. Improvements in 

the model might be achieved by incorporating energy equation to account for changing 

temperature. Different speed data would be needed to have a better comparison of the 

two models. Another drawback of the code is that it works only when there is leakage. 

Thus an alternative procedure would have to be developed to account for zero leakage. 

  In conclusion this compressible model would be an important improvement, 

since the currently used Wachel�s model does not give the separate contribution of seals 

and impellers nor does it gives a physical interpretation of the flow along impeller and 

seal geometry. Thus overall using a simple bulk flow approach, it is possible to calculate 

the rotordynamic coefficients for rotor stability and predict the stability.  
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APPENDIX  A 
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APPENDIX B 

 

 

 

Speed: 4000 rpm 

Front shroud and eye seal results in SI units. 

Stiffness matrix from seal 

    8589.2              0.30900E+06     

  -0.30900E+06    8589.2              

 

  Damping matrix from seal 

    383.50       -51.424         

    51.424        383.50         

 

Stiffness matrix  front shroud 

   -616.47        3767.7        321.05        872.83     

   -3767.7       -616.47        872.83       -321.05     

    462.03       -1190.8       -237.15       -326.64     

   -1190.8       -462.03        326.64       -237.15     

 

  Damping matrix front shroud 

    10.486        7.5403       -2.7104        3.4593     

   -7.5403        10.486        3.4593        2.7104     

   -3.4772       -2.8844        1.1253       -2.9344     

   -2.8844        3.4772        2.9344        1.1253     

 

  Mass matrix front shroud 

   0.13260E-01  -0.93219E-03  -0.67886E-02  -0.15223E-03 

   0.93219E-03   0.13260E-01  -0.15223E-03   0.67886E-02 

  -0.57678E-02  -0.21354E-03   0.60240E-02  -0.13180E-03 

  -0.21354E-03   0.57678E-02   0.13180E-03   0.60240E-02 
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Speed: 6000 rpm 

Front shroud and eye seal results in SI units: 

 

 Stiffness matrix from seal 

    29025.         0.62710E+06          

  -0.62710E+06    29025.           

 

  Damping matrix from seal 

    595.46       -116.51         

    116.51        595.46         

 

Stiffness matrix front shroud 

   -1608.1        8044.5        805.51        1951.6     

   -8044.5       -1608.1        1951.6       -805.51     

    1214.8       -2540.9       -495.86       -738.52     

   -2540.9       -1214.8        738.52       -495.86     

 

  

 Damping matrix front shroud 

    16.129        14.605       -4.2912        7.0383     

   -14.605        16.129        7.0383        4.2912     

   -5.3574       -6.3113        1.8141       -6.5096     

   -6.3113        5.3574        6.5096        1.8141     
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  Mass matrix front shroud 

   0.17005E-01  -0.69372E-03  -0.91408E-02  -0.63509E-04 

   0.69372E-03   0.17005E-01  -0.63509E-04   0.91408E-02 

  -0.82081E-02  -0.21629E-03   0.89226E-02  -0.14028E-03 

  -0.21629E-03   0.82081E-02   0.14028E-03   0.89226E-02 

 

 

Speed: 8000 rpm 

Front shroud and eye seal results in SI units: 

Stiffness Matrix from seal 

    63528.             0.97474E+06    .     

  -0.97474E+06    63528.            

     

 

  Damping matrix from seal 

    804.63       -182.64         

    182.64        804.63         

     

 

Stiffness matrix front shroud 

   -3300.8        13210.        1491.7        3274.9     

   -13210.       -3300.8        3274.9       -1491.7     

    2284.8       -4170.7       -667.88       -1263.1     

   -4170.7       -2284.8        1263.1       -667.88     

 

  Damping matrix front shroud 

    21.558        23.916       -5.8502        11.930     

   -23.916        21.558        11.930        5.8502     

   -7.1643       -11.042        2.5246       -11.478     

   -11.042        7.1643        11.478        2.5246     
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 Mass matrix front shroud 

   0.21017E-01  -0.74886E-03  -0.11677E-01  -0.10969E-03 

   0.74886E-03   0.21017E-01  -0.10969E-03   0.11677E-01 

  -0.10772E-01  -0.12120E-03   0.11912E-01  -0.98922E-04 

  -0.12120E-03   0.10772E-01   0.98922E-04   0.11912E-01 

 

 

BACK SHROUD UPWARD LEAKAGE: 

Units: SI 

Speed: 4000 rpm 

Stiffness matrix from seal 

   -583.54        26156.       

   -26156.       -583.54         

     

  Damping matrix from seal 

    100.72        -0.90355           

   0.90355        100.72         

 

Stiffness matrix back shroud 

   -2.7952        6.1314           -2.9701               -19.587     

   -6.1314       -2.7952          -19.587                2.9701     

   0.308E-01   0.62253      0.40777E-01     -1.0159     

   0.62253      -0.30890E-01    1.0159            0.40777E-01 

 

  Damping matrix back shroud 

 

   0.39848E-02  -0.15470E-02  -0.16824E-02   0.19202E-02 

   0.15470E-02   0.39848E-02   0.19202E-02   0.16824E-02 

   0.41433E-03   0.31341E-04   0.27270E-03  -0.39595E-04 

   0.31341E-04  -0.41433E-03   0.39595E-04   0.27270E-03 
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  Mass matrix back shroud 

  -0.64762E-05  -0.21987E-05  -0.78738E-05   0.29316E-05 

   0.21987E-05  -0.64762E-05   0.29316E-05   0.78738E-05 

   0.11019E-06  -0.60732E-06   0.13447E-06   0.82420E-06 

  -0.60732E-06  -0.11019E-06  -0.82420E-06   0.13447E-06 

 

Speed: 6000 rpm 

Stiffness matrix from seal 

   -540.19        56898.         

   -56898.       -540.19         

 

  Damping matrix from seal 

    156.38       -2.4188            

    2.4188        156.38             

 

Stiffness matrix back shroud 

   -8.1179        15.424       -9.2178        -48.359     

   -15.424       -8.1179       -48.359         9.2178     

   0.9967E-01    1.0569       0.12950       -1.7246     

    1.0569      -0.99671E-01    1.7246      0.12950     

 

  Damping matrix back shroud 

   0.11718E-01  -0.49736E-02  -0.36075E-02   0.62985E-02 

   0.49736E-02   0.11718E-01   0.62985E-02   0.36075E-02 

   0.51792E-03   0.95988E-04   0.32822E-03  -0.12192E-03 

   0.95988E-04  -0.51792E-03   0.12192E-03   0.32822E-03 
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 Mass matrix back shroud 

  -0.10407E-04  -0.38919E-05  -0.12725E-04   0.54860E-05 

   0.38919E-05  -0.10407E-04   0.54860E-05   0.12725E-04 

   0.18265E-06  -0.42513E-06   0.22315E-06   0.62783E-06 

  -0.42513E-06  -0.18265E-06  -0.62783E-06   0.22315E-06 

 

Speed: 8000 rpm 

Stiffness matrix from seal 

    299.02        96256.        

   -96256.        299.02         

    

 

  Damping matrix from seal 

    213.25       -3.7887        

    3.7887        213.25       

 

Stiffness matrix back shroud 

   -16.791        26.464       -19.967       -86.114     

   -26.464       -16.791       -86.114        19.967     

   0.21712        1.1171       0.28612       -2.0903     

    1.1171      -0.21712        2.0903       0.28612     

 

  Damping matrix back shroud 

   0.26029E-01  -0.10607E-01  -0.50461E-02   0.13694E-01 

   0.10607E-01   0.26029E-01   0.13694E-01   0.50461E-02 

   0.87411E-03   0.20300E-03   0.57004E-03  -0.26140E-03 

   0.20300E-03  -0.87411E-03   0.26140E-03   0.57004E-03 
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 Mass matrix back shroud 

  -0.14533E-04  -0.64473E-05  -0.18027E-04   0.93959E-05 

   0.64473E-05  -0.14533E-04   0.93959E-05   0.18027E-04 

   0.26158E-06  -0.55199E-06   0.32336E-06   0.75905E-06 

  -0.55199E-06  -0.26158E-06  -0.75905E-06   0.32336E-06 

 

BACK SHROUD INWARD LEAKAGE: 

Units: SI 

Speed: 4000 rpm 

Stiffness matrix from seal 

    4622.5        81005.         

   -81005.        4622.5         

   

Damping matrix from seal 

    100.31       -18.163        

    18.163        100.31        

 

Stiffness matrix back shroud 

    5.0606        12.560        40.714       -34.719     

   -12.560        5.0606       -34.719       -40.714     

    49.086       0.69243        261.46       -11.272     

   0.69243       -49.086        11.272        261.46     

 

 Damping matrix back shroud 

   0.44060E-01   0.13036       0.12071      -0.40900     

  -0.13036       0.44060E-01  -0.40900      -0.12071     

   0.42370E-01   0.39408       0.21746       -1.6504     

   0.39408      -0.42370E-01    1.6504       0.21746     

 

 

 



 

 

88

  Mass matrix back shroud 

   0.32717E-03  -0.13177E-04   0.10392E-02   0.50635E-04 

   0.13177E-04   0.32717E-03   0.50635E-04  -0.10392E-02 

   0.10426E-02  -0.13537E-04   0.44405E-02   0.55614E-04 

  -0.13537E-04  -0.10426E-02  -0.55614E-04   0.44405E-02 

 

 

Speed: 6000 rpm 

Stiffness matrix from seal 

    14491.       0.19628E+06     

  -0.19628E+06    14491.      

   

  Damping matrix from seal 

    162.17       -37.827         

    37.827        162.17        

     

  Stiffness matrix back shroud 

    23.725        31.590        165.37       -89.913     

   -31.590        23.725       -89.913       -165.37     

    191.65       -2.2409        1024.8       -23.756     

   -2.2409       -191.65        23.756        1024.8     

 

  Damping matrix back shroud 

   0.77844E-01   0.29924       0.21811      -0.94140     

  -0.29924       0.77844E-01  -0.94140      -0.21811     

   0.88379E-01   0.91974       0.42426       -3.8641     

   0.91974      -0.88379E-01    3.8641       0.42426     
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  Mass matrix back shroud 

   0.49881E-03  -0.18013E-04   0.15874E-02   0.64799E-04 

   0.18013E-04   0.49881E-03   0.64799E-04  -0.15874E-02 

   0.15964E-02  -0.22720E-04   0.68106E-02   0.79235E-04 

  -0.22720E-04  -0.15964E-02  -0.79235E-04   0.68106E-02 

 

Speed: 8000 rpm 

Stiffness matrix from seal 

    32002.               0.37123E+06     

  -0.37123E+06    32002.                

  Damping matrix from seal 

    233.87       -62.222         

    62.222        233.87        

 

Stiffness matrix from seal 

    62.615        61.612         

   -61.612        62.615        

     

  Damping matrix back shroud 

 

   0.12058       0.53718       0.34271       -1.6974     

  -0.53718       0.12058       -1.6974      -0.34271     

   0.15001        1.6631       0.69664       -7.0274     

    1.6631      -0.15001        7.0274       0.69664     

 

  MASS MATRIX 

 

   0.67053E-03  -0.22790E-04   0.21442E-02   0.80243E-04 

   0.22790E-04   0.67053E-03   0.80243E-04  -0.21442E-02 

   0.21521E-02  -0.32186E-04   0.92245E-02   0.11016E-03 

  -0.32186E-04  -0.21521E-02  -0.11016E-03   0.92245E-02 
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SPEED: 11218 rpm 

Pexit: 97 bar 

 

Stiffness matrix from seal 

    86147.       0.82646E+06     

  -0.82646E+06    86147.        

  

 Damping matrix from seal 

    379.17       -117.18         

    117.18        379.17         

 

Stiffness matrix back shroud 

    192.99        134.57        1275.0       -397.11     

   -134.57        192.99       -397.11       -1275.0     

    1410.0       -37.012        7649.5       -81.803     

   -37.012       -1410.0        81.803        7649.5     

 

  Damping matrix back shroud 

   0.20535        1.0721       0.58948       -3.4109     

   -1.0721       0.20535       -3.4109      -0.58948     

   0.28177        3.3589        1.2470       -14.219     

    3.3589      -0.28177        14.219        1.2470     

 

  Mass matrix back shroud 

   0.95645E-03  -0.30882E-04   0.30796E-02   0.10420E-03 

   0.30882E-04   0.95645E-03   0.10420E-03  -0.30796E-02 

   0.30833E-02  -0.48943E-04   0.13243E-01   0.15466E-03 

  -0.48943E-04  -0.30833E-02  -0.15466E-03   0.13243E-01 
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APPENDIX C 

 

Front shroud and eye seal 

Units: SI 

 
With 2x clearance and 1/2height: 
mass leakage rate=          1.1364Kg/sec 
Tangential velocity ratio ( 0θu ) seal inlet =  0.80 
 
 
 Stiffness matrix from seal 
 
    80475.       0.91271E+06    .     
  -0.91271E+06    80475.        
     
 
  Damping matrix from seal 
 
    571.99       -88.148         
    88.148        571.99         
     
 
Stiffness matrix front shroud 
 
   -14771.        48684.        7051.4        11964.     
   -48684.       -14771.        11964.       -7051.4     
    9102.2       -15343.       -4523.6       -4320.7     
   -15343.       -9102.2        4320.7       -4523.6     
 
  Damping matrix front shroud 
 
    48.684        52.237       -13.143        25.697     
   -52.237        48.684        25.697        13.143     
   -16.404       -23.106        5.6833       -23.923     
   -23.106        16.404        23.923        5.6833     
 
  Mass matrix front shroud 
 
   0.30331E-01  -0.51399E-03  -0.16843E-01   0.18636E-03 
   0.51399E-03   0.30331E-01   0.18636E-03   0.16843E-01 
  -0.15180E-01  -0.55863E-03   0.16906E-01  -0.28477E-03 
  -0.55863E-03   0.15180E-01   0.28477E-03   0.16906E-01 
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With 3x clearance and 1/3height: 
 
Stiffness matrix from seal 
 
    41413.       0.62631E+06         
  -0.62631E+06    41413  
  
 
 Damping matrix from seal 
 
    360.79       -36.367         
    36.367        360.79         
 
Stiffness matrix front shroud 
 
   -21538.        74411.        10199.        17476.     
   -74411.       -21538.        17476.       -10199.     
    11798.       -23098.       -7198.5       -6106.1     
   -23098.       -11798.        6106.1       -7198.5     
 
  Damping matrix front shroud 
 
    67.646        58.987       -17.834        28.220     
   -58.987        67.646        28.220        17.834     
   -22.650       -24.152        7.5010       -24.893     
   -24.152        22.650        24.893        7.5010     
 
  Mass matrix front shroud 
 
   0.32963E-01  -0.86012E-03  -0.17940E-01   0.25482E-03 
   0.86012E-03   0.32963E-01   0.25482E-03   0.17940E-01 
  -0.15552E-01  -0.91223E-03   0.17126E-01  -0.45014E-03 
  -0.91223E-03   0.15552E-01   0.45014E-03   0.17126E-01 
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Back shroud and interstage seal with upward leakage 
Units: SI 
With 2x clearance and 1/2height 

 

  Stiffness matrix from seal 

    1103.1        82076  

   -82076.        1103.1         

    

Damping matrix from seal 

    146.72      -0.66607        

   0.66607        146.72       

 

  Stiffness matrix back shroud 

   -30.680        25.583       -37.736       -196.09     

   -25.583       -30.680       -196.09        37.736     

   0.35897        8.9281       0.56855       -11.426     

    8.9281      -0.35897        11.426       0.56855     

 

  Damping matrix back shroud 

 -0.12937E-01  -0.49111E-01  -0.57703E-01   0.57889E-01 

   0.49111E-01  0.12937E-01   0.57889E-01   0.57703E-01 

   0.69813E-03   0.91888E-03   0.78360E-03  -0.10922E-02 

   0.91888E-03  -0.69813E-03   0.10922E-02   0.78360E-03 

 

  Mass matrix back shroud 

  0.39446E-04  -0.12884E-04  -0.47580E-04   0.17622E-04 

   0.12884E-04  0.39446E-04   0.17622E-04   0.47580E-04 

   0.73904E-06  -0.42820E-06   0.89406E-06   0.15309E-05 

  -0.42820E-06  -0.73904E-06  -0.15309E-05   0.89406E-06 
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With 3x clearance and 1/3height 
 
 
Stiffness matrix from seal 
 
    449.84        53689  
   -53689.        449.84      
 
    
  Damping matrix from seal 
 
    93.840      -0.27587       
   0.27587        93.840       
 
 
  Stiffness matrix back shroud 
 
   -14.960        9.6746       -19.237       -213.22     
   -9.6746       -14.960       -213.22        19.237     
   0.48198E-01    15.404       0.26535       -24.968     
    15.404      -0.48198E-01    24.968       0.26535     
 
  Damping matrix back shroud 
 
  0.51717E-01  -0.62887E-01  -0.91880E-01   0.71700E-01 
  0.62887E-01   0.51717E-01   0.71700E-01   0.91880E-01 
  0.10040E-02   0.11712E-02   0.90317E-03  -0.13462E-02 
  0.11712E-02  -0.10040E-02   0.13462E-02   0.90317E-03 
 
  Mass matrix back shroud 
 
  0.50162E-04  -0.17501E-04  -0.60261E-04   0.22814E-04 
   0.17501E-04   0.50162E-04   0.22814E-04   0.60261E-04 
   0.94066E-06  -0.91847E-06   0.11335E-05   0.16760E-05 
  -0.91847E-06  -0.94066E-06  -0.16760E-05   0.11335E-05 
 
 

 

 

 

 

 



 

 

95

VITA 

 

 

MANOJ KUMAR GUPTA 

 

Plot No. 22, 50-58-1/9, Rajendranagar 

Visakhapatnam, India 530016 

 

 Manoj was born in India. He graduated from the Indian Institute of Technology-

Madras in 2003 with a B.Tech. in naval architecture and ocean engineering. His current 

interest is in turbomachinery. His B.Tech thesis was on finite element modeling and 

response determination of rudder using NASTRAN/PATRAN under Dr. Springer and Dr. 

C.P. Vendhan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


