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ABSTRACT 

 

Immunohistochemical Fiber Typing, Ultrastructure, and Morphometry of Harbor 

Seal Skeletal Muscles.  (May 2004) 

Rebecca Reiko Watson, B.A., Vassar College; 

M.A., California State University, Fullerton 

Chair of Advisory Committee:  Dr. Randall Davis 

There is strong evidence that the skeletal muscles of pinnipeds are adapted 

for an aerobic, lipid-based metabolism under the hypoxic conditions associated 

with breath-hold diving.  However, regional variations in mitochondrial density 

are unknown, and the few fiber typing studies performed on pinniped skeletal 

muscles are not consistent with an aerobic physiological profile.  Thus, the 

objectives of this study were to (1) reexamine the fiber type distribution 

throughout the primary locomotory muscles of the harbor seal, and (2) to better 

understand the density and distribution of mitochondria in the locomotory 

muscles.  Multiple samples from transverse sections of the epaxial muscles and 

a single sample of the pectoralis muscle of wild harbor seals were analyzed 

using immunohistochemical fiber typing and electron microscopy.  Fiber typing 

results indicated that harbor seal epaxial muscles are composed of 47.4% type I 

(slow twitch, oxidative) fibers and 52.8%, IIa (fast twitch, oxidative) fibers.  No 

fast twitch, glycolytic (type IIb) fibers were detected in the epaxial muscles or the 

pectoralis muscle.  Mean volume density of mitochondria [Vv(mt,f)] was 5.6%, 

which is elevated over what would be predicted for a terrestrial mammal of 

similar mass.  The elevated Vv(mt,f) had a high proportion of intermyofibrillar 
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mitochondria, a trait not normally found in the muscles of terrestrial mammals 

with elevated Vv(mt,f).  These results provide further evidence that the elevated 

mitochondrial volume density in pinniped muscle decreases the oxygen diffusion 

distance between myoglobin and mitochondria to facilitate aerobic respiration in 

working muscles.  In addition, analyses of heterogeneity revealed that the 

regions of the epaxial muscles that were located deep within the muscle showed 

a significantly higher Vv(mt,f) relative to those regions that were superficially-

located.  In contrast, there was no significant heterogeneity of fiber type detected 

in either plane of the epaxial muscles.  Thus, there was a fine-scale pattern of 

spatial heterogeneity of Vv(mt,f) within the epaxial muscles that does not 

manifest in fiber type distribution, indicating that the fibers have similar oxidative 

capacities.
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_________________ 

This dissertation follows the style and format of The Journal of Experimental 
Biology. 

 

CHAPTER I 

INTRODUCTION 

 

The aquatic environment imposes a host of physiological constraints on air-

breathing mammals that dive and swim at depth.  Yet there are a myriad of 

behavioral, morphological, and physiological adaptations exhibited by marine 

mammals that enable them to efficiently exploit the underwater habitat.  Current 

knowledge of marine mammal diving physiology is largely based on data 

collected from studies involving pinnipeds (Otariidae, Phocidae, and 

Odobenidae).  Of the pinnipeds, the phocids (the earless or “true” seals) are the 

most elite divers in both dive depth and duration.  In phocids, the components of 

the classical dive response triad of apnea, bradycardia, and peripheral 

vasoconstriction (Scholander, 1940) are now known to be graded events that 

are correlated with dive duration and and appear to be under limited voluntary 

control.  During a dive, seals reduce cardiac output by effecting a decrease in 

heart rate and, in some species, stroke volume (Ponganis et al., 1990).  Diving 

heart rate can slow to 5-10 beats.min-1 or less in some of the deeper- and longer 

duration-diving species, but typical diving heart rates in phocids are normally 2-5 

times lower than normal eupneic heart rate, regardless of swim velocity during 

the dive (Jones et al., 1973; Thompson and Fedak, 1993; Butler and Jones, 

1997).  Associated with bradycardia is the readjustment of circulation by 

peripheral vasoconstriction to maintain central arterial blood pressure.  Thus, 
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during the dive response, most organs and tissues undergo ischemic hypoxia 

due to oligaemia.  The exceptions are the heart and central nervous system. 

Vasoconstriction complicates the partitioning of oxygen and fuel substrates 

among organs and tissues during the inevitable progressive hypoxic hypoxia 

that occurs throughout a dive’s duration.  Thus, early experimentation with 

forcibly submerged pinnipeds (‘simulated’ dives) invoked an extreme dive 

response that resulted in elevated post-dive concentrations of circulating lactic 

acid (Butler and Jones, 1997).  To explain these observations, it was 

hypothesized that pinnipeds were able to dive for extended periods of time 

because they possessed an enhanced anaerobic metabolic capacity compared 

to that of terrestrial mammals (Butler and Jones, 1997).  However, Castellini et 

al. (1981) cast initial doubt on this theory when key glycolytic enzyme activities 

measured in the organs and muscles of a variety of marine mammals were 

similar to the activities measured in tissues collected from a variety of terrestrial 

mammals.  Evidence of enhanced anaerobic metabolism, if present, was not 

manifest at the tissue level. 

The introduction of new technology provided the opportunity to study diving 

physiology in seals under semi-natural conditions.  Research on Weddell seals 

(Leptonycotes weddellii) diving freely from isolated ice-holes in Antarctica 

enabled Kooeyman et al. (1980, 1983) to establish a maximum dive duration 

that could be accomplished without incurring a net post-dive elevation in plasma 

lactic acid concentration.  This concept became known as the aerobic dive limit 

(ADL) and varies according to species.  Subsequent research on a variety of 
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pinnipeds showed that routine dives were largely aerobic in nature, with few 

exceptions (e.g., elephant seals (Boyd and Croxall, 1996)).   

The observation that seals maintain aerobic metabolism during diving places 

emphasis on the ability of pinnipeds to efficiently manage their body oxygen 

stores.  Aside from coping with the large hydrostatic pressures associated with 

depth, the ability to partition blood and muscle oxygen stores among tissues to 

balance oxygen supply with metabolic demand is paramount to successful diving 

and survival.  Investigations of the structural and biochemical adaptations in 

locomotory muscles of pinnipeds that enable the efficient storage, transport, and 

utilization of oxygen provide empirical evidence that furthers the understanding 

of diving physiology. 

 
Phocid swimming and the swimming muscle architecture 

 

Kinematics 

Aquatic locomotion in phocids is dissimilar to that of other mammals, with the 

exception of the odobenids (walrus).  Thus knowledge of their swimming 

mechanics and the gross anatomy of their locomotory musculature aids in the 

establishment of structure-function relationships related to oxygen management. 

Unlike the cetaceans, which generate thrust via oscillating dorsiventral sweeps 

of the tail flukes, the phocids and the odobenids swim primarily by lateral 

undulations of the hind end.  Phocids were previously thought to fall into the 

carangiform mode of fish swimming classifications, but kinematic analyses of 

seals swimming in flumes revealed propulsive characteristics that were more 

similar to thunniform swimming motions (Fish et al., 1988).  During steady 
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swimming in seals, the lateral undulations of the posterior half of the body is 

accompanied by alternating dorsiflexion of the hind flippers, whose associated 

tibia-fibula complex resembles the caudal peduncle or tailstock of thunniform 

swimmers such as tuna (Fish et al., 1988).  The foreflippers are normally 

adducted against the body during forward propulsion, however, they may be 

abducted to achieve directional changes and thus appear to serve as rudders.  

Howell (1929) also notes that captive seals that are loafing in the water use their 

pectoral flippers in a manner that bears resemblance to the water treading 

motions of humans.  However, forward locomotion in phocids is primarily 

achieved by the well-developed epaxial musculature. 

 

Locomotory muscle gross anatomy 

A detailed dissection of the ringed seal (Phoca hispida) musculoskeletal 

system, accompanied by a comparison with otariid anatomy, was described in 

the early 20th century by Howell (1929).  The dominant swimming muscles of the 

seal are primarily the erector spinae muscles (or long system of the back), which 

appear to be well-adapted for flexion in the lateral plane due to the prominent 

iliocostalis and longissimus muscles (Howell, 1929).  Moreover, the vertebral 

spinous processes are low and the surface area of the vertebral articulations is 

high; both of these features restrict dorsiventral movement of the vertebral 

column to some degree (Howell, 1929).  During swimming, the neck and anterior 

thorax of phocids act as a fulcrum for the active epaxial muscles of the posterior 

thorax and lumbar region (Howell, 1929).  The posterior third of the epaxial 

musculature is particularly massive and originates at the ilium.  Craniad, they 
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become less discrete and separate into slips that insert into various places along 

the ribs and vertebral processes (Howell, 1929). 

Historically, the relative length and angle of pinnation of the epaxial muscles 

in pinnipeds have not been studied beyond qualitative observations during 

dissections.  In bottlenose dolphins (Tursiops truncatus), the epaxial 

musculature appeared to be optimized for tendon displacement and velocity 

(angle of pinnation with respect to tendon= 15º), while the hypaxial musculature 

appeared organized to maximize force generation (Goforth, 1983, Roy et al., 

1983).  These distinct differences between the dorsal and ventral muscle 

systems lead the authors to hypothesize that the power stroke in dolphins is in 

the downward motion.  Kinematic analyses and hydrodynamic modeling of 

dolphin locomotion later provided supporting evidence for this theory, at least 

during slow swimming speeds (<3.2 m.s-1) (Videler and Kamermans, 1985).  In 

comparison, Howell’s (1929) description and illustration of the phocid epaxial 

musculature indicate elongate fibers that are oriented approximately parallel to 

the vertebral column in a manner that is roughly analogous to the arrangement 

of the dolphin epaxial muscles.  This anecdotal observation implies little 

evidence of muscle pinnation in the seal.  Thus gross morphology of the epaxial 

muscles appears to be organized for high muscular excursion and contraction 

velocity rather than enhancement of force production. 

 

Fiber type composition and distribution 

In general, there is a dearth of information regarding fiber type composition 

and distribution in the skeletal muscles of pinnipeds.  Two separate studies 
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found that harbor seal epaxial muscles have approximately 45% type I or slow 

oxidative fibers (SO), 45% type IIb or fast-glycolytic fibers (FG), and 10% type 

IIa or fast oxidative-glycolytic fibers (FOG) (Table 1) (Hochachka and Foreman, 

1993; Reed et al., 1994).  Deep divers such as the grey seal and Weddell seal 

had a higher population of type I or SO fibers compared to the harbor seal, 

whereas the swimming muscles of the more active otariids possessed a higher 

population of FG fibers (Table 1) (Reed et al., 1994; Kanatous et al., 2002). 

All of these studies applied a variant of the original Padykula and Herman 

(1955) histochemical staining technique, which differentiates muscle fibers into 

type I (slow) and type II (fast) fibers by the activity of myofibrillar ATPase.  

Further division of the type II classification (into type IIa and IIb or FOG and FG) 

was achieved by staining for enzymatic indicators of aerobic capacity, such as 

NADH tetrazolium reductase and succinate dehydrogenase (Ponganis and 

Pierce, 1978; Hochachka and Foreman, 1993; Reed et al., 1994).  Kanatous et 

al. (2002) applied a novel procedure by using an ATPase-based metachromatic 

stain in conjunction with immunohistochemistry to classify fiber types in the 

muscles of Weddell seals.  Immunohistochemical (IHC) fiber typing exploits the 

antigenic properties of the myosin protein to differentiate between myosin heavy 

chain isoforms, which vary according to rate of contraction (Pette and Staron, 

1990).  The results of IHC fiber typing of the longissimus dorsi of the Weddell 

seal showed 67% type I fibers, 33% type IIa fibers, and no type IIb fibers (Table 

1).  The pectoralis muscle likewise did not have type IIb fibers.  These results 

contradict all previous pinniped fiber typing data and the resolution of this 

discrepancy forms the basis of the first manuscript of this dissertation. 
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Table 1.  Fiber types in pinniped locomotory skeletal muscles.  Compilation of results from the literature.  Fiber type 
populations are expressed as a percent of total count.  Values in parentheses are the number of individuals 
sampled.  An asterisk (*) denotes a secondary swimming muscle. 

 

Species (n) Common name muscle Reference
Slow twitch

Phoca vitulina (4) Harbor seal longissimus dorsi, deep 48% type I 9%  type IIA 43%  type IIB Hochachka and Foreman, 1993
longissimus dorsi, superficial 43% type I 9%  type IIA 49%  type IIB Hochachka and Foreman, 1993
iliocostalis, deep 48% type I 3%  type IIA 49%  type IIB Hochachka and Foreman, 1993
iliocostalis, superficial 40% type I 12% type IIA 49%  type IIB Hochachka and Foreman, 1993
pectoralis*, deep 13% type I 35% type IIA 52%  type IIB Hochachka and Foreman, 1993
pectoralis*, superficial 27% type I 20% type IIA 53%  type IIB Hochachka and Foreman, 1993

Halichoerus grypus (7) Grey seal longissimus dorsi 55% SO 6%  FOG  36%  FG Reed et al., 1994
Phoca vitulina (6) Harbor seal longissimus dorsi 47% SO 6%  FOG  47%  FG Reed et al., 1994
Arctocephalus gazella (1) Antarctic fur seal pectoralis 10% SO 28% FOG  61%  FG Reed et al., 1994

latissimus dorsi 32% SO 11% FOG 58%  FG Reed et al., 1994
Arctocephalus gazella (1) Antarctic fur seal pectoralis 14% SO 30% FOG  57%  FG Reed et al., 1994

latissimus dorsi 29% SO 19% FOG  52%  FG Reed et al., 1994
Eumetopias jubatus (1) Stellar sea lion unspecified 20% SO 27% FOG 53%  FG Kanatous et al., 1999
Leptonychotes weddelli (13) Weddell seal longissimus dorsi, deep 67% type I 33% type IIA 0%  type IIB Kanatous et al., 2002

pectoralis*, deep 41% type I 59% type IIA 0%  type IIB Kanatous et al., 2002

Fast twitch
fiber type
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Hochachka and Foreman (1993) found that fiber type composition in pinniped 

skeletal muscles varied with sampling depth, indicating intramuscular 

heterogeneity of fiber types.  Such regional heterogeneity has been described in 

the skeletal muscles of a variety of terrestrial mammals and may function to 

partition force generation during the activation of motor units (Hoppeler et al., 

1981; Armstrong et al., 1982; Armstrong and Phelps, 1984; Suzuki and Tamate, 

1988; Rivero et al., 1993; Grotmol et al., 2002). 

 

Metabolic characteristics of pinniped skeletal muscle metabolism 

 

One of the physiological hallmarks of diving endotherms (birds and mammals) 

is the presence of elevated myoglobin (Mb) concentrations within their muscles 

(Cherepanova et al., 1993; Hochachka and Foreman, 1993; Reed et al., 1994; 

Ponganis et al., 1997; Kanatous et al., 1999, 2002; Polasek and Davis, 2001).  

In seals, there is a strong correlation between body mass, Mb content, and 

diving ability; the higher the body mass and Mb concentrations the, longer the 

maximum dive duration (Kooyman and Ponganis, 1998).  Myoglobin is an 

intramuscular, monomeric oxygen-binding pigment related to hemoglobin and 

also binds oxygen reversibly.  However, Mb has a higher affinity for oxygen 

compared to Hb, so when partial pressures of oxygen (PO2) are high, Mb loads 

oxygen at a higher rate than Hb.  Conversely, Mb dissociates from oxygen at a 

lower PO2 compared to Hb.  This characteristic prevents the transfer of oxygen 

from muscle Mb to blood Hb during systemic circulation (Wittenberg and 

Wittenberg, 1989). 
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The high intramuscular Mb concentrations found in pinnipeds allows the 

animal’s own muscles to serve as oxygen depots during diving.  Thus, despite 

the hypoxia and ischemia associated with diving, evidence indicates that 

locomotory muscles function using primarily ATP that has been derived from 

aerobic metabolism.  Analysis of tissue homogenates shows that the 

biochemical pathways of pinniped skeletal muscles are poised for oxidative 

metabolism derived from fatty acids. Elevated Mb concentrations and elevated 

enzymatic activity of citrate synthase (a key enzyme in the Kreb’s cycle) in 

pinniped skeletal muscles are consistent and indicate a high capacity for 

oxidative metabolism (Ponganis and Pierce, 1978; Hochachka and Foreman, 

1993; Reed et al., 1994; Kanatous et al., 1999, 2002; Polasek and Davis, 2001; 

Polasek et al., in prep).  Likewise, elevated activities of enzymes involving fatty 

acid transport into the mitochondria (carnitine palmitoyltransferase and carnitine 

acetyltransferase) and β-oxidation (β-hydroxyacyl CoA dehydrogenase) in the 

skeletal muscles of phocids and otariids indicate that fatty acids are the 

preferred substrate for oxidation (Ponganis and Pierce, 1978; Hochachka and 

Foreman, 1993; Reed et al., 1994; Kanatous et al., 1999, 2002; Polasek and 

Davis, 2001; Polasek et al., in prep;). 

Patterns in the maximal activities of enzymes involved with the glycolytic 

pathway are less consistent.  As previously mentioned, some studies showed 

that there was no evidence of elevated lactate dehydrogenase (LDH) capacity in 

the muscles of marine mammals compared with terrestrial mammals (Castellini 

et al., 1981; Reed et al., 1994).  Conversely, evidence of elevated LDH activity in 

the skeletal muscles of pinnipeds has also been demonstrated (Hochachka and 

Foreman, 1993; Polasek et al., in prep).  Hochachka and Foreman (1993) 
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assayed LDH in both directions (towards pyruvate production and lactate 

production) and concluded that the LDH enzyme kinetics favored flux towards 

pyruvate oxidation.  However, Davis (1983) showed that in harbor seals, lactate 

oxidation contributed very little (<6%) to resting energy production and 

concluded that lactate was preferentially recycled rather than oxidized.  Although 

there remains no general consensus about the subject, it is possible that 

elevated anaerobic capability in the skeletal muscles of pinnipeds may function 

to provide energy when aerobic metabolic sources are insufficient during 

‘emergency’ situations, such as an unexpected delay in emergence or escape 

from predators. 

Concurrent with elevated mitochondrial enzyme activities is the elevation of 

the volume density of mitochondria in the skeletal muscles of pinnipeds 

(Kanatous et al., 1999, 2001, 2002).  Although measured volume densities are 

not elevated to the degree of some highly aerobic terrestrial athletes such as 

foxes and pronghorn antelope (Lindstedt et al., 1991; Bicudo et al., 1996;), in 

seals, the epaxial musculature has a mitochondrial volume that is elevated over 

that found in the locomotory muscles of less active mammals of similar mass 

(Hoppeler et al., 1981; Mathieu et al., 1981b).  The apparent paradox is that 

there is a mismatch between pinniped locomotory muscle mitochondrial volume 

density and maximum oxygen consumption, which is suspected to be low in 

seals (Davis et al., 1991, Kanatous et. al., 1999).  In addition, behavioral 

evidence shows that seals use cost-efficient modes of locomotion (such as 

burst-and-glide swimming) to maintain a low level of exertion while diving and 

have a low cost of transport that is comparable to that of terrestrial runners  

(Williams et al., 1999, 2000).  Thus it has been suggested that seals have an 
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elevated mitochondrial volume density to reduce the intramuscular diffusion 

distance of oxygen from oxymyoglobin stores to the mitochondria, thereby 

enhancing convective oxygen transport within the muscle (Kanatous et al., 

1999).  Implicit in this supposition is that mitochondria are dispersed throughout 

the muscle without displaying any regional clustering.  In the latter case, 

measured mitochondria volume density may be high, but oxygen diffusion is not 

enhanced because the distribution of mitochondria does not facilitate diffusion 

by reduction of diffusion distance.  Quantitative mitochondrial distribution has not 

been studied in any marine mammal, and the second manuscript of this 

dissertation seeks to describe the relationship between elevated mitochondrial 

volume density and mitochondrial distribution within the locomotory muscles of a 

phocid. 
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CHAPTER II 

IMMUNOHISTOCHEMICAL FIBER TYPING OF 

 HARBOR SEAL SKELETAL MUSCLE 

 

Introduction 

 

The skeletal muscles of marine mammals are well adapted for maintaining 

aerobic metabolism under the hypoxic conditions that occur during diving. In 

previous studies, investigators reported high mitochondrial volume densities and 

elevated enzyme activities that support an aerobic, lipid-based metabolism in the 

skeletal muscles of some pinnipeds (Order Carnivora, Family Pinnipedia: seals, 

sea lions and walrus) (Hochachka and Foreman, 1993; Reed et al., 1994; 

Kanatous et al., 1999, 2002). Myoglobin concentrations in the skeletal muscles 

of both cetaceans (Family Cetacea: whales and dolphins) and pinnipeds are 

elevated 10–20× compared to terrestrial mammals and provide an endogenous 

source of oxygen during dives (Cherepanova et al., 1993; Kanatous et al., 1999, 

2002; Polasek and Davis, 2001). The high mitochondrial volume densities and 

myoglobin concentrations enhance the intracellular diffusion of oxygen into 

mitochondria under low oxygen partial pressure (Kanatous et al., 1999). In 

contrast, there appears to be little enhancement of glycolytic enzyme activities in 

pinniped skeletal muscle and other organs compared to terrestrial mammals 

(Castellini et al., 1981). These observations are in agreement with the well-

accepted theory that marine mammals maintain aerobic metabolism during most 

voluntary dives (Kooyman et al., 1981, 1983; Davis, 1983; Thompson and 

Fedak, 1993; Butler and Jones, 1997).  
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There have been a few attempts to quantify fiber type composition in marine 

mammal skeletal muscles. Histochemical ATPase staining of the swimming 

muscles of seals has shown an average numerical composition of approximately 

46% type I (slow twitch, oxidative fibers), 46% type IIb (fast twitch, glycolytic 

fibers), and the balance type IIa (fast twitch, oxidative fibers) (Hochachka and 

Foreman, 1993; Reed et al., 1994). These results appear to conflict with the 

suggestion that skeletal muscles of seals are adapted for aerobic metabolism, 

since type IIb fibers characteristically do not possess high concentrations of 

mitochondria or myoglobin. Although the two studies measured the oxidative 

capacity of the fibers by staining for NADH diaphorase and succinate 

dehydrogenase (SDH) activity, neither reported the results. Fiber typing of 

biopsies taken from the locomotory (epaxial) muscles of one Pacific white-sided 

dolphin Lagenorhynchus obliquidens and the hypaxial and epaxial muscles of 

one live and one dead bottlenose dolphin Tursiops truncatus showed 

approximately 50% fast twitch, glycolytic fibers and 50% slow twitch, oxidative 

fibers (Ponganis and Pierce, 1978; Bello et al., 1983; Goforth, 1983). Of these, 

only Goforth (1983) performed SDH staining and verified that fast twitch, 

oxidative-glycolytic fibers were rare or absent due to the lack of staining overlap 

between SDH activity and fast twitch fibers. Recently, Kanatous et al. (2002) 

performed metachromatic histochemical staining of Weddell seal skeletal 

muscles and verified the results of the stain with immunohistochemical (IHC) 

fiber typing. They found that the epaxial muscles were composed of 

approximately 67% type I fibers, 33% type IIa fibers and no type IIb fibers 

(Kanatous et al., 2002). However, only 1–2 muscle samples from five animals 

were analyzed using immunohistochemistry, and it is possible that the biopsy 
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samples (ca. 0.5 g each) were not representative of the entire musculature. 

Kanatous et al. (2002) provides the only evidence to date to suggest a lack of 

type IIb fibers in a pinniped.  

The purpose of this study was to collect multiple samples from the primary 

(epaxial muscles) and secondary (M. pectoralis) swimming musculature of the 

harbor seal Phoca vitulina and apply IHC techniques to determine the fiber types 

present, quantify fiber type populations, and determine the distribution of fiber 

types within the muscle. Based on previous studies of enzyme activities, fiber 

typing and mitochondrial volume density, it was hypothesized that there would 

be a higher proportion of type I and type IIa fibers than type IIb fibers. The 

second hypothesis was that the fiber type distribution within the muscles would 

be heterogeneous (i.e. there would be fast twitch fibers located superficially and 

slow twitch fibers located deeper in the muscle). The results showed that all 

fibers in both of the muscles sampled were either type I or type IIa, which 

supports the fiber typing results of Kanatous et al. (2002). The pectoralis muscle 

possessed significantly more type IIa fibers than the epaxial muscles. In 

addition, fiber type distribution within the locomotory muscle did not show 

pronounced spatial heterogeneity. 

 

Materials and Methods  

 

Animals and sample collection 

Samples from locomotory and non-locomotory muscles were collected within 

6 h of death from adult and subadult harbor seals Phoca vitulina L. (two males 

and eight females; mean mass=46.1±13.5 kg) during a native subsistence hunt 
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in eastern Prince Williams Sound, Alaska. The epaxial muscles lie along the 

vertebral column (Fig. 1) and alternately contract and stretch to produce the 

lateral spinal flexions that generate thrust by the hind flippers during swimming 

(Fish et al., 1988). Muscle fibers of the epaxial musculature originate at the ilium, 

run approximately parallel to the spine, and terminate at various attachments to 

the ribs and vertebrae (Howell, 1929). The degree of muscle pinnation was not 

measured. The entire epaxial musculature along one side of the spine was 

removed (mean length=52.5±1.9 cm), weighed (mean mass=2.88±0.4 kg), and 

three transverse sections were taken in the cranial (CR), middle (MID) and 

caudal (CA) regions (Fig. 1). The CR transverse section was taken at the 

seventh cervical vertebra, MID was taken at the fourteenth thoracic vertebra, 

and CA was from the lower lumbar region. Seven samples (ca. 0.5 g) per 

transverse section were taken at points on a circular grid using a 6 mm stainless 

steel biopsy punch (Fig. 2). Muscle samples were placed in a phosphate-

buffered saline (PBS) solution containing 7% glycerol and 4% sucrose for 30 min 

prior to freezing in 3-methylbutane cooled with liquid nitrogen. After sample 

processing, a rectilinear grid was overlaid on the cross section, and the location 

of each of sample was determined relative to a true dorso–ventral and medio–

lateral orientation in the animal. Samples were transported back to Texas A&M 

University in liquid nitrogen and kept frozen at –70°C until analysis. For 

comparison with a secondary swimming muscle, a single sample was taken from 

the center of the intact m. pectoralis. 
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Immunohistochemical analysis of muscle fiber types  

Serial cross sections (7 µm thick) of frozen epaxial and pectoralis muscle 

samples were cut on a cryostat microtome and mounted on glass slides. 

Sections of muscle were fixed with cold AFA (50 ml of 37% zinc formalin + 370 

ml 95% ethanol + 25 ml glacial acetic acid) for 5 min and then hydrated for 10 

min in PBS prior to blocking. PowerBlock (InnoGenex, San Ramon, CA, USA) 

was added to the sections and incubated for 5 min at room temperature. 

Following removal of excess blocker, primary antibodies to the myosin heavy 

chains, type I (BA-D5), type IIa (SC-71) and type IIb (BF-F3) were added to the 

appropriate sections, and the slides were incubated at 4° C overnight in a humid 

chamber. Following incubation, slides underwent two 10 min washes in PBS 

with gentle rotation. After washing, a biotinylated goat anti-mouse Ig secondary 

antibody was added to the sections for 20 min at room temperature. After 

washing the slides as described above, streptavidin–alkaline phosphatase 

conjugate was added, and the sections were incubated for 20 min at room 

temperature. The conjugate was removed by washing (as in prior steps), and a 

solution of naphthol phosphate buffer and Fast Red dye was added. The 

sections were then incubated until adequate color development was observed, 

counterstained with Mayer’s Hematoxylin and mounted with Glycergel 

(DakoCytomation California Inc., Carpinteria, CA, USA). Fibers containing the 

myosin heavy chains expressed a red color following exposure to the 

immunohistochemical staining procedure. Samples were analyzed using a 

BIOQUANT image analysis system (R&M Biometrics, Inc., Nashville, TN, USA).  

This system consists of an Olympus BX-60 microscope (Olympus America Inc.,  
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Fig. 1. Schematic diagram illustrating the approximate locations of the three 
transverse sections taken from the epaxial muscles.  CR, cranial transverse 
section; MID, middle transverse section; and CA, caudal transverse section.  
(Image not drawn to scale). 
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Fig. 2.  Representative caudal transverse section showing the coring pattern of 
samples (grey circles) collected from the epaxial muscles and the statistical 
division used for testing homogeneity within the transverse section.  The red line 
represents the natural vertical axis of the animal and the black line represents 
the line drawn at a 45 degree angle to the vertical axis to divide the epaxial 
muscles into deep and superficial regions. 
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Melville, NY, USA) with an attached Optronics (Goleta, CA, USA) DEI 470 

camera interfaced with a personal computer. All artifact-free fibers were counted 

at a total magnification of 100× for each serial section (between 300–1500 fibers 

per section) and characterized as type I, type IIa, type IIb or ‘unstained’, as 

described by Schiaffino et al. (1989). Cells that showed inconsistent, light 

staining due to non-specific binding of the antibody were considered ‘unstained’. 

The relative abundance of fiber types for each section was determined and is 

presented as a percentage of the total number of fibers counted. Serial muscle 

sections were also examined for IIx fibers (i.e. fibers that expressed no staining 

following exposure to any of the heavy chain antibodies). 

 

Verification of antibody reactivity  

A combination of mouse anti-rat primary antibody and goat anti-mouse 

secondary antibody was used to differentiate between three myosin heavy chain 

isoforms.  Western blot analysis (data not shown) and SDS-PAGE (Fig. 3) 

verified that the fiber types of seals matched the electrophoretic properties of rat 

fiber types. Antibody reactivity verification was performed in serial sections of 

Weddell seal skeletal muscle subjected to both IHC fiber typing and a traditional 

histochemical staining procedure. Fiber type populations were similar for both 

methodologies (Kanatous et al., 2002). 

 

Data analysis  

Fiber type distribution was analyzed along the length of the epaxial muscles by 

comparing average fiber type percentages among the CR, MID and CA sections. 

To analyze fiber type distribution with respect to proximity to the vertebrae, the 
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seven samples of the CR, MID and CA sections were divided into one of two 

categories, ‘deep’ or ‘superficial’. A 3-factor analysis of variance (ANOVA) was 

applied using Minitab statistical software. By using a 3-factor ANOVA, the 

distribution of fibers in both the lateral and longitudinal planes of the epaxial 

muscles could be simultaneously analyzed.  The fixed factors were ‘section’ 

(either CR, MID or CA) and ‘proximity’, and the random effects factor was the 

individual animal. For fixed factor ‘proximity’, the samples of each section were 

grouped into two categories in the following manner. The grid used to identify 

the seven sample locations was divided into two sections delineated by the 

equation y=–1x+0. Samples that fell on either side of the line were pooled into 

two categories depending on their location within the muscle in vivo: either 

‘deep’ or ‘superficial’ to the vertebral column (Fig. 2). Samples that fell on the 

line were discarded. Type I and type IIa percentages were analyzed separately. 

Comparisons of mean percentages of fiber types in the epaxial muscles and the 

pectoralis were analyzed using a Student’s paired t-test. Fiber type populations 

were also analyzed with respect to seal sex and mass. All results are expressed 

as means ± 1 standard deviation (S.D.) and tested at a level of significance of 

P<0.05. 

 

Results  

 

The epaxial and pectoralis muscles were composed of type I and type IIa fibers, 

with type IIb fibers completely absent (Table 2, Fig. 4). The mean numerical 

populations of type I fibers as a percentage of total fibers for the CR, MID and 

CA transverse sections of the epaxial muscles were 45.3%, 47.7% and  
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Fig. 3.  Silver stain (reverse western blot) of (A) rat vastus medialis muscle, (B) 
seal epaxial muscles, and (C) seal pectoralis muscle showing differentiation of 
myosin heavy chain isoforms based on molecular weight.  Type IIb band is 
absent in both seal muscles.
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and 52.2%, respectively.  The pectoralis muscle was composed of 16.2% type I 

fibers and 84.3% type IIa fibers.  The distribution of type IIa fibers was not 

significantly different with respect to the dorsiventral axis of the epaxial muscles 

(Table 2) or proximity to the vertebrae. The distribution of type I fibers was not 

significantly different with respect to the dorsiventral axis of the epaxial muscles 

(Table 2). However, statistics describing the distribution of type I fibers with 

respect to the vertebrae were inconclusive (3-factor ANOVA, P=0.05; paired t-

test, P=0.06). Fiber type composition was not significantly different between 

females (N=8) and males (N=2), nor was there a mass-specific relationship. 

There was a significant difference between fiber type percentages of the epaxial 

muscles and the pectoralis. The pectoralis was composed of significantly less 

type I fibers and significantly more type IIa fibers when compared to the epaxial 

muscles (Table 2) (P<0.0001). 

 

Discussion  

 

Although published data based on traditional histochemical techniques agree 

with these results for type I fiber populations, there is a substantial difference in 

the results for the type IIa and type IIb fibers. The results in this research show 

no type IIb fibers and a high percentage of type IIa fibers (approximately 53%) in 

the epaxial muscles of the harbor seal. Previous histochemical fiber typing of the 

harbor seal epaxial muscles showed a high percentage of type IIb fibers 

(approximately 45–47%) and few (<10%) type IIa fibers (Hochachka and 

Foreman, 1993; Reed et al., 1994).  Additionally, Kanatous et al. (1999) found a  
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Table 2.  Mean population percentages of fiber types ± one standard deviation 
from three cross sections of the harbor seal epaxial muscles and pectoralis.  The 
value in brackets represents the number of animals averaged for each cross 
section. An asterisk (*) indicates a significant difference from the epaxial 
muscles at p < 0.01. 

 
 Type I % Type IIa % Type IIb % 

Epaxial muscles    

      Cranial [10] 45.3 ± 5.1 54.5 ± 4.7 0.0 ± 0.0 

      Middle [9] 47.7 ± 3.3 52.3 ± 3.6 0.0 ± 0.0 

      Caudal [9] 48.3 ± 5.8 52.2 ± 5.7 0.0 ± 0.0 

Mean of all sections [9] 47.4 ± 4.7 52.8 ± 4.6 0.0 ± 0.0 

Pectoralis [6] 16.2 ± 5.6* 84.3 ± 5.4* 0.0 ± 0.0 
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Fig. 4.  Representative serial cross sections from the epaxial muscles of a 
harbor seal (Phoca vitulina) stained for myosin heavy chain isoforms using a 
series of monoclonal antibodies.  (A) Type I (slow-twitch, oxidative) fibers, (B) 
type IIa (fast-twitch, oxidative) fibers, and (C) type IIb (fast-twitch, glycolytic) 
fibers.  Lack of stain in C indicates an absence of type IIb fibers in this cross 
section of the muscle. 
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fiber type distribution of 20% slow, oxidative fibers, 27% fast oxidative-glycolytic 

fibers, and 53% fast oxidative-glycolytic fibers in one unspecified muscle of a 

Stellar sea lion.  The results of this research were also dissimilar to the fiber type 

composition of the epaxial and hypaxial muscles of dolphins, which were 

composed of approximately 50% type I and 50% type IIb fibers (Ponganis and 

Pierce, 1978; Bello et al., 1983; Goforth, 1983).  

Traditional histochemical staining procedures use acidic and alkaline 

preincubations to selectively inhibit the ATPase of the different fiber types, 

allowing for differentiation (Brooke and Kaiser, 1970). This procedure is based 

on the correlation between the velocity of muscle contraction and the 

concentration of actomyosin ATPase within each fiber type and has been used 

reliably and extensively in both research and clinical settings. However, under 

some applications, ATPase staining may have limitations. Of primary concern is 

the inability of the ATPase technique to reliably differentiate between the types 

of fast twitch fibers (types IIa, IIb, IIc and IId/x) in some species and the 

variability of optimal ATPase staining conditions from species to species (Green 

et al., 1982; Gorza, 1990; Amann et al., 1993; Rivero et al., 1996). ATPase 

staining also misrepresents cases of fibers coexpressing two different fiber types 

(hybrid fibers) because the most dominant isoform is histochemically stained 

(Gorza, 1990). Finally, the technique itself is sensitive. Inaccuracies may result 

from small changes in preincubation and incubation time, temperature, pH, 

preincubation buffer type and the ionic composition of the preincubation medium 

(Matoba and Gollnick, 1984). Taken together, these considerations potentially 

make the results of actomyosin ATPase fiber typing difficult to qualify, variable 

and irreproducible when making interspecies comparisons or fiber typing a 
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species for the first time (Green et al., 1982; Amann et al., 1993), and raise 

questions about the interpretation of the results obtained from previous 

histochemical fiber typing of seal muscles (Ponganis and Pierce, 1978; Bello et 

al., 1983; Goforth, 1983; Hochachka and Foreman, 1993; Reed et al., 1994). 

The exception is the aforementioned study by Kanatous et al. (2002), which 

used an ATPase-based metachromatic stain in combination with IHC fiber typing 

on Weddell seal skeletal muscles. Their results showed a fiber type profile 

similar to what was found in the harbor seals. However, based on the variable 

staining intensity of the histochemically stained cells shown in the figures, 

without the accompanying IHC fiber typing, the differentiation of type II fibers 

may have been difficult (Kanatous et al., 2002). Thus, to maximize the accuracy 

of histochemical staining techniques in novel or controversial fiber typing 

applications, multiple staining protocols are recommended (Braund et al., 1978; 

Snow et al., 1982; Amann et al., 1993; LaTorr et al., 1993; Kanatous et al., 

2002).  

There is strong evidence that myosin heavy chain (MyHC) composition 

directly corresponds to the shortening velocity of muscle fibers, subsequent 

ATPase activity, and thus, ATPase staining intensity (Reiser et al., 1985; Betto 

et al., 1986; Staron and Pette, 1986; Termin et al., 1989; Gorza, 1990). To 

circumvent potential ATPase staining difficulties, this study used IHC fiber typing 

to characterize the fiber composition of seal muscle. Since IHC fiber typing 

utilizes the specific antigenicity of MyHC isoforms to differentiate between the 

fiber types, antibody binding capacity is binary in pure fibers. Thus, IHC staining 

eliminates the subjective determination of ‘stain intensity’ to separate fiber type, 

making quantification more accurate. IHC fiber typing may be used on a wide 
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range of mammalian species because MyHC genes in striated muscle are highly 

conserved in a variety of animals spanning several phyla, from nematodes to 

man (Nguyen et al., 1982). Furthermore, the MyHC genes themselves have a 

highly conserved organization and primary structure (Mahdavi et al., 1986). 

Although IHC fiber typing is not a new technique (Arndt and Pepe, 1975), it has 

not been widely used other than on laboratory animal and human tissues. The 

IHC fiber typing technique definitely demonstrates a lack of classical type IIb 

fibers in the locomotory muscles of harbor seals. However, the presence of other 

type II MyHC isoforms, in particular type IId/x and type IIc cannot be ruled out.  

SDSPAGE of harbor seal and rat skeletal muscle yielded corresponding bands 

for type I and type IIa fibers in the epaxial muscles, but in the pectoralis muscle 

the correspondence for the type IIa band is not clear and appears to be 

associated with the type IId/x MyHC isoform found in the rat (Fig. 3). For this 

study, an antibody capable of specifically differentiating the type IId/x isoform 

was not available and therefore the type IId/x fiber population was analyzed by 

process of elimination. Based on the results of the electrophoresis, further 

investigation on the presence of type IId/x fibers in the harbor seal pectoralis is 

warranted. In addition, the presence of type IIc fibers, which are considered 

‘undifferentiated’ or ‘transitional’ fibers (Betto et al., 1986), were not found nor 

analyzed electrophoretically.  Type IIc fiber population as a percentage of total 

fibers counted is usually small (<3%) and probably does not contribute 

significantly to the total muscle fiber population (Betto et al., 1986; Amann et al., 

1993). 

In general, the fiber type composition within the epaxial muscles matched the 

myoglobin and enzyme activity data of tissue samples collected from the same 

 



 
 

28

seals and from the same locations in the transverse muscle sections. Harbor 

seal myoglobin (Mb) concentrations, citrate synthase activities (CS; an indicator 

of aerobic metabolism) and β -hydroxyacyl CoA dehydrogenase activities 

(HOAD; an indicator of fatty acid metabolism) were either the same or elevated 

compared to rat and dog (Polasek et al., manuscript in preparation). Moreover, 

in a separate study, mitochondria volume density in harbor seal swimming 

muscle was elevated compared to the density in locomotory muscles of 

sedentary terrestrial mammals of comparable size (Kanatous et al., 1999). 

These results are consistent with the characteristics of type I and type IIa fibers, 

which are both oxidative. In addition, Polasek et al. (manuscript in preparation) 

likewise did not find pronounced spatial heterogeneity of enzyme activities or Mb 

concentrations within the CR, MID or CA transverse sections. Since the cross 

sections of the harbor seal epaxial muscles were observed to be a uniform deep 

red color during dissection, these results are not surprising. However, Polasek et 

al. (manuscript in preparation) found significantly higher CS and LDH activities in 

the CA and the MID transverse sections compared to the CR section. These 

results indicate that a longitudinal gradient for the physiological indices of 

aerobic capacity exists in the harbor seal epaxial muscles, but it may not be 

manifest in the fiber type distribution.  

Fiber type distribution in the primary locomotory muscles (epaxial muscles) of 

the seal was significantly different from the secondary locomotory muscle 

(pectoralis). Whereas the epaxial muscles were composed of approximately 

50% type I fibers and 50% type IIa fibers, the pectoralis possessed 

approximately 15% type I fibers and 85% type IIa fibers (Table 2). Seals swim 

using lateral undulations of their hind flippers to propel themselves through the 
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water, and are characterized as thunniform swimmers (Fish et al., 1988). The 

foreflippers, which act as rudders and are used during burst swimming, do not 

significantly contribute to forward propulsion. Thus, to generate force during 

swimming, the epaxial muscles are alternately contracted and stretched. 

Stretch–shortening cycles in the locomotory muscles of some terrestrial 

mammals and fish maximize muscle force and power output during each stroke 

by absorbing and storing potential energy during the lengthening phase of the 

cycle for utilization during the shortening phase (Altringham and Johnson, 1990; 

Curtin and Woledge, 1993; Lou et al., 1999; Lindstedt et al., 2002). In mammals, 

muscles that undergo active stretch (eccentric) contractions and isometric 

contractions generally have more type I fibers than muscles that perform 

concentric contractions (Armstrong and Phelps, 1984; Delp and Duan, 1996). 

Seal pectoralis may perform mostly concentric contractions during foreflipper 

movement and therefore contain fewer type I fibers than the epaxial muscles, 

which perform eccentric contractions during the stretch–shortening cycle of 

thunniform locomotion.  

The physiological profile of the harbor seal skeletal muscle appears to be 

similar to that of terrestrial mammals adapted for sustained, aerobic exercise 

(e.g. horses and dogs). This physiological profile includes an elevated 

mitochondrial volume density, increased enzymatic capacity to oxidize fatty 

acids, elevated tricarboxylic acid cycle enzyme capacity, and a fiber type 

distribution of primarily type I and type IIa fibers in locomotory muscles. 

However, in seals, routine metabolic rate during diving is generally less than 

twice the resting, predive levels. (Davis et al., 1985; Castellini et al., 1992;  
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T. M. Williams et al., manuscript in preparation). Additionally, behavioral studies 

indicate that seals are not active swimmers and may not maximize their aerobic 

capability in vivo. Rather, seals use energy-saving locomotory strategies. Recent 

evidence shows that when seals dive, they often alternate between an active 

stroke phase and a passive glide phase to conserve energy and oxygen stores, 

a pattern that is demonstrated in a variety of diving mammals (Williams et al., 

2000; Davis et al., 2001). Consequently, this behavioral information coupled with 

physiological data suggests that the elevated mitochondrial volume density 

found in seal skeletal muscle may have a primary function of decreasing the 

diffusion distance of oxygen stores in myoglobin to the site of oxidation at the 

mitochondria (Kanatous et al., 1999). 

The fiber typing results show that harbor seal swimming muscles are made 

exclusively of type I and type IIa fibers. These results are consistent with seal 

behavioral data and the theory that diving in marine mammals is an aerobic 

activity. Fiber type distribution did not show pronounced spatial heterogeneity 

along the dorso–ventral and medio–lateral axes of the epaxial muscles. Finally, 

differences in fiber type distribution in the epaxial muscles vs. the pectoralis 

muscle may be related to contraction velocity and ability to store elastic energy.  

 

Overview  

 

There is strong evidence that pinnipeds maintain a lipid-based, aerobic 

metabolism during diving. However, the few fiber-typing studies performed on 

pinniped skeletal muscles are not consistent with an aerobic physiological 

profile. The objective of this study was to reexamine the fiber type distribution 
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throughout the primary locomotory muscles of the harbor seal Phoca vitulina. 

Results from immunohistochemical (IHC) fiber typing indicated that harbor seal 

swimming muscles (the epaxial muscles) are composed of 47.4% type I (slow 

twitch, oxidative) fibers and 52.8% type IIa (fast twitch, oxidative) fibers, which 

are homogeneously distributed throughout the muscle. Harbor seal pectoralis, a 

secondary swimming muscle, was composed of 16.2% type I and 84.3% type IIa 

fibers. No fast twitch, glycolytic (type IIb) fibers were detected in either muscle, 

in contrast to published data on fiber typing of harbor seal epaxial muscles using 

traditional histochemical techniques. The extreme specificity inherent in the IHC 

fiber typing procedure leads to the conclusion that harbor seal swimming muscle 

is entirely composed of oxidative fibers.  These results are consistent with the 

enzymatic analyses of pinniped skeletal muscle that support the use of lipid-

derived aerobic catabolism to fuel working muscle during diving in these marine 

mammals.  
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CHAPTER III 

ULTRASTRUCTURE AND MORPHOMETRY OF 

 HARBOR SEAL SKELETAL MUSCLE 

Introduction 

 

Despite experiencing hypoxia during subsurface swimming, available 

evidence indicates that pinnipeds (Order Carnivora, Suborder Pinnipedia: seals, 

sea lions, and walrus) maintain aerobic respiration during the majority of dives 

(Butler and Jones, 1997).  Likewise, their tissues appear to be adapted for 

aerobic metabolism.  Single biopsies taken from the locomotory muscles of a 

variety of pinnipeds showed elevated mitochondrial volume densities compared 

to terrestrial mammals of similar mass (Kanatous et al., 1999, 2001).  Activities 

of citrate synthase (CS, a mitochondrial matrix enzyme of the tricarboxylic acid 

cycle) and β-hydroxyacyl CoA dehydrogenase (HOAD, a β-oxidation enzyme) 

were also elevated, indicating that the oxidation of fatty acid-derived acetyl CoA 

was an important source of energy in these tissues (Hochachka and Foreman, 

1993; Reed et al., 1994; Kanatous et al., 1999; Polasek et al., in preparation).  

Similarly, Fuson et al. (2003) showed that in harbor seal (Phoca vitulina) heart, 

kidney, and splanchnic organs, mitochondrial volume density and HOAD 

enzyme activity were elevated, although the authors did not find a concomitant 

increase in CS activity.  Finally, myoglobin concentrations in the skeletal 

muscles of pinnipeds are elevated 10-20 times compared to that of terrestrial 

mammals and provide an endogenous source of oxygen in the muscles during 

dives (Cherepanova et al., 1993; Hochachka and Foreman, 1993; Kanatous et 

al., 1999; Polasek et al., in preparation).  The elevated mitochondrial volume 
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densities and myoglobin concentrations enhance the intracellular diffusion of 

oxygen into mitochondria under low oxygen partial pressures that occur towards 

the end of a dive (Kanatous et al., 1999). 

Immunohistochemical fiber type analysis of locomotory muscles is consistent 

with the aforementioned morphological and metabolic characteristics.  Harbor 

seal epaxial muscles were composed of fibers with myosin heavy chain isoforms 

analogous to type I (slow twitch, oxidative) and type IIa (fast twitch, oxidative) 

fibers, but no type IIb (fast twitch, glycolytic) fibers are present (Watson et al., 

2003).  Although fiber types cannot be reliably distinguished based on metabolic 

properties, type I and type IIa fibers typically have a higher oxidative capacity 

and mitochondrial volume density than type IIb fibers (Pette and Staron, 1990; 

Mattson et al., 2002).  Biochemical assays performed on samples taken from the 

same harbor seals and at the same locations as those for fiber type analysis 

showed elevated myoglobin concentrations and an enzyme profile that supports 

lipid-derived fatty acid oxidation (Polasek et al., in preparation).  These results 

indicate that the immunohistochemically-defined type I and IIa fibers in the 

epaxial muscles are highly oxidative in nature. 

The spatial relationships between specific fiber types, enzyme activities and 

myoglobin concentration in harbor seals are less apparent.  Fiber type 

composition, Mb concentration, and CS, LDH, and HOAD enzyme activities do 

not show significant variability within transverse sections of the epaxial muscles 

(Watson et al., 2003; Polasek et al., in preparation).  This muscular 

characteristic is unlike the locomotory muscles of many terrestrial mammals, in 

which “deep” portions of the muscle located closer to the bone possess a higher 

percentage of type I fibers and a higher enzymatic capacity for oxidative 
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metabolism compared to “superficial” portions of the muscle located near the 

limb periphery (Armstrong et al., 1982; Kline and Bechtel, 1988; Rivero et al., 

1993). 

The purpose of this study was to examine mitochondrial volume density and 

distribution throughout transverse sections of the epaxial muscles of harbor 

seals using electron microscopy.  This approach allows the examination of these 

two morphological variables on a larger and more detailed scale than past 

studies that were performed on single biopsy samples.  As a result, this research 

was able to address questions about spatial heterogeneity within the muscle.  

Based on previous fiber type analysis and enzymology performed on harbor seal 

swimming muscles, it was hypothesized a lack of significant spatial 

heterogeneity within transverse sections of the epaxial musculature.  It was also 

hypothesized that mitochondrial volume density would be higher in the harbor 

seal’s locomotory muscles compared to that of the terrestrial controls. 

 

Materials and Methods 

 

Animals and sample collection 

Primary and secondary locomotory muscles were sampled within six hours of 

death from five adult and subadult harbor seals (one male and four females; 

average weight = 51.6 ± 3.4 kg) collected during a native subsistence hunt in 

eastern Prince Williams Sound, Alaska.  The epaxial muscles lie along the 

vertebral column (Fig. 5) and alternately contract and stretch to produce the 

lateral spinal flexions that generate thrust by the hind flippers during swimming 

(Fish et al., 1988).  Muscle fibers of the epaxial muscles originate at the ilium, 
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Fig. 5. Schematic diagram illustrating the approximate location of the caudal 
transverse section sampled from the epaxial muscles.  The epaxial muscles are 
yellow and the approximate location of the caudal transverse section is shown 
as a red band.  (Image not drawn to scale.) 
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Fig. 6.  Representative caudal transverse section showing the coring pattern of 
samples (grey circles) collected from the epaxial muscles and the statistical 
division used for testing homogeneity within the transverse section.  The red line 
represents the natural vertical axis of the animal and the black line represents 
the line drawn at a 45 degree angle to the vertical axis to divide the epaxial 
muscles into deep and superficial regions 
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run approximately parallel to the spine, and terminate at various attachments to 

the ribs and vertebrae (Howell, 1929).  The degree of muscle pinnation was not 

measured.  The entire epaxial musculature along one side of the spine was 

removed (average length = 55.0 ± 2.0 cm), weighed (average weight = 1.72 ± 

0.2 kg), and a caudal transverse section was taken from the lower lumbar 

region.  Seven samples (ca. 0.5 g) from the transverse section were excised at 

points on a circular grid (Fig. 6) using a 6-mm stainless steel biopsy punch.  

Muscle samples were immersed in a 6.25% gluteraldehyde solution in 

cacodylate buffer (ph 7.4) and placed on ice.  A rectilinear grid was overlaid on 

the transverse section, and the location of each of sample was determined 

relative to a true dorso-ventral and medio-lateral orientation in the animal.  For 

comparison with a secondary swimming muscle, a single sample was taken from 

the center of the intact m. pectoralis.  Samples were transported to Texas A&M 

University on ice and refrigerated at 4°C until analysis. 

 

Sample preparation for electron microscopy 

Within 90 days of collection, tissue samples were cut into small blocks using a 

dissecting microscope and stored in 0.1 M cacodylate buffer (ph 7.4) at 4°C for 

six months at Texas A&M University.  All further sample processing was 

performed in the Electron Microscopy Laboratory of the Department of 

Pathology at the University of Texas Medical Branch in Galveston.  Samples 

were rinsed in fresh cacodylate buffer, post-fixed for 1 hour in 1% osmium 

tetroxide, and block-stained with 2% uranyl acetate for 30 minutes at 60°C.  The 

samples were then passed through stepwise dehydration in increasing 
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concentrations of ethanol (50-100%) and rinsed twice with 100% propylene 

oxide.  Samples were subject to increasing concentrations of Poly/Bed 812 

(Polysciences, Inc., Warrington, PA) before being embedded in flat molds with 

fresh Poly/Bed 812 and allowed to polymerize for 24 hours at 60°C.  At least 10 

blocks were prepared for each tissue sample. 

 

Morphometry 

Four blocks were randomly chosen from each sample for stereology.  The 

blocks were thick sectioned (1 µm), stained with toluidine blue, and viewed 

under a light microscope to verify that the orientation of the sections was 

transverse or slightly oblique to the muscle fiber axis.  Ultrathin sections were 

cut from each block with a Reichert/Leica Ultracut S ultramicrotome (Reichert 

Division of Leica Co., Vienna, Austria), placed on 150-mesh copper grids, and 

stained with Reynold’s lead citrate (0.4%) to improve contrast.  Thin sections 

were photographed at a magnification of 6,600x with a Phillips CM-200 

transmission electron microscope (TEM) (FEI Company, Eindhoven, 

Netherlands) at 60 Kv.  Carbon grating replica calibration was performed on the 

TEM to confirm that the measured magnification was within 5% of nominal 

magnification.  Ten images were taken per block on 70 mm film (Weibel, 1979).  

This yielded 40 images per sample for stereological analysis.  Negatives were 

converted to high resolution (1,200 dpi) digital images with a Microtek 

Scanmaker 8700 flatbed scanner (Microtek USA, Carson, CA) for subsequent 

quantification.  Standard point counting procedures (Weibel, 1979; Mathieu et 

al., 1981a) were performed in Adobe Photoshop 7.0 with the “grid” feature 

enabled to replicate a B-36 square grid (144 test points) superimposed on the 
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center of the digital image at a final magnification of approximately 28,935x.  

Care was taken to maintain the aspect ratio of the image during all digital 

manipulations to eliminate distortion.  Points that intersected subsarcolemmal 

mitochondria, interfibrillar mitochondria, lipid droplets, and myofibrils were 

counted separately.  The relative standard error (RSE) of the volume density 

counts was calculated by pooling the data from all four blocks of a sample (i.e. 

40 micrographs) and applying the RSE equation for binomial counts (Mathieu et 

al., 1981a).  RSE values calculated for volume densities of total mitochondria, 

interfibrillar mitochondria, and myofibrils were <15%.  The RSE values for the 

volume densities of subsarcolemmal mitochondria and lipid droplets in both seal 

muscles were considerably higher.  No attempts were made to further decrease 

the RSE for these variables. 

 

Statistics 

Differences among muscles were analyzed using a paired Student’s t-test.  

To test for heterogeneity within the epaxial muscles, each transverse section 

was divided into two sections delineated by the equation y = -x.  Samples that 

fell on either side of the line were grouped into either a “deep” category or a 

“superficial” category with respect to the vertebral column.  Samples lying on the 

origin or on the line were discarded (Fig. 6).  Total mitochondrial volume 

densities for deep and superficial categories were combined for all seals, and 

the two groups were compared using a binomial generalized linear model.  All 

results are expressed as means ± standard error and tested at a level of 

significance of p<0.05. 
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Methodological control 

Control samples were collected from the soleus muscle of 3 male Sprague-

Dawley rats sacrificed for research in the Department of Health and Kinesiology 

at Texas A&M University, College Station.  Eight-month-old rats were 

anesthetized with pentobarbital sodium (60 mg/kg IP), decapitated, and the 

entire soleus muscle was excised, trimmed, and processed using the identical 

protocol as seals.  Electron microscopy and point-counting procedures were also 

the same.  Morphometric analysis of the rat soleus yielded results similar to that 

in the literature (mean Vv (mt, f) = 4.7±0.3%). 

 

Results 

 

At 6,600 times normal magnification, morphological characteristics of the seal 

epaxial muscles and pectoralis appeared similar to that of other mammals.  

Individual muscle fibers were separated by connective tissue and possessed 

peripherally-located nuclei located within the plasma membrane, although 

satellite cells were not differentiated from true muscle fiber nuclei.  Fibers were 

primarily composed of myofibrils which were roughly polyhedral or elliptical in 

cross section and surrounded by the sarcoplasm, which contains sarcoplasmic 

reticulum, organelles, myoglobin, and endogenous energy depots (Figs. 7, 8).  

On average, myofibrils occupied approximately 85.6% of harbor seal epaxial and 

pectoralis muscle fiber volume (Table 3).  Myofibrils sectioned transversely 

across the Z disc were separated by thicker bands of sarcoplasmic reticulum 

compared to myofibrils sectioned across the thick and thin filaments (Figs. 7, 8).  

Glycogen granules were not observed in any of the micrographs.  However, 
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glycogen is more apparent in longitudinally-sectioned muscle.  Lipid droplets 

were uncommon (mean volume density = 0.2 ± 0.04%) (Table 3), but normally 

closely associated with mitochondria when present. 

The electron-dense mitochondria appeared as discrete, ellipsoid structures 

located either between myofibrils (interfibrillar mitochondria) or adjacent to the 

sarcolemma (subsarcolemmal mitochondria).  Mitochondria that were 

compressed into irregular shapes due to close proximity of myofibrils, lipid 

droplets, or other mitochondria were common (Figs. 7, 8).  Evidence of a 

mitochondrial reticulum, as has been described in other mammalian skeletal 

muscles, was not consistently observed in the seal muscle ultrastructure, unlike 

the rat soleus (“control”) micrographs (Kirkwood et al., 1986).  Internal 

mitochondrial structures were not visible in all micrographs, but mitochondria 

typically displayed cristae that extended perpendicularly from the outer 

mitochondrial wall to the organelle’s center and lay parallel to adjacent cristae 

(Figs. 7, 8). 

Total mitochondrial volume density [Vv (mt, f)] of the epaxial muscles and 

pectoralis muscle was 5.6±0.3% and 5.2±0.3%, respectively (Table 3).  

Interfibrillar mitochondria of the epaxial muscles and pectoralis (mean volume 

density = 4.6 ± 0.2% for both muscles) were approximately 5-7 times more 

abundant than subsarcolemmal mitochondria (Table 3).  Subsarcolemmal 

mitochondria (mean volume density = 1.0 ± 0.1% in the epaxial muscles and 0.6 

± 0.1% in the pectoralis) were usually distributed in clumps that were sometimes 

associated with capillaries.  Interfibrillar mitochondria accounted for 82.1% and 

88.5% of the total mitochondrial volume density in the epaxial muscles and 

pectoralis muscle, respectively, with the balance classified as subsarcolemmal 

 



 
 

42

 
Fig. 7.  Representative micrographs of harbor seal epaxial muscles.  Li, lipid 
droplet; ct, connective tissue; mi, interfibrillar mitochondria; ms, subsarcolemmal 
mitochondria; A, I, Z, myofibrils sectioned through the A band, I band, and Z-
disc, respectively; arrowheads, sarcoplasmic reticulum.  Bar, 1 micron.
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Fig. 8.  Representative micrograph of harbor seal pectoralis muscle.  Li, lipid 
droplet; ct, connective tissue; mi, interfibrillar mitochondria; ms, subsarcolemmal 
mitochondria; and sr, sarcoplasmic reticulum.  Bar, 2 microns. 
 

 



 

 
Table 3.  Summary data for muscle morphometry of the harbor seals.  Values are means ± SE.  Mb, body mass; N, 
number of samples analyzed; Vv(mt, f), volume density of total mitochondria; Vv(ms, f), volume density of 
subsarcolemmal mitochondria; Vv(mi, f), volume density of interfibrillar mitochondria: Vv(li, f), volume density of lipid 
droplets; and Vv(fi, f), volume density of myofibrils. 
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 Mb (kg) muscle N 
Vv (mt, f) 

% 
Vv (ms, f) 

% 
Vv (mi, f) 

% 
Vv (li, f) 

% 
Vv (fi, f) 

% 

Seal 4 53.1 epaxial 7 6.19     1.06 5.13 0.18 85.1

Seal 5 43.6 epaxial 7 5.86     

     

     

     

   

    

1.14 4.70 0.19 87.4

Seal 6 48.7 epaxial 7 5.33 0.92 4.40 0.11 85.2

Seal 7 63.9 epaxial 7 4.58 0.68 3.91 0.32 86.6

Seal 9 48.6 epaxial 7 5.89 1.14 4.75 0.15 83.8

mean (n=5) 51.6±3.4 epaxial 35 5.6±0.3 1.0±0.1 4.6±0.2 0.2±0.04 85.6±0.6

 pectoralis 5 5.2±0.3 0.6±0.1 4.6±0.2 0.2±0.1 85.6±1.2
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Table 4.  Mean percentages ± standard error of the volume density of total 
mitochondria expressed per fiber volume in deep and superficial regions of 
harbor seal epaxial muscles.  See text for region explanation.  *Significantly 
different from superficial. 
 
 

Seal Region Mean Vv(mt, f) % 

4 Deep 6.51±0.30 

 Superficial 5.94±0.34 

5 Deep 6.36±0.46* 

 Superficial 5.18±0.40 

6 Deep 5.56±0.43* 

 Superficial 4.31±0.27 

7 Deep 5.17±0.32* 

 Superficial 3.95±0.08 

9 Deep 7.29±0.52* 

 Superficial 4.80±0.16 

mean Deep 6.03±0.26 

 Superficial 4.95±0.23 
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mitochondria. 

There were no significant differences between the epaxial and pectoralis 

muscles of the seals for any of the measured volume density variables (Table 3).  

Individual variation was high in all of the measured parameters. 

There was evidence of heterogeneity within transverse sections.  In four seals, 

the samples collected from the deep region of the muscle showed a significantly 

higher Vv (mt, f) than those samples collected more superficially (deep mean, 

6.03%; superficial mean, 4.95%) (p < 0.005) (Table 4).  In one seal (Seal 7), 

there was no significant difference between Vv (mt, f) measured in the deep 

region (5.17%) and superficial region (3.95%)of the epaxial musculature, and 

this seal also had a significantly lower (4.6%) mean Vv (mt, f) compared to the 

other seals (Table 4). 

 

Discussion 

 

Allometry 

Muscle mitochondrial volume density scales inversely to body mass, although 

it is dependent on the muscle type (Mathieu et al., 1981b).  The mean body 

mass (Mb) of the harbor seals was applied to the allometric equations for two 

muscles of the hindlimb (the semitendinosus and vastus medialis) that were 

generated from the Vv (mt, f) measurements of a variety of wild and domestic 

African mammals spanning several orders of magnitude in Mb (Mathieu et al., 

1981b).  Although these two muscles are functionally dissimilar to the epaxial 

muscles, the combined data represent the most comprehensive mitochondrial 

volume density analysis of 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9.  Allometric plots of total mitochondrial volume density [Vv (mt, f)] (unitless) vs. body mass in kilograms for 
locomotory muscles of different function in terrestrial mammals and pinnipeds.  Vv (mt, f) was analyzed in muscles 
from a variety of wild and domestic African mammals and plotted against body mass (black dots) to generate a 
regression line (—) with 95% confidence intervals (---) (Mathieu et al., 1981b).  The Vv (mt, f) for the same muscle 
used to generate the regression line is also shown for some ‘athletic’ species (colored circles) to compare with the 
Vv (mt, f) of pinniped muscles, and is not included in the regression equation (Hoppeler et al., 1987; Kayar et al., 
1989, 1992; Bicudo et al., 1995; Kanatous et al., 1999, 2001, 2002;).  (A)  Allometric plot for the semitendinosus 
(locomotor flexor) with the equation Vv (mt, f) = 0.065 x Mb

-0.231, (B)  Allometric plot for the vastus medialis 
(locomotor extensor) with the equation Vv (mt, f) = 0.071 x Mb

-0.139.
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locomotory muscles in wild mammals and the only muscle-specific allometric 

regressions of mitochondrial volume in the literature.  In quadrupeds, the vastus 

medialis is a muscle of the quadriceps extensor group that undergoes active 

stretch prior to contraction during locomotion (Goslow et al., 1981), while the 

semitendinosus is a member of the hamstring group that flexes the knee in 

addition to extending the thigh.  Neither muscle has a fiber type composition 

similar to that of the epaxial muscles of the seal.  In a survey of the literature for 

the basic fiber types of the vastus medialis and the semitendinosus of different 

mammals with a variety of locomotory habits, the range of fiber type 

compositions for type I, type IIa, and type IIb fibers of the semitendinosus was 7-

50%, 6-55%, and 30-58%, respectively, and the fiber type ranges of the vastus 

medialis was 0-62%, 5-53%, and 4-69%, respectively (Ariano et al., 1973; 

Hoppeler et al., 1981; Delp and Duan, 1996; Grotmol et al., 2002; Mattson et al., 

2002).  These fiber type compositions are distinctly different from that of the seal 

epaxial muscles, which are composed of approximately 50% type I fibers, 50% 

type IIa fibers and 0% type IIb fibers (Watson et al., 2003).  Clearly, a degree of 

caution is necessary when interpreting the following comparative data. 

The mean Vv (mt, f) of all five harbor seal epaxial muscles exceeded the 

upper 95% confidence interval (CI) for the predicted Vv (mt, f) of the vastus 

medialis and semitendinosus muscles of the terrestrial African mammals (Fig. 9) 

(Mathieu et al., 1981b).  The mean Vv (mt, f) of each harbor seal also exceeded 

the upper 95% CI of both muscles.  Thus, all five seals showed mean values of 

Vv (mt, f) that were moderately elevated over what would be predicted for an 

animal of equivalent mass.  In contrast, the Vv (mt, f) measured in the muscles of 

untrained horses, ponies, foxes, and dogs and in the primary swimming muscles 
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of wild otariids (Stellar sea lion and Northern fur seal) were substantially 

elevated over the 95% CI (Fig.9).  Earlier harbor seal muscle research 

measured Vv (mt, f) of spot biopsies taken from the midbelly portion of the 

longissimus dorsi of seals captured in the same region of Alaska as this study 

(Kanatous et al., 1999).  Their results were likewise substantially higher than the 

95% CI prediction for the semitendinosus and vastus medialis using the same 

allometric equation (Fig. 9).  Subsequent mitochondrial volume density data 

collected from different harbor seals by the same author was slightly lower (Vv 

(mt, f) = 7.9%) (Kanatous et al., 2001).  In this study, the Vv (mt, f) value plotted 

for each seal represents the mean Vv (mt, f) of all seven samples (both the deep 

and superficial fractions) taken from the transverse section of the seal (Fig. 9).  

A mean Vv (mt, f) of 6.4% calculated for the samples collected exclusively in the 

deep portion of the muscles is higher than the values presented for the mean of 

the transverse sections in Fig. 9, and provides a more accurate comparison to 

the published harbor seal morphometric data. 

Therefore, from these data and published data, harbor seals possess varying 

degrees of elevated mitochondrial volume density in their muscles, although the 

elevation is not as consistently high with what has been measured in the 

locomotory muscles of animals bred for aerobic endurance.  In the context of 

marine mammals, it has been proposed that seals have an elevated 

mitochondrial volume density in their skeletal muscles to reduce the diffusion 

distance between mitochondria and intracellular oxygen stores (oxymyoglobin) 

during subsurface swimming (Kanatous et al., 1999).  At low partial pressures of 

oxygen that are incurred towards the end of a dive, the elevated mitochondrial 

volume density enhances intracellular convective oxygen transport and ensures 
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an adequate supply of oxygen to maintain aerobic metabolism in working 

muscles.  This data supports this argument by providing evidence that harbor 

seals have an elevated Vv (mt, f) in their primary locomotory muscles compared 

to sedentary terrestrial mammals of equivalent mass.  However, the elevation 

does not appear to be as extreme as what is found in terrestrial mammalian 

athletes. 

 

 Mitochondrial distribution 

In this study, mean Vv (mi, f) of the epaxial muscles of the harbor seals was 

82.1% of Vv (mt, f) (Table 3).  In two previous studies, mean Vv (mi, f) in harbor 

seal epaxial muscles was approximately 85% and 94% of Vv (mt, f), respectively 

(Kanatous et al., 1999, 2001).  These results indicate that a substantial 

proportion of the mitochondrial volume is found distributed among the myofibrils.  

Data from the literature was compiled to compare the relative percentages of 

interfibrillar and subsarcolemmal mitochondria in two different types of 

locomotory muscles among different animals (Fig. 10).  The terrestrial non-

athletic mammals had similar percentages of interfibrillar and subsarcolemmal 

mitochondria compared to the marine mammals.  However, the terrestrial non-

athletic mammals do not possess comparable mass-specific Vv (mt, f) (Fig. 9). 

Marine mammals have a mass-specific Vv (mt, f) that is similar to that of 

terrestrial athletes (Fig. 9), yet there appears to be a higher proportion of 

interfibrillar mitochondria in the marine mammals compared to that of the 

terrestrial athletic mammals (Fig. 10).   It has been shown that ‘athletic’ 

terrestrial mammals typically have an elevated Vv (mt, f) in their skeletal muscles 

compared to the muscles of ‘sedentary’ mammals due to an elevation of both Vv

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 10.  Stacked bar charts showing the percent interfibrillar and percent subsarcolemmal mitochondria composition of total mitochondrial volume 

density in two locomotory muscle types of various animals.   (A) The flexor muscles were the pectoralis and the semitendinosus for the marine 
mammals and the terrestrial mammals, respectively; (B) the extensor muscles were the epaxial muscles and the vastus medialis for the marine 
mammals and the terrestrial mammals, respectively; and in both charts the pectoralis muscle is shown for the highly aerobic flyers.  In both muscle 
types, the marine mammals appear to have a high percentage of interfibrillar mitochondria compared to the other groups.  Data for harbor seals 
compiled from this study, Kanatous et al. (1999, 2001), and Davis et al. (unpublished data); Stellar sea lion and northern fur seal, Kanatous et al. (1999); 
Weddell seal, Kanatous et al. (2002); goat, dog, calf, and pony, Hoppeler et al. (1987); steer, Kayar et al. (1989); fox, Bicudo et al. (1996); bat, Mathieu-
Costello et al. (1992); hummingbird, Suarez et al. (1991). 
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Fig. 10.  Continued. 
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 (ms, f) and Vv (mi, f) (Hoppeler et al., 1987; Kayar et al., 1989).  Moreover, with 

the addition of the data for the bat and the hummingbird, which have among the 

highest measured Vv (mt, f) in locomotory muscles, it appears that locomotory 

muscles which rely on convective oxygen transport to support aerobic 

metabolism have a higher proportion of subsarcolemmal mitochondria, possibly 

to reduce the diffusion distance from the capillary to the mitochondria, thereby 

increasing oxygen flux (Mathieu-Costello et al., 1992).  In contrast, pinniped 

skeletal muscle has an elevated proportion of interfibrillar mitochondria 

compared to athletic terrestrial mammals with similar Vv (mt, f).  The elevated Vv 

(mt, f) and high proportion of interfibrillar mitochondria reduce the diffusion 

distance between mitochondria and the large stores of endogenous oxygen 

bound to myoglobin, especially under conditions of reduced convective oxygen 

transport (ischemic hypoxia) and reduced partial pressure of blood oxygen 

(hypoxic hypoxia) that occur during diving (Davis and Kanatous, 1999).  Since a 

large proportion (ca. 33%) of the total oxygen store and even larger proportion 

(50%) of the oxygen used by the muscle comes from oxymyoglobin, an elevated 

mitochondrial volume density coupled with a homogenous distribution of 

mitochondria in the muscle fibers can function to maximize the diffusive flux of 

oxygen into muscle mitochondria under the hypoxic conditions associated with 

diving.  Evidence in support of this theory is also available in experimental 

research of mammals acclimatized to hypoxia.  Terrestrial mammals subject to 

chronic hypoxia may show morphological changes in their skeletal muscles that 

are comparable to the adaptations observed in the seal muscles.  For example, 

in rats exercising in chronic hypoxia, the oxidative soleus muscle showed an 

increase in total mitochondrial volume density due to an increase in interfibrillar 
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mitochondria, while subsarcolemmal mitochondria decreased (van Ekeren et al., 

1992).  In the soleus muscle of guinea pigs subject to 14 weeks of chronic 

hypoxia, myoglobin concentrations were significantly higher (Sillau et al., 1980). 

Thus, in pinnipeds, the diffusive flux of O2 into the skeletal muscle 

mitochondria during breath-hold diving may be enhanced by two functional 

adaptations:  (1) an elevated mitochondrial volume density (Kanatous et al., 

1999), and (2) a relatively high proportion of interfibrillar mitochondria, which is 

manifest as a Vv (mt, f) that is distributed throughout the muscle fibers (Table 3, 

Fig. 10). 

 

Heterogeneity of mitochondrial volume density 

In the caudal transverse section of the epaxial muscles of the harbor seals, it 

was found that the Vv (mt, f) was significantly greater in samples collected in the 

deep region of the epaxial muscles compared with the superficial region (Table 

4).  This indicates heterogeneity of mitochondrial volume density in the lateral 

plane of the lumbar region of harbor seal swimming muscle.  In quadrupedal 

mammals and man, metabolic heterogeneity is evident both within and among 

locomotory skeletal muscles.  “Deep” muscles (closer to the bone) and postural 

(e.g., soleus) muscles tend to have higher populations of oxidative muscle fibers 

(type I and type IIa) than superficial muscles or muscles that are activated 

primarily during very energetic activities (e.g., white gastrocnemieus) (Armstrong 

et al., 1982; Armstrong and Phelps, 1984).  Likewise, within each muscle, the 

compartmentalization pattern is similar: histochemical fiber typing and enzyme 

analyses have demonstrated that muscle fibers located close to the bone are 

characteristically more oxidative than those located on the muscle periphery 
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(Armstrong and Laughlin, 1985; Kline and Betchel, 1988; Rivero et al., 1993).  

Thus, in cat and cow locomotory muscles biopsied both superficially and from a 

deep portion of the muscle, the deep samples contained a higher proportion of 

oxidative fibers and had a significantly higher Vv (mt, f) compared to the 

superficial samples (Hoppeler et al., 1981).  The regional heterogeneity of 

oxidative capacity and fiber twitch velocity relates to functional differences 

between the various sections of the muscle.  Deeper areas of the muscle may 

be recruited for sustained, low intensity movements or postural maintenance, 

while the superficial regions are activated only during short duration, high 

velocity or high power activities (Armstrong, 1981; Armstrong and Laughlin, 

1985).   

In the harbor seals, although evidence of heterogeneity exists in the epaxial 

muscles, the aerobic capacity in toto is high.  Immunohistochemical (IHC) fiber 

typing of samples collected from the identical locations in the epaxial muscles of 

the same harbor seals showed the presence of oxidative fibers only (type I and 

type IIa) and an absence of glycolytic fibers (IIb) (Watson et al., 2003).  These 

results agree with the mitochondrial volume density data.  However, there was 

no significant heterogeneity of muscle fiber type distribution found in the harbor 

seal epaxial muscles (Watson et al, 2003).  The method of IHC fiber typing 

categorizes fiber types according to specific myosin isoform without 

consideration of the metabolic properties of the fiber (Pette and Staron, 1990).  

Because Vv (mt, f) was significantly higher in deeper regions compared to the 

muscle periphery, it may be concluded that the oxidative capacity of the epaxial 

muscles may be distributed within the muscle in a heterogeneous fashion, 
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whereas the distribution of the physical components of force generation do not 

follow the same trend. 

There was also evidence that type I and type IIa fibers in the harbor seal may 

have similar oxidative capabilities.  Like the epaxial muscles, seal pectoralis 

muscle consisted of only type I and type IIa fibers, but differed in that the 

pectoralis had a significantly higher numerical percent of type IIa fibers 

compared to the epaxial muscles (Watson et al., 2003).  However, Vv (mt, f) was 

not significantly different in the two muscles (Table 3).  These results indicate 

that both fiber types share a high oxidative capacity, although the relative 

oxidative capacity of the individual fibers was not measured in this study. 

In a separate study, mitochondrial matrix enzymes and myoglobin content of 

the epaxial muscles and pectoralis muscle of the same harbor seals used in this 

study were analyzed.  In general, the mitochondria volume density data within 

the epaxial muscles matched the enzyme activity data of tissue samples 

collected from the same locations in the transverse muscle sections.  Citrate 

synthase activity (CS; an indicator of aerobic metabolism), β-hydroxyacyl CoA 

dehydrogenase activity (HOAD; an indicator of fatty acid metabolism), and 

lactate dehydrogenase activity (LDH; an indicator of anaerobic metabolism) 

were either comparable to or elevated in harbor seal muscle scaled to rat and 

dog enzyme activity (Polasek et al., in preparation).  These data indicate a 

reliance on lipid-derived aerobic metabolism in seal swimming muscle.  Elevated 

LDH activity in seals shows an increased anaerobic metabolic capacity and does 

not necessarily preclude the maintenance of a high aerobic capability.  Polasek 

et al. (in preparation) also showed that myoglobin concentrations in both the 

epaxial muscles and the pectoralis muscle were elevated, which supports the 
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hypothesis that an elevation of the interfibrillar mitochondrial population in harbor 

seal skeletal muscle  decreases the diffusion distance between mitochondria 

and endogenous oxygen stores. 

 

Endogenous lipid depots 

Mean percentages of Vv (li, f) in harbor seal epaxial muscles were similar 

(<0.3%) in all three studies that analyzed volume density of lipid droplets (Table 

3, Kanatous et al., 1999, 2001).  Endogenous triacylglycerol droplets were 

therefore not a large component in the muscles by volume, in contrast to the 

dorsal muscles of bottlenose dolphins (Tursiops truncatus), which were 

observed to have numerous, large lipid droplets (Tulsi, 1975).  However, it is 

important to note that the point counting technique (with the B-36 test lattice) 

employed by all of the studies is subject to a potentially large RSE (Weibel, 

1979; Mathieu et al., 1981b).  Furthermore, lipid concentrations can be 

significantly affected by the individual’s nutritional state and exercise history prior 

to muscle sample collection (Hoppeler, 1986).  Despite the gross estimate of 

volume density of lipid droplets, these structures were clearly present in the 

muscle tissues, and three different studies independently measured similar 

volume density values.  Thus, the potential energy available to the epaxial 

muscles from endogenous lipids was estimated.  The calculations showed that 

the mean volume density of lipid (0.18%) in the seals’ epaxial muscles provides 

enough energy to fuel aerobic metabolism in the muscle mass for 5-6 hours 

when a seal is exercising at 4-5 times resting muscle metabolic rate.  These 

calculations assume that the density of muscle and lipid is 1.06 g.ml-1 and 0.94 

g.ml-1, respectively (Mendez and Keys, 1960; Schmidt-Nielson, 1997), and that 
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the specific resting metabolic rate (RMR) of muscle = 125.Mb-0.17 (Wang et al., 

2001).  Thus, small amounts of endogenous lipid by volume may nevertheless 

provide substantial amounts of energy for muscle metabolism.  Similarly, Vock et 

al. (1996) showed that the mean volume density of lipid (0.46%) measured in the 

muscles of dogs provides enough energy to fuel 3 hours of exercise at 60% 

maximum molar oxygen consumption rate.  These authors suggested that 

endurance-adapted terrestrial mammals have higher intracellular energy depots 

(in the form of glycogen and lipid droplets) in their muscles compared to non-

athletes to ensure adequate substrate supply all exercise intensities (Vock et al., 

1996).  However, in the athletic arctic blue fox, no endogenous lipid depots were 

detected in any of the tissues, indicating that their mitochondria receive 

substrate from an exogenous pathway (Hoppeler et al., 1987; Bicudo et al., 

1995). 

These data show that the caudal region of the harbor seal epaxial muscles 

possesses a moderately elevated Vv (mt, f) relative to terrestrial mammals of 

similar size.  This appears to result from an elevation of Vv (mi, f) and not Vv (ms, 

f).  These results provide further evidence that the elevated mitochondrial 

volume in seals functions to reduce intracellular diffusion of oxygen during 

diving.  Vv (mt, f) of the seal epaxial muscles was not significantly different from 

that of the pectoralis muscle, indicating that the type I and type IIa fibers found in 

both muscles do not differ substantially in oxidative capacity.  The Vv (mt, f) in 

the lateral plane of the muscle was greater deep to the vertebral column 

compared to samples collected more superficially, indicating some heterogeneity 

that may reflect the muscle’s function or pattern of force generation.  The results 

from this study are consistent with enzyme activities and myoglobin 
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concentrations performed on the same samples collected from the same 

animals (Polasek et al., in preparation).  Taken together, the data show that the 

harbor seal’s swimming muscles are morphologically adapted to maintain an 

aerobic, lipid-based metabolism under hypoxic conditions associated with 

subsurface swimming. 

 

Overview  

 

To better understand the density and distribution of mitochondria in seal 

muscles, samples distributed throughout a transverse section of the lumbar 

region epaxial musculature from of five wild harbor seals were analyzed using 

electron microscopy.  Mean volume density of mitochondria [Vv(mt, f)] was 5.6%, 

which is slightly elevated over what would be predicted for a mammal of similar 

mass, but not as high as previously reported values.  Mean Vv (mt, f) of single 

samples collected from the pectoralis muscle of the same seals was not 

significantly different from the epaxial muscles.  The elevated Vv (mt, f) of the 

locomotory muscles of seals appeared to have a higher proportion of interfibrillar 

mitochondria compared to the muscles of terrestrial mammals with elevated Vv 

(mt, f).  In addition, deeper regions of the epaxial muscles had a significantly 

higher Vv (mt, f) than more peripheral regions.  These results are consistent with 

those for aerobic enzyme activities and fiber typing performed on the same 

muscle samples, which, taken together, provide further evidence that the 

elevated mitochondrial volume density in pinnipeds serves to decrease the 

oxygen diffusion distance between myoglobin and mitochondria to facilitate 

aerobic respiration in working muscles. 
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CHAPTER IV 

SUMMARY 

There is strong evidence that pinnipeds rely on aerobic metabolism during the 

majority of dives and are therefore well-adapted for aerobic respiration.  Single 

biopsies taken from harbor seal epaxial (swimming) muscle have shown 

elevated mitochondrial volume densities, elevated aerobic enzyme activities, 

and an enhanced capacity for lipid catabolism.  These results indicate 

adaptations for maintenance an aerobic, lipid-based metabolism under the 

hypoxic conditions associated with breath-hold diving.  However, regional 

variations in mitochondrial density are unknown, and the few fiber typing studies 

performed on pinniped skeletal muscles are not consistent with an aerobic 

physiological profile.  The objectives of this study were:  (1) To reexamine the 

fiber type distribution throughout the primary locomotory muscles of the harbor 

seal (Phoca vitulina), and (2) To better understand the density and distribution of 

mitochondria in the locomotory muscles.  To accomplish this, multiple samples 

from transverse sections of the primary swimming muscles (the epaxial muscles) 

of wild harbor seals were analyzed using immunohistochemical (IHC) fiber 

typing and electron microscopy.  Fiber typing results indicated that harbor seal 

epaxial muscles are composed of 47.4% type I (slow twitch, oxidative) fibers and 

52.8%, type IIa (fast twitch, oxidative) fibers, which are homogeneously 

distributed throughout the muscle.  No fast twitch, glycolytic (type IIb) fibers were 

detected in the epaxial muscles or the pectoralis muscle, in contrast to the 

published data on fiber typing of harbor seal muscles using traditional 

histochemical techniques.  Mean volume density of mitochondria [Vv(mt, f)] was 
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5.6%, which is slightly elevated over what would be predicted for a mammal of 

similar mass.  The elevated Vv(mt,f) had a high proportion of intermyofibrillar 

mitochondria, a trait not normally found in the muscles of terrestrial mammals 

with elevated Vv(mt,f).  These results are consistent with enzymatic data 

performed on the same muscle samples, which, taken together, provide further 

evidence that the elevated mitochondrial volume density in pinnipeds serves to 

decrease the oxygen diffusion distance between myoglobin and mitochondria to 

facilitate aerobic respiration in working muscles.  In addition, Vv (mt, f) was 

analyzed for evidence of heterogeneity along the transverse plane of the epaxial 

musculature, and fiber type was analyzed for evidence of heterogeneity along 

both the longitudinal and transverse planes of the musculature.  The results 

showed that the deeper regions of the epaxial muscles (located close to the 

vertebral column) showed a significantly higher Vv (mt, f) relative to those 

regions that were superficially located.  In contrast, there was no significant 

heterogeneity of fiber type detected in either plane of the epaxial muscles.  

Thus, a fine-scale pattern of spatial heterogeneity of Vv (mt, f) was found within 

the epaxial muscles that does not manifest in fiber type distribution, indicating 

that the fibers have a similar oxidative capacity. 
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