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          ABSTRACT 
 

IP Routing Lookup: 

Hardware and Software Approach. (May 2004) 

Ravikumar V. Chakaravarthy, B.E., Mysore University 

Co-Chairs of Advisory Committee: Dr. Jyh-Charn Liu 
     Dr. Rabi N. Mahapatra 

 
 

The work presented in this thesis is motivated by the dual goal of developing a 

scalable and efficient approach for IP lookup using both hardware and software approach. 

The work involved designing algorithms and techniques to increase the capacity and 

flexibility of the Internet. The Internet is comprised of routers that forward the Internet 

packets to the destination address and the physical links that transfer data from one router to 

another. The optical technologies have improved significantly over the years and hence the 

data link capacities have increased. However, the packet forwarding rates at the router have 

failed to keep up with the link capacities.  

 Every router performs a packet-forwarding decision on the incoming packet to 

determine the packet’s next-hop router. This is achieved by looking up the destination 

address of the incoming packet in the forwarding table. Besides increased inter-packet arrival 

rates, the increasing routing table sizes and complexity of forwarding algorithms have made 

routers a bottleneck in the packet transmission across the Internet. 

 A number of solutions have been proposed that have addressed this problem. The 

solutions have been categorized into hardware and software solutions. Various lookup 

algorithms have been proposed to tackle this problem using software approaches. These 

approaches have proved more scalable and practicable. However, they don’t seem to be able 

to catch up with the link rates. The first part of my thesis discusses one such software 

solution for routing lookup.  

The hardware approaches today have been able to match up with the link speeds. 

However, these solutions are unable to keep up with the increasing number of routing table 

entries and the power consumed. The second part of my thesis describes a hardware-based 

solution that provides a bound on the power consumption and reduces the number of entries 

required to be stored in the routing table. 
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I. INTRODUCTION 

Due to the technology advancement, the packet transmission rate is ever growing. With 

increasing number of hosts and sessions in the Internet, the processing of packets at the 

routers has become a major concern. The higher link speed demands the reduction of 

packet processing overhead at routers.  Such packet processing involves switching of data 

from the input to the output port and packet forwarding. While the current technology 

supports fast switching, packet forwarding is still a bottleneck. This is either due to a high 

processing cost or large memory requirement [1].  

 Internet addressing architecture changed from class based to class-less addressing 

because of depletion of IP address and exponential growth of routing tables. Initially for 

class based addressing, where the prefixes were of fixed length, algorithms like hashing 

and binary searches [1], proved to be efficient. However, with the evolution of classless 

addresses, the prefix lengths have been of varying length and the traditional algorithms 

are no longer efficient. The routing engine can be implemented in either hardware or 

software depending on the requirements. Using dedicated hardware each routing lookup 

can be done in one memory access [1]. The dedicated hardware techniques are limited by 

the memory requirements to store data and hence are expensive. These techniques also 

consume a lot of power. 

 The routing tables implemented in most routers today generally follow the 

software-based approach, as they are more flexible and adaptive to any changes in the 

protocol. The hardware solutions are also not scalable and hence with the emergence of 

the IPv6, these approaches are nearly impractical. The software approaches expect to gain 

speed as the processing rate is doubled every 18 months (Moore’s law).  

 The entries in the forwarding tables have always been increasing as the number of 

hosts in the Internet is increasing. From Figure 1 we see that between early 90’s to late 

90’s, the number of entries in the lookup table has changed from linear to super linear. In 

2002 the backbone router contain approximately 100,000 prefixes and are constantly 

growing [1]. A lookup engine deployed in the year 2002 should be able to support 

approximately 400,000-512,000 prefixes in order to be useful for atleast another 3 years. 

Thus, the lookup algorithms must be able to accommodate future growth. 

                
              This thesis follows the style of IEEE Journal on Selected Areas in Communications. 
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  Apart from the lookup entries the speed of the links are doubling every year. 

From Table 1 it can be inferred that the links running on OC768c (approximately 

40Gbps) require the router to process 125 million packets per second (Mpps) (assuming 

minimum sized 40 byte TCP/IP packets) [1]. For applications that do not require quality 

of service, a lookup or classification algorithm that performs well in the average case is 

desirable. This is so because the average lookup performance can be much higher than 

the worst-case performance. For such applications the algorithm needs to process packets 

at the rate of 14.1 Mpps for OC768clinks, assuming an average Internet packet size of 

approximately 354 bytes [1]. 

  

 

 

 

 

 

 

 

 

 

Internet consists of many interconnected routers and end-hosts connected to these 

routers. The time taken to transfer the packets between end hosts today is greatly decided 

by the processing of the packets at the intermediate routers. The link speeds are also 

constantly increasing and require the packets to be transferred at wire speeds for 

Year Line Line-rate 

(Gbps) 

40B packets 

(Mpps) 

1998-99 OC12c 0.622 1.94 

1999-00 OC48c 2.5 7.81 

2000-01 OC192c 10.0 31.25 

2002-03 OC768c 40.0 125 

Figure 1: Year vs Entries of the Forwarding Table [9] 

Table 1:�Lookup Rate Required  [1] 
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maximum utilization. However, today’s packet processing rate is unable to keep up with 

the link speeds and this necessitates the need for an efficient and fast routing mechanism. 

Also, the number of hosts in the Internet is doubling every 3 months, which requires a 

scalable solution to accommodate the ever-increasing Internet traffic. The packet 

processing functionality of the router primarily consists of switching, forwarding, and 

packet classification. We focus on the forwarding functionality of the router in this paper. 

 The routing table is implemented using both the hardware and software 

approaches. The software approaches are cheaper, flexible and scalable. However the 

drawback of these approaches is that they cannot keep up with today’s link speeds 

(OC768c links require router to process 125 million packets per second), while a 

maximum of 20 million-packet lookup per second is achieved by today’s software 

approach as in [2]. Today’s hardware approaches on the contrary have achieved lookup 

speed of 100 Million packets per second [1]. The main drawbacks of these approaches 

have been power consumption, heat dissipation, manufacturing costs and scalability. 

A. Background 

Following is an analysis of the different approaches with respect to lookup time (or 

access time) and memory utilization.  We have classified the existing approaches into 

Trie and Non-Trie based approaches. 

1. Non-Trie Based Approaches 

Linear search is simplest data-structure with the linked list of all prefixes in the 

forwarding table. The algorithm traverses through each and every prefix and finds the 

longest prefix matching. Storage and time complexity is O (N). With the emergence of 

IPv6 this approach is almost impractical to continue. Binary search algorithms include 

the classical methods like the hashing and tree based approaches. These techniques are 

based on matching a fixed prefix length. Since one of the main issues in lookup is to find 

the longest prefix match, these algorithms cannot distinguish matches based on prefix 

length. One such algorithm is the modified binary search technique described in [3] that 

uses log2 (2N), where N is the number of routing table entries. These algorithms are also 

computation intensive and require a large storage especially as the lookup table grows. 

These algorithms also consume a lot of power, as they are computation intensive. 

Caching is a better technique than other memory reference techniques, as it is faster [4] 
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[5]. A fully associative memory, or content-addressable memory (CAM) [1] [6], can be 

used to perform an exact match search operation in hardware in a single clock cycle. 

Using large associative caches can increase the hit ratios significantly. But these 

associative memories are implemented using CAM which is a costly mechanism and not 

feasible. Thus the storage requirements for these become a limiting factor. Also CAM 

based approaches are for fixed length prefixes. A better solution is to use a ternary-CAM 

(TCAM), a more flexible type of CAM that enables comparisons of the input key with 

variable length elements. 

 

 
 

 

 

 

 

 

 

 

 

 

 

2. Trie Based Approaches  

Trie [7] is a general-purpose data structure for storing strings. Each string (prefix) in the 

routing table is represented by a leaf node in the trie. A trie is a binary tree that has 

labeled branches, and that is traversed during a search operation using individual bits of 

the search key. The left branch of a node is labeled 0 and the right-branch is labeled 1. 

The longest prefix search operation on a given destination address starts from the root 

node of the trie [1]. The remaining bits of the address determine the path of traversal in a 

Nbr String Nbr String 

1 000 11 0110 

2 00101 12 0111 

3 010 13 10100 

4 011 14 10101 

5 100 15 10110 

6 101 16 10111 

7 110 17 11101000 

8 1110100 18 11101001 

9 0000 19 101000 

10 0001 20 101010 

Table 2: Binary Strings Stored in a Trie Structure 
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similar manner. Figure 2 illustrates how binary strings (as represented in Table 2) are 

stored in a trie structure. Patricia trie is a modification of a regular trie. The difference is 

that it has no one-degree nodes. Each branch is compressed to a single node in a Patricia 

tree. Thus, the traversal algorithm may not necessarily inspect all bits of the address 

consecutively, skipping bits that formed part of the label of some previous trie branch. 
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Patricia tree loses information while compressing chains; the bit-string 

represented by the other branches of the uncompressed chain is lost. Another traditional 

technique to overcome this problem is the path compression technique. A Path-

compressed trie node stores the complete bit-string that the node would represent in the 

Figure 2: Radix Trie Approach 

Figure 3: Patricia Trie 
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uncompressed basic trie (Figure 3). This compression is recorded by maintaining a skip 

value at each node that indicates how many bits have been skipped in the path [8]. This 

representation has 2n-1 nodes in the tree, where n is the number of leaf nodes in the trie 

[1]. The statistical property of this trie (Patricia trie) indicates that it gives an asymptotic 

reduction of the average depth for a large class distribution [9]. However when the trie is 

densely distributed this approach fails in terms of storage and processing for lookup. 

Level compressed trie (LC-trie) [10] is a modification to this scheme for densely 

populated tries. An LC-trie is created from a binary trie as follows. First, path 

compression is applied to the binary trie. Second, every node that is rooted at a complete 

sub-trie of maximum depth is expanded to create a 2k-degree node [1]. This expansion is 

done recursively on each subtrie of the trie. It replaces the i highest complete levels of the 

binary trie with a single node of degree 2i. This gives an expected average depth of O 

(log*n) for an independent random sample, where log*n is the iterated logarithm 

function, log*n=1+log*(logn), if n>1, and log*n=0 otherwise. All the internal nodes 

represented in this trie contain no information but pointers to the first child. Hence a 

separate vector is needed to store all possible prefix in a prefix vector in case of a failure 

in search. Also since each node is traversed again by backtracking in case of failure this 

is an inefficient method both in terms of processing time and storage. Thus all the 

variants of the trie-based approach are not storage efficient and require a lot of 

processing.  

Several hardware approaches like [10, 11] have been proposed that use dedicated 

hardware. However, more popular techniques use the commercially available Content 

addressable memory (CAM). The CAM storage architectures have gained popularities 

since their search time is bounded by a single memory access. Binary CAMs allow only 

fixed length comparisons and hence are not suitable for longest prefix matching. The 

TCAM (where each bit stores a 0,1 or don’t care) solves the longest prefix problem and 

by far is the fastest hardware device for CIDR (Classless Inter Domain Routing) routing.  

The search time in a TCAM with N prefixes is O(1). The longest prefix lookup 

requires TCAM entries to be stored in a sorted manner. The TCAM prefix match with the 

lowest physical address is the longest prefix match for the given destination IP address. 

Such designs allow an update time of O(N), which most TCAM vendors live with. This is 
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a costly approach especially when N is large and the updates are frequent. The update 

time could be easily reduced to O (N/2) by having the free pool at the middle of the array 

rather than at one end of the TCAM. Another attempt to include a sorting technique that 

uses a “Max” function on the matching entries to avoid storing entries in the sorted 

manner is discussed in [12]. Their approach proved expensive due to the large number of 

matches. Another approach includes a circuit-level optimization for faster updates at the 

cost of slower search time [11]. The approaches proposed in [6] partition the routing table 

based on prefix length and requires an update time of O(Pn) memory shifts, where P is the 

size of the partition for the prefix length n. In [12], authors discuss two different 

algorithms to optimize updates in O(L/2) memory references, where L=32 (IPv4), and 

O(D/2) prefix shifts respectively, where D is the maximum length of the chain in the trie. 

This is by far the best approach for incremental updates. This however requires a TCAM 

manager or an auxiliary trie data structure that consumes memory.  

Since the routing entries today are increasing super-linearly (routing tables 

support approximately 125000 entries and are estimated to contain about 500000 entries 

by 2005), the need for optimal storage is an important concern. The CAM vendors are 

recently advertising to handle 8000-128000 worst-case numbers of prefixes, considering 

allocators and deallocators into account [8]. Hence, attempts to optimize the storage 

based on prefix properties have been recently proposed by the many authors including [4, 

7]. These approaches however have a high computational overhead and are not scalable. 

Another drawback of the existing approaches is that every lookup involves searching the 

entire CAM for the match. This results in a huge power consumption and heat 

dissipation. 
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II. MODIFIED LC-TRIE 

A. Research Objectives 

The main motivation behind our approach is as follows 

1. Reducing the lookup time: The software approaches for lookups can be categorized 

into the methods based on tries and hashing. Many of the trie-based approaches like [10] 

[11] take 6-7 memory references for lookup, while hash technique combined with Tries 

in [3] takes 5 memory references. Our goal is to modify the trie-based approach to reduce 

the number of memory references for each lookup.  

2. Reduce routing table storage: Implementing the routing table using trie [7] could be an 

expensive process. This storage is not efficient especially when the number of nodes is 

large and the depth is long. In this work, our aim is to reduce the storage requirements by 

eliminating unnecessary and redundant data. 

3. Ability to handle large routing tables: Not all the algorithms suggested are scalable and 

handle real life routing tables. Most of them support routing table sizes for the current 

needs. However, an algorithm needs to be scalable so that it supports the routing table 

storage requirements for atleast the next 3 years.  

In this section, we describe a scalable time efficient level compression technique. 

The approach presented here is motivated to minimize the access time and memory 

utilization during routing table lookup, to transfer packets to the appropriate Ethernet 

port. Throughout this paper the point of primary concentration is packet-forwarding 

function of the router. 

Trie based solutions are the standard approaches used today in router. However, 

though they are time efficient they consume a lot of memory for storage. Hence, a few 

approaches like [10] have been proposed to better storage and time complexity.  Our 

approach is based on the LC-trie approach for compressing the trie. We use the same 

compression technique as in LC-trie. However, we try to avoid additional storage (LC-

Trie uses additional data structures like base, prefix and nexthop vector to store prefixes) 

and processing (like backtracking), which is one of the major flaws of LC-Trie approach. 

Figure 4 represents the tree corresponding to Table 1 for the proposed approach. From 

the Figure 4 we see that unlike the LC-trie approach our approach stores all the prefixes 

either in the internal nodes or leaf nodes.
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The algorithm first converts the routing table entries into a binary trie. 

Then path compression is done on this trie to reduce its depth. This path-

compressed trie is now level compressed by storing the sub strings at the internal 

nodes and the strings at the leaves. When the routing table is built, we use a FILL 

FACTOR (this represents the maximum number of branches that each node can 

have during the build) to help make the future updates easier. 

B. Storage Data Structure  

Each node of our trie is represented as in Figure 5. Following is a brief description 

of the significance of each of the fields in the data structure. 

 

 

 

 

 

 

 

Branching factor [0:3]: This indicates the number of descendents of a node. This 

is a 4-bit value and a maximum of 16 branches to a single node can be 

represented. 

Figure 4: Scalable Time Efficient Level Compression 

Figure 5: Proposed Data Structure for Node in Routing Table (IPv4) 

1          2  3         4   5 

4 bits  7  bits  5 bits         16 bits            32 bits 

64 bits 
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Skip value [4:10]: This indicates the number of bits that can be skipped in an 

operation. This is a 7-bit value and a maximum of 128-bit skip can be represented. 

Port [11:15]: This represents the output port for the current node in case of a 

match. This is a 5-bit value and this field can represent a maximum of 32 output 

ports. 

Pointer [16:31]:  This is a pointer to the leftmost child in case of an internal node 

and NULL in case of a leaf node. This is a 16 bit value and can represent a 

maximum of 65536 prefixes. The current implementation assumes the number of 

routing table entries to be less than 65536. However, a scalable solution to 

consider more than 5,000,000 prefixes is discussed later. 

String [32:63]: This represents the actual value of the prefix the node represents. 

In the current implementation, it is a 32-bit value though it can be extended to 

128-bit value for IPv6 headers. 
 
 
 

 

 

 

 

 

                                   

 

 

 

 

 

 

 

node = T[0]; s = testdata[k]; node = table->trie[0];  
pos = GETSKIP(node); 
branch = GETBRANCH(node); adr = GETADR(node); prefix=0;  
result=-1; /* stored in Register */ 
while(branch != 0) 
 {        node = table->trie[adr + EXTRACT(pos,branch,s)]; 
          if(pos) 
                    prefix<<pos; 
           if (branch) 
          { 
                    if(branch > 15) 
                           prefix= prefix << 5| branch; 
                    else if(branch > 7) 
                            prefix= prefix << 4| branch; 
                    else if(branch > 3) 
                            prefix= prefix << 3| branch; 
                    else if(branch > 1) 
                             prefix= prefix << 2| branch; 
                    else 
                             prefix= prefix << 1| branch; } 
            if(GETSTRING(node)^prefix)  

 break; /* Previous node contains largest prefix and interface 
stored in result */ 

            else {      
      pos = pos + branch + GETSKIP(node); 

                   branch = GETBRANCH(node); 
                   adr = GETADR(node); 
                   result = GETPORT(node);              

      }  
} 

Figure 6: Algorithm for Modified LC-Trie Approach 
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C. Algorithm  

The search algorithm (Figure 6) forms the bottleneck of the entire routing process 

and hence this needs to be designed very efficiently. Algorithm discussed below 

is used to search a string s in the routing table. 

EXTRACT (p,b,s) is used to search s in the routing table, where b is the 

number of bits starting at position p. Let the array representing the tree be T. The 

root is stored in T[0]. 

Each entry in Table 3 represents a node in the proposed approach, for 

routing table described in Table 3, with the corresponding branch, skip and 

pointer values. In addition to these three fields each node also has a 32-bit (IPv4) 

prefix represented by the node, which is not indicated in the table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Working of the Algorithm 

The algorithm is illustrated with an example. Consider the input string 101001. We start 

from root node number 0. We see that the branching factor is 3 and skip value is 0 and 

 Branch Skip pointer  branch skip pointer 

0 3 0 1 10 0 0 0 

1 1 0 9 11 0 0 0 

2 0 2 0 12 0 0 0 

3 0 0 0 13 1 0 19 

4 1 0 11 14 0 0 20 

5 0 0 0 15 0 0 0 

6 2 0 13 16 0 0 0 

7 0 0 12 17 0 0 0 

8 1 4 17 18 0 0 0 

9 0 0 0 19 0 0 0 

10 0 0 0 20 0 0 0 

Table 3: Array Representation of Modified LC-Trie 
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hence extract 1st 3 bits from the search string. These 3 bits represent a value of 5, which is 

added to the pointer, leading to position 6 in the array. At this node the branching value is 

2 and the skip value is 0 and hence we extract the next 2 bits. They have the value 0. 

However, we check if the string (101) matches the prefix (101). Since it matches the 

search continues further. We now add the value of 0 to the pointer and arrive at position 

13.  At this node the branching factor is 1 and skip value is 0. They have a value of 1. We 

again compute to see if the string (10100) is same the prefix (10100). Since it matches, 

we continue and add the value of 1 to 19 to obtain the pointer 20. Now see that this node 

represents a leaf node since the branching factor is 0. We now check to see if the string 

(101001) matches the prefix (101011). Since they don’t match we use the previous value 

of the output port from the register to route the packet. The Figure 7 represents the path 

taken during the search. 

We see that this approach does not traverse the entire trie in case the string is not 

present. Also, there is no separate storage for the prefixes as in case of LC-Trie. This 

approach checks for the match in the string at every step. However, this is not 

computation intensive since the string to compare is already present in the cache and a 

xor on the bits could give us the result of comparison. In the LC-trie approach, after we 

traverse through the trie we perform a check for the string match in the base vector, 

which uses hashing technique, consuming at least one memory fetch. If there is a 

mismatch, a check is done again on the prefix table and this requires hashing to check for 

a prefix match, which again requires another memory fetch. Thus compared to the LC-

trie we save atleast two memory cycles for every routing lookup performed. 
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Figure 7: Trie Traversal for the String 101001 
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D. IPv6 Compatibility 

The algorithm can easily be extended to IPv6 and to allow a maximum of 237 entries. 

This ensures that the proposed data structure can support routing entries beyond 2005. 

This data structure also allows handling of a maximum of 1024 interfaces. The data 

structure for each node is described in the Figure 8. 
 

 
 
 
 
 

 
 

 

 
E. Simulation Bench and Experimental Setup 

To test and verify our approach with the LC-Trie approach we have modified the test bed 

used by the authors of [10]. The features of this modified test bed are as follows: 

• It reads routing data from the routing table file, which is in a predefined format as 

discussed in the paper [10]. The routing file is an exhaustive list of routing entries (65536 

entries for 16-bit pointer value). 

• The algorithm can be run over a number of times by specifying n as a command line 

argument. As the number of iterations increase, it gives a good estimate of the parameters 

under comparison. 

• Quick sort algorithm is used to sort the routing table entries. 

• We have also used two different approaches to compare the performance. One uses a 

function call to the search algorithm and the other is an inline function. However we have 

used the inline function results for our comparison. 

In our implementation we have used routing tables similar to that provided by the 

Internet Performance Measurement and Analysis project [13]. In order to compare the 

modified technique with LC-Trie approach the traffic was simulated and we used a 

random permutation of all possible entries in the routing table. The time measurements 

have been performed on sequences of lookup operations, where each lookup includes 

Figure 8: Proposed Data Structure for Node in Routing Table (IPv6) 

10 bits  7 bits  10 bits         37 bits           128 bits 

1          2  3         4   5 

192 bits 
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fetching the address from the array, performing the routing table lookup, accessing the 

next hop table and assigning the result to a volatile variable. 

 Some of the entries in the routing tables contain multiple next hops. In such cases 

we select the first one listed as the next hop address for the routing table, since we only 

consider one next hop address per entry in the routing table. However, for entries that 

didn’t contain a next hop address a special address that is different from the ones found in 

routing table was used. 

The following equations were used in the computation of average and standard 

deviation of the samples (ti). 

Average Time (avg) = ti/n  

Std Deviation (std) = (ti
2 – n*avg*avg)1/2 /(n-1) 

1. Parameters Analyzed 

We have analyzed the effectiveness of our approach and compare our approach with the 

LC-Trie approach with respect to timing, storage and power consumption. The 

parameters considered in each of the cases are described below. 

a. Timing 

a.1. Building 

Time taken to Build Routing table (Bt): This is the time taken for the algorithm to retrieve 

all the data from the Routing table file, sort them and build them with appropriate entries 

for future referencing. 

Time taken to build next hop table (Nt): This is the time taken to compute all the next hop 

addresses from the routing table data. 

a.2. Sorting 

Time taken to Sort the entries (St): Based on a seed value the routing table entries are 

stored in a temporary data structure in a random fashion, which is then sorted for building 

the routing table. 

a.3. Searching 

Function Search: Time taken to search the string (using call to a function) based on n 

iterations. 

Fmin: Minimum time taken to search the string using function call. 

Favg: Average time taken to search the string using function call. 
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Fstd: Standard deviation of the times for searching a string using function call. 

Flps: Average number of lookups/second using function call. 

Inline Search: Time taken to search the string (using an inline function) based on n 

iterations. 

Imin: Minimum time taken to search the string using Inline function call. 

Iavg: Average time taken to search the string using Inline function call. 

Istd : Standard deviation of the times for searching a string using Inline function call. 

Ilps: Average number of lookups/second using inline function call. 

b. Memory Utilization 

Bm: Memory utilization in bytes for the base vector. 

Pm: Memory utilization in bytes for prefix vector. 

Nm: Memory utilization in bytes for next hop vector. 

Trie (Tm): Memory utilization for Trie. 

F. Results 

Following are the results for the comparison of LC-Trie approach and proposed approach 

with a fill factor of 0.5 and a fixed branch at root (16). We have run this algorithm 100 

times to get a good estimate of the values. This was run on an Intel Pentium II processor, 

400 MHz and 256 MB RAM. The programs were written in C and complied with gcc 

compiler using optimization level –04. 

From Table 4 we observe that time taken to build the trie is reduced by 0.14 

seconds. This is mainly due to the fact that no additional computation is required to build 

the base and prefix vector. Also, there is no overhead of building the next hop table. The 

simulation results show that the proposed approach works 3.28 times better than LC-Trie 

approach when the prefix search is implemented as a function search and 4.11 times 

better when implemented as an inline function. Thus, for above mentioned system 

configuration we were able to achieve a lookup of approximately 6.6 Mpps in the average 

case. 

From Table 5 we observe that the proposed approach avoids the storage for base, 

prefix and nexthop vector and hence occupies 2.38 times lesser storage. Though the 

reduction in storage for the nexthop vector is not significantly high, the storage for the 

base and prefix vector is greatly reduced. 
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The processing power savings for the two approaches were compared using an 

implementation based on reconfigurable processor architecture from Tensilica (16/24 bit 

Xtensa ISA, 200 MHz, 0.18 um technology, 0.7 mm2 core area, 0.8mW/MHz core power 

dissipation). The Routing table used in our power analysis is described in Table 2. The 

result obtained is an estimate of power for one iteration. The results show that proposed 

approach and the LC-Trie approach consumes 4.615mW and 4.755mW for 20 lookups 

respectively (Table 6). This is a reduction of 0.14mW for 20 lookups. This is directly 

related to the fact that the time for lookup is less. The routing entries in our simulations 

are assumed to be stored in the DRAM and the storage power corresponding to that was 

computed for both the approaches. Since the storage requirements are reduced by factor 

of 2.38, it is expected that power consumptions will be less by that amount.  

 

 

Parameters LC-Trie  Proposed 

Bt 0.57 sec 0.43 sec  

Nt 0.05 sec      0 sec 

St 0.37 sec 0.36 sec  

Fmin 5.01 sec 1.53 sec 

Favg 5.02 sec 1.53625 sec 

Fstd 0.01 0.0074402 

Flps 1308104 4283399 

Imin 4.12 sec 1.0 sec 

Iavg 4.12 sec  1.005 sec 

Istd 0.01 0.0053452 

Ilps 1590680 6553600 

 

 

Table 4: Timing 
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Parameters LC-Trie (bytes) Proposed 

Bm 32769*16             0 

Pm 32767*14             0 

Nm 4*16             0 

Tm 65537*4 65537*8 

Approach Number of Processor Power 

LC Trie 5944854 0.8mW/Mhz 4.755 mW/20 

Proposed 5769630 0.8mW/Mhz 4.615 mW/20 

Table 5: Memory Utilization 

Table 6: Power Consumed 
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III. TCAM BASED ROUTER ARCHITECTURE FOR IP LOOKUP 

Ternary Content Addressable Memories (TCAMs) have been emerging as a popular 

device in designing routers for packet forwarding and classifications. Despite their 

promise on high-throughput, the use of large TCAM array is prohibitive due to its 

excessive power consumption and lack of scalable design schemes. This section presents 

a TCAM-based router architecture that is energy and storage efficient. A new prefix 

aggregation and expansion technique to compact the effective TCAM size in a router is 

introduced. Pipelined and paging schemes are employed in the architecture to activate a 

limited number of entries in the TCAM array during an IP lookup. The new architecture 

provides low power, fast incremental updating, and fast table look-up. Heuristic 

algorithms for page filling, fast prefix update, and memory management are also 

provided. The empirical models for memory requirements, energy consumption and 

access time have been derived to estimate the performance. Results have been illustrated 

with two real-life large routers (bbnplanet and attcanada) to demonstrate the effectiveness 

of our approach. 

A. Introduction 

Internet protocol (IP) lookup forms a bottleneck in packet forwarding in modern IP 

routers because the lookup speed is unable to catch up with the increase in link 

bandwidth. The Ternary Content Addressable Memories (TCAMs) have been emerging 

as viable devices for designing high throughput forwarding engines on routers. They 

store don’t care states in addition to 0s and 1s, and search the data (IP address) in a single 

clock cycle. This property makes TCAMs particularly attractive for packet forwarding 

and classifications. Despite these advantages, the use of large TCAM arrays is prohibitive 

due to large power consumptions and lack of scalable design schemes.  

The high density TCAMs, available in the market today, consumes 12-15W/chip 

when the entire memory is enabled. In order to support the IP prefixes that are increasing 

super-linearly, vendors use 4 to 8 TCAM chips. Additionally chips would also be 

required to handle filtering and packet classification. The power consumption resulting in 

using large number of chips not only increases the cooling costs but also limits the router 

design to fewer ports. Recent research in reducing the power consumption of the TCAM 

has been discussed in [14][15]. Our analysis from the CACTI-3.0 model [16] indicates 
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that that power consumption increases linearly with the increase in the number of entries 

and bits in a TCAM. The TCAM look-up time increases exponentially with the number 

of entries. Hence, the techniques proposed for compacting the routing table will result in 

substantial reduction in power and look-up delay. Liu [17] has presented a novel 

technique to eliminate the redundancies in the routing table. However, we show that this 

technique takes excessive time for updating because this is based on Espresso-II 

minimization algorithm, whose complexity increases exponentially with the size of the 

original routing table. Thus the main motivation of our paper is to come up with a TCAM 

router architecture that consumes low power and is suitable for incremental updating 

needed in modern IP routers. Additionally, we minimize the memory size and look-up 

delay.  

We propose a pipelined architecture that can achieve the above goals through 

further compaction of the active region of the routing table in TCAM architecture. Our 

paper introduces the idea of prefix aggregation and prefix expansion for TCAM, which 

can reduce the number of entries for comparison in a TCAM. Together with the prefix 

aggregation and overlapping properties, we select a limited number of pages during IP 

look-up instead of energizing the entire modules. The present TCAM vendors provide 

mechanisms to enable a chunk of TCAM, much smaller in size compared to the entire 

TCAM. We exploit this technology to achieve an upper bound on the power consumption 

in the TCAM based router. Based on statistical analysis of the current IP routing tables, 

we present a 2-level paged TCAM architecture. Detailed analysis and design tradeoffs are 

presented by varying the sub-prefix length. We also propose page filling heuristic to 

improve memory utilization due to paging. The concept of bucket-TCAM has been used 

to isolate storing of rarely incoming IP prefixes and to find optimal page size in the 

proposed architecture. An efficient memory management scheme is presented for 

updating the routing entries. Finally, we derive empirical equations for memory 

requirement and power consumption for the proposed architecture.  

This paper presents results of delay and power analysis of a TCAM by modifying 

the CACTI III model [16], which serves as verification of our empirical equations. The 

access time for TCAM-based router has been addressed for the first time in this work. 

Case studies were made using the statistics from bbnplanet and attcanada routers to 
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demonstrate the effectiveness of the proposed TCAM architecture. It is shown that less 

than 1% of power is consumed when compared to energizing the full-size TCAM 

implementation. Considerable saving is also noticed in memory size and look-up delay. 

The paper makes the following significant contribution. 

• It introduces new techniques for aggregating prefixes based on which substantial 

reduction in TCAM size can be obtained. 

• It presents a new 2-level pipelined architecture based on which selected pages and 

modules can be activated during a table look-up process. 

• Efficient paging and memory management techniques are derived for improving 

TCAM utilization and update operations. 

• Analytical and simulation results are presented to show substantial gain in power, 

memory size and look-up delay by using the proposed architecture.  

B. Prefix Compaction 

The purpose of delving into the prefix properties is three fold: 1) To further increase the 

compaction of the routing table in addition to using the existing techniques. 2) To come 

up with an upper bound on minimization time lest it become a bottleneck in the routing 

lookup. 3) To derive an upper bound on the power consumption during a lookup process. 

The previous attempts to reduce the routing table size in TCAM using prefix properties 

have been achieved using the property of Pruning and Mask extension [17]. Pruning 

achieves compaction by storing only one of the many overlapping prefixes that have the 

same next-hop. Two prefixes are overlapping if one is an enclosure of the other. Let Pi 

denote the prefix Pi and |Pi| denotes the length of prefix Pi then Pi ∈ P is called enclosure 

of Pj, if Pj ∈ P, j�i and |Pi| < |Pj|, such that Pi is a sub-prefix of Pj. If Pi and Pj have the 

same next hop then they can be represented by Pi. Thus, a set of overlapping prefixes 

{P1,P2,P3,.. Pn}, such that |P1|<|P2|<|P3|..<|Pn|, having the same next hop can be replaced 

with a single entry P1. If an update deletes the entry P1, the set of overlapping prefixes 

{P1,P2,...Pin} should be represented by the entry P2. When an update adds a new entry Pi, 

such that |Pi|<|P1|<|P2|..<|Pn|, then the existing entry P1 is replaced with Pi. However, if the 

new entry Pi arrives, such that, |Pi|>|P1|, then no changes are made to the routing table, 

except for the updating of set of overlapping prefixes.  
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The Mask extension property logically minimizes two or more prefixes to a 

minimal set, if these prefixes have the same next hop. The logic minimization is an NP-

complete problem and has been addressed using the Espresso-II algorithm [18]. Using 

Espresso-II, the prefixes {P1,P2,P3...Pn} are minimized to {P’1,P’2,P’3,..P’m}, such that 

m�n.  

While the Pruning and Mask extension technique together compacts about 30-

45% of the routing table, one need to investigate the overhead in using these approaches 

for real time updates. The time taken for pruning is bounded and is independent of the 

size of the router. However the logic minimization algorithm using Espresso-II has an 

exponential runtime with input size. Thus based on the technique discussed in [17], the 

input to Espresso-II algorithm can be as high as 15,146 for the attcanada router. The 

runtime for such a large size input data can take several tens of minutes and is very 

expensive for incremental updates. We tackle this problem by having an upper bound on 

the input to the minimization algorithm, which is independent of the router size, using 

another property called prefix aggregation. The minimization of the prefixes based on 

this property is time bounded. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 IP Address      Next Hop     
129.66.6.0/24     4.0.6.142      
129.66.8.0/24    4.0.6.142      
129.66.12.0/24    4.0.6.142      
129.66.20.0/24    4.0.6.142      
129.66.21.0/24    4.0.6.142      
129.66.30.0/23    4.0.6.142      
129.66.31.0/24    4.0.6.142      
129.66.32.0/19    4.0.6.142      
129.66.34.0/24    4.0.6.142    
129.66.47.0/24    4.0.6.142      
129.66.48.0/24    4.0.6.142      
129.66.64.0/18    4.0.6.142      
129.66.88.0/24    4.0.6.142      
129.66.95.0/24    4.0.6.142      
129.66.111.0/24   4.0.6.142      
129.66.128.0/22   4.0.6.142      
129.66.132.0/24   4.0.6.142      
129.66.172.0/24   4.0.6.142     

Figure 9: Sample Trace of Routing Table from 
bbnplanet 
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1. Prefix Aggregation  

In this sub section, we introduce a new property of the prefixes called prefix aggregation. 

Figure 9 represents a portion of the routing table dump taken from the bbnplanet router. It 

represents all the prefixes in the routing table starting with 129.66 and having prefix 

length > 16 and � 24. We call 129.66, the largest common sub-prefix (LCS) for the set of 

prefixes. The LCS for any prefix is the sub-prefix whose length is the nearest multiple of 

8 such that |Si|<|Pi|, where Si is the LCS of prefix Pi (LCS(Pi)). However if the prefixes 

under consideration are such that |Pi| > w1 ∀  Pi, where w1 is an integer, then LCS of Pi is 

(pi 1 pi 2 ...pi 1w ) if |Pi| � (w1/8 + 1)*8 (pik represents the kth bit of the prefix Pi). From the 

statistics collected, we observe that if the prefixes are grouped based on their LCS, their 

next-hop is mostly the same with a few exceptions. Interestingly, it is also observed that 

prefixes having different maximum common sub-prefix usually do not have the same 

next-hop. According to these observations, we may state that the degree of compaction 

achieved by independently applying minimization on each set of prefixes with same 

largest common sub-prefix, is nearly equal to the minimization achieved when they are 

considered together. 

Table 7 gives an indication about the extent of compaction achieved by prefix 

aggregation and the maximum compaction possible in the two routers. Thus based on the 

prefix statistics in the core routers, we can presume that the set of largest common sub-

prefixes could be treated as mutually exclusive. Notice that our algorithm does not 

produce maximum prefix compaction, but it saves considerable compaction time by 

limiting the inputs to the Espresso algorithm, used for such compaction. As a result, the 

technique is applicable for incremental (on-line) updating as opposed to the technique in 

[17]. More detailed explanation on this property is given later in this section.   

The property of prefix aggregation directly gives an upper bound on the number 

of possible prefixes that can be given as input to the minimization algorithm, without 

significantly affecting the total amount of compaction. This input set is the set of prefixes 

with maximum possible size such that each prefix in the set has the same LCS. Let the 

largest common sub-prefix for prefix Pi = (pi 1 pi 2 ...pi ||
i

P ) be represented as S = 

(pi 1 pi 2 ...pi 8*)8/)1|(| −
i

P ). Then the aggregated set P is a set of prefixes∀ Pi ∈ P such that the 

maximum common sub-prefix of Pi is S.  
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 Lemma II.1: The maximum number of prefixes with the same largest common sub-prefix 

in a prefix set is 256. 

Proof: Let S be the largest common sub-prefix for the set of prefixes Pi. The Classless 

Inter-domain Routing (CIDR) addressing was introduced so that if S covers all ranges of 

prefixes Pi, such that LCS(Pi) =S and, |S|< |Pi| � (|S|+8), then new subnets can be added 

with prefix Pi, that will result in networks having smaller number of hosts. Thus to find 

the maximum possible number of such prefixes that can be added, we assign all possible 

combinations of Pi, such that  

|Pi|=(|S|+8). This will ensure that it is not possible to add any Pi such that |S|< |Pi| < 

(|S|+8). Thus we can have a total of 2((|S|+8) - |S|) = 256 combinations.  

 

 

 

 

 

 

2. Prefix Expansion 

The concept of prefix expansion for IP lookup has been discussed using software 

approaches like [19]. We adopt this property to further compact the routing table. The 

Prefix Expansion property can be represented mathematically as follows. If Pi represent a 

prefix, such that | Pi| is not a multiple of 8, then the prefix expansion property expands Pi 

to Pi.Xm such that, X=don’t care and m = 8-(|Pi| mod 8). The operator “.” represents the 

concatenation operation. 

From Lemma II.1 we know that the maximum input size given to the 

minimization algorithm for bounded runtime is the set that has maximum number of 

prefixes (256) having same largest common sub-prefix. For each prefix Pi ∈ P, that has a 

largest common sub-prefix S, |Pi| may not be a multiple of 8. However Espresso-II 

algorithm will provide more compaction if the entire Pi’s are of same length. Hence, to 

Router 
Total 
# of 

prefixes 

Maximum Possible 
Minimization 
# of prefixes 

Prefix Aggregation 
Minimization 
# of prefixes 

AT&T-
Canada 112412  57837 

Bbn-planet 124538 69646 71500 

Table 7: Comparison of Prefix Minimization Using Prefix 
Aggregation Property in attcanada and bbnplanet Router 
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increase the compaction, we expand the prefix so that its length is a multiple of 8, and 

give it as input to the Espresso-II algorithm. 

The run time of the Espresso-II algorithm is not only bounded by the number of 

inputs but also by the bit length of the input. From previous discussions we observe that 

the input set to the Espresso algorithm is the set of prefixes that have the same LCS. 

Thus, the largest common prefix that is a part of all the prefixes is redundant to the 

Espresso-II algorithm. However it would be useful, to only give the varying bits of the set 

containing the largest common sub-prefix, which is the least significant 8 bits of each 

prefix after prefix expansion. Thus for each Pi ∈ P that has the same LCS S, the optimal 

input set of prefixes to the Espresso algorithm to maximize the compaction with an upper 

bound on runtime is the set P’,  

such that ∀ P’i ∈ P’ 

N. Xq
i  for |Pi| � m*8, m is an integer 

N  for |Pi| = m*8, m is an integer 

where, 

N=(pi k pi 1+k ...pi ||
i

P ) 

k=8*((|Pi|-1)/8)+1 

qi = 8-(|Pi|)  

3. Overlapping Prefixes for an IP Address 

The maximum number of overlapping prefixes for a given IP address indicates the 

minimum number of prefixes one needs to search during a lookup operation. Thus, if we 

search a bounded numbers of prefixes during any lookup operation, the power consumed 

will be bounded (This is based on the assumption that only the entries that are enabled 

during the lookup operation contribute to the power consumption). In the following 

section, we show that during a search process, only a bounded number of prefixes 

(256*3) will be compared. These prefixes will contain the set of overlapping prefix for 

any IP address. 
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Lemma II.2: The total number of overlapping prefix for a given IP address is � 25. 

Proof: Consider the incoming IP address I = (i1i2 .. i32). For every I, we can generate a 

Pi/l, such that, 1 � l � 32, and Pi = (i 1 i 2 ...il). Since there are 32 such values of l, we can 

have 32 such possible overlapping prefixes of I. Since in today’s routers there are no 

prefixes of length < 8, the maximum number of possible overlapping prefixes for I is 32-

7=25. 

C. Deriving a TCAM Architecture 

In the architecture, compaction of the routing table is achieved by exploiting the 

techniques developed in this section. Notice that our approach has been different from 

[17] to accommodate fast incremental updates. We adopt a 2-level routing lookup 

architecture (shown in Figure 10) with w1 bits in the 1st level. The 1st level contains w1-

bit sub-prefix which is compared with w1 most significant bits of incoming IP address. If 

there is a match in the 1st level, it enables corresponding region in the 2nd level. The size 

of this selected region varies from router to router. This region is called as segment in 

Figure 2. This would mean that the worst-case power consumption is decided by the size 

of the largest segment, which is not bounded. For large sized routers the segment size 

could be very large. For example, with w1 = 8, the size of the largest segment in 

bbnplanet router is 7580 entries.  
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Figure 10: Segmented Architecture for Routing Lookup Using TCAM 
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Choice of the number of bits in the 1st level affects the compaction and 

performance of the proposed architecture. As a requirement for our architecture, the 

entries in the 1st level TCAM do not store any don’t care states. This will ensure that only 

a unique segment in the 2nd level will be selected. Depending on the value of w1 at the 1st 

level, the size of the TCAM arrays and total memory requirements will vary and hence 

the performance.  

  The compaction technique first selects all the prefixes that are greater than w1 bits 

from the routing table traces. Using the property of prefix overlapping we remove all the 

redundant entries in the routing table. We then use the property of prefix aggregation to 

form sets of prefixes having largest common sub-prefix. Each of these sets are expanded 

using the prefix expansion technique and are given as input to the Espresso-II 

minimization algorithm. Then minimized set of prefixes is stored in the 2nd level TCAM 

that are of length 32-w1. 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows the number of entries in the TCAM after compaction for 

bbnplanet and attcanada routers, using the compaction technique while varying the 

value of w1. For the value of w1 between 8 and 18, the total compaction decreases with 

increasing w1 for both the routers. This is because as w1 increases the input to the 

Espresso-II algorithm decreases (prefixes < w1 are not given as input to the Espresso 

algorithm). However for w1 > 18, we see that the number of compacted entries is 

decreasing with increasing w1. This is because of the fact that the number of prefixes 
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Figure 11: Total Number of Entries after Compaction 
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available for compaction gets reduced in the 2nd level TCAM. At this point the benefit of 

compaction is not noticeable.  

In this sub section we present the detailed architecture of the TCAM based 

packet-forwarding architecture. The discussions on various components of the 

architecture and design parameters are presented. We introduce the heuristics based on 

prefix properties to obtain a bound on power consumption based on the active TCAM 

entries for a single lookup operation. Heuristics to store the pages efficiently in the 

TCAM for high memory utilization is also discussed. Lastly, we also introduce an 

empirical power and memory requirement model based on the parameters involved in the 

architectural design.  

D. Paged TCAM Architecture 

One of our goals is to estimate the total memory requirements in TCAM arrays and 

maximum power consumption in the lookup process for different values of prefix lengths 

(w1). In order to determine the maximum power consumption per IP lookup, we need to 

determine maximum number of TCAM entries enabled during any lookup process. These 

estimations depend on the design details of the proposed architecture.  

The TCAM router with two-level lookup arrangements has been depicted in 

Fig.3. Each entry in the 1st level contains w1-bit sub-prefix which is compared with w1 

most significant bits of incoming IP address. If there is a match in the 1st level, it enables 

corresponding region in the 2nd level. The size of this selected region varies from router 

to router. This region is called as segment in Figure 3. This would mean that the worst-

case power consumption is decided by the size of the largest segment, which is not 

bounded. For large sized routers the segment size could be very large. For example, with 

w1 = 8, the size of the largest segment in bbnplanet router is 7580 entries.  

The implementation scheme to realize segmentation in TCAM array is non-trivial. 

In order to implement the segmentation concept, we consider a paging scheme for actual 

implementation of the segments. Though the paging scheme for TCAMs are also used in 

[14] and [15], we handle the paging differently due to architectural differences.   

We now discuss heuristics to efficiently store enabling bounded number of entries 

for power consumption.  
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1. Determining Bound on Page Size 

Here, we consider selecting a bounded number of pages in a segment during IP lookup 

instead of selecting all the pages using prefix aggregation technique. The prefixes having 

the same largest common sub-prefix are stored in the pages that have the same page ID’s, 

which are represented by their LCS values. Then the maximum number of pages enabled 

during the lookup process is bounded (Lemma III.1). In the bbnplanet router, the number 

of entries in each page can range from minimum of 1 to the maximum of 256. Though 

this technique can achieve a bound on the number of entries in a page, it may not be an 

elegant solution due to its low memory utilizations.  

Lemma III.1: When the pages are created using aggregation technique, the maximum 

number of pages enabled that contains the set of overlapping prefixes during a lookup 

process is � 3.  

Proof: From Lemma II.2 we know that the total number of possible overlapping prefixes 

for a given IP address is � 25. One needs to find out the maximum number of pages that 

will be searched based on the aggregation technique. This is the set of pages containing 

the set of overlapping prefixes. Since we have considered the number of bit-lines in the 

1st level (w1) � 8, the total number of overlapping prefixes is � 24. We now prove the 

bound for the value of w1=8, which has the largest number of overlapping prefixes. The 

prefix aggregation technique groups the prefixes such that they have a common prefix, 

which is a multiple of 8 for w1=8. Hence there are three such groups possible with 

maximum common prefix lengths of 8, 16, and 24. Thus the total number of pages 

containing overlapping prefixes cannot exceed 3 based on the aggregation technique. 

Corollary: The upper bound on the number of entries that need to be searched during an 

IP lookup cannot exceed 256*3.  

The statistics from the bbnplanet router shows that the segment sizes vary 

depending on the value of w1. Thus if the page size is large, having separate pages for the 

smaller sized segments would result in a wastage of space. Similarly if the segment sizes 

are large having small sized pages will increase the number of page ID’s and hence the 

memory utilization. Hence one needs to have a technique to compute the right page size 

depending on w1 that would minimize the memory consumption. In the next section we 

describe the heuristics to obtain the optimal page size, among all the possible page sizes 
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that are possible. Since the sets formed using the aggregation technique cannot exceed 

256 entries, the maximum size of the page cannot exceed 256 entries. We refer to the 

term � to refer to the page size. Our goal is to find the optimal value of � (�w1) for all 

possible w1, which will optimizes memory.  

2. Page Filling Heuristics 

Though the aggregation technique gives an upper bound on the power consumption, it 

may increase the TCAM’s size due to memory under utilization. We present a heuristics 

based on the maximal covering of prefixes to increase memory utilization. Let a cube 

represent a single entry for a set of prefixes and covering represents the set of cubes that 

cover all the prefixes that have the same LCS(Pi). Our goal is to find the minimal set of 

such cubes that combine prefixes Pi having the same |Si|. Since |Si| can have a maximum 

of 3 values for any value of w1 in the proposed architecture, there can be a maximum of 3 

overlapping cubes for a given IP address if the cubes in each cover are made non-

overlapping. This ensures that the maximum number of active or enabled entries cannot 

exceed 256*3. This will be true if all the prefixes in the cube Ci can be arranged in pages 

so that the total number of entries in all pages does not exceed 256.  Each of these cubes 

will represent the page ID for the page containing the prefixes it overlaps. We also 

introduce a parameter �, called fill factor, which represents the fraction of page filled 

during reconfiguration process that covers prefixes having different LCS values. The 

page-filling algorithm is presented Figure 12 (a) & (b).  

 

 

The page-filling algorithm tries to fill the entries into the pages, each of size �, 

efficiently by trying to find the minimal number of cubes that are non-overlapping and 

StorePage(Ci,P,�,�) 
While P � 0 
  Create New Page with Page ID Ci 
Entry=0 
While Entry < �*� 
 AddToPage(Pi) 
 P= P-{Pi} 
 Entry++ 
EndWhile 
EndWhile 

Figure 12(a): Heuristics for Storing Prefixes 
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cover all the prefixes using MinimalCoverSet. The StorePage algorithm ensures that no 

page has more than �*� entries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

E. Comparator, Page Tables, Pages and Bucket 

Figure 13 represents detailed architecture of the proposed approach. The 1st level lookup 

consists of comparators and page tables, and the 2nd level lookup consists of pages and 

the bucket. The concepts of page tables and buckets are described later in this section. 

When an IP address is looked up using the forwarding engine, depending on the cube that 

covers the IP address, the comparator enables the appropriate page table. The 32-bit IP 

address is again looked up in the page table, and if there is a match all the pages covered 

by the prefix are enabled. The least significant 32-w1 bits of the IP address are then 

looked up in the pages to find the longest prefix match. However if there is no match in 

the page table the 32 bit IP address is looked up in the bucket for a match. We now give a 

detailed description of each of the architectural components. 

FillPages(P,w1,�,�,C’) 
//Pi∈P, such that |Pi| > w1,∀  Pi 
Let Qw1= pi1pi2p…piw1 
Cmax=0 

For all Pi∈P with same |LCS(Pi)| 
and Qw1   
For 
|LCS(Pi)|<=l<=(|LCS(Pi)|/8+1)*8 

  Ci=MinimalCoverSet(P, �) 
 EndFor 
 For all Pi∈P covered by Ci 
 If(Ci covers Pi’s having same 
LCS(Pi)) 
    StorePage( Ci,P,�,�) 
    Else 
    StorePage( Ci,P,�,1) 
 EndFor 
 PageTable_Qw1 += |Ci| 
 If(PageTable_Qw1 > Cmax) 
  Cmax=C 
 EndFor 
EndFor 
Return PageTable_Qw1, Cmax 
       

Figure 12 (b): Page Filling Heuristics 
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The page tables store the page ID’s associated with the pages. These too are 

implemented using TCAMs. Page tables can be thought of as pages with word length of 

32 bits. The word length of page tables is 32-bit length because the maximum length of 

the cube can be as high as 32 bits. The minimum size of the page table is given by Cmax, 

as computed in the FillPages algorithm. The page tables also have some empty entries 

(stored with all 0’s, so that they don’t match any address), which will be used for memory 

management as discussed in Section IV C. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The range comparator is designed (using TCAM) such that it would selectively 

enable the TCAM page table that contains the cubes covering the incoming IP address. 

From the router statistics, we know that the number of page tables required is few in 

numbers. Thus, the number of comparators required is very small (bbnplanet statistics 

showed that the number of comparator varied from 14 to 308 for different values of w1). 

Hence, the overheads due to comparators for memory usage and power consumption are 

negligible. The heuristics for creating the page table and comparators is shown in Figure 

14. It is important to note that the solution assumes the number of entries in the page 
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table to be small. This assumption is true for today’s routers. However, theoretically the 

number of entries in each page table could be as high as 256*256 entries in a page table. 

Thus the power consumed per lookup is no longer controlled by the number of pages 

enabled per lookup. From the experimental results it was found that the number of entries 

in the pages is not greater than 64 and hence the power consumed is determined by the 

number of entries enabled in the pages. 

 
 

1. Building the Routing Table: Example 

Figure 15(a) is a sample routing table trace taken from the core router. Figure 15(b) 

illustrates how the prefixes are stored based on the largest common sub-prefix. This kind 

of storage results in under-utilization, especially when there are not many prefixes 

covered by the largest common sub-prefix. Figure 15(c) illustrates the effect of 

aggregating prefixes that have different largest common sub-prefix. It can be seen from 

the figure that the architecture refines the process of prefix matching successively 

through multiple stages of pipelining. 

 

 
 
 
 
 
 
 
 
 
 
 

CreatePageTable(C,w1) 
//Find Cubes for different value of w1 
For all Ci corresponding to Qw1 
 PageTable_Qw1=PageTable_Qw1+Ci 
// Avoiding under-utilization 
Combine all PageTable_Qw1 ST 

(PageTable_Qw1 < Cmax) 
&& Li=(Minimize(PageTable_Qw1..j)==1) 

// The newly formed cubes Li is the comparator value 
AddComparator(Li) 

 IP Address      Next Hop     
129.66.1.20/28     4.0.6.142      
129.66.1.21/29    4.0.6.142      
129.66.1.23/29    4.0.6.142      
129.66.1.24/29    4.0.6.142      
129.194.1.20/25    4.0.6.142      
129.194.2.28.0/27    7.0.16.142      
129.194.3.23/25    7.0.6.77 
129.194.4.23/25    8.0.6.77            
170.1.1.1/31    4.0.6.142      
170.1.1.2/31    4.0.6.142      
170.1.1.3/31    4.0.6.142      
170.1.1.4/31    4.0.6.142  

Figure 15(a): Routing Table Trace 

Figure 14: Algorithm to Create Page Table and Comparators 
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2. Bucket 

The proposed scheme stores all the prefixes of length � w1 separately into a bucket that is 

32 bits wide. These entries will have to be searched only when there is a mismatch in the 

1st level. We now define the parameter � as the fraction of routing table entries present in 

the bucket. Since the bucket contains all the prefixes � w1, the value of � increases with 

the increase in w1. We will see in Section V that the value of total estimated power is 

129.66.1.20/28  
129.66.1.21/29 
129.66.1.23/29 
129.66.1.24/29 

129.194.1.20/25    
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170.1.1.4/31   

129.66.1.0/24 
129.194.1.0/24  
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129.194.4.0/24 
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129.194.3.23/25 
129.194.4.23/25   
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Figure 15(b): Aggregating Prefix Based on Largest Common Sub-prefix 

Figure 15(c): Aggregating Prefixes Having Different Largest   
                      Common Sub-prefix 
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mostly controlled by � for larger values of w1 and independent of the bucket size for 

smaller values of w1.  

The statistics from different routers show that the number of prefixes in the 

bucket is very small for w1�16 (approx 2% of the routing table). Since the growth rate of 

the prefixes of length � 16 is small, it is very unlikely that the bucket will overflow when 

designed with reasonable fill factor. The fill factor for the bucket �f is defined as the 

proportion of bucket that are filled with prefixes � w1 during router reconfiguration. It 

may be mentioned here that the bucket is not only used for storing prefixes of length � 

w1, but also prefixes that arrive due to an update which cannot be grouped as a part of a 

page in the 2nd level. These type of prefixes rarely occur and wouldn’t attribute to bucket 

overflow for smaller values of w1. 

 It is important to note that the bucket, pages and the comparators are all of 32-bit 

word length, while the pages in the TCAM have word length 32-w1. Thus we cannot 

place them in the same TCAM chip as the prefixes. However, the total memory for the 

buckets, page tables and comparators will be of very small size, and they can be 

implemented using smaller sized TCAM chips word length 32 bits each.  

 

 
 

3. Optimal Page Size 

Having discussed various components in the architecture that contribute to the memory 

requirements, we now propose a heuristics to find the optimal page size for a given w1 so 

ForEach w1 from 8 to 31   
//These are the possible values of w1 
ForEach j from 1 to 8  
//� ranges from 2 to 256, powers of 2 
 � = 1<<j 
 C’=0 
   Page=FillPage(P,w1,�,�,C’)  
  //Fill the page using heuristics 

Mem= Page* �*(32-w1)/32 + Page + Mc  
// Mc memory of comparators used 

 If(Mem < Memw1)  
//Obtain optimal � value 

   Memw1=Mem 
   Pagemax=Page 
   �w1= � 
EndFor 
EndFor 

Figure 16: Heuristics for Finding Optimal Page 
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that the total memory required is minimal. The algorithm described in Figure 16, 

computes the optimal value of � = �w1 for each value of w1. The sum total of Memw1 and 

the bucket size will give the total memory required for w1 bits in the 1st level. 

F. Empirical Model for Memory, Power and Access Time  

We now present empirical models to compute the total memory requirements, energy 

consumption and access time for the proposed architecture. We use � as the maximum 

bucket size, � as the page size, � as the fill factor of the pages and N as the number of 

entries in routing table after compaction. Also from the algorithm we see that �w1, 

represents the optimal page size for Pagemax pages that minimizes memory for w1 bits in 

the 1st level lookup. The minimum memory requirement due to the proposed architecture 

(32 bit entries equivalent) is: 

= �w1* Pagemax * (32-w1)/32 + Pagemax + Pagemax/Cmax + N*�/ �f   …(1) 

The above equation calculates the minimum memory required for different values 

of w1. We have approximated the memory used by the page tables to the number of pages 

used for optimal �w1. This is a reasonable approximation since the range comparators can 

be designed to squeeze the entire page ID’s into the page tables with a negligible wastage 

in memory. The number of comparators used can be approximated to the number of page 

tables and is given by Cmax. The bucket size is represented by N*�/ �f, and N/ � 

represents the number of prefixes in the bucket during reconfiguration time. We assume 

that the prefixes added in the future will be very few and negligible since they represent 

rarely occurring prefixes. This assumption is true for small values of w1. 

The power estimation based on the number of entries enabled is not an accurate 

model to measure power. Due to VLSI layout and technology intricacies, the power 

consumption is not directly proportional to the number of bits or entries used. We have 

extended the CACTI-3.0 [29] model to estimate the power of TCAM, which is a standard 

approach for VLSI design. It may be noted that the original model was developed for 

cache memories. We have not described the modifications here due to lack of space. 

Based on this model the energy consumption in TCAM is given by: 

E(rows,tagbits) (pJ)= (0.126284*rows*tagbits + 1.63569*rows  + 1.97232*tagbits  +  

0.875828) / fudge_factor           …(2) 
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where, rows is the number of rows enabled, tag bits is the word length of the TCAM, and 

the fudge_factor is (0.8/0.18), which is technology dependent. 

The maximum power consumption using CACTI-3.0 for a single lookup process 

is given by 

Max(f*E(256*3,(32-w1)) , f*E((P*N*�/�f),32)+ f*E(Cmax,32)+ f*E’(Pagemax/Cmax ,32)      

...(3) 

where f is TCAM’s frequency of operation. 

          The estimated power is due to the total entries looked up in comparators and page 

table in the 1st level and bucket or TCAM pages (maximum of the two) in the 2nd level. 

The access time can be estimated using CACTI-3.0 model similar to energy equation. 

G. Incremental Update 

The dynamically changing routing table could have 100s of updates per second. Though 

most of the updates (inserts/deletes) are route flaps, still 10s of updates per second will be 

required in the backbone router. Thus we need a fast incremental update algorithm for the 

proposed architecture.  

 

 

 

1. Insertion 

The architectural design proposed in this paper is very conducive to the fast incremental 

updates. When a new prefix Pi is to be added into the TCAM, we first check if it is one of 

Insert(Pi) 
If(|Pi| � w1) 
InsertIntoBucket(Pi) 
Else 
If(∃ Ci that covers Pi) 
 find Ci such that 

|LCS(PCover(Ci))|= |LCS(Pi)| 
//PCover(Ci) returns a prefix covered by Ci 

  P=Cover(Ci)  
  P=P+{Pi} 
  Q=Minimize(P) 
  DeleteFromTCAM(Q’� P) 

  InsertToTCAM(Q� P’) 
  UpdatePageTable(Ci) 
 Else 
  InsertToBucket(Pi) 
 

Figure 17: Incremental Insertion 
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the rarely occurring prefixes. This could be done by checking if |Pi| � w1 or if the prefix is 

not covered by any cube Ci that is present in the page table, and adding it to the bucket. 

However, if the prefix is covered by some cube Ci, there could be a maximum of 3 cubes 

that covers this prefix Pi. Based on the heuristics for storing the prefixes into pages, we 

know that the prefix must be inserted into the page whose page ID (Ci), is such that 

|LCS(Cover(Ci)| = |LCS(Pi)|. Before we insert the prefix into cube Ci, we minimize the 

new prefix with all the prefixes P covered by Ci (Cover(Ci)), that have the same LCS 

as the new prefix Pi. Then the minimized set of prefixes is updated into the TCAM page 

with page ID Ci. We need to update the value of Ci, based on the state of the current 

prefixes in the page. This is done by the UpdatePageTable(Ci) procedure in the 

insertion heuristic (Figure 17). 

2. Deletion 

The deletion process is similar to the insertion process bit is simplified by the fact that the 

minimization is done on the raw prefix data and not on the previously minimized set. 

Since the number of such prefixes cannot exceed 256, it is not an overhead in terms of 

computation. Figure 18 shows the incremental deletion algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to note that Cover(Ci) function will return the set of prefixes that 

have the same maximum common sub-prefix as the new entry, but without minimization 

Deletion(Pi) 
If(|Pi| < w1) 
DeleteFromBucket(Pi) 
Else 
If(∃Ci that covers Pi) 
 Find Ci such that  

|LCS(PCover(Ci))|=|LCS(Pi)| 
 P=Cover(Ci)  
 P=P-Pi 
 Q=Minimize(P) 

DeleteFromTCAM(Q’� P) 

 InsertToTCAM(Q� P’) 
 UpdatePageTable(Ci) 
Else 

DeleteFromBucket(Pi) 

Figure 18: Incremental Deletion  
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being performed on them. As we have shown earlier in Lemma II.1, this will not result in 

minimizing more than 256 entries.  The details of InsertToTCAM, InsertToBucket, 

DeleteFromTCAM, DeleteFromBucket and UpdatePageTable schemes are not 

provided due here to lack of space.  

The runtime for the update algorithm (insertion and deletion) is bounded by the 

time for minimization using Espresso-II algorithm. Table 8 gives the runtime for 

minimizing the prefixes using the proposed approach and the technique proposed by [17]. 

The size in Table 8 represents the maximum input that would to be given to the Espresso-

II algorithm for minimization during prefix update. The Espresso-II algorithm was run on 

an Athlon dual processor running 1.6 GHz, to minimize the prefixes1 when a request for 

updating a new prefix is issued by the neighboring router using the approach in [17], the 

worst-case incremental prefix update took 63.04 sec for the bbnplanet router and 

1098.47 sec for attcanada router, which are not practical values for high-performance 

routers. The proposed approach on the other hand took a worst-case time of 0.006sec for 

incremental prefix update. The value is not only small and practical, but also bounded 

since at any point of time the number of inputs to Espresso-II algorithm never exceeds 

256. The Espresso-II algorithm’s runtime also increases with the number of input bits. 

The proposed algorithm uses 8 bits as opposed to 32 bits in [17] and hence makes the 

computation time faster. ). It is important to note that the functions Cover, Minimize, 

DeleteFromTCAM, InsertToTCAM, UpdatePageTable, InsertToBucket have 

a worst case complexity of O(256). Hence, the insertion and deletion scheme is 

incremental and bounded.  

 

 

 

 

 

 

 

 
1 Prefixes here indicate the routing table prefixes after initial compaction (prefix overlapping and 

minimization)

Approach in [1] Proposed Approach  
Router Total 

Prefixes 
Size Time 

(sec) Size Time 
(sec) 

Attcanada 112412 15146 1098.47 223 0.005 
Bbnplanet 124538 7580 63.04 256 0.006 

Table 8: Comparison of Incremental Update 
time
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3. Memory Management 

When the router is reconfigured the comparators, page tables and pages are setup based 

on the optimal architecture for the router. The design of the router is based on the prefix 

statistics and hence it is less likely that the pages will overflow. Also the page fill factor � 

ensures that during the build time of the router the pages have enough space for future 

updates. Also, most of the prefix updates are route flaps. So it is more likely that the same  

set of prefixes will be added and deleted that would result in very less chance of an 

overflow. 

 However, it is still possible that the pages could overflow. In the previous section 

when we discussed the insertion algorithm, we did not consider the possibility of an 

overflow. Hence, we present a memory management technique that will effectively 

reorganize the pages without affecting the update time. Let Pi be the prefix that resulted 

in the overflow. Then the insert algorithm with the memory management is shown below.  

 

 

 

 

 

 

 

 

The memory management algorithm ensures that only the pages that have their 

Page ID same as Ci are recomputed during an overflow. It is important to note that if an 

overflow results in creating an extra page, the free pages already present in the TCAM 

will be used and the page tables will be updated appropriately. As we mentioned earlier 

some of the entries in the page tables were kept empty during reconfiguration process, 

which will be used during an overflow. The memory management technique assumes that 

the page table will not overflow. Though this is very unlikely to happen, it cannot be 

ruled out. In such a case we reconfigure the router all over again. The memory 

management heuristics is shown in Figure 19. 

The deletion and insertion of prefixes could also result in fragmentation in the 

pages. To overcome this problem, all the pages that have the same page ID have prefixes 

Let Qw1 = pi1pi2pi3..piw1 
For all Pi such that Qw1 covers Pi 
 FillPages(P,w1, �max,1,C) 
 UpdatePageTable(Ci) 
 ReprogrammeDeMux(Ci) 
 

Figure 19: Memory Management Heuristic  
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sorted in the increasing order of prefix length. We then adopt the technique discussed in 

[20] to efficiently insert and remove entries within the TCAM to reduce fragmentation. 

H. Results and Case Studies 

In this section we present the results based on the architecture proposed in the paper. The 

results have been illustrated with two real-life large routers (bbnplanet and 

attcanada) to demonstrate the effectiveness of our approach. Using CACTI-3.0 model 

we first show that reducing the bit length and number of entries in the TCAM reduces 

power and access time respectively. Based on the power and memory model discussed in 

Section III.D we compute the value of w1 for which power is bounded and memory 

requirement is least. Finally, we evaluate the results of our approach for above two 

routers to show their performance. 

1. Power and Delay Analysis 

The proposed approach is based on variation of number of bits in the 2nd level and 

compacting the routing table based on prefix properties. The simulation results show that 

these two factors affect the power and delay in the lookup process. We have used the 

modified version of CACTI-3.0 [22], an integrated cache area, time, and power model, to 

analyze the delay and power of a TCAM. The CACTI-3.0 model was developed for 

analysis of cache memories, so we modified the source code of a fully associative cache 

to model the behavior of CAM.  This approach is also evident from a prior study [21] as 

CAM operation is equivalent to tag matching in a fully associative cache. We use 0.18um 

process technology parameters to evaluate the power consumption and lookup time in 

CAM.  

2. Trends in Access Time  

Using the modified tool, we found that there is a no significant change in delay with 

change in the number of tag bits. This is because the number of tag bits (column lines) is 

negligible compared to the number of row lines (prefix entries). However, changing the 

number of prefixes by compaction has a significant impact on the access time. Also, our 

technique uses small partitions for prefix comparisons, which will further reduce the 

number of rows being activated during an access. The access time of TCAM model, 

plotted in Figure 20 for 24 tag bits, bolsters the argument for compacting the routing table 

to reduce the access time. 
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3. Trends in Energy Consumption 

In case of power analysis, we found that there is a noticeable change in the energy 

consumption with the change in number of tag bits. There is an average improvement of 

17.38%, when we change the number of tag bits from 32 to 24. If we further reduce the 

tag size from 32 bits to 16 bits, then we get 35.59% energy savings on an average. We 

provide the plotted results of change in energy consumption with change in number of 

entries and tag size in Figure 21. 

4. Power Consumed per Lookup 

Section III.D gives an empirical power model in terms of active TCAM entries for 

computing the maximum power consumption during lookup for different values of w1. 

Based on the equation we find the range of values of w1 for which power is bounded. We 

know that the power consumption is based on number of entries looked up in 

comparators, page table, pages and the bucket. As discussed earlier, the number of entries 

in the comparator and page table is constant and negligible for a particular value of w1. 

However, the number of active pages and buckets looked up depends on the 

match/mismatch in the 1st level TCAM. Thus, the bound on maximum power 

consumption per lookup depends on the size of the bucket and the number of active pages 

looked up in the 2nd level TCAM. From Lemma III.1 we know that the number of entries 

looked up in the pages is a constant. In order, to find all the values of w1 for which power 

Figure 20: TCAM Entries vs 
Access Time  
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is bounded we examine all values of w1 for which the bucket size is � page size. For 

these values of w1 we can conclude that power is bounded by the number of pages 

enabled in 2nd level (256*3). We have used �f, fill-factor for bucket as 0.5 in our 

simulation, which ensures that 50% of the bucket is available for future updates. We have 

also used a fill factor (�) of 0.5 in the page filling heuristics.   

 

 

 

 

 

Figure in 22a and 22b show the results for bbnplanet and attcanada routers 

respectively. We plot the number of active entries in the bucket during lookup operation 

for varying w1 and keeping the page entries to its bound. Using modified CACTI-3.0 

Figure 22 (a): Power Consumption in 
bbnplanet Router 

Figure 22 (b): Power Consumption in 
attcanada Router 
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model, the power consumption has been estimated (assuming the TCAM to run at 100 

MHz). It is evident from the figures that for w1� 13, we obtain a bound on the power 

consumption for both routers. 

It may be worthwhile to mention that we have not shown the values for w1>16, 

since for such values of w1 the power consumption per lookup was very high and not 

useful to router design. 

 

 
 

 

 

 

 

 

5. Memory Requirements 

The total memory requirements for different values of w1 are given by the empirical 

equation in Section III.D. We use this equation to find the optimal value of w1 for which 

power is bounded and memory requirement is the least. From the above discussion we 

observe that for bbnplanet and attcanada, power is bounded for 8�w1�13 (Figure 

11a and 11b).  We use this information to find the optimal value of w1 for which memory 

is the least. From the plot given in Figure 23, we see that the value of w1 for which 

memory is least for the bounded range of power is 13 for bbnplanet and 12 for 

attcanada. 

It is important to mention that we have not considered the value of w1<8, 

throughout our discussion in the paper, since we observed an increase in memory 

consumption when w1 is decreased from 8 through 1, though the power requirement is 

bounded by the 256*3 page entries. 

6. Case Studies 

Based on the results from simulation and CACTI-3.02 model we illustrate the benefits of 

using the EaseCAM architecture for router design. Table 9 shows the reduced memory  

2 The CACTI model for CAM was designed by Dr.Bhuyan and Banit Agarwal of UC Riverside. 

Router Raw data 
(entries) 

After 
Compac

tion 
(entries) 

Effect of 
Architecture 

(entries) 

Attcanada 112412 57837 50182 

Bbnplanet 124538 71500 59883 

Table 9: Reduction in Memory Requirements 
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requirement for both the routers as we apply compaction and architectural technique 

successively.  

We see that about 40% compaction takes place in the bbnplanet router with 

access time reduced by about 50%. Also, a compaction of 45% in the attcanada router 

reduces the access time by about 65% as shown in Table 10. However, based on the 

proposed architecture the access time is bounded by the number of active pages entries 

and found to be less than 5ns for both the routers.  

 

 

 
 
 
 
 
 
 
 
 
             Table 11 shows the power reduction due to the compaction and subsequently 

applying the architectural techniques. The power estimation was done assuming the 

TCAMs to run at 100MHz. The large routers like attcanada and bbnplanet can be 

designed with power as low as 0.135 mW per lookup using the EaseCAM approach. This 

is less than 1% of the total TCAM power requirement. 

 

 

 
 

 
 

 
 
 

 
 

 
 

Router 
Raw data  

   (ns) 

After 

Compaction (ns) 

Effect of 

Architect

ure (ns) 

Attcanada 240.53 81.87 4.39 

Bbnplanet 265.32 117.9 4.43 

Router Raw data 
(W) 

After 
Compacti

on (W) 

Effect of 
Architectu

re (W) 

Attcanada 14.35W 7.38W 0.135W 
Bbnplanet 15.9W 12.31W 0.12W 

Table 10: Reduction in Access Time 

Table 11: Reduction in Power 
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IV. CONCLUSION 
 

The main contribution of my thesis consists of a scalable and efficient algorithm for fast 

lookup based on modified LC-Trie technique and a storage and power efficient router 

architecture using TCAM. The modified LC-Trie technique performs about four times 

better in terms of access time in the average case as compared to the LC-Trie approach. 

The estimated storage requirement also fall by factor 2.38. This proposed algorithm is 

also efficient in terms of power utilization when compared to the LC-Trie approach. It 

has been predicted that the modified LC-Trie approach is easily scalable and can meet the 

traffic demands for atleast the next three years.  

The proposed algorithm does approximately 6.6 million lookups per second on a 

32 bit, 200Mhtz processor. This however does not consider caching of packets into 

consideration. Since the packet have certain amount of locality in them, caching could 

lead to better performance. Since only a few prefixes need to be searched and the next 

hop for the rest of the packets can be obtained from the cache. An analysis of the 

proposed algorithm with caching could be done to compute the maximum throughput of 

the proposed algorithm.  

I have also presented a novel architecture for a TCAM-based forwarding engine. 

The results show significant reduction in memory consumption based on the prefix 

compaction and architectural design. Heuristic have been designed to store entries in 

TCAM pages so that only a bounded number of entries are looked up during the search 

operation. A fast incremental update algorithm has been introduced that is time bounded. 

The proposed scheme also tackles the memory management problem efficiently. The 

memory requirements, power consumption and delays for router architecture have been 

outlined. To demonstrate the merit of the proposed architecture, the architectural features 

on bbnplanet and attcanada routers based on their trace statistics have been used. It 

has been shown that the memory requirement is reasonably low due to use of effective 

compaction technique. At the same time, the power consumption is found to be 

remarkably low to promise efficient TCAM design in the future. 
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