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ABSTRACT 
 

Physically Based Simulation of Explosions. (May 2005) 
 

Matthew Douglas Roach, B.S.; B.S., Southern Methodist University 
 

Chair of Advisory Committee: Dr. Donald House 
 
 

This thesis describes a method for using physically based techniques to model an 

explosion and the resulting side effects. Explosions are some of the most visually 

exciting phenomena known to humankind and have become nearly ubiquitous in action 

films. A realistic computer simulation of this powerful event would be cheaper, quicker, 

and much less complicated than safely creating the real thing. The immense energy 

released by a detonation creates a discontinuous localized increase in pressure and 

temperature. Physicists and engineers have shown that the dissipation of this 

concentration of energy, which creates all the visible effects, adheres closely to the 

compressible Navier-Stokes equation. This program models the most noticeable of these 

results. In order to simulate the pressure and temperature changes in the environment, a 

three dimensional grid is placed throughout the area around the detonation and a 

discretized version of the Navier-Stokes equation is applied to the resulting voxels. 

Objects in the scene are represented as rigid bodies that are animated by the forces 

created by varying pressure on their hulls. Fireballs, perhaps the most awe-inspiring side 

effects of an explosion, are simulated using massless particles that flow out from the 

center of the blast and follow the currents created by the dissipating pressure. The results 

can then be brought into Maya for evaluation and tweaking. 
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CHAPTER I 
 

INTRODUCTION 
 
 

1.1 Introduction 
 

For decades, explosions have been the most dynamic and visually compelling 

special effects in film and video games.  They have become so prominent in action and 

adventure movies that it seems unusual for a movie not to have one these days. Often 

they are more important than the plot or even the characters themselves.  Fans of the 

movie Independence Day would be hard pressed to remember any of the characters’ 

names but they all remember the scene when the White House exploded [Twentieth 

Century Fox 1996].  What would the movie Star Wars be without the final explosion of 

the Death Star [Twentieth Century Fox 1977]?  Explosions are easily the most frequently 

used and most visually stimulating special effect in Hollywood today. 

Traditional explosive effects, also called practical effects because they are done 

in front of the camera, not afterwards in the computer, are usually achieved in one of two 

ways.  Either a scaled down model is built and blown up in front of high-speed cameras, 

or actual explosives are employed.  Neil Corbould and Steven Spielberg used slurries, 

high explosives used for mining, covered with special sand that had been filtered to 

remove any possible shrapnel for the mortar blasts in the opening sequence of Saving 

Private Ryan [Magid 1998a, Dreamworks SKG 1999].  However, any blast that occurred 

_______________ 
This thesis follows the style and format of ACM Transactions on Graphics. 
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remotely near an actor had to be done solely with air pipes buried under the sand. X-

Files: Fight the Future’s [Twentieth Century Fox 1998] visual effects supervisor Mat 

Beck used a combination of full-size pyrotechnics and a one-eighth scale model to blow 

the façade off of the Unical building in downtown Los Angeles, doubling as a Dallas 

Federal Building for the movie [Magid 1998b].  For the movie Spiderman [Sony 

Pictures 2002], a one-eighth scale model of the Roosevelt Island Tramway wheelhouse 

was constructed in rural Agua Dulce, California complete with soda machines and waste 

receptacles [Fordham 2002].  They even had to engineer a special rig to propel the pull-

wheel out of the explosion toward camera.  When filming a scaled model, it is important 

to increase the film speed otherwise the scale becomes quite apparent.  Speeding up the 

film, and thus slowing down the effect, makes the explosion seem larger and more 

massive.  Incidentally, these three examples, though generally considered practical, were 

each sweetened in post-production with some computer-generated effects as well. 

There are numerous compelling reasons for using computers to generate 

explosive effects instead of the more traditional practical techniques.  The most 

significant motivation of course would be the concern for the actors’ safety.  When the 

explosion is entirely within the computer, there is no chance of someone accidentally 

being caught in the blast.  For those who are production cost conscious, computer-

assisted explosions are cheaper and quicker than precisely scaling and placing 

detonators, and fireproofing existing structures or building special miniatures that can 

only be filmed from a distance.  Computer generated blasts also allow the director 

complete control over the camera placement, as in the movie Swordfish where director 
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Dominic Sena was able to place the camera almost at the center of a major explosion 

[Warner Brothers 2001].  Perhaps the most useful reason for using software to create a 

detonation is the iterative control over the final visual appearance of the effect.  Usually 

when directors shoot a practical explosion, they set up for days just to get several angles 

on one single explosion. With computer-generated effects, directors can look at an 

iteration and ask for things to be changed to reflect their creative vision more closely.  

Another reason to opt for digital explosions has cropped up only recently.  If the entire 

scene around an explosion were completely computer-generated, compositing in a real 

blast would probably expose the illusion.  A couple of examples of computer-simulated 

explosions in computer-generated environments would be the fireballs in the movie 

Final Fantasy [Columbia Pictures 2001], by Square, and the asteroid detonation in Star 

Wars: Episode II [Twentieth Century Fox 2002]. 

The primary goal of my thesis is to implement a physically based explosion 

simulator into an existing interactive software package.  Most innovative visualization 

solutions for explosions and blast waves have yet to be realized for the average end-user 

or animator because of the sheer complexity of the code and the prohibitive 

computational intensity of the simulation.  I, therefore, have developed a solution that is 

simple to use and computationally swift, and integrated it into an interactive 

environment that many users already understand. 
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1.2 Background and Related Work 
 

Scientific interest in the processes of the generation and transmission of blast 

waves through air and the resulting phenomenological effects dates back at least a 

century, and of course, research in the field intensified significantly during and after 

World War II [Baker 1973].  Numerical solutions of mathematical models that 

approximate the phenomenon of temperature and pressure discontinuity in a 

compressible fluid such as air were first developed in the 1950’s.  These original 

programs were expanded over the decades to encompass more of their respective 

models. Incidentally, in 1970, W. E. Johnson developed the original donor-acceptor 

method, a technique for determining the mass flux between discrete fluid cells and a 

more complex ancestor to the one that will be implemented in this thesis [Mader 1998].  

These highly accurate numerical solutions were then too slow for efficient computer 

rendered explosions, however. So, more simplified techniques were initially used to 

approximate the visual results of an explosion. 

The earliest attempts at mimicking explosions with a computer simulation used a 

system of infinitely small objects called particles. As William Reeves [1983] described 

in his paper, the particles could be moved with functions that approximated various 

physical laws and mathematical models.  Rendering the particles as points, color streaks 

or volumes creates a simple approximation of water, clouds, fire, or even explosions.  

Reeves used this technique to create the Genesis Demo sequence from the motion 

picture Star Trek II: The Wrath of Khan [Paramount Pictures 1982].  Industrial Light and 

Magic ended up using the footage in the movie’s sequel Star Trek III: The Search for 
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Spock [Paramount Pictures 1984], and a related simulation for the exploding objects in a 

computer tactical display for the movie Return of the Jedi [Twentieth Century Fox 

1983].  In 1990, Karl Sims made particles more accessible to the industry by developing 

more controls and simpler pseudo code; he also devised some techniques for better 

visualizing fire and falling water with this system [Sims 1990].  Though they were quite 

revolutionary and dazzling in the eighties and early nineties, particle systems are quite 

computationally intensive since several million are required for a convincing frame of 

animation.  Worse yet, the particles cannot collide with each other. Therefore any 

attempt to model a continuum, such as fluid flow or a blast wave, with particles is 

exceptionally difficult; the particles cannot maintain a volume.  The fundamental 

weakness in particle systems is that they are simply points in space; any attempt to give 

them volume is really just a trick and therefore not physically accurate. 

Another interesting technique for simplifying the mathematical model of a 

discontinuous pressure front in a compressible fluid, which is what air becomes at the 

temperatures and pressures of most common explosions, is to assume perfectly 

symmetrical blast waves that are impervious to the obstacles in the surrounding 

environment. These techniques use explicit functions for the pressure at any given point 

in a scene based on the distance from the center of the blast and the time elapsed since 

detonation.  These functions are called blast curves.  Neff and Fiume [1999] use blast 

curves, created by researchers in the structural engineering fields, in their paper about 

fracture algorithms because they need an explosion algorithm that is simple to 

implement and quick to run.  Since blast curves are simply explicit functions, this 
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algorithm requires almost no computation time and is relatively simple to implement if 

you have the experimental data already.  Oleg Mazarak et al. [1999] also use blast curves 

in their paper about fracture algorithms for similar reasons. However, instead of 

completely changing the blast curves for each type of detonation, they use a modified 

Friedlander equation to approximate all blast curves. This solution is particularly flexible 

since the equation’s parameters can be tweaked for specific explosive properties.  

Unfortunately, blast curves vary only in one dimension, distance from the explosion 

center, which means they are unchanged by walls or the ground and cannot be shaped in 

any way. Therefore, they are only useful in very simple environments where obstacles 

would not be present to reflect or diffract the blast wave. 

In order to achieve a complex solution that reacts to the surroundings, researchers 

in computer graphics turned to simulating fluids.  Kass and Miller [1990] developed a 

shallow water simulator that modeled only the surface of a fluid.  The next year, 

Wejchert and Haumann [1991] published a paper that simplified three-dimensional fluid 

flow by creating several flow primitives.  These primitives could be placed into a scene 

to mimic the behavior of a fluid flowing around obstacles and into and out of sources 

and sinks.  Then, in a big leap forward in physically based fluid animation, Foster and 

Metaxas [1996, 1997] implemented a finite difference approximation of the Navier-

Stokes equations by dividing a scene into a grid of cubes called voxels.  The cells 

generate pressure and velocity fields that are then used to transport fluid between the 

cells.  While their research did introduce the industry of computer graphics to the field of 

computational fluid dynamics, Foster and Metaxas also introduced us to the “relaxation 
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step”, the step in the algorithm where every cell is iteratively adjusted in order to 

maintain computational stability. The relaxation step was not reliably stable however, 

and Jos Stam developed an algorithm in 1999 that eliminated it entirely [Stam 1999].  

His process, called “Stable Fluids”, uses a technique called the method of characteristics 

to calculate convection.  This procedure guarantees stability because the maximum 

velocities of the previous time step bound the velocities of each step.  Stam’s work 

brought fluid simulation to the masses since time steps were no longer bounded by the 

complexity of the scene; real-time interaction with a fluid was finally possible.  

Unfortunately, the price for ensured stability is the dissipation of fluid mass and 

vorticity.  Two papers in 2001 attempted to bring the interesting turbulence back into 

fluid simulations.  Foster and Fedkiw [2001] combat the dissipation with a hybrid 

surface algorithm and Fedkiw, Stam and Henrik Wann Jensen add turbulence back into 

the stable fluid system with a vorticity field generated by a physically based heuristic 

[Fedkiw et al. 2001].  While the current state of fluid simulations is quite convincing for 

water, smoke, and turbulent gases, all of the above papers address an incompressible 

fluid since at the temperature and pressures they are concerned with, the compressibility 

of water and air is negligible.  However, at the pressures associated with explosions, air 

is highly compressible; in fact, a blast wave is the manifestation of that phenomenon.   

A recent paper by Gary Yngve, James O’Brien, and Jessica Hodgins attempts to 

handle compressible flow for the very purpose of modeling the propagation of a blast 

wave [Yngve et al. 2000].  They model the area containing the explosion as a three-

dimensional fluid divided into voxels. Each voxel is treated as a separate fluid that 
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experiences changes in density and energy based on the flow across each of its six 

borders. They also discuss ways to handle interaction between the fluid and solids in the 

pressure field.  I relied heavily on their paper while implementing my compressible fluid 

simulator and even contacted them for some clarification while writing my code. 
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CHAPTER II 
 

PHYSICS OF EXPLOSIONS 
 
 

2.1 Shock Front 
 

Because air is actually a compressible fluid, a high-pressure event, such as a 

detonation, creates velocities too high for air molecules to move out of the way of the 

dissipating mass. Instead, the air compresses. The leading edge of a significant pressure 

disturbance becomes a nearly discontinuous wave as it expands and dissipates. In a still, 

homogeneous atmosphere, a spherically symmetric pressure source creates very 

predictable results as all system characteristics becomes functions of time and distance 

from the blast center. This simplified case is called an ideal blast wave, and the pressure 

at a fixed distance over time would look similar to Figure 2.1. [Baker 1973] 

Figure 2.1:    Ideal Blast Wave Equation 
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Many models have been proposed over the last sixty years to describe this 

function mathematically. In their paper, “Animating Exploding Objects,” Oleg Mazarak 

et al. [1999] used the modified Friedlander equation to approximate the ideal blast wave 

since their paper was more concerned with fracture algorithms and the resulting 

animation of objects.  

2.2 Non-Ideal Blast Waves 
 

Baker suggests several reasons for non-ideal blast waves including wave noise 

caused by the explosive’s casing and thermal radiation inhomogeneously preheating the 

atmosphere around an explosion. However, he also states, “small aberrations from ideal 

conditions usually smooth out quickly as the blast wave passes through the air, resulting 

in relatively ideal blast waves at a distance from the blast source.” [Baker 1973] This is 

good news for simulations of explosions that require only visual accuracy since the 

initial flash from the detonation will cover the first few milliseconds of non-ideal 

behavior and the remaining blast wave can be more simply modeled. 

2.3 Diffracted Waves 
 

With the interaction of a shock front with boundaries of finite extent, such as 

those presented by solid objects, complex behavior ensues. These reactions are 

collectively called diffraction. 
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Figure 2.2:    Diffraction Wave I
 

For ease of explanation, let us imagine a planar shock wave, i, approaching a 

rectilinear finite object. Simplifying to two dimensions leaves us with the case shown in 

Figure 2.2. The pressure behind the incident wave is ambient, po, plus the pressure of the 

shocked-up air, Ps. 

Figure 2.3:    Diffraction Wave II
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The pressure on the front wall is at its maximum shortly after the wave hits as the 

momentum of the wave pushes more and more air against the object. When the pressure 

mounts to the point of reversing the momentum, a reflection wave, r, is created. 

Meanwhile, the portion of the wave not hitting the front face continues unabated. As the 

reflected wave moves away from the wall, a rarefaction wave moves down the front 

face. A vortex forms at the upper left corner of the object where the Venturi effect 

causes significant spin. At this point, as depicted in Figure 2.3, the pressure of the 

reflected wave is po + Pr, the pressure of the incident wave is a little lower, po + Ps, and 

the pressure near the vortex is even slightly less. 

 
Figure 2.4:    Diffraction Wave III

As the incident blast front passes beyond the rear face of the object, the wave 

diffracts around it, as shown in Figure 2.4.  At this point, another vortex forms and the 

pressure on the back face begins to build up. Finally, as depicted in Figure 2.5, the shock 
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front eventually moves beyond the object, having lost some of its energy to the reflected 

wave and been reshaped by the process of diffraction. [Baker 1973] 

Figure 2.5:    Diffraction Wave IV
 

 
2.4 Mach Stem 
 

Due to the pressures and velocities involved in explosions of high energy, there 

is a critical angle of incidence beyond which normal, acoustic, wave reflection does not 

occur. At this angle, the reflected wave begins to merge back together with the incident 

wave, creating a much more intense wave front called a Mach stem. This interaction of a 

shock front with a ground plane causes blasts that occur slightly above the ground to be 

much more destructive than ones that occur in contact with the same plane. In acoustic 

reflections, the maximum obtainable pressure is simply twice the incident pressure. In a 

high-energy explosion, the multiplier can be as much as twenty. Unfortunately, much of 

this increased ratio comes from real gas effects such as ionization and dissociation, 

which are ignored in this simulation for the sake of simplicity. [Baker 1973] 
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2.5 Blackbody Radiation 
 

Blackbody radiation refers to an object, or system, which absorbs all incoming 

radiation and emits radiation solely dependent on the characteristics of the system, thus 

independent of the incident radiation. For our purposes, the particulate matter pushed 

around by the explosion will behave as blackbodies, giving off light solely depending 

upon the temperature of the particle. Planck’s radiation formula gives energy density in 

terms of wavelength, and the derivative of that formula, the Wien Displacement Law, 

can be used to determine the peak wavelength’s relation to temperature. Thus, we have 

an equation for radiation in terms of body temperature. [Nave 2003] 

T
Km

peak
⋅×

=
310898.2λ (1) 
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CHAPTER III 

MATHEMATICAL MODEL 

3.1 Conservation of Mass 

The most basic equation affecting a compressible fluid flow is the conservation 

of mass. The mass conservation equation simply states that the change in mass within a 

given volume must be equal to the mass flux across the volume’s corresponding surface. 

[Yngve et al. 2000] 

3.2 Compressible Navier-Stokes 

The compressible Navier Stokes equations govern the conservation of 

momentum

 

(2) 

 

 
 

 

 

 

 in a fluid. Body forces, the pressure gradient, viscous accelerations, and the 

convective transportation of momentum determine the change in velocity of a particular 

differential volume within the fluid. The body forces usually represent constant 

accelerations like gravity. The pressure gradient affects momentum because fluid 

naturally flows from higher to lower pressures. Viscosity fights both vorticity and 

acceleration, while convection simply reflects the change in momentum caused by fluid 

flowing into and out of the given volume. [Yngve et al. 2000] 

( )v
t

ρρ
⋅−∇=

∂
∂

(3) ( ) ( )vvvvPf
t
v

∇⋅−∇+∇⋅∇+∇−⋅=
∂
∂ ρµµρρ 2

3
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3.3 Conservation of Energy 
 

The First Law of Thermodynamics governs the conservation of energy in a 

compressible fluid system. This law dictates that the change of energy in a system, in 

is case, a differential volume of fluid, is equal to the amount of heat added to the 

system minus the work done by the system. The work in the system is performed by 

pressure and viscosity, and the heat is added via thermal conductivity. The change in 

internal energy is thus determined by  

 

done by pressure over the divergence of velocity; this can be thought of as the work 

required to maintain different velocities inside and outside of the volume. The two 

viscosity terms represent the energy lost as variations in velocity are damped out of the 

system plus the smaller amount of energy gained by the production of heat in the 

process. The final term represents the change in internal energy due to the convection of 

fluid across the surface boundary of the differential volume. [Yngve et al. 2000] 

3.4 Dynamic Overpressure 

The two types of forces experienced by an object surrounded by fluid are 

hydrostatic and dynamic. Hydrostatic forces act normal to the surface of an object, and 

xist because of molecules bouncing around naturally. These forces are measured as 

pressure. The flow of the continuous fluid creates dynamic forces. These forces act both 

) 

th

(4( )
{ } ijt zyxji ⎠⎝ ∂∂∂ ∈ ,,,23

( )Nv
vv

vvPTkN ji ∇⋅−⎟⎟
⎞

⎜⎜
⎛ ∂

+
∂

+⋅∇−⋅∇−∇⋅=
∂ ∑ ρµµρ

2
22 2

The first term is thermal conduction of the system. This term reflects changes in 

energy due to heat flowing from high to low temperatures. The second term is the work 

 

e
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normal e can 

be 

ly and tangentially to the surface of an object. The tangential shearing forc

be safely ignored in the case of explosions since the hydrostatic pressures are so high. 

Assuming the object is at equilibrium in ambient pressure, the hydrostatic forces can 

computed with the overpressure, P . The overpressure is simply the difference between 

the hydrostatic pressure, P, and the ambient pressure Pamb. The dynamic overpressure is 

simply the overpressure plus the added pressure of the velocity of the fluid normal to th

object’s surface, like so: 

(5) 

e 

 

The velocity in that equation represents that of the fluid relative to the surface, 

and the vector  is the outward surface normal. The dynamic overpressure represents 

of the surface can be calculated by multiplying that pressure by the surface area. [Yngve 

et al. 2

 

 

( )2n̂vPP ⋅+= ρ
2
1

reldyn

n̂

the magnitude of the pressure normal to the surface. The force acting on a small portion 

000] 
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CHAPTER IV 
 

SIMULATION 
 
 
 

.1 Discretizing Fluid Equations 
 

The fluid is discretized into a regular attice of cubical cells called voxels, short 

for volume elements. Fluid propert h voxel and considered constant 

across the volume. Central finite differences are used to determine spatial derivatives of 

re, and velocity. The governing equations of fluid 

behavio

e, 

ure 

a blast wave. Instead, they recommend a slightly more complex 

integra

4

 l

ies are sto ed for eacr

values such as pressure, temperatu

r hold for each finite voxel the same way they hold for differential volumes. 

[Yngve et al. 2000] 

Once the governing equations are rewritten using finite differences, they can be 

used as update steps for an explicit integration method.  However, according to Yngv

O’Brien and Hodgins, that scheme would fall apart under the stress of the steep press

gradients created by 

tion method. First, they suggest stability can be gained by handling the 

convection terms separately from the temporal ones. The steps for their integration 

method are as follows [Yngve et al. 2000]: 

1. Use the first four terms of equation (3) to calculate fluid acceleration 

( ( )tt dtdva /~ = ). 

2. Approximate the velocity at the end of the timestep ( ( ) tttt atvv ~~ ⋅∆+=∆+ ), a

then the average velocity during the timestep

nd 

 ( ( ) 2/~
tttt vvv += ∆+ ). 
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3. Approximate ∆N using the nonconvective terms of equation (4) while

su

 

bstituting  for fluid velocity.  tv

4. Compute the new density, ρ, using tv  for fluid veloci

5. Calculate complete ( )ttv ∆+  and ( )ttN ∆+

ty. 

 with equations (3) and (4) using all the 

terms a

d s with state equations. 

ther, Yngve et al. propose a specific 

technique for handling the c ass in steps 4 and 5. They use the donor-

acceptor method. This procedure uses the average velocity at a boundary between cells 

to determine the direction of flow across it. The magnitude of the flow is proportional to 

the mass of the donor voxel, thus this process never empties a voxel. Preventing an 

empty cell stabilizes the integration by keeping the fluid densities positive and avoiding 

inordinately large changes to cell velocity and internal energy [Yngve et al. 2000]. 

4.2 Boundary Conditions 

The three types of boundaries implemented in this thesis are hard, free and 

pseudo-free. Hard boundaries represent solid objects in the scene and force fluid 

velocities normal to them to be zero. Free boundaries are implemented along the edge 

cells of the simulation in order to let the blast wave pass out of the fluid grid without 

flection. This allows the longer-term aspects of an explosion to be explored. The third 

type of boundary, pseudo-free, is employed purely to speed up the simulation while the 

blast wave is still small relative to the size of the grid. Cells with pressure differences 

nd the new value of ρ. 

6. Up ate secondary value

To stabilize the integration scheme fur

onvection of m

 

re
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below a certain threshold are ignored for a time step, allowing most of the cells to be 

skipped while the time steps are at their smallest. [Yngve et al. 2000] 

4.3 Initial Conditions 

All the fluid related constants as well as the ambient pressure and temperature a

specified in one place to facilitate fine-tuning of the performance of the simulation. Th

cells within the specified detonation sphere or spheres have their temp

 
re 

e 

erature and 

y augmented. The default values are those recommended by 

Yngve 

 
quations 

quations have been omitted and can be found in their document [Witkin 

 

where 

  is a vector representing the position of the center of the body’s mass 

(6) ⎥
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=
P
qX r

pressure values initiall

et al. [2000] to simulate a typical chemical explosion, 2900K and 1000 

atmospheres. The detonations can also be time delayed to allow multiple blasts to occur 

in succession. 

4.4 Rigid Bodies 

The motion of rigid bodies in this simulation is implemented using the e

presented in Witkin and Baraff’s physically based modeling course notes. The details of 

deriving these e

and Baraff 1999]. 

The rigid body’s state at any point in time is defined by the state vector 
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  is the quaternion representing the rotation of the body  

 

q

P
r

 is a vector representing the linear momentum of the body 

  is a vector representing the angular momentum of the body 

The time derivative of the state vector is computed and used to calculate the state at the 

estep. Where 

 

 total mass of the body 

L
r

next tim

being 

M = 

 

I  =  inertial tensor of the body 

if  = the ith force being applied to the body 

iτ  = the ith torque being applied to the body 

Quaternions are used for maintaining body rotation in order to avoid the 

numerical drift and subsequent skewing inherent in rotation matrices. See reference for 

p mulation and handling their 

collisions, rigid bodies are initi

every voxel that an object fills at the beginning of the simulation and those cubes are 

(7) 

more explanation [Witkin and Baraff 1999]. 

To sim lify the process of bringing objects into the si

alized as groups of cubes. A cube object is created for 
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grouped t eth into detection because every 

concav ision 

ly. For instance, internal cubes never need 

to be te

y 

 

 
 
 

og er one rigid body. This simplifies collision 

e rigid body is actually a collection of smaller convex rigid bodies. A coll

detection hierarchy is setup to speed up the process so that most cubes are eliminated 

from the list of possible collisions very quick

sted at all. This technique does cause some animation inaccuracy since the forces 

of the fluid will be acting on approximated geometry and in only three directions at an

one time. The possible inaccuracies are revealed in Figure 4.1 where in each case the 

bottom half of the sphere approximation is experiencing a significantly higher pressure 

than the top half. The resulting force on the perfect sphere in the example would be 

directly up. The approximations, depending on their exact orientation to the high-

pressure field, could receive widely varying resulting forces.  

 

 

Figure 4.1:   Animation Inaccuracy 
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4.5 Connecting Rigid Bodies and Fluid 
 

The rigid bodies are coupled with the surrounding fluid using the techniques 

described in “Animating Explosions” [Yngve et al. 2000]. The three-step process 

involves first animating the rigid body by determining and applying the fluid forces on 

the faces of a body, then revoxelizing the body after animation, and finally using the 

change in voxelization to adjust cell values and push fluid around the scene. 

4.5.1 Determining Forces 

Assuming the objects in the scene are at equilibrium at atmospheric pressure, 

ydrostatic forces are computed using the overpressure, 

 

Ph , which is simply the 

ient pressure, PAMB. 

 

negligible compared to the hydrostatic forces near detonations. The total normal force on 

en evaluated as the dynamic overpressure. 

 

bject, so the actual force, f, 

 

difference between pressure, P, and amb

The dynamic forces created by fluid momentum break into two types, a normal force and 

a tangential shearing force. The shearing force is irrelevant in this context since it is 

any point on the surface of an object is th

(10) ( )21

(9) AMBPPP −=

ˆ
2

nvPP reldyn ⋅+= ρ

The force is approximated to be constant over the face of an o

on any facet with surface area, A, would be 

(11) dynPAnf ˆ−=
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4.5.2 Voxelization 

In order for the fluid to react to the movement of the objects, it must know wh

the objects are. This information is generated by a technique called voxelization. 

Voxelization works by breaking up an object into tiny pieces and placing each one in

 
ere 

to 

the grid cell it occupies. Then each grid cell knows how full or empty it is. Full cells are 

temporarily considered hard boundaries and partially filled cells have their convection 

e into one thousand pieces and placing each 

one in the grid cell that contains the center point of each smaller piece. Since each rigid 

body is stored in the simulation as a collection of these cubes, it is very easy to step 

es of an object repeating this procedure. 

ect is 

 

(12) 

equations modified to reflect their altered volumes. For a simple unit cube, the process 

of voxelization would entail breaking the cub

through the sub-cub

After the forces are applied on each face of each object’s surface, the rigid body 

motion of the objects is computed normally. Once this step is completed, each obj

then revoxelized and the change in volume of each voxel is calculated. This change in 

volume is used to displace fluid. 

4.5.3 Displacing Fluid 
 

The change in partial volume of each voxel works like a miniature piston 

compressing or expanding the gas in that cell. Since the fluid is compressible, pressure 

does not vary directly with the change in volume. However, mass is conserved; so the 

new density, ρ, is determined by 

2

1
12 V

V
∗= ρρ
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To upd

 

here γ

 

 object begins to exit a completely filled cell 

and when an object initially envelopes an entire cell. In these two cases, the voxel in 

question must be handled simultaneously with a neighbor. These two cells togethe

treated as one larger voxel so that the partial volume is never zero. The “Animating 

se to 

 

spinning in place it would not have any velocity at all, making the choice of neighboring 

re 

 
A particle system is used to simulate the fireball effect commonly associated 

with explosions. The system suggested by Yngve et al. [2000] is an extreme 

(13) 

ate the pressure and temperature of the voxel, I use a thermodynamic equation 

from Yngve’s paper relating the work done to a system by changing the density, 
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TP

w  = 1 + R/cv with R and cv being constants specific to the fluid. If γ were set to 

one, the fluid would be incompressible, and in the case of air, a γ approximately equal to

1.4 is accurate. [Yngve et al. 2000] 

Special circumstances arise when an

r are 

Explosions” paper suggests choosing the neighboring cell based on the largest axial 

component of the object’s velocity [Yngve et al. 2000]. In a slight departure, I cho

use the instantaneous velocity of a point on the object near the cell’s center. This change 

allows for better accuracy in a few specific cases. For instance, when an object is simply

cells impossible. My adjustment handles those cases where the angular velocity is mo

significant than the linear velocity. 

4.6 Particle System 
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simplification of the particle systems described in [Sims 1990, Reeves 1983]. Instead

tracking velocity, only position of each particle is stored in the state vector. Each 

timestep, the fluid velocity at the position of a particle is interpolated. The massless 

particle simply moves at the speed of the fluid for that timestep. This technique 

simulates detonated material from the explosion spreading out with the thermal currents 

and buoyancy of an explosion. 

4.7 Integration Methods 

In an attempt to provide a ba

 of 

 
lance of simulation speed and accuracy, a 

ration techniques is used in this program. The rigid body motion is 

calcula

ensional 

nique, 

 step size is dynamic. Before each iteration, the program 

ivergence in the fluid grid and uses it to determine the largest 

stable t

 

combination of integ

ted with a fourth order Runge-Kutta technique because rigid bodies become 

unstable with less accurate methods [Witkin and Baraff 1999]. The three-dim

fluid is simulated by a modified Euler integration. However, the extreme pressure 

gradients would still create negative densities and unstable velocities with this tech

so a special donor-acceptor method keeps the simulation stable by handling the 

convection terms of the equations [Yngve et al. 2000]. In order to speed up the 

simulation after the blast wave, the most numerically complicated aspect of the 

simulation, has left the grid, the

calculates the maximum d

ime step. 

 

 
 
 

 



 27

4.8 Interfacing with Maya 

4.8.1 Scene Creation 

The scene is entirely setup within Maya using simple scripts. The first sc

run on a scene is ExploSimSetup.mel. This script sets up the approximate fluid g

creates a Filenames node, which can be used to direct all output and input to or f

Maya. 

After the scene has been modeled and laid out, select all the solid objects, 

stationary or mov

 

 
ript to 

rid and 

rom 

able, which you want to interact with the simulation fluid. Running 

repareObjects.mel on these selected object attaches simulation attributes to them that 

ou can adjust on a per object basis. A particular Renderman shader is also attached to 

ach object; I will elaborate on this later. The main attributes added by the script are 

g the Mass value at zero means you want that object to be a 

imulation, whereas entering a positive value will allow the 

geomet

 a 

eats. First, you have full control over the relative size of the fluid cells, but 

geomet  

nd 

y 

P

y

e

ObjectID and Mass. Leavin

hard boundary in the s

ry to be animated by the explosion. All objects with the same ObjectID are 

combined into one rigid body in the simulator. Adjusting these numbers can be used to 

keep separate pieces of geometry from flying apart in the simulation. I should mention

few cav

ry thinner than a dimension of the fluid grid will likely not translate into the

simulation. I recommend modeling simpler proxy geometry for each of your objects a

using them to create the initial fluid grid. In addition, large concave objects, such as a 

wall combined with a ground plane, will slow down the simulation significantly as man

of the collision detection shortcuts are undermined by this type of geometry. Simply 
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making the ground plane and the wall discrete convex rigid bodies can speed up the 

simulation by two orders of magnitude. 

The CreateExplosion.mel script adds an explosion to the scene in the form o

scalable initial detonation sphere. This proxy blast geometry has some attributes on it 

that can be used to fine tune and adjust the timing of the simulation. For instance, the 

temperature and pressure range of the blast can be adjusted, as well as the detonatio

offset. This offset value allows for multiple and successive explosions to occur in th

fluid. 

The last step in scene creation is to output something from Maya that ExploSim

can read. The script that handles the various forms of output is called 

Output2ExploSim.mel. Based on the paths and filenames stored in the Filenames nod

this script writes out a mass file, an explosion file, and then renders the initial state of

voxel grid. The mass file is simply a list 

f a 

n 

e 

 

e, 

 the 

of object identification numbers followed by the 

corresp

 of 

ication number for the inside of an object. Then an orthographic projection 

camera

 fluid grid cells. 

 

onding mass and initial velocity. The explosions file is just a list of the blasts in 

the scene and their pertinent attributes like position, size and pressure. The initial state

the fluid grid is a bit more complicated. The PrepareObjects.mel script attached a 

Renderman shader called ExploSim.sl to each of the objects in the scene. This shader 

returns black for the exterior of an object and a color that represents the object’s 

identif

, placed at the top of the explosion grid by ExploSimSetup.mel, animates its clip 

plane down through the grid at intervals related to the dimension of the

Thus, each rendered frame of this animation represents a separate slice of the initial fluid
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state. Figure 4.2  shows an object being voxelized from Maya. The red grid represents 

the animated clipping plane moving down the object, and the black and white image is 

the corresponding rendered image output from Renderman. Then, when ExploSim runs,

it reads in these files and initializes the simulation. 

4.8.2 Importing the Results 

The pressure grid is turned into renderable geometry by selecting a threshold 

value and building triangles that approximate the surface around the volume with 

pressures greater or equal to that value. This techniq

 

 

 

ue is called the marching cubes 

e dimensional isobaric 

contour. Relying heavily upon preexisting code from Paul Bourke’s webpage, 

Figure 4.2:   Voxelizing a Building 

algorithm and was first presented as a surface construction procedure by Lorensen and 

Cline [1987] in the conference proceedings of SIGGRAPH. The system works by 

looking at each voxel of the grid as eight points that either above or below the threshold 

value. Based on the number and position of included vertices, inclusive triangles are 

created that have their vertices interpolated along the cube’s edges. These triangles form 

a mesh approximation of the field threshold, or in our case a thre
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“Polygonising a scalar field”, the simulation exports a separate polygonal mesh for each 

frame o es 

ion is 

. 

 

rent 

 rotations resulting from the conversion process 

are lim ne 

f the simulation in Wavefront object file format [Bourke 2003]. I chose obj fil

because they are simple to create and easily imported into Maya. Once the simulat

finished, running the ImportBlastWave.mel script inside of Maya will import all the 

blast wave geometry and animate their visibilities so that each one is visible for one 

frame. This staggering of the mesh visibilities suggests animation of the blast wave

Since the blast wave is only visible due to its bending of light, the lack of motion blur on

the animation should not be noticeable. 

The animation of the moveable objects in the scene is stored in the form of a 

position vector and rotation quaternion. Since the purpose of this paper is to bring the 

results back into Maya, a program that as of version 4.5 does not allow direct 

manipulation of an object’s rotation quaternion, some conversion process must occur 

when animation is exported to convert the quaternions into the more common Eulerian 

angles. Inspired by a more comprehensive version of the code presented online by Ken 

Shoemake [2003], my code exports position and rotation data for each object at each 

frame into separate files. Another MEL script, ImportAnimation.mel, brings the 

animation data into Maya and assigns it to the corresponding objects. Due to the inhe

limitations of the Eulerian method of rotation description, the objects will have visually 

disruptive motion blur artifacts since the

ited to the range of -180 to 180 degrees. If an object rotates far enough about o

axis, it will shift suddenly from significantly positive to significantly negative rotation 
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values. I have another script that fixes these artifacts called FixRotations.mel that can b

run on objects with broken motion blurring. 

Maya’s particle system does not allow for the keyframing of individual particles,

so the most obvious solution to bringing in the particle system data would not work. 

What I create instead is a makeshift particle cache. A runtime expression runs eve

the current frame changes that looks up the current frame’s particle data and moves each 

of the particles to the correct place. Unfortunately, all the file accessing makes this 

implementation a bit unwieldy. In addition, an annoying memory bug in Maya 

occasionally pops up and crashes your scene. Ideally, it would be possible to write out a 

native Maya particle cache file, but I could not find an intuitive explanation of how or 

even a suggestion that it is possible to create usable Maya particle caches from another 

program. 

e 

 

ry time 
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CHAPTER V 
 

RESULTS 
 
 
 

.1 Results 

I created a few different animations in order to reveal the simulation’s accuracy 

nd the overall visual interest of the results. Frames from those animations are included 

elow. Figures 5.1 and 5.2 show frames captured directly from the simulator itself. The 

penGL window shows a two-dimensional slice of the pressure wave expanding and 

iffracting around a wall. Figure 5.3 is a collection of frames from a Maya playblast, 

emonstrating imported blast wave geom ated by the simulation. 

The last image, Figure 5.4, confirms the inaccuracy of my particle system with a few 

frames from a Maya playblast of simulated particles. 

5
 

a

b

O

d

d etry and objects anim
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Figure 5.1:   OpenGL Simulation Frames I 
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Figure 5.2:   OpenGL Simulation Frames II 
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Figure 5.3:   Animated Object Frames 
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Figure 5.4:   Particle Animation Frames 
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CHAPTER VI 
 

CONCLUSION 
 
 
 

6.1 Conclusion 
 

My attempt to build a compressible three dimensional fluid simulator for the 

purpose of modeling visually stimulating explosions and interfacing it with Maya proved 

to be too ambitious and merely a partial success. 

One aspect of the thesis that performed capably was the process of building three 

dimensional fluid grids and rigid body approximations from a Maya scene. Almost any 

scene can be exported to the simulator with only minor tweaks to the geometry. The 

scripts and the Renderman shader allow a technical animator to start an explosion shot in 

Maya, then move easily into the simulation. The files necessary for initializing 

ExploSim can also be created and edited by hand with a text editor and a simple paint 

program. 

The most successful part of the thesis by far is the pressure wave. The frames 

from the OpenGL simulator reveal quite accurate diffraction behavior. Explosions 

occurring slightly above the ground plane generate Mach stem reflections of greater 

intensity than the rest of the blast wave. When a shock front hits a solid obstacle it is 

reflected, and the wave refracts correctly beyond an unmoving object. The accuracy of 

the pressure wave propagation suggests the underlying compressible fluid simulation is 

reliable. 
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The rigid body simulation was satisfactory. Even with the inaccuracy and 

instability introduced into the system by the simplifications I chose to make to the rigid 

body system, it still handled collisions and generated legitimate animation. It certainly 

works well enough to initialize a more robust rigid body simulator that could handle the 

post explosion animation quicker and more accurately. 

The particle simulation was an utter failure. No usable particle data was ever 

generated by the ExploSim. The expected behavior of the particles would be initially 

expanding with the blast wave, followed by a subsequent pull back into the blast center 

as the particles are left behind by the super sonic blast wave and sucked in by the low-

pressure area. My particles did that much; perhaps that portion worked because the 

velocities would be dominated by the pressure gradient and pressure dissipation was the 

aspect that worked best. Next, however the particles would be expected to rise into a 

beautiful cloud, riding the currents of thermal expansion. This behavior would suggest 

some bugs in the handling of the energy flow. Either the temperature differences are not 

having enough of an effect on the pressure gradient, or energy is being lost in the system 

somewhere. 

The integration techniques are a bit complicated, but were necessary in order to 

get the simulation to run in a manageable amount of time. My initial simulations used a 

fixed timestep of one microsecond and finished the blast wave in forty-eight hour period. 

Waiting to see if the particles formed a fireball, however, took over a week. The first 

improvement I made was to make the timestep dynamic so it would speed up as the blast 

wave moved out of the grid. Using the cell divergence to approximate the eigenvalue of 
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the system worked well and kept the simulation stable. Some minor tweaks were 

necessary after rigid bodies were added since the rigid bodies affected the divergence 

after the timestep had already been calculated. Since each grid cell often needed 

calculated values from its neighbors, I added a clean/dirty matrix to the simulation so a 

cell never calculated its derivatives more than once per step. This process obviously 

saved time over repeated recalculation calls, but it also saved CPU time over one giant 

cell by cell sweep because only the needed cells are calculated and free boundaries are 

ignored. After the dynamic timestep and speed-ups were implemented, the whole 

simulation from detonation to complete dissipation takes less than two days. The actual 

speed enhancement cannot be accurately measured though due to the program being 

ported to a new operating system twice, and the inevitable enhancement of processing 

power. 

Bringing data back into Maya proved erratic as I often ran into a memory bug in 

the Windows version of Maya. Closing a file pointer made the file unreadable, but it 

often did not free up the RAM. This caused a problem when reading multiple large text 

files for data input. The blast wave geometry could only be imported twenty to fifty 

frames at a time before the RAM would need to be purged by restarting Maya. Too large 

a guess would result in a crash and all unsaved data would be lost. This problem was not 

as much of a hindrance for the object animation though, and the process of importing 

animation went rather smoothly. Unfortunately, importing particle data was unwieldy 

and painful. Maya particles cannot be keyframed or reliably coerced into Maya’s 

caching system from an expression. In the end, I used a runtime expression to read in 
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and set each particle’s position every time the current frame changed. In essence, I 

created my own particle cache, and this process ran very slowly for the several thousand-

particle system I originally envisioned. Even after scaling back the size of the particle 

system to only a few hundred, the memory bug would still crash Maya after a few 

frames anyway. In the end, I would have to say interfacing the simulator with Maya was 

a naïve endeavor motivated by a general ignorance of the software available to the 

computer graphics industry. 

Once all the blast wave geometry was imported into Maya and set up to 

sequentially become visible, the limitations of the Marching Cubes algorithm revealed 

itself. The geometry was jagged and heavy to manipulate. Luckily, the lack of accurate 

motion blur or smooth edges really was obscured by the invisibility of the blast wave as 

I expected. Renders of the blast wave simply revealed a growing field that diffracted 

light and warped the background. Unfortunately, any shader applied to the surface must 

be a cheat since the index of refraction is constant throughout the geometry. It can be 

animated in the scene or UV mapped onto the blast wave or both, but the object is only a 

surface, not a volume, so it must be rendered as one. 

The animation of objects in the scene by the pressure wave turned out to work 

fairly well. The objects were pushed away from the blast convincingly and the 

simulation even generated some exciting rotations on the objects as well. Using the state 

vectors from the simulation just after the blast wave has passed the objects by to 

initialize Maya’s built-in rigid body simulator created good results in a practical amount 
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of time. The object animation is by far the most practical result from the simulator at this 

time. 

In conclusion, I believe my project scope was too wide. Perhaps simply 

implementing a three dimensional compressible fluid simulation would have been more 

reasonable. Integration with the Maya software package was time consuming, 

marginally successful, and generally shortsighted. The particle simulation should have 

been exported directly to a renderer or at least imported into a piece of software 

specifically designed around physics simulation. The blast wave would have been better 

served by a volume shader that made full use of the pressure field. Admittedly, writing 

one could have taken just as long as bringing the marching cubes algorithm results into 

Maya, but the results would have been more accurate. Only the rigid body animation 

was successfully incorporated into Maya, but then, animation is one of Maya’s strong 

points.  

The fluid simulation worked quite well, though not perfectly. Clearly, the 

underperforming particles would suggest an error somewhere in the implementation. A 

more modest goal would have helped here as well. Besides the time lost developing 

realistic blackbody radiation shaders and smoke for a fireball that never culminated, I 

also spent a great deal of time learning the underlying physics of the problem. I even 

took an extra partial differential equations course to solidify my understanding, though a 

follow-up heat transfer class would probably have helped as well. Despite the wildly 

ambitious nature of my chosen problem, I believe I managed a respectable solution that 

addresses all issues in some manner and even performed well in several major areas. 
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Through research and my limited experience in the computer animation industry, 

I have learned that explosions are just quicker, cheaper, and simpler to create by hand in 

a specially adapted software package. The blast wave is far too fast for rigorous visual 

inspection on screen, and the fireball is simply too important to simulate. Directors are 

going to want complete control over the shape and color of the most visually stimulating 

aspect of the effect, and a simulation would take all of the control away from them. The 

initialization of a rigid body simulation would be the only practical result of an 

explosion simulation in the computer graphics industry since hand animation of rigid 

bodies remains a daunting, time-consuming task. 

6.2 Future Improvements 
 

The whole reason I undertook this project was to see an impressive fireball, so 

obviously the most important future improvement would be to get the particles working. 

The quickest way to do this would be to nail down the misfiring code. However, this 

would only get you a solution equal to the fireballs presented in the paper by Yngve et 

al. [2000]. These fireballs were better than mine were, but not nearly as impressive as 

those presented in Feldman, O’Brien and Arikan’s paper “Animating Suspended Particle 

Explosions” [Feldman et al. 2003]. Their paper handles combustion using a simpler 

incompressible flow that is better suited for the fireball. Since most of the interesting 

flame effects occur well after the blast wave has propagated beyond visual range, the 

compressibility of Yngve’s solution is a computational waste of time. 

A volume rendered blast wave would be a significant improvement in the 

accuracy of the renders, though it would probably not significantly alter the final look of 

 



 43

the blast wave. The wave is just too fast and visually insignificant to spend the effort 

perfecting. Similarly, the rigid bodies could be more accurately simulated with a more 

complicated approach but that would probably slow down the simulation for a result that 

could just as easily be cheated, or even hand animated. Dust clouds could also be added 

to the simulation as Yngve did in “Animating Explosions”, but again they could also just 

be added in later in the form of timed smoke emitters.  
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APPENDIX A 
 
 
 

Here are the major MEL scripts used to interface the explosion simulator with 

Alias|Wavefront’s Maya 4.5. 

ExploSimSetup.mel 

string $FileNode = `group -empty -n Filenames`; 
addAttr -dt "string" -ln outputDirectory $FileNode; 
addAttr -dt "string" -ln gridFilePrefix $FileNode; 
addAttr -dt "string" -ln massFile $FileNode; 
addAttr -dt "string" -ln explosionFile $FileNode; 
addAttr -dt "string" -ln inputDirectory $FileNode; 
addAttr -dt "string" -ln inputPrefix $FileNode; 
string $File = `file -q -sceneName`; 
$File = match( "[^/\\]*$", $File ); 
int $sz = size($File); 
if ($sz > 1) $File = substring($File,1,($sz - 3)); 
setAttr ($FileNode + ".outputDirectory") -type "string" (`workspace -q -rd`); 
setAttr ($FileNode + ".gridFilePrefix") -type "string" $File; 
setAttr ($FileNode + ".massFile") -type "string" ($File + ".mss"); 
setAttr ($FileNode + ".explosionFile") -type "string" ($File + ".xpl"); 
setAttr ($FileNode + ".inputDirectory") -type "string" (`workspace -q -rd`); 
setAttr ($FileNode + ".inputPrefix") -type "string" "simOut"; 
setAttr -e -keyable false ($FileNode + ".tx"); 
setAttr -e -keyable false ($FileNode + ".ty"); 
setAttr -e -keyable false ($FileNode + ".tz"); 
setAttr -e -keyable false ($FileNode + ".rx"); 
setAttr -e -keyable false ($FileNode + ".ry"); 
setAttr -e -keyable false ($FileNode + ".rz"); 
setAttr -e -keyable false ($FileNode + ".sx"); 
setAttr -e -keyable false ($FileNode + ".sy"); 
setAttr -e -keyable false ($FileNode + ".sz"); 
setAttr -e -keyable false ($FileNode + ".visibility"); 
string $gridObj = `createNode nurbsCurve`; 
setAttr -k off ($gridObj + ".v"); 
setAttr ($gridObj + ".cc") -type "nurbsCurve" 1 15 0 no 3 16 0 1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 0.5 0.5 -0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -0.5 
0.5 -0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 
-0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5; 
string $parents[] = `listRelatives -fullPath -parent $gridObj`; 
$gridObj = `rename $parents[0] ExplosionGrid`; 
xform -ws -piv -0.5 -0.5 -0.5 $gridObj; 
move 0.5 0.5 0.5 $gridObj; 
makeIdentity -apply true -t 1 $gridObj; 
setAttr -e -keyable false ($gridObj + ".rx"); 
setAttr -e -keyable false ($gridObj + ".ry"); 
setAttr -e -keyable false ($gridObj + ".rz"); 
addAttr -ln xth -at long  $gridObj; 
setAttr -e -keyable true ($gridObj + ".xth"); 
setAttr ($gridObj + ".xth") 10; 
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PrepareObjects.mel 

string $testSelected[] = `ls -sl -s -dep`; 
string $each; 
for($each in $testSelected) 
{ 
 if ( "transform" != `nodeType $each` ) 
 { 
  string $parents[] = `listRelatives -fullPath -parent $each`; 
  $each = $parents[0]; 
 } 
 if (!(`attributeExists "objectID" $each`)) 
 { 
  string $shapes[] = `listRelatives -fullPath -shapes $each`; 
  addAttr -ln objectID -at long  $each; 
  setAttr -e -keyable true ($each + ".objectID"); 
  addAttr -ln objID -at long $shapes[0]; 
  connectAttr ($each + ".objectID") ($shapes[0] + ".objID"); 
  addAttr -ln objectMass -at double  $each; 
  setAttr -e -keyable true ($each + ".objectMass"); 
  addAttr -ln initialVelocity -at double3  $each; 
  addAttr -ln initialVelocityX -at double -p initialVelocity  $each; 
  addAttr -ln initialVelocityY -at double -p initialVelocity  $each; 
  addAttr -ln initialVelocityZ -at double -p initialVelocity  $each; 
  setAttr -type double3 ($each + ".initialVelocity") 0 0 0; 
  setAttr -e -keyable true ($each + ".initialVelocity"); 
  setAttr -e -keyable true ($each + ".initialVelocityX"); 
  setAttr -e -keyable true ($each + ".initialVelocityY"); 
  setAttr -e -keyable true ($each + ".initialVelocityZ"); 
 } 
} 

 

CreateExplosion.mel 

string $newX[] = `sphere -p 0 0 0 -ax 0 1 0 -r 1 -d 3 -ut 0 -s 24 -nsp 12 -ch 0 -n 
"Explosion"`; 
int $number = 0; 
if ( `gmatch $newX[0] "*[0-9]"` ) 
{ 
  $number = `match "[0-9]+$" $newX[0]`; 
} 
addAttr -ln explosionID -at long  $newX[0]; 
setAttr -e -keyable true ($newX[0] + ".explosionID"); 
setAttr ($newX[0] + ".explosionID") $number; 
addAttr -ln size -at double  $newX[0]; 
setAttr -e -keyable true ($newX[0] + ".size"); 
connectAttr -f ($newX[0] + ".size") ($newX[0] + ".scaleX"); 
connectAttr -f ($newX[0] + ".size") ($newX[0] + ".scaleY"); 
connectAttr -f ($newX[0] + ".size") ($newX[0] + ".scaleZ"); 
setAttr ($newX[0] + ".size") 1; 
addAttr -ln pressure -at double  $newX[0]; 
setAttr -e -keyable true ($newX[0] + ".pressure"); 
setAttr ($newX[0] + ".pressure") 101305000; 
addAttr -ln pressureRange -at double  $newX[0]; 
setAttr -e -keyable true ($newX[0] + ".pressureRange"); 
addAttr -ln temperature -at double  $newX[0]; 
setAttr -e -keyable true ($newX[0] + ".temperature"); 
setAttr ($newX[0] + ".temperature") 2900; 
addAttr -ln timeOffset -at double  $newX[0]; 
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setAttr -e -keyable true ($newX[0] + ".timeOffset"); 
setAttr -e -keyable false ($newX[0] + ".rotateX"); 
setAttr -e -keyable false ($newX[0] + ".rotateY"); 
setAttr -e -keyable false ($newX[0] + ".rotateZ"); 

 

Output2ExploSim.mel 

if (`objExists Filenames`) 
{ 
 string $outputFilename = ((`getAttr Filenames.outputDirectory`)+(`getAttr 
Filenames.massFile`)); 
 float $masses[], $Vx[], $Vy[], $Vz[]; 
 $masses[0] = 0; 
 string $Transforms[] = `ls -dep`; 
 string $each; 
 for ($each in $Transforms) 
  if (`attributeExists "objectID" $each`) 
  { 
   int $ID = `getAttr ($each + ".objectID")`; 
   $masses[$ID] = `getAttr ($each + ".objectMass")`; 
   $Vx[$ID] = `getAttr ($each + ".initialVelocityX")`; 
   $Vy[$ID] = `getAttr ($each + ".initialVelocityY")`; 
   $Vz[$ID] = `getAttr ($each + ".initialVelocityZ")`; 
  } 
 int $massFileID = fopen($outputFilename,"w"); 
 int $iter; 
 for($iter=0;$iter<size($masses);$iter++) 
  fprint $massFileID ($masses[$iter]+" "+$Vx[$iter]+" "+$Vy[$iter]+" 
"+$Vz[$iter]+"\n"); 
 fclose($massFileID);  
 print ("Wrote file " + $outputFilename); 
 
 $outputFilename = ((`getAttr Filenames.outputDirectory`)+(`getAttr 
Filenames.explosionFile`)); 
 float $Px[], $Py[], $Pz[], $Pr[], $PR[], $T[], $Size[], $Off[]; 
 float $offsetX, $offsetY, $offsetZ; 
 $offsetX = (`getAttr ExplosionGrid.tx`) + 0.5; 
 $offsetY = (`getAttr ExplosionGrid.ty`) + 0.5; 
 $offsetZ = (`getAttr ExplosionGrid.tz`) + 0.5; 
 string $Transforms[] = `ls -dep`; 
 string $each; 
 for ($each in $Transforms) 
  if (`attributeExists "explosionID" $each`) 
  {  
   int $ID = `getAttr ($each + ".explosionID")`; 
   $Px[$ID] = `getAttr ($each + ".translateX")`; 
   $Py[$ID] = `getAttr ($each + ".translateY")`; 
   $Pz[$ID] = `getAttr ($each + ".translateZ")`; 
   $Pr[$ID] = `getAttr ($each + ".pressure")`; 
   $PR[$ID] = `getAttr ($each + ".pressureRange")`; 
   $T[$ID] = `getAttr ($each + ".temperature")`; 
   $Size[$ID] = `getAttr ($each + ".size")`; 
   $Off[$ID] = `getAttr ($each + ".timeOffset")`; 
  } 
 int $exploFileID = fopen($outputFilename,"w"); 
 int $iter; 
 for($iter=0;$iter<size($Px);$iter++) 
  fprint $exploFileID (($Px[$iter]-$offsetX)+" "+($Py[$iter]-
$offsetY)+" "+($Pz[$iter]-$offsetZ)+" "+$Pr[$iter]+" "+$PR[$iter]+" "+$T[$iter]+" 
"+$Size[$iter]+" "+$Off[$iter]+"\n"); 
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 fclose($exploFileID);  
 print ("Wrote file " + $outputFilename); 
 
 float $orthoWidth = `getAttr ExplosionGrid.xth`; 
 string $orthoCam[] = `camera -orthographic 1 -orthographicWidth $orthoWidth 
-n GridCam`; 
 move -a ((`getAttr ExplosionGrid.translateX`) + ((`getAttr 
ExplosionGrid.xth`)/2.0)) ((`getAttr ExplosionGrid.translateY`) + (`getAttr 
ExplosionGrid.yth`)) ((`getAttr ExplosionGrid.translateZ`) + ((`getAttr 
ExplosionGrid.zth`)/2.0)) $orthoCam[0]; 
 rotate -a -90 0 0 $orthoCam[0]; 
 setKeyframe -at "nearClipPlane" -v 0.5 -t ((`getAttr ExplosionGrid.yth`)-1) 
$orthoCam[1];  
 setKeyframe -at "nearClipPlane" -v ((`getAttr ExplosionGrid.yth`)-0.5) -t 0 
$orthoCam[1];  
 mtor control setvalue -rg dspyName -value (`getAttr 
Filenames.gridFilePrefix`); 
 mtor control setvalue -rg camName -value $orthoCam[1]; 
 mtor control setvalue -rg dspyRez -value ((`getAttr ExplosionGrid.xth`) + " 
" + (`getAttr ExplosionGrid.zth`)); 
 mtor control setvalue -rg pixelSamples -value "1 1"; 
 mtor control setvalue -rg filterWidth -value "1 1"; 
 mtor control setvalue -rg jitter -value 0; 
 mtor control setvalue -rg doAnim -value 1; 
 mtor control setvalue -rg computeStart -value 0; 
 mtor control setvalue -rg computeStop -value ((`getAttr ExplosionGrid.yth`)-
1); 
 mtor control renderspool; 
 
 
} 
else 
{ 
 error "Initialize scene as an Explosion first."; 
} 

ImportBlastWave.mel 

if (`objExists Filenames`) 
{ 
 int $start = `playbackOptions -q -min`; 
 int $end = `playbackOptions -q -max`; 
 int $timeOffset = 0; 
 string $filePrefix = ((`getAttr Filenames.inputDirectory`)+(`getAttr 
Filenames.inputPrefix`)+"."); 
 string $fileNum; 
 int $frame = $start; 
 string $bwGroups[]; 
 while($frame <= $end) 
 { 
  $fileNum = $frame; 
  while (size($fileNum) < 4) $fileNum = "0" + $fileNum; 
  if ((`file -q -ex ($filePrefix + $fileNum + ".obj")`)==1) 
  { 
   file -r -type "OBJ" -rpr ("bw"+$frame) -options "mo=0" 
($filePrefix + $fileNum + ".obj"); 
   file -sa ($filePrefix + $fileNum + ".obj"); 
   $bwGroups[($frame-$start)] = `group -n ("bw"+$frame)`; 
   file -ir ($filePrefix + $fileNum + ".obj"); 
   $frame++; 
  } 
  else 
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  { 
   warning ("Stopped at "+$frame); 
   $frame = $end+1; 
  } 
 } 
 
 string $bwParentGrp = `group -em -n "BlastWave"`; 
 int $grpIter; 
 for($grpIter = 0; $grpIter <= size($bwGroups); $grpIter++) 
  { 
  int $kTime = $timeOffset + $grpIter; 
  setKeyframe -attribute "visibility" -v 0 -t ($kTime - 1) -t ($kTime + 
1) ($bwGroups[($grpIter)]); 
  setKeyframe -attribute "visibility" -v 1 -t ($kTime) 
($bwGroups[($grpIter)]); 
  parent ($bwGroups[($grpIter)]) $bwParentGrp; 
  }  
} 
else 
{ 
 error "Initialize scene as an Explosion first."; 
} 

ImportAnimation.mel 

if (`objExists Filenames`) 
{ 
 string $selected[] = `ls -sl -dep`; 
 for ($tnode in $selected) 
 if (`attributeExists "objectID" $tnode`) 
 { 
 string $filename = ((`getAttr Filenames.inputDirectory`) + (`getAttr 
Filenames.inputPrefix`) + "."); 
 string $obj = `getAttr ($tnode + ".objectID")`; 
 while (size($obj)<4) $obj = ("0"+$obj); 
 $filename = ($filename + $obj + ".rbs");  
 int $FileID = fopen($filename,"r"); 
 if ($FileID == 0)  
  error ($filename + " Not Found"); 
 float $startTime = `currentTime -q`; 
 
 float $temp[6], $offset[6]; 
 
 $offset[0] = `getAttr -t $startTime ($tnode + ".tx")`; 
 $offset[1] = `getAttr -t $startTime ($tnode + ".ty")`; 
 $offset[2] = `getAttr -t $startTime ($tnode + ".tz")`; 
 $offset[3] = `getAttr -t $startTime ($tnode + ".rx")`; 
 $offset[4] = `getAttr -t $startTime ($tnode + ".ry")`; 
 $offset[5] = `getAttr -t $startTime ($tnode + ".rz")`; 
 int $i; 
 for($i=0;$i<3;$i++) 
 { 
  $temp[($i)] = `fgetword $FileID`; 
  $offset[($i)] -= $temp[($i)]; 
 } 
 for($i=3;$i<6;$i++) 
 { 
  $temp[($i)] = `fgetword $FileID`; 
  $temp[($i)] = $temp[($i)] * (180/3.1415); 
  $offset[($i)] -= $temp[($i)]; 
 } 
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 int $frame = $startTime; 
 while (!(`feof $FileID`)) 
  { 
  setKeyframe -t $frame -at translateX -v ($temp[0]+$offset[0]) $tnode; 
  setKeyframe -t $frame -at translateY -v ($temp[1]+$offset[1]) $tnode; 
  setKeyframe -t $frame -at translateZ -v ($temp[2]+$offset[2]) $tnode; 
  setKeyframe -t $frame -at rotateX -v ($temp[3]+$offset[3]) $tnode; 
  setKeyframe -t $frame -at rotateY -v ($temp[4]+$offset[4]) $tnode; 
  setKeyframe -t $frame -at rotateZ -v ($temp[5]+$offset[5]) $tnode; 
  for($i=0;$i<3;$i++) $temp[($i)] = `fgetword $FileID`; 
  for($i=3;$i<6;$i++){ $temp[($i)] = `fgetword $FileID`;$temp[($i)] = 
$temp[($i)] * (180/3.1415);} 
  $frame++; 
  } 
 
 fclose $FileID; 
 } 
} 
else 
{ 
 error "Initialize scene as an Explosion first."; 
} 
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