

PHYSICALLY BASED SIMULATION OF EXPLOSIONS

A Thesis

by

MATTHEW DOUGLAS ROACH

Submitted to the Office of Graduate Studies of

Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2005

Major Subject: Visualization Sciences

PHYSICALLY BASED SIMULATION OF EXPLOSIONS

A Thesis

by

MATTHEW DOUGLAS ROACH

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Donald H. House

(Chair of Committee)

Frederic I. Parke

(Member)

William H. Marlow

(Member)

Phillip J. Tabb

(Head of Department)

May 2005

Major Subject: Visualization Sciences

 iii

ABSTRACT

Physically Based Simulation of Explosions. (May 2005)

Matthew Douglas Roach, B.S.; B.S., Southern Methodist University

Chair of Advisory Committee: Dr. Donald House

This thesis describes a method for using physically based techniques to model an

explosion and the resulting side effects. Explosions are some of the most visually

exciting phenomena known to humankind and have become nearly ubiquitous in action

films. A realistic computer simulation of this powerful event would be cheaper, quicker,

and much less complicated than safely creating the real thing. The immense energy

released by a detonation creates a discontinuous localized increase in pressure and

temperature. Physicists and engineers have shown that the dissipation of this

concentration of energy, which creates all the visible effects, adheres closely to the

compressible Navier-Stokes equation. This program models the most noticeable of these

results. In order to simulate the pressure and temperature changes in the environment, a

three dimensional grid is placed throughout the area around the detonation and a

discretized version of the Navier-Stokes equation is applied to the resulting voxels.

Objects in the scene are represented as rigid bodies that are animated by the forces

created by varying pressure on their hulls. Fireballs, perhaps the most awe-inspiring side

effects of an explosion, are simulated using massless particles that flow out from the

center of the blast and follow the currents created by the dissipating pressure. The results

can then be brought into Maya for evaluation and tweaking.

 iv

ACKNOWLEDGEMENTS

First of all, I want to thank my wife, Parke. She was supportive when I was

discouraged, she was tough when I was lazy, and most of all, she went to bed early so I

could get some work done. Plus, she explained all the equations to me. We were not

married when I started this thing, but she knew so much about fluid dynamics, I had to

find some way to spend more time with her.

Dr. House was a great advisor and chair. He had ideas when I was stuck and was

a great sounding board for my wacky short cuts. He was always there to help, motivate,

and discourage me from writing jokes into my thesis proposal.

The whole Viz Lab was a wonderful resource for my project. There was always

someone there willing to stop what they were doing and chat physics, C++, or ray

tracing while I tried to figure something out. For instance, Bob Moyer helped a great

deal when I was trying to get my geometry from Maya to the Explosion simulator. Using

a shader was a brilliant idea. Zeki Melek always had helpful ideas for my code, and

almost single handedly ported me over to Windows. Will Telford was in California the

whole time, but was still able to help me with my MEL scripts. Gavin McMillan

contributed to my project in countless morale-boosting ways including introducing me to

Halo, and co-founding Margarita Fridays.

I would also like to thank Jill Raupe for her willingness to assist this confused

graduate student. She kept me enrolled in Texas A&M over the phone and filed my

paperwork for graduation via email.

 v

TABLE OF CONTENTS

 Page

ABSTRACT..

ACKNOWLEDGEMENTS..

TABLE OF CONTENTS..

LIST OF FIGURES..

CHAPTER

iii

iv

v

vii

I INTRODUCTION...

1

 1.1
1.2

Introduction...
Background and Related Work...

1
4

II PHYSICS OF EXPLOSIONS...

9

 2.1
2.2
2.3
2.4
2.5

Shock Front...
Non-Ideal Blast Waves..
Diffracted Waves...
Mach Stem...
Blackbody Radiation...

9
10
10
13
14

III MATHEMATICAL MODEL...

15

 3.1
3.2
3.3
3.4

Conservation of Mass..
Compressible Navier-Stokes...
Conservation of Energy...
Dynamic Overpressure..

15
15
16
16

IV SIMULATION..

18

 4.1
4.2
4.3
4.4
4.5
4.6

Discretizing Fluid Equations...
Boundary Conditions...
Initial Conditions...
Rigid Bodies..
Connecting Rigid Bodies and Fluid..................................
Particle System..

18
19
20
20
23
25

 vi

CHAPTER Page

 4.7
4.8

Integration Methods..
Interfacing with Maya...

26
27

V RESULTS..

32

 5.1

Results... 32

VI CONCLUSION...

37

 6.1
6.2

Conclusion...
Future Improvements..

37
42

REFERENCES..

APPENDIX A..

VITA..

44

47

53

 vii

LIST OF FIGURES

FIGURE Page

2.1

2.2

2.3

2.4

2.5

4.1

4.2

5.1

5.2

5.3

5.4

Ideal Blast Wave Equation...

Diffraction Wave I..

Diffraction Wave II..

Diffraction Wave III...

Diffraction Wave IV...

Animation Inaccuracy..

Voxelizing a Building...

OpenGL Simulation Frames I..

OpenGL Simulation Frames II...

Animated Object Frames..

Particle Animation Frames...

9

11

11

12

13

22

29

33

34

35

36

 1

CHAPTER I

INTRODUCTION

1.1 Introduction

For decades, explosions have been the most dynamic and visually compelling

special effects in film and video games. They have become so prominent in action and

adventure movies that it seems unusual for a movie not to have one these days. Often

they are more important than the plot or even the characters themselves. Fans of the

movie Independence Day would be hard pressed to remember any of the characters’

names but they all remember the scene when the White House exploded [Twentieth

Century Fox 1996]. What would the movie Star Wars be without the final explosion of

the Death Star [Twentieth Century Fox 1977]? Explosions are easily the most frequently

used and most visually stimulating special effect in Hollywood today.

Traditional explosive effects, also called practical effects because they are done

in front of the camera, not afterwards in the computer, are usually achieved in one of two

ways. Either a scaled down model is built and blown up in front of high-speed cameras,

or actual explosives are employed. Neil Corbould and Steven Spielberg used slurries,

high explosives used for mining, covered with special sand that had been filtered to

remove any possible shrapnel for the mortar blasts in the opening sequence of Saving

Private Ryan [Magid 1998a, Dreamworks SKG 1999]. However, any blast that occurred

This thesis follows the style and format of ACM Transactions on Graphics.

 2

remotely near an actor had to be done solely with air pipes buried under the sand. X-

Files: Fight the Future’s [Twentieth Century Fox 1998] visual effects supervisor Mat

Beck used a combination of full-size pyrotechnics and a one-eighth scale model to blow

the façade off of the Unical building in downtown Los Angeles, doubling as a Dallas

Federal Building for the movie [Magid 1998b]. For the movie Spiderman [Sony

Pictures 2002], a one-eighth scale model of the Roosevelt Island Tramway wheelhouse

was constructed in rural Agua Dulce, California complete with soda machines and waste

receptacles [Fordham 2002]. They even had to engineer a special rig to propel the pull-

wheel out of the explosion toward camera. When filming a scaled model, it is important

to increase the film speed otherwise the scale becomes quite apparent. Speeding up the

film, and thus slowing down the effect, makes the explosion seem larger and more

massive. Incidentally, these three examples, though generally considered practical, were

each sweetened in post-production with some computer-generated effects as well.

There are numerous compelling reasons for using computers to generate

explosive effects instead of the more traditional practical techniques. The most

significant motivation of course would be the concern for the actors’ safety. When the

explosion is entirely within the computer, there is no chance of someone accidentally

being caught in the blast. For those who are production cost conscious, computer-

assisted explosions are cheaper and quicker than precisely scaling and placing

detonators, and fireproofing existing structures or building special miniatures that can

only be filmed from a distance. Computer generated blasts also allow the director

complete control over the camera placement, as in the movie Swordfish where director

 3

Dominic Sena was able to place the camera almost at the center of a major explosion

[Warner Brothers 2001]. Perhaps the most useful reason for using software to create a

detonation is the iterative control over the final visual appearance of the effect. Usually

when directors shoot a practical explosion, they set up for days just to get several angles

on one single explosion. With computer-generated effects, directors can look at an

iteration and ask for things to be changed to reflect their creative vision more closely.

Another reason to opt for digital explosions has cropped up only recently. If the entire

scene around an explosion were completely computer-generated, compositing in a real

blast would probably expose the illusion. A couple of examples of computer-simulated

explosions in computer-generated environments would be the fireballs in the movie

Final Fantasy [Columbia Pictures 2001], by Square, and the asteroid detonation in Star

Wars: Episode II [Twentieth Century Fox 2002].

The primary goal of my thesis is to implement a physically based explosion

simulator into an existing interactive software package. Most innovative visualization

solutions for explosions and blast waves have yet to be realized for the average end-user

or animator because of the sheer complexity of the code and the prohibitive

computational intensity of the simulation. I, therefore, have developed a solution that is

simple to use and computationally swift, and integrated it into an interactive

environment that many users already understand.

 4

1.2 Background and Related Work

Scientific interest in the processes of the generation and transmission of blast

waves through air and the resulting phenomenological effects dates back at least a

century, and of course, research in the field intensified significantly during and after

World War II [Baker 1973]. Numerical solutions of mathematical models that

approximate the phenomenon of temperature and pressure discontinuity in a

compressible fluid such as air were first developed in the 1950’s. These original

programs were expanded over the decades to encompass more of their respective

models. Incidentally, in 1970, W. E. Johnson developed the original donor-acceptor

method, a technique for determining the mass flux between discrete fluid cells and a

more complex ancestor to the one that will be implemented in this thesis [Mader 1998].

These highly accurate numerical solutions were then too slow for efficient computer

rendered explosions, however. So, more simplified techniques were initially used to

approximate the visual results of an explosion.

The earliest attempts at mimicking explosions with a computer simulation used a

system of infinitely small objects called particles. As William Reeves [1983] described

in his paper, the particles could be moved with functions that approximated various

physical laws and mathematical models. Rendering the particles as points, color streaks

or volumes creates a simple approximation of water, clouds, fire, or even explosions.

Reeves used this technique to create the Genesis Demo sequence from the motion

picture Star Trek II: The Wrath of Khan [Paramount Pictures 1982]. Industrial Light and

Magic ended up using the footage in the movie’s sequel Star Trek III: The Search for

 5

Spock [Paramount Pictures 1984], and a related simulation for the exploding objects in a

computer tactical display for the movie Return of the Jedi [Twentieth Century Fox

1983]. In 1990, Karl Sims made particles more accessible to the industry by developing

more controls and simpler pseudo code; he also devised some techniques for better

visualizing fire and falling water with this system [Sims 1990]. Though they were quite

revolutionary and dazzling in the eighties and early nineties, particle systems are quite

computationally intensive since several million are required for a convincing frame of

animation. Worse yet, the particles cannot collide with each other. Therefore any

attempt to model a continuum, such as fluid flow or a blast wave, with particles is

exceptionally difficult; the particles cannot maintain a volume. The fundamental

weakness in particle systems is that they are simply points in space; any attempt to give

them volume is really just a trick and therefore not physically accurate.

Another interesting technique for simplifying the mathematical model of a

discontinuous pressure front in a compressible fluid, which is what air becomes at the

temperatures and pressures of most common explosions, is to assume perfectly

symmetrical blast waves that are impervious to the obstacles in the surrounding

environment. These techniques use explicit functions for the pressure at any given point

in a scene based on the distance from the center of the blast and the time elapsed since

detonation. These functions are called blast curves. Neff and Fiume [1999] use blast

curves, created by researchers in the structural engineering fields, in their paper about

fracture algorithms because they need an explosion algorithm that is simple to

implement and quick to run. Since blast curves are simply explicit functions, this

 6

algorithm requires almost no computation time and is relatively simple to implement if

you have the experimental data already. Oleg Mazarak et al. [1999] also use blast curves

in their paper about fracture algorithms for similar reasons. However, instead of

completely changing the blast curves for each type of detonation, they use a modified

Friedlander equation to approximate all blast curves. This solution is particularly flexible

since the equation’s parameters can be tweaked for specific explosive properties.

Unfortunately, blast curves vary only in one dimension, distance from the explosion

center, which means they are unchanged by walls or the ground and cannot be shaped in

any way. Therefore, they are only useful in very simple environments where obstacles

would not be present to reflect or diffract the blast wave.

In order to achieve a complex solution that reacts to the surroundings, researchers

in computer graphics turned to simulating fluids. Kass and Miller [1990] developed a

shallow water simulator that modeled only the surface of a fluid. The next year,

Wejchert and Haumann [1991] published a paper that simplified three-dimensional fluid

flow by creating several flow primitives. These primitives could be placed into a scene

to mimic the behavior of a fluid flowing around obstacles and into and out of sources

and sinks. Then, in a big leap forward in physically based fluid animation, Foster and

Metaxas [1996, 1997] implemented a finite difference approximation of the Navier-

Stokes equations by dividing a scene into a grid of cubes called voxels. The cells

generate pressure and velocity fields that are then used to transport fluid between the

cells. While their research did introduce the industry of computer graphics to the field of

computational fluid dynamics, Foster and Metaxas also introduced us to the “relaxation

 7

step”, the step in the algorithm where every cell is iteratively adjusted in order to

maintain computational stability. The relaxation step was not reliably stable however,

and Jos Stam developed an algorithm in 1999 that eliminated it entirely [Stam 1999].

His process, called “Stable Fluids”, uses a technique called the method of characteristics

to calculate convection. This procedure guarantees stability because the maximum

velocities of the previous time step bound the velocities of each step. Stam’s work

brought fluid simulation to the masses since time steps were no longer bounded by the

complexity of the scene; real-time interaction with a fluid was finally possible.

Unfortunately, the price for ensured stability is the dissipation of fluid mass and

vorticity. Two papers in 2001 attempted to bring the interesting turbulence back into

fluid simulations. Foster and Fedkiw [2001] combat the dissipation with a hybrid

surface algorithm and Fedkiw, Stam and Henrik Wann Jensen add turbulence back into

the stable fluid system with a vorticity field generated by a physically based heuristic

[Fedkiw et al. 2001]. While the current state of fluid simulations is quite convincing for

water, smoke, and turbulent gases, all of the above papers address an incompressible

fluid since at the temperature and pressures they are concerned with, the compressibility

of water and air is negligible. However, at the pressures associated with explosions, air

is highly compressible; in fact, a blast wave is the manifestation of that phenomenon.

A recent paper by Gary Yngve, James O’Brien, and Jessica Hodgins attempts to

handle compressible flow for the very purpose of modeling the propagation of a blast

wave [Yngve et al. 2000]. They model the area containing the explosion as a three-

dimensional fluid divided into voxels. Each voxel is treated as a separate fluid that

 8

experiences changes in density and energy based on the flow across each of its six

borders. They also discuss ways to handle interaction between the fluid and solids in the

pressure field. I relied heavily on their paper while implementing my compressible fluid

simulator and even contacted them for some clarification while writing my code.

 9

CHAPTER II

PHYSICS OF EXPLOSIONS

2.1 Shock Front

Because air is actually a compressible fluid, a high-pressure event, such as a

detonation, creates velocities too high for air molecules to move out of the way of the

dissipating mass. Instead, the air compresses. The leading edge of a significant pressure

disturbance becomes a nearly discontinuous wave as it expands and dissipates. In a still,

homogeneous atmosphere, a spherically symmetric pressure source creates very

predictable results as all system characteristics becomes functions of time and distance

from the blast center. This simplified case is called an ideal blast wave, and the pressure

at a fixed distance over time would look similar to Figure 2.1. [Baker 1973]

Figure 2.1: Ideal Blast Wave Equation

 10

Many models have been proposed over the last sixty years to describe this

function mathematically. In their paper, “Animating Exploding Objects,” Oleg Mazarak

et al. [1999] used the modified Friedlander equation to approximate the ideal blast wave

since their paper was more concerned with fracture algorithms and the resulting

animation of objects.

2.2 Non-Ideal Blast Waves

Baker suggests several reasons for non-ideal blast waves including wave noise

caused by the explosive’s casing and thermal radiation inhomogeneously preheating the

atmosphere around an explosion. However, he also states, “small aberrations from ideal

conditions usually smooth out quickly as the blast wave passes through the air, resulting

in relatively ideal blast waves at a distance from the blast source.” [Baker 1973] This is

good news for simulations of explosions that require only visual accuracy since the

initial flash from the detonation will cover the first few milliseconds of non-ideal

behavior and the remaining blast wave can be more simply modeled.

2.3 Diffracted Waves

With the interaction of a shock front with boundaries of finite extent, such as

those presented by solid objects, complex behavior ensues. These reactions are

collectively called diffraction.

 11

Figure 2.2: Diffraction Wave I

For ease of explanation, let us imagine a planar shock wave, i, approaching a

rectilinear finite object. Simplifying to two dimensions leaves us with the case shown in

Figure 2.2. The pressure behind the incident wave is ambient, po, plus the pressure of the

shocked-up air, Ps.

Figure 2.3: Diffraction Wave II

 12

The pressure on the front wall is at its maximum shortly after the wave hits as the

momentum of the wave pushes more and more air against the object. When the pressure

mounts to the point of reversing the momentum, a reflection wave, r, is created.

Meanwhile, the portion of the wave not hitting the front face continues unabated. As the

reflected wave moves away from the wall, a rarefaction wave moves down the front

face. A vortex forms at the upper left corner of the object where the Venturi effect

causes significant spin. At this point, as depicted in Figure 2.3, the pressure of the

reflected wave is po + Pr, the pressure of the incident wave is a little lower, po + Ps, and

the pressure near the vortex is even slightly less.

Figure 2.4: Diffraction Wave III

As the incident blast front passes beyond the rear face of the object, the wave

diffracts around it, as shown in Figure 2.4. At this point, another vortex forms and the

pressure on the back face begins to build up. Finally, as depicted in Figure 2.5, the shock

 13

front eventually moves beyond the object, having lost some of its energy to the reflected

wave and been reshaped by the process of diffraction. [Baker 1973]

Figure 2.5: Diffraction Wave IV

2.4 Mach Stem

Due to the pressures and velocities involved in explosions of high energy, there

is a critical angle of incidence beyond which normal, acoustic, wave reflection does not

occur. At this angle, the reflected wave begins to merge back together with the incident

wave, creating a much more intense wave front called a Mach stem. This interaction of a

shock front with a ground plane causes blasts that occur slightly above the ground to be

much more destructive than ones that occur in contact with the same plane. In acoustic

reflections, the maximum obtainable pressure is simply twice the incident pressure. In a

high-energy explosion, the multiplier can be as much as twenty. Unfortunately, much of

this increased ratio comes from real gas effects such as ionization and dissociation,

which are ignored in this simulation for the sake of simplicity. [Baker 1973]

 14

2.5 Blackbody Radiation

Blackbody radiation refers to an object, or system, which absorbs all incoming

radiation and emits radiation solely dependent on the characteristics of the system, thus

independent of the incident radiation. For our purposes, the particulate matter pushed

around by the explosion will behave as blackbodies, giving off light solely depending

upon the temperature of the particle. Planck’s radiation formula gives energy density in

terms of wavelength, and the derivative of that formula, the Wien Displacement Law,

can be used to determine the peak wavelength’s relation to temperature. Thus, we have

an equation for radiation in terms of body temperature. [Nave 2003]

T
Km

peak
⋅×

=
310898.2λ (1)

 15

CHAPTER III

MATHEMATICAL MODEL

3.1 Conservation of Mass

The most basic equation affecting a compressible fluid flow is the conservation

of mass. The mass conservation equation simply states that the change in mass within a

given volume must be equal to the mass flux across the volume’s corresponding surface.

[Yngve et al. 2000]

3.2 Compressible Navier-Stokes

The compressible Navier Stokes equations govern the conservation of

momentum

(2)

 in a fluid. Body forces, the pressure gradient, viscous accelerations, and the

convective transportation of momentum determine the change in velocity of a particular

differential volume within the fluid. The body forces usually represent constant

accelerations like gravity. The pressure gradient affects momentum because fluid

naturally flows from higher to lower pressures. Viscosity fights both vorticity and

acceleration, while convection simply reflects the change in momentum caused by fluid

flowing into and out of the given volume. [Yngve et al. 2000]

()v
t

ρρ
⋅−∇=

∂
∂

(3) () ()vvvvPf
t
v

∇⋅−∇+∇⋅∇+∇−⋅=
∂
∂ ρµµρρ 2

3

 16

3.3 Conservation of Energy

The First Law of Thermodynamics governs the conservation of energy in a

compressible fluid system. This law dictates that the change of energy in a system, in

is case, a differential volume of fluid, is equal to the amount of heat added to the

system minus the work done by the system. The work in the system is performed by

pressure and viscosity, and the heat is added via thermal conductivity. The change in

internal energy is thus determined by

done by pressure over the divergence of velocity; this can be thought of as the work

required to maintain different velocities inside and outside of the volume. The two

viscosity terms represent the energy lost as variations in velocity are damped out of the

system plus the smaller amount of energy gained by the production of heat in the

process. The final term represents the change in internal energy due to the convection of

fluid across the surface boundary of the differential volume. [Yngve et al. 2000]

3.4 Dynamic Overpressure

The two types of forces experienced by an object surrounded by fluid are

hydrostatic and dynamic. Hydrostatic forces act normal to the surface of an object, and

xist because of molecules bouncing around naturally. These forces are measured as

pressure. The flow of the continuous fluid creates dynamic forces. These forces act both

)

th

(4()
{ } ijt zyxji ⎠⎝ ∂∂∂ ∈ ,,,23

()Nv
vv

vvPTkN ji ∇⋅−⎟⎟
⎞

⎜⎜
⎛ ∂

+
∂

+⋅∇−⋅∇−∇⋅=
∂ ∑ ρµµρ

2
22 2

The first term is thermal conduction of the system. This term reflects changes in

energy due to heat flowing from high to low temperatures. The second term is the work

e

 17

normal e can

be

ly and tangentially to the surface of an object. The tangential shearing forc

be safely ignored in the case of explosions since the hydrostatic pressures are so high.

Assuming the object is at equilibrium in ambient pressure, the hydrostatic forces can

computed with the overpressure, P . The overpressure is simply the difference between

the hydrostatic pressure, P, and the ambient pressure Pamb. The dynamic overpressure is

simply the overpressure plus the added pressure of the velocity of the fluid normal to th

object’s surface, like so:

(5)

e

The velocity in that equation represents that of the fluid relative to the surface,

and the vector is the outward surface normal. The dynamic overpressure represents

of the surface can be calculated by multiplying that pressure by the surface area. [Yngve

et al. 2

()2n̂vPP ⋅+= ρ
2
1

reldyn

n̂

the magnitude of the pressure normal to the surface. The force acting on a small portion

000]

 18

CHAPTER IV

SIMULATION

.1 Discretizing Fluid Equations

The fluid is discretized into a regular attice of cubical cells called voxels, short

for volume elements. Fluid propert h voxel and considered constant

across the volume. Central finite differences are used to determine spatial derivatives of

re, and velocity. The governing equations of fluid

behavio

e,

ure

a blast wave. Instead, they recommend a slightly more complex

integra

4

 l

ies are sto ed for eacr

values such as pressure, temperatu

r hold for each finite voxel the same way they hold for differential volumes.

[Yngve et al. 2000]

Once the governing equations are rewritten using finite differences, they can be

used as update steps for an explicit integration method. However, according to Yngv

O’Brien and Hodgins, that scheme would fall apart under the stress of the steep press

gradients created by

tion method. First, they suggest stability can be gained by handling the

convection terms separately from the temporal ones. The steps for their integration

method are as follows [Yngve et al. 2000]:

1. Use the first four terms of equation (3) to calculate fluid acceleration

(()tt dtdva /~ =).

2. Approximate the velocity at the end of the timestep (() tttt atvv ~~ ⋅∆+=∆+), a

then the average velocity during the timestep

nd

 (() 2/~
tttt vvv += ∆+).

 19

3. Approximate ∆N using the nonconvective terms of equation (4) while

su

bstituting for fluid velocity. tv

4. Compute the new density, ρ, using tv for fluid veloci

5. Calculate complete ()ttv ∆+ and ()ttN ∆+

ty.

 with equations (3) and (4) using all the

terms a

d s with state equations.

ther, Yngve et al. propose a specific

technique for handling the c ass in steps 4 and 5. They use the donor-

acceptor method. This procedure uses the average velocity at a boundary between cells

to determine the direction of flow across it. The magnitude of the flow is proportional to

the mass of the donor voxel, thus this process never empties a voxel. Preventing an

empty cell stabilizes the integration by keeping the fluid densities positive and avoiding

inordinately large changes to cell velocity and internal energy [Yngve et al. 2000].

4.2 Boundary Conditions

The three types of boundaries implemented in this thesis are hard, free and

pseudo-free. Hard boundaries represent solid objects in the scene and force fluid

velocities normal to them to be zero. Free boundaries are implemented along the edge

cells of the simulation in order to let the blast wave pass out of the fluid grid without

flection. This allows the longer-term aspects of an explosion to be explored. The third

type of boundary, pseudo-free, is employed purely to speed up the simulation while the

blast wave is still small relative to the size of the grid. Cells with pressure differences

nd the new value of ρ.

6. Up ate secondary value

To stabilize the integration scheme fur

onvection of m

re

 20

below a certain threshold are ignored for a time step, allowing most of the cells to be

skipped while the time steps are at their smallest. [Yngve et al. 2000]

4.3 Initial Conditions

All the fluid related constants as well as the ambient pressure and temperature a

specified in one place to facilitate fine-tuning of the performance of the simulation. Th

cells within the specified detonation sphere or spheres have their temp

re

e

erature and

y augmented. The default values are those recommended by

Yngve

quations

quations have been omitted and can be found in their document [Witkin

where

 is a vector representing the position of the center of the body’s mass

(6) ⎥
⎥
⎥

⎢
⎢
⎢

=
P
qX r

pressure values initiall

et al. [2000] to simulate a typical chemical explosion, 2900K and 1000

atmospheres. The detonations can also be time delayed to allow multiple blasts to occur

in succession.

4.4 Rigid Bodies

The motion of rigid bodies in this simulation is implemented using the e

presented in Witkin and Baraff’s physically based modeling course notes. The details of

deriving these e

and Baraff 1999].

The rigid body’s state at any point in time is defined by the state vector

⎤⎡xr

⎥
⎥
⎦⎢

⎢
⎣L
r

xr

 21

 is the quaternion representing the rotation of the body

q

P
r

 is a vector representing the linear momentum of the body

 is a vector representing the angular momentum of the body

The time derivative of the state vector is computed and used to calculate the state at the

estep. Where

 total mass of the body

L
r

next tim

being

M =

I = inertial tensor of the body

if = the ith force being applied to the body

iτ = the ith torque being applied to the body

Quaternions are used for maintaining body rotation in order to avoid the

numerical drift and subsequent skewing inherent in rotation matrices. See reference for

p mulation and handling their

collisions, rigid bodies are initi

every voxel that an object fills at the beginning of the simulation and those cubes are

(7)

more explanation [Witkin and Baraff 1999].

To sim lify the process of bringing objects into the si

alized as groups of cubes. A cube object is created for

[] ⎥
⎥

⎢
⎢

⋅= qq ω& ,01

⎥

⎥

⎥

⎢

⎢

⎢

=

=

∑L

X

τ&

r
& 2

⎤⎡ = MPx
r

&r /

⎥
⎥
⎥

⎢
⎢
⎢ = ∑ ifP

r

&

⎦⎣ i

ω = Angular Velocity = LI
r

1− (8)

22

grouped t eth into detection because every

concav ision

ly. For instance, internal cubes never need

to be te

y

og er one rigid body. This simplifies collision

e rigid body is actually a collection of smaller convex rigid bodies. A coll

detection hierarchy is setup to speed up the process so that most cubes are eliminated

from the list of possible collisions very quick

sted at all. This technique does cause some animation inaccuracy since the forces

of the fluid will be acting on approximated geometry and in only three directions at an

one time. The possible inaccuracies are revealed in Figure 4.1 where in each case the

bottom half of the sphere approximation is experiencing a significantly higher pressure

than the top half. The resulting force on the perfect sphere in the example would be

directly up. The approximations, depending on their exact orientation to the high-

pressure field, could receive widely varying resulting forces.

Figure 4.1: Animation Inaccuracy

 23

4.5 Connecting Rigid Bodies and Fluid

The rigid bodies are coupled with the surrounding fluid using the techniques

described in “Animating Explosions” [Yngve et al. 2000]. The three-step process

involves first animating the rigid body by determining and applying the fluid forces on

the faces of a body, then revoxelizing the body after animation, and finally using the

change in voxelization to adjust cell values and push fluid around the scene.

4.5.1 Determining Forces

Assuming the objects in the scene are at equilibrium at atmospheric pressure,

ydrostatic forces are computed using the overpressure,

Ph , which is simply the

ient pressure, PAMB.

negligible compared to the hydrostatic forces near detonations. The total normal force on

en evaluated as the dynamic overpressure.

bject, so the actual force, f,

difference between pressure, P, and amb

The dynamic forces created by fluid momentum break into two types, a normal force and

a tangential shearing force. The shearing force is irrelevant in this context since it is

any point on the surface of an object is th

(10) ()21

(9) AMBPPP −=

ˆ
2

nvPP reldyn ⋅+= ρ

The force is approximated to be constant over the face of an o

on any facet with surface area, A, would be

(11) dynPAnf ˆ−=

 24

4.5.2 Voxelization

In order for the fluid to react to the movement of the objects, it must know wh

the objects are. This information is generated by a technique called voxelization.

Voxelization works by breaking up an object into tiny pieces and placing each one in

ere

to

the grid cell it occupies. Then each grid cell knows how full or empty it is. Full cells are

temporarily considered hard boundaries and partially filled cells have their convection

e into one thousand pieces and placing each

one in the grid cell that contains the center point of each smaller piece. Since each rigid

body is stored in the simulation as a collection of these cubes, it is very easy to step

es of an object repeating this procedure.

ect is

(12)

equations modified to reflect their altered volumes. For a simple unit cube, the process

of voxelization would entail breaking the cub

through the sub-cub

After the forces are applied on each face of each object’s surface, the rigid body

motion of the objects is computed normally. Once this step is completed, each obj

then revoxelized and the change in volume of each voxel is calculated. This change in

volume is used to displace fluid.

4.5.3 Displacing Fluid

The change in partial volume of each voxel works like a miniature piston

compressing or expanding the gas in that cell. Since the fluid is compressible, pressure

does not vary directly with the change in volume. However, mass is conserved; so the

new density, ρ, is determined by

2

1
12 V

V
∗= ρρ

 25

To upd

here γ

 object begins to exit a completely filled cell

and when an object initially envelopes an entire cell. In these two cases, the voxel in

question must be handled simultaneously with a neighbor. These two cells togethe

treated as one larger voxel so that the partial volume is never zero. The “Animating

se to

spinning in place it would not have any velocity at all, making the choice of neighboring

re

A particle system is used to simulate the fireball effect commonly associated

with explosions. The system suggested by Yngve et al. [2000] is an extreme

(13)

ate the pressure and temperature of the voxel, I use a thermodynamic equation

from Yngve’s paper relating the work done to a system by changing the density,

()1/ −γγγ

P 1

2

1

2

1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ρ

T
TP

w = 1 + R/cv with R and cv being constants specific to the fluid. If γ were set to

one, the fluid would be incompressible, and in the case of air, a γ approximately equal to

1.4 is accurate. [Yngve et al. 2000]

Special circumstances arise when an

r are

Explosions” paper suggests choosing the neighboring cell based on the largest axial

component of the object’s velocity [Yngve et al. 2000]. In a slight departure, I cho

use the instantaneous velocity of a point on the object near the cell’s center. This change

allows for better accuracy in a few specific cases. For instance, when an object is simply

cells impossible. My adjustment handles those cases where the angular velocity is mo

significant than the linear velocity.

4.6 Particle System

 26

simplification of the particle systems described in [Sims 1990, Reeves 1983]. Instead

tracking velocity, only position of each particle is stored in the state vector. Each

timestep, the fluid velocity at the position of a particle is interpolated. The massless

particle simply moves at the speed of the fluid for that timestep. This technique

simulates detonated material from the explosion spreading out with the thermal currents

and buoyancy of an explosion.

4.7 Integration Methods

In an attempt to provide a ba

 of

lance of simulation speed and accuracy, a

ration techniques is used in this program. The rigid body motion is

calcula

ensional

nique,

 step size is dynamic. Before each iteration, the program

ivergence in the fluid grid and uses it to determine the largest

stable t

combination of integ

ted with a fourth order Runge-Kutta technique because rigid bodies become

unstable with less accurate methods [Witkin and Baraff 1999]. The three-dim

fluid is simulated by a modified Euler integration. However, the extreme pressure

gradients would still create negative densities and unstable velocities with this tech

so a special donor-acceptor method keeps the simulation stable by handling the

convection terms of the equations [Yngve et al. 2000]. In order to speed up the

simulation after the blast wave, the most numerically complicated aspect of the

simulation, has left the grid, the

calculates the maximum d

ime step.

 27

4.8 Interfacing with Maya

4.8.1 Scene Creation

The scene is entirely setup within Maya using simple scripts. The first sc

run on a scene is ExploSimSetup.mel. This script sets up the approximate fluid g

creates a Filenames node, which can be used to direct all output and input to or f

Maya.

After the scene has been modeled and laid out, select all the solid objects,

stationary or mov

ript to

rid and

rom

able, which you want to interact with the simulation fluid. Running

repareObjects.mel on these selected object attaches simulation attributes to them that

ou can adjust on a per object basis. A particular Renderman shader is also attached to

ach object; I will elaborate on this later. The main attributes added by the script are

g the Mass value at zero means you want that object to be a

imulation, whereas entering a positive value will allow the

geomet

 a

eats. First, you have full control over the relative size of the fluid cells, but

geomet

nd

y

P

y

e

ObjectID and Mass. Leavin

hard boundary in the s

ry to be animated by the explosion. All objects with the same ObjectID are

combined into one rigid body in the simulator. Adjusting these numbers can be used to

keep separate pieces of geometry from flying apart in the simulation. I should mention

few cav

ry thinner than a dimension of the fluid grid will likely not translate into the

simulation. I recommend modeling simpler proxy geometry for each of your objects a

using them to create the initial fluid grid. In addition, large concave objects, such as a

wall combined with a ground plane, will slow down the simulation significantly as man

of the collision detection shortcuts are undermined by this type of geometry. Simply

 28

making the ground plane and the wall discrete convex rigid bodies can speed up the

simulation by two orders of magnitude.

The CreateExplosion.mel script adds an explosion to the scene in the form o

scalable initial detonation sphere. This proxy blast geometry has some attributes on it

that can be used to fine tune and adjust the timing of the simulation. For instance, the

temperature and pressure range of the blast can be adjusted, as well as the detonatio

offset. This offset value allows for multiple and successive explosions to occur in th

fluid.

The last step in scene creation is to output something from Maya that ExploSim

can read. The script that handles the various forms of output is called

Output2ExploSim.mel. Based on the paths and filenames stored in the Filenames nod

this script writes out a mass file, an explosion file, and then renders the initial state of

voxel grid. The mass file is simply a list

f a

n

e

e,

 the

of object identification numbers followed by the

corresp

 of

ication number for the inside of an object. Then an orthographic projection

camera

 fluid grid cells.

onding mass and initial velocity. The explosions file is just a list of the blasts in

the scene and their pertinent attributes like position, size and pressure. The initial state

the fluid grid is a bit more complicated. The PrepareObjects.mel script attached a

Renderman shader called ExploSim.sl to each of the objects in the scene. This shader

returns black for the exterior of an object and a color that represents the object’s

identif

, placed at the top of the explosion grid by ExploSimSetup.mel, animates its clip

plane down through the grid at intervals related to the dimension of the

Thus, each rendered frame of this animation represents a separate slice of the initial fluid

 29

state. Figure 4.2 shows an object being voxelized from Maya. The red grid represents

the animated clipping plane moving down the object, and the black and white image is

the corresponding rendered image output from Renderman. Then, when ExploSim runs,

it reads in these files and initializes the simulation.

4.8.2 Importing the Results

The pressure grid is turned into renderable geometry by selecting a threshold

value and building triangles that approximate the surface around the volume with

pressures greater or equal to that value. This techniq

ue is called the marching cubes

e dimensional isobaric

contour. Relying heavily upon preexisting code from Paul Bourke’s webpage,

Figure 4.2: Voxelizing a Building

algorithm and was first presented as a surface construction procedure by Lorensen and

Cline [1987] in the conference proceedings of SIGGRAPH. The system works by

looking at each voxel of the grid as eight points that either above or below the threshold

value. Based on the number and position of included vertices, inclusive triangles are

created that have their vertices interpolated along the cube’s edges. These triangles form

a mesh approximation of the field threshold, or in our case a thre

 30

“Polygonising a scalar field”, the simulation exports a separate polygonal mesh for each

frame o es

ion is

.

rent

 rotations resulting from the conversion process

are lim ne

f the simulation in Wavefront object file format [Bourke 2003]. I chose obj fil

because they are simple to create and easily imported into Maya. Once the simulat

finished, running the ImportBlastWave.mel script inside of Maya will import all the

blast wave geometry and animate their visibilities so that each one is visible for one

frame. This staggering of the mesh visibilities suggests animation of the blast wave

Since the blast wave is only visible due to its bending of light, the lack of motion blur on

the animation should not be noticeable.

The animation of the moveable objects in the scene is stored in the form of a

position vector and rotation quaternion. Since the purpose of this paper is to bring the

results back into Maya, a program that as of version 4.5 does not allow direct

manipulation of an object’s rotation quaternion, some conversion process must occur

when animation is exported to convert the quaternions into the more common Eulerian

angles. Inspired by a more comprehensive version of the code presented online by Ken

Shoemake [2003], my code exports position and rotation data for each object at each

frame into separate files. Another MEL script, ImportAnimation.mel, brings the

animation data into Maya and assigns it to the corresponding objects. Due to the inhe

limitations of the Eulerian method of rotation description, the objects will have visually

disruptive motion blur artifacts since the

ited to the range of -180 to 180 degrees. If an object rotates far enough about o

axis, it will shift suddenly from significantly positive to significantly negative rotation

 31

values. I have another script that fixes these artifacts called FixRotations.mel that can b

run on objects with broken motion blurring.

Maya’s particle system does not allow for the keyframing of individual particles,

so the most obvious solution to bringing in the particle system data would not work.

What I create instead is a makeshift particle cache. A runtime expression runs eve

the current frame changes that looks up the current frame’s particle data and moves each

of the particles to the correct place. Unfortunately, all the file accessing makes this

implementation a bit unwieldy. In addition, an annoying memory bug in Maya

occasionally pops up and crashes your scene. Ideally, it would be possible to write out a

native Maya particle cache file, but I could not find an intuitive explanation of how or

even a suggestion that it is possible to create usable Maya particle caches from another

program.

e

ry time

 32

CHAPTER V

RESULTS

.1 Results

I created a few different animations in order to reveal the simulation’s accuracy

nd the overall visual interest of the results. Frames from those animations are included

elow. Figures 5.1 and 5.2 show frames captured directly from the simulator itself. The

penGL window shows a two-dimensional slice of the pressure wave expanding and

iffracting around a wall. Figure 5.3 is a collection of frames from a Maya playblast,

emonstrating imported blast wave geom ated by the simulation.

The last image, Figure 5.4, confirms the inaccuracy of my particle system with a few

frames from a Maya playblast of simulated particles.

5

a

b

O

d

d etry and objects anim

33

Figure 5.1: OpenGL Simulation Frames I

 34

Figure 5.2: OpenGL Simulation Frames II

 35

Figure 5.3: Animated Object Frames

 36

Figure 5.4: Particle Animation Frames

 37

CHAPTER VI

CONCLUSION

6.1 Conclusion

My attempt to build a compressible three dimensional fluid simulator for the

purpose of modeling visually stimulating explosions and interfacing it with Maya proved

to be too ambitious and merely a partial success.

One aspect of the thesis that performed capably was the process of building three

dimensional fluid grids and rigid body approximations from a Maya scene. Almost any

scene can be exported to the simulator with only minor tweaks to the geometry. The

scripts and the Renderman shader allow a technical animator to start an explosion shot in

Maya, then move easily into the simulation. The files necessary for initializing

ExploSim can also be created and edited by hand with a text editor and a simple paint

program.

The most successful part of the thesis by far is the pressure wave. The frames

from the OpenGL simulator reveal quite accurate diffraction behavior. Explosions

occurring slightly above the ground plane generate Mach stem reflections of greater

intensity than the rest of the blast wave. When a shock front hits a solid obstacle it is

reflected, and the wave refracts correctly beyond an unmoving object. The accuracy of

the pressure wave propagation suggests the underlying compressible fluid simulation is

reliable.

 38

The rigid body simulation was satisfactory. Even with the inaccuracy and

instability introduced into the system by the simplifications I chose to make to the rigid

body system, it still handled collisions and generated legitimate animation. It certainly

works well enough to initialize a more robust rigid body simulator that could handle the

post explosion animation quicker and more accurately.

The particle simulation was an utter failure. No usable particle data was ever

generated by the ExploSim. The expected behavior of the particles would be initially

expanding with the blast wave, followed by a subsequent pull back into the blast center

as the particles are left behind by the super sonic blast wave and sucked in by the low-

pressure area. My particles did that much; perhaps that portion worked because the

velocities would be dominated by the pressure gradient and pressure dissipation was the

aspect that worked best. Next, however the particles would be expected to rise into a

beautiful cloud, riding the currents of thermal expansion. This behavior would suggest

some bugs in the handling of the energy flow. Either the temperature differences are not

having enough of an effect on the pressure gradient, or energy is being lost in the system

somewhere.

The integration techniques are a bit complicated, but were necessary in order to

get the simulation to run in a manageable amount of time. My initial simulations used a

fixed timestep of one microsecond and finished the blast wave in forty-eight hour period.

Waiting to see if the particles formed a fireball, however, took over a week. The first

improvement I made was to make the timestep dynamic so it would speed up as the blast

wave moved out of the grid. Using the cell divergence to approximate the eigenvalue of

 39

the system worked well and kept the simulation stable. Some minor tweaks were

necessary after rigid bodies were added since the rigid bodies affected the divergence

after the timestep had already been calculated. Since each grid cell often needed

calculated values from its neighbors, I added a clean/dirty matrix to the simulation so a

cell never calculated its derivatives more than once per step. This process obviously

saved time over repeated recalculation calls, but it also saved CPU time over one giant

cell by cell sweep because only the needed cells are calculated and free boundaries are

ignored. After the dynamic timestep and speed-ups were implemented, the whole

simulation from detonation to complete dissipation takes less than two days. The actual

speed enhancement cannot be accurately measured though due to the program being

ported to a new operating system twice, and the inevitable enhancement of processing

power.

Bringing data back into Maya proved erratic as I often ran into a memory bug in

the Windows version of Maya. Closing a file pointer made the file unreadable, but it

often did not free up the RAM. This caused a problem when reading multiple large text

files for data input. The blast wave geometry could only be imported twenty to fifty

frames at a time before the RAM would need to be purged by restarting Maya. Too large

a guess would result in a crash and all unsaved data would be lost. This problem was not

as much of a hindrance for the object animation though, and the process of importing

animation went rather smoothly. Unfortunately, importing particle data was unwieldy

and painful. Maya particles cannot be keyframed or reliably coerced into Maya’s

caching system from an expression. In the end, I used a runtime expression to read in

 40

and set each particle’s position every time the current frame changed. In essence, I

created my own particle cache, and this process ran very slowly for the several thousand-

particle system I originally envisioned. Even after scaling back the size of the particle

system to only a few hundred, the memory bug would still crash Maya after a few

frames anyway. In the end, I would have to say interfacing the simulator with Maya was

a naïve endeavor motivated by a general ignorance of the software available to the

computer graphics industry.

Once all the blast wave geometry was imported into Maya and set up to

sequentially become visible, the limitations of the Marching Cubes algorithm revealed

itself. The geometry was jagged and heavy to manipulate. Luckily, the lack of accurate

motion blur or smooth edges really was obscured by the invisibility of the blast wave as

I expected. Renders of the blast wave simply revealed a growing field that diffracted

light and warped the background. Unfortunately, any shader applied to the surface must

be a cheat since the index of refraction is constant throughout the geometry. It can be

animated in the scene or UV mapped onto the blast wave or both, but the object is only a

surface, not a volume, so it must be rendered as one.

The animation of objects in the scene by the pressure wave turned out to work

fairly well. The objects were pushed away from the blast convincingly and the

simulation even generated some exciting rotations on the objects as well. Using the state

vectors from the simulation just after the blast wave has passed the objects by to

initialize Maya’s built-in rigid body simulator created good results in a practical amount

 41

of time. The object animation is by far the most practical result from the simulator at this

time.

In conclusion, I believe my project scope was too wide. Perhaps simply

implementing a three dimensional compressible fluid simulation would have been more

reasonable. Integration with the Maya software package was time consuming,

marginally successful, and generally shortsighted. The particle simulation should have

been exported directly to a renderer or at least imported into a piece of software

specifically designed around physics simulation. The blast wave would have been better

served by a volume shader that made full use of the pressure field. Admittedly, writing

one could have taken just as long as bringing the marching cubes algorithm results into

Maya, but the results would have been more accurate. Only the rigid body animation

was successfully incorporated into Maya, but then, animation is one of Maya’s strong

points.

The fluid simulation worked quite well, though not perfectly. Clearly, the

underperforming particles would suggest an error somewhere in the implementation. A

more modest goal would have helped here as well. Besides the time lost developing

realistic blackbody radiation shaders and smoke for a fireball that never culminated, I

also spent a great deal of time learning the underlying physics of the problem. I even

took an extra partial differential equations course to solidify my understanding, though a

follow-up heat transfer class would probably have helped as well. Despite the wildly

ambitious nature of my chosen problem, I believe I managed a respectable solution that

addresses all issues in some manner and even performed well in several major areas.

 42

Through research and my limited experience in the computer animation industry,

I have learned that explosions are just quicker, cheaper, and simpler to create by hand in

a specially adapted software package. The blast wave is far too fast for rigorous visual

inspection on screen, and the fireball is simply too important to simulate. Directors are

going to want complete control over the shape and color of the most visually stimulating

aspect of the effect, and a simulation would take all of the control away from them. The

initialization of a rigid body simulation would be the only practical result of an

explosion simulation in the computer graphics industry since hand animation of rigid

bodies remains a daunting, time-consuming task.

6.2 Future Improvements

The whole reason I undertook this project was to see an impressive fireball, so

obviously the most important future improvement would be to get the particles working.

The quickest way to do this would be to nail down the misfiring code. However, this

would only get you a solution equal to the fireballs presented in the paper by Yngve et

al. [2000]. These fireballs were better than mine were, but not nearly as impressive as

those presented in Feldman, O’Brien and Arikan’s paper “Animating Suspended Particle

Explosions” [Feldman et al. 2003]. Their paper handles combustion using a simpler

incompressible flow that is better suited for the fireball. Since most of the interesting

flame effects occur well after the blast wave has propagated beyond visual range, the

compressibility of Yngve’s solution is a computational waste of time.

A volume rendered blast wave would be a significant improvement in the

accuracy of the renders, though it would probably not significantly alter the final look of

 43

the blast wave. The wave is just too fast and visually insignificant to spend the effort

perfecting. Similarly, the rigid bodies could be more accurately simulated with a more

complicated approach but that would probably slow down the simulation for a result that

could just as easily be cheated, or even hand animated. Dust clouds could also be added

to the simulation as Yngve did in “Animating Explosions”, but again they could also just

be added in later in the form of timed smoke emitters.

 44

REFERENCES

Baker, W. E. 1973. Explosions in Air. University of Texas Press, Austin.

Bourke, P. 2003. Polygonising a Scalar Field,

http://astronomy.swin.edu.au/~pbourke/modelling/polygonise.

Columbia Pictures. 2001. Final Fantasy: The Spirits Within (film).

Dreamworks SKG. 1999. Saving Private Ryan (film).

Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In

SIGGRAPH 2001 Conference Proceedings. 15-22.

Feldman, B., O’Brien, J., and Arikan, O. 2003. Animating suspended particle

explosions. In SIGGRAPH 2003 Conference Proceedings. 708-715.

Fordham, J. 2002. Spin city. Cinefex 90, 14-54,123-130.

Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In SIGGRAPH 2001

Conference Proceedings. 23-30.

Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical Models and

Image Processing 58, (5), 471-483.

Foster, N., AND Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In

SIGGRAPH 97 Conference Proceedings. 181-188.

Kass, M., AND Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In

SIGGRAPH 90 Conference Proceedings. 49-57.

Lorensen, W., and Cline, H. 1987. Marching cubes: A high resolution 3D surface

construction algorithm. In SIGGRAPH 87 Conference Proceedings. 163-169.

Mader, C. L. 1998. Numerical Modeling of Explosives and Propellants. CRC Press,

Boca Raton.

Magid, R. 1998a. Blood on the Beach,

http://www.theasc.com/magazine/dec98/Blood/index.htm.

Magid, R. 1998b. Paranormal Activities,

http://www.theasc.com/protect/jul98/paranormal/index.htm.

 45

Mazarak, O., Martins C., and Amanatides, J. 1999. Animating exploding objects.
Graphics Interface 99, 211-218.

Nave, C. 2003. Blackbody Radiation, http://hyperphysics.phy-

astr.gsu.edu/hbase/bbcon.html.

Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. Graphics

Interface 99,193-202.

Paramount Pictures. 1982. Star Trek II: The Wrath of Khan (film).

Paramount Pictures. 1984. Star Trek III: The Search for Spock (film).

Reeves, W. T. 1983. Particle systems—a technique for modeling a class of fuzzy

objects. ACM Transactions on Graphics 2, (2), 91-108.

Shoemake, K. 2003. Euler Angle Conversion,

http://www1.acm.org/pubs/tog/GraphicGems/gemsiv/euler_angle.

Sims, K. 1990. Particle animation and rendering using data parallel computation. In

SIGGRAPH 90 Conference Proceedings. 405-413.

Sony Pictures. 2002. Spider-Man (film).

Stam, J. 1999. Stable fluids. In SIGGRAPH 99 Conference Proceedings. 121-128.

Twentieth Century Fox. 1977. Star Wars: Episode IV - A New Hope (film).

Twentieth Century Fox. 1983. Star Wars: Episode VI - Return of the Jedi (film).

Twentieth Century Fox. 1996. Independence Day (film).

Twentieth Century Fox. 1998. The X-Files (film).

Twentieth Century Fox. 2002. Star Wars: Episode II - Attack of the Clones (film).

Warner Brothers. 2001. Swordfish (film).

Wejchert, J., and Haumann, D. 1991. Animation aerodynamics. In SIGGRAPH 91

Conference Proceedings. 19-22.

Witkin, A., and Baraff, D. 1999. Physically based modeling. In SIGGRAPH 99 Course

Notes.

 46

Yngve, G., O’Brien, J., and Hodgins, J. 2000. Animating explosions. In SIGGRAPH
2000 Conference Proceedings. 29-36.

Supplemental Sources Consulted

Kundert-Gibbs, J., and Lee, P. 2001. Mastering Maya 3, Sybex, San Francisco.

Mao, W. 1999. Producing a computer generated explosive effect. M.S. thesis, Texas

A&M University, College Station.

Naithani, P. 2002. Visually simulating realistic fluid motion. M.S. thesis, Texas A&M

University, College Station.

 47

APPENDIX A

Here are the major MEL scripts used to interface the explosion simulator with

Alias|Wavefront’s Maya 4.5.

ExploSimSetup.mel

string $FileNode = `group -empty -n Filenames`;
addAttr -dt "string" -ln outputDirectory $FileNode;
addAttr -dt "string" -ln gridFilePrefix $FileNode;
addAttr -dt "string" -ln massFile $FileNode;
addAttr -dt "string" -ln explosionFile $FileNode;
addAttr -dt "string" -ln inputDirectory $FileNode;
addAttr -dt "string" -ln inputPrefix $FileNode;
string $File = `file -q -sceneName`;
$File = match("[^/\\]*$", $File);
int $sz = size($File);
if ($sz > 1) $File = substring($File,1,($sz - 3));
setAttr ($FileNode + ".outputDirectory") -type "string" (`workspace -q -rd`);
setAttr ($FileNode + ".gridFilePrefix") -type "string" $File;
setAttr ($FileNode + ".massFile") -type "string" ($File + ".mss");
setAttr ($FileNode + ".explosionFile") -type "string" ($File + ".xpl");
setAttr ($FileNode + ".inputDirectory") -type "string" (`workspace -q -rd`);
setAttr ($FileNode + ".inputPrefix") -type "string" "simOut";
setAttr -e -keyable false ($FileNode + ".tx");
setAttr -e -keyable false ($FileNode + ".ty");
setAttr -e -keyable false ($FileNode + ".tz");
setAttr -e -keyable false ($FileNode + ".rx");
setAttr -e -keyable false ($FileNode + ".ry");
setAttr -e -keyable false ($FileNode + ".rz");
setAttr -e -keyable false ($FileNode + ".sx");
setAttr -e -keyable false ($FileNode + ".sy");
setAttr -e -keyable false ($FileNode + ".sz");
setAttr -e -keyable false ($FileNode + ".visibility");
string $gridObj = `createNode nurbsCurve`;
setAttr -k off ($gridObj + ".v");
setAttr ($gridObj + ".cc") -type "nurbsCurve" 1 15 0 no 3 16 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 0.5 0.5 -0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -0.5
0.5 -0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5
-0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5;
string $parents[] = `listRelatives -fullPath -parent $gridObj`;
$gridObj = `rename $parents[0] ExplosionGrid`;
xform -ws -piv -0.5 -0.5 -0.5 $gridObj;
move 0.5 0.5 0.5 $gridObj;
makeIdentity -apply true -t 1 $gridObj;
setAttr -e -keyable false ($gridObj + ".rx");
setAttr -e -keyable false ($gridObj + ".ry");
setAttr -e -keyable false ($gridObj + ".rz");
addAttr -ln xth -at long $gridObj;
setAttr -e -keyable true ($gridObj + ".xth");
setAttr ($gridObj + ".xth") 10;

 48

PrepareObjects.mel

string $testSelected[] = `ls -sl -s -dep`;
string $each;
for($each in $testSelected)
{
 if ("transform" != `nodeType $each`)
 {
 string $parents[] = `listRelatives -fullPath -parent $each`;
 $each = $parents[0];
 }
 if (!(`attributeExists "objectID" $each`))
 {
 string $shapes[] = `listRelatives -fullPath -shapes $each`;
 addAttr -ln objectID -at long $each;
 setAttr -e -keyable true ($each + ".objectID");
 addAttr -ln objID -at long $shapes[0];
 connectAttr ($each + ".objectID") ($shapes[0] + ".objID");
 addAttr -ln objectMass -at double $each;
 setAttr -e -keyable true ($each + ".objectMass");
 addAttr -ln initialVelocity -at double3 $each;
 addAttr -ln initialVelocityX -at double -p initialVelocity $each;
 addAttr -ln initialVelocityY -at double -p initialVelocity $each;
 addAttr -ln initialVelocityZ -at double -p initialVelocity $each;
 setAttr -type double3 ($each + ".initialVelocity") 0 0 0;
 setAttr -e -keyable true ($each + ".initialVelocity");
 setAttr -e -keyable true ($each + ".initialVelocityX");
 setAttr -e -keyable true ($each + ".initialVelocityY");
 setAttr -e -keyable true ($each + ".initialVelocityZ");
 }
}

CreateExplosion.mel

string $newX[] = `sphere -p 0 0 0 -ax 0 1 0 -r 1 -d 3 -ut 0 -s 24 -nsp 12 -ch 0 -n
"Explosion"`;
int $number = 0;
if (`gmatch $newX[0] "*[0-9]"`)
{
 $number = `match "[0-9]+$" $newX[0]`;
}
addAttr -ln explosionID -at long $newX[0];
setAttr -e -keyable true ($newX[0] + ".explosionID");
setAttr ($newX[0] + ".explosionID") $number;
addAttr -ln size -at double $newX[0];
setAttr -e -keyable true ($newX[0] + ".size");
connectAttr -f ($newX[0] + ".size") ($newX[0] + ".scaleX");
connectAttr -f ($newX[0] + ".size") ($newX[0] + ".scaleY");
connectAttr -f ($newX[0] + ".size") ($newX[0] + ".scaleZ");
setAttr ($newX[0] + ".size") 1;
addAttr -ln pressure -at double $newX[0];
setAttr -e -keyable true ($newX[0] + ".pressure");
setAttr ($newX[0] + ".pressure") 101305000;
addAttr -ln pressureRange -at double $newX[0];
setAttr -e -keyable true ($newX[0] + ".pressureRange");
addAttr -ln temperature -at double $newX[0];
setAttr -e -keyable true ($newX[0] + ".temperature");
setAttr ($newX[0] + ".temperature") 2900;
addAttr -ln timeOffset -at double $newX[0];

 49

setAttr -e -keyable true ($newX[0] + ".timeOffset");
setAttr -e -keyable false ($newX[0] + ".rotateX");
setAttr -e -keyable false ($newX[0] + ".rotateY");
setAttr -e -keyable false ($newX[0] + ".rotateZ");

Output2ExploSim.mel

if (`objExists Filenames`)
{
 string $outputFilename = ((`getAttr Filenames.outputDirectory`)+(`getAttr
Filenames.massFile`));
 float $masses[], $Vx[], $Vy[], $Vz[];
 $masses[0] = 0;
 string $Transforms[] = `ls -dep`;
 string $each;
 for ($each in $Transforms)
 if (`attributeExists "objectID" $each`)
 {
 int $ID = `getAttr ($each + ".objectID")`;
 $masses[$ID] = `getAttr ($each + ".objectMass")`;
 $Vx[$ID] = `getAttr ($each + ".initialVelocityX")`;
 $Vy[$ID] = `getAttr ($each + ".initialVelocityY")`;
 $Vz[$ID] = `getAttr ($each + ".initialVelocityZ")`;
 }
 int $massFileID = fopen($outputFilename,"w");
 int $iter;
 for($iter=0;$iter<size($masses);$iter++)
 fprint $massFileID ($masses[$iter]+" "+$Vx[$iter]+" "+$Vy[$iter]+"
"+$Vz[$iter]+"\n");
 fclose($massFileID);
 print ("Wrote file " + $outputFilename);

 $outputFilename = ((`getAttr Filenames.outputDirectory`)+(`getAttr
Filenames.explosionFile`));
 float $Px[], $Py[], $Pz[], $Pr[], $PR[], $T[], $Size[], $Off[];
 float $offsetX, $offsetY, $offsetZ;
 $offsetX = (`getAttr ExplosionGrid.tx`) + 0.5;
 $offsetY = (`getAttr ExplosionGrid.ty`) + 0.5;
 $offsetZ = (`getAttr ExplosionGrid.tz`) + 0.5;
 string $Transforms[] = `ls -dep`;
 string $each;
 for ($each in $Transforms)
 if (`attributeExists "explosionID" $each`)
 {
 int $ID = `getAttr ($each + ".explosionID")`;
 $Px[$ID] = `getAttr ($each + ".translateX")`;
 $Py[$ID] = `getAttr ($each + ".translateY")`;
 $Pz[$ID] = `getAttr ($each + ".translateZ")`;
 $Pr[$ID] = `getAttr ($each + ".pressure")`;
 $PR[$ID] = `getAttr ($each + ".pressureRange")`;
 $T[$ID] = `getAttr ($each + ".temperature")`;
 $Size[$ID] = `getAttr ($each + ".size")`;
 $Off[$ID] = `getAttr ($each + ".timeOffset")`;
 }
 int $exploFileID = fopen($outputFilename,"w");
 int $iter;
 for($iter=0;$iter<size($Px);$iter++)
 fprint $exploFileID (($Px[$iter]-$offsetX)+" "+($Py[$iter]-
$offsetY)+" "+($Pz[$iter]-$offsetZ)+" "+$Pr[$iter]+" "+$PR[$iter]+" "+$T[$iter]+"
"+$Size[$iter]+" "+$Off[$iter]+"\n");

 50

 fclose($exploFileID);
 print ("Wrote file " + $outputFilename);

 float $orthoWidth = `getAttr ExplosionGrid.xth`;
 string $orthoCam[] = `camera -orthographic 1 -orthographicWidth $orthoWidth
-n GridCam`;
 move -a ((`getAttr ExplosionGrid.translateX`) + ((`getAttr
ExplosionGrid.xth`)/2.0)) ((`getAttr ExplosionGrid.translateY`) + (`getAttr
ExplosionGrid.yth`)) ((`getAttr ExplosionGrid.translateZ`) + ((`getAttr
ExplosionGrid.zth`)/2.0)) $orthoCam[0];
 rotate -a -90 0 0 $orthoCam[0];
 setKeyframe -at "nearClipPlane" -v 0.5 -t ((`getAttr ExplosionGrid.yth`)-1)
$orthoCam[1];
 setKeyframe -at "nearClipPlane" -v ((`getAttr ExplosionGrid.yth`)-0.5) -t 0
$orthoCam[1];
 mtor control setvalue -rg dspyName -value (`getAttr
Filenames.gridFilePrefix`);
 mtor control setvalue -rg camName -value $orthoCam[1];
 mtor control setvalue -rg dspyRez -value ((`getAttr ExplosionGrid.xth`) + "
" + (`getAttr ExplosionGrid.zth`));
 mtor control setvalue -rg pixelSamples -value "1 1";
 mtor control setvalue -rg filterWidth -value "1 1";
 mtor control setvalue -rg jitter -value 0;
 mtor control setvalue -rg doAnim -value 1;
 mtor control setvalue -rg computeStart -value 0;
 mtor control setvalue -rg computeStop -value ((`getAttr ExplosionGrid.yth`)-
1);
 mtor control renderspool;

}
else
{
 error "Initialize scene as an Explosion first.";
}

ImportBlastWave.mel

if (`objExists Filenames`)
{
 int $start = `playbackOptions -q -min`;
 int $end = `playbackOptions -q -max`;
 int $timeOffset = 0;
 string $filePrefix = ((`getAttr Filenames.inputDirectory`)+(`getAttr
Filenames.inputPrefix`)+".");
 string $fileNum;
 int $frame = $start;
 string $bwGroups[];
 while($frame <= $end)
 {
 $fileNum = $frame;
 while (size($fileNum) < 4) $fileNum = "0" + $fileNum;
 if ((`file -q -ex ($filePrefix + $fileNum + ".obj")`)==1)
 {
 file -r -type "OBJ" -rpr ("bw"+$frame) -options "mo=0"
($filePrefix + $fileNum + ".obj");
 file -sa ($filePrefix + $fileNum + ".obj");
 $bwGroups[($frame-$start)] = `group -n ("bw"+$frame)`;
 file -ir ($filePrefix + $fileNum + ".obj");
 $frame++;
 }
 else

 51

 {
 warning ("Stopped at "+$frame);
 $frame = $end+1;
 }
 }

 string $bwParentGrp = `group -em -n "BlastWave"`;
 int $grpIter;
 for($grpIter = 0; $grpIter <= size($bwGroups); $grpIter++)
 {
 int $kTime = $timeOffset + $grpIter;
 setKeyframe -attribute "visibility" -v 0 -t ($kTime - 1) -t ($kTime +
1) ($bwGroups[($grpIter)]);
 setKeyframe -attribute "visibility" -v 1 -t ($kTime)
($bwGroups[($grpIter)]);
 parent ($bwGroups[($grpIter)]) $bwParentGrp;
 }
}
else
{
 error "Initialize scene as an Explosion first.";
}

ImportAnimation.mel

if (`objExists Filenames`)
{
 string $selected[] = `ls -sl -dep`;
 for ($tnode in $selected)
 if (`attributeExists "objectID" $tnode`)
 {
 string $filename = ((`getAttr Filenames.inputDirectory`) + (`getAttr
Filenames.inputPrefix`) + ".");
 string $obj = `getAttr ($tnode + ".objectID")`;
 while (size($obj)<4) $obj = ("0"+$obj);
 $filename = ($filename + $obj + ".rbs");
 int $FileID = fopen($filename,"r");
 if ($FileID == 0)
 error ($filename + " Not Found");
 float $startTime = `currentTime -q`;

 float $temp[6], $offset[6];

 $offset[0] = `getAttr -t $startTime ($tnode + ".tx")`;
 $offset[1] = `getAttr -t $startTime ($tnode + ".ty")`;
 $offset[2] = `getAttr -t $startTime ($tnode + ".tz")`;
 $offset[3] = `getAttr -t $startTime ($tnode + ".rx")`;
 $offset[4] = `getAttr -t $startTime ($tnode + ".ry")`;
 $offset[5] = `getAttr -t $startTime ($tnode + ".rz")`;
 int $i;
 for($i=0;$i<3;$i++)
 {
 $temp[($i)] = `fgetword $FileID`;
 $offset[($i)] -= $temp[($i)];
 }
 for($i=3;$i<6;$i++)
 {
 $temp[($i)] = `fgetword $FileID`;
 $temp[($i)] = $temp[($i)] * (180/3.1415);
 $offset[($i)] -= $temp[($i)];
 }

 52

 int $frame = $startTime;
 while (!(`feof $FileID`))
 {
 setKeyframe -t $frame -at translateX -v ($temp[0]+$offset[0]) $tnode;
 setKeyframe -t $frame -at translateY -v ($temp[1]+$offset[1]) $tnode;
 setKeyframe -t $frame -at translateZ -v ($temp[2]+$offset[2]) $tnode;
 setKeyframe -t $frame -at rotateX -v ($temp[3]+$offset[3]) $tnode;
 setKeyframe -t $frame -at rotateY -v ($temp[4]+$offset[4]) $tnode;
 setKeyframe -t $frame -at rotateZ -v ($temp[5]+$offset[5]) $tnode;
 for($i=0;$i<3;$i++) $temp[($i)] = `fgetword $FileID`;
 for($i=3;$i<6;$i++){ $temp[($i)] = `fgetword $FileID`;$temp[($i)] =
$temp[($i)] * (180/3.1415);}
 $frame++;
 }

 fclose $FileID;
 }
}
else
{
 error "Initialize scene as an Explosion first.";
}

 53

VITA

Name Matthew Douglas Roach

Education Texas A & M University

 M.S. in Visualization Sciences

 March 2005

 Southern Methodist University

 B.S. in Mathematics

 B.S. in Computer Engineering

 May 2000

Address 5055 Addison Circle #717

 Addison, TX, 75093

