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ABSTRACT 

 

Characterization and Expression of Histone Deacetylase 1  

(AtHD1) in Arabidopsis thaliana. 

(May 2005) 

Man Kim Fong, B.S.; M.S., The Chinese University of Hong Kong, PRC 

Chair of Advisory Committee: Dr. Z. Jeffrey Chen 

 

The reversible process of histone acetylation and deacetylation is an important 

mechanism of epigenetic regulation in the control of gene expression and chromatin 

structure. In general, histone acetylation is related to gene activation, whereas histone 

deacetylation is associated with transcriptional gene silencing and maintenance of 

heterochromatin. A large number of histone deacetylases (HDACs), the enzymes that 

catalyze the reaction of histone deacetylation, have been identified in plants and other 

eukaryotes, and they were found to play crucial roles in plant growth and development. 

In Arabidopsis thaliana, histone deacetylase 1 (AtHD1) is a homolog of 

Saccharomyces cerevisiae Rpd3 that is a global transcriptional regulator. Downregulation of 

AtHD1 in transgenic Arabidopsis results in histone hyperacetylation and induces a variety of 

phenotypic and developmental defects, suggesting that AtHD1 is also a global regulator of 

many physiological and developmental processes. 

To characterize the expression pattern and distribution of AtHD1 in cells, the 

subcellular location of AtHD1 was determined by monitoring the expression of an 

AtHD1-GFP fusion protein in a transient expression assay and in transgenic Arabidopsis. 
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The results show that AtHD1 is localized in the nucleus and appears to be excluded from the 

nucleolus. 

The histone deacetylase activity of AtHD1 was studied in an in vitro assay using 

radiolabeled histone peptides as a substrate. Recombinant AtHD1 produced by bacteria 

demonstrated a moderate but significant HDAC activity, whereas that produced by the 

baculovirus expression system did not have activity. This suggests that AtHD1 may require 

other cofactors or association with other proteins, rather than post-translational 

modifications, in order to have full HDAC activity. 

To study the possible interactions of AtHD1 with other proteins, a recombinant 

AtHD1 protein with two units of c-myc epitope fused to its C-terminus was expressed in 

transgenic Arabidopsis. We attempted to isolate proteins interacting with AtHD1 by 

co-immunoprecipitation (Co-IP). However, in the first few trials of Co-IP, a lot of 

contaminating proteins were present in the eluent along with the recombinant AtHD1-cmyc 

protein. Improvements in the experimental conditions are required for further investigation. 
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CHAPTER I 

 

INTRODUCTION 

 

Researchers have found that gene expression is regulated not only by cis- and 

trans-acting elements that are located within the DNA itself, but also by histone proteins that 

package DNA into chromatin, by enzymes that modify histones and DNA, and even by some 

small RNAs (Pennisi, 2001). Epigenetic regulation, which is defined as the heritable 

changes in gene expression that occur without a change in DNA sequence (Wolffe and 

Matzke, 1999), is involved in many biological phenomena and processes such as genomic 

imprinting (Joyce et al., 1997; Reik and Murrell, 2000), X-chromosome inactivation (Lyon, 

1993), paramutation (Stam et al., 2002) and transposon regulation (Singer et al., 2001). 

Epigenetic regulation of gene expression is mediated by a large number of proteins 

that can affect the chromatin structure and thus modulate the accessibility of other 

transcriptional regulators to the DNA. The identification, characterization and elucidation of 

the mechanisms of this large number of chromatin remodeling and modifying proteins have 

proven to be the most challenging part of epigenetic research. 

CHROMATIN REMODELING MECHANISMS 

In eukaryotic cells, nuclear DNA is organized and packaged into compact structures 

called chromatin through association with basic globular proteins called histones. The basic 

unit of chromatin is nucleosome that consists of 146 bp of DNA wrapped twice around a  
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histone octamer containing two molecules of H2A, H2B, H3 and H4 (Luger et al., 1997). 

The nucleosomes on the DNA are described as “beads on a string” that can be further 

condensed into a more compact helical structure called the 30-nm fiber by the association of 

histone H1 with linker DNA (Lusser, 2002). Further compaction of the chromatin above the 

level of the 30-nm fiber is generally termed higher-order chromatin structure. 

Recent studies revealed that the chromatins are highly dynamic structures that can 

change during plant development or in response to environmental changes. For instance, the 

positions of nucleosomes surrounding the upstream regions of particular genes and the 

nuclease accessibility of such regions have been shown to change in response to 

environmental and developmental changes (Paul and Ferl, 1998; Li et al., 2001). Recent 

studies on chromatin modifications and identification of chromatin remodeling machineries 

have unveiled some regulatory mechanisms at the nucleosome level that regulate gene 

activity by changing the higher-order chromatin structures (Lusser, 2002). These 

mechanisms include chromosome remodeling by ATP-dependent chromatin remodeling 

complexes, DNA methylation and histone modifications. 

ATP-dependent chromatin remodeling complexes 

The ATP-dependent chromatin remodeling complexes are characterized by having an 

ATPase subunit that can use the energy from ATP hydrolysis to disrupt and reorder 

nucleosome position and conformation, and thus affecting the access of transcription factors 

to DNA packaged in the nucleosome (Havas et al., 2000; Gavin et al., 2001). They usually 

function as transcriptional coactivators but some may act as transcriptional repressors or are 

involved in other processes such as chromatin assembly (Kingston and Narlikar, 1999). 

There are several groups of chromatin remodeling complexes including the SWI/SNF 
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(Switch/Sucrose Non-Fermenting), CHRAC (Chromatin Accessibility Complex) and NURF 

(Nucleosome Remodeling Factor), all of which contain an ATPase subunit of the 

SWI2/SNF2 superfamily (Corona et al., 1999; Phelan et al., 2000), which in turn, can be 

divided into different subfamilies according to their functions and phylogenetics (Eisen et al., 

1995). 

Three subfamilies of SWI2/SNF2 were identified and demonstrated to have chromatin 

remodeling activity. First, the SNF2/BRM (Brahma) subgroup was found to regulate 

transcription by controlling the accessibility of cis-regulatory elements to transcriptional 

regulators by altering the position or conformation of nucleosomes (Wagner, 2003). 

Mutations in the Arabidopsis SYD (Splayed) gene, which encodes a SNF2/BRM chromatin 

remodeling factor, caused severe developmental defects. This implies a role for SYD in the 

repression of floral transition, the expression of floral homeotic genes, and ovule 

development (Wagner and Meyerowitz, 2002). Second, the subgroup ISWI (Imitation 

Switch) first identified in Drosophila was found to alter the position of nucleosomes by a 

sliding mechanism (Narlika et al., 2002). ISWI may play a role in chromatin assembly, 

transcriptional regulation and the maintenance of higher order chromatin structure (Wagner, 

2003). The third subgroup called CHD (Chromodomain-Helicase-DNA-binding protein) is 

characterized by having a chromodomain, a SNF2-like helicase/ATPase domain and a 

DNA-binding protein (Ogas et al., 1999). Mutations in Arabidopsis PKL (Pickle) gene, a 

member of the CHD subgroup, result in the ectopic expression of embryonic developmental 

genes, suggesting that PKL functions as a corepressor of these genes (Lusser, 2002). 

Recent studies have revealed a functional relationship among chromatin remodeling 

complexes, histone and DNA modifying enzymes. For instance, members of the CHD 
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subfamily of chromatin remodeling factors were shown to act in complexes with histone 

deacetylases to repress genes in Drosophila and mammals (Wade et al., 1998; Zhang et al., 

1998). Moreover, the Arabidopsis chromatin remodeling factors DDM1 (Decreased DNA 

Methylation 1) and MOM1 (Morpheus’ Molecule 1) are required for the maintenance of 

global DNA methylation (Jeddeloh et al., 1999; Dennis et al., 2001) and silencing of a 

methylated transgene (Amedeo et al., 2000), respectively, suggesting a link between 

chromatin remodeling factors and DNA methylation. 

DNA methylation 

Symmetric DNA methylation (CpG and CpNpG) on cytosine residues is an 

evolutionarily conserved DNA modification found in vertebrates, plants and some fungi 

(Finnegan and Kovac, 2000; Bird, 2002). In addition, plants have asymmetric DNA 

methylation in non-CG sequences (Finnegan and Kovac, 2000). DNA methylation is 

believed to be a mechanism that defends the genome against transposable elements and 

retroviruses (Martienssen and Colot, 2001; Bird, 2002). In the eukaryotic genomes, regions 

containing abundant heterochromatin and silenced transgenes usually have high levels of 

DNA methylation (Eden and Cedar, 1994). 

The Arabidopsis thaliana genome contains at least ten genes that encode DNA 

methyltransferases that can be divided into three main families based on their functions 

and/or sequence homology to mammalian DNA Methyltransferases (DNMT) (Tariq and 

Paszkowski, 2004). First, Arabidopsis MET1 (Methyltransferase 1) is a homolog of 

mammalian DNMT1 and is responsible for maintenance of CG methylation (Finnegan and 

Kovac, 2000). MET1 missense mutations (met1-1 and met1-2) showed delayed flowering 

and derepression of silenced genes (Kankel et al., 2003). Second, DRM1 
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(Domain-Rearranged Methyltransferase 1) and DRM2, which are similar to the mammalian 

DNMT3 family of methyltransferases, were identified as de novo methyltransferases in 

genome defense (Cao and Jacobsen, 2002a). DRM proteins were shown to be involved in the 

establishment but not the maintenance of silencing at the FWA (Flowering Wageningen) and 

SUPERMAN loci, and drm1/drm2 double mutants were unable to perform de novo 

methylation at non-CG sites in FWA and SUPERMAN loci (Cao and Jacobsen, 2002b). Third, 

CMT3 (Chromomethylase 3) is a plant-specific methyltransferase that contains a 

chromodomain and was shown to be responsible for asymmetric DNA methylation in both 

Arabidopsis (Lindroth et al., 2001) and maize (Papa et al., 2001). 

DDM1, a SWI/SNF-type ATPase chromatin remodeling factor described earlier, is 

required to maintain global methylation and has been shown to control transposon and 

transgene silencing (Jeddeloh et al., 1999), and to maintain methylation of Lysine 9 on 

histone H3 (Gendrel et al., 2002). Moreover, it was shown that methylated DNA can recruit 

methyl-DNA binding proteins which in turn recruit histone-modifying enzymes and 

chromatin-remodeling factors for heterochromatin formation (Lusser, 2002). Overall, these 

studies suggest a mechanistic link among chromatin remodeling, DNA and histone 

methylation. 

Histone modifications 

The post-translational modifications of core histone N-terminal tails have emerged 

as a versatile means to regulate gene expression and determine higher-order chromatin 

structures. The N-terminal tails of histones contain conserved amino acid residues that are 

subjected to a variety of covalent modifications including acetylation/deacetylation, 

methylation, phosphorylation, ubiquitination, sumoylation and ADP-ribosylation (Jenuwein 
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and Allis, 2001; Shiio and Eisenman, 2003). The identification of chromatin proteins and 

their native complexes has led to the postulation of the histone code hypothesis, which states 

that the covalent modifications on histone tails provide binding sites for 

chromatin-associated proteins, which in turn induce alterations in chromatin structure and 

thereby lead to downstream transcriptional regulation (Strahl and Allis, 2000; Jenuwein and 

Allis, 2001).  The histone codes can act as epigenetic marks which are heritable and can be 

translated into biological functions (Jenuwein and Allis, 2001). 

Histone acetylation/deacetylation 

Core histones can be reversibly acetylated or deacetylated on specific lysine residues 

of the histone N-terminal tails. Histone acetylation is catalyzed by the enzymes histone 

acetyltransferases (HATs) that transfer an acetyl group from acetyl coenzyme A to the 

ε-amino group of specific lysine residues, while the reverse reaction is catalyzed by another 

group of enzymes called histone deacetylases (HDACs). The competing action of HAT and 

HDAC determines the histone acetylation levels that ultimately affect the higher-order 

chromatin structure and gene activities at a chromosomal region. In general, genomic 

regions with hyperacetylated histones are associated with increased gene activity, while 

those containing hypoacetylated histones are associated with reduced gene activity. 

Histone acetylation is thought to make the chromatin more “open” to transcriptional 

regulators by neutralizing the positive charge of histone tails and thus decreasing their 

affinity for the negatively charged DNA (Kuo and Allis, 1998). Hence, histone 

hyperacetylation tends to disrupt higher-order chromatin structure and activates genes. In 

contrast, histone deacetylation restores the positive charge of core histones and increases 

their affinity to the DNA, resulting in chromatin compaction into higher-order structure and 
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gene inactivation (Horn and Peterson, 2002). It has also been proposed that the 

acetylation/deacetylation status of specific lysine residues, together with other modifications 

on the histone N-terminal tails, acts as epigenetic marks or binding surfaces for the 

recruitment of transcriptional regulators and/or chromatin remodeling factors (Jenuwein and 

Allis, 2001). 

There are two major classes of HATs in eukaryotes, Type B and Type A, which are 

responsible for acetylation of histones before and after their incorporation into chromatin, 

respectively (Imhof and Wolffe, 1999; Carrozza et al., 2003). Type A HATs are more directly 

involved in transcriptional regulation because they acetylate histones in the chromatin. In 

plants, type A HATs, including homologs of the transcriptional coactivators Gcn5 (General 

Control of Amino Acid Synthesis protein 5) and p300/CBP (CREB-binding protein), were 

identified (Stockinger et al., 2001; Bordoli et al., 2001). Recombinant Arabidopsis GCN5 

homolog and PCAT2 (p300/CBP class) have been shown to have histone acetyltransferase 

activity (Stockinger et al., 2001). Moreover, Arabidopsis GCN5 has been shown to interact 

in vitro with Arabidopsis orthologs of the yeast HAT-adaptor protein ADA2, resulting in the 

recruitment of the HAT complex to cold- and dehydration-inducible promoters through the 

action of the transcription factor CBF1 (C-repeat/DRE binding factor 1) (Stockinger et al., 

2001). 

While 12 HATs have been identified in plants, there is a larger number (18) of 

histone deacetylases in the plant genomes (Pandey et al., 2002). Their activities, functions 

and roles in plant physiological and developmental processes will be discussed in later 

sections. 
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Histone methylation 

Early studies showed that lysines 4, 9, 27 and 36 of histone H3 and lysine 20 in 

histone H4 can be mono-, di- or tri-methylated (reviewed in Zhang and Reinberg, 2001). 

However, their significance in epigenetic regulation of gene expression and the enzymes 

involved have not been revealed until recently. The mammalian homolog of Drosophila 

SU(VAR)3-9 (Suppressor of Variegation 3-9), SUV39h, was the first histone 

methyltransferase identified and it was shown to methylate histone H3 at lysine 9 (Rea et al., 

2000). The catalytic domain of histone methyltransferases (HMTs) is a conserved protein 

sequence motif called the SET domain (Suvar3-9 enhancer of zeste trithorax domain) first 

identified in the Drosophila position effect variegation suppressor Su-var3-9, the polycomb 

group protein enhancer of zeste and the trithorax-group protein trithorax (Rea et al., 2000). 

Homologs of SUV39h histone methyltransferase have also been identified in fission yeast, 

Neurospora and Arabidopsis. Arabidopsis KYP (Kryptonite) is the first H3-K9-specific 

histone methyltransferase identified in plants (Jackson et al., 2002; Malagnac et al., 2002). 

Although Arabidopsis contains at least 29 SET domain proteins (Baumbusch et al., 2001), 

KYP is implicated to be responsible for the majority of H3-K9 methylation because 

mutation in KYP leads to a dramatic reduction of H3-K9 methylation levels at 

chromocenters (Johnson et al., 2002; Jasencakova et al., 2003). 

Methylation at lysine 9 of histone H3 is by far the best characterized histone 

methylation and it is one of the characteristics of heterochromatin (Rea et al., 2000). In 

Arabidopsis, H3-K9 methylation is abundant in centromeric and pericentromeric 

heterochromatin (Probst et al., 2003; Tariq et al., 2003) and it is associated with 

heterochromatic silencing at specific loci (Grendel et al., 2002). On the other hand, H3-K4 
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methylation is associated with transcriptionally active regions (Strahl et al., 1999; Noma et 

al., 2001; Nagy et al., 2002). Interestingly, methylation at H3-K4 and H3-K79 is required for 

gene silencing near the telomeric region in S. cerevisiae (Krogan et al., 2003). 

Histone H3 methylation at K9 appears to be recognized by a chromodomain 

containing protein called Heterochromatin Protein 1 (HP1) (Bannister et al., 2001; Lachner 

et al., 2001). In mammals, Drosophila and Neurospora, HP1 failed to associate with 

heterochromatin in chromocenters or centromeric regions when the levels of H3-K9 

methylation were reduced (Schotta et al., 2002; Freitag et al., 2004; Pal-Bhadra et al., 2004). 

A plant homolog of HP1, called LHP1 (Like Heterochromatin Protein 1), was identified in 

Arabidopsis and its mutation caused altered flowering time and upregulation of CONSTANS 

(Gaudin et al., 2001) and a series of homeotic genes (Kotake et al., 2003). LHP1 has been 

shown to interact directly with CMT3, implying a mechanistic link between DNA 

methylation at CpNpG and heterochromatin formation associated with H3-K9 methylation 

(Jackson et al., 2002). Recent findings also revealed that H3-K9 methylation was 

dramatically reduced in heterochromatin regions in ddm1 and met1 mutants, suggesting a 

link between H3-K9 methylation and heterochromatin formation via DNA methylation 

(Grendel et al., 2002). 

In human and Drosophila, H3-K27 methylation is also associated with gene 

silencing mediated by the polycomb-group (PcG) proteins such as the SET domain protein 

enhancer of zeste (Cao et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002; Muller et 

al., 2002). In plants, a PcG protein VERNALIZATION 2 (VRN2) is required for 

maintenance of vernalization during which the floral repressor gene FLOWERING LOCUS 

C (FLC) acquires methylation at H3-K9 and H3-K27 (Grendall et al., 2001; Bastow et al., 
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2004; Sung and Amasino, 2004). 

In contrast to the highly dynamic nature of histone acetylation and phosphorylation, 

histone and DNA methylation appears to be irreversible processes and hence they are 

regarded as stable epigenetic marks (Jenuwein and Allis, 2001). 

Histone phosphorylation 

Like histone acetylation, phosphorylation on histone N-terminal tails is a reversible 

process. However, it occurs on serine residues. Histone H3-S10 phosphorylation is the 

best-characterized histone phosphorylation so far. Studies have shown that H3-S10 

phosphorylation acts in concert with other histone modifications, rather than acting alone, to 

modulate transcription. For instance, H3-S10 phosphorylation impairs the subsequent 

methylation of H3-K9 by SUV39h1, while acetylation of H3-K14 and H3-K9 stimulates the 

phosphorylation of H3-S10 by the mitotic kinase Ipl1/aurora (Rea et al., 2000). Most studies 

of histone phosphorylation were conducted in Drosophila and mammals. Its role in plants 

has not been extensively studied yet. 

Histone ubiquitination 

The covalent attachment of a small ubiquitin protein (~76 amino acids) to certain 

target proteins is a mark for degradation by the proteosome (Conaway et al., 2002). However, 

ubiquitination of histones was associated with transcriptional activation (Strahl and Allis, 

2000). For instance, increased levels of ubiquitinated histone H2A and H2B were found in 

actively transcribed regions in the chromatin of human (Varshavsky et al., 1982; Davie and 

Murphy, 1990). 
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Histone sumoylation 

Small ubiquitin-related modifier (SUMO) is a family of ubiquitin-like proteins that 

has not been linked to protein degradation. In mammals, SUMO proteins are divided into 

three families: SUMO-1, SUMO-2 (SMT3a), and SUMO-3 (SMT3b), which show partly 

overlapping yet distinct functions (Saitoh and Hinchey, 2000; Tatham et al., 2001). It has 

been shown in mammals that histone H4 sumoylation mediates transcriptional repression 

through recruitment of histone deacetylases and heterochromatin protein 1 (HP1) (Shiio and 

Eisenman, 2003).  

HISTONE DEACETYLASES 

Histone deacetylases (HDACs) are enzymes that are responsible for the removal of 

an acetyl group covalently attached to the ε-amino group of lysine residues on the histone 

N-terminal tails. The first histone deacetylase identified was mammalian HDAC1 that 

shows high sequence homology to the yeast protein Rpd3 (Reduced potassium dependency 

protein 3) (Taunton et al., 1996). Since then, a large number of HDACs have been identified 

in many eukaryotes and 18 HDAC genes have been identified in Arabidopsis so far (Pandey 

et al., 2002). HDACs are divided into 4 classes based on their sequence homology, substrate 

specificity and requirement of cofactors. Class I and class II HDACs are homologous to the 

yeast Rpd3 and Hda1 proteins, respectively, while class III HDACs are related to the yeast 

Sir2 (Silent information regulator 2) protein (Wu et al., 2003). While the first 3 classes of 

HDACs can be found in yeast, animals and plants, the fourth class of HDAC called 

HD2-like HDACs are found in plants only. 

Sequence analyses show that most class I HDACs contain a large conserved domain 

homologous to the N-terminal region of yeast RPD3 and a short C-terminal region with a 
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more variable sequence (Khochbin and Wolffe, 1997). In yeast and mammalian cells, the 

Rpd3-type HDACs have been shown to mediate transcriptional repression by interacting 

with specific DNA-binding proteins or associated corepressors and by recruitment to target 

promoters (Alland et al., 1997; Hassig et al., 1997; Kadosh and Struhl, 1997). 

In yeast, Rpd3 and Sin3 are tightly associated and they coexist in a large multiprotein 

complex that has been shown to repress target genes involved in diverse processes such as 

meiosis, cell-type specificity, potassium transport, phosphate and phospholipid metabolism, 

and methionine biosynthesis (Vidal and Garber, 1991; McKenzie et al., 1993; Stillman et al., 

1994; Jackson and Lopes, 1996). The Rpd3-Sin3 complex can be recruited to the promoters 

of target genes by Ume6, a repressor that specifically binds an upstream repression sequence 

present in a wide variety of yeast promoters (Strich et al., 1994; Kadosh and Struhl, 1997). 

In mammals, class I HDACs include HDAC1, 2, 3, 8 and 11. HDAC1 and HDAC2 

coexist in at least 3 distinct multiprotein complexes including the SIN3, NuRD/NRD/Mi2, 

and CoREST complexes (Hassig et al., 1997; Laherty et al., 1997; Zhang et al., 1998; Tong 

et al., 1998; Ayer; 1999; Humphrey et al., 2001; You et al., 2001). HDAC3 is found in 

another corepressor complex called N-CoR (nuclear receptor corepressor) that has been 

shown to inhibit JNK activation through an integral subunit, GPS2 (Zhang et al., 2002). 

In plants, the first RPD3 homolog was identified in maize and it complemented the 

phenotype of a rpd3 null mutant of yeast (Rossi et al., 1998). There are four class I HDACs 

identified in Arabidopsis, including AtHD1 (AtRPD3A, HDA19), AtHD6 (AtRPD3B), 

HDA7 and HDA9. There are two other Rpd3-like sequences identified (HDA10 and HDA17) 

but they are believed to be pseudogenes derived from the 3’-end of HDA9 (Pandey et al., 

2002).  
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Class II HDACs, also called HDA1-like HDACs, share sequence homology with 

RPD3-type HDACs in their catalytic domain but have distinct structural and functional 

features (Wade, 2001). There are 6 class II HDACs in mammals and they have been shown 

to exist in large multiprotein complexes and are capable of interacting with other proteins. In 

yeast, Hda1 is the primary class I HDAC. In Arabidopsis, 6 putative class II HDAC genes 

were identified but their functions and characterization are poorly studied. 

The class III HDACs, also called SIR2-like HDACs or Sirtuin, differ greatly from 

other classes of HDACs in sequence and function, and are distinct in the requirement of 

NAD as a coenzyme for HDAC activity (Imai et al., 2000; Smith et al., 2000; Marmorstein, 

2001). Studies of SIR2-like HDACs in yeast, Drosophila and mammals showed that they are 

involved in the regulation of cellular metabolism and aging (reviewed by Guarente, 2000; 

Blander and Guanrente, 2004; Rogina and Helfand, 2004; Wood et al., 2004). Two SIR2-like 

genes have been identified in Arabidopsis but they have not been characterized yet (Pandey 

et al., 2002). 

Finally, the HD2-like HDACs are plant specific and the first HD2 protein was 

identified in maize as a tightly chromatin-bound phosphoprotein localized in the nucleolus 

whose HDAC activity can be regulated by phosphorylation (Lusser et al., 1997; Kolle, 1999). 

Four HD2-like HDACs have been identified in Arabidopsis and in maize (Pandey et al., 

2002). It has been shown that three HD2-like HDACs in Arabidopsis, including AtHD2A, 

AtHD2B and AtHD2C, can repress transcription when targeted to a reported gene in vivo as 

a fusion protein with a transcription factor (Wu et al., 2000a; Wu et al., 2003). Moreover, 

blocking AtHD2A by expression of an antisense version of the gene results in aborted seed 

development, suggesting that AtHD2A plays an important role in the reproductive 
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development of Arabidopsis (Wu et al., 2000a).  

Histone deacetylase 1 in Arabidopsis (AtHD1) 

AtHD1 is a single-copy gene located on the short arm of chromosome 4 (Tian and 

Chen, 2001). The AtHD1 protein shares 56 and 55% amino acid sequence identity to HD1 in 

mammals (Taunton et al., 1996) and Rpd3 in yeast (Vidal and Gaber, 1991), respectively. 

RNA blot analysis showed that AtHD1 is expressed in seedlings, leaves, flower buds, 

siliques, stems and roots, suggesting that AtHD1 is a global regulator involved in many 

physiological and developmental processes in plants (Tian and Chen, 2001). Sequence 

analysis of the deduced amino acid sequence of AtHD1 protein identified two components, a 

N-terminal region (201 amino acids) homologous to yeast Rpd3 and a C terminal region 

(300 amino acids) that is highly hydrophobic and specific to multicellular eukaryotes, 

including plants and mammals (Tian and Chen, 2001).  The histidines at positions 148/149 

and 186/187 are conserved catalytic sites for deacetylation activity in yeast (Kadosh and 

Struhl, 1998). 

The functional role of AtHD1 was studied by antisense inhibition of AtHD1 

expression in transgenic Arabidopsis which displayed various phenotypic and 

developmental defects including early senescence, serrated leaves, formation of aerial 

rosettes, delayed flowering and defects in floral organ identity (Tian and Chen, 2004). The 

downregulation of AtHD1 also leads to the hyperacetylation of histone H4 but causes no 

change in the DNA methylation levels in the transgenic plants. Downregulation of AtHD1 by 

T-DNA insertion in the exon 2 of AtHD1 gene results in similar phenotypic defects and 

hyperacetylation as in the antisense inhibition study (Tian et al., 2003). Moreover, when the 

homozygous T-DNA insertion line is crossed with wild type plants, the phenotypic defects as 
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well as the histone acetylation levels are restored to normal in the F1 progeny, demonstrating 

the reversible nature of histone acetylation (Tian et al., 2003). 

The characterization of AtHD1 protein including the demonstration of HDAC activity 

in vitro, the cellular distribution and localization, and its interaction with other proteins are 

unknown and will be addressed in this study. 
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CHAPTER II 

 

SUBCELLULAR LOCALIZATION OF HISTONE  

DEACETYLASE 1 IN Arabidopsis  

 

INTRODUCTION 

Histone deacetylases (HDACs) regulate gene transcription and modify chromatin 

structure by deacetylating specific lysine residues at the N-termini of core histones. Since 

the substrates for HDACs are located in the nucleus, the activity of HDACs can be regulated 

by controlling their localization in the cells (Sengupta & Seto, 2004). Studies on human 

HDACs found that the activity of some HDACs is regulated by translocation between the 

nucleus and cytoplasm. For instance, the mammalian class II HDACs, HDAC4, 5, 7 and 9, 

associate with 14-3-3 proteins upon phosphorylation of conserved serine residues on their 

N-terminal regions, resulting in sequestration of the HDACs to the cytoplasm (Grozinger & 

Schreiber, 2000; McKinsey et al., 2000; Wang et al., 2000; Kao et al., 2001; Miska et al., 

1999). In contrast, the class I HDACs, including HDAC1, 2 and 8, are predominantly 

localized in the nucleus and seem not to be regulated by subcellular localization (Sengupta & 

Seto, 2004). Exceptionally, class I HDAC3 is present in both the cytoplasm and the nucleus. 

It is translocated from the nucleus to the cytoplasm in response to interleukin-1β signaling, 

resulting in derepression of a specific subset of NF-κB regulated genes (Baek et al, 2002).  

The studies of subcellular localization may also provide clues to the function of a 

HDAC. One of the best-characterized HDACs in plants is maize histone deacetylase 2 (HD2) 
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that was found to be localized in the nucleolus using immunofluorescence methods. 

Together with other findings that maize HD2 is tightly chromatin-bound and shares 

homology to other nucleolar proteins, it was suggested that HD2 may play a role in 

regulating the expression and organization of ribosomal DNA by deacetylating nucleolar 

core histones (Lusser et al., 1997). An Arabidopsis HD2-type HDAC called HDT1 was also 

shown to be localized in the nucleolus of onion cells in a transient expression assay and was 

required for H3-K9 deacetylation (Lawrence et al., 2004). The study also showed that HDT2 

is involved in an epigenetic switch in which concerted changes in the DNA methylation and 

histone deacetylation/methylation of the rRNA gene promoter control the rRNA gene dosage 

in Arabidopsis suecica (Lawrence et al., 2004). In another study, the subcellular 

localizations of three Arabidopsis HD2 homologs, namely HD2A, HD2B and HD2C, were 

determined by examining the fluorescence signals of the GFP-HD2 fusion proteins in 

transgenic Arabidopsis (Zhou et al., 2004). The results indicated that the GFP-HD2 fusion 

proteins were localized and confined to a small region in the nuclei. However, since the 

nuclei were not stained in the study to reveal the detail structure of the nucleus, the nucleolar 

localization of these Arabidopsis HD2 proteins was not confirmed. 

Interestingly, the study of the expression profile and cellular localization of three 

RPD3-type HDACs in maize, termed ZmRpd3/101, ZmRpd3/102 and ZmRpd3/108, 

showed that they are present in both cytoplasm and nuclei during different stages of kernel, 

shoot and anther development (Varotto et al., 2003). This suggests that the three maize class 

I HDACs may be regulated by nuclear cytoplasmic shuttling and involved extensively in the 

regulation of various physiological and developmental processes (Varotto et al., 2003).  

Previous studies of the RPD3-type HDACs in Arabidopsis have been focused on their 
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functions in the regulation of gene expression and plant development. The subcellular 

localization, which is a key characteristic that determines the range of functions of an 

enzyme, has not been experimentally determined for any of the RPD3-type HDACs in 

Arabidopsis. In this part of my study, the Arabidopsis histone deacetylase 1 (AtHD1) was 

fused with an engineered GFP at its C-terminus. The AtHD1-GFP chimeric gene was 

expressed transiently in onion cells and permanently in transgenic Arabidopsis plants to 

determine the subcellular localization of the AtHD1 protein. 

RESULTS 

Transient expression of AtHD1-GFP fusion protein in onion cells 

In the transient expression assay, plasmid DNA harboring the AtHD1-GFP chimeric 

gene under the control of the cauliflower mosaic virus (CaMV) 35S RNA promoter (Figure 

2.1) was coated on tungsten particles and introduced into onion epidermal cells by particle 

bombardments using the helium-driven Biolistic PDS-1000/He system (Bio-Rad). After 24 

hours of incubation at 25°C, the expression of the GFP fusion protein was examined under a 

fluorescence microscope. In the non-stained onion cells viewed under UV light with 

band-pass filter for GFP (Figures 2.2B and D), green fluorescence signals were detected, and 

their positions and sizes were consistent with the nucleus-like structures seen when the same 

onion cells were viewed under white light (Figures 2.2A and C). To confirm the identity of 

the nucleus-like structures that gave green fluorescence signals, the onion epidermal cells 

were stained with DAPI (4',6-diamidino-2-phenylindole), a water soluble fluorescent dye 

that binds DNA and fluoresces to give blue light under UV excitation. The nuclei of the 

stained onion cells were revealed under UV light with band-pass filter for blue color 

(Figures 2.2E and G). When the same tissue was illuminated with blue light and viewed  
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35S pro NOS ter GFP AtHD1 cDNA 

 2.2 kb
 
 
 
Figure 2.1.  The construct of AtHD1-GFP chimeric gene. 
 
The expression cassette of AtHD1-GFP chimeric gene is put under the control of the 
CaMV 35S promoter (35S pro) and the nopaline synthase terminator (NOS ter). The 
construct is harbored in a pUC18 plasmid that was coated onto tungsten particles and 
introduced into onion epidermal cells by particle bombardments. The sizes of the 
AtHD1-GFP chimeric gene and the recombinant protein are 2.2 kb and 83.1 kDa, 
respectively. 
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Figure 2.2.  Localization of AtHD1-GFP fusion protein in onion cells. 
 
(A) and (C) show the onion epidermal cells viewed under white light with phase 
contrast microscopy. The nuclei are marked by an arrow. (B) and (D) show the 
corresponding view under blue light with specific filter for GFP. The light green spots 
indicated by the white arrows in (B) and (D) correspond to the nuclei seen in (A) and 
(C), respectively. (E) and (G) show the onion cells stained with DAPI and viewed under 
UV light. The bluish white spots are the nuclei marked with white arrows. (F) and (H) 
show the GFP signals (white arrows) detected in the same areas of (E) and (G), 
respectively. 
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using a band-pass filter for detection of green fluorescence signal, the transformed onion 

cells (about 1 in 20) gave green fluorescence signal which is localized in the nuclei (Figures 

2.2F and H). The results indicate that GFP fusion protein can be used to determine the 

subcellular localization of the target protein which appears to be confined to the nucleus. 

Expression of AtHD1-GFP fusion protein in transgenic Arabidopsis 

Transgenic Arabidopsis plants carrying the same AtHD1-GFP chimeric gene shown 

in Figure 2.1 were created by Agrobacterium-mediated transformation. These plants were 

termed SHG for the transgene (35S::AtHD1-GFP) they contain. In the first round of 

selection for successful transformants, the transformation efficiency was found to be about 

1%, which is a typical value for the floral dipping method. The seeds collected from the first 

generation of transformants (T0) were germinated in selective medium to generate the T1 

transgenic plants, which were used for the assay of AtHD1-GFP gene expression.  

Genomic DNA from eight transgenic lines was digested with EcoR I, separated by 

electrophoresis in a 1% agarose gel and transferred to a nylon membrane. The blot was 

hybridized with radiolabeled probe specific for the GFP coding sequence in the transgene. 

The results of Southern blot analysis (Figure 2.3B) show that the 35S::AtHD1-GFP 

transgene was present in four of the eight transgenic lines.  

Total RNA from the four transgenic plants containing the SHG transgene was used in 

northern blot analysis. The RNA was separated by electrophoresis in a 1.5% agarose gel with 

2% formaldehyde and then transferred to a nylon membrane.  The same probe used in 

Southern blot analysis was used in the hybridization. The AtHD1-GFP transcript was 

detected in three of the transgenic samples (Figure 2.4). 

Meanwhile, the expression of the AtHD1-GFP fusion protein in the SHG transgenic 



 23

 
 
 

A 

35S pro AtHD1 cDNA GFP NOS ter 

EcoR IEcoR I

1.45 kb

Probe for GFP 
(740 bp) 

 
 
 
 
 
 
 
 
B 
 SHG T1 lines 
 M  +ve  WT  1   2    3    4     5     6    7     8   
 
 

2 kb - 
1.6 kb - 

 
 
 1.4 kb - 
 
 0.95 kb - 
 
 
 
 
 

Figure 2.3.  Southern blot analysis of SHG transgenic plants. 
 
(A) A 1.45 kb fragment containing the GFP coding sequence was excised from the 
35S::AtHD1-GFP transgene by digestion with EcoR I. The excised fragment can be 
hybridized to a radiolabeled probe prepared by random priming method (Amersham 
Biosciences). 
(B) The presence of 35S::AtHD1-GFP transgene in eight T1 plants was detected by 
Southern blot analysis. Genomic DNA (20µg) from wild type and SHG transgenic plants 
were digested with EcoR I, then separated by electrophoresis in a 1% agarose gel and 
transferred to Hybond-N+ membrane (Amersham Pharmacia). A radiolabeled probe 
specific for the GFP sequence was used in hybridization (indicated in Part A). The 
transgene was detected in four of the SHG T1 lines. The plasmid 
pUC18/35S::AtHD1-GFP digested with EcoR I was used as a positive control (labeled 
as +ve). The marker (M) used was Lamda DNA/EcoR I + Hind III (Promega). 
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Figure 2.4.  Northern blot analysis of SHG transgenic plants. 
 
(A) Total RNA (20 µg) from wild type and SHG transgenic plants (with the presence of 
transgene verified by Southern blot) was separated by electrophoresis in a 1.5% agarose 
gel containing 2% formaldehyde and then transferred to a Hybond-N+ membrane 
(Amersham Pharmacia). The ethidium bromide stained RNA gel depicting the rRNAs is 
shown. 
(B) Northern blot analysis using the radiolabeled probe specific for the GFP sequence 
showed that the AtHD1-GFP transcript was present in three of the SHG T1 transgenic 
lines. Transgenic line 7 probably contains the transcript but the RNA was degraded 
during the experimental processes.  
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plants was assayed by conventional fluorescence microscopy. Non-green tissues including 

the roots and flower petals were examined under a dissecting microscope. The expression 

patterns of the AtHD1-GFP fusion protein in root and flower tissues are shown in Figures 2.5 

and 2.6, respectively. Non-green tissues were used because they are free of chlorophyll 

autofluorescence (red) that will mask the GFP signal (green). When illuminated by blue light 

and viewed under the microscope, the root and flower tissues of transgenic Arabidopsis, but 

not wild type, gave green light signals which indicate the presence of GFP fusion proteins. 

The intensity of the GFP signals is highest at the central region of the root and at the veins in 

the petals. These findings suggest that AtHD1-GFP expression is higher in the vascular 

tissues. 

To study the expression and in vivo distribution of AtHD1-GFP fusion protein at 

subcellular level, different tissues of the SHG plants were examined by confocal 

fluorescence microscopy. Plant tissues, including the roots, leaves, flowers and seeds, from 

SHG transgenic plants and wild type (WT) plants were viewed under white light using 

differential interference contrast (DIC) to reveal subcellular structure, then under blue light 

to reveal GFP fluorescence signals, and finally stained with DAPI to reveal the nuclei under 

UV illumination. The red autofluorescence of chlorophyll in green tissues were partially 

eliminated by a band-pass filter for GFP signals. Figures 2.7 to 2.13 show the expression of 

AtHD1-GFP fusion protein in the epidermal cells of developing seed coat, the guard cells 

and mesophyll cells of leaves, the epidermal cells (including a hair cell) of roots, and the 

epidermal cells of style in SHG transgenic and wild type Arabidopsis. The results not only 

confirm the findings of particle bombardment experiments that AtHD1 is localized in the 

nucleus, but also give insight into the possible function and regulation of AtHD1. 
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A. SHG roots under white light                B. SHG roots under blue light 
 
 
 
 
 
 
 
 
 
 
 
C. WT roots under white light                 D. WT roots under blue light 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5.  Expression of AtHD1-GFP fusion protein in Arabidopsis root tissues. 
 

Root tissues of transgenic (SHG) and wild type (WT) Arabidopsis seedlings were viewed 
under white light (A and C, respectively) and blue light (B and D, respectively). 
Fluorescent signal of GFP (green signal) is visible in the root tissues of transgenic 
Arabidopsis (B) but not in the wild type (D). The green fluorescence signal in the roots of 
SHG plant appears to be confined to the central part that corresponds to the vascular 
tissues. 
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A. Petal of SHG plant under white light         B. Petal of SHG plant under blue light 

 
 
 
 
 
 
 
 
 
 
 
 
C. Petal of WT plant under white light           D. Petal of WT plant under blue light 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6.  Expression of AtHD1-GFP fusion protein in Arabidopsis flower tissues. 
 

Petals of transgenic (SHG) and wild type (WT) Arabidopsis were viewed under white light (A and C, 

respectively) and blue light (B and D, respectively). Fluorescent signal of GFP (green signal) is 

visible in the petal of transgenic Arabidopsis (B) but not in the wild type (D). The green fluorescence 

signals in the petal of the SHG plant are particularly strong in the vein consisting of vascular tissues.



 28

D  A. SHG seed; DIC 

plt 
Nu 

Nu 
10 µm 

B. SHG seed stained with DAPI; UV E

Nu Nu 
10 µm 

C. SHG seed; blue light with GFP filter F

Nu Nu 
10 µm 

Figure 2.7.  Expression of AtHD1-GFP fusion p
 
The cells in the seed coat of immature seeds were exam
show the differential interference contrast (DIC) ima
(WT) plants, respectively. The plastids (plt) and nucl
the cells were stained with DAPI and viewed under U
visible in the SHG (B) and WT (E) plants. When view
fluorescence signals are detected in the nuclei of SHG
background fluorescence is caused by autofluorescen
. WT seed, DIC
plt

Nu 

10 µm 

. WT seed stained with DAPI; UV 

Nu

10 µm 

. WT seed; blue light with GFP filter

Nu 

10 µm 

rotein in developing seed coat. 

ined by confocal microscopy. (A) and (D) 
ges of the transgenic (SHG) and wild type 
ei (Nu) are labeled. To visualize the nuclei, 
V light. The fluorescence nuclei are clearly 
ed under blue light with a GFP filter, green 
 plant cells (C), but not in the WT (F). The 

ce of the chlorophyll in the chloroplasts. 



 29

D. WT guard cell, DIC A. SHG guard cell; DIC 

Nu 

Nu

10 µm 

Nu

Nu

10 µm 
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Figure 2.8.  Expression of AtHD1-GFP fusion protein in leaf guard cells. 
 
The guard cells in leaves were examined by confocal microscopy. The nuclei are not clearly 
visible in the DIC images (A and D for SHG and WT plants, respectively), but are very distinct 
under UV light when stained with DAPI (B and E for SHG and WT plants, respectively). The 
GFP signals are detected in the nuclei of SHG plant (C), but not in the WT plant (F). 
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Figure 2.9.  Expression of AtHD1-GFP fusion protein in leaf mesophyll cells. 
 
The mesophyll cells in the leaves were examined by confocal microscopy. The nuclei (Nu) 
and chloroplasts (Chl) are distinct in the DIC images of SHG (A and B) and WT plants (D 
and E). The nucleolus (No) is also visible in the DIC image of the SHG plant. Green 
fluorescence signal can be detected in the nucleus of the SHG plant (C), while only 
autofluorescence of the chloroplasts can be seen in the WT plant (F). 
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A. SHG root; DIC D. WT root; DIC 

B. SHG root stained with DAPI; UV 

C. SHG root; blue light with GFP filter F. WT root; blue light with GFP filter 

E. WT root stained with DAPI; UV 

Figure 2.10.  Expression of AtHD1-GFP fusion protein in root epidermal cells. 
 
The epidermal cells in the roots were examined by confocal microscopy. The nuclei are visible in 
the DIC and DAPI-stained images. GFP signals are localized in the nuclei of the root epidermal 
cells in the SHG plant (C), while no signals are detected in the WT plant (F). Since there are no 
chloroplasts in the roots, autofluorescence interference is minimal. 
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A. SHG root; DIC D. SHG root hair; DIC 

B. SHG root stained with DAPI; UV E. SHG root hair stained with DAPI; UV 

C. SHG root; blue light with GFP filter F. SHG root hair; blue light with GFP filter 
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Figure 2.11.  Expression of AtHD1-GFP fusion protein in root epidermal and hair cells. 
 
The epidermal cells (A, B and C) and root hair cell (D, E and F) in the roots of SHG plants 
were examined by confocal microscopy. The nuclei are visible in the DIC and DAPI-stained 
images. GFP signals can be detected in the nuclei of epidermal and root hair cells of the SHG 
plants. Moreover, the AtHD1-GFP fusion protein appears to be excluded from the nucleolus
as the central parts of the nuclei in root epidermal cells (B and C) appear dark. 
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C. SHG style; blue light with GFP filter 
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Figure 2.12.  Expression of AtHD1-GFP fusion protein in style epidermal cells and leaf
mesophyll cells. 
 
The epidermal cells (A, B and C) in the style and mesophyll cells (D and E) in the leaf of 
SHG plants were examined by confocal microscopy. While the nuclei are barely visible in 
the DIC image of style epidermal cells (A), the nuclei and nucleolus are visibly distinct in 
that of leaf mesophyll cells (D). The DAPI and GFP fluorescence signals are localized in
the nucleus and appear to be excluded from the nucleolus in the style epidermal cells (B 
and C). In the leaf mesophyll cells, the GFP signals are also localized in the nucleus and
appear to be excluded from the nucleolus. 



 34

A. SHG leaf; DIC 

No 

10 µm 

Nu

B. SHG leaf stained with DAPI; UV 

No 

Nu

10 µm 

C. SHG plant; blue light with GFP filter 

No 

Nu

10 µm 

Figure 2.13.  Distribution pattern of AtHD1-GFP fusion protein in the nucleus of a leaf 
mesophyll cell (SHG plant) in the prophase of cell division. 
 
In (A), the nucleus and nucleolus are distinct in the DIC image of a mesophyll cells in SHG
plant. The DAPI-stained image in (B) shows that the cell was in the prophase of cell 
division and the organization of chromatin into chromatids is visible. In (C), the GFP 
signals appear as speckles that are localized in the nucleus but excluded from the nucleolus.
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In most, if not all, of the cells in SHG plant tissues, the AtHD1-GFP fusion protein is 

localized in the nucleus and almost absent from the cytoplasm. This suggests that AtHD1 is 

imported to the nucleus soon after it is synthesized, and is not likely to be regulated by 

nuclear-cytoplasmic shuttling. In addition, AtHD1-GFP protein appears to be excluded from 

the nucleolus as evident in Figures 2.7, 2.12 and 2.13 that reveal the absence of GFP and 

DAPI fluorescence signals in the nucleolus. This is in contrast to the HD2-type HDACs 

which have been found to be localized in the nucleolus in maize (Lusser, 1997) and 

Arabidopsis (Lawrence et al., 2004). 

The image of a mesophyll cell at early prophase of the cell cycle was captured and is 

shown in Figure 2.13. From the DAPI fluorescence image (Figure 2.13B), it can be seen that 

the chromatin began to condense into chromatids, and the nucleolus was set aside in the 

nucleus. The corresponding GFP fluorescence image (Figure 2.13C) shows that the 

AtHD1-GFP protein aggregated into speckles. It appears that the AtHD1-GFP protein is 

associated with the condensing chromatids and this suggests a role for AtHD1 in mitosis. 

DISCUSSION 

      Histone deacetylase 1 from Arabidopsis (AtHD1) is supposed to be a nuclear protein 

that modifies its substrate histone in the chromatins. However, there is no experimental 

evidence for its nuclear localization. Moreover, some histone deacetylases such as the 

human HDAC3, 4, 5, 7 and 9 are regulated by active transport out of the nucleus, while other 

HDACs like HD2 in maize are localized in the nucleolus. In order to study the subcellular 

localization and protein trafficking of AtHD1 in vivo, a GFP coding sequence was fused to 

the 3’-end of the AtHD1 cDNA and the resulting chimeric gene was put under the control of 

CAMV 35S promoter for expression in plants. 
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To test the feasibility of using GFP fusion protein in the determination of AtHD1 

subcellular localization before the stable expression in Arabidopsis, a transient expression 

assay using particle bombardment method was performed. Onion epidermal cells were used 

because they are large, transparent and free of autofluorescence interference from 

chlorophyll. Besides, a single epidermal layer of cells can be easily peeled off from the onion 

scale leaves for examination. The fluorescence microscopy images of the onion cells after 

particle bombardments show that AtHD1-GFP fusion protein can be expressed in plant cells, 

and appears to be localized in the nuclei. 

       To study the in vivo localization pattern of AtHD1 in Arabidopsis, the 

35S::AtHD1-GFP expression cassette was introduced into Arabidopsis plants by 

Agrobacterium-medium transformation. Successful transformants were selected and 

regenerated into intact transgenic plants. The intact living tissues of the mature SHG 

transgenic plants (four-week old) were dissected and examined by confocal scanning 

microscopy for the expression of AtHD1-GFP fusion protein. The results indicate that the 

AtHD1-GFP protein expressed in all the tissues examined, including roots, leaves, flowers 

and seeds. Being consistent with the result of particle bombardment experiments with onion 

cells, AtHD1-GFP protein was found to be localized in the nuclei of Arabidopsis cells. 

Further examination of the AtHD1-GFP localization patterns indicates that the protein is 

likely to be excluded from the nucleolus, and appear to be associated with the condensing 

chromatin during mitosis. This suggests that AtHD1 may play a role during mitosis in 

deacetylating histones for the compaction of chromatin. 

The GFP protein used in this experiment is an engineered one called S65T GFP 

which contains a mutation in the chromophore with the serine 65 being replaced by 
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threonine, resulting in enhanced brightness, faster chromophore formation and slower 

photobelaching (Heim et al., 1995). The S65T and other types of GFP proteins without a 

targeting sequence have been shown to accumulate and distribute evenly in Arabidopsis and 

onion plant cells due to their small sizes (Chiu et al., 1996; Koroleva et al., 2004; Lawrence 

et al., 2004). The size exclusion limit of the nuclear pores has been estimated to be 40 to 60 

kDa (Grebenok et al., 1997; Haasen et al., 1999). GFP protein having a molecular weight of 

27 kDa can diffuse across the nuclear envelope while AtHD1-GFP protein that is 83 kDa in 

size should remain in the cytoplasm if AtHD1 lacks a nuclear localization signal. Therefore, 

although control experiments with the expression of only the GFP protein were not included 

in both of the transient and stable expression experiments, the conclusion for the nuclear 

localization of AtHD1 should still be valid. 

MATERIALS AND METHODS 

Construction of AtHD1-GFP chimeric gene 

The AtHD1 full-length cDNA was amplified from a clone in a pBlueScript plasmid 

by PCR using the following primers: 

Forward primer: 5’-GC GTCGAC ATGGATACTGGGGGCAATTC-3’ 

Reverse primer: 5’-CATG CCATGG CTGTTTTAGGAGGAAACGCCTG-3’ 

The forward primer adds a Sal I site (underlined) to the 5’-end of the PCR product, while the 

reverse primer omits the stop codon of the AtHD1 cDNA and adds a Nco I site (underlined) 

to the 3’-end of the amplified DNA. The resulting AtHD1 cDNA fragment was cloned into 

the pUC18/CaMV35S-GFP(S65T) plasmid so that the 3’-end of AtHD1 coding sequence 

was fused to the 5’-end of GFP in frame, and the whole chimeric gene lied downstream of 

and was under the control of the cauliflower mosaic virus (CaMV) 35S promoter. 
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The expression cassette of 35S::AtHD1-GFP was excised from the pUC18 plasmid by 

Xba I and EcoR I double digestion and then subcloned into the binary vector pBI101. The 

sequence of the chimeric AtHD1-GFP gene in the pBI101 plasmid was checked by DNA 

sequencing and it was found to be correct and in-frame. The pBI101/35S::AtHD1-GFP 

plasmid was introduced into Agrobacteria by electroporation using the Gene Pulser 

apparatus (Biorad) at 25 µF, 2.5 kV and 600 ohms. 

Transient expression in onion 

For the transient expression assays of AtHD1-GFP chimeric gene, the 

pUC18/35S::AtHD1-GFP plasmid was introduced into onion cells by particle bombardment. 

Fresh onion bulbs purchased from local grocery store were cut into slices of 1 cm2 and 

placed on the central area of a petri dish with 0.9% phytal agar as supporting medium. 

Tungsten particles of 1.1 µm in diameter were prepared and coated with plasmid DNA 

according to BioRad’s protocol. Bombardments were performed using the Biolistic 

PDS-1000/He Particle Delivery System (BioRad) with the following parameters: 

Holder level: 2 

Sample level: 4 

Gap distance: 0.63 cm 

Target distance: 6 cm 

Helium pressure: 1100 psi 

Chamber vacuum: 27 inches Hg (~ 0.06 atm) 

Amount of DNA/bombardment: 1µg 

Amount of macrocarrier/bombardment: 500 µg of tungsten particle 

Each sample received two times of bombardment, after which the samples were incubated in 
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a growth chamber at 25°C for 20-24 hours. The expression of GFP fusion protein was 

examined using the Olympus AX70 fluorescence microscope.  

Transformation of Arabidopsis 

Ten Arabidopsis thaliana (Columbia) plants were transformed with Agrobacteria 

harboring the binary vector pBI101/35S::AtHD1-GFP using the floral dip method (Clough 

and Bent, 1998). Seeds of T0 plants were selected by germination on MS medium (Sigma) 

with 50 mg/L kanamycin. Successful transformants (T1 plants) were regenerated and grown 

in soil. Transformation efficiency is about 1%. The presence of AtHD1-GFP transgene was 

detected in the T1 plants by PCR using the following primers flanking the GFP coding 

sequence: 

UP-GFP-1: ATGGTGAGCAAGGGCGAG 

DN-GFP-720: TTACTTGTACAGCTCGTCCA 

All plants were grown in a growth chamber with a cycle of 14 hr light at 22°C and 10 hr dark 

at 18°C. 

Nuclei acid isolation and detection 

Genomic DNA was isolated from Arabidopsis leaves using the 

Cetyltrimethylammonium bromide (CTAB) method described by Doyle et al. (1990). 

Briefly, 0.3 g of leaf tissues was ground in 600 µl of 2% CTAB buffer (2% CTAB, 0.1 M 

Tris-HCl, pH 8.0, 1.4 M NaCl, 20 mM EDTA and 0.2% β-mercaptoethanol) and the 

homogenate was incubated at 60°C for 1 hour with constant mixing. Chloroform/isoamyl 

alcohol mixture (24:1, v/v) (500 µl) was added to the homogenate followed by 

centrifugation at 14,000 rpm and 4°C for 15 minutes. The aqueous layer (500 µl) was 
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transferred to a new microfuge tube containing 500 µl of cold isopropanol and was kept at 

-20°C for 1 hour. The DNA pellet was precipitated by centrifugation and washed with 75% 

ethanol. After 5 minutes of vacuum drying, the pellet was resuspended in distilled water. 

Total RNA was extracted from Arabidopsis leaves by TRIZOL reagent (Invitrogen) 

according to the manufacturer’s protocol. 

In northern and Southern blot experiments, total RNA or genomic DNA digested 

with EcoR I was fractionated by electrophoresis in 1.5% agarose-formaldehyde or 1% 

agarose gels, respectively. The RNA or DNA was transferred to Hybond-N+ nylon 

membrane (Amersham Pharmacia) and then hybridized with DNA probe prepared by a 

random priming method (Amersham) with radioactive label (32P-dCTP). Hybridization was 

performed according to the method described by Church and Gilbert (Church and Gilbert, 

1984). The DNA and RNA blots were washed twice with 2× washing solution (2× SSC, 

0.1% SDS) for 15 minutes at room temperature, and then washed twice with 0.5× washing 

solution (0.5× SSC, 0.1% SDS) for 15 minutes at 65°C. Detection of hybridization signals 

was carried out by the PhosphorImager BAS1800II (Fuji, Tokyo, Japan). 

Detection of GFP signals by fluorescence microscopy 

Transient expression of AtHD1-GFP fusion protein in onion epidermal cells was 

detected with the Olympus AX7 fluorescence microscope. After particle bombardments and 

incubation, a single epidermal layer of the onion scale leaf disc was peeled off and put on a 

slide for examination under 60× or 100× magnification. Nuclei were stained by adding one 

drop of DAPI staining solution (1µg/ml DAPI in PBS) to the onion epidermal cells and 

incubated for at least 5 minutes. DAPI fluorescence images were obtained by UV 

illumination of the specimen and a band-pass filter for DAPI. Green fluorescence signals 
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were obtained by blue light illumination and a band-pass filter for GFP. 

      Stable expression of AtHD1-GFP fusion protein in SHG transgenic plants was 

detected by confocal scanning microscopy. The images were acquired by Stanislav Vitha in 

the Microscopy and Imaging Center, Texas A & M University. Dissected intact tissues were 

stained with DAPI staining solution and examined by differential interference contrast (DIC) 

and fluorescence microscopy sequentially using the Zeiss Axiophot microscope with 40× or 

100× magnification. Images of tissues at different confocal layers (Z-series) were taken with 

a 0.5 µm step size. GFP fluorescence images were acquired using a GFP filter set (Chroma 

Technologies, excitation HQ470/20, dichroic Q495LP, emission HQ525/50) and a 

Photometrics Coolsnap digital camera. 
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CHAPTER III 

PRODUCTION OF RECOMBINANT AtHD1 AND  

HDAC ACTIVITY ASSAY 

 

INTRODUCTION  

The histone deacetylase activity of AtHD1 was first demonstrated in transgenic 

plants that had AtHD1 knocked out by either antisense approach or T-DNA insertion in exon 

2 of AtHD1 gene. In these plants, the expression of AtHD1 was blocked, resulting in a 

10-fold increase in the histone acetylation levels and this feature was heritable in selfing 

progeny (Tian and Chen, 2001; Tian et al., 2003). To further characterize the enzyme, we 

attempted to produce recombinant AtHD1 to demonstrate its histone deacetylase activity in 

vitro and to determine its substrate specificity. 

To obtain the target protein for characterization, the ideal source would be the native 

protein purified from the organism itself. The best-studied HDACs in plants including maize 

HD2, HD1A and HD1B were first purified from maize embryoes using a combination of 

different chromatography methods and they were all found to be active (Borsch et al., 1996a; 

Borsch et al., 1996b; Lusser et al., 1997). However, this method is expensive, 

time-consuming, labor intensive and requires a large amount of plant materials (usually in 

kilograms). Therefore, production of recombinant proteins in well-established expression 

systems is usually used. In the choice of protein expression system, the bacterial system is 

preferred unless the target protein is known to require post-translational processing for full 

activity. This is because bacteria are easily transformed, grow rapidly, express high levels of 
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recombinant proteins and are inexpensive to maintain. However, the recombinant proteins 

produced in bacteria may aggregate and become trapped in insoluble inclusion bodies, and 

will not have any eukaryotic post-translational modifications. An alternative to bacterial 

system is yeast expression system which is also fast and expresses high levels of 

recombinant proteins with most of the eukaryotic post-translational modifications. However, 

the transfection of and protein extraction from yeast cells can be difficult processes. A 

popular system for mass production of eukaryotic proteins is the baculovirus expression 

system, which involves the use of baculovirus to infect and multiply in cultured insect cells. 

The recombinant proteins can be expressed in high levels and contain most, if not all, of the 

post-translational modifications in higher eukaryotes. However, insect cells grow more 

slowly than bacterial and yeast cells and are more expensive to maintain. 

In this study, recombinant AtHD1 was produced using a bacterial expression system 

for protein characterization. The histone deacetylase activity of the recombinant protein was 

determined by an assay using [3H]-acetate-labeled histone peptides as substrates. The 

expression profiles of the RPD3-type HDACs in Arabidopsis, including HDA6, 7, 9 and 19 

(AtHD1), were studied by RT-PCR analysis. Recombinant HDA6, 7, 9 and 19 proteins were 

produced by the baculoviral expression system for study of HDAC activity. 

RESULTS 

Production of recombinant AtHD1 in bacterial system 

Escherichia coli (strain BL21) containing a pET21b expression vector that harbors a 

chimeric AtHD1 gene was provided by my colleague Lu Tian. As shown in Figure 3.1A, the 

construct consists of a hexahistidine tag (6xHis) for protein purification, a maltose binding 

protein (MBP) for increasing the solubility of the recombinant protein so as to prevent the 
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formation of inclusion bodies in bacterial cells, a tobacco etch virus (TEV) cleavage site for 

removing the 6xHis tag and MBP fragment, and the AtHD1 cDNA sequence. The chimeric 

gene was put under the control of the inducible T7 promoter. 

Bacterial cells harboring the expression vector were cultured in NZCYM broth and 

expression of the AtHD1 chimeric gene was induced by the addition of IPTG. Total proteins 

at different post-induction time points were extracted by sonication and then separated on a 

15% SDS polyacrylamide gel. The recombinant protein of 100 kDa can be seen as a 

prominent band as early as 2 hours post-induction and reached the maximum accumulation 

level at 10 hours post-induction (Figure 3.1B). The recombinant protein was then purified by 

affinity column with Ni-NTA resins specific for 6xHis tag followed by further purification 

by amylose-conjugated agarose resins specific for the MBP fragment in the rAtHD1 protein. 

The 6xHis tag and MBP segment was removed from the recombinant protein by TEV 

protease (Figure 3.1C). 

Expression profiles of RPD3-like HDACs in Arabidopsis 

        One-step RT-PCR was used to detect the expression of the four RDP3-like HDAC 

genes, including HDA6, 7, 9 and 19, in seedlings, roots, stems, leaves, flowers and siliques 

of two Arabidopsis thaliana ecotypes, Columbia (col) and Wassilewskija (ws). The result is 

shown in Figure 3.2.The total RNA from different tissues was treated with DNase to remove 

contaminating genomic DNA. PCR using the total RNA as templates and specific primers 

for actin did not yield any DNA products, indicating that the total RNA is free of genomic 

DNA contamination. The expression of actin was used as an internal control for RT-PCR 

analysis. 

The result of RT-PCR analysis shows that the four RPD3-like HDAC genes show  
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Figure 3.1.  Expression of recombinant AtHD1 in E. coli. 
 

(A) Expression cassette of chimeric AtHD1 gene driven by the inducible viral T7 promoter. 
Upstream of AtHD1 coding sequence there is a hexa-histidine (6×his) tag for purification 
by affinity column, a maltose-binding protein (MBP) segment for increasing the solubility 
of the recombinant protein, and a tobacco etch virus (TEV) protease cleavage site for 
removal of the 6×His-MBP segment. 
(B) Expression profile of recombinant AtHD1 protein (indicated with arrows) at different 
time points after the addition of IPTG to the bacterial culture. Recombinant AtHD1 protein 
(~100 kD) accumulated to highest level after 10 hours of induction. 
(C) Recombinant AtHD1 protein was purified from bacterial crude protein extract by 
Ni-NTA affinity column followed by amylose affinity column. The rAtHD1 protein was 
subsequently cleaved by TEV protease to remove the 6xHis-MBP tag. The AtHD1 protein 
of 57 kDa was visible as a single prominent band in the SDS-PAGE gel stained with 
Coomassie blue. 
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 Figure 3.2.  Expression profiles of RPD3-like HDACs in Arabidopsis thaliana. 

 
Total RNA from different tissues of two Arabidopsis thaliana ecotypes, Wassilewskija 
(Ws) and Columbia (Col), was treated with DNase I and then used for RT-PCR analysis 
of expression of RDP3-like HDAC genes. Actin was used as an internal control. PCR 
using total RNA as a template was used to show the absence of contaminating genomic 
DNA.  
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differential expression in different tissues and ecotypes of Arabidopsis. In general, HDA19 

(AtHD1) has the highest expression levels among the four RPD3-like HDACs genes, 

followed by HDA9 and HDA6. HDA7 has very low expression levels in flowers only. When 

examined in detail, HDA6 in Arabidopsis ecotype Wassilewskija (ws) has a higher 

expression level in leaves, stems and siliques than in roots and flowers. But in Columbia 

(col), HDA6 has a higher expression level in root, leaf and flower than in siliques. The 

expression of HDA7 is very low and is flower-specific in ws and col. For HDA9 in ws, it has 

a higher expression levels in leaves, stems, flowers and siliques, lower in roots, and very low 

in seedlings. In col, HDA9 has similar expression levels in roots, leaves, flowers and siliques. 

For HDA19 (AtHD1) in ws, it has higher expression levels in leaves, stems, flowers and 

siliques, and lower levels in roots in seedlings. In col, HDA19 has higher expression levels in 

roots, leaves and flowers, and a bit lower in siliques. 

Production of RPD3-like HDACs by baculovirus expression system 

Cloning of HDAC cDNA and integration into baculoviral expression vector 

The cDNAs of the four RPD3-like HDACs in Arabidopsis thaliana (Columbia), 

including HDA6 (AtRPD3b), HDA7, HDA9 and HDA19 (AtHD1, AtRPD3a), were amplified 

by one-step RT-PCR (Invitrogen) using specific primers flanking the 5’- and 3’-ends of the 

HDAC genes (Figure 3.3A and B). The cDNAs obtained were inserted into a Gateway Entry 

Vector (Invitrogen) by T/A cloning. Restriction digestions and DNA sequencing were 

performed and the results confirmed that the inserted cDNAs were correct in sequence 

(100% match with the sequences in GenBank) and orientation, and were in-frame. The 

HDAC genes in the Entry vectors were then integrated into the baculoviral expression vector 

by site-specific LR recombination that occurs between specific attachment (att) sites: attL  
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Figure 3.3.  Cloning of RPD3-like HDACs in Arabidopsis thaliana. 
 
(A) Specific primers were used for amplification of HDAC cDNAs by reverse transcriptase 
(RT)-PCR. The forward primer contains an ATG start codon while the reverse primer omits the stop 
codon and adds a TEV protease cleavage site to the 3’-end of the amplified HDAC cDNA. 
(B) Agarose gel showing the amplified HDAC cDNAs. The first lane is marker (M) followed by 
amplified HDAC cDNAs. 
(C) A table showing the sizes (bp) of HDAC cDNAs. 
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on Entry vectors and attR on baculoviral expression vectors. 

Transfection of insect cells and protein expression analyses 

Baculoviral DNA with HDAC chimeric genes were introduced into SF9 insect cells 

by liposome-mediated transfection. Transfected cells with non-recombinant baculoviral 

DNA (i.e. those lacking HDAC chimeric genes) were eliminated by the addition of 

ganciclovir in the medium. Ganciclovir is a nucleoside analog that is converted into a toxic 

compound by the intact thymidine kinase gene in the non-recombinant baculoviral DNA. At 

72-96 hours post-transfection, infected SF9 cells were lysed to release the recombinant 

baculovirus into the medium. The cell-free supernatant of this medium was collected as the 

P1 viral stock which had a low titer (i.e. low virus concentration). Two additional infection 

cycles were performed to obtain the P2 and P3 viral stocks with higher titers that would be 

used for recombinant protein expression. To confirm the presence of HDAC transgenes in 

the baculoviral DNA, baculoviral particles were precipitated from the P2 viral stocks and 

baculoviral DNAs were extracted for PCR. A universal primer pair flanking the 

recombination region of the baculoviral DNA was used to detect the presence of HDAC 

transgenes (Figure 3.4). The result of the PCR shows that all of the RPD3-like HDAC 

transgenes are present in the baculoviral DNA. 

To assay the protein expression and to determine the optimum time post-infection 

that yields the highest levels of HDAC recombinant proteins, a time-course experiment was 

carried out. Insect cells seeded in each of the wells of four six-well plates were infected with 

P2 viral stock containing the chimeric genes for HDA6, 9, 17 and 19 at a multiplicity of 

infection (MOI) of five plaque-forming units (pfu) per cell. Infected insect cells from one of 

the four six-well plates were collected at 24, 48, 72 and 96 hours post-infection, and total  
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Figure 3.4.  Expression cassette of HDAC chimeric genes in baculoviral 
expression vector. 
 
(A) The baculoviral polyhedrin promoter (PH pro) drives the expression of the HDAC 
gene fused with a TEV cleavage site, a V5 epitope and a hexa-histidine (6×His) tag at the 
3’-end. The V5 epitope and 6×His tag are used for detection and purification of the 
recombinant proteins, respectively. The two primers used to detect the presence of 
HDAC chimeric genes in the baculoviral DNA are the polyhedrin upward primer that is 
complementary to the polyhedrin promoter region, and the V5 reverse primer that is 
complementary to the V5 epitope region.. 
(B) Agarose gel showing the PCR-amplified fragments from HDAC cDNAs using the 
primer pairs for cloning (Figure 3.3A) and from baculoviral DNA using the polyhedrin 
upward and V5 reverse primers. Note that the DNA fragments amplified from the 
baculoviral DNA are 280 bp longer than the corresponding HDAC cDNA. 
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proteins were extracted. Total proteins were extracted from non-infected SF9 cells (wt) as a 

control. From the Coomassie blue stain of SDS-PAGE gel shown in Figure 3.5, distinct 

bands corresponding to the HDAC proteins can be seen in the 48-hour post-infection protein 

extracts, but not in the samples at other time points. The protein profile at 72- and 96-hour 

time points indicates that the proteins in the insect cells were degrading, suggesting 

extensive cell death. 

To confirm the identities of the recombinant HDAC proteins, western blots were 

performed using anti-V5 antibody which is specific for the V5 epitope tag at the C-termini of 

the recombinant HDAC proteins. The results are shown in Figure 3.6. At the 24-hour time 

point, specific bands with sizes that correspond to the expected sizes of four HDAC 

recombinant proteins were detected. The non-specific bands that appeared at 48 and 72 

hours post-infection might come from degraded HDAC recombinant proteins released from 

prematurely lysed cells. Thus, the optimal time for harvesting HDAC recombinant proteins 

from insect cells is 48 hours post-infection. 

Production and purification of recombinant HDACs from insect cells 

For large scale production of recombinant HDAC proteins, one liter of insect cell 

culture containing a total of 4×109 cells was used. About 1-2 mg of purified recombinant 

protein was obtained for each HDAC. HDA17 was not produced as it appears to be a partial 

duplication of HDA9 and is unlikely to have significant functions. The insect cells for 

HDA9 production were killed in an incident of high temperature due to the malfunction of 

the incubator. Therefore, only HDA6, 7 and 19 were produced. 

Insect cells grown in spinner flasks at 27°C were infected with P3 baculoviral 

solution when they reached a density of 4×106 cells/ml. The cells were harvested after 48  
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Figure 3.5.  Protein profile of SF9 cells at different time points after infection. 
 

Total proteins from infected and non-infected (wt) SF9 insect cells were extracted using TRI 
reagent. Approximately 100 µg of protein was loaded in each lane of an SDS-PAGE protein 
gel, and then separated by electrophoresis at 70V for 6 hours. The gel was stained with 
Coomassie blue. Bands corresponding to HDAC recombinant proteins (indicated by arrows) 
were visible in the 48-hour time point samples. Proteins extracted from 72- and 96-hour time 
points show signs of severe degradation, which may indicate extensive cell death. 
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Figure 3.6.  Western blots of SF9 total proteins at different time points. 
 
Anti-V5 antibody specific for the V5 epitope was used to detect the HDAC recombinant 
proteins in total proteins extracted from SF9 insect cells at 24, 48 and 72 hours post-infection. 
The signals for the recombinant HDAC proteins are marked with arrows. The sizes of each of 
the recombinant HDAC proteins are shown in the table. Molecular weight markers (M) are 
indicated on the left sides of the 24- and 72-hour western blots. 
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hours and total proteins were extracted by sonication (see Materials and Methods section of 

this chapter). Recombinant HDAC proteins were purified using Ni-NTA column specific for 

the 6×His tag at the C-terminus of the proteins. SDS-PAGE analysis shows that the eluate 

from one-step affinity purification contains a number of non-specific proteins (Figure 3.7B). 

The purified protein solutions were subjected to second affinity purification on Ni-NTA 

column and the purity of the sample was greatly increased (Figure 3.7). Western blot 

analyses were performed using anti-V5 antibodies that are specific for the V5 epitope at the 

C-terminus of the recombinant HDAC proteins. The western blot results (Figure 3.7) 

confirm the identity of the recombinant proteins. 

Histone deacetylase assay 

A histone deacetylase assay kit (from Upstate) using a radioactive approach for 

detection was used to test the histone deacetylase activity of the purified recombinant 

HDACs from bacteria and insect cells. The recombinant HDACs were incubated with 

synthetic histone H3 or H4 peptides labeled with 3H-acetyl groups on specific lysine 

residues. The radiolabeled histone peptides were immobilized on agarose beads and then 

incubated with a source of HDAC. The histone deacetylase activity of the recombinant 

protein, if any, would be proportional to the amount of 3H-acetyl groups released from the 

acetylated histone peptides to the supernatant. The HeLa nuclear extract that contains a 

blend of HDACs was served as the positive control, while sodium butyrate that is a specific 

inhibitor of HDACs was added to the duplicates of each of the HDAC samples. After 16-20 

hours of incubation at room temperature, the reaction mixtures were centrifuged and the 

amount of 3H-acetate in the supernatant was measured by scintillation counting. While the 

HeLa nuclear extract gave an average of 3.5-fold increase in radioactive count per minute  
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Figure 3.7.  SDS-PAGE and western blots of purified HDACs. 
 
(A) and (B) Recombinant proteins of HDA6, 7 and 19 were purified by Ni-NTA affinity 
column and then separated by 15% SDS-PAGE and the gel was stained with Coomassie 
blue or analyzed by western blot using anti-V5 antibody that is specific for the V5 
epitope tag at the C-terminus of the recombinant proteins. The bands corresponding to 
the recombinant HDAC proteins are marked by arrows. The result of recombinant 
HDA7 purification (B) shows that the purity of the protein can be greatly increased by 
repeating the Ni-NTA column purification (2XP) when compared to a single-step 
purification (1XP). 
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(cpm) when compared with the negative(water) or specificity(sodium butyrate) controls, 

there is only an average of 30% increase in cpm for recombinant AtHD1 protein synthesized 

in bacteria (Figure 3.8). Recombinant HDACs produced in insect cells did not show any 

histone deacetylase activity, even when 20 µg of protein was used in the reactions. 

DISCUSSION 

Previous studies showed that the three RPD3-like HDAC genes in Arabidopsis 

thaliana, including HDA6, 9 and 19, are differentially expressed in leaves (Zhou et al., 2005) 

and other tissues (Plant Chromatin Database, http://chromdb.org). However, the expression 

of the other RPD3-like HDAC, HDA7, was not detected in previous studies. The results of 

RT-PCR in this study show that HDA6, 9 and 19 are differentially expressed in seedlings, 

roots, stems, leaves, flowers and siliques. In addition, the expression profiles of the four 

RPD3-like genes are different in the two Arabidopsis thaliana ecotypes, Columbia (col) and 

Wassilewskija (ws). Our study also indicates that AtHD1 (HDA19) is expressed in all of the 

tissues examined. This result is consistent with previous data on AtHD1 expression analyzed 

by RNA gel blot experiments (Wu et al., 2000b; Plant Chromatin Database, 

http://chromdb.org), suggesting that AtHD1 is constitutively expressed in Arabidopsis. In 

contrast, the expression of HDA7 is detected in the flower tissues of ws and col ecotypes, 

and is absent in other tissues. This flower-specific expression pattern suggests that HDA7 

may play a role in flowering. Interestingly, recent studies show that histone deacetylation 

and histone H3 dimethylation at lysines 9 and 27 are involved in FLC (Flowering Locus C) 

repression, whereas histone acetylation and histone H3 trimethylation at lysine 4 are 

associated with active FLC expression (reviewed by He and Amasino, 2005). Therefore, it 

would be interesting to investigate the effects of HDA7 on flower specific genes. 
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Figure 3.8.  Histone deacetylase assay of purified AtHD1 from bacteria. 
 
Compared with the negative control, the addition of purified AtHD1 (to a final concentration of 5 
µg/ml) shows a 30% increase in cpm, indicative of histone deacetylase activity. The positive control 
with HeLa nuclear extract shows a three-fold increase in cpm. The addition of sodium butyrate, a 
specific inhibitor of histone deacetylases, inhibits the reactions containing HeLa nuclear extract and 
AtHD1. 
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Expression of recombinant AtHD1 (rAtHD1) in a bacterial system is quite high after 

10 hours of induction. Analysis of the eluate from the Ni-NTA affinity column showed that 

there is a significant amount of contaminating proteins even though the column had been 

washed twice with 20 mM and then 70 mM imidazole. To increase the purity of recombinant 

AtHD1, the eluted proteins were purified further using amylose resin, and the N-terminal 

segment of the recombinant AtHD1 containing a 6×His tag and maltose binding protein 

(MBP) was removed by cleavage with TEV protease. After this double purification, the 

eluted rAtHD1 was free of major contaminating proteins (Figure 3.1C), and was tested 

immediately for any histone deacetylase activity. 

The HDAC assay used is a radioactive approach that depends on the incubation of 

the enzyme with radiolabeled acetylated histone peptides, followed by extraction and 

quantification by scintillation counting of the radiolabeled acetate released from the 

immobilized histone peptide substrates. Although this method is time-consuming, expensive 

and not suitable for high-throughput screening, it is quite reliable as the results are quite 

consistent. HeLa nuclear extract that contains a blend of HDACs was used as the positive 

control, while sodium butyrate that is a specific HDAC inhibitor was used to demonstrate 

the specificity of the histone deacetylase activity. 

The HDAC assay did not give conclusive results on the histone deacetylase activity 

of rAtHD1 synthesized in E. coli. While the negative control (water) provided a level of 

non-specific and non-enzymatic release of radiolabeled acetate in the reaction assay, the 

rAtHD1 showed some histone deacetylase activity (a 30% increase in released 

3H-acetatewhen compared with the negative control), but is not comparable to the 3.5-fold 

increase measured for the HeLa nuclear extract. However, the complete inhibition of 
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rAtHD1 by sodium butyrate suggests that rAtHD1 may indeed have histone deacetylase 

activity.  

There are some possible reasons that can account for the low activity of rAtHD1 in 

the HDAC assay. First, the histone acetyltransferases (HAT) provided by the HDAC assay 

kit (Upstate) is PCAF (p300/CBP-associated factor), which has a narrow substrate 

specificity on histone acetylation. PCAF has a C-terminal half that bears a high degree of 

sequence homology to the yeast GCN5 nuclear HAT (Yang et al., 1996). It primarily 

acetylates Lysine 14 of histone H3 and acetylates Lysine 8 of histoneH4 less efficiently. 

PCAF does not acetylate other potential acetylation sites including Lysines 9, 18, 23 and 27 

of histone H3, and Lysines 5, 12 and 16 of histone H4 (Schiltz et al., 1999). Therefore, if 

AtHD1 does not preferentially deacetylate the lysine residues acetylated by PCAF, it will 

show a low activity. To solve this problem, another HAT called p300 was used to acetylate 

histone peptides. P300 has been shown to have a wider specificity of HAT activity and can 

acetylate Lysines 14, 18 and 23 of H3, and Lysines 5, 8 and 12 of H4 (Ogryzko et al., 1996; 

Schiltz et al., 1999). However, histone peptides acetylated by P300 were not better substrates 

for recombinant AtHD1 in the HDAC assay, even though the acetylation efficiency of p300 

was checked and found to be comparable to PCAF. 

A second possible reason for the low activity of rAtHD1 is the lack of co-factors or 

requirement of complex formation with other proteins. It is remarkable that many purified 

recombinant HDACs are enzymatically inactive (Sengupta and Seto, 2004), with only the 

exception of yeast HOS3 and mammalian HDAC8 (Carmen et al., 1999; Hu et al., 2000; Lee 

et al., 2004). 

Finally, AtHD1 may require post-translational modifications or specific chaperons 
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for proper folding, both of which are absent in the bacterial expression system. 

Phosphorylation is a major post-translation modification in HDACs. In the maize embryoes, 

phosphorylation of HD1A causes a change in substrate specificity of the enzyme (Borsch et 

al., 1992). Other HDACs, such as the maize HD2 (Lusser et al., 1997), human HDAC1, 2, 4 

and 5 (Lu et al., 2000; Cai et al., 2001; Pflum et al., 2001; Tsai and Seto, 2002) are subjected 

to phosphorylation, which can modify or regulate their activities. Another post-translational 

modification that has been shown to regulate HDAC activity and function is called 

sumoylation, which involves the conjugation of small ubiquitin-related modifier (Colombo 

et al., 2002; David et al., 2002; Kirsh et al., 2002; Sengupta and Seto, 2003). However, 

sumoylation has been identified only in mammalian HDACs so far. Some HDACs are 

regulated by proteolytic processing. In maize, HDA1 is synthesized as an inactive precursor 

protein that is converted to the enzymatically active form by proteolytic removal of the 

C-terminal part of the protein (Pipal et al., 2003). 

In an attempt to solve the problem caused by the lack of post-translational 

modifications, AtHD1 (also called HDA19) together with other RPD3-type HDACs in 

Arabidopsis including HDA6, 7 and 9, were produced by baculoviral expression system. 

The cDNA of HDA6, 7, 9 and 19 were amplified by RT-PCR and then cloned into the 

Gateway entry vector (Invitrogen) for fast and efficient integration of the HDAC genes into 

the baculoviral expression vector through LR recombination. The HDAC genes in the 

Gateway entry vector were sequenced to ensure that their sequences were correct and 

in-frame. Recombinant HDACs expressed in insect cells were extracted by sonication and 

purified by passage over a Ni-NTA affinity column. As in the case of purification of 

bacterial rAtHD1, the purity of the recombinant proteins was greatly increased by a second 
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round of purification. The purity and identity of the rHDACs was verified by SDS-PAGE 

and western blot analyses. 

The HDAC activity of recombinant HDA6, 7 and 19 was tested by HDAC assay, 

described previously. However, all the rHDACs tested did not show any HDAC activity. 

Compared with bacterial rAtHD1 whose additional N-terminal segment has been cleaved, 

insect rAtHD1 (HDA19) has a C-terminal segment (38 amino acid residues) containing the 

V5 epitope and 6×His tag. Whether this additional segment interfered with the protein 

activity remains to be determined. 

MATERIALS AND METHODS 

RT-PCR of HDAC genes 

Total RNA was extracted according to the protocol of TRIZOL reagent (Invitrogen). 

Total RNA (7 µg) was treated with RQ1 DNase (Promega) for removal of contaminating 

genomic DNA. One-step RT-PCR was performed according to the manufacturer’s protocol 

(Invitrogen). In each RT-PCR reaction, 0.75 µg of total RNA was used as templates. Gene 

specific primers for HDA6, HDA7, HDA9, HDA19 (AtHD1) and actin were used for PCR 

amplification. The RT-PCR products were separated in 1% agarose gels and stained with 

ethidium bromide. 

Bacterial expression system 

Induced expression of recombinant AtHD1 in bacterial host cells 

Escherichia coli (strain BL21) harboring a pET21b expression vector (Novagen) that 

contains the chimeric AtHD1 gene was provided by my colleague Lu Tian. The bacteria 

were grown in 0.5 L of NZCYM medium (Sigma) at 37°C, and IPTG 
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(isopropyl-β-D-thiogalactoside) was added to a final concentration of 1mM after 8 hours of 

incubation. The bacterial culture was further incubated at 20°C for an additional 12-15 hours 

before protein extraction. 

Extraction and purification of recombinant AtHD1 from bacteria 

Bacterial cells were collected from 0.5 L of bacterial culture by centrifugation and 

resuspended in 160 ml of PBS (pH 8.0) with 1 mg/ml of lysozyme, 1 mM PMSF and 2 mM 

β-mercaptoethanol. While keeping on ice, the cell suspension was sonicated four times at 

max power for 30s each with an interval of 5 minutes for cooling. After centrifugation, the 

supernatant was loaded to a Ni-NTA column pre-equilibrated with PBS and contained 4 ml 

bed volume of Ni-NTA resin (Invitrogen) to which the His-tag of the recombinant protein 

binds. After washing 2 times with 20 mM imidazole and then 70 mM imidazole in PBS, the 

target protein was eluted with 200 mM imidazole in PBS. To further purify the recombinant 

AtHD1 protein (rAtHD1), the eluent was loaded to a column containing 2 ml bed volume of 

amylose resin (New England Biolabs) to which the maltose-binding protein at the 

N-terminal of the rAtHD1 binds. After washing with 200 ml of TBS (pH 8.0), 50 units of 

TEV protease (Invitrogen) that cleaves specifically at the TEV site of rAtHD1 was added to 

the resin for in-column digestion. After 12 hours of incubation at 4°C, the rAtHD1 protein 

without the 6×His-MBP tag was eluted with TBS. The eluent was concentrated with 

Centricon filter (Millipore) with a nominal molecular weight limit of 50 kDa. The purified 

protein was resuspended in 500 µl of PBS with 2 mM β-mercaptoethanol and 15% glycerol. 

Detection of recombinant AtHD1 by western blots 

Recombinant AtHD1 protein was separated by 15% SDS-PAGE and transferred to 

PVDF membrane (Invitrogen) using a Trans-Blot SD Semi-dry Transfer Cell (Bio-Rad) in 
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the presence of a transfer buffer (48 mM Tris-HCl, 39 mM glycine, 0.0375% SDS, 20% 

methanol). Western blot analysis was performed according to the protocol of Western Breeze 

kit (Invitrogen). The primary antibody (anti-HD1) used is a polyclonal antibody produced in 

rabbit using the N-terminal fragment (1-199 amino acid residues) of AtHD1. The secondary 

antibody used was an anti-rabbit antibody conjugated with alkaline phosphatase. Detection 

was carried out by adding a chemiluminescent substrate (CPD-star) to the PVDF membrane 

and the signals were detected with Kodak X-ray film. 

Baculoviral expression system 

Construction of baculoviral expression vector with HDAC genes 

The four RPD3-like HDACs cDNA in Arabidopsis were cloned by RT-PCR using 

the following primers: 

For HDA6: 5’-ATGGAGGCAGACGAAAGCGGC-3’ (forward primer) and 5’- 

GCCCTGAAAATACAGGTTTTCAGACGATGGAGGATTCACGTCTGG-3’ (reverse 

primer); For HDA7: 5’-ATGGCGAGCTTAGCCGACGGA-3’ (forward primer) and 5’- 

GCCCTGAAAATACAGGTTTTCAATGCGTGGATCATTTCTCTTCTC-3’ (reverse 

primer); For HDA9: 5’-ATGCGTTCCAAGGACAAAATC-3’ (forward primer) and 5’- 

GCCCTGAAAATACAGGTTTTCTGACGCATCGTTATCGTTGTCTCC-3’ (reverse 

primer); For HDA19 (AtHD1): 5’-GCGTCGACATGGATACTGGGGGCAATTC-3’ 

(forward primer) and  

5’-GCCCTGAAAATACAGGTTTTCTGTTTTAGGAGGAAACGCCTGCTC-3’ (reverse 

primer). 

Each forward primer contains an ATG start codon and each reverse primer omits the stop 

codon and adds the sequence for a TEV protease cleavage site (underlined) to the 3’-end of 
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the HDAC coding sequence. The cloning and expression of HDAC chimeric genes was 

performed according to the protocol of BaculoDirect Kit (Invitrogen). The PCR products 

were purified and inserted into Invitrogen's Gateway vector pCR8/GW/TOPO by TOPO 

T/A cloning. HDAC cDNA in the successfully transformed bacterial colonies were screened 

for correct orientation by restriction digestions. The HDAC constructs with the correct 

orientation in the pCR8/GW/TOPO cloning vector were sequenced to ensure that the 

sequence was correct and in-frame. Finally, the HDAC cDNAs were integrated into the 

baculoviral expression vector (Invitrogen) by site-specific recombination (LR 

recombination) so that a V5 epitope and a 6×His tag coding sequences were added to the 

3’-end of the HDAC cDNA. 

Insect cell culture and medium 

The ovarian cell line SF9 from the moth Spodoptera frugiperda was used as the host 

cells for propagation of Baculovirus and production of recombinant HDACs. Grace’s insect 

medium, supplemented (Gibco), or more commonly referred as TNM-FH (Trichoplusia ni 

Medium-Formulation Hink), together with 10% fetal bovine serum (FBS, Gibco) was used 

for culturing insect cells. Grace’s insect medium, unsupplemented (Gibco), was used for 

transfection of insect cells. All insect cell cultures were grown in a non-CO2 incubator at 

27°C.  

Transfection of insect cells 

Baculoviral DNA harboring the HDAC chimeric genes were introduced into insect 

cells by lipid-mediated Transfection described in the BaculoDirect kit protocol (Invitrogen). 

Briefly, the baculoviral DNA was incubated with Cellfectin Reagent which contains a 

formulation of cationic lipids to enclose the DNA in liposome. This transfection mixture was 
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added to a monolayer of Sf9 insect cells adhered to the bottom of a six-well culture plate. 

The liposomes fuse with the cell and the baculoviral DNA is delivered into the cells. The 

transfected cells are grown in medium containing a nucleotide analog called ganciclovir at 

100 µM for negative selection of insect cells transfected by non-recombinant baculoviral 

DNA. 

Production of baculoviral stocks 

Successfully transfected insect cells will lyse and release the virus 96 hours after 

transfection. The medium of transfected cells was collected and the supernatant was 

collected after centrifugation. This virus-containing solution is referred to as the P1 viral 

stock, which was used to infect more insect cells to generate a P2 viral stock with a higher 

titer (~1×105 to 1×106 pfu/ml). Baculoviral DNA was extracted according to the protocol 

described in the BaculoDirect kit (Invitrogen). The presence of the HDAC chimeric genes in 

the baculoviral DNA was verified by PCR using the following two primers provided by the 

BaculoDirect kit: 

1. Polyhedrin upward primer in the polyherin promoter region: 

5’-AAATGATAACCATCTCGC-3’; and 

2. V5 reverse primer at the 3’-end of the V5 epitope: 

5’-ACCGAGGAGAGGGTTAGGGAT-3’. 

The P2 viral stocks for each RPD3-type HDAC were amplified further to produce large scale 

P3 viral stocks for infection of insect cells to produce the recombinant HDAC proteins. 

Production of recombinant HDAC 

In the time course experiment for determining the optimum time post-infection for 

obtaining highest yield of recombinant HDACs, a monolayer of 8×105 insect cells seeded in 
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each of the wells of four six-well plates was infected with 50 µl of P2 viral stock (titer = 

8x107 pfu/ml) with HDA6, 9, 17 and 19 at a multiplicity of infection (MOI) of 5 pfu/cell. 

Infected insect cells from one of the four six-well plates were collected at 24, 48, 72 and 96 

hours post-infection, and total proteins were extracted using TRI reagent (Molecular 

Research Center). 

In the large scale production of recombinant HDACs, suspension cultures with 0.5 L 

of TNM-FH complete medium containing insect cells at a density of 4×106 cells/ml in 1L 

spinner flasks were used. P3 viral stocks were added to the suspension cultures so that the 

MOI equaled 10 pfu/cell. Infected insect cell cultures were incubated at 27°C for 48 hours. 

Extraction and purification of recombinant HDAC from insect cells 

Total proteins from insect cells in suspension cultures were extracted using 

sonication and purified using Ni-NTA column as previously described.  

Detection of recombinant HDAC proteins by western blot 

Crude or purified proteins from insect cells were fractionated in 15% SDS-PAGE. 

Western blots were performed using Western Breeze kit (Invitrogen) as previously described. 

The primary antibody used was anti-V5 that was specific for the V5 epitope at the 

C-terminus of recombinant HDACs. 

Histone deacetylase assay 

Labeling of synthetic histone H3 and H4 peptides 

The acetylation of synthetic histone H3 and H4 peptides was performed according to 

the protocol described in the HDAC Activity Assay kit (Upstate). Briefly, synthetic H4 

peptides corresponding to amino acids 2-24 of Histone H4, and synthetic H3 peptides 
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corresponding to amino acids 1-21 of histone H3, both followed by a GSGS linker and 

biotinylated lysine, were enzymatically acetylated using 3H-acetyl coenzyme A (Amersham) 

as a substrate in a reaction catalyzed by the histone acetyltransferases PCAF or p300. 

Labeled acetylated histone H3 or H4 peptides were harvested by agarose resin conjugated 

with streptavidin and the labeling efficiency was determined by the protocol described in the 

manual. 

Detection of HDAC activity 

Recombinant proteins purified from bacteria or insect cells were added to same 

amount of tritium-labeled acetylated histone H3 or H4 peptides to test for HDAC activity. 

For each test sample, a duplicate assay with 50 mM sodium butyrate, a specific inhibitor of 

HDAC, was included to demonstrate the specificity of deacetylation. HeLa nuclear extract 

that contains a blend of histone deacetylases was used as the positive control. Since the 

histone peptides were immobilized on agarose beads, the histone deacetylase activity, if any, 

would be proportional to the amount of 3H-acetyl groups released from the acetylated 

histone peptides to the mobile phase. After 16-20 hours of incubation at room temperature, 

the reaction mixtures were centrifuged and the radioactivity of the supernatant was 

measured by scintillation counting using the Beckman LS 6500 Scintillation counter.  
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CHAPTER IV 

TRANSGENIC EXPRESSION OF RECOMBINANT HISTONE 

DEACETYLASE 1 IN Arabidopsis 

 

INTRODUCTION 

Several HDACs have been characterized as one of the components in stable large 

multi-subunit complexes and most, if not all, HDACs interact with other cellular proteins for 

functional activity or modulation (Sengupta and Seto, 2004). Through interactions with 

other proteins, HDACs are sequestered into cellular compartments, recruited to the target 

chromatin regions, and are activated or inhibited. The interactions of HDACs with other 

proteins have been studied extensively in mammals but poorly studied in plants. The 

mammalian class I HDACs that are closely related to yeast Rpd3 are the best characterized. 

It has been shown that human HDAC1 and HDAC2 coexist in three distinct multi-protein 

complexes called the Sin3, the NuRD/NRD/Mi2, and the CoREST complexes (Hassig et al., 

1997; Laherty et al., 1997; Zhang et al., 1997, 1998; Tong et al., 1998; Ayer, 1999; Ng and 

Bird, 2000; Humphrey et al., 2001; You et al., 2001). These complexes are recruited by a 

variety of transcription repressors to specific genes or to the entire chromosomal domains 

(Xu et al., 1999). For example, human HDAC1 has been shown to exist in a complex 

containing Methyl-CpG-binding protein 2 (MeCP2) which recruits HDAC1 to methylated 

DNA to repress transcription (Jones et al., 1998; Nan et al., 1998; Wade et al., 1999). 

The commonly used methods to study protein-protein interactions include yeast 

two-hybrid system and co-immunoprecipitation. In the yeast two-hybrid system, the target 
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protein is fused to a DNA-binding domain and transfected in a yeast host cell bearing a 

reporter gene whose transcription is controlled partly by the DNA-binding domain. The 

fusion protein can then be used as a bait to screen a library of cDNA clones that are fused to 

an activation domain. The cDNA clones within the library that encode proteins capable of 

interacting with the target protein are identified by activation of the reporter gene. The main 

advantage of this method over expression in bacteria is that yeast cells perform 

post-translational modifications of proteins, and that the protein-protein interactions are 

identified in vivo so that experimental artifacts are reduced (Criekinge and Beyaert, 1999). 

However, the yeast two-hybrid approach is time-consuming and labor-intensive because it 

involves the construction and screening of a cDNA library and the culturing and transfection 

of yeast cells. Moreover, false positive clones are common in the screening process. 

On the other hand, co-immunoprecipitation (Co-IP) or pull-down assay is a 

biochemical method which has been extensively used in the identification and isolation of 

interacting proteins. In this approach, the target protein is fused with a tag which can be 

recognized by and bound to an antibody or other types of ligand that are immobilized on a 

matrix. Any interacting proteins that can form a complex with the tagged target protein will 

be co-immunoprecipitated or pulled down with the target protein. This method is relatively 

fast and simple compared with the yeast two-hybrid system, but it requires a large quantity 

of high quality antibodies and that the recombinant target protein is correctly folded. In a 

study that used a recombinant Methyl-CpG-binding protein 2 (MeCP2) fused to a 

glutathione S-transferase (GST) tag, a number of interacting proteins including the 

mammalian Sin3 complex and a histone deacetylase (HDAC1) were identified and the result 

suggests a link between DNA methylation and histone deacetylation in the transcriptional 
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repression of methylated DNA (Nan et al., 1998; Jones et al., 1998). 

In an attempt to isolate proteins interacting with AtHD1, an epitope-tagged AtHD1 

was overexpressed in transgenic Arabidopsis and an immunoaffinity column was used to 

isolate the protein complexes. The human c-myc epitope, which has a high specificity and 

affinity for the monoclonal antibody 9E10, was fused to the C-terminus of AtHD1 for 

detection and immunoprecipitation of the recombinant protein. 

RESULTS 

Expression of epitope-tagged AtHD1 in Arabidopsis 

The AtHD1-cmyc chimeric gene in the binary vector pBI101 (Figure 4.1) was 

introduced into the Arabidopsis genome by Agrobacterium-mediated transformation using 

the floral dipping method. Six independent lines of successful transformants were selected 

and the T1 transgenic plants were regenerated. These transgenic plants, called SHC for the 

transgene (35S::AtHD1-cmyc) they contained, were propagated until all the progeny of a 

single plant gave a 3:1 ratio of green seedlings versus white seedlings when germinated in a 

selection medium containing 50 mg/L kanamycin. Three homozygous transgenic lines 

carrying the 35S::AtHD1-cmyc transgene were generated. 

The presence of SHC transgene in four of the transgenic lines was detected by 

Southern blot analysis. The restriction digestion with Xba I and Not I released a 2.1 kb 

fragment from the transgene and a radiolabeled probe specific for the 2×cmyc epitope and 

part of the 3’-end of AtHD1 coding sequence was used for hybridization (Figure 4.1A). The 

result of Southern blot analysis shows that the SHC transgene was present in three of the four 

transgenic lines (Figure 4.1B). Northern blot analysis was performed to detect the presence 

of the SHC transcript in the three transgenic lines containing the transgene. The result shows  
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Figure 4.1.  Southern blot analysis of SHC transgenic plants. 
 
(A) The 35S::AtHD1T-cmyc (SHC) chimeric gene consists of a double c-myc epitope fused 
to the 3’-end of the AtHD1 cDNA and the resulting chimeric gene is put under the control of 
the CaMV 35S promoter. When the SHC transgene is digested with Xba I and Not I, a 2.1 kb 
fragment will be excised and it can be hybridized to a radiolabeled probe specific for the 
2×cmyc epitope and part of the 3’-end of AtHD1 sequences. 
(B) In Southern blot analysis, genomic DNA (20 µg) from wild type and SHC transgenic 
plants were digested with Xba I and Not I, then separated by electrophoresis in 1% agarose 
gel and transferred to Hybond-N+ membrane (Amersham Pharmacia). A radiolabeled probe 
described in (A) was used in hybridization. The transgene was detected in 3 of the 4 SHC T2 
transgenic lines. The plasmid pUC18/35S::AtHD1-cmyc digested with the same restriction 
enzymes was used as the positive control (+ve). The marker used was Lamda DNA/EcoR I + 
Hind III (Promega). 
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that the transcription levels of the transgene were high in transgenic lines 1 and 3, but very 

low in line 6 (Figure 4.2). The expression of AtHD1-cmyc protein in SHC transgenic plants 

was studied by western blots using two antibodies, anti-myc and anti-HD. Anti-myc is a 

monoclonal (clone 9E10) antibody specific for the c-myc epitope, while anti-HD are 

polyclonal antibodies specific for the N-terminus of native AtHD1 protein. Western blots 

using anti-myc detected the presence of AtHD1-cmyc protein in SHC transgenic line 3 but 

not in line 5 (Figure 4.3A), as expected base on Southern analysis result. The size of the 

recombinant AtHD1-cmyc protein band (65-70 kDa) is larger than the expected size (58.6 

kDa). When anti-HD was used (Figure 4.3B), the native AtHD1 protein bands were detected 

in the wild type and all SHC transgenic plants, and at very low levels in the CASH transgenic 

plants in which the expression of AtHD1 is blocked by an antisense approach (Tian and Chen, 

2001). 

In an attempt to isolate proteins having interaction or association with AtHD1, the 

total protein extract of SHC transgenic plants (line 3) was passed through an immunoaffinity 

column with agarose resin conjugated with polyclonal anti-myc antibodies (Sigma). In the 

first few trials of purification, the column was washed six times with PBS and eluted with 

0.1 M ammonium hydroxide at pH 11 according to Sigma’s protocol. However, no proteins 

(not even the cmyc-tagged AtHD1 protein) were detected in western blot analysis using 

anti-myc antibody (Figure 4.4). In later trials, a proprietary elution buffer (Pierce) containing 

primary amines at pH 2.8 was used for elution. Two protein bands were detected in the 

western blot analysis using anti-myc antibody, although many non-specific contaminating 

proteins were also detected upon silver stain analysis of the SDS-PAGE duplicate (Figures 

4.4 and 4.5). The size of the purified AtHD1-cymc detected in the western blots is 75 kDa,  
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Figure 4.2.  Northern blot analysis of SHC transgenic plants. 
 
(A) Total RNA (30 µg) from wild type and SHG transgenic plants (with the presence of 
transgene verified by Southern blot) was separated by electrophoresis in a 1.5% agarose 
gel containing 2% formaldehyde and then transferred to Hybond-N+ membrane 
(Amersham Pharmacia).  
(B) Northern blot analysis using the same radiolabeled probe described in Figure 4.1A 
showed that AtHD1-cmyc transcript was present in the SHC transgenic lines 1 and 3. The 
size of the AtHD1-cmyc transcript is about 1.6 kb.  
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Figure 4.3.  Western blot analyses of SHC, wild type and CASH plants. 
 

Total proteins extracted from wild type, CASH (constitutive antisense histone 
deacetylase 1) and SHC transgenic plants were run on 15% SDS-PAGE and then 
transferred to PVDF membrane by electroblotting.  
(A) Anti-myc monoclonal antibody was used to detect the presence of AtHD1-cmyc 
recombinant protein. Strong signals were detected in each of the SHC-3 lines, while 
no signal detected in the wild type and the SHC-5 lines. 
(B) Anti-HD polyclonal antibodies were used to detect the native AtHD1 protein in 
wild type, CASH and SHC transgenic plants. Strong signals were detected in wild 
type and SHC plant proteins but not in CASH plant proteins. 
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Figure 4.4.  SDS-PAGE and western blot analyses of SHC proteins after 
anti-myc affinity column purification. 
 
The crude total protein extracts (TPE) of SHC transgenic plants were allowed to run 
through an affinity column with agarose resin conjugated with polyclonal anti-myc 
antibodies. The columns were washed six times with PBS. Two elution buffers were used. 
The first one (Eluent 1) contained 0.1 M ammonium hydroxide at pH 11 (Sigma), while 
the second one is a proprietary formula containing primary amines at pH 2.8 (Pierce). 
(A) Proteins from the wild type (WT), SHC total protein extracts (TPE) and those after 
running through the immunoaffinity column (flow through), and the eluates were run on a 
15% SDS-PAGE and stained with Coomassie blue. No apparent bands can be found in the 
two eluates. 
(B) A duplicate of the SDS-PAGE in (A) was used for western blot analysis. Anti-myc 
monoclonal antibody was used for detection of the AtHD1-cmyc protein. A single band 
was detected in SHC TPE while there were two bands in the eluate with low pH buffer. 
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Figure 4.5.  SDS-PAGE and western blot analyses of AtHD1-cmyc protein 
purified by anti-myc affinity column. 
 
(A) Proteins from the wild type (WT), SHC total protein extract (TPE) and its flow 
through, and the proteins eluted by low pH elution buffer were run on a 15% 
SDS-PAGE and visualized by silver stain. The gel was over-stained to reveal the weak 
signals in the eluate. Many bands were found in the eluate. 
(B) A duplicate of the SDS-PAGE in (A) was used for western blot analysis with 
anti-myc monoclonal antibody as the primary antibody. The result is similar to Figure 
4.4B, but the signals for the purified proteins in the eluate were much stronger. One of 
the bands in the eluate has the same size (apparently 75 kDa) as the native 
AtHD1-cmyc recombinant protein found also in SHC TPE, while the other one has a 
slightly smaller size (~65 kDa). 
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which is larger than the expected size (58.6 kDa) of the recombinant protein. The second 

band detected in the eluent has a slightly smaller size (~65 kDa) but equally strong signal 

intensity when compared with the AtHD1-cmyc protein. Overall, the results show that some 

form of the AtHD1-cmyc protein can be purified by immunoprecipitation, but 

improvements need to be made to increase the purity. Further, the identity of the additional 

band needs to be ascertained. 

DISCUSSION 

A recombinant AtHD1 protein with a double c-myc epitope tag fused to its 

C-terminus was expressed in Arabidopsis plants and was used for the isolation of interacting 

proteins by co-immunoprecipitation. The integration of the SHC transgene in the transgenic 

Arabidopsis genome and the transcription of the transgene has been verified in Southern and 

northern blot analyses, respectively. The expression of the recombinant AtHD1-cmyc 

protein in the transgenic plants was also detected as strong and specific signals in western 

blot analyses, but the size of the recombinant AtHD1-myc and the native AtHD1 protein 

band signals (~70 kDa, Figure 4.3) is larger than the expected sizes (58.6 and 56 kDa, 

respectively). However, a previous study using anti-HD to detect the native AtHD1 protein 

in wild type plants also yield a protein band signal with an apparent size of 65-70 kDa (Tian 

and Chen, 2001). Therefore, the size discrepancy may be due to artifacts of the protein 

markers. However, the possibility of post-translational modifications of recombinant 

AtHD1-cmyc protein cannot be ruled out. 

The immunoprecipitation of recombinant AtHD1-cmyc was not very successful in 

terms of quantity and purity. This is partly due to the low expression level of AtHD1-cmyc in 

the transgenic plant and this problem may be solved by increasing the amount of plant 
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materials used. The elution of the immunoprecipitation contains many contaminating 

proteins, partly because the anti-myc antibodies in the immunoaffinity column are 

polyclonal. The monoclonal anti-myc antibody from the clone 9E10 used in the western blot 

analyses of AtHD1-cmyc protein has proven to be very specific. To increase the purity of the 

immunoprecipitated AtHD1-cmyc protein, the use of monoclonal anti-myc antibody and a 

more stringent wash may help. 

Western blot analyses of the immunoprecipitated AtHD1-cmyc protein reveals two 

protein bands with equally strong signal intensity. One of the band has size (~70 kDa) equals 

to that in SHC total protein extract, while the other band has a slightly smaller size (~65 kDa). 

The smaller protein may be derived from the original AtHD1-cmyc protein after proteolytic 

cleavage, but it is intriguing that this smaller protein was not detected in the crude protein 

extracts from SHC plants. 

MATERIALS AND METHODS 

Construction of AtHD1-cmyc chimeric gene 

The double c-myc (2×cmyc) DNA was constructed by the method descried by Nakajima and 

Yaoita (1997) using the two following primers: 

Forward primer:  

5'-CATG CCATGG AGCAAAAGCTCATCTCTGAAGAGGATTTGGAGCAA-3' 

Reverse primer: 

5’-ATAGTTTAGCGGCCGCTTACAAATCCTCTTCAGAGATGAGCTTTTGCTCCAAA

TC-3’ 

The two restriction sites (underlined) in the forward and reverse primers are Nco I and Not I, 

respectively. The 2×cmyc DNA synthesized by PCR was purified and digested with Nco I 
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and Not I. The GFP coding sequence in the plasmid pUC18/35S::AtHD1-GFP was excised 

with Nco I and Not I double digest and the 2×cmyc DNA was ligated to the resulting 

pUC18/35S::AtHD1 plasmid. The expression cassette of 35S::AtHD1-cmyc was excised by 

Xba I and EcoR I double digest and then ligated into the pBI101 binary vector. The sequence 

of the AtHD1-cmyc chimeric gene in the pBI101 plasmid was checked by DNA sequencing 

and it was found to be correct and in-frame. The pBI101/35S::AtHD1-cmyc plasmid was 

introduced into Agrobacteria by electroporation using the Gene Pulser apparatus (Biorad) at 

25 µF, 2.5 kV and 600 ohms. 

Transformation of Arabidopsis 

The AtHD1-cmyc chimeric gene was introduced into Arabidopsis by 

Agrobacterium-mediated transformation as described in Chapter II. Initial selection of the T0 

seedlings yielded about 20 successful transformants and six of these were selected to 

propagate for the generation of homozygous transgenic plants. 

Nuclei acid isolation and detection 

The extraction of genomic DNA and total RNA from SHC transgenic plants and the 

detection of the SHC transgene and transcript were performed as described in Chapter II. 

Protein extraction and detection 

For SDS-PAGE and western blot analysis, total protein was extracted from 

Arabidopsis plants by grinding 10 g of fresh or frozen plant materials in 20 ml of protein 

extraction buffer (20 mM Tris-HCl, 1 mM EDTA, 150 mM NaCl, 2 mM β-mercaptoethanol, 

pH 7.5) with 1× protease inhibitor cocktail (Sigma). For immunoprecipitation, the presence 

of amino groups in Tris may interfere with the protein bindings. Therefore, phosphate buffer 
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saline (100 mM sodium phosphate, 10 mM KCl, 68 mM NaCl, 2 mM β-mercaptoethanol, 

pH 7.5) with 1× protease inhibitor cocktail (Sigma) was used. Plant debris and insoluble 

materials were removed by centrifugation and the supernatants were stored at -20°C with 

15% glycerol. 

In SDS-PAGE and western blot analyses, approximately 100 µg of protein for each 

sample was separated in a 15% polyacrylamide gel, which was either stained with 

Coomassie blue or silver stain (Pierce). For western blot analysis, proteins in the gel were 

transferred to PVDF membrane by electroblotting (Biorad) and detected by the Western 

Breeze kit (Invitrogen) using either Anti-myc or Anti-HD antibodies. 

Immunoprecipitation 

Total protein extract of SHC transgenic plants was allowed to incubate with 1 ml of 

agarose resin conjugated with polyclonal Anti-myc antibodies (Sigma) for one hour at 4°C 

in an immunoaffinity column. The column was washed six times with BupHTM modified 

Dulbecco’s PBS (140 mM NaCl, 8 mM sodium phosphate, 2 mM potassium phosphate and 

10 mM KCl, pH 7.4) and eluted with ImmunoPure IgG elution buffer (Pierce) containing 

primary amine at pH 2.8. 
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CHAPTER V 

SUMMARY AND DISCUSSION 

In this study, we have taken biochemical and molecular biology approaches to 

investigate the expression profile, subcellular localization and protein activity of histone 

deacetylase 1 (AtHD1) in Arabidopsis thaliana. Expression analysis shows that the four 

RPD3-like histone deacetylases in Arabidopsis, including AtHD1 (HDA19), HDA6, HDA7 

and HDA9, are differentially expressed in different tissues and ecotypes of Arabidopsis 

thaliana. AtHD1 is expressed at high levels in the roots, leaves, flowers and siliques, 

suggesting that AtHD1 is a global regulator involved in various physiological and 

developmental processes. The other three RPD3-like HDACs, including HDA6, HDA7 and 

HDA9, show different expression profiles and this suggests that they play different roles in 

plants. In particular, HDA7 is expressed at low levels in flower tissues only, suggesting a 

role in the regulation of flowering.  

The expression of the AtHD1-GFP fusion protein transiently in onion cells and 

permanently in transgenic Arabidopsis plants reveals that AtHD1 is localized predominantly 

in nucleus and is excluded from the nucleolus. Moreover, AtHD1 appears to associate with 

condensing chromatins at early prophase of the cell cycle and this suggests a role of AtHD1 

in mitosis. The recombinant AtHD1 protein synthesized in bacteria has been shown to have 

significant histone deacetylase activity in this study. Further experiments can be done to 

investigate the substrate specificity and enzyme kinetics of AtHD1.  

Finally, an epitope-tagged AtHD1 was expressed in transgenic Arabidopsis in an 

attempt to isolate the interacting proteins by co-immunoprecipitation. However, the 
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expression levels of the recombinant AtHD1 were very low and only a small amount of 

protein could be purified by immunoaffinity column chromatography. Improvements could 

be made by increasing the amount of plant materials for protein extraction. An alternative 

approach may be synthesizing the epitope-tagged AtHD1 in bacteria, then immobilizing it 

on an immunoaffinity column, and allowing the total protein extract from Arabidopsis to run 

through the column. Proteins interacting with AtHD1 could be co-immunoprecipitated, 

eluted and analyzed. 
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