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ABSTRACT

Prediction of End-to-end Single Flow Characteristics

in Best-effort Networks. (May 2005)

Yashkumar Shukla, B.E., Nirma Institute of Technology,

Ahmedabad, Gujarat, India

Chair of Advisory Committee: Dr. Alexander Parlos

The nature of user traffic in coming years will become increasingly multimedia-

oriented which has much more stringent Quality of Service (QoS) requirements. The

current generation of the public Internet does not provide any strict QoS guarantees.

Providing Quality of Service (QoS) for multimedia application has been a difficult

and challenging problem. Developing predictive models for best-effort networks, like

the Internet, would be beneficial for addressing a number of technical issues, such as

network bandwidth provisioning, congestion avoidance/control to name a few. The

immediate motivation for creating predictive models is to improve the QoS perceived

by end-users in real-time applications, such as audio and video.

This research aims at developing models for single-step-ahead and multi-step-

ahead prediction of end-to-end single flow characteristics in best-effort networks.

The performance of path-independent predictors has also been studied in this re-

search. Empirical predictors are developed using simulated traffic data obtained

from ns-2 as well as for actual traffic data collected from PlanetLab. The linear sys-

tem identification models Auto-Regressive (AR), Auto-Regressive Moving Average

(ARMA) and the non-linear models Feed-forward Multi-layer Perceptron (FMLP)

have been used to develop predictive models. In the present research, accumulation

is chosen as a signal to model the end-to-end single flow characteristics. As the raw

accumulation signal is extremely noisy, the moving average of the accumulation is
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used for the prediction. Developed predictors have been found to perform accurate

single-step-ahead predictions. However, as the multi-step-ahead prediction horizon is

increased, the models do not perform as accurately as in the single-step-ahead pre-

diction case. Acceptable multi-step-ahead predictors for up to 240 msec prediction

horizon have been obtained using actual traffic data.
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CHAPTER I

INTRODUCTION

A. Introduction

Recent explosion in Internet usage has exposed several limitations in its design. The

Internet, at present, uses data-gram switches as a means of dynamically allocating

network resources on a demand basis. This approach is more suitable for non real-

time applications. However, the nature of user traffic in coming years will become

increasingly multimedia-oriented which has much more stringent Quality of Service

(QoS) requirements. The current generation of the public Internet does not provide

any strict QoS guarantees, such as bounds on delay, jitter and packet losses.

Two approaches have emerged to tackle this problem. One method is to make

provisions in the network, by admission policing or by reservation, such that strict

QoS requirements can be satisfied. This requires modification or additions to the

currently deployed network infrastructure. The second approach is more practical

and requires that applications determine and adapt to network conditions so that

application QoS at the end points can be maintained. Effective predictive control is

one element of such an approach, and it can be designed to adapt an application to

network conditions and hence, improve QoS delivered to the end-user.

Modelling of the system under consideration is the core step of any control prob-

lem. A model representing the important dynamics of the system is necessary to

build an efficient controller that gives desired performance. The proposed objective

of the present research is to predict single flow end-to-end characteristics in best-

effort networks. Immediate motivation for creating predictive models is to improve

The journal model is IEEE Transactions on Automatic Control.
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the QoS perceived by end-users in real-time application, such as audio. Developing

predictive models for best-effort networks would also be beneficial for addressing a

number of other technical issues, such as network bandwidth provisioning, congestion

avoidance/control to name a few.

B. Research Objectives

The main objective of the present research is to develop predictive models that can be

used to estimate the end-to-end characteristics of single flows in best-effort networks.

If accurate, this predictor can be used by a controller to adapt the source send-rate

to changing network conditions in an anticipatory manner. As a result of the network

delay, the controller will receive delayed information to generate the control actions.

To compensate for this dead-time, the present research also explores performance

of developed predictor for a certain future prediction horizon i.e. multi-step-ahead

prediction. The thrust of this research is to compare different empirical models,

linear and non-linear, and to select the ones that give the best results in terms of

accuracy and prediction horizon. This research also explores the performance of

generic predictive models, i.e. those that do not depend on specific end-to-end path.

C. Literature Review

1. Research in End-to-End Flow Measurement

Data used in developing a predictive model should contain the important character-

istics of the best-effort network. As the Internet is a large and complex network of

networks it is not feasible to perform controlled experiments directly on it. A variety

of tools have been developed over the years to characterize end-to-end behavior of

best-effort networks.
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Real (REalistic And Large) [1] was the first simulator developed for studying

the dynamic behavior of flow and congestion control schemes in packet switch data

networks. The simulator takes as input a scenario, topology and protocols and pro-

duces statistics of packets lost, queuing delay at each queuing points and other similar

information. X-sim [2] is another simulation tool to mimic behavior of the best effort

network. X-sim, which is based on x-kernel, is mainly useful to develop and test

network protocols and architectures.

Network simulator (ns-2)[3], developed by a network research group, is the most

widely used tool for simulation in network research. Ns-2 is an event driven simulation

engine and has a wide variety of protocols and traffic generation tools to capture the

heterogeneity of best-effort networks. As ns-2 can capture important dynamics of a

best-effort network, it is used to create the model used in the present research.

End-to-end Network Delay Emulator (ENDE) [4] is another useful tool to emulate

end-to-end flows between two hosts on the Internet. ENDE is mainly developed to

test new multimedia protocols in a realistic environment.

Although many simulators are available, none of them can accurately capture

the precise behavior of a best-effort network, such as the Internet, because of the

complexity and non-equilibrium conditions involved. There are many active and pas-

sive measurement techniques available on the Internet for characterization purposes.

But most of the data available is for round-trip information. The main focus of the

present research is to analyze one-way end-to-end flows.

Shared Passive Network performance Discovery (SPAND) [5] is a real-time mea-

surement tool, which measures available bandwidth and packet loss rates from a

collection of hosts to determine wide area network characteristics. Another organiza-

tion named Reseaux IP Europeens (RIPE) network coordination center (NCC) [6] has

been operating a system called Test Traffic Measurement (TTM) that measures key
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parameters of the Internet, i.e. one-way delay, packet loss and some other measure-

ments. By using dedicated test boxes, TTM proactively and continuously monitors

the connectivity of a network to the other parts of the Internet. Unfortunately, to

obtain this data one must become part of the RIPE network. Bovy et al. [7] shows

analysis of the RIPE NCC measurements.

In 1998, Yeom [4] developed the tools UPBAT and TPBAT for end-to-end flow

measurement. These tools allows one to measure forward and reverse delays between

the source and the destination thereby allowing one to obtain flow characteristics as

a function of time using several parameters like the packet size and inter-departure

time. The UDP Packet Behavior Analyzing Tool (UPBAT), measurement tool for

UDP, is implemented as client-server program. The UPBAT tool has been used in

the present research for measuring end-to-end flow characteristics.

Planet-lab [8] is a collaborative effort to create a distributed overlay based test-

bed for conducting Internet scale experiments and for developing new network ser-

vices. Network services deployed on the Planet-lab experience all of the behavior of

the real Internet. In the present research, one-way end-to-end flow characteristics are

collected for modelling purposes from various nodes on the Planet-lab network.

2. Research in Estimation of End-to-End Flow Characteristics

Paxson and Floyd [9] clearly mentions the three key properties of the Internet that

make it difficult to model and simulate its dynamics. These properties are immense

changes over time, rapid geographic growth over time and the significant technical

and administrative heterogeneities.

Very few tools have been developed to estimate the dynamics of the best-effort

network, if any. Modelling best-effort networks has been normally approached from

a statistical point-of-view [10]. A lot of queuing theory has also been applied for
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modelling the dynamics of best-effort networks [11]. Wolski et al. [12] has proposed

a distributed system named Network Weather System to monitor network conditions

and then forecast them for a certain time frame. This tool forecasts performance

metrics like aggregate bandwidth and flow-averaged latency for TCP/IP networks.

Jain [13] suggested delay-based approach for congestion avoidance. In this ap-

proach, increase in packet delay is used as an indication of congestion to create efficient

congestion control mechanism. Paxson [14, 15] has measured and analyzed end-to-

end packet dynamics in the Internet. Bolot [16] also studied end-to-end packet delay

and its loss behavior in the Internet. These researches emphasized that the Internet

traffic conditions are not in equilibrium. Paxson [17] attributes failure of Poisson-

modelling in capturing dynamics of Wide Area Network (WANs) to the bursty and

heavily tailed traffic of the Internet. Such dynamic and non-equilibrium traffic con-

ditions are one of the main reasons for the failure of statistical and queuing theories

in modelling WANs.

Ohaski [18, 19] presented a novel and innovative approach to model the dynamics

of best-effort networks. This approach assumes the Internet to be a “black-box”, as

seen by the source and the destination, and the end-to-end packet delay dynamics are

modelled using empirical modelling tools from System Identification. Ohaski [18, 19]

used an Auto Regressive Exogenous (ARX) model for modelling a 100 Mbps LAN

network. This is an approach towards building systems and architectures that are

end-to-end rather than network-centric. The advantage of an end-to-end approach is

that any analysis and methods developed for one system can be used by any other

system, irrespective of the existing network infrastructure.

System identification techniques have been found to solve many complex engi-

neering problems [20, 21]. Linear system identification models, like the ARX and the

Auto Regressive Moving Average Exogenous (ARMAX) models, assume the dynamic
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relationship between system inputs and outputs to be a linear regression. However,

complex problems involving nonlinearities may not be solved accurately using linear

methods. Artificial Neural Networks (ANNs) have been shown particularly useful in

predicting the dynamics of non-linear systems [22]. Feed Forward Multilayer Per-

ceptron (FMLP) networks are very good at approximating memory-less nonlinear

functions, static systems. In the present research predictors based on linear models

such as ARX and ARMAX, and nonlinear models, such as FMLPs, have been devel-

oped for performing sing-step-ahead (SSP) and multi-step-ahead (MSP) prediction

of end-to-end single flow characteristics, flow accumulation, in best-effort networks.

Doddi [23] also adopted a black box approach and predicted one-way end-to-end

packet delays of a simulated best-effort network with reasonable accuracy. Doddi [23]

used linear models like an Auto Regressive (AR) and an Auto Regressive Moving

Average (ARMA) to model delay dynamics of best-effort network. This research also

used non-linear identification techniques like an FMLP to model the non-linearities of

a network. Use of non-linear identification techniques in predicting end-to-end delay

dynamics is also studied by Parlos [24].

Xia et al. [25] used accumulation for developing a congestion control algorithm

and gave an indication that accumulation can be a useful quantity for congestion con-

trol. Khariwal [26] developed a predictive controller that predicted network packet

accumulation and used it as a feedback signal. Khariwal showed that the network ac-

cumulation can be a good signal to use for feedback and the research was successful to

an extent in improving the QoS in real-time applications. The advantage of choosing

accumulation over the end-to-end packet delay is that packet losses or large packet

delays do not result in the disruption of the feedback signal. If the end-to-end delay

signal is used for feedback purposes, then disruptions will develop whenever a packet

is lost or delayed beyond a certain threshold related to application interactivity.
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D. Proposed Approach

The objective of the present research is the prediction of end-to-end characteristics of

single flow in best-effort networks, using empirical modelling. The present research

assumes a best-effort network to be a “black-box”, as seen by the source and the

destination nodes, while modelling the end-to-end path of a single flows. The User

Datagram Protocol (UDP), will be used as the transport protocol, as it is a widely

used protocol in media applications.

In present research, the accumulation of end-to-end single flow is chosen as a

signal to model end-to-end single flow characteristics. Because of the losses in the

network, accumulation signal grows with time and hence, the trend is removed from

the accumulation before using it for modelling. As the raw accumulation signal is

extremely noisy, the moving average of the accumulation is used for prediction as this

smoothes out the noise to some extent.

The Ns-2 [3] simulator has been used to simulate a best-effort network with

several intermediate source and destination nodes acting as cross-traffic. Data has

been extracted from the traces of ns-2 model and used for creating, validating as

well as testing predictive models. Actual traffic data for modelling has been collected

from planet-lab [8] network using UPBAT [4]. Data will be collected from different

planet-lab nodes to capture various dynamic view of best-effort networks.

Linear identification techniques, such as the AR and the ARMA models, are used

in this work for modelling end-to-end single flows. Non-linear identification technique,

such as the FMLP, is also used to create non-linear predictive models.
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E. Contributions of this Research

The area of modelling the best-effort dynamics is relatively new and very few re-

searchers have attempted to model such systems. Present research makes a bold and

honest attempt to develop empirical models for simulated as well as actual traffic

data. Contributions of the current research work are as follows:

• Development of empirical predictors for the prediction of end-to-end single flow

characteristics in best-effort networks.

• Performance comparison of different linear and non-linear modelling techniques

to predict end-to-end single flow characteristics.

• Study the performance of generic empirical predictors for the prediction of end-

to-end single flow characteristics in best-effort networks, that are independent

of the end-to-end path.

F. Organization of the Thesis

The thesis has been divided in five chapters. Chapter II outlines various system

identification techniques for modelling end-to-end flow characteristics. Measurement

and analysis of end-to-end flow dynamics is discussed in Chapter III. Prediction re-

sults of end-to-end single flow characteristics in a simulated network are presented in

Chapter IV. In Chapter V, prediction results of end-to-end single flow characteristics

in real best-effort networks are presented. Chapter VI deals with the thesis summary

and provides some conclusions. It also includes recommendation for future work in

this area.
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CHAPTER II

METHODS FOR MODELLING AND PREDICTION OF END-TO-END SINGLE

FLOW CHARACTERISTICS

A. Introduction

Estimation problem of the present research is to predict end-to-end single flow char-

acteristics in best-effort networks. An accurate model, which captures important

dynamics of a system, is necessary for better prediction of the system. Basically

there are two types of models in context of system identification, physical models and

empirical models. In physical models, relations between system variables are derived

in deductive manner using laws of nature. In empirical models, model is inferred from

the observed data of the system. Physical models are simple but very time consuming

to derive in most of the cases. Also when dynamics of the system becomes more com-

plex it is unrealistic or impossible to get sufficiently accurate model using physical

models. Empirical modelling in these situations is useful for deriving a satisfactory

model. The models developed in this research are all empirical models.

System identification (SI) aims to infer a mathematical description of a dy-

namic system from series of measurements on the system. Identification problem

is approached in different way depending upon a priori insight of the system. If

no knowledge or only diminutive knowledge about physics of the system is assumed

identification process is called ”black box” modelling. All models developed in present

research are ”black box” models i.e. they are exclusively developed on measured data.

The current chapter is organized as follows: At first system identification pro-

cedure is explained. It is followed by overview of linear and nonlinear identification

methods used in present research. This chapter mainly contains definitions and prin-
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ciples of system identification.

B. System Identification Procedure

Fig. 1. The Basic System Identification Procedure.

The basic procedure to identify a model of a dynamic system is depicted in the

Figure 1 . Naturally, physical insight, prior knowledge of the system and intended use

of the model greatly influences all stages of the system identification. A preliminary

discussion of each stage is given below:

1. Experiment: This is the first and often the most time consuming step of the

basic system identification procedure. The experiments should be designed in

such a way that they can capture important dynamics of the system. The

data-sets thus collected should be analyzed rigorously to make sure that they

describe system behavior over its entire range of operation. Some of the main

issues in the experiment stage are : design of a suitable input signal and choice

of sampling frequency.
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2. Preprocess data: Pre-processing of the data-sets is often useful to obtain

a good model of the system. Data pre-processing includes, e.g., nonlinearity

tests, filtering to enhance important frequency ranges, removal of trends and

outliers and removal of disturbances, noise, and other undesired effects from the

data-sets.

3. Model structure selection: Model structures can be classified in two classes,input-

output and state space model structures. On a general level the problem of

selecting model structure is twofold:

(a) Select a ”family” of model structure to describe the system, e.g., linear

model structures, multilayer perceptron networks, wavelets, or Hammer-

stein models.

(b) Select a subset of the chosen family of model structures, e.g., an Auto-

Regressive Exogenous(ARX) model structure in linear model structures.

Prior knowledge of the system is useful in selecting an appropriate model struc-

ture.

4. Model parameter estimation: Once a specific model structure is assumed,

the next step is to estimate the parameters in the model structure. Different

optimization techniques are available to estimate the model parameters using

available data sets. A common method of estimating the parameters is the

prediction error approach, where the parameters of the model are chosen so

that the difference between the predicted output and the measured output is

minimized.

5. Model validation: The model developed in previous steps must be evaluated

to investigate whether or not it meets the necessary requirements. The model
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validity is generally ascertained by testing the model on completely new data

sets. The model validation step is closely connected to the intended use of the

model.

6. Going backwards in the procedure: A path going back from the validation

block in Figure 1 indicates that the system identification procedure is executed

in an iterative manner. If a developed model does not perform satisfactorily, it

is necessary to go back in the procedure to try out various model structures,

various optimization techniques, and in the worst case redo the experiment.

Given a finite set of input observations {u(1),....,u(N)} and the corresponding

output observations {y(1),....,y(N)}, the aim of the basic system identification proce-

dure is to obtain the free parameters θ and a function G() such that one-step ahead

prediction ŷ(t|t− 1, θ) can be expressed as :

ŷ(t|t− 1, θ) = G
(
φ(t); θ

)
(2.1)

where, θ is the parameter vector and the φ is the regression vector, which contains

system inputs u(.), past outputs y(.), or signals derived from the inputs and outputs.

C. Linear Methods

Linear system identification models assume the dynamic relationship between system

inputs and outputs to be a linear regression. There are many advantages of developing

a linear model:

• Many systems can be described reasonably well by a linear model,

• From a computational perspective it is easy to perform,

• Designing a controller for a linear system is much simpler.
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Linear models can be broadly classified into two types, linear input-output mod-

els and linear state-space models. In the input-output models, the relationship be-

tween the inputs and the outputs is modelled in the form of linear regression. In

the state-space models, the system is modelled through intermediate variables called

states. Present research uses only input-output model structures as it is very difficult

to define states for end-to-end single flow in best effort networks. Moreover, the

system under consideration is modelled as a single input single output (SISO) sys-

tem. Following section briefly describes various linear identification methods used in

present research.

1. Auto-Regressive Exogenous Model

The Auto-Regressive Exogenous (ARX) is the simplest and the most used model

structure in system identification. The general SISO ARX model can be expressed

by the following linear difference equation :

y(t) = a1y(t− 1) + . . . + anyy(t− ny) + b1u(t− nk) + . . . + bnuu(t− nu − nk + 1)

(2.2)

where u(t) and y(t) are the input and the output of the SISO ARX model, ny

and nu are the number of past outputs and the number of past inputs used in the

model, and nk is the pure time delay (the dead time ) in the system. The coefficients

a1,. . . ,any and b1,. . . ,bnu are known as the model parameters.

From the SISO ARX model represented by the equation 2.2, the following Single

Step Predictor (SSP) of the system output can be obtained:

ŷ(t|t− 1, θ) = φT (t)θ (2.3)

where, ϕ(t) = [y(t− 1), . . . , y(t− ny), u(t− nk), . . . , u(t− nu − nk + 1)]T ,
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θ = [a1, . . . , any , b1, . . . , bnu ]T .

The Equation 2.3 is in the form of a linear regression with the model parameter

vector θ as the regression vector. The parameter vector θ in the Equation 2.3 is

estimated using the least-square method. The least-square method estimates the

values of the parameter vector θ that minimizes the mean-square of the prediction

error.

The Auto-Regressive (AR) model is the special case of the ARX model where

only past values of the output is used for modelling the system. The AR model is

also known as time-series modelling. Present research uses the AR model to model

an end-to-end single flow characteristics in best effort networks.

2. Auto-Regressive Moving Average Exogenous Model

The Auto-Regressive Moving Average Exogenous Model (ARMAX) is more general

input-output model than the ARX model. The AR in the ARMAX model refers to

the autoregressive part, and the MA is the moving average and X corresponds to the

extra input called the exogenous variable. The ARMAX model is more flexible than

the ARX model as it also models disturbance dynamics of the system. The ARMA

model formulates the disturbance term as a moving average of a white noise process.

The SISO ARMAX model can be represented by the following equation:

y(t) = a1y(t− 1) + . . . + anyy(t− ny)+

b1u(t− nk) + . . . + bnuu(t− nu − nk + 1)+

c1e(t− 1) + . . . + cnee(t− ne)

(2.4)

where, ne is the number of past noise terms used in the model, e(t) is the pre-

diction error or residual term, and the other variables are the same as in the ARX

model.
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The SISO ARMAX predictor can be written as a scalar product between the

data vector ϕ(t + 1; θ) and the parameter vector θ:

ŷ(t|t− 1, θ) = φT (t)θ (2.5)

where, ϕ(t) = [y(t − 1), . . . , y(t − ny), u(t − nk), . . . , u(t − nu − nk + 1), e(t −
1, θ), e(t− 2, θ), . . . , e(t− ne, θ)]

T ,

θ= [a1, . . . , any , b1, . . . , bnu , c1, c2, . . . , cne ]
T .

The model dependency was indicated by including θ as an argument to φ in

Equation 2.5. The equation 2.5 is in the form of a pseudo-linear regression and hence

the least squares method can be used to solve for θ.

The Auto-Regressive Moving Average (ARMA) model is the special case of the

ARMAX model where no input or exogenous variable is used while modelling the

system. In present research, the ARMA model is used to predict an end-to-end single

flow characteristics in best effort networks.

The system identification toolbox provided by The MathWorks, Inc., is used for

linear system identification of an end-to-end single flow characteristics in best effort

networks.

D. Neural Network Based Nonlinear Methods

In practice, most systems encountered are non-linear to some extent and in many

applications, non-linear models are required to provide acceptable representations.

Motivated by this fact, recently there has been much focus on different approaches to

nonlinear system identification. Artificial Neural Networks (ANNs) have been shown

particularly useful in predicting the dynamics of non-linear systems.

The Multilayer Perceptron (MLP) network is considered as the most-often used
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member of the neural network family. The main reason of using the MLP network

is its ability to model simple as well as very complex functional relationships. The

Feedforward Multilayer Perceptron (FMLP) networks are very good at approximating

memory-less nonlinear functions. The two-layered feedforward network has the ability

to approximate many non-linear function provided the hidden layer contains sufficient

nodes.

1. Feedforward Multilayer Perceptron Networks

Fig. 2. Schematic Diagram of the Fully Connected FMLP Network.

Figure 2 shows a typical fully connected FMLP network. The FMLP network

tries to estimate a non-linear transformation for the input data in order to approx-

imate the output data. The number of input nodes, output nodes and hidden layer

nodes depend on the nature and complexity of the system being modelled. In the

fully connected FMLP network all units in one layer are connected to all units in the

following layer. The mathematical formula expressing the FMLP network takes the
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form:

ŷ(t|t− 1;W) = F
(
U(t− 1);W

)
, (2.6)

F is the nonlinear transformation between the network inputs and outputs, W
is estimated by the learning algorithm. Basically, the learning algorithm adjusts the

network weights and the bias terms till the mean square error between the prediction

and the observation is less than a prescribed tolerance. A Levenberg-Marquardt

method is the standard method for minimization of mean-square error criteria, due

to its rapid convergence properties and robustness.

The two layered fully connected FMLP network is used in the present research

to predict an end-to-end single flow characteristics in best effort networks. The sig-

moidal or the hyperbolic functions are used in the hidden layer nodes while the linear

functions are used in the the output layer nodes. The NNSYSID toolbox provided by

Magnus Nrgaard, has been used for neural network based system identification of an

end-to-end single flow characteristics in best effort networks.

E. Chapter Summary

This chapter gives brief description of the linear methods used for modelling. The

linear tools are simple and effective for the linear systems, but fails to model non-

linearity in the dynamic systems. The neural network based non-linear methods can

be useful for such systems as they can model certain complex systems very effectively.

This chapter also introduces neural network based non-linear methods.
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CHAPTER III

MEASUREMENT AND ANALYSIS OF END-TO-END SINGLE FLOWS

A. Introduction

The first step for modelling end-to-end single flow characteristics is to obtain sufficient

data necessary for developing predictors. To obtain good prediction performance,

data-sets used to develop a predictive model should contain important characteristics

of the best-effort network. Present research assumes a best-effort network to be a

“black-box”, as seen by the source and the destination nodes. In such end-to-end

network approach, variables only measured at the end points, the source and the

destination, are used to model the system. Schematic diagram of end-to-end network

measurements is shown in the Figure 3.

Fig. 3. Schematic Diagram of End-to-End Network Measurements.



19

B. End-to-End Single Flow Characteristics

Real-time applications, such as audio, requires continuous flow of data from the source

to destination. Cumulative amount of data that have been sent into the network by

the source at any given instant of time is called send flow. Similarly, cumulative

amount of data that have reached the destination at any given instant of time is

called arrival flow. When data is sent over the Internet, it is split into segments

called data packets. These packets are then directed to their destination by routers

over different paths, in general. Once these packets reach their destination, they

are reassembled. The time taken by a packet to reach their destination application

is called end-to-end delay. Ideally, the end-to-end delay must remain constant over

time. In this case, send flow and arrival flow are just time-shifted by the constant

delay. Accumulation of a particular flow can be defined as the difference between the

cumulative send and arrival flows. For ideal case, that is when end-to-end delay is

constant, accumulation should stay constant too.

Due to changing network conditions end-to-end delay does not remain constant.

Hence, accumulation in the network also varies with changing network conditions.

The dynamic behavior of a best-effort network can be characterized by end-to-end

delays, end-to-end delay variation or jitter, packet losses, and throughput measure-

ments of the various flows. These variables have a direct impact on the Quality of

Service (QoS) delivered to the users. One of the main reasons for variation in end-

to-end delay is the queuing of packets in the network. A packet is said to experience

queueing delay as it waits in the queue to be transmitted onto the link. This delay

depends on packets that are queued before the specific packet and which are already

in the queue waiting to be transmitted. Hence, this delay could vary significantly

from one packet to another and it could range from a few milliseconds to hundreds of
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milliseconds. Since the queue limit or the queue capacity of a router is always finite,

incoming packets sometimes do not find place and the router drops these packet.

Thus, most of the packet losses in the network occur when the router queues are full.

When the packet is queued in the network, accumulation of the network increases.

Hence, network accumulation gives direct indiction of the congestion in the network

and can be a good signal to gauge present network conditions.

In present research, accumulation of end-to-end single flow is chosen as a sig-

nal to model end-to-end single flow characteristics. One way end-to-end delay, the

time taken by the packet to travel from the application layer of the source to the

application layer of destination, can also be used for modelling end-to-end single flow

characteristics. The advantage of choosing network accumulation over the end-to-end

delay is that the packet loss or large packet delays do not result in the disruption of

the signal. Also network accumulation signal could be used during instances of flow

reversal when packet arrive at their destination out-of-order. When the packet drop

occurs in the network, the lost packet never reaches destination. Because of this, ac-

cumulation signal which is the difference of send and arrival flow, grows. That means

the accumulation signal are made up of two components : total losses occurred in

the network and accumulation at the present time. Because of these losses in the

network, accumulation signal grows with time and hence, the trend is removed from

the accumulation before using it for modelling. As the raw accumulation signal is

extremely noisy, the moving average of the accumulation is used for prediction as this

smoothes out the noise to some extent.
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C. Collection of Simulated Data

This section describes the generation of artificial or simulated UDP traces in ns-2.

Ns-2 generated data will now be called as simulated data. This section also contains

assumptions, details of network topology and brief analysis of simulated data.

1. Assumptions

The major assumptions made during the collection of simulated data are:

1. A single flow travels on a unique path between a source and a destination.

Hence, flow reversal is not considered in the predictor development process.

2. Packets having more than 150 milliseconds one way end-to-end delay are con-

sidered as lost packets. This assumption is necessary because in real time ap-

plications late arrived packets are as good as being lost in the network.

2. Network Architecture

A simulated network must be designed in such a fashion that the simulated data

contains important characteristics of the best effort network. The Ns-2 simulator is

used to simulate best-effort network with several intermediate source and destination

nodes acting as cross-traffic. The network simulated in present research is normalized

and used only to demonstrate the prediction performance of end-to-end single flows.

The simulated network parameters are tuned to reflect certain important char-

acteristics of the best effort network. For example, the ratio of the end-to-end flow

to that of the total cross-traffic flow is kept less than 1%. A traffic mix of Transport

Control Protocol(TCP) based flows and UDP based flows is approximately main-

tained as 90% and 10% respectively. About 82% of the total network traffic is kept



22

as hypertext transfer protocol (HTTP) traffic to make simulated network compara-

ble with the Internet. Simulated cross-traffic is suddenly increased and decreased to

mimic bursty nature of the cross-traffic in the actual best effort networks. Simulation

conditions are also tuned to enable some matching of the end-to-end delay profiles

with actual traffic data. Figure 4 shows the basic topology of the simulated network.

Fig. 4. Network Topology for Simulated Data.

The simulated network has 230 TCP nodes and 10 UDP nodes. Every node in

the network behaves as a flow source or a flow sink. Each TCP source sends either

ftp or http flow in the network. Ftp and http flow creates variable bit rate traffic

in the network. The UDP source sends constant bit rate (CBR) traffic in to the

network. The nominal packet size of the CBR traffic is 256 bytes and the nominal

inter-departure time is 25 milliseconds (ms). Two UDP nodes, the source and the

destination, are used as a flow source and a flow sink of an end-to-end single flow

being modelled in present research.

The bottleneck link, the most congested link in the network, has a bandwidth

of 10 mbps and a propagation delay of 30 ms. All links and queues are chosen to be
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duplex and drop-tail, respectively. The simulation is performed for 100 seconds.

The data sets have been generated for 20 ms and 60 ms inter-departure time of

the send packets: Different traces have been obtained by varying the source send-rate

between 10 Kbps to 60 Kbps for each inter-departure time. Here, source rate is varied

by keeping the packet inter-departure time constant and varying the packet-size of the

sent packets. It is important to note that the inter-departure time and the packet-size

of the sent flow are constant for a particular session. The Data is then extracted from

the traces of ns-2 model and used for creating, validating as well as testing predictive

models.

3. Analysis and Pre-Processing of the Simulated Data

Present research aims to create predictive models for the accumulation of the end-to-

end single flow in best-effort networks. The accumulation is computed by measuring

the cumulative send and arrival flow periodically at the source and the destination.

After lots of experiments the time interval for measuring the cumulative flows is kept

equal to the inter-departure time of send packets. As discussed in the earlier section,

the accumulation is a growing signal and so the trend has been removed from it before

using for modelling. Here, the trend is dynamically calculated by adding mean slope

of last 1 second window to the current value of the trend. As the accumulation is

extremely noisy, the moving average of the accumulation is used for prediction as this

smoothes out the noise to some extent. The moving average window is set as 120

ms and the window is moved by one sample i.e. window is moved by 20 ms if the

sampling time is 20 ms and 60 ms if the sampling time is 60 ms.

A preliminary study on autocorrelation functions of moving average accumula-

tion is necessary as it helps in choosing the order of the linear predictive models.

Figure 5 represents the typical normalized auto-correlation of the accumulation in
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the simulated best-effort networks. It can be seen from the figure that even after

500 lags the auto-correlation drops only to 0.83, which shows that the data sets have

long-term dependency of very high order. The direct practical implication of the

long-term dependency is that it is difficult to obtain an empirical model for these

data.
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Fig. 5. Auto-Correlation Function of Moving Average Accumulation for 500 lags.

D. Collection of Actual Traffic Data

Although many simulators are available, none of them can accurately capture precise

behavior of the best-effort networks mainly due to the complexity and non-equilibrium

involved. Therefore, It is important to check the performance of the proposed ap-

proach on real data. This section describes the collection of end-to-end single UDP

flow data on the planet-lab network using the UPBAT tool. The data thus collected
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will now be called as ”actual traffic data”. This section also contains assumptions,

information about experimental setup and brief analysis of actual UDP traffic data.

1. Assumptions

The most important assumption in the collection of the real UDP flow data is that the

packets having more than 150 milliseconds one way end-to-end delay are considered

as lost in the network. This assumption is important because in real-time applications

late arrival of the packet is equivalent to losing that packet in the network.

2. Experiment Setup

Figure 6 shows the basic topology used for measuring the actual UDP traffic data

on the PlanetLab network. The UDP Packet Behavior Analyzing Tool (UPBAT)

tool developed by Yeom [4] has been used in the present research for measuring one-

way end-to-end single UDP flow characteristics. The UPBAT tool requires access

to two nodes, a source node and a destination node, to collect end-to-end single

flow UDP data. In the present research, one-way end-to-end flow characteristics are

collected from various nodes on the PlanetLab network. PlanetLab is a network

of computers strategically located at sites around the world, forming a test-bed or

platform for conducting Internet scale experiments and for developing new network

services. Network services deployed on the Planet-lab experience all behavior of

the real Internet and hence, create a unique environment to conduct experiments at

Internet scale.

The UPBAT tool uses two separate threads for sending and receiving UDP data

packets. A server program is started on the destination node and a client program is

started on the source node. Packets are sent from the source node to the destination

node and after reaching the destination node they are echoed back to the source node.
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Fig. 6. Network Setup for Measured Traffic Data Collection.

When packets finally reach back to the source both forward and reverse delays for

UDP packets are calculated.

Different data-sets are collected by varying the source send-rate between 20 Kbps

to 50 Kbps. Various data-sets are also collected at different times of the day to capture

variability of the cross-traffic in the best-effort networks. Data is also collected from

three different end-to-end node pairs on the Planetlab to capture various dynamic

view of the best-effort networks. The data sets have been collected for 20 ms and 60

ms inter-departure time of the send packets. It is important to note that the inter-

departure time and the packet-size of the sent flow are kept constant for a particular

session.

3. Analysis and Pre-Processing of the Real Data

The UPBAT tool gets both forward and reverse delays for UDP packets and thereby

allows one to obtain end-to-end single flow accumulation as a function of time using

several parameters like the packet size and inter-departure time. The accumulation

signal is then detrended to account for the losses in the network. The next step is

to apply the principle of moving average window to the accumulation signal. The

moving average window principle is based on computing the average of the data
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in a particular time interval and then moving this window forward in small time

steps. Thus moving average accumulation of end-to-end single flow signal is used

for prediction purposes. Here, the trend is dynamically calculated by adding mean

slope of last 1 second window to the current value of the trend. The moving average

window is set as 120 ms and the window is moved by one sample i.e. window is moved

by 20 ms if the sampling time is 20 ms and 60 ms if the sampling time is 60 ms.

Figure 7 represents the typical normalized auto-correlation of the moving average

accumulation of the end-to-end single flow for the real-data. It can be seen from the

figure that even after 500 lags the auto-correlation drops only to 0.87, which shows

that the data sets have long-term dependency of very high order.
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Fig. 7. Auto-Correlation Function of Moving Average Accumulation for 500 lags; UDP

Trace Collected Between TAMU and Seattle3 at a Constant Send Rate of 50

Kbps.
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E. Chapter Overview

This chapter describes data collection process for simulated traffic data as well as

measured traffic data. A brief discussion of various available end-to-end flow charac-

teristics is also given. Important assumptions in the data collection process are also

stated in this chapter. Brief analysis of the collected data sets is also given.
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CHAPTER IV

END-TO-END SINGLE FLOW PREDICTION FOR SIMULATED TRAFFIC

DATA

A. Introduction

For any complex effort, good engineering practice suggests that the effectiveness of the

proposed approach should be evaluated for simulated conditions before testing it on

real world conditions. This chapter investigates the performance of various empirical

models for predicting end-to-end single flow characteristics in a simulated best-effort

network. The empirical models have been developed using the linear and non-linear

empirical techniques described in Chapter II. Next section describes the performance

metrics used in this research. It is followed by a section that gives description of

training and validation data sets. The following section explains development of the

linear and non-linear predictors. The subsequent sections then deal extensively with

a comparative study of the various linear and nonlinear predictive models.

B. Performance Metrics

In this research, Mean Square Error(MSE) is used as a performance metric for the

predictors developed. It is defined as the ratio between the sum of the square of the

prediction error and the sum of the square of the input data. MSE can be represented

by the following equation:

MSE =

∑N
k=1 (x(k)− x̂(k|k − 1))2

∑N
k=1 x(k)2

× 100 (4.1)

where N is the total number of data points, x(k) is the actual value of the
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output, and x̂(k|k−1) is the prediction value of the output. MSE can be also defined

as the inverse of Signal-To-Noise Ratio(SNR). MSE considered as one of the best

performance metric that gives a good picture on the quality of the predictor.

C. Description of Training and Validation Data Sets

The data-sets have been extracted from the ns-2 traces for developing and validating

predictive models. Selection of training, testing and validation data sets is closely

connected to the intended use of the model. Main motivation of the current research

is to develop an accurate predictor that can be used as a input to a controller that

controls the sending rate of packets over the networks in real-time. The source rate of

the end-to-end flow can be varied in two ways, by varying the packet inter-departure

time or by varying the packet-size. After various experiments, it is observed that

when the inter-departure time of the send packets was changed the end-to-end flow

characteristics reflected in the data-sets is also changed drastically. Hence, empiri-

cal models developed for data-set having one packet inter-departure time performed

extremely bad for the data-sets having different inter-departure time of the send pack-

ets. Therefore, two different sets of linear and non-linear predictors are developed

and tested at each 20 ms and 60 ms inter-departure time of the send packets. The

predictive models are trained at a 30 Kbps source send-rate for each inter-departure

time. Performance of the developed models is then evaluated by varying source send-

rate between 10 Kbps to 60 Kbps. Here, source send-rate is varied by changing the

packet-size of send packets. It is important to note that the inter-departure time and

the packet-size of the sent flow are constant for a particular session. The simulation

is performed for 100 seconds in all cases.

The network accumulation for each traces is computed by periodically calculat-
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ing the cumulative send and arrival flow at the source and the destination. The time

interval for measuring cumulative flows is equal to the inter-departure time of send

packets. The data-sets is then processed before using for modeling and testing of the

predictive models. Processing of the data-sets includes two steps. At first, the trend

is removed from the accumulation to calculate present accumulation in the network.

And then moving average accumulation is calculated for system identification pur-

pose. Here, the trend is dynamically calculated by adding mean slope of last 1 second

window to the current value of the trend. The moving average window is set as 120

ms and the window is moved by one sample i.e. window is moved by 20 ms if the

sampling time is 20 ms and 60 ms if the sampling time is 60 ms.

D. Development of Linear and Non-linear Predictors

The next step is to use system identification techniques to obtain the best empirical

model. The training data is divided into three sets namely training data, testing and

validation data as shown in Figure 8. The predictors are developed on the training

data and testing data and then they are evaluated on a validation data which is part

of the data-set but not used in the estimation of the weights. Here, different sets of

linear and non-linear predictors are developed and tested for 20 ms and 60 ms packet

inter-departure time of the send packets.

After various permutations and combinations, an AR predictor with model of

the order {41} and ARMA with model order {42 16} are found give the best fit for

the training data-set having 20 ms inter-departure time of the send packets. This

means that 41 past outputs have been used in the AR model and 42 past outputs and

16 past noise terms have been used in the ARMA model. The model order is very

high in this case which indicates the long term dependency of the data-sets. For the
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Fig. 8. Representation of Training, Testing and Validation Data Sets.
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data-sets having 60 ms inter-departure time of the send packets, an AR predictor with

model structure {26} and ARMA with model structure {26 8} are found to be most

suitable for the prediction. There are no inputs for the predictors as the cross-traffic,

which has the highest impact on the flow characteristics, cannot be measured and it

is considered as a disturbance of the model.

Training method of non-linear predictor is completely different from the linear

models. Selecting model-structure and parameters of non-linear model is very time

consuming and effort taking process. After extensive search over several possible

FMLP architectures, FMLP model structure {35 4 1} which translates into 35 input

layer nodes, 4 hidden layer nodes and 1 output layer is found to be the best model-

structure for the training data-sets having 20 ms inter-departure time of the send

packets. Similarly, for the training data-set having 60 ms packet inter-departure

time, most suitable FMLP model structure is {21 3 1}. During the training process

the performance of the predictor is determined using the mean square error of the

signal. Here, it can be noted that the model orders of the training data-set having

20 ms packet inter-departure time is much higher than model orders of the training

data-sets having 60 ms packet inter-departure time. Hence, it can be concluded that

the order of the model structure is reduced when the inter-departure time of send

packet is increased.

E. Single-Step-Ahead Prediction

A single step-ahead prediction is a first step in evaluating the performance of the

developed predictor. SSP in following cases means 20 ms ahead prediction for the

data-sets having 20 ms inter-departure time of the send packets and 60 ms ahead

prediction for the data-sets having 60 ms inter-departure time of the send packets.
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1. Performance Evaluation of Single-Step-Ahead Predictors

Performance evaluation of the trained linear and non-linear predictors is presented in

this section. This is done by testing each of these models for different source send-rate

test cases.

Figure 9 shows the SSP of moving average accumulation using the AR model.

It depicts the actual accumulation, the moving average accumulation and the pre-

dicted moving average accumulation for a constant send rate of 20 Kbps with 20

ms inter-departure time of the send packets. It also shows the errors between the

predicted moving average accumulation and the original accumulation as well as the

errors between the predicted moving average accumulation and the moving average

flow accumulation. The figure shows the predictor can capture the dynamics of the

network for one-step ahead prediction. It should be noted that the maximum predic-

tion error with actual accumulation is 50 bytes. Similarly, Figure 10 shows the SSP

of moving average flow accumulation using the ARMA model for a constant send rate

of 10 Kbps with 20 ms inter-departure time of the send packets. Figure 11 shows the

SSP of moving average flow accumulation using the FMLP model for a constant send

rate of 30 Kbps with 60 ms inter-departure time of the send packets.

For the sake of clarity of presented results only 500-1000 samples have been

shown in all the figures. It can been seen in the figures that predictors perform bad

during sudden increase and decrease of the accumulation. As can been seen from

Figures 9, 10, 11 that AR, ARMA perform almost similar to each other for the SSP

of moving average as well as actual accumulation. All the figures also indicate that

the developed models are reasonably accurate for the single step-ahead prediction of

actual accumulation.
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Fig. 9. Single-Step-Ahead Prediction of Moving Average Accumulation Using the AR

Model; Constant Send Rate of 20 Kbps with 20 ms Inter-departure Time of

the Send Packets.
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Fig. 11. Single-Step-Ahead Prediction of Moving Average Accumulation Using the

FMLP Model; Constant Send Rate of 30 Kbps with 60 ms Inter-departure

Time of the Send Packets.
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2. Comparison of Single-Step-Ahead Predictor Performance

The results of the SSP on all the test cases using AR, ARMA and FMLP are tabulated

in this section. Tables I and II show the performance evaluation results of the AR,

ARMA and FMLP predictor on the various send rate test cases in terms of the

performance indicator MSE. It can be seen from Table I that AR, ARMA and FMLP

results are consistent for various send rate cases having 20 ms inter-departure time of

send packets. Table II shows the SSP results of the AR, ARMA and FMLP predictor

for the various send rate cases having 60 ms inter-departure of the send packets. Table

II shows that the AR and ARMA model perform equivalent while the FMLP model

performs slightly inferior for certain send rate cases.

The results of tables I and II can’t be compared because Table I represents 20

ms ahead prediction and Table II represents 60 ms ahead prediction.

From the Tables I and II, it can be concluded that the developed linear and non-

linear predictors gives satisfactory single-step ahead prediction results for different

source send-rate cases.

Table I. Comparative MSE Results of Single-Step-Ahead Predictions for Send Rate

Test Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

10Kbps 1.32 1.33 1.36

20Kbps 1.01 1.03 1.04

40Kbps 0.73 0.73 0.76

50Kbps 1.53 1.55 1.56

60Kbps 1.12 1.16 1.25
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Table II. Comparative MSE Results of Single-Step-Ahead Predictions for Send Rate

Test Cases Having 60 ms Packet Inter-departure Time.

send rate AR ARMA FMLP

10Kbps 3.54 3.47 3.60

20Kbps 4.89 4.91 4.97

40Kbps 4.03 4.04 4.42

50Kbps 5.26 5.23 7.65

60Kbps 4.02 4.08 5.15

F. Multi-Step-Ahead Prediction

The present section explores multi-step-ahead prediction performance of the devel-

oped linear and non-linear predictors.

1. Performance Evaluation of Multi-Step-Ahead Predictors

The send-rate test cases used for evaluating the MSP predictors are same as the

send-rate cases used for evaluating SSP predictors. This will be helpful in comparing

various time-step-ahead predictors on a common scale. Multi-step ahead predic-

tion contains three sections: 120 ms-ahead prediction, 240-ms ahead prediction and

420 ms-ahead prediction. The motivation for selecting certain time-ahead prediction

instead of number of steps ahead prediction is to examine the effect of packet inter-

departure time on the prediction performance. With certain time ahead prediction,

it becomes easier to compare prediction results for data-sets having 20 ms and 60

inter-departure time of send packets.
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a. 120 ms-Ahead Prediction

For the end-to-end single flows having 60 ms inter-departure time of send packets, 120

ms-ahead prediction means two step-ahead prediction while for the end-to-end single

flows having 20 ms inter-departure time of send packets, it means six step-ahead

prediction.

Figure 12 shows the 120 ms-ahead prediction of moving average accumulation

using the AR model. It depicts the actual accumulation, the moving average accu-

mulation and the predicted moving average accumulation for a constant send rate of

40 Kbps having 20 ms inter-departure time of the send packets. It shows a good 120

ms-ahead prediction and the MSE for this case is 2.67%. Though MSE is good for this

prediction, time-shift between the predicted moving average accumulation and the ac-

tual accumulation can be easily observed. It should be observed that the maximum

prediction error between the predicted moving average and the actual accumulation

is 400 bytes.

Figure 13 shows the 120 ms-ahead of moving average flow accumulation using

the ARMA model for a constant send rate of 10 Kbps having 60 ms packet inter-

departure time. The MSE for the test case shown in the figure is 7.91%. Comparison

of the Figure 12 and 13 shows that the prediction errors are higher in cases of the end-

to-end single flows having 60 ms inter-departure time of the send packets. Figure 14

shows the 120 ms-ahead prediction of moving average accumulation using the FMLP

model for a constant send rate of 50 Kbps having 20 ms inter-departure time of the

send packets. It shows a reasonably good prediction and the MSE for this test case

is 5.83%.
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Fig. 12. 120 ms-Ahead Prediction of Moving Average Accumulation Using the AR

Model; Constant Send Rate of 40 Kbps with 20 ms Inter-departure Time of

the Send Packets.
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Fig. 13. 120 ms-Ahead Prediction of Moving Average Accumulation Using the ARMA

Model; Constant Send Rate of 10 Kbps with 60 ms Inter-departure Time of

the Send Packets.
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Fig. 14. 120 ms Ahead Prediction of Moving Average Accumulation Using the FMLP

Model; Constant Send Rate of 50 Kbps with 20 ms Inter-departure Time of

the Send Packets.
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b. 240 ms-Ahead Prediction

For the end-to-end single flows having 60 ms inter-departure time of the send packets,

240 ms ahead prediction means four step-ahead prediction while for the end-to-end

single flows having 20 ms inter-departure time of the send packets, it means twelve

step-ahead prediction.

Figure 15 shows 240 ms-ahead prediction of moving average accumulation using

the AR model. It shows 240 ms-ahead prediction for a constant send rate of 30 Kbps

having 20 ms inter-departure time of the send packets. It shows that fairly good

240 ms-ahead prediction can be achieved for end-to-end single flows having 20 ms

inter-departure time of the send packets. It should be observed that the maximum

prediction error between the predicted moving average and the actual accumulation

is 1000 bytes. Figure 15 also shows the increase of time-shift between the predicted

moving average accumulation and the actual accumulation. This time-shift is an

important factor because timeliness of the prediction is as important as the accuracy

because of the intended use of the predictor.

Figure 16 shows the 240 ms ahead prediction of moving average flow accumulation

using the ARMA model. It shows 240 ms-ahead prediction for a constant send rate

of 50 Kbps having 20 ms packet inter-departure time. It shows a reasonably good

prediction and although prediction errors are high, the developed ARMA model can

capture some important flow dynamics. Figure 17 shows the 240 ms-ahead prediction

of moving average accumulation using the FMLP model for a constant send rate of

40 Kbps having 60 ms inter-departure time of the send packets. The MSE for this

test case is 25.66%. Figure 17 shows that FMLP does not perform well for 240 ms

ahead prediction for end-to-end single flow having 60 ms packet inter-departure time.

A big time-shift and missing of some spikes can also be easily observed.
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Fig. 15. 240 ms Ahead Prediction of Moving Average Accumulation Using the AR

Model; Constant Send Rate of 30 Kbps Having 20 ms Inter-departure Time

of the Send Packets.
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Fig. 16. 240 ms Ahead Prediction of Moving Average Accumulation Using the ARMA

Model; Constant Send Rate of 50 Kbps Having 20 ms Inter-departure Time

of the Send Packets.
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Fig. 17. 240 ms Ahead Prediction of Moving Average Accumulation Using the FMLP

Model; Constant Send Rate of 40 Kbps Having 60 ms Inter-departure Time

of the Send Packets.
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c. 420 ms-Ahead Prediction

For the end-to-end single flows having 60 ms inter-departure time of the send packets,

420 ms ahead means seven step-ahead prediction while for the end-to-end single flows

having 20 ms inter-departure time of send packets, it means twenty-one step-ahead

prediction.

Figure 18 shows 420 ms-ahead prediction of moving average accumulation using

the AR model. It shows the actual accumulation, the moving average accumulation

and the predicted moving average accumulation for a constant send rate of 50 kbps

having 20 ms inter-departure time of the send packets. It also shows that AR model

fails to perform well for 420 ms-ahead prediction. As can be seen in the figure,

prediction error between the predicted moving average accumulation and the actual

moving average accumulation is up to 2100 bytes. It also shows very big time-shift

between the predicted moving average accumulation and the actual accumulation.

Figure 19 shows the 420-ms ahead prediction of moving average flow accumula-

tion using the ARMA model. It shows 420 ms-ahead prediction for a constant send

rate of 40 Kbps having 60 ms packet inter-departure time of the send packets. It

shows that ARMA model also does not perform well for 420 ms ahead prediction

for end-to-end single flows having 60 ms inter-departure time of the send packets. It

should be noted that errors between the predicted moving average accumulation and

the actual accumulation is up to 1700 bytes which is equivalent to the height of the

spikes in accumulation. From Figures 18 and 19, it can be easily concluded that the

predictor performance is extremely bad for the prediction horizon of 420 ms.
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Time.
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2. Comparison of Multi-Step-Ahead Predictor Performance

The results of the MSP on various send-rate cases for AR, ARMA and FMLP pre-

dictors are tabulated in this section.

a. 120 ms-Ahead Prediction

Tables III and IV show the performance evaluation results of the AR, ARMA and

FMLP models on the various send rate test cases in terms of the performance indicator

MSE.

Table III shows 120 ms-ahead prediction results of the AR, ARMA and FMLP

model for various send rate cases having 20 ms inter-departure of the send packets.

As seen in the table, the MSE results for AR model on different send-rate cases

varies between 2.67% to 4.81%, which means that the AR model gives consistent

performance for various source send-rate cases. Table also shows that the AR, ARMA

and FMLP models perform almost equivalent in all cases.

Table IV shows 120 ms-ahead results for various send rate cases having 60 ms

inter-departure time of the send packets. It shows that the performance of AR and

ARMA model is similar while the performance of the FMLP model is little worse.

Comparison of Tables III and IV indicates that the data-sets having 20 ms packet

inter-departure time can be better predicted than the data-sets having 60 ms packet

inter-departure time. It can also be concluded that the developed linear and non-

linear predictors gives satisfactory 120 ms ahead prediction results for various source

send-rates.
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Table III. Comparative MSE Results of 120 ms-Ahead Predictions for Send Rate Test

Cases Having 20 ms Packet Inter-departure Time.

send rate AR ARMA FMLP

10Kbps 4.81 4.86 5.24

20Kbps 3.69 3.72 3.99

40Kbps 2.67 2.69 2.89

50Kbps 5.65 5.79 5.83

60Kbps 4.14 4.18 4.56

Table IV. Comparative MSE Results of 120 ms-Ahead Predictions for Send Rate Test

Cases Having 60 ms Packet Inter-departure Time.

send rate AR ARMA FMLP

10Kbps 7.55 7.91 9.46

20Kbps 10.02 10.13 11.94

40Kbps 8.31 8.36 9.74

50Kbps 10.45 10.70 18.29

60Kbps 8.42 8.41 12.26
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b. 240 ms-Ahead Prediction

Tables V and VI show the performance evaluation results of the AR, ARMA and

FMLP predictor on the various send rate test cases for 240 ms-ahead prediction.

Table V shows the 240 ms-ahead results for the various send rate cases having 20

ms inter-departure of the send packets. As seen in the table, the performance of the

AR model for different send-rate cases varies between 7.76% to 13.01%. It is observed

that variation in the prediction performance of the developed models increases as the

prediction horizon increases. Table VI shows the 240 ms-ahead results of the AR,

ARMA and FMLP predictor for the various send rate cases having 60 ms inter-

departure of the send packets. It can been seen from Table VI that AR, ARMA

perform almost similar while FMLP results are much worse than the AR and ARMA

model. From the tables, it can be concluded that the predictor performance reduces

drastically when prediction horizon is increased from 120 ms-ahead prediction to 240

ms-ahead prediction.

Table V. Comparative MSE Results of 240 ms-Ahead Predictions for Send Rate Test

Cases Having 20 ms Packet Inter-departure Time.

send rate AR ARMA FMLP

10Kbps 13.10 13.50 18.20

20Kbps 10.30 10.94 12.17

40Kbps 7.76 8.11 11.41

50Kbps 14.99 16.24 19.55

60Kbps 11.05 11.62 15.73
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Table VI. Comparative MSE Results of 240 ms-Ahead Predictions for Send Rate Test

Cases Having 60 ms Packet Inter-departure Time.

send rate AR ARMA FMLP

10Kbps 16.69 16.54 22.05

20Kbps 21.09 21.65 25.66

40Kbps 18.21 18.86 22.38

50Kbps 21.39 22.56 29.90

60Kbps 17.70 17.91 27.72

c. 420 ms-Ahead Prediction

Table VII shows the 420 ms-ahead results of the AR, ARMA and FMLP predictor

for the various send rate cases having 20 ms inter-departure of the send packets.

As seen from the table, the performance of the AR model varies from 16.95% to

28.66% for different send-rate cases. It is observed that the variation in the prediction

performance is much higher compared to 240 ms-ahead prediction.

Table VII also shows that the AR model performs best for different send-rate

cases while FMLP model performs worst for all cases. The FMLP results are as high

as 45.63% which indicates bad prediction performance. Table VIII shows the 420

ms-ahead results of the AR, ARMA and FMLP predictor for the various source-send

rates having 60 ms inter-departure of the send packets. It can been seen from Table

VIII that the AR and ARMA model perform similar while FMLP results are much

worse than the AR and ARMA model.

It can be concluded that the predictor performance reduces drastically when pre-

diction horizon in increased 240 ms-ahead prediction to 420 ms-ahead prediction. As

seen in tables VII and VIII, developed predictors fail to capture important dynamics



55

of the system and performs bad for all send-rate cases.

Table VII. Comparative MSE Results of 420 ms-Ahead Predictions for Send Rate Test

Cases Having 20 ms Packet Inter-departure Time.

send rate AR ARMA FMLP

10Kbps 27.44 29.59 45.63

20Kbps 21.38 23.78 34.17

40Kbps 16.95 18.60 22.68

50Kbps 28.66 32.66 37.04

60Kbps 23.01 25.31 29.38

Table VIII. Comparative MSE Results of 420 ms-Ahead Predictions for Send Rate

Test Cases Having 60 ms Packet Inter-departure Time.

send rate AR ARMA FMLP

10Kbps 30.27 29.92 39.58

20Kbps 36.28 37.57 45.53

40Kbps 32.16 33.51 36.26

50Kbps 37.87 40.42 44.88

60Kbps 31.54 32.19 37.45

G. Chapter Overview

This chapter dealt with the training, testing and validation of the linear and nonlinear

predictors for the prediction end-to-end single flow characteristics in a simulated

network. The various performance metrics used for the evaluation of the predictor
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are discussed in this chapter. The performance of the linear and non-linear predictors

are investigated for different send-rate cases at different time-steps ahead predictions.

Also the comparison of various developed predictors for various send rate cases is

performed. The effect of various inter-departure time of the send packets on prediction

performance is also analyzed in this chapter. It is observed that the predictors perform

well for single-step ahead prediction but their performance reduces drastically when

the prediction horizon is increased beyond 240 ms.
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CHAPTER V

END-TO-END SINGLE FLOW PREDICTION FOR ACTUAL TRAFFIC DATA

A. Introduction

After obtaining good prediction results for simulated traffic data, next step is to inves-

tigate the performance of the empirical models for measured traffic data. This chapter

is mainly divided in two sections: path-dependent predictors and path-independent

predictors. In path-dependent predictors section, predictors are developed for a par-

ticular pair of source and destination nodes and their performance is then evaluated

on the same pair for which it was developed. While in path-independent predictors

section, predictors are developed for a particular pair of source and destination nodes

and their performance is then evaluated for different pair of source and destination

nodes. Data used in this chapter is collected from a PlanetLab network.

B. Performance Metrics

In this research, Mean Square Error(MSE) is used as a performance metric for the

predictors developed. It is defined as the ratio between the sum of the square of the

prediction error and the sum of the square of the input data. MSE can be represented

by the following equation:

MSE =

∑N
k=1 (x(k)− x̂(k|k − 1))2

∑N
k=1 x(k)2

× 100 (5.1)

where N is the total number of data points, x(k) is the actual value of the

output, and x̂(k|k−1) is the prediction value of the output. MSE can be also defined

as the inverse of Signal-To-Noise Ratio(SNR). MSE considered as one of the best
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performance metric that gives a good picture on the quality of the predictor.

C. Path-dependent Predictors

Path-dependent predictors means that the predictor is developed for a particular pair

of source and destination nodes and their performance is then evaluated for data-sets

collected from the same pair of source and destination nodes. Results of two different

pairs of source and destination nodes is presented in this section.

1. Description of Training and Validation Data Sets

As discussed earlier, data-sets used in this section is measured from the PlanetLab

network. As present research is more interested in a congested network, data-sets

having than 3% losses are only used for modeling and testing of models. That means

it is assumed that the network is congested if the total loss in the collected data-sets

is more than 3%.

Two different sets of source and destination pair are selected and various linear

and non-linear predictors are individually developed for each source and destination

pair. Table IX shows two pair of source and destination nodes used in present section.

Henceforth, Ucsd3-Niml node pair will be referred as node pair 1 and Niml-seattle3

pair will be referred as node pair 2. Details of the data-collection process have been

explained in Chapter III.

Table IX. Source and Destination Nodes on PlanetLab Used for Data Collection.

Soure Node Destination Node Name

Ucsd3(PlanetLab) Niml (TAMU) Node pair 1

Niml (TAMU) Seattle3 (PlanetLab) Node pair 2
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Two different sets of linear and non-linear predictors are developed and tested for

20 ms and 60 ms inter-departure time of the send packets. Two sets of AR,ARMA

and FMLP models, for 20 ms and 60 ms inter-departure time of the send packets

have been developed for both source-destination pairs. Hence, in total four sets of

AR, ARMA and FMLP predictors are developed and validated in present section.

In all cases, the linear and non-linear predictors are developed at a source-rate of 30

Kbps. Performance of the developed models is then evaluated by varying the source

send-rate between 20 Kbps to 50 Kbps. Here, source send-rate is varied by changing

the packet-size of send packets. It is important to note that the inter-departure time

and the packet-size of the sent flow are constant for a particular session. For every

source-send rate, performance of the developed predictors are validated for 5 data-sets

collected during different time of the day. This has been done to gauge the predictor

performance under varying cross-traffic conditions.

The network accumulation for each traces is calculated by periodically calculating

cumulative send and arrival flow at the source and the destination. The time interval

used for measuring cumulative flows is equal to the inter-departure time of send

packets. The data-sets is then processed before using for modeling and testing of the

predictive models.

Processing of the data-sets includes two steps. In the first step, the trend is re-

moved from the total accumulation to calculate present accumulation in the network.

In the second step, the time-series of the moving average of present accumulation

is calculated for system identification purpose. Here, the trend is dynamically cal-

culated by adding mean slope of last 1 second window to the current value of the

trend. The moving average window is set as 120 ms and the window is moved by one

sample i.e. window is moved by 20 ms if the sampling time is 20 ms and 60 ms if the

sampling time is 60 ms.
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2. Development of Linear and Non-linear Predictors

The next step is to use system identification techniques to obtain the best empirical

model. For each source and destination pair, two different sets of linear and non-

linear predictors are developed for 20 ms and 60 ms packet inter-departure time of

the send packets. In all cases, the linear and non-linear predictors are developed at

30 Kbps source send-rate.

For Node pair 1, after various permutations and combinations, an AR predictor

with model structure {35} and ARMA with model structure {32 8} give the best fit

for the training data-set having 20 ms inter-departure time of the send packets. This

means that 35 past outputs have been used in the AR model and 32 past outputs

and 8 past noise terms have been used in the ARMA model. The model order is

very high in this case which indicates the long term dependency of the data-sets. For

the data-sets having 60 ms inter-departure time of the send packets, an AR predictor

with model structure {17} and ARMA with model structure {17 3} have been found

to be most suitable for the prediction. There are no inputs for the predictors as

the cross-traffic, which has the highest impact on the flow characteristics, cannot be

measured and it is considered as a disturbance of the model.

Training method of non-linear predictor is completely different from the linear

models. Selecting model-structure and parameters of non-linear model is very time

consuming and effort taking process. After extensive search over several possible

FMLP architectures, FMLP model structure {26 3 1} which translates into 26 input

layer nodes, 3 hidden layer nodes and 1 output layer is found to be the best model-

structure for the training data-sets having 20 ms inter-departure time of the send

packets. Similarly for the training data-set having 60 ms packet inter-departure time

, most suitable FMLP model structure is {11 3 1}.
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Similar process is performed for the data-sets of Node pair 2. An AR predictor

with model structure {29} and ARMA with model structure {24 7} give the best fit

for the training data-set having 20 ms inter-departure time of the send packets. For

the data-sets having 60 ms inter-departure time of the send packets, an AR predictor

with model structure {12} and ARMA with model structure {16 5} have been found

to be most suitable for the prediction.

After extensive search over several possible FMLP architectures, FMLP model

structure {21 4 1} is found to be the best model-structure for the training data-sets

having 20 ms inter-departure time of the send packets. Similarly for the training data-

set having 60 ms packet inter-departure time , most suitable FMLP model structure

is {11 3 1}.
During the training process the performance of the predictor is determined using

the mean square error of the signal. It is important to observe that the order of the

model structure reduces when the inter-departure time of send packet is increased.

3. Single-Step Ahead Prediction

A single step-ahead prediction is a first step in evaluating the performance of any

developed predictor. SSP in following cases means 20 ms ahead prediction for the

data-sets having 20 ms inter-departure time of the send packets and 60 ms ahead

prediction for the data-sets having 60 ms inter-departure time of the send packets.

a. Performance Evaluation of Single-Step-Ahead Predictors

Performance evaluation of the trained linear and non-linear predictors is presented in

this section. This is done by testing each of these models for different source send-rate

test cases.

For the sake of clarity of the presented results, all figures show only 500-1000
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Fig. 20. Single-Step-Ahead Prediction of Moving Average Accumulation on Node Pair

1 Using the AR Model ; Constant Send Rate of 20 Kbps with 20 ms Packet

Inter-departure Time.
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Fig. 21. Single-Step-Ahead Prediction of Moving Average Accumulation on Node Pair

2 Using the ARMA Model ; Constant Send Rate of 30 Kbps with 20 ms Packet

Inter-departure Time.
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Fig. 22. Single-Step-Ahead Prediction of Moving Average Accumulation on Node Pair

2 Using the AR Model ; Constant Send Rate of 10 Kbps with 60 ms Packet

Inter-departure Time.
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Fig. 23. Single-Step-Ahead Prediction of Moving Average Accumulation on Node Pair

1 Using the FMLP Model ; Constant Send Rate of 40 Kbps with 20 ms Packet

Inter-departure Time.
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samples of the data-sets.

Figure 20 shows the SSP of moving average accumulation using the AR model.

It depicts the actual accumulation, the moving average accumulation and the pre-

dicted moving average accumulation on node pair 1 for a constant send rate of 20

Kbps with 20 ms inter-departure time of the send packets. It shows that the AR

model can capture the dynamics of the network for SSP. It should be noted that the

maximum prediction error between the predicted moving average accumulation and

actual accumulation is less than 150 bytes.

Figure 21 shows the SSP of moving average accumulation using the ARMA

model. It shows the prediction of moving average accumulation on node pair 2 for a

constant send rate of 30 Kbps with 20 ms inter-departure time of send packets. It

depicts that the SSP of ARMA model is also accurate.

Figure 22 shows the SSP of moving average accumulation for Node pair 2 using

the AR model. It shows the prediction of moving average accumulation for a constant

send rate of 10 Kbps with 60 ms inter-departure time of the send packets. The figure

shows that the SSP of accumulation for node pair 2 is also accurate.

Figure 23 shows the SSP of moving average accumulation using the FMLP model.

It shows the actual accumulation, the moving average accumulation and the predicted

moving average accumulation on Node Pair 1 for a constant send rate of 40 Kbps with

20 ms inter-departure time of the send packets.

Above figures indicates that AR, ARMA and FMLP models perform similar for

the SSP of moving average accumulation. They also indicate that the developed

models are accurate in the single step-ahead prediction of actual accumulation.
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b. Comparison of Single-Step-Ahead Predictor Performance

The results of the SSP using AR, ARMA and FMLP predictors are tabulated in this

section. Following tables show the performance evaluation results in terms of the

performance indicator MSE. As discussed earlier, 5 data-sets are collected for every

source send-rate and tables show mean, minimum and maximum value of MSE for

all send-rate cases.

Tables X and XI show the performance evaluation results of the AR, ARMA

and FMLP predictors for the various send rate test cases on node pair 1. Similarly,

Tables XII and XIII show the performance evaluation results of the AR, ARMA and

FMLP predictors for the various send rate test cases on node pair 2. Table X shows

that AR, ARMA and FMLP results perform similar for various send rate cases with

20 ms inter-departure time of the send packets. It also shows that maximum MSE

for the developed predictors are not very high, which suggests that the performance

of developed predictors is consistent under varying cross-traffic conditions. Table XI

shows the SSP results of the AR, ARMA and FMLP predictors for various send rate

cases having 60 ms inter-departure of the send packets. Table XI also shows that the

AR, ARMA and FMLP models perform similarly for SSP. Table XII shows that the

SSP results of the AR, ARMA and FMLP predictors on node pair 2 for various send

rate cases with 20 ms inter-departure of the send packets.

Table XII shows that AR, ARMA and FMLP models performs accurately for

various send rate cases having 20 ms inter-departure time of send packet. Table XIII

shows that the SSP results of the AR, ARMA and FMLP predictor for the various

send rate cases having 60 ms inter-departure of the send packets. From the following

tables, it can be concluded that the developed linear and non-linear predictors give

accurate single-step ahead prediction results for both node pairs 1 and 2.
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Table X. Comparative MSE Results of Single-Step-Ahead Predictions for Node Pair

1; Send Rate Cases Having 20 ms Packet Inter-departure

Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 1.05 0.57 2.39 1.04 0.56 2.36 1.08 0.57 2.40

30Kbps 1.66 1.30 3.91 1.64 1.28 3.88 1.63 1.35 3.96

40Kbps 1.48 1.22 2.68 1.44 1.20 2.66 1.57 1.27 3.69

50Kbps 1.47 0.90 2.91 1.45 0.85 2.98 1.54 0.98 3.09

Table XI. Comparative MSE Results of Single-Step-Ahead Predictions for Node Pair

1; Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 2.48 1.01 3.37 1.81 0.94 5.26 2.04 1.07 5.56

30Kbps 1.99 0.96 3.17 2.54 1.31 3.54 2.64 1.22 3.51

40Kbps 2.77 1.37 3.65 2.46 0.84 3.61 2.84 1.17 3.91

50Kbps 2.65 0.84 3.71 3.13 1.26 4.40 3.17 1.69 4.67
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Table XII. Comparative MSE Results of Single-Step-Ahead Predictions for Node Pair

2; Send Rate Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 1.59 0.40 3.20 1.56 0.39 3.90 1.60 0.44 3.10

30Kbps 1.72 0.24 5.07 1.69 0.22 5.82 1.70 0.26 5.64

40Kbps 1.66 0.23 7.07 1.62 0.26 8.82 1.67 0.28 7.63

50Kbps 1.48 0.49 6.92 1.65 0.48 6.59 1.75 0.53 6.84

Table XIII. Comparative MSE Results of Single-Step-Ahead Predictions for Node Pair

2; Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 3.46 0.70 5.90 3.54 0.81 6.14 4.51 1.57 6.16

30Kbps 4.48 0.75 7.29 5.15 0.80 6.92 5.56 0.73 7.31

40Kbps 4.30 0.19 7.12 4.28 0.32 6.48 5.32 0.27 7.33

50Kbps 3.92 1.08 6.03 3.78 1.83 7.21 4.80 1.32 6.87
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4. Multi-Step Ahead Prediction

The present section explores the multi-step-ahead prediction of the developed linear

and non-linear predictors.

a. Performance Evaluation of Multi-Step-Ahead Predictors

The send-rate test cases used for evaluating the MSP predictors are same as the

send-rate cases used for evaluating SSP predictors. This will be helpful in comparing

various time-step-ahead predictors on a common scale.

Multi-step ahead prediction contains three sections: 120 ms-ahead prediction,

240-ms ahead prediction and 420 ms-ahead prediction. The motivation for selecting

certain time ahead prediction instead of number of step ahead prediction is to examine

the effect of packet inter-departure time on the prediction performance. With certain

time ahead prediction, it becomes easier to compare prediction results for data-sets

having 20 ms and 60 ms inter-departure time of send packets.

120 ms-Ahead Prediction:

For the end-to-end single flows having 60 ms inter-departure time of the send packets,

120 ms ahead prediction means two step-ahead prediction while for the end-to-end

single flows having 20 ms inter-departure time of the send packets, it means six step-

ahead prediction.

Figure 24 shows the 120 ms-ahead prediction of moving average accumulation

using the AR model. It depicts the actual accumulation, the moving average accumu-

lation and the predicted moving average accumulation on node pair 1 for a constant

send rate of 20 Kbps with 20 ms inter-departure time of the send packets. It shows

that the AR model can perform well for the 120 ms-ahead prediction of moving av-



71

erage accumulation. It should be noted that the maximum prediction error between

the predicted moving average accumulation and actual accumulation is less than 350

bytes.

Similarly, Figure 25 shows the 120 ms-ahead prediction of moving average accu-

mulation using the FMLP model. It shows the prediction of moving average accumu-

lation on node pair 2 for a constant send rate of 10 Kbps with 20 ms inter-departure

time of send packets. It shows that the FMLP model also performs well for the 120

ms-ahead prediction of moving average accumulation. Figure 26 shows the 120 ms-

ahead prediction of moving average accumulation using the ARMA model. It shows

the prediction of moving average accumulation on node pair 1 for a constant send

rate of 30 Kbps with 60 ms inter-departure time of the send packets.

Figure 27 shows the 120 ms-ahead prediction of moving average accumulation

using the AR model. It shows the actual accumulation, the moving average accumu-

lation and the predicted moving average accumulation on node pair 1 for a constant

send rate of 10 Kbps with 60 ms inter-departure time of the send packets. Above

figures indicate that the developed models are reasonably accurate for the 120 ms-

ahead prediction of the actual accumulation.
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Fig. 24. 120 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the AR Model; Constant Send Rate of 20 Kbps with 20 ms Packet

Inter-departure Time.
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Fig. 25. 120 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the FMLP Model; Constant Send Rate of 10 Kbps with 20 ms Packet

Inter-departure Time.
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Fig. 26. 120 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the ARMA Model; Constant Send Rate of 30 Kbps with 60 ms Packet

Inter-departure Time.
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Fig. 27. 120 ms Ahead Prediction of Moving Average Accumulation on Node Pair 2

Using the AR Model; Constant Send Rate of 10 Kbps with 60 ms Packet

Inter-departure Time.
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240 ms-Ahead Prediction:

For the end-to-end single flows having 60 ms inter-departure time of the send packets,

240 ms ahead prediction means four step-ahead prediction while for the end-to-end

single flows having 20 ms inter-departure time of the send packets, it means twelve

step-ahead prediction.

Figure 28 shows the 240 ms-ahead prediction of moving average accumulation

using the FMLP model. It depicts the actual accumulation, the moving average

accumulation and the predicted moving average accumulation on node pair 1 for a

constant send rate of 50 Kbps with 60 ms inter-departure time of the send packets.

Although the prediction errors are high in this case, the developed model can capture

some important dynamics of the network. Figure 29 shows the 240 ms-ahead predic-

tion of moving average accumulation using the AR model. It shows the prediction of

moving average accumulation on node pair 2 for a constant send rate of 10 Kbps with

60 ms inter-departure time of send packets. It should be noted that maximum pre-

diction error in this case is as less as 230 bytes. But at the same time, the maximum

height of the moving average accumulation is less than 550 bytes.

Figure 30 shows the 240 ms-ahead prediction of moving average accumulation

using the ARMA model. It shows the prediction of moving average accumulation on

node pair 1 for a constant send rate of 50 Kbps with 20 ms inter-departure time of

the send packets. Figure 31 shows the 240 ms-ahead prediction of moving average

accumulation using the AR model. It shows the actual accumulation, the moving

average accumulation and the predicted moving average accumulation on node pair

1 for a constant send rate of 40 Kbps with 20 ms inter-departure time of the send

packets. Above figures indicate that the prediction performance of the developed

models are acceptable.
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Fig. 28. 240 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the FMLP Model; Constant Send Rate of 50 Kbps with 60 ms Packet

Inter-departure Time.
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Fig. 29. 240 ms Ahead Prediction of Moving Average Accumulation on Node Pair 2

Using the AR Model; Constant Send Rate of 10 Kbps with 60 ms Packet

Inter-departure Time.
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Fig. 30. 240 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the ARMA Model; Constant Send Rate of 50 Kbps with 20 ms Packet

Inter-departure Time.
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Fig. 31. 240 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the AR Model; Constant Send Rate of 40 Kbps with 20 ms Packet

Inter-departure Time.
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Some time-shift between the predicted moving average accumulation and the

actual accumulation is also observed in all cases.

420 ms-Ahead Prediction:

For the end-to-end single flows having 60 ms inter-departure time of the send packets,

420 ms ahead prediction means seven step-ahead prediction while for the end-to-end

single flows having 20 ms inter-departure time of the send packets, it means twenty-

one step-ahead prediction. Figure 32 shows the 420 ms-ahead prediction of moving

average accumulation using the AR model. It depicts the actual accumulation, the

moving average accumulation and the predicted moving average accumulation node

pair 1 for a constant send rate of 30 Kbps on with 20 ms inter-departure time of

the send packets. It shows that the developed AR model fails to perform well for

420 ms-ahead prediction. Figure 33 shows the 420 ms-ahead prediction of moving

average accumulation using the FMLP model. It shows the prediction of moving

average accumulation on node pair 1 for a constant send rate of 10 Kbps with 20

ms inter-departure time of send packets. It can be observed from the figure that

the FMLP model completely misses spikes and is unable to capture the dynamics

of the network. Figure 34 shows the 420 ms-ahead prediction of moving average

accumulation using the ARMA model. It shows the prediction of moving average

accumulation on node pair 1 for a constant send rate of 30 Kbps with 60 ms inter-

departure time of the send packets. From the figures, it can be easily concluded that

predictor performance is extremely bad for 420ms prediction horizon. It can also be

observe that the predictors especially perform bad for sudden increase and decrease

of the accumulation. Time-shift between the predicted moving average accumulation

and the actual accumulation is also very high in all cases.
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Fig. 32. 420 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the AR Model; Constant Send Rate of 30 Kbps with 20 ms Packet

Inter-departure Time.



83

44 46 48 50 52 54 56 58
−200

−100

0

100

200

300

400

500

600

700

Time (sec)

A
cc

um
ul

at
io

n 
(b

yt
es

)

44 46 48 50 52 54 56 58
−300

−200

−100

0

100

200

300

400

500

600

Time (sec)

P
re

di
ct

io
n 

E
rr

or
 (

by
te

s)

Actual vs. Predicted Moving Average
Moving Average vs. Predicted Moving Average

Actual Time−series
Moving Average
Predicted Moving Average

Fig. 33. 420 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the FMLP Model; Constant Send Rate of 10 Kbps with 20 ms Packet

Inter-departure Time.
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Fig. 34. 420 ms Ahead Prediction of Moving Average Accumulation on Node Pair 1

Using the ARMA Model; Constant Send Rate of 30 Kbpswith 60 ms Packet

Inter-departure Time.
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b. Comparison of Multi-Step-Ahead Predictor Performance

The results of the MSP using AR, ARMA and FMLP predictors are tabulated in

this section. Each section show the performance evaluation results in terms of the

performance indicator MSE.

120 ms-Ahead Prediction:

Tables XIV and XV show the performance evaluation results of the AR, ARMA and

FMLP predictors for the various send rate test cases on node pair 1. Similarly, Tables

XVI and XVII show the performance evaluation results of the AR, ARMA and FMLP

predictors for the various send rate test cases on node pair 2.

Table XIV shows that AR, ARMA and FMLP results perform similar for various

send rate cases with 20 ms inter-departure time of the send packets. It also shows

that mean MSE for different seed-rate cases is similar. That means the developed

predictors can perform well for different source send-rates. Table XV shows the 120

ms-ahead prediction results of the AR, ARMA and FMLP predictors for send rate

cases having 60 ms inter-departure of the send packets. It also shows that the AR

and ARMA models perform similarly while FMLP performs little worse in certain

cases. It should also be observed that maximum MSE for FMLP model is higher

than AR and ARMA models. Table XVI shows that the prediction results of the AR,

ARMA and FMLP predictors for the various send rate cases on node pair 2 having

20 ms inter-departure of the send packets. Table XVII shows that the SSP results of

the AR, ARMA and FMLP predictor for the various send rate cases having 60 ms

inter-departure of the send packets. It should be observed here that the prediction

results for flows having 20 ms packet inter-departure time is better than flows having

60 ms packet inter-departure time.
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Table XIV. Comparative MSE Results of 120 ms-Ahead Predictions for Node Pair 1;

Send Rate Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 4.75 1.93 7.42 4.86 1.84 7.54 3.42 2.08 6.99

30Kbps 5.05 4.14 5.92 5.19 3.94 6.50 5.40 2.94 7.85

40Kbps 4.28 3.69 5.11 4.33 3.82 4.98 4.94 3.15 7.44

50Kbps 4.48 2.94 5.05 4.43 2.99 5.21 5.79 3.55 7.08

Table XV. Comparative MSE Results of 120 ms-Ahead Predictions for Node Pair 1;

Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 6.12 2.45 7.76 6.32 2.43 10.89 6.80 3.48 14.50

30Kbps 5.89 2.48 11.18 6.35 2.78 13.06 6.18 2.61 8.15

40Kbps 6.55 3.39 8.17 6.95 2.17 8.27 8.75 5.34 13.50

50Kbps 6.46 2.14 8.36 7.30 3.08 10.28 8.57 6.33 12.01
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Table XVI. Comparative MSE Results of 120 ms-Ahead Predictions for Node Pair 2;

Send Rate Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 4.60 1.30 8.66 4.92 1.33 9.68 5.51 5.40 12.36

30Kbps 5.67 1.74 8.26 5.47 0.69 9.72 6.97 3.88 13.21

40Kbps 4.96 1.75 9.67 5.19 0.67 12.54 7.24 3.26 19.35

50Kbps 3.60 1.66 10.63 3.55 1.56 11.61 5.70 2.89 15.84

Table XVII. Comparative MSE Results of 120 ms-Ahead Predictions for Node Pair 2;

Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 5.42 2.49 9.53 6.12 2.54 10.04 6.55 2.93 13.24

30Kbps 8.87 2.53 10.03 9.89 2.94 11.93 10.48 3.58 11.79

40Kbps 7.55 1.65 11.19 7.58 1.85 12.18 9.54 1.98 13.63

50Kbps 8.98 2.77 12.15 8.83 2.85 13.16 9.73 2.13 14.30
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240 ms-Ahead Prediction:

For the end-to-end single flows having 60 ms inter-departure time of the send packets,

240 ms ahead prediction means four step-ahead prediction while for the end-to-end

single flows having 20 ms inter-departure time of the send packets, it means twelve

step-ahead prediction.

Tables XVIII and XIX show the performance evaluation results of the AR,

ARMA and FMLP predictors for the various send rate test cases on node pair 1.

Similarly, Tables XX and XXI show the performance evaluation results of the AR,

ARMA and FMLP predictors for the various send rate test cases on node pair 2.

Table XVIII shows the AR, ARMA and FMLP results for various send rate cases

with 20 ms inter-departure time of the send packets on node pair 1. Table XIX shows

240 ms-ahead prediction results of the AR, ARMA and FMLP predictors for send rate

cases having 60 ms inter-departure of the send packets. Tables XVIII and XIX shows

sudden increase of MSE when compared to the 120 ms-ahead prediction results. It

indicates that prediction deteriorates faster when the prediction horizon is increased.

Table XX and XXI show the prediction results of the AR, ARMA and FMLP

predictors for the various send rate cases with 20 and 60 ms inter-departure of the

send packets, respectively. Though mean MSE for the node pair 1 and 2 are similar,

maximum MSE for node pair 2 is much higher than node pair 1. It suggests that

the prediction performance of the developed predictors is worse for node pair 2 than

node pair 1. Here, it can also be observed from the tables that variation of MSE

for data-sets collected during different time of the day is also more. It means that

data-sets still contains lots of unmodeled dynamics.
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Table XVIII. Comparative MSE Results of 240 ms-Ahead Predictions for Node Pair

1; Send Rate Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 12.05 5.80 20.36 12.16 5.93 23.81 10.59 7.56 22.01

30Kbps 13.71 10.69 23.22 14.42 10.36 23.92 11.09 7.78 32.57

40Kbps 12.43 10.94 13.05 13.10 11.33 15.38 18.79 10.89 32.96

50Kbps 11.64 8.97 14.35 11.97 9.85 16.18 22.97 17.92 23.84

Table XIX. Comparative MSE Results of 240 ms-Ahead Predictions for Node Pair 1;

Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 15.92 7.15 19.25 13.52 6.69 26.59 26.90 8.60 32.03

30Kbps 13.82 6.47 26.79 16.75 8.43 20.90 21.70 12.56 27.07

40Kbps 16.80 7.69 20.56 17.11 6.22 20.85 21.29 9.10 25.08

50Kbps 18.22 5.77 20.79 18.15 8.15 25.27 24.17 21.93 38.25
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Table XX. Comparative MSE Results of 240 ms-Ahead Predictions for Node Pair 2;

Send Rate Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 10.36 8.08 23.90 12.38 8.22 31.73 16.33 9.60 29.78

30Kbps 11.27 7.74 32.26 12.47 7.69 36.72 17.97 8.18 39.23

40Kbps 9.51 5.07 23.90 10.60 5.83 31.73 13.82 9.37 39.78

50Kbps 10.73 4.77 31.50 14.44 4.71 33.58 15.34 8.54 33.71

Table XXI. Comparative MSE Results of 240 ms-Ahead Predictions for Node Pair 2;

Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 11.08 7.71 38.87 14.34 8.54 37.32 18.62 12.25 38.46

30Kbps 22.23 8.71 39.73 23.85 8.46 47.51 25.34 8.47 50.59

40Kbps 17.10 6.25 32.46 19.03 7.47 44.54 29.11 7.79 52.57

50Kbps 17.21 7.90 33.34 19.10 8.78 42.77 27.32 11.66 42.82
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420 ms-Ahead Prediction:

For the end-to-end single flows having 60 ms inter-departure time of the send packets,

420 ms ahead prediction means seven step-ahead prediction while for the end-to-end

single flows having 20 ms inter-departure time of the send packets, it means twenty-

one step-ahead prediction.

Table XXII. Comparative MSE Results of 420 ms-Ahead Predictions for Node Pair 1;

Send Rate Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 25.98 15.75 49.29 29.30 17.44 51.96 30.81 21.96 57.70

30Kbps 32.38 23.50 35.08 38.61 24.40 39.42 39.42 29.17 51.25

40Kbps 30.59 26.90 35.77 36.75 31.71 40.09 32.20 23.82 53.52

50Kbps 27.33 24.12 36.70 31.31 29.85 47.13 33.68 31.46 45.33

Table XXIII. Comparative MSE Results of 420 ms-Ahead Predictions for Node Pair

1; Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 35.82 17.32 44.37 33.19 15.91 50.12 46.90 18.60 52.07

30Kbps 32.18 14.12 57.51 40.91 19.21 59.10 35.77 12.56 57.07

40Kbps 38.45 16.63 47.55 41.07 15.87 51.83 54.27 16.10 55.08

50Kbps 38.80 13.35 50.28 41.83 18.47 55.94 44.17 31.94 58.25
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Table XXIV. Comparative MSE Results of 420 ms-Ahead Predictions for Node Pair

2; Send Rate Cases Having 20 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 21.50 13.35 31.30 30.55 17.43 32.85 32.63 20.38 43.84

30Kbps 27.70 15.93 37.62 38.95 14.64 42.50 41.45 19.12 46.41

40Kbps 24.61 14.35 33.23 34.75 14.11 42.52 42.04 19.12 53.82

50Kbps 16.93 11.64 41.88 20.73 12.35 49.10 33.30 24.59 48.29

Table XXV. Comparative MSE Results of 420 ms-Ahead Predictions for Node Pair 2;

Send Rate Cases Having 60 ms Packet Inter-departure Time.

Send Rate AR ARMA FMLP

mean min max mean min max mean min max

20Kbps 21.19 19.01 50.81 30.90 12.54 58.59 39.67 20.45 61.53

30Kbps 37.64 18.40 61.22 42.75 18.46 57.51 44.24 18.47 72.33

40Kbps 31.51 16.20 57.47 36.79 20.82 62.97 56.37 18.37 75.06

50Kbps 32.93 18.74 66.25 38.50 22.41 64.11 59.15 21.99 70.88
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Table XXII and XXIII shows the AR, ARMA and FMLP results for various send

rate cases with 20 and 60 ms inter-departure time of the send packets on node pair

1. Table XXIV and XXV show the prediction results of the AR, ARMA and FMLP

predictors for the various send rate cases with 20 and 60 ms inter-departure of the

send packets on node pair 2, respectively. They show further increase of MSE from

240 ms-ahead prediction results. From the tables, it can be seen that AR models

performs best among developed models and FMLP models perform worst.

It should be also noted that maximum MSE in case of AR model is the least

which further indicates that AR models perform best among the developed models

when prediction horizon is increased. It should be observed that maximum MSE

is much higher for flows having 60 ms packet inter-departure time. By noting the

difference between minimum and maximum MSE , it can be derived that developed

predictors fail to capture important dynamics of the system under varying cross-traffic

conditions.

D. Path-Independent Predictors

Here, path-independent predictors means that the predictor is developed for a par-

ticular pair of source and destination nodes and its performance is then evaluated

for different pair of source and destination nodes. The motivation behind developing

path-independent predictors is to check the feasibility of developing generic empirical

model that can be used for any source and destination pair.

1. Description of Training and Validation Data Sets

Data-sets used in this section is measured from the PlanetLab network. As present

research is more interested in a congested network, data-sets having than 3% losses
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are only used for modeling and testing of models. That means it is assumed that the

network is congested if the total loss in the collected data-sets is more than 3%. All

data-sets used in section have 60 ms inter-departure time of the send packets.

Three different sets of source and destination pair are selected and various linear

and non-linear predictors are individually developed for each source and destination

pair. Table XXVI shows three pair of source and destination nodes used in present

section. It also shows the name of models developed for three source-destination pairs.

Henceforth, Ucsd3-Niml node pair will be referred as node pair 1, Niml-seattle3 node

pair will be referred as node pair 2 and Niml-nbgisp3 node pair will be referred as

node pair 3. Details of the data-collection process have been explained in Chapter

III.

Table XXVI. Source and Destination Nodes on PlanetLab Used for Data Collection.

Soure Node Destination Node Developed models

Ucsd3(PlanetLab) Niml (TAMU) AR 1,ARMA 1,FMLP 1

Niml (TAMU) Seattle3(PlanetLab) AR 2,ARMA 2,FMLP 2

Niml (TAMU) nbgisp3(PlanetLab) AR 3,ARMA 3,FMLP 3

In all cases, the linear and non-linear predictors are developed at source-rate

of 30 Kbps. Performance of all the developed predictors are tested on the data-sets

collected from the node pair 1. Performance of the developed models is then evaluated

for different source send-rate between 20 Kbps to 50 Kbps. Here, source send-rate is

varied by changing the packet-size of send packets. It is important to note that the

inter-departure time and the packet-size of the sent flow are constant for a particular

session. For every source-send rate, Performance of the developed predictors are

validated for 5 data-sets collected during different time of the day. This has been
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done to gauge the predictor performance under varying cross-traffic conditions.

The network accumulation for each traces is computed by periodically calculating

cumulative send and arrival flow at the source and the destination. The time interval

used for measuring cumulative flows is equal to the inter-departure time of send

packets. The data-sets is then processed before using for modelling and testing of

the predictive models. Processing of the data-sets includes two steps. First, the

trend is removed from the total accumulation to calculate present accumulation in

the network. And then time-series of the moving average of present accumulation is

calculated for system identification purpose. Here, the trend is dynamically calculated

by adding mean slope of last 1 second window to the current value of the trend. The

moving average window is set as 120 ms and the window is moved by one sample i.e.

window is moved by 60 ms.

2. Development of Linear and Non-linear Predictors

The next step is to use system identification techniques to obtain the best empirical

model. Here, three different sets of linear and non-linear predictors for are developed

and tested for 60 ms packet inter-departure time of the send packets. In all cases, the

linear and non-linear predictors are developed at 30 Kbps source send-rate.

For Node pair 1, after various permutations and combinations, an AR predictor

with model structure {17} and ARMA with model structure {17 3} give the best

fit for the training data-set. Those models will be referred as AR 1 and ARMA 1

from now on. After extensive search over several possible FMLP architectures, FMLP

model structure {11 3 1} which translates into 11 input layer nodes, 3 hidden layer

nodes and 1 output layer is found to be the best model-structure for the training

data-set. Henceforth, this model will be referred as FMLP 1.

Similar process is performed for the Node pair. An AR predictor with model
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structure {12} and ARMA with model structure {16 5} have been found to be most

suitable for the prediction. Those models will be referred as AR 2 and ARMA 2 from

now on. The most suitable FMLP model structure for the training data-set is {11 3

1}. It will be referred as FMLP 2. Similarly for the node pair 3, An AR predictor

with model structure {19} and ARMA with model structure {22 7} have been found

to be most suitable for the prediction. Those models will be referred as AR 3 and

ARMA 3 from now on. The most suitable FMLP model structure for the training

data-sets is {15 3 1}. It will be referred as FMLP 3.

It is important to note that training data-set are different for each set of pre-

dictors. During the training process the performance of the predictor is determined

using the mean square error of the signal.

3. Single-Step Ahead Prediction

A single step-ahead prediction is a first step in evaluating the performance of any

developed predictor. SSP in following cases means 60 ms ahead prediction.

a. Performance Evaluation of Single-Step-Ahead Predictors

Figure 35 shows the SSP of moving average accumulation using the AR models for a

constant send rate of 20 Kbps. It can be seen from the figure that model AR 1 and

AR 2 perform similarly for the SSP. It also shows that AR 1 and AR 2 can capture the

accumulation peaks accurately and can capture important dynamics of the network.

Figure 36 shows the SSP of moving average accumulation using the ARMA models

for a constant send rate of 30 Kbps. It shows that ARMA models perform accurately

and similar in this case too.

Figure 37 shows the SSP of moving average accumulation using the FMLP models

for a constant send rate of 50 Kbps. From the figure, it can be deducted that FMLP
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Fig. 35. Single-Step-Ahead Prediction of Moving Average Accumulation Using the AR

Model for a Constant Send Rate of 20 Kbps.
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Fig. 36. Single-Step-Ahead Prediction of Moving Average Accumulation Using the

ARMA Model for a Constant Send Rate of 30 Kbps.
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Fig. 37. Single-Step-Ahead Prediction of Moving Average Accumulation Using the

FMLP Model for a Constant Send Rate of 50 Kbps.
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2 model does not perform as good as FMLP 1 model. The figures show that the

predictors developed for different end-to-end path perform similar for the SSP of the

actual accumulation.

b. Comparison of Single-Step-Ahead Predictor Performance

The results of the SSP using AR, ARMA and FMLP predictors are tabulated in this

section. Following tables show the performance evaluation results in terms of the

performance indicator MSE. As discussed earlier, 5 data-sets are collected for every

source send-rate and tables show mean, minimum and maximum value of MSE for

all send-rate cases.

Table XXVII. Comparative MSE Results of Single-Step-Ahead Predictions for AR

Models.

Send Rate AR 1 AR 2 AR 3

mean min max mean min max mean min max

20Kbps 2.48 1.01 3.37 3.40 1.54 4.85 3.44 1.47 4.97

30Kbps 1.99 0.96 3.17 2.35 1.25 5.63 2.33 1.16 5.67

40Kbps 2.77 1.37 3.65 3.21 1.78 3.96 3.20 1.72 4.03

50Kbps 2.65 0.84 3.71 3.10 1.15 4.01 3.13 1.06 4.06

Table XXVII shows the performance results of AR models for different source

send-rate. It can be seen from the table that the performance of AR 1, AR 2 and AR

3 models is similar. Table XXVIII shows the performance results of ARMA models

at different source send-rate. It can be seen from the table that the performance of

ARMA 1 , ARMA 2 and ARMA 3 models are also similar. It should be observed that

maximum MSE for all three developed models are also quite less, which indicates that
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Table XXVIII. Comparative MSE Results of Single-Step-Ahead Predictions for

ARMA Models.

Send Rate ARMA 1 ARMA 2 ARMA 3

mean min max mean min max mean min max

20Kbps 1.81 0.94 5.26 3.20 1.63 4.55 3.25 1.45 4.64

30Kbps 2.54 1.31 3.54 2.27 1.37 5.30 2.20 1.16 5.37

40Kbps 2.46 0.84 3.61 3.01 1.74 3.74 3.02 1.69 3.79

50Kbps 3.13 1.26 4.4 2.71 1.25 3.75 2.95 1.05 3.75

Table XXIX. Comparative MSE Results of Single-Step-Ahead Predictions for FMLP

Models.

Send Rate FMLP 1 FMLP 2 FMLP 3

mean min max mean min max mean min max

20Kbps 2.04 1.07 5.56 7.94 5.62 9.41 8.10 5.35 9.56

30Kbps 2.64 1.22 3.51 4.67 3.71 8.08 2.41 1.26 5.50

40Kbps 2.84 1.17 3.91 6.61 5.17 7.58 3.01 1.66 4.46

50Kbps 3.17 1.69 4.67 6.80 5.37 8.08 3.15 0.98 4.10
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the ARMA models perform accurately under varying cross-traffic conditions. Table

XXIX shows the performance results of FMLP models at different source send-rate.

It should be observed from the table that FMLP 1 and FMLP 3 models perform

similar while worse FMLP 2 model performs worse than them.

4. Multi-Step Ahead Prediction

Present section explores the multi-step-ahead prediction of the developed linear and

non-linear predictors. To be useful for a congestion control/avoidance algorithms,

generic predictor must be able to predict end-to-end single flow characteristics well

ahead of time.

a. Performance Evaluation of Multi-Step-Ahead Predictors

The send-rate test cases used for evaluating the MSP predictors are same as the

send-rate cases used for evaluating SSP predictors. This will be helpful in comparing

various time-step-ahead predictors on a common scale. Multi-step ahead prediction

contains three sections: 120 ms-ahead prediction, 240-ms ahead prediction and 420

ms-ahead prediction.

120 ms-Ahead Prediction:

In present section, 120 ms ahead prediction means two step-ahead prediction. Figure

38 shows the 120 ms-ahead prediction of moving average accumulation using the AR

models for a constant send rate of 40 Kbps. It can be seen from the figure that the

developed models perform accurately but AR 1 model performs slightly better than

AR 2 model.

Figure 39 shows the 120 ms-ahead prediction of moving average accumulation

using the ARMA models for a constant send rate of 30 Kbps. Figure 40 shows the
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Fig. 38. 120 ms Ahead Prediction of Moving Average Accumulation Using the AR

Model for a Constant Send Rate of 40 Kbps.
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Fig. 39. 120 ms Ahead Prediction of Moving Average Accumulation Using the ARMA

Model for a Constant Send Rate of 30 Kbps.
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Fig. 40. 120 ms Ahead Prediction of Moving Average Accumulation Using the FMLP

Model for a Constant Send Rate of 20 Kbps.
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SSP of moving average accumulation using the FMLP models for a constant send rate

of 20 Kbps. The figures show that the predictors developed for node pair 1 performs

best among the developed models but the performance of the models developed for

node pair 2 and 3 is also good.

240 ms-Ahead Prediction:

In the present section, 240 ms-ahead prediction means four-step ahead prediction.

Figure 41 shows the 240 ms-ahead prediction of moving average accumulation using

the AR models for a constant send rate of 20 Kbps. It can be seen from the figure

that AR1 model performs better than AR 2 model. This is understandable as AR 1

is developed for this particular end-to-end path while AR 2 is developed for different

end-to-end path. It is also important to observe that the time-shift observed between

the actual accumulation and the predicted moving average accumulation remains

almost same for both predictors.

Figure 42 shows the 240 ms-ahead prediction of moving average accumulation

using the ARMA models for a constant send rate of 40 Kbps. This figure also shows

performance of the ARMA 1 and ARMA 3 model. Figure shows that ARMA 1

performs better than ARMA 3 model.

It is important to note that as the prediction horizon is increased, the perfor-

mance of the predictors developed on other end-to-end path deteriorates faster than

the predictors developed on that particular end-to-end path. That means that predic-

tors developed on other end-to-end paths may not capture certain specific dynamics

of this particular end-to-end path. It can also be seen from the figures that devel-

oped models perform satisfactorily for 240 ms prediction horizon. It should be also

noted that time-shift between predicted and actual signal is almost similar for all the

developed predictors.
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Fig. 41. 240 ms Ahead Prediction of Moving Average Accumulation Using the AR

Model for a Constant Send Rate of 20 Kbps.
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Fig. 42. 240 ms Ahead Prediction of Moving Average Accumulation Using the ARMA

Model for a Constant Send Rate of 40 Kbps.
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420 ms-Ahead Prediction:

Here, 420 ms ahead prediction means seven-step ahead prediction. Figure 43 shows

the 420 ms-ahead prediction of moving average accumulation using the AR models

for a constant send rate of 20 Kbps. It show the performance of the AR1 model and

AR 2 model for 420 ms-ahead prediction. Figure shows that AR 1 model performs

better than AR 2 model. It means that when the prediction horizon is increased,

deterioration of the AR 2 model performance is much faster than AR 1 model.

Figure 44 shows the 420 ms-ahead prediction of moving average accumulation

using the ARMA models for a constant send rate of 50 Kbps. This figure also shows

that ARMA 1 model performs much better than ARMA 2 model. It can be seen

in the figures that the models developed on the same end-to-end path performs best

among developed models.

It can be easily seen that all the developed models, including the models devel-

oped for this particular path, fails to perform well for 420 ms ahead prediction. In

figures, missing of certain spikes is easily noticeable. It is also seen that prediction of

spikes is sometimes only done after entire spike is gone. As this predictor is intended

to be used in real time, timeliness of the prediction is as important as the accuracy

of the predictor.

In general, predictors developed for this particular end-to-end path performs

better than the predictors developed for different end-to-end paths. This suggests

that different end-to-end path has little different end-to-end flow dynamics. It also

shows that when prediction horizon is increased the performance of the predictors

developed on this particular path is better than the predictors developed for different

end-to-end paths.
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Fig. 43. 420 ms Ahead Prediction of Moving Average Accumulation Using the AR

Model for a Constant Send Rate of 20 Kbps.
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Fig. 44. 420 ms Ahead Prediction of Moving Average Accumulation Using the ARMA

Model for a Constant Send Rate of 50 Kbps.
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b. Comparison of Multi-Step-Ahead Predictor Performance

The results of the MSP using AR, ARMA and FMLP predictors are tabulated in

this section. Each section show the performance evaluation results in terms of the

performance indicator MSE.

120 ms-Ahead Prediction:

Here, 120 ms ahead prediction means two step-ahead prediction. Table XXX shows

the performance results of AR models for different source send-rates. It can be seen

from the table that the performance of AR 1 is accurate while AR 2 and AR 3 model

perform slightly worse than AR 1 model.

Table XXXI shows the performance results of ARMA models at different source

send-rate. It can be seen from the table that the performance of ARMA 1 is better

than ARMA 2 and ARMA 3 models. It should be observed that maximum MSE for

all three developed models are similar.

Table XXXII shows the performance results of FMLP models for different source

send-rates. It should be observed from the table that FMLP 1 and FMLP 3 models

perform similar while worse FMLP 2 model performs very bad. It is important to

observe that maximum MSE of FMLP 2 model in some cases are extremely high.

That indicated that FMLP 2 models perform very bad under varying cross-traffic

conditions. This also true for FMLP 3 model.

It can be seen from the tables that AR models perform better in general than

ARMA and FMLP models. Also, AR models developed for different end-to-end paths

perform more accurately than ARMA and FMLP model developed for different end-

to-end paths.
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Table XXX. Comparative MSE Results of 120 ms-Ahead Predictions for AR Models.

Send Rate AR 1 AR 2 AR 3

mean min max mean min max mean min max

20Kbps 6.12 2.45 7.76 8.89 4.60 11.94 8.46 3.76 11.62

30Kbps 5.89 2.48 11.18 7.04 4.09 12.68 6.39 3.21 12.23

40Kbps 6.55 3.39 8.17 8.72 4.06 8.97 8.05 4.14 9.52

50Kbps 6.46 2.14 8.36 8.38 3.95 9.96 8.33 3.04 9.45

Table XXXI. Comparative MSE Results of 120 ms-Ahead Predictions for ARMA Mod-

els.

Send Rate ARMA 1 ARMA 2 ARMA 3

mean min max mean min max mean min max

20Kbps 6.32 2.43 10.89 9.21 6.07 11.86 8.55 4.38 11.32

30Kbps 6.35 2.78 13.06 7.68 5.97 12.18 6.64 3.86 11.99

40Kbps 6.27 2.17 8.27 8.91 6.60 10.12 8.04 4.67 9.53

50Kbps 7.30 3.08 10.28 8.15 5.63 10.18 7.86 3.57 9.52
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Table XXXII. Comparative MSE Results of 120 ms-Ahead Predictions for FMLP

Models.

Send Rate FMLP 1 FMLP 2 FMLP 3

mean min max mean min max mean min max

20Kbps 6.80 3.48 14.50 14.65 6.39 37.89 9.01 7.43 19.74

30Kbps 6.18 2.61 8.15 17.40 13.58 23.69 7.72 4.05 13.35

40Kbps 7.35 5.34 13.50 8.15 7.34 24.91 6.61 4.20 28.14

50Kbps 8.57 6.33 12.01 13.50 12.85 29.87 9.34 2.87 29.93

240 ms-Ahead Prediction:

Here, 240 ms ahead prediction means four step-ahead prediction. Table XXXIII shows

the performance results of AR models at different source send-rates. It can be seen

from the table that the deterioration of the prediction results of AR2 and AR3 model

is much faster than the prediction results of AR1 model. It should be noted that AR

1 and AR 3 models perform comparable while AR 2 does not perform that accurate.

Table XXXIV shows the performance results of ARMA models at different source

send-rate. It can be seen from the table that the performance of ARMA 1 model is

better than ARMA 2 and ARMA 3 models. It should be observed maximum MSE

for ARMA 2 and ARMA 3 models are much higher than ARMA model.

Table XXXV shows the performance results of FMLP models for different source

send-rates. It should be observed from the table that FMLP 1 model performs better

than FMLP 2 and FMLP 3 models. The performance of FMLP 3 model is still

acceptable but FMLP 2 model performs extremely bad. It is important to observe

that maximum MSE of FMLP 2 model in some cases are extremely high. It indicates

that the FMLP 2 model perform very bad under varying cross-traffic conditions.
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Table XXXIII. Comparative MSE Results of 240 ms-Ahead Predictions for AR Models

Send Rate AR 1 AR 2 AR 3

mean min max mean min max mean min max

20Kbps 15.92 7.15 19.25 23.07 13.03 28.68 20.60 9.35 25.90

30Kbps 13.82 6.47 26.79 19.39 11.96 30.01 16.23 8.16 27.75

40Kbps 16.80 7.69 20.56 22.72 13.70 25.02 19.26 9.88 22.66

50Kbps 18.22 5.77 20.66 20.79 12.92 24.37 19.77 10.13 22.15

Table XXXIV. Comparative MSE Results of 240 ms-Ahead Predictions for ARMA

Models.

Send Rate ARMA 1 ARMA 2 ARMA 3

mean min max mean min max mean min max

20Kbps 13.52 6.69 26.59 27.71 20.46 31.10 20.87 12.90 26.80

30Kbps 16.75 8.43 20.90 25.39 22.29 31.34 18.68 11.76 28.60

40Kbps 17.11 6.22 20.85 26.82 12.70 28.68 21.17 12.98 24.10

50Kbps 18.15 8.15 25.27 25.55 20.84 28.66 20.87 11.3 24.5
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Table XXXV. Comparative MSE Results of 240 ms-Ahead Predictions for FMLP

Models.

Send Rate FMLP 1 FMLP 2 FMLP 3

mean min max mean min max mean min max

20Kbps 26.90 8.60 32.03 38.37 28.43 46.89 28.47 23.40 49.92

30Kbps 21.70 12.56 27.07 34.57 25.59 45.29 23.37 12.91 35.65

40Kbps 21.29 9.10 25.08 40.21 31.29 43.96 15.42 10.20 26.82

50Kbps 24.17 11.93 28.25 39.36 31.45 51.24 21.49 7.74 34.98

420 ms-Ahead Prediction:

In present case, 420 ms-ahead prediction means seven-step-ahead prediction. Table

XXXVI shows the performance results of AR models at different source send-rates.

It can be seen from the table that the deterioration of the prediction results of AR1

and AR3 models perform equivalent while AR 2 model performs extremely bad. It

should be noted here that maximum MSE for all the AR models are very high. That

indicates that all the developed AR model fails capture end-to-end flow dynamics for

420 ms ahead prediction.

Table XXXVII shows the performance results of ARMA models at different

source send-rate. It can be seen from the table that the performance of ARMA 1

model is better than ARMA 2 and ARMA 3 models. It should be observed maxi-

mum MSE for ARMA 2 and ARMA 3 models are much higher than ARMA 1 model.

It means ARMA2 and ARMA 3 models does not perform consistently under varying

cross-traffic conditions.

Table XXXVIII shows the performance of FMLP models for different source

send-rates. It should be observed from the table that FMLP 1 model performs better
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Table XXXVI. Comparative MSE Results of 420 ms-Ahead Predictions for AR Mod-

els.

Send Rate AR 1 AR 2 AR 3

mean min max mean min max mean min max

20Kbps 35.82 17.32 44.37 49.21 28.96 55.90 42.64 19.04 50.60

30Kbps 32.18 14.12 57.51 41.48 27.47 59.60 33.52 17.33 54.03

40Kbps 38.45 16.63 47.55 47.20 31.27 51.30 39.36 20.71 45.62

50Kbps 38.80 13.35 50.28 44.20 28.90 51.20 37.70 18.10 48.16

Table XXXVII. Comparative MSE Results of 420 ms-Ahead Predictions for ARMA

Models.

Send Rate ARMA 1 ARMA 2 ARMA 3

mean min max mean min max mean min max

20Kbps 33.19 15.91 50.12 55.90 33.29 62.94 47.57 18.42 63.42

30Kbps 40.91 19.22 59.10 57.40 34.40 62.87 40.16 17.46 56.02

40Kbps 41.07 15.87 51.83 58.80 34.60 61.66 44.76 19.25 49.85

50Kbps 41.83 18.47 55.94 57.80 23.40 60.01 43.51 27.17 51.93
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Table XXXVIII. Comparative MSE Results of 420 ms-Ahead Predictions for FMLP

Models.

Send Rate FMLP 1 FMLP 2 FMLP 3

(Kbps) mean min max mean min max mean min max

20Kbps 46.90 18.60 52.07 71.80 63.37 78.15 60.63 55.81 65.54

30Kbps 35.77 12.56 57.07 62.59 35.21 78.75 50.58 33.94 69.79

40Kbps 34.27 16.10 55.08 73.66 34.52 78.86 52.5 23.72 60.48

50Kbps 44.17 31.94 58.25 70.30 35.47 84.63 48.69 18.18 75.10

than FMLP 2 and FMLP 3 models. The performance of FMLP 2 and FMLP 3 models

is extremely bad.

From the tables, it can be easily observed that path-independent AR models

perform better than path-independent ARMA and FMLP models. Among perfor-

mance of the AR models, AR 1 model perform best among the developed AR mod-

els. Performance of AR 3 model is quite similar to AR 3 model and is acceptable but

performance of the AR 2 model is extremely bad for 420 ms prediction horizon.

E. Chapter Overview

This chapter investigates the performance of developed linear and non-linear models

on measured traffic data. First part investigates the performance of path-dependent

predictors for two source-destination pairs. The SSP of moving average accumulation

is accurate. The models gave a good prediction on most of the test cases but MSP is

not as accurate as SSP and fails on test cases when the prediction horizon is increased

more than 240 ms.

Second part studies the performance of various predictors developed for different
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paths on one source-destination pair. In case of path-independent predictors, the

SSP of the developed predictors is good. However, when the prediction horizon is

increased, performance of the developed predictors for different source-destination

pairs varies. While one AR predictor developed for different source-destination nodes

performed comparable to the predictor developed for the same path , the performance

of the other AR predictor is very bad.

So, it can be derived that performance of the path-independent predictors varies

a lot and it is advisable to develop predictor for each source-destination nodes. It

is observed that AR model performs best in most of the cases especially in cases of

MSP and should be preferred over ARMA and FMLP models.



120

CHAPTER VI

SUMMARY AND CONCLUSIONS

A. Summary

The objective of the present research is to develop predictors for end-to-end single

flow characteristics in best-effort networks capable of performing accurate single-

step-ahead prediction (SSP) and multi-step-ahead prediction (MSP). The proposed

predictors are tested on simulated data generated from network simulator (ns-2).

Predictors are also developed and tested using actual traffic data collected from an

existing test-bed called the PlanetLab network. In this research, the end-to-end single

flow characteristics have been modeled using system identification (SI) techniques

involving both linear models as well as neural network based nonlinear models. The

linear methods used for modeling are Auto-Regressive (AR) and Auto-Regressive

Moving Average (ARMA), whereas the nonlinear method used in this study is a

Feed-forward Multilayered Perceptron (FMLP).

In Chapter I, a detailed review of literature used for the research is presented. The

literature covers most of the work done in this area including some recent advances

made in this field. This chapter provides information on research done in end-to-end

flow measurements, estimation, and the use of system identification and artificial

neural networks (ANN’s) for empirical modeling of network dynamics.

Chapter II gives a detailed description of System Identification techniques used

in the research. In this chapter, the linear methods, such AR and ARMA structures,

as well as non-linear method, such as FMLP, have been briefly described along with

their mathematical equations used.

Chapter III describes the measurement and analysis techniques used for collecting
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the simulated and the actual traffic data for this research. It explains in detail

the type of network topology and setup, bit rate, and the various types of traces

collected for simulated as well as actual traffic data. It also discusses various end-to-

end network measurements that could be used for developing predictive models. It

also describes pre-processing of the data-sets, such as removal of the trend and taking

moving average of the signal, before using them for modeling.

In Chapter IV, the various performance metrics used as performance indicators

for the prediction are discussed and the prediction results of end-to-end single flow

characteristics in a simulated network are presented. The results obtained from vari-

ous linear and non-linear models are compared. For simulated traffic data, the SSP

of moving average time series of accumulation is quite accurate. The developed pre-

dictors gave good predictions on most of the cases used for testing. The results of

AR, ARMA and FMLP predictors are comparable for SSP. Though not as accurate

as the SSP, MSP of moving average time-series accumulation is good till the predic-

tion horizon of 240-ms. However, the developed predictors fails to capture dynamics

of the best-effort networks for 420 ms prediction horizon. It is also observed that

prediction results are better for end-to-end flow having 20 ms inter-departure time

of send packets than flows having 60 ms inter-departure time of the send packets.

Hence, it can be concluded that the prediction performance is better when the inter-

departure time of the send packets is smaller. For MSP, it was also observed that

the AR models perform best among all the developed predictors. The performance

of ARMA models for MSP is also comparable to the AR models. The performance

of the FMLP models deteriorates much faster when prediction horizon is increased

and do not perform as good as AR and ARMA models. Another important thing

observed during the prediction of the accumulation signal is the time-shift between

the predicted moving average accumulation and actual accumulation. This time-shift
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is an important factor as timeliness of the prediction is as important as prediction

accuracy because of the intended use of the developed predictors.

Chapter V discusses the prediction results of end-to-end single flow characteris-

tics for actual traffic data. This chapter contains two major parts. The first part inves-

tigates the performance of the path-dependent predictors for two source-destination

pairs. The second part studies the performance of various predictors developed for

different paths on a new source-destination pair. The motivation of developing path-

independent predictors is to check the feasibility of developing generic predictive

models.

The prediction results of the end-to-end single flow characteristics for measured

traffic data follows the same trend as the prediction results for simulated traffic

data. The SSP of moving average accumulation is quite accurate. The developed

predictors gave good predictions on most of the cases used for testing. The variation

of the prediction results for data-sets measured during different time of the day are

also comparable. That means the developed predictors perform satisfactorily under

varying cross-traffic conditions. The results of AR, ARMA and FMLP predictors are

comparable for SSP.

Though not as accurate as the SSP, MSP of moving average accumulation is

satisfactory till the prediction horizon of 240 ms. However, the developed predictors

fails to capture dynamics of the best-effort networks for 420 ms prediction horizon.

It is also observed that the prediction performance deters faster compared to the

prediction results for the simulated traffic data. For MSP, the prediction performance

varies a lot for certain data-sets collected during different time of the day. That means

the developed predictors can not perform consistently under different cross-traffic

conditions especially when the prediction horizon is increased beyond 240 ms. It also

means that there is a lot of unexplained dynamics in the network. It is also observed
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that the prediction results are better for end-to-end flow having 20 ms inter-departure

time of send packets than flows having 60 ms inter-departure time of the send packets.

Hence, it can be also concluded that the prediction performance is better when the

inter-departure time of the send packets is less.

For MSP, it was also observed that the AR models perform best among all the

developed predictors. The performance of ARMA model for MSP is slightly worse

than AR model. The FMLP model performance deters much faster and does not

perform as good as AR and ARMA models. The time-shift between the predicted

and actual accumulation is also observed for the measure traffic data. furthermore,

this time-shift increases when the prediction horizon is increased.

For path-independent predictors, different set of predictors for two source-destination

pairs are developed. Their performance is then compared with the predictor developed

using the same path on which every predictor is tested. For SSP, predictors devel-

oped for different source-destination pairs almost perform similar. However, when

the prediction horizon is increased, the performance of the predictors developed for

different source-destination pairs do not perform as accurate as predictor developed

for the same path. While one AR predictor developed for different source-destination

nodes performed comparable to the AR predictor developed for the same path , the

performance of the other predictors are very bad. Hence, it is advisable to develop

source-destination specific predictors.

B. Conclusions and Recommendations

The proposed approach in this study has a direct impact on the end-to-end single

flow characteristics. Empirical models like these can be used in developing effective

network control strategies which can lead to improved QoS of non-interactive and
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interactive real-time multimedia applications like audio. The following paragraphs

outlines various conclusions drawn during the prediction of simulated as well as actual

traffic data.

The following are the conclusions drawn from this study:

1. The use of linear system identification techniques and neural networks as non-

linear model structures to identify the end-to-end single flow characteristics in a

best-effort network, such as an Internet, seems possible. Network measurements

can be used to obtain empirical models to predict the end-to-end flow behavior.

2. It is observed in this study that SSP is much more accurate than MSP. It

has also been observed the deterioration of the prediction results are very fast

when prediction horizon is increased beyond 240 ms. The developed predictors

perform accurately for different source send rate.

3. It is observed that AR model performs best in most of the cases and it should be

preferred over ARMA and FMLP models for end-to-end single flow prediction

in best-effort network.

4. It is observed that the predictors developed for each end-to-end path perform

better on that particular path than the predictors developed for different end-

to-end paths.

The following recommendations are proposed for further research in this area:

1. Further optimization of the MSP results is necessary, as MSP is needed to

produce a flow prediction within a finite future prediction horizon.

2. Effectiveness of the neural network structures, such as Recurrent multi-layer

perceptron, and some other pattern identification techniques should be investi-

gated for predicting end-to-end flow characteristics.
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3. Empirical models have to be developed to model closed-loop network dynamics

of applications using TCP as the transport protocol.

4. Predictive controllers needs to be developed to gauge the effectiveness of the

empirical models for flow control and their impact on improving the end-to-end

QoS.
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