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ABSTRACT 

 

Numerical Simulation of Mixed Convection over a Three-Dimensional Horizontal 

Backward-Facing Step. (May 2005) 

Juan Gabriel Barbosa Saldana, B.S.; M.S., National Polytechnic Institute, Mexico 

Co-Chairs of Advisory Committee: Dr. Nagamangala K. Anand 
          Dr. Vivek Sarin   

 
 
 

A FORTRAN code was developed to numerically simulate the mixed convective 

flow over a three-dimensional horizontal backward-facing step. The momentum and 

energy equations under the assumption of the Boussinesq approximation were 

discretized by means of a finite volume technique. The SIMPLE algorithm scheme was 

applied to link the pressure and velocity fields inside the domain while an OpenMP 

parallel implementation was proposed to improve the numerical performance and to 

accelerate the numerical solution.  

The heating process corresponds to a channel heated from below at constant 

temperature keeping insulated all the other channel walls. In addition, the back-step was 

considered as a thermally conducting block and its influence in the heating process was 

explored by holding different solid to fluid thermal conductivity ratios. 

The effects over the velocity and temperature distribution of buoyancy forces, 

acting perpendicular to the mainstream flow, are studied for three different Richardson 

numbers Ri=3, 2, and 1 and the results are compared against those of pure forced 

convection Ri=0. In these simulations the Reynolds number is fixed at 200 while the 
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bottom wall temperature is adjusted to fulfill the conditions for the different Ri. Under 

this assumption, as Ri increases the buoyancy effects are the dominant effects in the 

mixed convective process. 

The numerical results indicate that the velocity field and the temperature 

distribution for pure forced convection are highly distorted if compared with the mixed 

convective flow. If the Ri parameter is increased, then the primary re-circulation zone is 

reduced. Similarly, as the buoyancy forces become predominant in the flow, the 

convective rolls, in the form of spiral-flow structures, become curlier and then higher 

velocity components are found inside the domain.  

The temperature field distribution showed that as the Ri is increased a thicker layer 

of high temperature flow is located at the channel’s top wall as a result of the higher 

rates of low-density flow moving to the top wall. The flow is ascending by the channel 

sidewalls, while descending by the channel span-wise central plane. 

The parallel numerical strategy is presented and some results for the performance 

of the OpenMP implementation are included. In this sense, linear speedup was obtained 

when using 16 possessors in parallel. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Besides the experimental and theoretical approaches, numerical simulation has 

established itself as the most practical and viable alternative to study and to understand 

different engineering problems. However, numerical simulations would not be possible 

without the recent developments and improvements in computers in terms of memory 

size and computing speed. Today’s supercomputers have memory capacities as much as 

one million megabytes (one terabyte) and are capable of performing one trillion 

arithmetic operations per second (1x1012 FLOPS). Just in the last 50 years the speed of 

digital computers has increased by more than a trillion times [1]. 

As the power of supercomputers have increased in terms of computing speed and 

memory capacity, the accuracy of numerical simulations for physical problems has also 

increased by adding more complexity to the laws governing the phenomenon or by 

adding more discretization points to the simulation. In this sense accurate, fast, and 

economical solutions for basically any scientific and engineering problem can be 

achieved by using numerical simulation techniques and supercomputers. 

The implementation of numerical simulation avoids not only the annoying 

measurement in full-scale experimental setups, but also the prohibitively expensive and 

This dissertation follows the style and format of the ASME Journal of Heat Transfer.



 

 

2

at times impossible construction of such devices. On the other hand, the use of 

theoretical tools to solve such problems is limited and cumbersome thus precludes 

reaching the final solution. In contrast numerical simulations are possible only after the 

complete mathematical description of the physical phenomenon is done and often 

experimental measurements are needed in order to verify the accuracy of the numerical 

results. In this sense some numerical followers define the numerical simulation as the 

modern approach, which joins the theoretical and experimental approaches for studying 

a physical phenomenon [2]. 

Currently, numerical simulation is employed in several scientific, engineering and 

industrial areas, e.g. analysis of stability in mechanical structures, optimization of 

chemical reactions and combustion processes, bonding energy and atomic collision, 

representations of DNA three-dimensional structures and microbiological reactions, 

meteorological and weather prediction, fluid flow in turbo machinery and aerodynamics 

in vehicles, design of engineering devices involving fluid flow and heat transfer 

phenomena, etc. [1] 

In this research, numerical simulation is applied to study the steady mixed 

convective laminar flow over a three-dimensional backward facing step as shown in 

Figure 1.1.  

This computational problem has become of importance through the years due to its 

complexity and it has become a traditional benchmark problem for testing and validating 

numerical codes. Even though the two-dimensional problem has been heavily studied, 

the three-dimensional case is a relatively new field that in the last decade has started to 



 

 

3

be explored thanks to the development of sophisticated computational techniques and the 

use of powerful computers. However, the scientific community has excluded the effects 

of the buoyancy forces within the computational domain although it has been shown in 

several researches that even low buoyancy forces can drastically modify the fluid flow 

and heat transfer phenomena. One of the reasons why some investigations prefer to 

neglect the buoyant effects is associated with the requirements for using high 

computational resources to handle the coupled momentum and energy equations as will 

be discussed later. Hence the relevance of this research for providing a background for 

this interesting phenomenon that is present in several devices, and providing a numerical 

strategy for an appropriate use of the computational resources. 

It can be appreciated in Figure 1.1 that the channel’s geometrical dimensions are 

fixed in relation to the step height (s=0.01m) such that the aspect ratio (AR=W/s) and the 

expansion ratio (ER=2H/(2H-s)) are equal to 4 and 2, respectively.  

The channel total length in the stream-wise direction is 52 times the step height 

(L=52s) while the longitude, upstream of the step, is 2 times the step height (l=2s).  

Even though, the geometry in question seems to be very simple, the flow through 

the channel is characterized for dramatically changing its inlet hydrodynamic features 

downstream of the step, as well as presenting complex three-dimensional flow 

structures. A schematic diagram for a force convective flow over the backward-facing 

step is presented in Figure 1.2. In order to give a comprehensive idea of the separation-

reattachment phenomenon, a constant z-plane is represented in this figure. 
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Figure 1.2 shows how the boundary layer formed at the duct entrance is disturbed 

by the sharp turn at the step and the flow is separated. The flow structures build up a 

dividing stream-line, which separates the reversal flow from the downstream flowing 

fluid flow. Above this line, a shear layer is formed and reattached downstream of the 

flow at a point named the reattachment point. Following the reattachment point, a 

boundary layer gradually re-develops towards the channel exit. 

Behind and adjacent to the step, a flow re-circulation zone is present and its limits 

are the dividing stream-line and the reattachment point. This zone is known as the 

primary re-circulation zone. Under some conditions, a region of re-circulation flow is 

attached to the top of the channel [3]. 
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Fig. 1.2     Flow over a backward facing step 
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Therefore, it can be said that the flow through the channel is characterized as having 

a shear layer separation, a region of re-circulation flow just behind the step, and under 

some conditions a region of re-circulation flow (separation-reattachment) is attached to 

the top of the channel [4]. 

The importance for studying this kind of phenomena relies on the fact that separated 

and reattached flows occur in many heat transfer-exchanging devices, such as electronic 

cooling equipment, cooling of nuclear reactors, cooling of turbine blades, flow in 

combustion chambers and chemical process equipment, flow in channels whose area is 

suddenly augmented, like wide-angle diffusers or valves, sediment transport and bed 

formers in rivers, etc. In other cases, the separation is induced to modify the flow field 

and to enhance heat transfer conditions as in compact heat exchangers or it can be 

induced in order to establish more favorable mixing conditions as combustion on a flame 

holder [3-7]. 

As mentioned previously, the reattached and separated flow phenomenon is present 

in a vast variety of industrial devices. However, a complete characterization and full 

understanding of its behavior is not complete although an enormous quantity of 

experimental and numerical studies have been conducted in the past decade. The reason 

is that the complicated three-dimensional flow structures associated with the flow, as 

well as the great mixing of high and low energy flows occurring in the separation and 

reattachment regions, significantly impact the fluid flow and heat transfer performance 

of these devices.  

The flow over a backward-facing step presents a simple geometry, but also has the 
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most important flow structures present in separated and reattached flows. Hence, the 

flow over a backward-facing step has become the target to obtain basic information, not 

only experimentally but also numerically, in order to classify the separated and 

reattached flow. A second consequence is the fact that the fluid flow and heat transfer 

problem over a backward-facing step has become a computational benchmark problem 

for testing and validating numerical procedures and numerical codes. 

In this research, numerical simulation of laminar mixed convective flow, adjacent to 

a three-dimensional horizontal backward-facing step, is carried out for air (Pr=0.70). The 

flow Reynolds number is fixed at a value of Re=200 and the effects of buoyancy forces 

on the velocity field and temperature distribution are considered by varying the 

Richardson number (Ri) from 0 to 3. 

A thermally conducting backward-facing step is also considered for the domain 

discretization and its impact on the mixed convective flow is analyzed. The finite 

volume technique is used to discretize the momentum and energy equations and the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm was used to 

link the velocity and the pressure fields. In order to reduce the computational effort and 

to accelerate convergence, a certain level of computer parallelism applying OpenMP is 

done in order to speed up the numerical solutions. 

 

1.2 Motivation 

The separation and reattachment phenomena occur in several industrial devices and 

important efforts have been done in the past decade to understand the hydrodynamics 
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and thermal aspects of these coupled phenomena. However, an in-depth study of these 

problems is not complete and there is much work left to be done in this area. 

Furthermore, the mixed convective problem has not been included in the thermal 

analysis through the years not only because of its complexity, but also for the high 

computational and experimental resources required for studying the problem. Basically, 

no information exists for the mixed convective flow over a three-dimensional horizontal 

backward-facing step.  

The global incentive for this research is to develop a numerical study for the mixed 

convective flow over a three-dimensional horizontal backward-facing step in order to 

present the pertinent results and then to collaborate with accurate information dealing 

with the effects and the impact of buoyancy forces acting on the velocity field and 

temperature distribution for flow through this particular geometry. Similarly, is the fact 

for exploring the applicability and performance of an OpenMP parallel implementation 

to speed up the computing time in order to get better use of the computational resources. 

 

1.3 Objectives 

The objectives of this research are: 

i. To develop a finite volume numerical code to predict the velocity, 

pressure, and temperature field distributions for laminar mixed convective 

flow over a three-dimensional horizontal backward-facing step. 

ii. To study the effects of the buoyancy forces acting on the velocity field 

and temperature distributions from pure force convective flow (Ri=0) to 
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dominant free convective flow (Ri=3) for air (Pr=0.70). 

iii. To study the impact of a thermally conducting backward-facing step on 

the mixed convective flow. 

iv. To implement an OpenMP parallel strategy to speed up the numerical 

solution and make better use of the computational resources. 

 

1.4 Dissertation Outline 

This dissertation expresses the ideas generated after numerically researching the 

mixed convective flow over a three-dimensional horizontal backward-facing step.  

In Chapter I the basic concepts, importance, actual objectives, and motivations for 

this research are stated, as well a concise preamble to the engineering-scientific problem 

to be analyzed was presented.  

In Chapter II existing literature related to the fluid flow and heat transfer problem in 

this particular geometry; including numerical and experimental reports for two- and 

three-dimensional geometries as well as the forced and mixed convective flow in 

horizontal, inclined, and vertical ducts, are reviewed and the most relevant aspects are 

highlighted. 

Chapter III is dedicated to emphasizing the theoretical and mathematical aspects 

governing the mixed convective phenomenon. The finite volume numerical 

implementation technique for solving the three-dimensional mixed convective flow over 

a horizontal backward-facing step is described in Chapter IV. This includes the 

description of the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) 
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algorithm, as well as the line-by-line Tri-Diagonal Matrix Algorithm (line-by-line 

TDMA) for solving the linear system of equations after the domain discretization.  

The next chapter is designed to present results of the validation for the numerical 

code. Chapter V is also dedicated to showing the grid independence study for the present 

code.  

Chapter VI is planned to describe the parallel strategy by means of an OpenMP 

parallel implementation. In this chapter a basic introduction to the parallel-computer’s 

architecture is given as well as the benefits of parallel computing and the preamble for 

the OpenMP parallel programming model. This chapter concludes with the description 

of the parallel implementation and the performance results obtained.  

Chapter VII is intended to present and discuss the results obtained after the 

numerical simulation of the mixed convective flow over a horizontal backward-facing 

step. The results include the test cases for Reynolds number Re=200 and Richardson 

number Ri=0, 1, 2, and 3 utilizing air as working substances. Results for impact of the 

backward-facing step thermal conductivity to fluid thermal conductivity ratio ks/kf=0, 

10, 100, 1000, and, copper/air are also included in this chapter. 

Finally, Chapter VIII is designed to present a summary and conclusions of the 

numerical analyses discussed in previous chapters in addition to the pertinent 

recommendations and suggestions for further work related to mixed convective flow 

through this geometry. 
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CHAPTER II 

PRIOR WORK 

 

2.1 Literature Survey 

Studies on separated flow have been conducted extensively in past decades and the 

backward-facing step geometry has become the central point to obtain a better 

understanding of the flow separation and reattachment phenomena for both experimental 

and numerical investigations. 

The literature review reports that the first efforts for studying the separation and 

reattachment flow over a backward-facing step were done in the late 1950’s. All of these 

efforts were conducted experimentally using different flow visualization techniques and 

deal exclusively with turbulent or transitional regimes and supersonic flows.  

One of the first investigations dealing with laminar regime and subsonic flow was 

presented by Goldstein et al. in 1970 [8]. They concluded, based on their experimental 

measurements, that in laminar regime the reattachment point is not a constant value as in 

turbulent regime, but depends on the boundary displacement thickness and the hydraulic 

Reynolds number. 

Interest in studying the reattachment phenomena over the backward-facing step 

continued in the 1970’s and in the 1980’s with the development of more sophisticated 

visualization techniques, the engineering community produced a large quantity of 

publications referring to experimental results obtained for laminar flow regime. A 

common simplification of the problem in experimental research is the assumption of 
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considering the fluid flow over the backward-facing step as two-dimensional when 

dealing with high aspect ratio ducts (AR>16) and the reattachment point is monitored at 

the central plane of the channel in the span-wise direction. For small duct aspect ratio the 

span-wise component of the velocity and the sidewalls have an important influence in 

the flow behavior then this assumption is not valid [6]. 

Armaly and coworkers [9] reported Laser-Doppler measurements of velocity 

distributions and reattachment points for laminar flow in ducts with an aspect ratio of 

AR=36 and Reynolds number range between 70 and 8000. In this study some numerical 

predictions are also presented and compared with experimental results. The comparison 

showed a close agreement for Reynolds number Re≤400, far from this point the 

measurements and numerical predictions start to deviate from each other. The authors 

justified this deviation by the inherent three dimensionality of the flow present for 

Re>400 in the separation region. They showed that for the two-dimensional laminar 

regime the reattachment point or reattachment length moves downstream of the step as 

the Reynolds number increases, and also the development of a secondary re-circulation 

zone attached to the wall opposite the stepped wall (upper wall), for large Reynolds 

number (Re≥400). 

The studies on flow over the backward-facing step were not only focused on the 

fluid flow problem but also on the heat transfer phenomena. Aung, in 1983, established 

himself as one of the first in reported experimental results on heat transfer for laminar air 

flow passing a backward-facing step channel heating at uniform temperature from below 

[10]. In his experimental study, Aung established that for laminar flow the heat transfer 
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increases monotonically in the stream-wise direction and quantitatively it is less than 

that of the flat plate value. Also, he established that the maximum heat transfer occurs 

downstream of the reattachment point. 

Sparrow and Chuck performed the first numerical work dealing with heat transfer 

and fluid flow over a backward-facing step as is cited in their own publication [11]. 

They implemented a numerical finite difference for studying the airflow phenomenon 

over a two-dimensional channel heated at constant temperature for the bottom wall from 

the foot of the step to the end of the channel. They found that the local Nusselt number 

distribution begins with a low value at the step, and then increases monotonically and 

attains a maximum value at a position near the reattachment point. Beyond the 

maximum, the local Nusselt number decreases monotonically towards the fully develop 

value. This behavior reflects the separation, reattachment, and redevelopment 

experienced by the flow. 

The information and data generated by studying the two-dimensional backward- 

facing step through the years is quite substantial. In spite of the vast quantity of 

information, there was no solid base for comparing the results to define an accurate 

methodology for solving the problem because each author dealt with different 

geometries, parameters, and conditions. An effort to unify criteria was done by the 

ASME K-12 Aerospace Heat Transfer Committee, which organized a forum at the 

Winter Annual Meeting of the American Society of Mechanical Engineers in 1992 [12]. 

The purpose was to define the two-dimensional backward-facing step as a benchmark 

problem for verifying the accuracy and validity of numerical software dealing with the 
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laminar fluid flow and heat transfer problem. A total of 12 papers were presented and 

different numerical approximations were implemented for solving the problem for an 

expansion ratio ER=2 and Reynolds number equal to Re=800. A constant heat flux was 

imposed along the top wall while the bottom wall of the channel was heated from the 

step to the channel exit. The total length of the channel was 60 times the elevation of the 

step.  

In summary, four generalized conclusions from the papers presented in the forum 

deserve special attention. The first one is the confirmation of the primary re-circulation 

zone just downstream of the backward-facing step as well as the increase in its length 

with increase in the Reynolds number. The second aspect refers to the presence of a 

secondary re-circulation zone attached to the flat plate (upper wall of the channel) for 

Reynolds numbers greater than 400. According to the results the separation point on the 

upper wall almost coincides with the reattachment length on the bottom wall. 

The next point is associated with the heat transfer phenomenon and establishes that 

at the channel exit the Nusselt number distributions for both the top and bottom walls 

approaches its laminar fully developed value. However, they have an opposite behavior 

through the channel. For the stepped wall, the Nusselt number distribution starts with a 

low value and increases as the reattachment point approaches, achieving its maximum in 

the vicinity of this point and, then decreasing asymptotically to the fully developed value 

at the channel exit. For the upper wall, the Nusselt distribution starts with a high value 

and rapidly decreases to a minimum at the vicinity of the top channel separation point. 

Downstream of this point the Nusselt number asymptotically increases to reach its fully 
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developed value at the channel exit. On both walls the growth and behavior of the 

hydraulic boundary layer impacts the performance of the local heat transfer coefficient.  

Finally, the most significant conclusion, arrived from this forum, which has an 

important relevance to this research, is the fact that the flow over the backward-facing 

step channel has a strong three-dimensional behavior and the inclusion of this 

approximation should help to provide several aspects of the separation-reattached region 

and also a better understanding of this phenomenon. It is important to note here that 

none of the papers presented at the annual meeting considered the buoyancy effects on 

flow and heat transfer. These effects become significantly important in the laminar flow 

regime where the velocity is low and the temperature difference is relatively high. 

The three dimensionality of flow over the backward-facing step has been 

numerically and experimentally explored intensively in the last decade.  

Shih and Ho in 1994 [13], published their Laser-Doppler Anemometer 

measurements for water flowing over a backward-facing step with an aspect ratio AR=3. 

The measurements of the three velocity components, inside the primary re-circulation 

zone, showed that the local span-wise velocity component and the local transverse 

velocity component are of the same order of magnitude of the local stream-wise velocity 

component. They also concluded that for a three-dimensional case there are a series of 

points along the span-wise direction where the stream-wise velocity component, adjacent 

to the stepped wall, is equal to zero (reattachment points/reattachment line). However, 

these points do not present a constant value as can be suggested by the two-dimensional 

case, but they present variations in distance from the step along the span-wise direction. 
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The shortest value occurs along the central plane of the duct and the farthest value 

occurs very close to the sidewalls, having values at least 20 percent larger than the 

values along the central plane. 

In 1993 Steinthorsson and collaborators [14] presented a three-dimensional 

numerical study of steady laminar airflow over a backward-facing step and Re=389. 

Their numerical solution of the governing equations was obtained using a modified 

version of the TRAF3D-CODE. As declared by the authors, the purpose of their research 

was to study the fluid flow near the sidewalls and its influence on flow development. 

They used a duct aspect ratio AR=36 and found that the reattachment line is constant 

over most of the span-wise direction but start decreasing approximately five steps away 

from the side walls and then increase rapidly to reach a maximum at the side wall. This 

behavior was attributed to an essentially two-dimensional flow behavior at the central 

portion of the channel that is dramatically changed to three-dimensional near the walls 

due to the corresponding boundary layer growth and the inability for the flow to 

withstand adverse pressure gradients near the side walls. 

Similarly, Jiang et al. in 1993 [15] implemented a least-square finite element 

method based on a first order velocity-pressure-vorticity formulation to predict the fluid 

flow over a backward-facing step for Reynolds 100≤Re≤800.  

The three dimensionality of the flow was depicted by the variations in the 

reattachment line in the span-wise direction. This behavior is similar to the one 

described by Steinthorsson and co-workers [14], but the justification here is associated to 

the interaction of the primary re-circulation and the presence of a vortex between the 
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sidewall and the floor.  

Attachment of a re-circulation zone to the channel’s roof was also reported in this 

work. The results showed that as the Reynolds number increases this zone propagates 

from the side walls toward the channel’s central plane and its length, in the stream-wise 

direction, increases at the sidewalls compared to the central zone. 

Williams and Baker in 1997 [16], numerically solved the fluid flow problem over a 

three-dimensional backward-facing step (0<Re<800), and implemented a modified Euler 

integration technique to track particles in the computational domain. The results for the 

reattachment length were quite close to the results described previously, but the particle 

tracking revealed that the interaction of an impinged wall jet, located at the step plane 

and the primary re-circulation region, produces spiraling three-dimensional structures in 

the vicinity of the side walls that spread in size in the stream-wise direction and also 

propagates toward the channel span-wise central plane. 

The three dimensionality of the flow downstream of the backward-facing step has 

been probed for even large aspect ratio ducts. Measurements for three-dimensional flow 

over smaller duct aspect ratios were reported by Armaly and collaborators [17]. They 

used a Laser-Doppler velocimeter for measuring the airflow velocity distributions for a 

duct aspect ratio (AR) and expansion ratio (ER) equal to 8 and 2.02, respectively and in 

the Reynolds number range of 98.7<Re<525. They found that the fluid flow structures 

behind the backward-facing step presented strong three-dimensional characteristics due 

to the small aspect ratio and also confirmed the span-wise variations in the reattachment 

line (xu-line). Their measurements corroborated the theory of the presence of an 
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impingement jet-like structure adjacent to the sidewalls, previously predicted by 

Williams and Baker as mentioned before. The existence of this jet-like structure was 

determined by the presence of peaks values for the stream-wise velocity component 

along the span-wise direction. The high momentum in this specified zone should be 

responsible for the minimum existing in the reattachment line. They also concluded that 

the size of the recirculation zone adjacent to the backward-facing step increased in size 

with an increase in the Reynolds number. 

A complete study of the three-dimensional topology of the fluid flow over the 

backward-facing step was presented by Chiang and coworkers [4]. Their objective was 

to get a deeper and more realistic interpretation of the flow physics behind the 

backward-facing step by utilizing a rigorous mathematical foundation to find saddle 

points, nodal points, and other characteristic nodes for separation and reattachment. This 

study revealed that regardless of the Reynolds number, a re-circulation zone is attached 

to the channel’s ceiling but it is confined only to the sidewalls. The upper re-circulation 

zone growth in length, width, and depth is dependant on the Reynolds number. 

Two- and three-dimensional forced convective flows over backward–facing steps 

subjected to a constant heat flux were numerically simulated by Carrington and Pepper 

[18]. They implemented a finite element technique to simulate airflow for Reynolds 

Re=400, 800, and 1200 over a backward-facing step geometry such that the aspect and 

expansion ratios were fixed as 12 and 2, respectively. A tendency for the three-

dimensional approximations for matching more precisely with the experimental data was 

one of their conclusions. Bulk Nusselt number distributions for the bottom and top walls 
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were plotted as a function of the stream-wise distance downstream of the step. Inside the 

primary re-circulation zone, the Nusselt number had a maximum value for the bottom 

surface while the Nusselt number for the top surface reached a minimum at the same 

axial position. At the channel exit both distributions achieved their asymptotically fully 

developed value. 

Laminar forced convective flow for this configuration has been extensively studied 

both numerically and experimentally by Armaly and his research group [5,17,19-20]. In 

these publications results for a duct aspect ratio equal to 8 and an expansion ratio equal 

to 2 were considered. The convective heat flow is due to a constant heat flux applied to 

the bottom wall and for Reynolds number range of 100<Re<600. They found that the 

complex three-dimensional flow structures developed downstream of the backward-

facing step augment their intensity as the Reynolds number increases. The size and 

shape of the primary re-circulation zone is greatly influenced by the Reynolds number. 

They noted that the flow structures within the separation shear layer develops a “jet-like” 

structure adjacent to the side walls and its impact on the stepped wall is responsible for 

the minimum in the so called xu-line, the maximum in the local Nusselt number, as well as 

the minimum in the wall’s shear stress. In some regions, adjacent to the bottom wall, the 

three velocity components are of the same order of magnitude and thus, their influence 

on the wall shear stress and the flow structures. The velocity components also showed 

that the wall shear stress is equal to zero just in two points (symmetric with respect to the 

span-wise direction) along the bottom wall and their locations are shifted downstream as 

the Reynolds number increases. The maximum local Nusselt number always occurs 
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downstream of the location of minimum shear stress.  

Mixed convective flow over a backward-facing step has been the central point for 

several experimental and numerical researchers in the past several decades. Besides the 

interest in the study of the mixed convective flow in this geometry, the effects of the 

duct inclination angle was measured and numerically simulated by several authors.  

Lin and co-workers [21] simulated two-dimensional laminar mixed assisting 

convective flow over a backward-facing step by submitting the stepped wall to a 

constant temperature. This work focused on the effects of duct inclination angle and its 

impact in the developing flow through the channel. Their most relevant remark is the 

fact that an increase in the duct inclination angle implies an increase in the reattachment 

length. In other words, larger reattachment lengths occur if the forced flow and the 

buoyant forces are perpendicular to each other rather than if buoyancy is assisting the 

forced flow. The location where the local Nusselt number reaches its peak value is 

moved downstream of the step as the duct inclination angle changes from 0o to an 

inclined position. 

Hong et al. [22] developed a study similar to the above-mentioned research, but here 

the bottom wall was submitted to a uniform heat flux. In addition a 360o duct rotation 

and also the effects of varying the Prandtl number were considered. Their results 

reinforced the theory that if the buoyancy is assisting the forced flow (0o) the 

reattachment length has a minimum value, while if the buoyancy is opposing the forced 

flow (180o), then the reattachment length has a maximum value. Here a duct inclination 

of 90o refers to the case where the buoyant forces and the forced flow are perpendicular 
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to each other. According to their results and their geometry, the increase in the duct 

inclination angle from 0o-180o produces farther reattachment points from the backward-

facing step, as well as farther locations from the backward-facing step for the peak 

Nusselt number. The opposite behavior was found when the duct rotated from 180o to 

360o. They also noted that increasing the Prandtl number moved the reattachment point 

farther downstream and, increased the Nusselt number but decreased the friction 

coefficient. The justification to this behavior is that fluids with a lower Prandtl number 

are more sensitive to changes in the buoyancy effects and will reach the fully developed 

condition at closer downstream location. 

Laminar mixed convection over a two-dimensional horizontal backward-facing step 

with heating from below at a constant temperature, was measured by Abu-Mulaweh et 

al. [23]. Measurements using a Laser-Doppler velocimeter and cold wire anemometer for 

velocity and temperature distributions revealed that the effect of buoyancy forces acting 

on a horizontal backward-facing step does not drastically modify the behavior of the 

stream-wise velocity component, but drastically influences the onset of vortex 

instability. However, this report does not present any information on the interaction of 

the buoyancy forces and the transverse velocity component. It is evident that this 

component must be strongly affected as it is parallel to the buoyancy components. Also 

it is important to mention that in these measurements a small temperature gradient 

between the wall and the flow stream was considered (0<∆T<30). 

Flow visualization experiments to study the vortex instability phenomenon of a 

horizontal laminar forced convection in the separation region adjacent to a backward-
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facing step were conducted by Cheng and Kimura [24]. They heated the bottom wall at a 

constant temperature such that the temperature gradient ranged from 0 to 30 and the 

Reynolds parameter varied from 80 to 370. Their results showed that the buoyancy 

effects have an important impact on the flow structures even at low free stream velocity 

or low Reynolds numbers regimes. Highly complicated three-dimensional flow patterns 

existed inside the separation region even for small temperature gradients. Cross sectional 

views (planes normal to the stream-wise direction) revealed that the onset of longitudinal 

vortices appears in the vicinity of the backward-facing step and its intensity, shape and, 

size depends on the downstream distance from the backward-facing step. Similarly, top 

cross sectional views of the channel flow showed the formation of a pair of counter-

rotary vortex rolls along the channel. However, the axes of the vortex rolls are not 

parallel to the stream-wise axis. They also noted that high temperature gradients produce 

more intense vortex rolls while high Reynolds numbers restrain the formation of such 

vortexes inside the primary re-circulation zone. 

Mixed convection on a two-dimensional vertical backward-facing step subjected to 

a constant wall temperature was numerically studied by Lin et al. [25]. They presented 

results for a duct expansion ratio equal to 2 and a Reynolds number of 50. The 

temperature gradients (∆T) responsible for the buoyancy effects was varied from 0 to 75. 

The results showed that the locations for the peak Nusselt number and the reattachment 

point moved upstream as the value of the buoyancy parameter increased. Furthermore, 

for Re=50 and ∆T>50 there was no reattachment to the step wall. 

Several authors studied mixed convective flow over a vertical backward-facing step 
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and it was the central point for the HTD ASME Winter Annual Meting of 1993 [26]. The 

benchmark problem was to solve the steady state two-dimensional mixed convective 

flow in a vertical backward-facing step submitting the stepped wall to a high constant 

temperature while the opposite wall (plane wall) was uniformly kept at the same 

temperature of the fluid at the channel inlet and the backward-facing step was considered 

as adiabatic. A total of 11 papers were presented to solve the problem using different 

numerical approaches. The general remarks are that the primary re-circulation zone is 

considerably reduced when buoyancy forces were taken into account and the formation 

of a secondary re-circulation zone adjacent to the corner of the step and the heated wall. 

For mixed convection, the flow accelerates near the heated wall, increasing the wall 

friction coefficient and pulling the velocity profile toward this wall. As a result, 

pronounced asymmetric velocity profiles existed at the channel exit thus precluding the 

attainment of a fully developed condition. 

The effects of buoyancy forces on mixed convective flow over a three-dimensional 

backward-facing step is a topic that is not commonly found in literature. In this area 

Armali, Nie and collaborators have made the most representative effort to study this 

phenomenon; however their interest has been focused on vertical ducts where the 

buoyancy force, the gravity, and the main flow stream are parallel [27-29]. In these 

publications numerical simulation utilizing the commercial CFD code FLUENT 5.0 for 

assisted buoyancy flow through a duct with an aspect ratio equal to 8 and an expansion 

ratio equal to 2, was presented. They imposed the hydrodynamic inlet condition for 

airflow such that the Reynolds number was fixed to 200 and the Grashof number (Gr) 
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was varied from 0 to 4000. The buoyancy forces were due to a constant heating flux 

applied to the stepped wall. The results showed that as the Grashof number increases, the 

size of the primary re-circulation zone decreases. The reverse tendency was observed for 

the secondary re-circulation zone adjacent to the bottom corner of the step. This 

behavior continues until the buoyancy forces are strong enough to lift the primary re-

circulation zone away from the heated wall (stepped wall) and connected it with the 

mainstream flow. At this point the primary re-circulation zone is detached from the 

heated wall but remains attached to the backward-facing step. The locations where the 

local Nusselt number reaches its maximum value and the location where the friction 

coefficient reaches its minimum value shifted upstream toward the backward-facing step 

and closer to the wall as the Grashof number was increased. The ratio between the 

buoyancy forces and the inertial forces considered in these studies was no larger than 0.1 

(0<Gr/Re2<0.1). 

A finite difference implementation to numerically simulate the three-dimensional 

mixed convective flow over a backward-facing step, including a study of the duct 

inclination angle, was carried out by Iwai et al. [30-31]. They applied a line-by-line 

method combined with the ADI scheme to solve the system of algebraic equations after 

the domain dicretization. A fifth order upwind scheme and a fourth order central 

difference scheme were adopted to discretize the convection and diffusion terms of the 

governing equations. The SIMPLE algorithm was used to compute pressure corrections 

at each iteration. The duct aspect ratio (AR) and expansion ratio (ER) were 16 and 2, 

respectively. The heated wall downstream of the step was maintained at a uniform 
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constant heat flux, while any other wall was considered thermally adiabatic. The 

simulation was carried out for air (Pr=0.71) at Re=125. The Boussinesq approximation 

was applied to account for the buoyancy term. The comments and conclusions achieved 

by these two works coincide with others, explained earlier, for the case of a vertical 

backward-facing step where the buoyancy forces and the mainstream flow are parallel. 

However, the conclusion achieved for the case where the buoyancy forces and the main 

flow are perpendicular (horizontal backward-facing step) is that the level of buoyancy 

forces imposed was not large enough to considerably modify the velocity distribution 

(Ri*=0.03). As a consequence, the impact of the buoyancy forces on flow over a 

horizontal backward-facing step cannot be inferred by Iwai and coworkers. Furthermore 

they judged their flow to be in a pure forced convective regime. 

A general review of the recent literature on laminar mixed convective flow over a 

backward-facing step including two- and three-dimensional studies, vertical, horizontal, 

and inclined ducts orientation was reported by Abu-Mulaweh in 2003 [32]. According to 

this publication several numerical and experimental studies have been conducted to 

analyze the effects of the buoyancy forces on the velocity field and on the physical 

parameters defining the flow over the backward-facing step. However, a very limited 

number of studies have been conducted to analyze the three-dimensional mixed 

convective flow over a backward-facing step, and even fewer studies have been 

conducted to analyze the horizontal case where the buoyancy forces and the mainstream 

flow are perpendicular to each other. In this publication just four studies dealing with the 

horizontal case are reported and just one of them includes the three dimensionality of the 
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flow. All of these studies have been previously reviewed in this chapter. 

A global review indicates that even though a large quantity of publications 

dedicated to study the fluid flow and heat transfer phenomena over a backward-facing 

step, this problem is not completely understood due to its complexity and the strong 

three-dimensional flow behavior. It is also important to remark here that the literature 

review has shown that indeed numerous publications have been dedicated to the study of 

heat transfer and fluid flow over a backward-facing step. However, a horizontal 

backward-facing step analysis of mixed convection has received limited attention. 

Therefore, this investigation is conducted in the way to contribute accurate 

numerical data for the characterization and study of laminar mixed convective flow over 

a three-dimensional horizontal backward-facing step. As the literature review showed 

this problem has not been extensively studied and the information obtained in this 

dissertation could be taken as a starting point for a new researching field in the future. 
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CHAPTER III 

MATHEMATICAL MODEL 

 

3.1 Introduction 

The term convection is usually referred to as the transport of energy and mass by 

potential gradients and fluid motion [33]. In this study, the effects of mass transport 

(mass dissipation, chemical reaction, change of phase, transpiration, etc.) are neglected 

and the transport of energy by temperature differences or convective heat transfer (heat 

convection) is solely of relevant importance.  

Engineering applications of convective heat transfer are extremely varied and occur 

in the presence of temperature gradients between a fluid in motion and a bounding solid 

surface. The essential feature of a convective heat transfer process is the transport of 

energy by molecular motion (diffusion) and by the bulk macroscopic motion of the fluid 

(advection) [34].  

The convective heat transfer phenomenon is closely related to fluid motion, in this 

sense the necessity for describing how the velocity field impacts the temperature 

distributions is the main point for analyzing some heat convection problems. However, 

in some other cases the buoyancy forces in addition to the temperature distribution are 

the ones that play the dominant role in the heat convective phenomenon, setting up the 

fluid motion and impacting the velocity field. If an external agent as a pump, impeller, 

fan, blower, etc. induces the fluid motion involved in the heat convective process, then 

the process is referred to as forced convection. But, if the driving mechanism for the 
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fluid motion is due to the presence of buoyancy and body forces, acting due to density 

variations induced by temperature gradients, the phenomenon is called free convection 

(natural convection) or buoyancy induced flow [35,36]. Thus the transport of thermal 

energy in a heat convective process is featured and classified according to the main 

driving mechanisms for the fluid motion. 

A special convective transport phenomena presented in several engineering 

applications such as, the design of compact heat exchangers, flat plate solar collectors, 

cooling of electronic components and circuitry, meteorology phenomena, etc., [37] is the 

mixed convection that is the result of the influence of body forces and buoyancy effects 

on the forced convection phenomenon. The major effect of buoyancy forces is to modify 

the velocity and temperature distributions as well as some other physical parameters 

from their values for the pure forced convective flow. Therefore, heat transfer by mixed 

convection has features and properties that are completely different from its values for 

pure forced convective flow or for pure free convective flow.  

As can be suggested, the mixed convection will be present in processes when both 

the forced convection and buoyancy effects are of significant importance for the 

phenomenon and is exclusively of laminar and transitional flow regimens and moderate 

to large temperature gradients [33].  

The mathematical equations governing the mixed convective flow are presented in 

the following section. 
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3.2 Basic Equations 

This study deals exclusively with laminar flow and only takes into consideration 

Newtonian fluids, which behaves as a continuum.  

The following assumptions are imposed for the mathematical model; 

i. Steady state 

ii. Incompressible flow 

iii. Body forces acting only in the direction normal to the main flow 

iv. Viscous dissipation term neglected 

v. Constant properties 

vi. No internal heat generation 

Based on these assumptions, the momentum and energy equations governing the 

fluid motion and the energy transport expressed in the Cartesian tensor notation are 

reduced to the following expressions [38,39]. 

Mass conservation equation: 
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Energy equation 
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Here the coordinate direction is referred as ix  ( ix = x, y, z), and the velocity 

component in such direction is represented by iu  ( iu = u, v, w). 

Equation (3.2) is also known as the Navier-Stokes momentum equation and besides 

the mass conservation equation Eq. (3.1) they are the fundamental equations for solving 

any fluid flow problem. If the fluid motion involves a heat transfer process, then in 

addition to the above mentioned equations the energy equation, Eq. (3.4) must be 

considered to solve the fluid flow and heat transfer problem.  

Some authors define the mass conservation equation, the Navier-Stokes momentum 

equation and the energy equation as the basic equations for any convective engineering 

problem [38]. The unknowns or variables involved in these equations are the velocity 

and its three components in each coordinate direction u, v, and w, the thermodynamic 

pressure p and the absolute temperature T. The k (thermal conductivity) and the µ 

(dynamic viscosity) are considered as the transport properties for momentum and 

thermal energy. 

Following, the pure forced convective flow as well as some important aspects of the 

pure free convective flow will be considered and then the governing equations for the 

mixed convective flow will be detailed. 
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3.2.1 Forced Convection 

Considering the channel as shown in Figure 3.1 as a representation of a pure forced 

convective flow through a rectangular channel with smooth and impermeable walls; 

heated from below at a constant temperature T1. The upper wall is maintained at a 

constant temperature T2 and the sidewalls are considered as adiabatic ones. 
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Fig. 3.1     Pure forced convective flow in a horizontal channel 

 

 

At the channel inlet the flow is considered to be uniform with a velocity U∞ and 

isothermal with a constant temperature Ti. For a pure forced convective flow, as soon as 

the fluid enters the channel a velocity boundary layer is developing along the plane 
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surfaces or walls and in the downstream direction and far from the inlet, the boundary 

layer will fill the entire duct. Similarly, a thermal boundary layer will be developing 

along the heated (or cooled) walls. Farther downstream of the channel inlet, a constant 

velocity profile and a constant temperature profile are found and it is in this point that 

the flow is considered as a hydro-dynamically and thermally fully developed flow. At 

the channel exit the temperature of the fluid will be higher than at the inlet for a heating 

process and it will be lower for a cooling process. 

The fluid motion and the thermal energy transport for a pure forced convection 

process are the mass conservation Eq. (3.1), the momentum equation Eq. (3.2), and the 

energy equation Eq. (3.4). If the effects of the gravitational field in the fluid are 

neglected, then the term ( )igρ in the right hand side of the Eq. (3.2) is zero. 

The engineering applications of pure forced convective flow are mainly concerned 

with the pressure drop and the drag force within the flow, here is the relevance for 

including the first term of the right hand side in the momentum equation, Eq. (3.2). 

As can be seen from Eq. (3.2), the momentum equation present non-linear quantities 

on their left hand side (advection term) and are coupled not only among them but also 

with the mass conservation equation, Eq. (3.1), because all of them have the three 

velocity components. However, the mass conservation equation and the momentum 

equation are independent of the energy equation, Eq. (3.4), and they can be solved 

independently of the energy equation. 

It is not the same case for the energy equation, Eq. (3.4), because the three velocity 

components are present on the left hand side of the equation (advection term). Then the 
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temperature distribution and the heat transfer problem cannot be solved unless the three 

velocity components are previously known. 

Based on the above discussion, it can be inferred that the solution of a three 

dimensional pure forced convective flow is not an easy task and for several applications 

the numerical approximation is the only way to reach a final solution.  

 

3.2.2 Free Convection or Buoyancy Induced Flow 

Figure 3.2 shows a quiescent fluid (atmospheric conditions and 0≈V
r

) in a 

rectangular channel heated from below at constant temperature. For simplicity, a 

constant plane in the z-direction is exemplified. The bottom wall is at a constant 

temperature (T1) and is higher than the upper wall temperature (T2).  
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Fig. 3.2     Pure free convective flow for a quiescent fluid 
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Under this condition a temperature gradient in the vertical direction is established 

inside the quiescent fluid. The consequence is that a fluid layer with low density and 

high temperature will be formed at the vicinity of the bottom wall. In the same way, a 

fluid layer of high density will be produced along the upper wall [40].  

If the temperature difference is increased farther than a critical value the viscous 

forces within the fluid can no longer maintain the buoyancy forces associated with the 

density variations and the temperature gradients, then a convective motion is set up 

giving rise to circulation patterns as is suggested in Figure 3.3. In this case the low-

density fluid, by the action of the buoyancy forces on the gravity field, tends to float and 

rise to the top of the channel, while the high-density fluid tends to displace towards the 

bottom wall. Then the fluid motion is caused by the non-uniformity of the local density 

( lρ ) along the fluid region. Under these conditions a pure free convective flow or a 

buoyancy induced flow is set up. 

In buoyancy induced flows it is assumed that the pressure gradient term on the Y 

momentum equation (vertical coordinate direction) is due to the hydrostatic pressure 

variation and it is considered to be the product of the gravity and the reference density: 

( )∞=
∂
∂

− ρyg
y
p     (3.5) 

If the pressure gradient is combined with the body forces acting on the gravitational 

field, what is obtained is the buoyancy force B
r

, as it is shown in Eq. (3.6). In this 

equation, the variations on the density in the fluid motion are mathematically expressed 

as the product of the difference between the reference density and the local density 



 

 

35

( lρρ −∞ ) and the acceleration due to gravity [36].  

( )lygB ρρ −= ∞
rr

    (3.6) 
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Fig. 3.3     Convective circulation patterns for buoyancy induced flow 

 

 

According to Eq. (3.6) if the local density ρl is smaller than the reference density 

∞ρ  ( lρρ >∞ ) then the buoyancy force B
r

 has a positive value which means that the 

“local fluid element” is moving in the y positive coordinate (ascending). 
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The momentum equation in the y-direction for the pure free convection process 

must include the buoyancy force. Then, introducing Eq. (3.6) in the momentum 

equation, Eq. (3.2), then the final expression for the Y-momentum equation in its 

expanded form for a pure free convective flow is presented in Eq. (3.7). 

( ) ( ) ilij
j

ji
j

g
x

uu
x

ρρτ −+
∂
∂

=
∂
∂

∞    (3.7) 

The other equations governing the fluid motion and the energy transport for the pure 

free convection are the mass conservation Eq. (3.1), the X- and Z-momentum equations, 

and the energy equation, Eq. (3.4) 

An inevitable fact for solving buoyancy induced flows is that the density and the 

temperature have a linear relation and then for solving the free convection problem there 

are five coupled governing equations for the flow variables pressure, temperature, and 

the three velocity components, in addition to the variable flow density as well as the 

diffusion properties for flow and heat transfer.  

As can be appreciated, the solution of the pure free convection problem is of 

considerable complexity. However, several theoretical approximations have been 

developed in order to alleviate the difficulties associated with the solution of pure free 

convective flow problems. Among them, the Boussinesq approximation has been widely 

considered in order to simplify the complexity of the equations for the buoyancy-

induced flows. 

The Boussinesq approximation has its basis in the following two assumptions 

[33,35,41]. 
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i. It neglects all variable-property effects in the mass conservation equation, 

the X- and Z-momentum equations, and the energy equation, and the 

variations in density are restricted to the vertical Y- momentum equation 

ii. The density variation can be approached with a simplified equation of state 

as follows: 

( )[ ]∞∞ −−≅ TTβρρ 1     (3.8) 

Therefore, the density is considered to be an exclusive function of the temperature 

( )Tρρ = . In Eq. (3.8), the parameter β represents the volumetric thermal expansion 

coefficient defined as: 

pT
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
ρ

ρ
β 1     (3.9) 

The ideal gas equation of state is defined as [42]. 

RT
pRTp =⇒= ρρ     (3.10) 

Introducing Eq. (3.10) in Eq. (3.9) the β coefficient for an ideal gas is reduced to the 

following expression. 

T
1

=β      (3.11) 

Finally, the Y-momentum equation can be reduced to the following equation. 

( ) ( )∞∞ −+
∂
∂

=
∂
∂ TTg

x
uu

x iij
j

ji
j

βρτ    (3.12) 

The buoyancy forces are represented in the second term of the right hand side of Eq. 

(3.12). In this term the density variations due to the buoyancy force is accounted via the 
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volumetric thermal expansion coefficient according to the Boussinesq approximation.  

The validity of the Boussinesq approximation is limited to low and moderate 

temperature gradients and is applicable only if ( ) 1<<− ∞TTβ  [35]. Far from this limit 

the simplifications of the Boussinesq approximations give erroneous velocity and 

temperature distributions.  

Once the equation for pure forced convection and pure free convection has been 

established, the next step is the mathematical derivation for the mixed convection 

problem. 

 

3.2.3 Mixed Convection 

As considered before, the mixed convection is a combination of two mechanisms, 

namely the forced convection and the free convection. Even small buoyancy effects can 

play an important role and considerably modify the flow characteristics of a pure forced 

convective flow or vice versa.  

The governing equation for mixed convection should consider the effects of the 

buoyancy forces on the pure forced convective flow. Based on the Boussinesq 

approximation the buoyancy effects are confined to the Y-momentum equation and the 

resulting equation is: 

( ) ( )liij
ji

ji
j

g
xx

puu
x

ρρτ −+
∂
∂

+
∂
∂

−=
∂
∂

∞    (3.13) 

For buoyancy induced flows the gradient ⎟
⎠
⎞⎜

⎝
⎛

∂
∂

ix
p  is negligible, but for mixed 

convective flows the gradient in the pressure could be of considerable magnitude. 



 

 

39

According to the second assumption of the Boussinesq approximation, the density 

variation can be accounted for via the volumetric thermal expansion coefficient β. 

Finally, under this assumption the Y-momentum equation for mixed convective flow can 

be expressed as follows: 

( ) ( )∞∞ −+
∂
∂

+
∂
∂

−=
∂
∂ TTg

xx
puu

x iij
ji

ji
j

βρτ    (3.14) 

The mass conservation equation, the momentum equations in X- and Z- directions 

as well as the energy equation remain in the same form as presented in Eqs. (3.1), (3.2), 

and (3.4). 

In order to determine the importance or contribution of each mechanism in the 

mixed convection process a dimensionless parameter, that is the ratio of buoyancy forces 

to inertial forces, has been defined as follows [41]: 

2

2

3

2Re
⎟
⎠
⎞

⎜
⎝
⎛

∆

==

ν

ν
β

hVD

TLg
GrRi     (3.15) 

If Ri (Richardson number) has a magnitude order of unity, then both free convection 

and forced convection are equally important for the process. On the other hand, if Ri is 

small then the forced convection is the predominant effect in the mixed convection, 

whereas for large Ri values the free convection is the principal and dominant effect in 

the mixed convective process. 
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CHAPTER IV 

NUMERICAL PROCEDURE 

 

4.1 Introduction 

In general the mathematical formulation of a physical problem involves a set of 

partial or differential equations that need to be solved in order to find an answer to the 

problem in question. However, the solution of these equations could be very complex, as 

in the case of a mixed convective flow described in Chapter III. In such cases the only 

way for finding an appropriate solution is via a numerical approach.  

Consequently to solve any problem by a numerical approach the mathematical 

formulation must be transformed by means of a discretization process to an easy format 

for the numeric process. This means that the mathematical equations that are valid in the 

specific space and time or computational domain should be simplified to their equivalent 

forms in terms of an algebraic linear system of equations and then solved by 

approximations at definite points (discrete points) inside the computational domain. The 

greater the number of discrete points are added to the discretization of the domain, the 

numerical solution will approach the exact solution of the differential equations. 

However, to indiscriminately augment the number of discrete points would increase the 

round-off error. 

Among the most frequent discretizing techniques used for fluid flow and heat 

transfer problems are the finite difference (FD), the finite element (FE), the finite volume 

(FV), and the spectral methods (SM). 
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The finite volume technique (FV) presents considerable advantages due to its 

simplicity and easy numerical implementation as well as its applicability for dealing 

with complex geometries. But the most significant characteristic is that the FV technique 

is conservative by construction; which means that for each finite size cell (control 

volume) inside the domain the resulting discretized approximations for each property 

express an exact balance between the control volume and its neighbors [43]. In this 

research, the numerical discretization technique applied for solving the Navier-Stokes 

and the energy equations is the finite volume (FV). 

 

4.2 The General Transport Equation 

The conservation laws governing the fluid flow and heat transfer expressed in terms 

of differential equations imply that there must exist a balance between a dependent 

variable (φ ) and all the different factors that have an influence on this variable. The 

statement before is expressed mathematically by the steady state transport equation for 

the variable φ  [44]. 

( ) φφ φρφ S
xx

u
x ii

i
i

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Γ
∂
∂

=
∂
∂    (4.1) 

The convective (advection) term is on the left hand side, while the diffusive term 

and the source term are the first and second terms on the right hand side, respectively. 

The quantities φΓ  (diffusion coefficient) and φS  (source term) have a specific meaning 

according to the dependent variable and the physical phenomena. 

Equation (4.1) can take several forms depending on which is the dependent variable 
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φ  in question. If φ  takes the value of 1, u, v, w, or T, then the transport equation can be 

identified as the mass conservation, the X-momentum equation, the Y-momentum 

equation, the Z-momentum equation or the energy equation, respectively in Cartesian 

coordinate system. The values for the variables, the diffusion coefficients and the source 

terms are summarized in Table 4.1. 

 

 

Table 4.1 Variables for the general transport equation 

Transport 

variable φ  

Index Diffusion coefficient 

φΓ  

Source term 

φS  

Equation 

 

1 i, j, k 0 0 Mass conservation 

u i µ pi∂  X-momentum 

v j µ Tgp jj ∆+∂ βρ
 

Y-momentum 

w k µ pk∂  Z-momentum 

T i, j, k 
Cp
k

ρ
 

0 Energy 

 

 

4.3 Finite Volume Discretization Technique 

The numerical solution using the FV discretization technique for fluid flow, heat 

transfer, and other related processes starts when the computation domain is divided into 
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a number of non-overlapping control volumes (small parallelepipeds) such that there is 

one control volume surrounding each grid point (nodal point). This process is known as 

the geometrical discretization of the domain or the grid generation for the domain [43]. 

Figure 4.1 presents a schematic diagram for an element of fluid flow in the space with 

longitudinal dimensions ∆x, ∆y, and ∆z. 

In Figure 4.1, the P is the nodal point and the N, S, W, E, T, and B represent the 

neighboring nodal points in each coordinate direction; while the n, s, w, e, t, and b 

represent the face of the control volume at each coordinate direction. The distance 

between nodal points (diffusion length) is represented by δx, δy, and δz according to the 

coordinate direction. 

The numerical discretization implies that the transport equation for the variable φ  

would be expressed as an algebraic relation for each control volume inside the domain 

that involves the values of the physical quantity at the control volume and its neighbors. 

In the FV technique the procedure is approximated by an integration of the transport 

equation for each control volume in the computational domain, as shown in the equation 

below. 

( ) ( ) ∫∫∫ +∂Γ
∂
∂

=
∂
∂

CVCV
i

iCV
i

i

dVSdV
x

dVu
x φφ φρφ   (4.2) 

According to the Divergence Theorem of Gauss any volume integral can be 

transformed into a surface integral over the boundary-limiting surface in the region [45]. 

Under this assumption Eq. (4.2) can be transformed into a surface integral as expressed 

in Eq. (4.3). 
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Fig. 4.1     Volume element surrounded by its neighbor grid points 
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( ) ( ) ∫∫∫ +Γ•=•
CVAA

dVSdAgrad ndAun φφρφr    (4.3) 

The dot product ( )un rρφ•  and ( )φgradn Γ•  should be interpreted as the 

components normal to the element surface dA.  

The first term on the left hand side of Eq. (4.3) is associated with the flux 

component of the property φ  due to the fluid flow across the area and along the outward 

normal vector n. It means the net rate of change of the fluid property φ  in the fluid 

element is due to convection. The first term on the right hand side of Eq. (4.3) represents 

the net rate of change of the fluid property φ  in the fluid element due to diffusion. The 

second term in the right hand side of Eq. (4.3) is associated with the rate of change of the 

property φ  as a result of sources inside the fluid element. 

The results of the integration in Eq. (4.3) applied to the control volume in Figure 4.1 

would represent the variation of the property φ  in the control volume due to the 

interaction with its neighboring nodal points and the convective and diffusive flux across 

the control volume faces as well as the increase or decrease of the property φ  due to the 

source term. The result is expressed in Eq. (4.4). 

( )dxdydzSdxdy
x

wdxdy
x

w      

dxdz
x

vdxdz
x

v   

 dzdy
x

udzdy
x

u

bt

ns

we

φφφ

φφ

φφ

φφρφφρ

φφρφφρ

φφρφφρ

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

Γ−−⎥⎦
⎤

⎢⎣
⎡

∂
∂

Γ−

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

Γ−−⎥⎦
⎤

⎢⎣
⎡

∂
∂

Γ−

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

Γ−−⎥⎦
⎤

⎢⎣
⎡

∂
∂

Γ−

 (4.4) 

According to Eq. (4.4), there is a combined convective and diffusive flux at the face 

of the control volume. This concept was introduced by Patankar and is defined in Eq. 
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(4.5) and illustrated in Figure 4.2 [46]. 

iiiiii DFJuJ +≡⇒∂Γ−≡ φφρ φ     (4.5) 

Introducing Eq. (4.5) into Eq. (4.4):  

dxdydzSJJJJJJ tbsnwe φ=−+−+−    (4.6) 

At this point it is important to note that the fluxes in Eq. (4.4) and Eq. (4.6) are 

defined at the control volume surfaces of the control volume in each direction. However, 

they need to be expressed according to the value of the neighboring nodal points. The 

evaluation of the transport property φ  by means of convection and diffusion at the face 

of each control volume is the principal and crucial point in the FV discretization 

technique. Several methods have been developed through the years in order to find an 

appropriate approximation to evaluate the convection-diffusion flux at the face of the 

control volume. In this sense, Patankar developed the so-called Power Law scheme [46], 

which is an approximation of the exact solution of the one-dimensional convection 

diffusion equation for the property φ , and presents an excellent behavior in order to 

describe the convection-diffusion flux for the transport property at the face of the control 

volume. 

The Power Law scheme is represented by the equation below; 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=
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*1.01,0*1.01,0max
i

i

i

i
i D

F
    

D
F

    PA  (4.7) 

The operator [ ]ba,  in Eq. 4.7 is used to choose the larger of the two numbers in the 

set, and the relation ii DF /  is known as the cell Peclet number. 
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Fig. 4.2     Convection-diffusion fluxes at the faces of the control volume 
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i

i
i D

F
Pc ≡

      (4.8) 

and 

( ) AuF ii ∆= ρ      (4.9) 

A
x

D
i

i ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Γ
=

δ
φ

    (4.10) 

If iPc =0, the phenomenon is considered as pure diffusion and no convection is 

present. In this case the property φ  will be spread equally in all directions. But if 

iPc =∞, then the phenomenon is pure convective and no diffusion is present. Here the 

influence in the property φ  becomes predominant in the upstream flow direction. 

Specific details in the derivation of the Power Law scheme can be found in the 

publications of Patankar and Versteeg and Malalasekera [44,46]. 

Finally, the discretized general transport equation, Eq. (4.1), in three-dimensions is 

given below. 

∑
=

∆∆∆+=
n

i
iipP zyxSaa

1
φφφ     (4.11) 

In Eq. (4.11) the sub index “ P ” refers to the nodal point and the “ n ” should be 

interpreted as the number of neighbors surrounding the nodal point (6 for a three-

dimensional problem, 4 for a two-dimensional problem, and 2 for a one-dimensional 

problem) for a two-node formulation. The coefficients in the right hand side take the 

following form: 

( ) [ ]0,   FPcADa iiii ±+=     (4.12) 
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The sign in front of the convective term ( iF ) will depend on the direction of the 

flow and the operator [ ] will return the larger of the two numbers in the set.  

The a’s coefficients for each direction are defined as follows. 

( ) [ ]0,eeeE FPcADa −+=     (4.13) 

( ) [ ]0,wwwW FPcADa +=     (4.14) 

( ) [ ]0,nnnN FPcADa −+=     (4.15) 

( ) [ ]0,sssS FPcADa +=     (4.16) 

( ) [ ]0,tttT FPcADa −+=     (4.17) 

( ) [ ]0,bbbB FPcADa +=     (4.18) 

And the coefficient for the nodal point Pa  is computed by the following relation: 

BTSNWEP aaaaaaa +++++=    (4.19) 

The last point to discuss in the discretization process is the treatment of the source 

term. The source term φS  could be a function of the variable φ . If such is the case this 

dependence could result in numerical instabilities, which precludes reaching a 

convergent solution. In FV discretization technique the source term is transformed by 

means of a linearization as shown below [46]. 

PPc SSS φφ +=     (4.20) 

Only negative values of PS  are allowed to facilitate a diagonal dominance condition 

that ensures at least one solution to the linear system of equations [47]. 
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Considering the source term linearization, the discretized general transport equation 

in three-dimensions is given below. 

( ) ∑
=

∆∆∆+=∆∆∆−
n

i
ciipPP zyxSazyxSa

1
φφ     (4.21) 

The most common form for this equation in the literature accommodates the 

linearization term inside the Pa  as shown in the equation below. 

∑
=

+=
n

i
iipP baa

1
φφ     (4.22) 

and, 

zyxSaaaaaaa PBTSNWEP ∆∆∆−+++++=   (4.23) 

zyxSb c ∆∆∆=      (4.24) 

The second term on the left hand side of Eq. (4.22) takes the same forms as shown 

before in Eqs. (4.13)-(4.18). Now that the final form for the general transport equation 

has been defined, the next step is to develop the procedure for numerically computing 

the fluid flow.  

 

4.4 Fluid Flow Computation SIMPLE Algorithm 

As has been stated previously the convection-diffusion equation can take any form 

of the mass conservation equation, momentum equations for X, Y, and Z as well as the 

energy equation, just by selecting the appropriate values of the variable φ  and the 

corresponding values of the diffusion coefficients. 

At first sight it can be said that the procedure previously described for the general 



 

 

51

transport equation is also the procedure for solving the momentum equations. However 

the real difficulty of the computation of the velocity field flow lies in the presence of the 

pressure gradients in the momentum equations. The pressure gradients are the physical 

driven potential momentum source for fluid flow. Hence, for a realistic problem the 

computation of the fluid velocity flow is coupled with the computation of the pressure 

field for the entire domain.  

The solution of the momentum equation presents the following problems: 

i. The convective terms in the momentum equation contain non-linear quantities, 

ii. The equations are internally coupled because velocity components are 

presented in each momentum equation, and 

iii. The pressure field becomes important due to physical implication for the 

momentum equation but there is no separate transport equation to compute it. 

The first two points can be handled by solving the velocity field iteratively. The 

problem with the pressure field exposed in the third point needs special treatment. 

If the pressure field is known the problem for the field velocity flow can be handled 

by treating the velocity component for each direction as the dependent variable φ  as has 

been explained in the previous section.  

For a compressible flow the mass conservation equation is used for computing the 

density distribution and in addition the energy equation is solved for the temperature 

distribution. Then, the pressure field can be computed by means of an equation of state 

once the density ρ and the temperature T are known. This implies that ( )T,pp ρ= .  

If the fluid is incompressible the density is constant and not linked to the pressure 
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via a state equation. In this case the solution of the velocity field and the pressure 

distribution are coupled. The consequence is the following constraint: 

If the proper pressure distribution is used in the momentum equations, then the 

resulting velocity field must satisfy the Mass conservation equation. 

The implication is that the pressure field is indirectly specified via the mass 

conservation equation [44]. 

Adopting a numerical strategy known as the SIMPLE algorithm proposed by 

Patankar and Spalding in 1972 the pressure-velocity connection is solved. The SIMPLE 

algorithm for the computation of the flow field stands for Semi-Implicit Method For 

Pressure-Linked Equations [46]. 

In general for this algorithm, the discretization of the momentum equation for the 

whole domain under the assumption of a known pressure distribution is made and then 

the velocity field for u, v, and w is computed. If the velocity distribution satisfies the 

continuity equation then the solution is found; otherwise a new pressure distribution 

should be proposed and so forth until convergence. Successive approximations or 

successive iterations for the momentum equations and appropriate corrections for the 

pressure field can be used in order to achieve this goal.  

The sequence of the SIMPLE algorithm is given below. The derivation of the 

equations as well as specific details of the procedure can be found in Patankar’s book 

[46]. 

1. Guess the pressure field p* for the whole domain 

A reasonable pressure distribution (p*) is guessed for the entire 
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computational domain. This pressure distribution will serve as an 

approximation for the correct pressure distribution that will be obtained after 

several iterations. 

2. Solve the momentum equations to obtain u*, v* and w* 

The momentum equations are solved based on the guessed pressure 

distribution in step 1. The velocity distributions, after solving the momentum 

equations, also are defined by u*, v*, and w* because they are computed 

based on the guessed pressure distribution. This velocity distribution will 

provide an approximation to the correct velocity field. 

3. Find the pressure correction p′  for the whole domain 

A temporal variable defined as p′  (p-prime) will be computed. This p′  is 

computed via a set of a linear algebraic system of equations for the entire 

domain. The coefficients for the linear system of equations are obtained via 

an integration of the mass conservation equation for each control volume 

using the velocity values computed in step 2.  

The main attribute of this temporal pressure is that if the right pressure and 

the correct velocity field are used, then the p′  distribution is equal to zero in 

the whole domain and no further pressure correction is needed. 

4. Update the pressure field ( p ) 

The pressure distribution p  is updated by the addition of the guessed 

pressure p* and the pressure correction p′ , as indicated in Eq. (4.25).  

*' ppp +=     (4.25) 
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As has been stated before, p′  is equal to zero only if the guessed pressure 

distribution imposed in step 1 satisfies the mass conservation equation. Under 

this assumption *pp =  and no more corrections are needed.  

5. Update u, v, and w from their guessed values using the velocity correction 

formula: 

( )p
a

Areauu
p

ii ′∆+= *     (4.26) 

p′∆  represents the net pressure (computed in step 3) acting over each 

velocity component and Pa  is the nodal point coefficient computed 

according to Eq. (4.23).  

As can be deducted from Eq. (4.26) the corrected velocity field is the addition 

of the started velocity field (step 2) and a coefficient that represents the 

driving potential for fluid motion (second term on the right hand side). 

6. Solve for any other φ  variables 

Once the velocity field has been computed, any other scalar variable such as 

temperature, concentration, etc. involved in the problem could be computed. 

7. Check to see if the flow field solution satisfies the mass conservation 

equation 

In this step the pressure distribution and the velocity field are tested for 

satisfying the mass conservation and for satisfying convergence. If none of 

them are satisfied then the procedure is repeated again and in step 1 the 

corrected pressure ( p ) is treated as the new guessed pressure distribution *p  
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and the steps are repeated until convergence. 

When solving the momentum equation it is important to specify the nodal location 

for all the variables in question. Even though this step seems to be irrelevant there are 

some interesting aspects that will be discussed thoroughly in the following section. 

 

4.5 Staggered Grid 

The simplest and obvious strategy when allocating the nodal points for all variables 

in the computing process is to choose the same nodal location points and use the same 

set of control volumes for all variables in question. Such a grid is called a collocated 

grid. This implementation has the advantage of an easy implementation even for 

complex geometries and, the use of low memory resources for storing the needed 

information for the computational process. However, the use of this implementation can 

produce unrealistic wavy velocity and pressure distributions without any real physical 

meaning for the problem [44,46].  

In order to avoid this kind of problem, the idea of using different grids for the 

velocity components was first proposed by Harlow and Welch in 1965 [48] and has 

become a standard implementation for the fluid flow numerical simulation.  

In this arrangement the nodal points for the velocity components u, v, and w are 

displaced with respect to the main grid point or node where the pressure and any other 

scalar quantity of computation interest in the domain are stored. This arrangement is 

called the staggered grid and is implemented such that the nodal location for the velocity 

components lies on the face of the main grid control volume. The main grid control 
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volume serves for allocating the pressure nodal points and also for allocating any other 

scalar variable such as temperature, density, viscosity, etc. 

Figures 4.3 to 4.5 can be used to illustrate the concept of staggered grid for each u, 

v, and w velocity component in a three-dimensional geometry. 

Among the advantages of using the staggered grid is that any wavy or unrealistic 

velocity distributions that satisfy the mass conservation equation are avoided. The 

second important advantage is that the natural driving force for any velocity component 

is the result of pressure difference between two adjacent grid points [46]. The staggered 

grid generates the velocity components at the exact point where they are required for the 

computation of the transport of the convection-diffusion and no extra interpolation is 

needed [44]. Finally, the staggered grid is constructed such that the domain peripheral 

boundary coincides with the staggered lines and there is no need for fictitious cells 

located beyond the domain [49].  

The main disadvantage of using a staggered grid is the increase of the memory 

resources to store all of the variables involved in the numerical procedure.  

A scheme for a staggered grid in a three-dimensional geometry is presented in 

Figure 4.6. 

Once the procedure to discretize the momentum equations and the energy equation 

using a finite volume technique, and the steps for the SIMPLE algorithm for linking the 

velocity and pressure fields has been discussed, the next step is to describe a numerical 

technique in order to solve the linear system of equations obtained after the nodal 

discretization. This procedure is described in the following section. 
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Fig.  4.3     Staggered grid for u-velocity component at a constant z-plane 
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Fig.  4.4     Staggered grid for v-velocity component at a constant z-plane 
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Fig. 4.5     Staggered grid for w-velocity component at a constant x-plane 
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Fig. 4.6     Staggered grid in a three-dimensional geometry 
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4.6 Line-by-line Tri-Diagonal Matrix Algorithm (TDMA) 

Until now the method to numerically discretize the fluid flow and heat transfer 

governing equations has been discussed and this process results in a linear system of 

algebraic equations.  

There are several numerical techniques for handling the solution of the algebraic 

system of equations and there is no any condition to choose one specific technique 

depending on the discretization technique. Although the huge quantity of numerical 

techniques for solving the linear algebraic system of equations, these methods have been 

classified in direct and indirect methods. Between the direct methods are Cramer’s rule, 

the Matrix Inversion, and the Gaussian elimination. All of these methods become 

prohibitive as the number of unknowns increase because of the memory storage and the 

computation itself.  

The alternative is the implementation of iterative methods. The term iterative 

method refers to a large range of techniques that use successive approximations to obtain 

accurate solutions to the linear system at each step. The iterative methods are divided 

into stationary methods and non-stationary methods [50]. 

The term non-stationary iterative method refers to a wide range of techniques that 

use successive approximations to obtain the solution of the linear system via the 

construction of orthogonal vectors; and the most representative methods are those 

belonging to the family of the Conjugate Gradients (CGs methods). The stationary 

methods are widely applied in CFD and some well known examples are the Jacobi, the 

Gauss-Seidel point by point, the Successive Over Relaxation (SOR), etc. 
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The previously mentioned stationary techniques are of easy numerical 

implementation but present slow convergence when dealing with a large system of 

equations, or a large number of grid points is involved as generally happens with 

numerical simulations for two- and three-dimensional geometries.  

On the other hand, the numerical discretization for one-dimensional problems gives, 

as a result, a tri-diagonal matrix that needs to be solved. The Tri-Diagonal Matrix 

Algorithm (TDMA) or Thomas Algorithm [51] is a numerical technique to solve such 

problems and due to its simple and economical implementation it has become of wide 

spread use in CFD [44].  

As previously mentioned any tri-dimensional or two-dimensional geometry can be 

approximated as a group of nodes aligned in such a way that the geometry is composed 

of several one-dimensional geometries or lines. Thus a combination of a line-by-line 

fashion and a TDMA algorithm can be applied for solving multi-dimensional problems. 

The procedure is to choose a grid line and assume that the neighboring lines are 

known from the previous iteration, then the unknowns for this line are computed by the 

TDMA algorithm. This procedure is repeated for all of the lines in one direction and it 

can be alternately used on different directions.  

In order to improve the convergence ratio the more recent values of the unknowns is 

used and in this case a combination of a Gauss-Seidel-line-by-line is adopted. 

In the case of three-dimensional geometries this procedure can be implemented for 

each plane in the coordinate directions. In this sense a Gauss-Seidel-line-by-line method 

is applied plane-by-plane. 
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CHAPTER V 

VALIDATION AND GRID INDEPENDENCE 

 

5.1 Introduction 

One of the main objectives for this research is to develop a FORTRAN code to 

numerically simulate the mixed convective flow over a three-dimensional horizontal 

backward-facing step. 

In order to establish that the numerical code is validated and ready to make 

parametric runs it is necessary to demonstrate that the code is able to reproduce results 

for benchmark problems. This process is known as code validation and it is important 

not only for testing the precision and accuracy of the numerical code but also for 

exploring its capabilities and limitations.  

The first part of this chapter deals with the validation process and the second part 

with the grid independence study. 

 

5.2 Numerical Validation 

The process of numerical validation consists of running the numerical code under 

specific conditions for benchmark problems and then comparing the obtained results 

with the experimental or theoretical data published in the literature. However, as it was 

established in Chapter II, the lack of previous experimental or numerical data in the 

literature for the mixed convective flow over a three-dimensional horizontal backward-

facing step precludes the direct numerical validation of the numerical code developed for 
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this research.  

In order to validate this numerical code, three problems closely related to the mixed 

convective flow over the three-dimensional horizontal backward-facing step were 

considered. In each case some specific hydrodynamic and thermal flow features were 

compared with the solutions for benchmark problems published in the literature, as 

described in the next sections. 

 

5.2.1 Forced Convective Flow through a Square Horizontal Channel 

The first test case was that for simulating a pure forced convective flow through a 

three-dimensional horizontal square duct heated from below at a constant temperature. 

The flow at the channel inlet was considered to have a uniform velocity and a constant 

temperature. The Reynolds and Prandtl numbers were set as Re=100 and Pr=0.72, 

respectively.  

The channel’s total length was fixed to be 40 times the hydraulic diameter to ensure 

fully developed flow conditions at the channel exit, while the channel walls were 

considered as adiabatic except the bottom wall, which was subjected to a constant 

temperature. The grid chosen for this experiment was uniform and a total of 3.2x105 

nodes were distributed along the entire geometry so that the stream-wise direction had a 

total of 200 control volumes and a total of 40 control volumes were allocated for each of 

the other coordinates. This grid size was set following the studies by Ravi Sankar et al., 

[52] for a forced and mixed convective flow through a square channel. In this 

publication [52] a total of 31 by 31 control volumes and a control volume’s length of 
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5x10-4m in the main flow direction were enough to establish grid independence. For the 

validation test in this research, almost 10 nodal points were added to the transverse and 

span-wise directions, while the increments in the axial direction were of the same order 

of magnitude as expressed before. 

Even though the test case seems to have no relation with the problem in question, 

the relevance for testing the code under these conditions was to exhibit that the 

numerical code is capable of simulating flows in a three-dimensional geometry. 

The average Nusselt number distribution, the average Fanning friction factor 

distribution, as well as the velocity profile for the stream-wise velocity component along 

the span-wise center plane were monitored through the channel. The results are plotted 

in Figures 5.1 and 5.2.  

As can be appreciated in the above referenced figures, at the channel inlet both the 

average Nusselt number and the Fanning friction factor start with a high value and 

asymptotically decrease to reach the fully developed values at the channel exit. At the 

channel exit, conditions of fully developed flow are achieved as shown in the 

development of the velocity profile in Figure 5.2.  

The numerical predictions at the channel exit for the average Nusselt number, the 

Fanning friction factor, and the maximum value of the stream-wise velocity component 

at the channel exit were compared against the established results for a fully developed 

flow in a square channel as published by Shah and London [53]. The comparison is 

summarized in Table 5.1. 

 



 

 

66

Table 5.1 Validation for a forced convective flow through a square channel 

 Nu fRe umax/uo 

(span-wise center plane) 

Shah and London, 1978 2.4370 14.2270 2.0962 

Present 2.4110 14.1930 2.0902 

Difference 1.06% 0.24% 0.28% 
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Fig. 5.1     Nusselt number and Fanning friction factor distributions averaged in the span-

wise direction for forced convective flow through a square channel. Re=100 and Pr=0.72 
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Fig. 5.2     Stream-wise velocity profiles along the central plane for a forced convective 

flow through a square channel. Re=100 and Pr=0.72 

 

 

It is evident from Table 5.1 that the discrepancy is minimal between the present 

numerical predictions and the theoretical values from Shah and London [53]. Hence the 
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numerical code is a trusted tool for predicting the forced convective flow in a three-

dimensional horizontal channel. 

 

5.2.2 Mixed Convective Flow through a Rectangular Horizontal Channel 

The second test case was that of simulating a mixed convective flow in a straight 

horizontal channel heated from below. The numerical predictions were compared with 

the results published by Incropera and Schutt in 1985 [54] for a horizontal rectangular 

channel with a width-to-height ratio equal to 2. In this publication the effects of a 

combined entry region for low and high Prandtl numbers as well as different boundary 

conditions for the heating process were considered. At the channel inlet the flow was 

treated to be uniform with a constant velocity (U0=constant) and isothermal (T0=296 K). 

Two different heating conditions were considered for the validation test. For the 

first case, the temperature of the bottom and top walls were maintained at a high 

constant value while the sidewalls were kept as adiabatic. The working fluid in this 

example was water (Pr=6.5) and the velocity profile at the inlet was fixed to be uniform 

for the combined entry region flow so that the Reynolds number (Re) is equal to 500. 

The buoyancy driven potential was fixed such that the Grashof number (Gr) is equal to 

1.55x105.  

The second study case was for the same channel geometry, but the mixed 

convective flow was simulated by subjecting the bottom wall to a constant heat flux 

condition. The top and side walls in this study case were considered to be adiabatic and 

the working fluid was air with Pr=0.71. Under these conditions, the modified Grashof 
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number (Gr*) defining the buoyancy driven potential flow had a constant value equal to 

11.40x106. The domain discretization was done on a uniform grid and a total of 3.2x105 

nodal points were allocated along the three-dimensional channel. In their study Incropera 

and Schutt used a 26 by 26 grid size for the transverse and span-wise directions and the 

space between nodal points in the stream-wise direction was equal to 1x10-3m [54]. In 

the present approximation a total of 400, 20, and 40 grid points were allocated in the 

stream-wise, transverse, and span-wise directions, respectively, while the distance 

between nodal points in the stream-wise direction was 4.5x10-3 m. 

The comparison between the predicted values and those published for test case 1 

and case 2 are presented in Figures 5.3 and 5.4, respectively. It is evident from these 

figures that the discrepancies between the present numerical predictions and the 

published results in both cases are minimal and thus the numerical code is able to 

simulate the mixed convective flow through a rectangular channel subjected to constant 

wall temperature or constant heat flux heating boundary conditions.  

 

5.2.3 Forced Convective Flow over a Three-Dimensional Horizontal Backward-

Facing Step 

The third validation test was that for simulating a pure forced convective flow over 

a three-dimensional horizontal backward-facing step subjected to a constant heat flux 

along the bottom wall. The heating zone stretched from the end of the step to the channel 

exit. 
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Fig. 5.3     Span-wise averaged Nusselt number distribution for a mixed convective flow 

in a rectangular channel heated from below and top at a constant temperature. Re=500, 

Pr=6.5, and Gr=1.55x105 
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Fig. 5.4     Span-wise averaged Nusselt number distribution for a mixed convective flow 

in a rectangular channel heated from below at a constant heat flux. Re=500, Pr=6.5 and 

Gr*=11.40x106 
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This validation test was divided into two parts. The first one deals exclusively with 

the fluid flow problem over a backward-facing step with a duct aspect ratio AR=8, an 

expansion ratio ER=2.02, and a step length equal to two times the step height. The 

numerical predictions using the present code were compared against the measurements 

published in 2003 for the same geometry by Armaly et al., [17]. The so-called xu-line 

along the span-wise direction and the velocity profile for the stream-wise velocity 

component at specific axial (direction of the main flow) planes were used for validating 

the code. These distributions are presented in Figures 5.5 and 5.6 for Re=343 and 512. 

The uniform grid used for this simulation was similar to the one used by Nie and 

Armaly in their numerical solution for this problem [19]. In the present numerical 

simulation a total of 3.36x105 nodal points distributed in 140x40x60 control volumes 

along the stream-wise, transverse, and span-wise directions, respectively. 

The second part of the validation for the flow over a three-dimensional backward- 

facing step deals with the heat transfer problem. The three-dimensional geometry 

defined previously for the fluid flow problem was also used for the forced convective 

flow problem. In this case the bottom wall was submitted to a constant heat flux while 

all the others walls including the step were considered as non-conductive and adiabatic. 

Flow at the inlet was considered to be fully developed and isothermal. The Reynolds 

number was defined based on the channel height and the bulk velocity at the channel 

inlet and was fixed at 400. 
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Fig. 5.5     Span-wise xu-line distribution adjacent to the bottom wall. z/(W/2)=0 side 

wall and z/(W/2)=1 span-wise central plane 
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Fig. 5.6     Span-wise u-velocity component distributions at different transverse planes 

for Re=343. z/(W/2)=0 wall and z/(W/2)=1 (span-wise central plane) 
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The validation test was completed by comparison of the local Nusselt number 

distribution evaluated along the heating wall and at the constant plane x/s=6.6. Where x 

represents the stream-wise direction and s is the step height. The results are plotted in 

Figure 5.7. 

As has been demonstrated in this chapter, the numerical predictions obtained with 

the developed numerical code, present an excellent agreement with the published data in 

the specialized literature [52-54, 17]. Thus it can be concluded that the developed 

numerical code is an accurate and extremely versatile numerical tool to study heat 

transfer and fluid flow over a three-dimensional backward-facing step. The next step is 

to select a grid size, which yields grid independence solutions. 

 

5.3 Grid Setup 

The grid generation process in a three-dimensional geometry consists of subdividing 

the computational domain into small parallelepipeds called control volumes. 

The geometry considered in this study is shown in Figure 1.1. The backward-facing 

step (solid region) and the fluid flow region (working fluid) have different thermo-

physical properties, hence the computational domain presents discontinuities. In order to 

handle these discontinuities the computational domain is divided such that the control 

volume faces coincide with the location of the discontinuities as well as the physical 

boundaries. At the center of each control volume a grid point or nodal point is deployed. 

This adopted practice is commonly found in the finite volume discretization and is 

known as the “practice B” [46].  
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Fig. 5.7     Local Nusselt number distribution for a forced convective flow over a three-

dimensional backward-facing step along the stepped wall at x/s=6.6 plane. z/(W/2)=0 

side wall and z/(W/2)=1 span-wise central plane 
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There is no restriction for specifying the length or size of the control volumes in the 

grid generation process. This grid could be either uniform or non-uniform. Some authors 

recommend the use of smaller control volumes in the region of strong variations or 

gradients and the use of larger control volumes in the region where gradients are not 

steep [55]. In this sense a fine grid is adopted in the region of strong gradients and a 

coarse grid is implemented in the region of small variations. Thus optimizing 

computational resources.  

The concept for constructing a non-uniform grid by means of a geometrical 

progression is described by Patankar [56]. This idea is adopted in this numerical 

research; however, the mathematical relations considered here for deploying the non-

uniform grid in the three-dimensional computational domain are quite different for those 

presented in the literature cited above. The mathematical relation used for setting up the 

grid in the preset research is the following: 

( ) ( )
( )1e

1eLn N

n
i

i −
−

=δ      (5.1) 

In this relation ( )niδ  represents the distance to the face of the n  control volume 

from a reference position generally a physical boundary (wall), iL  is the geometrical 

length that needs to be divided into the N  total number of control volumes and, the e  

represents the grid expansion coefficient. It is recommended to keep the value of e  

between 1 and 1.2 for better results in the grid generation. A value of e =1 means that 

the grid is uniform.  

The following step is explains the setup configuration for the grid in each of the 
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three coordinate directions in this research. 

The x-direction is the stream-wise flow direction and as a consequence is the largest 

dimension in the computational domain. According to the problem and the geometry 

shown in Figure 1.1, the backward-facing step length represents a small portion of the 

total length in the x-direction. Besides the velocity gradients in this zone are considered 

as negligible because at the channel inlet the flow is treated as a fully developed flow 

and the profile remains basically constant. In the region downstream of the backward-

facing step the velocity gradients become large.  

For the above reasons, in the x-direction a combination of a uniform and a non-

uniform grid was used to discretize the domain. In the region upstream of the backward-

facing step a uniform grid was used, and a maximum of 10 control volumes were 

deployed. The grid for the rest of the channel in the stream-wise direction was non-

uniform according to Eq. (5.1). The result is a very fine grid in the vicinity of the step, 

and the control volume size grows progressively toward the channel exit.  

To give a better understanding of the grid in the stream-wise direction, a bird’s-eye 

view (constant y-plane) is shown in Figure 5.8. 

As can be seen in Figure 1.1, the z-coordinate direction or the span-wise direction of 

the flow is the only dimension in the geometry that presents any kind of symmetry. The 

implementation of the grid in this direction takes advantage of this feature. 
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The smallest control volume in the z- direction is allocated at the side wall (plane 

z=0), then the grid is spread using Eq. (5.1) and the largest control volume is allocated 

along the central plane in the span-wise direction at z=W/2. For the rest of the channel in 

the span-wise direction (W/2≤z≤W), the grid is a mirror image of the grid in the 

0≤z≤W/2 region. A drawing scheme for the grid in the z-coordinate direction for a 

constant x-plane is presented in Figure 5.9. 

 

 

z

y

x

Lz

Ly

Line of symmetry for the grid

 

Fig. 5.9     Non-uniform grid in z-coordinate direction at a constant x-plane 

 

 

The transverse flow direction or the y-coordinate direction presents three regions of 

significant importance. All of these regions coincide with solid boundaries like the 
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bottom wall, the top wall, and the top of the backward-facing step. An artificial 

symmetry line was considered at half of the channel in the transverse direction (y-

coordinate direction) and similar to the z-coordinate direction the grid was constructed 

as a mirror image with respect to this artificial symmetry line by means of Eq. (5.1). In 

the following paragraph, details specific to the region between the bottom wall and the 

artificially symmetry line, are presented. 

The artificial symmetry division is not only half of the channel, but also is the 

surface limiting the height of the channel. Also this is a critical zone where considerable 

gradients in velocity components and temperature will occur. For handling this situation 

a very fine grid is proposed in this zone as well as near the bottom wall of the channel. 

The result is a mirror non-uniform grid progressively increasing in the direction normal 

to the solid surface and to the artificial line of symmetry, such that the smallest control 

volumes are in the vicinity of the bottom wall and the step height and the largest control 

volumes are midway between these two reference surfaces. A schematic diagram of the 

grid generated in the transverse direction is shown in Figure 5.10 for a constant z-plane. 

It is evident from Eq. (5.1) and Figures 5.8 to 5.10, that the grid spacing strongly 

depends on the expansion coefficient e . Selecting the appropriate value for this 

parameter to establish a grid independence solution is the central point of the following 

section. 
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Fig. 5.10     Non-uniform grid for y-direction at a constant z-plane 

 

 

5.4 Grid Independence Study 

It is necessary to conduct a series of tests in order to find the combination of the 

number of control volumes and the value for the expansion factor e , so that the 

numerical results will cease to be sensitive to these parameters. The grid independence 

study was conducted by using the most severe parametric values considered in this 

research for different grid densities. In all these cases the Reynolds number (Re) and the 

Richardson number (Ri) were fixed to be 200 and 3, respectively, while the fluid in 

consideration had a Prandtl number (Pr) equal to 0.7. The convergence criterion was 
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chosen so that the normalized residuals for all the velocity components were less than 

1x10-7 and less than 1x10-9 for the pressure. The parameter values monitored to declare 

grid independence, were the span-wise averaged Nusselt number (Nuavg_exit) and the 

maximum u-velocity component (umax_exit) at the channel exit. 

The grid independence studies were conducted by varying the number of control 

volumes and the corresponding expansion factor in each coordinate direction at a time, 

while keeping the two parameters ( n  and e ) constant in the other two directions. A 

summary of the grid independence study is presented in Table 5.2. 

According to Table 5.2 a value of ez=1.20 results in the minimum error for Nuavg_exit 

and for umax_exit. Thus this value is an appropriate value for this grid and the following 

comparisons are made based on this configuration and parameters. 

Results for using 60 control volumes in the z-direction compared with the previous 

value of nz=40 and ez=1.20 are presented in Table 5.3. In this table the values of an 

expansion coefficient ez do not go higher than 1.14, because for those conditions the 

ratio of largest to smallest control volume sizes becomes impractical. Results for the 

Nuavg_exit and umax_exit for 60 control volumes in the z-coordinate direction are presented 

in Table 5.3. 

The grid independence analysis for the y-coordinate direction, using up to 60 

control volumes, is summarized in Table 5.4. 

As can be seen from Table 5.4 the addition of 20 control volumes in the y-

coordinate direction does not impact drastically the results obtained using 40 control 

volumes as presented in Table 5.2.  
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Table 5.2 Grid independence study for the z-coordinate direction. Effects on ez 

Grid Size: nx:ny:nz::100:40:40 

Expansion factor for x: ex=1.025 

Expansion factor for y: ey=1.35 

Expansion factor ez Smaller control 

volume size [m] 

Nuavg_exit % diff umax_exit % diff 

Uniform grid 1x10-3 4.7743  0.1248  

1.04 6.71x10-4 4.5016 6.05 0.1326 5.91 

1.08 4.37x10-4 4.1798 7.69 0.1324 0.11 

1.10 3.49x10-4 4.0263 3.81 0.1326 0.08 

1.12 2.77x10-4 3.8812 3.73 0.1326 0.0 

1.14 2.19x10-4 3.7462 3.60 0.1324 0.15 

1.16 1.73x10-4 3.6223 3.42 0.1323 0.07 

1.18 1.36x10-4 3.5098 3.20 0.1322 0.07 

1.20 1.07x10-4 3.4085 2.97 0.1322 0.0 
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Table 5.3 Grid independence study for the z-coordinate direction. Effects on the nz 

Grid Size: nx:ny:nz::100:40:60 

Expansion factor for x: ex=1.025 

Expansion factor for y: ey=1.35 

Expansion factor ez Smaller control 

volume size [m]

Nuavg_exit % diff umax_exit % diff 

Values from Table 5.2 1.07x10-4 3.4085  0.1322  

1.12 8.2873x10-5 3.4772 2.27 0.1327 0.07 

1.14 5.6055x10-5 3.3248 2.26 0.1326 0.07 

 

 

Table 5.4 Grid independence study for the y-coordinate direction 

Grid Size: nx:ny:nz::100:60:40 

Expansion factor for x: ex=1.025 

Expansion factor for z: ez=1.20 

Expansion factor ey Smaller control 

volume size [m]

Nuavg_exit % diff umax_exit % diff 

Values from Table 5.2 1.07x10-4 3.4085  0.1322  

1.15 

1.25 

15.1x10-5 

8.11x10-5 

3.4044 

3.4038 

0.120 

0.137 

0.1322 

0.1324 

0.0 

0.07 

1.35 4.32x10-5 3.4033 0.1525 0.1326 0.07 
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Table 5.5 presents the results for the grid independence on the x-coordinate 

direction. For this particular example the factor ex was fixed and the numbers of control 

volumes in the domain were varied. The grid in this direction was no larger than 180 

control volumes. 

The results show that the use of 180 control volumes in the x-coordinate direction 

basically does not change the results using 100 control volumes. However, the use of a 

greater number of control volumes will allow having more points for conducting a more 

precise analysis of the computational results. 

 

 

Table 5.5 Grid independence study for the x-coordinate direction 

Grid Size: nx:ny:nz::----:40:40 

Expansion factor for x: ey=1.025 

Expansion factor for y: ey=1.35 

Expansion factor for z: ez=1.20 

Control volumes nx Smaller control 

volume size [m] 

Nuavg_exit % diff umax_exit % diff 

Values from Table 5.2 

nx=100 

1.07x10-4 3.4085  0.1322  

180 

160 

 3.4082 

3.4080 

0.009 

0.01 

0.1326 

0.1325 

0.3 

0.22 

140  3.4076 0.02 0.1323 0.07 
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As a conclusion of this grid independence study, it is recommended to use up to 40 

control volumes and expansion factors equal of ey=1.35 and ez=1.20, respectively, for 

the y- and z-coordinate direction and if the computational resources are available to use 

up to 180 control volumes with an expansion factor equal to ex=1.025 for the x-

coordinate direction. 

Thus a grid size of 100x40x40 with ex=1.025, ey=1.35, and ez=1.2 was declared to 

give grid independence results. 
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CHAPTER VI 

PARALLEL IMPLEMENTATION 

 

6.1 Introduction 

Since the time computers have been applied to solve scientific and engineering 

problems, their speed has increased with the needs of applications. However, 

fundamental technology has restricted further improvements in speed. Nevertheless, the 

efficiency of serial computers, measured by the cost-performance ratio, presents a 

sharply linear increase in performance with relatively low cost. However, beyond a 

particular point, even minimal improvement in the performance is accompanied by a 

large increase in the cost [57]. 

Technological advances have made it possible to construct extremely fast and low 

cost processors that can be connected via a network to form a parallel computer. Parallel 

processing offers an alternative to the limitations of serial computers. 

The main idea in parallel computing is to accomplish a large computational task by 

dividing it into a set of small sub-tasks that are performed concurrently on multiple 

processors. 

A detailed discussion of parallel architectures is beyond the scope of this work. This 

work describes an OpenMP based parallel implementation for the numerical solution of 

the mixed convection problem over a three-dimensional horizontal backward-facing 

step. The rest of this chapter includes a short theoretical description of the OpenMP, an 

outline of the parallel implementation, and numerical experiments on parallel computers. 
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6.2 Parallel Architecture and OpenMP  

To have a better understanding of the advantages of partitioning a numerical task 

across multiple processors, it is worthwhile to understand the architecture of parallel 

computers. 

 

6.2.1 Parallel Architecture 

A simple and traditional model of a computer is the sequential computer, which 

consists of a central processing unit (CPU) and a memory unit (M). Such computers are 

referred to as single instruction single data stream computers (SISD) [57]. 

A computer’s performance can be dramatically improved through the use of 

multiple CPUs and multiple memory units interconnected in such a way that the result is 

a parallel computer. Parallel computers are often described as having distributed 

memory or shared memory architectures [58]. Figures 6.1 and 6.2 show typical 

representations of distributed memory and shared memory architectures, respectively.  

In the distributed memory (DMA) or private memory architecture each processor 

has its own exclusive memory unit and an interconnection network allows 

communication between processors. Parallel computers with this architecture are 

commonly referred to as multi-computers. On the other hand, in the shared memory 

architecture (SMA) all of the processors have direct access to a common shared memory 

address space. This kind of architecture for parallel computers is referred to as multi-

processors. 

Hybrid systems that combine features of both architectures are known as distributed 
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shared memory computers (DSM). A DSM system is similar to a distributed memory 

computer with additional hardware and software that provides each CPU direct access to 

the entire memory. Such a multi-processor behaves as a shared memory computer. 

CPU requests for accessing a remote memory location are done via messages 

through the interconnection network. Since these remote memory accesses take longer 

than the local memory accesses, some memory locations seem to be farther from a CPU 

than others. Such a machine is defined as a non-uniform memory access (NUMA). If the 

time for accessing a remote memory location is no larger than the time for accessing a 

local one, then the computer is called a uniform memory access (UMA) [58].  
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Fig. 6.1     Distributed memory architecture (DMA) 
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Fig. 6.2     Shared memory architecture (SMA) 

 

 

The parallel computers used in this research belong to the DSM class of systems. 

Some of them have a non-uniform memory access (NUMA) but some of them utilize a 

uniform memory access (UMA).  

 

6.2.2 OpenMP  

OpenMP is a parallel programming model for SMA and DSM systems [59] that was 

established in 1997 through a combined effort between hardware vendors and compiler 

developers. OpenMP is considered a software standard for parallel applications. 
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OpenMP specifies a set of compiler directives, library routines, and environment 

variables that can be used for parallel FORTRAN and C/C++ applications. 

The advantage of allowing OpenMP to be specified by a set of directives embedded 

within the program is that the same base code can be compiled using a single processor 

or multiple processors. In the first case, the OpenMP directives are treated as comments 

and are ignored by the compiler, leading to a serial execution. On parallel platforms 

these commands result in the creation of threads that allow concurrent execution [59]. 

The application-programming interface (API) for OpenMP is divided into three 

parts: [59] 

i) Directive-based language 

ii) Runtime library subroutines 

iii) Environment variables 

Parts ii) and iii) are designed to control the execution parameters and to set up the 

conditions for the parallel applications, while part i) is the one used for defining and 

limiting the parallel zones, for establishing the communication between 

processor/memory as well as coordinating the synchronization of multiple threads. 

Figure 6.3 shows a schematic diagram for the API structure. 

When a parallel program written with OpenMP directives finds a control structure 

(Fig 6.3) for expressing parallelism (OpenMP sentinels), the flow structure of the 

program is altered such that the master thread (serial execution) creates a group of 

multiple threads of execution that work concurrently on the given task. This execution 

model for OpenMP is known as a fork-join model [59] and is illustrated in Figure 6.4. 
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Fig. 6.3     Application-programming interface for OpenMP 

 

 

When multiple threads attempt to the read and write to the same memory location, 

the results can be different from that of a serial execution. OpenMP allows a variable to 

be considered private to each thread so that the writing operations for this variable are 

exclusive to that thread. Each thread has its own private copy of this variable and does 

exclusive updates to the value for the duration of the parallel construct. In contrast, a 

shared variable has a single memory location, which is accessible to all threads for 

reading and writing. 

The synchronization structures (Fig. 6.3) can be used to coordinate the read-write 

operations for shared variables across multiple threads. These constructs are also 

responsible for ensuring the occurrence of an event across all threads, e.g., the start and 

suspension of a parallel region. In this sense each thread is guaranteed to complete its 
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work at the barrier placed at the end of a parallel region. 

 

 

The master thread executes 
the serial portion of the code

The group of threads divide the work among 
themselves and execute it concurrently

An end-parallel structure is an implicit barrier 
where threads wait until all threads have 
finished their work

The master thread finds the parallel structure or 
sentinel and creates multiple threads or slaves

The master thread resumes the serial 
program execution and the slave 
threads are destroyed

The master thread executes 
the serial portion of the code

The group of threads divide the work among 
themselves and execute it concurrently

An end-parallel structure is an implicit barrier 
where threads wait until all threads have 
finished their work

The master thread finds the parallel structure or 
sentinel and creates multiple threads or slaves

The master thread resumes the serial 
program execution and the slave 
threads are destroyed  

Fig. 6.4     Fork-join model execution for OpenMP 

 

 

6.2.3 Parallel Computing Performance Measurement 

The benefits achieved by parallel implementation over a serial execution are 

measured by the speedup [57]. Speedup is defined as the ratio of the time taken to solve 

the problem on a single process to the time taken to solve the problem on a parallel 
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computer with identical processors. Speedup is computed by Eq (6.1). 

pt
tS 1=       (6.1) 

Where t1 is the time taken in a single processor and tp is the time in a parallel 

implementation. 

Theoretically, speedup should be equal to the number of processors used on the 

parallel computer (CPUs). However, due to the time spent in communication between 

multiple processors, speedup is generally less. Linear speedup is achieved when S=P for 

a P-processor system. One can get super linear speedup due to cache effects if parameter 

S is larger than P 

When speedup reaches an asymptotic value, the use of additional processors will not 

reduce the computation time. 

Another parameter useful to measure the parallel performance is the efficiency [57]. 

Efficiency is defined as the ratio of speedup (S) to the number of processors (P). 

Efficiency represents the average fraction of time for which a processor is doing useful 

computation. A linear speedup implies an efficiency of 1. 

P
SE =       (6.2) 

The cost of solving a problem on a multiprocessor is defined as the product of the 

parallel runtime (tp) and the number of processors (P) used. Cost should be comparable 

to the execution time on a single processor [57].  

pPtCost =       (6.3) 
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6.3 Parallel Implementation 

One of the objectives of this research is to develop a FORTRAN code to 

numerically simulate the mixed convective flow over a three-dimensional horizontal 

backward-facing step using the finite volume discretization technique and the SIMPLE 

algorithm. A flow chart for this code is presented in Figure 6.5.  

The first three rectangles in the flow chart in Figure 6.5 are designated to initialize 

the computational parameters, the boundary conditions, the grid generation, and the 

physical properties of the solid and liquid region within the computational domain. This 

stage consumes a small fraction of the total time, and therefore no extra discussion is 

needed in this respect. 

The remaining blocks in Figure 6.5 are the most time consuming part of the 

computational process. In this part, the values for the three velocity components (u, v, 

and w), and the values for the pressure and temperature distributions are iteratively 

computed.  

As was established in Chapter V, the nodal discretization for a three-dimensional 

geometry can be considered as a grid of nodal points (nodes) distributed along each 

coordinate direction. The nodes represent the points where the variables will be 

computed. The variables can be seen as a three-dimensional array that matches the grid 

[60].  

According to the finite volume discretization technique discussed in Chapter IV, the 

governing equations give an algebraic relation between a node and its neighbors. These 

algebraic relations represent a balance between the nodal point and its neighbors. 
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The interaction between nodes is linked by the a’s coefficients as expressed in Eqns. 

(4.13-4.19). 

Each node needs at least seven coefficients to express each one of the governing 

equations. There are five governing equations that need to be solved simultaneously for 

the mixed convective problem. In addition, the iterative method is needed to resolve the 

non-linearity of the momentum equations. Therefore, it is necessary to use a parallel 

computer to handle the problem. 

Each iteration consists of nested do-loops to update the variables in 3-dimensional 

arrays. These do-loops are executed concurrently across multiple processors. The loop-

level parallelism features offered by OpenMP will be exploited to parallelize the code. 

The uniform 3-dimensional grid allows ordering of nodes in a variety of different 

ways. For example, the grid can be seen as a collection of planes along a coordinate 

direction. Within each plane nodes can be grouped to form lines along the other two 

coordinate directions. This concept is graphically demonstrated in Figure 6.6 for planes 

in the x-coordinate direction. 

The nodes in the three-dimensional array are identified by the subscripts (k, j, i) that 

represent each one of the coordinate direction (z, y, x), respectively. According to Figure 

1.1 the z, y, and x coordinates represent the span-wise, the transversal, and the stream-

wise direction of the flow, respectively. 
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From Figure 6.6 it is evident that within a plane the nodes having the same “j-index” 

represent a line (group of nodes) parallel to the z-coordinate direction. Similarly the 

nodes with the same “k-index” represent a line parallel to the “y-direction”. 

Since each node represents an algebraic equation, it is obvious that each group of 

nodes (line) represents an algebraic system of equations. The associated linear system of 

equations is tri-diagonal, and can be easily solved by means of the TDMA algorithm as 

discussed in Chapter IV. In this manner, the three-dimensional problem is reduced to a 

two-dimensional problem defined on planes along the x-coordinate. These two-

dimensional problems are simplified to a one-dimensional problem defined on the lines 

of nodes along the z-direction. 

Under this assumption the three-dimensional numerical procedure for each variable 

can be solved plane by plane in a line-by-line fashion. The procedure for any i-esimo can 

be understood as keeping the “k-index” constant and solve line-by-line from k=1 to 

k=kmaximum (swept front to back) then keeping the “j-index” constant, solve line-by-

line from j=1 to j=jmaximum (swept bottom to top). Hence solving the complete domain 

for u, v, w, p, and T will depend on the number of lines in the z-coordinate direction 

(k=1 to kmaximum), the number of lines in the y-coordinate direction (j=1 to 

jmaximum) and on the number of planes in the x-coordinate direction (i=1 to 

imaximum).  

The parallel strategy proposed in this research consists of splitting the 

computational domain into planes normal to the x-axis, and then by means of OpenMP, 

evenly assigning blocks of these planes to each processor. This concept is schematically 
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presented in Figure 6.7. Thus, the parallel implementation consists in splitting the three-

dimensional computational domain into blocks of i-planes and assigning them to threads. 

The numerical procedure for each plane is computing the a’s coefficients for each node 

by varying the “k-index” and keeping the “j-index” constant and storing the values in a 

tri-diagonal matrix. Once the coefficients for the last k-index are computed and stored, 

the tri-diagonal matrix is solved by means of the TDMA algorithm. This procedure is 

repeated for line j=1 to the line j=jmaximum. The procedure is repeated for lines that are 

formed by keeping the “k-index” constant and the a’s coefficients are computed for each 

“j-index” node. In this sense each node is sweeping bottom to top and front to back. This 

parallel scheme is used to update the u-variable, and the v, w, p, and T variables 

according to the flow diagram in Figure 6.5.  

 

6.4 Parallel Performance 

The performance of the parallel code was studied on two parallel computers: a 32-

processor IBM-p690 at the Texas A&M Supercomputer center (AGAVE) and an IBM-

p690 at NCSA at the University of Illinois (COPPER). The experiments were conducted 

on 4 processors of AGAVE, and 16 processors on COPPER (administrative policies 

restricted the use of AGAVE to a maximum of 4-processors per job and a maximum of 

16-processors per job on COPPER).  
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Several cases were tested for different grid sizes and for simulating different fluid-

flow parameters. Initial studies were conducted for a few hundred iterations in order to 

test the performance of the parallel implementation. At the end of this section, results for 

simulating the complete solution of the problem are presented. 

The first test case is that for simulating a mixed convective flow with Ri=1, a grid 

size of 180:40:40::x:y:z, and a thermal conductivity ratio solid/fluid equal to 

ks/kf=kCu/kair (Cu: Copper). This test was done on AGAVE and was simulated for a 

maximum of 5000 iterations. The results are presented in Table 6.1 and the total time, 

the speedup, and efficiency are plotted as a function of the number processors (P) in 

Figure 6.8, Figure 6.9, and Figure 6.10, respectively. The results for this example 

showed that a reasonable speedup is obtained. In general it can be seen that when using 2 

processors a linear speedup is obtained, but for 4 processors the speedup is smaller than 

4. In the same sense, a better efficiency is found for 2 processors than for 4 processors. 

 

 

Table 6.1 Parallel performance, test 1 on AGAVE 5000 iterations 

Grid 180:40:40/Ri=1-Mixed convection/ks/kf=kCu/kair 

 Number of processors (P) 

 1 2 4 

CPU computing time [s] 3861 1935 1099 

Speedup 1 1.99 3.51 

Efficiency 100 99.76 87.82 
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Fig. 6.8     Total time for test 1 on AGAVE 
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Fig. 6.9     Speedup vs. P test 1 on AGAVE 
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Fig. 6.10     Efficiency vs. P test 1 on AGAVE 

 

The next test was done on COPPER. In this case, the maximum number of iterations 

was fixed to 5000, and the thermal conductivity solid/fluid ratio was fixed to kCu/kair. In 

these cases different grid sizes were proposed and the results of computing time and 

speedup are presented in Table 6.2. Figures 6.11 and 6.12 show the speedup and 

efficiency of the parallel code for different sized meshes. 

It can be observed from Figure 6.11 that the speedup is almost linear, and in many 

cases super linear. Figure 6.12 shows a better efficiency for larger grid sizes (180:40:60) 

than for small grid sizes (100:40:40). The super linear speedup is obtained for larger 

mesh sizes because the tri-diagonal solver is able to exploit the cache very effectively.  
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Table 6.2 Parallel performance, test 2 on COPPER 

 Maximum of iterations 5000/Ri=3-Mixed convection/ ks/kf=kCu/kair 

Total computing time [s]/(speedup) 

Grid size x:y:z 1 P 2 P 4 P 8 P 16 P 

100:40:40 1707/(1) 870/(1.96) 422/(4.04) 211/(8.09) 112/(15.20) 

140:40:40 2526/(1) 1237/(2.04) 615/(4.10) 296/(8.53) 155/(16.29) 

180:40:40 3746/(1) 1827/(2.05) 902/(4.15) 436/(8.60) 224/(16.72) 

180:40:60 6112/(1) 2970/(2.06) 1470/(4.16) 693/(8.81) 347/(17.61) 
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Fig. 6.11     Speedup for different grid size test 2 on COPPER  
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Fig. 6.12     Efficiency for different grid size test 2 on COPPER 

 

 

The effect is more pronounced as P is increased because the sub-problems on each 

processor reduce in size. Furthermore, as the grid sizes increase the computation to 

communication ratio reduces, leading to higher efficiency.  

These previous observations hold when different values of Ri are used. 

The accuracy of the solution by partitioning the overall task between several 

processors is not affected. The difference between the solution using one processor or 

more processors is negligible (see Table 6.3). 
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Table 6.3 Differences for the computed values 

Grid x:y:z::140:40:40/Mixed convection/ks/kf=kCu/kair 

 1 P 2 P 4 P 

Umax at the exit [m/s] 0.132396 0.132393 0.132394 

Nuavg at the exit 3.407052 3.407054 3.407054 

exit

inlet
m

m
&

&  0.999998 0.999998 0.999998 

 

 

The previous experiments considered small problems to analyze the performance of 

the based OpenMP parallel implementation. The following test was done to analyze the 

behavior of full execution of the code.  

In the following test 3 on COPPER, the grid was set as x:y:z::180:40:40 and the 

study case was that for a mixed convective flow with Ri=3 and the thermal conductivity 

ratio was ks/kf=kCu/kair. In this run, the results for running the program for one, eight and 

sixteen processor are summarized in Table 6.4 and Figure 6.13. 

Table 6.4 shows that 1573s (approx. 26 m) were needed for convergence using 16 

processors, while 29214s (approx. 8h 7m) were required to solve the problem using 1 

processor. The computing time is dramatically reduced as the number of processors used 

to solve the problem is increased. Even for 8 processors the savings in total time is 

considerable. An 8 processors execution takes 3534s (approx. 1h). The total number of 

iterations required for the code was 36000. 
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Table 6.4 CPU computing time and speedup, test 3 on COPPER 

Grid x:y:z::180:40:40/Mixed convection/ ks/kf=kCu/kair 

 1 P 2 P 4 P 8 P 16 P 

CPU consuming time [s] 29214 14550 7189 3534 1573 

S 1 2.086 4.06 8.26 18.57 

E 1.00 1.004 1.015 1.03 1.16 
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Fig. 6.13     CPU computing time for a full run, test 3 on COPPER  
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In this Chapter, the parallel performance of the OpenMP based implementation to 

solve the mixed convective flow and the forced convective flow over a three-

dimensional horizontal backward facing step was presented.  

Most of the study cases showed that the computing time is considerably reduced 

when several processors are used to run a given task. A linear speedup is obtained up to 

16 processors, in many cases super linear speedup is obtained due to efficient cache 

utilization. 
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CHAPTER VII 

RESULTS AND DISCUSSION 

 

7.1 Introduction 

This chapter is designated to present the numerical results for the study of mixed 

convective flow over a three-dimensional horizontal backward-facing step. Prior to that, 

descriptions of the geometry, the boundary conditions, and other relevant aspects 

implemented in the numerical code are briefly highlighted. 

The geometry in question is shown in Figure 1.1. The channel dimensions are fixed 

in relation to the step height (s=0.01m) such that the expansion ratio (ER) and aspect 

ratio (AR) are equal to 2 and 4, respectively. The total length of the channel in the 

stream-wise direction is equal to 52 times the step height and the step length is equal to 2 

times the step height.  

The geometrical proportions for the step were fixed according to the definition of 

the benchmark problem established by the ASME K-12 Aerospace Heat Transfer 

Committee [12]. Similarly, the total length and channel expansion ratio were chosen 

based on values reported in the literature [17, 19-20] for flow over a backward-facing 

step channel. The aspect ratio was selected as four, in order to impose a stronger three-

dimensional behavior in the flow. 

In the following section a global description of the adopted numerical procedure is 

presented and a detailed explanation for the boundary conditions in the computational 

domain is given. 
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7.2 Numerical Procedure and Boundary Conditions 

The flow through the geometry was assumed to be steady and the Boussinesq 

approximation was invoked to confine the variations of density in the buoyancy term. 

Based on these assumptions a FORTRAN code was developed to numerically study the 

mixed convective flow over a three-dimensional horizontal backward-facing step. Thus, 

the momentum and the energy equations were discretized by means of a finite volume 

technique and the SIMPLE algorithm was used to link the pressure and velocity fields. 

Solution to the one-dimensional convection-diffusion equation at the control volume 

interface was represented by the Power Law scheme, as previously discussed in Chapter 

IV.  

Velocity nodes were placed at staggered locations in each coordinate direction while 

pressure, temperature, and other scalar properties were evaluated at the main grid points. 

A non-uniform grid size was considered to solve the problem as described in Chapter V. 

At the channel entrance the flow is considered as a three-dimensional fully 

developed flow [53] with a parabolic profile and at constant temperature. No slip 

conditions were applied at the channel walls including those along the backward-facing 

step.  

The channel walls were treated as adiabatic, excluding the bottom wall, which was 

subjected in its totality (0≤x≤L, 0≤z≤W) to a constant high temperature (Tw). No jump 

temperature condition was applied at this specific boundary. At the channel exit the 

natural outflow boundary conditions were implemented. 

To simulate the channel backward-facing step inside the computational domain a 
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very high diffusion coefficient for the momentum equation was chosen (µ=1x1050) [46], 

and for the energy equation, the thermal diffusion coefficient was set equal to a thermal 

conductivity ks of the solid. In this sense the backward-facing step was considerer as a 

conducting block and its impact on the flow was analyzed. 

At the solid-fluid interface (around the backward-facing step) the diffusion 

coefficients were evaluated by a weighted harmonic mean of the properties in the 

neighboring control volumes as proposed by Patankar [46], while the conjugate problem 

of conduction-convection at the solid-fluid interface was solved by a pseudo-solid-

specific heat method, as suggested by Xi and Han [61]. 

The working fluid is air and the physical properties were treated as constants and 

evaluated at the inlet flow temperature T0=293 K, as ρ=1.205 kg/m3, µ=1.81x10-5 kg/m-

s, Cp=1005 J/kg-K, kf=0.0259 W/m-K and β=0.00341 K-1. 

The numerical study presented in this research considers a mixed convective airflow 

over a three-dimensional horizontal backward-facing step for three different Richardson 

numbers (Ri=1, 2, and 3). Variations in the buoyancy effects were accomplished by 

varying the imposed temperature along the bottom wall (Tw), which in turn modifies the 

Grashof (Gr) number and thus the Ri.  

All numerical experiments were conducted for a Reynolds number equal to Re=200. 

The Reynolds number is defined in terms of the mean flow velocity at the channel inlet 

(U0) and the channel height. 

According to the mixed convection theory if the Ri parameter increases, the free 

convective effects are dominant over the forced convective effects in the flow and vice 
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versa. In this sense the impact on the flow for imposing different buoyancy forces are 

compared with the pure forced convective flow, as will be shown in Section 7.5. The 

studies on the impact of the conducting block on the flow field are properly presented 

and analyzed in the Section 7.6. Section 7.3 is designated to explain the convergence 

criteria concepts imposed on the numerical code.  

 

7.3 Convergence Criteria  

Since an iterative solution procedure following the discretization procedure was 

adopted for handling the non-linearity in the momentum equations and for solving the 

linkage between the momentum and the energy equations, it is necessary to define a 

convergence stop criteria for terminating the iterative scheme. 

A common procedure in computational fluid dynamics is to declare convergence 

when the so-called residuals for the velocity (Ru, Rv, Rw), and for the pressure (Rp) are 

less than an extremely small number epsilon (ε ). The definitions [62] for the 

convergence criteria for the velocity components (φ ) are presented in Eq. (7.1) and for 

pressure in Eq. (7.2). 

( )[ ]
φ

φφ
φ ε

φ

φφ
≤

−−−−
=

∑
∑ ∑ +

ppnodes

nodesnbnbppnodes

a

bppAaa
R 1   (7.1) 

( ) ( ) ( )[ ] ptbyxnszxewzynodesp wwAvvAuuAR ερ ≤−+−+−=∑ −−−  (7.2) 

In Eq. (7.1) φ  represents the u, v, and w velocity components and the a coefficients 

were defined in Chapter IV. 
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For the temperature field the convergence criterion used was the absolute maximum 

relative difference in temperatures between successive iterations to be less than εT [49]. 

Tn
ijk

n
ijk

n
ijk

T T
TT

R ε≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= +

+

1
,,

,,
1
,,     (7.3) 

Here, the indices represent each node in the computational domain and the n 

represents the iteration number.  

For this research, the convergence parameters were fixed as εφ=10-8, εp=10-10, and 

εT=10-6 for velocity components, pressure, and temperature, respectively.  

Prior to discussing results, some physical parameters and quantities of interest are 

defined in Section 7.4.  

 

7.4 Physical Parameters and Definitions 

One parameter that is inherent in the flow over a backward-facing step is the 

distance from the step that the flow takes to be reattached. This dimension has been 

called the reattachment point for two-dimensional geometries and is identified as the 

point were the shear stress is equal to zero. However, for a three-dimensional geometry 

this parameter is no longer a point, but is a line along the span-wise direction. This line 

is called the xu-reattachment line or simply the xu-line and is identified, as the points 

along the span-wise direction where the stream-wise component of the wall shear stress 

is equal to zero. For numerical purposes these points are identified as the distance from 

the backward-facing step were the u-velocity component becomes equal to zero [17, 19-

20].  
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Another parameter that will be useful to present the pertinent results for this 

research is the stream-wise wall shear stress averaged along the span-wise direction. 

From here on this parameter will be called the averaged shear stress τwx and it is defined 

as: 

0=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y

wx dy
udµτ      (7.4) 

The definition for the local Nusselt number is given as: 

( )bw

y

TT

Hdy
dT

Nu
−

⎟
⎠
⎞⎜

⎝
⎛

= =

2
0      (7.5) 

In Eq. (7.2) the term 2H is the channel height and Tb is the bulk temperature. The 

definition for the bulk temperature Tb was taken from Shah and London [53] as: 

∫=
Ab

b uTdA
Au

T 1      (7.6) 

Here the ub is the mean velocity (bulk velocity) and A represents the cross sectional area 

of the channel. T and u represent the components of the temperature and stream-wise 

velocity fields. 

∫=
Ab udA

A
u 1       (7.7) 

If the local Nusselt number is averaged along the span-wise direction, then what is 

obtained is the averaged span-wise Nusselt number (Nuavg) defined as: 

( )bw

y
avg TT

Hdy
Td

Nu
−

⎟
⎠
⎞⎜

⎝
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= =

2
0    (7.8) 
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The averaged span-wise Nusselt number (Nuavg) will be denoted as the averaged Nusselt 

number from here on. 

Now that the physical parameters for studying the mixed convective flow have been 

defined, and a global review of the theory, beyond the numerical implementation has 

been presented, the following section is designed to present the pertinent results 

achieved in this research. 

 

7.5 Effects of Varying the Richardson Number 

As was presented in Chapters I and II, the flow over the backward-facing step is 

extremely sensitive to the abrupt geometrical change at the step. Downstream of the step 

and just behind the primary re-circulation zone, the flow is reattached and redevelops to 

a fully developed flow at the channel exit. However, in the scenario previously described 

the buoyancy forces due to the presence of temperature gradients was not considered. 

Under such circumstances the flow behavior could be completely distorted.  

Hence, the main focus of this section is to analyze the effects of a mixed convective 

flow over a three-dimensional horizontal backward-facing step. In order to study the 

mixed convective effects, parameters like the xu-line, the averaged shear stress τwx, the 

averaged Nusselt number, and velocity and temperature profiles at specific planes will 

be examined for different Ri values and for pure forced convective flow. Results for 

three different Ri parameters (Ri=3, 2, and 1) were compared against the pure forced 

convective flow (Ri=0). The thermal conductivity of the block was fixed at a constant 

value corresponding to that for Copper (ks=386 W/m-K). 
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7.5.1 The xu-line, Averaged Nusselt Number, and Averaged Shear Stress 

For pure forced convective flow (Ri=0) the presence of the step results in a primary 

re-circulation zone that is limited by the so-called xu-line. The impact of varying 

Richardson in the xu-line is plotted in Figure 7.1.  

As can be seen in Figure 7.1, the xu-line is symmetric in the span-wise direction due 

to the symmetry in the geometry and the boundary conditions. As the value of Ri is 

increased to 1 the xu-line is pushed farther downstream. However, an increase in Ri to 2 

and 3 the xu-line shifts upstream. This behavior can be explained by examining the 

stream trace plots presented in Figures 7.2–7.5.  

From Figure 7.2 it is evident that for pure forced convective flow (Ri=0) there are 

no cross-stream (stream-wise) re-circulation currents. As the Ri value is increased to 1, 

the mixed convective effects come into play and push the primary re-circulation zone 

farther downstream (Figure 7.3).  

Also, it is evident from Figure 7.3 that the cross-stream components of velocity are 

minimal for Ri=1. As Ri is increased to 2 and 3 it is evident from Figures 7.4 and 7.5 

that strong cross-stream or span-wise re-circulation zones appear which in turn suppress 

the primary re-circulation zone which leads to movement of the xu-line farther upstream 

of that for pure forced convection (Ri=0). 
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Fig. 7.1     xu-line distribution for different Ri and for pure forced convection  

 

 

From Figure 7.1 it can be seen that for Ri=0 and Ri=1 the xu-line resembles a “W” 

shape with two local minimum near each of the sidewalls and a maximum along the 

span-wise central plane. 

For Ri=0 and 1 the magnitudes of the v and w components are relatively small near 

the walls and leads to larger u-velocity components to satisfy the mass conservation. 

Thus the xu-line values are larger near the sidewalls. The magnitude of v and w velocity 

components increase between the span-wise central plane and the sidewalls for Ri=2 and 
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3 (as discussed later in Section 7.5.2). To satisfy continuity the magnitude of u-velocity 

decreases (as discussed later in Section 7.5.2) which results in two local minimums. 
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Fig. 7.2     Flow structures for a forced convective flow 

 

 

In the span-wise central region the v and w components of the velocity are small 

and in order to satisfy continuity the magnitude of u-velocity increases resulting in a 

maximum in xu-line along the span-wise central plane. 
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Fig. 7.3     Flow structures for a mixed convective flow Ri=1 
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Fig. 7.4     Flow structures for a mixed convective flow Ri=2 
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Fig. 7.5     Flow structures for a mixed convective flow Ri=3 

 

 

The averaged shear stress τwx along the bottom wall is presented in Figure 7.6. 

In Figure 7.6, the negative values, of the averaged shear stress, are associated with 

the primary re-circulation zone, and the point where τwx changes from a negative to a 

positive value, could be interpreted as “the average reattachment point”. The location of 

this point is shifted upstream if Ri is increased and the farthest point downstream occurs 

for Ri=1 as a consequence of the distribution for the xu-line presented in Figure 7.1. 

After reaching its maximum value the τwx monotonically decreases toward its 

asymptotically fully developed value at the channel exit. 
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Fig. 7.6     Averaged shear stress τwx for different Ri and pure forced convection 

 

 

Figure 7.7 presents the average Nusselt number distribution for various cases 

considered in this study. 

At the entrance of the horizontal backward-facing step channel the Nusselt number 

distribution has high values typical of the flow in the entry region; and then 

monotonically decreases until it reaches the backward-facing step end. In the vicinity of 

this zone the averaged Nusselt distribution presents a dramatic change due to the flow 

separation. In this sense, the hydraulic boundary layer and thermal boundary layer that 

started to develop at the channel duct entrance are abruptly interrupted. The tendency for 
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the averaged Nusselt number distribution is quite similar for all the study cases and 

higher values are associated to higher Ri as was expected. 

The maximum value of the averaged Nusselt number occurs at the location of the 

“average reattachment point” accordingly; the location of the maximum average Nusselt 

number matches with the averaged reattachment point (Figure 7.6). 
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Fig. 7.7     Averaged Nusselt number distribution 

 

 

The following section is dedicated to studying the effects of mixed convection on 

the three-velocity components of the flow over the horizontal backward-facing step heat. 
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7.5.2 Development of the Three-Velocity Components under Mixed Convective Flow 

Conditions 

The analysis of the impact of the mixed convection in the developing flow is done 

by plotting the three-velocity components at specific planes. 

The first case to be considered is for the u-velocity component alongside the central 

plane in the span-wise direction (z/W=0.5). The u-velocity component is plotted as a 

function of the transverse axis (y-axis) at several constant planes in the stream-wise 

direction (x-direction) for the heating conditions in Figure 7.8. 

As mentioned earlier, at the channel inlet (x/s=0) the flow is considered to be a 

three-dimensional hydrodynamically fully developed flow.  

In the vicinity of the step at x/s=2, the u-velocity component has a slight deviation 

from the fully developed flow. The major differences in these profiles, with respect to 

the ones at the channel inlet, occur at the corner of the step (y/s=0.5). Similarly, in the 

bottom region of the channel (0≤y/s≤0.5) negative u-velocity components are found. The 

most pronounced examples of this behavior are those for the highest Ri (Ri=3).  

The next stage to be discussed is for x/s=4.7. Here, the primary re-circulation zone 

attached to the backward-facing step is easily identified by the negative values of the u-

velocity component in this zone. 

The negative u-components are larger for Ri=3 and Ri=2 than for Ri=1 and for pure 

forced convection. On the other hand the positive values for this velocity component are 

larger for pure forced convection than for any other case. 
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An important feature for Ri=2 and 3 is that the size of the re-circulation zone in the 

transverse direction (y-direction) is shortened as Ri increases. In other words, the point 

for change from u-negative to u-positive is moving toward the bottom wall as Ri is 

increased. The reason for this particular behavior will be explained below. 

At the plane x/s=4.7, Figure 7.8d reveals the presence of a small re-circulation zone 

attached to the channel top wall (roof) along the span-wise central plane. This effect 

extends until x/s=8.6. This particular behavior is found only for Ri=3 and the only 

reasonable explanation attributed to this effect is the strength of the buoyancy forces. 

At the middle of the channel (x/s=26) the u-velocity component for pure forced 

convection starts to show a tendency similar to that of a fully developed velocity profile. 

Similarly for Ri=1; however, for Ri=2, and 3 the u-velocity profile presents a distorted 

shape that has its maximum values in the vicinity of the channel’s floor. The tendency to 

push the flow towards the bottom wall was discussed earlier for the plane x/s=4.7.  

Viewing the plots in Figure 7.8, it becomes evident that the profile for the u-velocity 

component along the central plane in the span-wise direction remains basically 

unchanged as the axial position (stream-wise) moves from the middle central plane 

(x/s=26) to the channel exit (x/s=52). The profile for the u-velocity component for pure 

forced convection approaches the profile of a fully parabolic profile at the channel exit, 

as shown in Figure 7.8a. 

At position (x/s=4.7) for Ri=1 (Figure 7.8b) the profile for the u-velocity component 

tends to form a parabolic profile. However, is evident that the maximum of the u-

velocity component is not at the transverse central plane, but is moved slightly toward 
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the top half of the channel. This particular behavior can also be viewed in the flow 

structures in Figure 7.4. 

A closer analysis of Figure 7.4, shows that for Ri=1 the spiral flow structures at the 

channel exit tend to break down and form linear structures like a fully develop flow. By 

increasing the channel length it could be possible to have a parabolic profile at the exit 

for Ri=1. 

Discussion of the u-velocity component is completed by studying the u-velocity 

profiles at the channel exit for Ri= 2 and 3. For these two special cases the profile at the 

channel central plane (z/W=0.5) presents a distorted shape that has the maximum values 

in the lower part of the channel. This comment has been remarked on more than once 

through this analysis and now the explanation for this behavior is presented with the help 

of Figures 7.2 and 7.3. In these two figures, the flow structures show the presence of a 

couple of symmetric spiral mixed convective rolls. In these two spirals, it is evident that 

the mixed convective flow is ascending toward the channel roof along the sidewall while 

coming down toward the bottom wall along the central plane in the span-wise direction. 

This is the reason why the u-velocity profile along the central span-wise plane for Ri=2 

and 3 is pushed down to the channel floor and the maximum component always appears 

at the lower part of the channel as can be appreciated in Figures 7.8c and 7.8d.  

This theory is corroborated in Figure 7.9 which compares the u-velocity profiles at 

the channel exit for Ri=3 at two different z/W positions. In this figure the maximum in 

the u-velocity profile is at a higher position (y/2H) for the plane near the wall 

(z/W=0.05) where the flow is ascending and is placed in a lower position at the central 
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plane (z/W=0.5) where the flow is descending toward the bottom wall. 
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Fig. 7.9     u-velocity profile at the channel exit at two different z/W planes Ri=3 

 

 

The transverse velocity component (v), as a function of the span-wise distance 

(z/W) at different constant stream-wise and constant transverse planes, is presented in 

Figure 7.10.  

Figure 7.10a shows the velocity profile at the edge of the step (x/s=2) for a constant 

transverse plane near the bottom wall (y/s=0.06). Here, the v-velocity component profile 

presents positive values meaning that the flow is moving up. This effect is not only 

attributed to the buoyancy forces, but also due to the presence of the step wall normal to 

the stream-wise direction. The v-component values for Ri=3 are almost 6 times the 
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values for pure forced convection, and is evident that the buoyancy forces have their 

impact in this region of the channel. 

The effect of these positive values for the v-velocity component leads to a reduction 

in size of the primary re-circulation zone in both stream-wise and transverse directions. 

Figure 7.10b shows the v-velocity distribution at the same y-constant plane as in 

Figure 7.10a near the bottom wall (y/s=0.06), but at a farther downstream plane 

(x/s=4.7). In this position the distributions for Ri=2 and 3 show a similar behavior, while 

for Ri=1 and pure forced convective flows the distributions remain almost constant 

having a value of v=0 m/s. Analysis of this figure for the higher Richardson number 

cases, lends credence to the explained theory of convective rolls and the fluid ascending 

near the sidewalls (z/W=0 and z/W=1) while the fluid is displaced towards the bottom 

wall in the central region in the span-wise direction.  

It is also clear that the buoyancy effects for Ri=2 and 3 are strong and even inside of 

the re-circulation zone they considerably modify the v-velocity distribution. 

The v-velocity distribution in a transverse plane near the top wall (y/s=1.94) and 

adjacent to the step (x/s=2) is presented in Figure 7.10c. The v-velocity distributions 

clearly show the propensity for the flow to displace toward the bottom wall along the 

span-wise (z) direction. It is evident that for Ri=2 and 3 some positive values for the v-

velocity component are presented. This special behavior in the vicinity of the sidewall is 

due to the presence of the buoyancy forces which is not so for the cases Ri=1 and 0. 
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Fig. 7.10     v-velocity component for different Ri at constant x- and y-planes. a) x/s=2 & 
y/s=0.06 b) x/s=4.7 & y/s0.06 c) x/s=2 & y/s=1.94 d) x/s=26 & y/s=1 e) x/s=52 & y/s=1 
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In Figure 7.10d the v-velocity components for a central plane in the transverse 

direction (y/s=1) and for the central plane of the channel in the stream-wise direction 

(x/s=26) are plotted. It can be appreciated that for the pure forced convection the v-

velocity component is equal to zero all along the span-wise distribution, thus it can be 

said that for this particular situation, the flow is approaching a fully developed flow 

condition. On the other hand for Ri=2 and 3, the v-velocity profiles in this specific zone 

are similar. But the v-velocity distribution deviates for Ri=1. In the case of Ri=1, the 

distribution gives the idea of an ascending flow structure at the central portion in the 

span-wise central portion of the channel.  

Figure 7.10e shows the v-velocity distribution along a constant plane y/s=1 at the 

channel exit. The v-velocity behavior is similar to Figure 7.10d discussed above. At the 

channel exit the v-component for pure forced convection is equal to zero and the flow 

structures report that for Ri=2 and 3, the flow is ascending in the vicinity of the side-wall 

and is descending in the central region. The consequence of this behavior was explained 

earlier (Figure 7.9). 

Figure 7.11 shows w-velocity at two different constant y-planes (y/s=0.05 and 1.95) 

and at two different constant x-planes (x/s=2 and 6.4). The value of y/s=0.05 

corresponds to a transverse plane near the bottom of the channel while y/s=1.95 

corresponds to a transverse plane near the top of the channel. The value of x/s=2 

corresponds to a plane close to the step, while a value of x/s=6.4 corresponds to a plane 

inside the primary re-circulation region. 

An inverted symmetric behavior about the span-wise central plane was observed for 
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the w-velocity distribution (Figure 7.11). Along the central plane in the span-wise 

direction (z/W=0.5) the value is equal to zero. Similarly, in the central zone it can be 

seen that the value for this component is extremely small even inside the primary re-

circulation zone. 
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Fig. 7.11     w-velocity profile at different x- and y-planes. a) x/s=2 & y/s=0.05 b) x/s=2 

& y/s=1.95 c) x/s=6.4 & y/s=0.05 d) x/s=6.4 & y/s=1.95 
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Figure 7.11a shows the w-velocity distribution near the bottom of the channel at a 

constant stream-wise plane near the step (x/s=2). It is clear from this figure that the flow 

is directed towards the sidewalls. A similar w-velocity distribution in a transverse plane 

near the top wall (y/s=1.95) is presented in Figure 7.11b. This figure shows that the flow 

is directed towards the center of the channel. Thus, one can conclude the presence of two 

counter clock-wise convective rolls near the step.  

Figures 7.11c and 7.11d show w-velocity distribution inside the primary re-

circulation zone (x/s=6.4). For pure forced convection (Ri=0) the w-velocity components 

are nearly zero in both planes near the bottom and top of the channel. For Ri=1 the 

variation of w-velocity is negligible in the plane near the channel top while Figure 7.11c 

indicates that the flow is directed towards the channel center in the plane close to the 

bottom of the channel. 

For Ri=2 and 3 the flow is directed toward the channel sidewalls in the region close 

to the channel bottom and flow is directed toward the channel center-line in the region 

close to the channel top wall. Thus confirming the presence of two counter clock-wise 

convective rolls. 

The distribution for the w-velocity component, along the stream-wise direction for a 

constant span-wise plane (z/W=0.015) along a constant transverse plane, adjacent to the 

bottom wall (y/s=0.05), is presented in Figure 7.12. 

The w-velocity components are strong in the vicinity of the step and inside the 

primary re-circulation zone (x/s≤10), and the tendency is to pass flow toward the 

channel sidewalls as mentioned before. At the channel exit the w-velocity component 
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tends to an asymptotic value and then the variations in the w-component are not as 

significant as in the primary re-circulation zone.  
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Fig. 7.12     w-velocity component at a constant span-wise plane (z/W=0.015) 

 

 

For pure forced convective flow the w-component reports a value equal to zero near 

the channel exit. On the other hand, for mixed convective flow, this velocity component 

reports non-zero negative values indicating that the flow is pushed toward the channel 

sidewalls as a consequence of the mixed convective rolls. 

The strong presence of the w-velocity component inside the primary re-circulation 
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zone becomes clearly evident from Figure 7.12. Hence, the flow is a strong three-

dimensional in mixed convective flows over a backward-facing step. 

Figure 7.13 presents the w-velocity component along the stream-wise direction, but 

for plane z/W=0.93 and a plane near the roof of the channel (y/s=1.92). Contrary to the 

distribution presented in Figure 7.12, the flow tends to move to the channel span-wise 

central zone. This behavior is attributed to the spiral convective rolls. As can be seen in 

Figures 7.11 and 7.12 there is a considerable variation in the magnitude of the w-

velocity component along the span-wise direction.  
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Fig. 7.13     w-velocity component at a constant span-wise plane (z/W=0.93) 
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7.5.3 Temperature Fields for the Mixed Convective and Pure Forced Convective Flow 

Results for the temperature distribution within the computational domain for the 

mixed and forced convective flow are presented along different planes in Figures 7.14 to 

7.17 for different Ri values. 

Figure 7.14 shows the temperature contours for Ri=3. The zones for the highest 

temperatures are located near the bottom wall and in the vicinity of the step. This is 

because the bottom wall is heated and the backward-facing step is highly conducted 

(ks=kCopper=386 W/m-K).  

The temperature contours along the constant x-planes reveal that zones in the form 

of layers of high temperature are formed along the bottom and top walls. The high 

temperature near the bottom wall is a consequence of the boundary condition imposed 

for the computational domain, while the layer of high temperatures at the top wall is a 

consequence of the buoyancy effects.  

It is evident from the temperature contour plots in the constant y-planes, that the 

temperature increases as flow approaches the channel exit. The temperature contour plot 

along the y=0.1 plane shows that there are significant temperature gradients in the span-

wise direction which is due to the presence of strong mixed convective rolls at Ri=3. 

Temperature contours for a constant z-plane clearly shows that high temperatures 

occur in the bottom right-hand side corner. It also shows that the zones of high 

temperature in the top wall start very close to the channel inlet. So the mixed convective 

effects start to develop in the entry region of the channel. 
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Fig. 7.14     Temperature distribution for Ri=3 at different x-, y- and z-constant planes 
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Fig. 7.15     Temperature distribution for Ri=2 at different x-, y- and z-constant planes 
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Fig. 7.16     Temperature distribution for Ri=1 at different x-, y- and z-constant planes 

 

 

 



 

 

141

 

 

 

 

0
0.1

0.2
0.3

0.4
0.50

0.02
0

0.01

Y

Z

X

328
323
317
312
306
301
295

Flow
T [K]

Constant x-planes

0.02

 

0
0.1

0.2
0.3

0.4
0.50

0.02
0

0.01

Y

Z

X

328
323
317
312
306
301
295

Flow
T [K]

Constants x-planes

0.02

 

 

0
0.1

0.2
0.3

0.4
0.50

0.02
0

0.01

Y

Z

X

328
323
317
312
306
301
295

Flow
T [K]

Constant y-plane

0.02

 

0
0.1

0.2
0.3

0.4
0.50

0.02
0

0.01

Y

Z

X

328
323
317
312
306
301
295

Flow
T [K]

Constant z-plane

0.02

Fig. 7.17     Temperature distribution for Ri=0 at different x-, y- and z-constant planes 
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Figure 7.15 presents the temperature distribution inside the computational domain 

for Ri=2. The temperature contour distributions are similar to the ones for Ri=3, hence 

no additional comments are warranted.  

The temperature distribution contours for Ri=1 are presented in Figure 7.16. In this 

case there is no evidence of high temperature fluid reaching the channel roof and the 

buoyancy effects for Ri=1 are not strong enough to overcome the viscous forces. 

The temperature contours for a z-constant plane reinforce the comment that no high 

temperature layer is found along the top wall. While the contours for the y-constant 

plane show the existence of temperature gradients along the z-coordinate direction. 

For pure forced convective flow the temperature distribution is presented in Figure 

7.17. The temperature contours show that the higher temperature is always near the 

bottom wall and in the vicinity of the backward-facing step. It is evident that at the 

channel inlet the temperature is low and it tends to increase as the fluid approaches the 

channel exit.  

 

7.6 Impact of the Backward-Facing Step Thermal Conductivity on the Mixed 

Convective Flow 

In this section the influence of a thermally conductive backward-facing step is 

presented. The results were computed under the consideration of a mixed convective 

flow for Ri=2 and the thermal conductivity ratio between the solid and fluid were varied 

from 10 to 10000. In this section, kCu=386 W/m-K and kSS=64 W/m-K, which 

correspond to the thermal conductivity for Copper and Stainless Steel, respectively, and 
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the thermal conductivity for the air were defined before as kair=0.0259 W/m-K.  

The temperature distribution for the central plane in the span-wise direction inside 

the block is presented in terms of contour plots in Figure 7.18 for all the cases. 

Figure 7.18 shows that for a high conductivity ratio, ks/kf, the temperature inside the 

block is almost uniform and close to that temperature at the boundary condition as 

presented in Figures 7.18a-d. 

In these figures it is also observed that at the edge of the step, small differences in 

temperature are found, but this difference is present for just a small portion in the block. 

In Figures 7.18e and 7.18f the temperature gradients inside the block are greater 

compared to the previous cases. This is because the thermal conductivity for the block in 

these cases is low. 

The effect of varying the thermal conductivity in the block does not impact the 

development of the velocity and temperature distribution for the mixed convective flow. 

This could be attributed to the fact that the block dimensions are relatively small 

compared to the channel dimensions. The ratio of channel length-step length in the 

stream-wise direction is equal to 25. 
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Fig. 7.18    Temperature contours inside the backward-facing step for different thermal 
conductivities at the z-central plane. a)ks/kair=kCu/kair b)ks/kair=kSS/kair c)ks/kair=10000 

d)ks/kair=1000 e)ks/kair=100 f) ks/kair=10 
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CHAPTER VIII 

CONCLUSIONS 

 

Numerical simulation for a mixed convective flow over a three-dimensional 

horizontal backward-facing step was presented for different Richardson parameters 

Ri=3, 2, and 1 and the results were compared with those of pure forced convective flow 

Ri=0. In all the cases the Reynolds (Re) was fixed to be equal to 200. 

As the buoyancy forces are increased by means of imposing larger Ri, the velocity 

field and the temperature distribution markedly differ from those of pure forced 

convective flow. 

It was found that for buoyancy dominating mixed convective flows (Ri=3 and 2) the 

xu-line is shortened, while for equally dominant force-buoyancy mixed convective flows 

(Ri=1) the xu-line is pushed farther downstream when compared to pure forced 

convective flow (Ri=0). The xu-line is the limiting line for the primary re-circulation 

zone attached to the backward-facing step. 

The location of the xu-line has repercussions on the location of the maximum in the 

span-wise averaged Nusselt number distribution. This value is shifted upstream for Ri=3 

and 2 and is moved farther downstream for Ri=1 when compared to the case for Ri=0. 

The flow structures for mixed convective flows (Ri=2 and 3) differ from those for 

Ri=1 and for pure forced convection (Ri=0). For Ri=1 the forced convective and the 

mixed convective effects are equally dominant. At higher mixed convective strengths 

(Ri=2 and 3) two convective rolls in the span-wise direction appear. The strength of the 
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buoyancy effects are also responsible for the shortening of the primary-re-circulation 

zone in both stream and transverse directions. 

The temperature distributions are very different for Ri=2 and 3 compared to those 

for pure forced convective (Ri=0). For pure forced convection (Ri=0) high temperatures 

are located near the bottom wall. The fluid temperature decreases in the transverse 

direction and increases in the stream-wise direction. For Ri=2 and 3 high temperature 

fluid rises and a layer of fluid with high temperature and low density is located at the 

channel top wall. This layer increases in thickness as Ri is increased.  

The impact of thermal conductivity of the backward-facing step on mixed 

convection was studied varying the ratio of the backward-facing step thermal 

conductivity to the fluid thermal conductivity. The parametric study showed that the 

thermal conductivity of the backward-facing step had no impact on the mixed convective 

flow. Higher temperature gradients within the backward-facing step were found for 

lower thermal conductivity ratios. 

The numerical solution for three-dimensional geometries demands the use of high-

performance computational resources. This becomes indispensable due to the 

complexity of the procedure for solving the mixed convective flow.  

An OpenMP parallel implementation was proposed to solve the mixed convective 

flow over the three-dimensional horizontal backward-facing step. 

The simulation results indicate that partitioning the computation across processors 

on a parallel machine drastically reduces the computational time. A linear speedup was 

observed up to 16 processors on the IBMp690. In many cases super linear speedup was 
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observed due to efficient cache usage. 

For instance, the parallel performance measured by means of the speedup reported 

values around 18 on 16 processors. This results in an 18-fold reduction in computational 

time. 

Research work involving a larger variety of Richardson numbers, different heating 

boundary conditions, and different geometrical dimensions of the channel could be 

addressed for future investigations. In addition, different parallel schemes using MPI can 

be considered for future work. 
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