AN INVESTIGATION OF METHODS FOR REDUCING THE USE OF NON-RENEWABLE ENERGY RESOURCES FOR HOUSING IN THAILAND

A Dissertation

by

SAKKARA RASISUTTHA

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

May 2005

Major Subject: Architecture
AN INVESTIGATION OF METHODS FOR REDUCING THE USE OF NON-RENEWABLE ENERGY RESOURCES FOR HOUSING IN THAILAND

A Dissertation

by

SAKKARA RASISUTTHA

Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Jeff S. Haberl
(Chair of Committee)

Larry O. Degelman
(Member)

David E. Claridge
(Member)

Valerian Miranda
(Member)

Phillip J. Tabb
(Head of Department)

May 2005

Major Subject: Architecture
ABSTRACT

An Investigation of Methods for Reducing
the Use of Non-renewable Energy Resources for Housing in Thailand.
(May 2005)
Sakkara Rasisuttha, B.Arch., Khon Kaen University, Thailand;
M.Arch., Illinois Institute of Technology, Chicago
Chair of Advisory Committee: Dr. Jeff S. Haberl

The purpose of this research is to develop methods that reduce energy consumption in a residential building in a hot and humid climate region (Thailand) using efficient architectural building components and renewable energy (solar energy) to produce electricity, domestic hot water, and supplemental cooling by night sky radiation.

Improving the architectural building components, including building materials, is an option to reduce energy consumption in a building. Using renewable energy sources is another option to reduce the consumption of non-renewable energy. In residential buildings, solar energy has been utilized for space heating and domestic hot water using active solar collector systems and for generating electricity using photovoltaic (PV) systems. One photovoltaic system, the hybrid photovoltaic-thermal (PV-T) collector system, has been developed by several researchers over the last 20 years. The hybrid photovoltaic-thermal (PV-T) collector system is a combination photovoltaic (for producing electricity) and solar thermal collector (for producing hot water). Theoretical and experimental studies of this collector have highlighted the advantages of the hybrid PV-T collector system over separate systems of PV and solar collector in term of system efficiency and economics. Unfortunately, very little experimental data exists that demonstrates the advantages of a combined system. Therefore, one of the objectives of this study conducted was an experimental study of this system as an auxiliary energy source for a residential building.

Night sky radiation has also been studied as a cooling strategy. However, no attempt so far could be found to integrate it to a hybrid PV-T collector system. The night sky radiation strategy could be operated with the hybrid PV/T collector system by using existing resources that are already present in the solar system. The integration of the night sky radiation into the hybrid PV-T collector system should yield more productivity of the system than the operation of the Hybrid PV-T system alone.
The research methods used in this work included instrumentation of a case-study house in Thailand, an experimental PV-T collector system, and a calibrated building thermal simulation. A typical contemporary Thai residential building was selected as a case-study house. Its energy use and local weather data were measured and analyzed. Published energy use of Thai residential buildings was also analyzed as well to determine average energy consumption. A calibrated computer model of the case-study building was constructed using the DOE-2 program. A field experiment of the thermal PV system was constructed to test its ability to simultaneously produce electricity and hot water in the daytime, and shed heat at night as a cooling strategy (i.e., night sky radiation). The resultant electricity and hot water produced by the hybrid PV-T collector system helped to reduce the use of non-renewable energy. The cooling produced by the night sky radiation also has potential to reduce the cooling load. The evaluation of the case-study house and results of the field experiment helped to quantify the potential reduction of energy use in Thai residential buildings.

This research provided the following benefits: 1) experimental results of a hybrid PV-T solar collector system that demonstrates its performance compared to typical system of separate photovoltaic and solar collector, 2) results of night sky radiation experiments using a photovoltaic panel as a radiator to demonstrate the performance of this new space cooling strategy, and 3) useful data from the case-study house simulation results and guidelines to assist others in transferring the results to other projects.
DEDICATION

To my father, my mother, and my sister for their love and support.
ACKNOWLEDGMENTS

I would like to express my appreciation to advisory committee. This research would not have been accomplished without their guidance. My sincerest gratitude goes to Dr. Jeff Haberl who guided me with his kindness, dedicated attention, expertise, and knowledge throughout the study period.

My gratitude is given to my mother who always supports me with everything she can help me to finish this dissertation. I felt warm in my heart while she was with me in College Station during the final months this study. I would like to give special thanks to Mr. Jeerasak Muntangkul who is the owner of the case-study house. He was very kind to allow me to use his house as a case-study. I also wish to thank Ms. Wimolkae Wonglasin and my sister, Kritika Rasisuttha, for maintaining the data loggers and sending the data files to me.

I would like to thank Dr. Atch Sreshthaputra for giving me a very useful program, “ATCHWEA”, that helped for the preparation of the Bangkok weather file used in this research. I appreciate the help provided by my Thai friends for helping me move the experimental box from the Architecture Woodshop to the solar test bench on the roof of the Langford Architecture Building on the Texas A&M University campus. I would like to thank Mr. Kwanchi Roachananakan for helping me assemble and paint the experimental box. Particular thanks are due to Mr. Charles Tedrick for giving me advice on construction of the experiment box, operating the machines in the woodshop, and safety in the woodshop. I also would like to thank Mr. Kelly Milligan for his advice and help in constructing the many electronic devices used in the experimental box.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>CHAPTER I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 World Environmental Problems, Energy Situation and Trends</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Thailand’s Energy Situation</td>
<td>1</td>
</tr>
<tr>
<td>1.1.3 Thai Housing and Energy Efficiency</td>
<td>2</td>
</tr>
<tr>
<td>1.1.4 Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Purpose and Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Organization of the Dissertation</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER II LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Human Thermal Comfort</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1 ASHRAE Thermal Comfort</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Studies on Thermal Comfort in Thailand</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Energy Efficiency and Solar Energy Application in Housing in Thailand</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Energy Policy</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2 Studies and Projects of Energy Efficiency Houses</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3 Solar Energy Projects in Thai Residential Buildings</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Hybrid Photovoltaic-Thermal Solar Collector Systems and Night Sky Radiation</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1 Hybrid Photovoltaic-Thermal Solar Collector Systems</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2 Night Sky Radiation Cooling Strategies with Hybrid PV-T Systems</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Analysis of Photovoltaic and Solar Collector Systems</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Building Thermal Simulation</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1 Building Energy Simulation Programs</td>
<td>20</td>
</tr>
<tr>
<td>2.5.2 Calibrating Building Simulation Models</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Summary of Literature Review</td>
<td>23</td>
</tr>
<tr>
<td>CHAPTER III SIGNIFICANCE AND LIMITATIONS</td>
<td>26</td>
</tr>
<tr>
<td>3.1 Expected Contributions from This Research</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Scope and Limitations of the Research</td>
<td>26</td>
</tr>
<tr>
<td>CHAPTER IV METHODOLOGY</td>
<td>28</td>
</tr>
<tr>
<td>4.1 Case-Study House</td>
<td>28</td>
</tr>
</tbody>
</table>
CHAPTER INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Selection of the Case-Study House</td>
<td>28</td>
</tr>
<tr>
<td>4.1.2 Data Collection of the Case-Study House</td>
<td>33</td>
</tr>
<tr>
<td>4.1.3 Instrument Calibrations</td>
<td>34</td>
</tr>
<tr>
<td>4.2 Experiment of the Hybrid Photovoltaic-Thermal (PV-T²) Collector</td>
<td>34</td>
</tr>
<tr>
<td>4.2.1 Design of the Experiments</td>
<td>34</td>
</tr>
<tr>
<td>4.2.2 Experimental Box</td>
<td>40</td>
</tr>
<tr>
<td>4.2.3 Instrument Calibrations</td>
<td>53</td>
</tr>
<tr>
<td>4.2.4 Test Procedures and Data Analysis</td>
<td>54</td>
</tr>
<tr>
<td>4.3 Analysis of Impact of the Hybrid PV-T² System on the Case-Study House</td>
<td>62</td>
</tr>
<tr>
<td>4.4 Building Energy Simulation</td>
<td>62</td>
</tr>
<tr>
<td>4.4.1 Creating the Base Case DOE-2 Input File</td>
<td>62</td>
</tr>
<tr>
<td>4.4.2 Calibrated Simulated Model to the Case-Study House</td>
<td>63</td>
</tr>
<tr>
<td>4.5 Economic Analysis</td>
<td>67</td>
</tr>
<tr>
<td>4.6 Summary of the Methodology</td>
<td>67</td>
</tr>
<tr>
<td>V DATA ANALYSIS AND RESULTS OF THE CASE-STUDY HOUSE</td>
<td>69</td>
</tr>
<tr>
<td>5.1 The Case-Study House</td>
<td>69</td>
</tr>
<tr>
<td>5.1.1 Building Characteristics and Occupants</td>
<td>69</td>
</tr>
<tr>
<td>5.1.2 The Building’s Air Conditioning Systems</td>
<td>71</td>
</tr>
<tr>
<td>5.1.3 Building Drawing and Pictures</td>
<td>73</td>
</tr>
<tr>
<td>5.2 Analysis of the Measured Data and Thermal Comfort</td>
<td>81</td>
</tr>
<tr>
<td>5.2.1 Measured Temperatures in Spaces of the Case-Study House</td>
<td>81</td>
</tr>
<tr>
<td>5.2.2 Measured Humidity in Spaces of the Case-Study House</td>
<td>86</td>
</tr>
<tr>
<td>5.2.3 Psychrometric Plots of Measured Indoor Conditions of Spaces in the Case-Study House</td>
<td>88</td>
</tr>
<tr>
<td>5.3 Building Energy Use</td>
<td>90</td>
</tr>
<tr>
<td>5.3.1 Electricity Consumption in the Thai Residential Buildings</td>
<td>91</td>
</tr>
<tr>
<td>5.3.2 Monthly Energy Use in the Case-Study House</td>
<td>94</td>
</tr>
<tr>
<td>5.4 Summary</td>
<td>98</td>
</tr>
<tr>
<td>VI DATA ANALYSIS AND RESULTS OF EXPERIMENTS WITH THE HYBRID PHOTOVOLTAIC-THERMAL COLLECTOR AND THE NIGHT SKY COOLING SYSTEM</td>
<td>99</td>
</tr>
<tr>
<td>6.1 Experimental Case 1: Thermal Performance of the PV-T² System</td>
<td>99</td>
</tr>
<tr>
<td>6.1.1 Results from the Thermal Solar Collector System</td>
<td>99</td>
</tr>
<tr>
<td>6.1.2 Thermal Performance of the Hybrid PV-T² System</td>
<td>105</td>
</tr>
<tr>
<td>6.1.3 A Comparison of the Performance of the Hybrid PV-T² System and a Selection of Solar Thermal Collectors</td>
<td>107</td>
</tr>
<tr>
<td>6.1.4 Generating of Solar Collector Parameters for Analysis of the Solar Collector System in the F-Chart Program</td>
<td>108</td>
</tr>
<tr>
<td>6.2 Experimental Case 2: Electrical Performance of the PV-T² System</td>
<td>109</td>
</tr>
<tr>
<td>6.2.1 Results from the Photovoltaic System</td>
<td>110</td>
</tr>
<tr>
<td>6.2.2 Electrical Performance of the Hybrid PV-T² System</td>
<td>114</td>
</tr>
<tr>
<td>6.3 Experimental Case 3: Night Sky Cooling Strategy</td>
<td>115</td>
</tr>
<tr>
<td>6.3.1 Results from the Heat Rejection Experiment</td>
<td>116</td>
</tr>
<tr>
<td>6.3.2 Results from Theoretical Heat Rejection Calculations</td>
<td>119</td>
</tr>
<tr>
<td>6.3.3 Comparisons of Results from the Heat Rejection Experiment and the Theoretical Calculations</td>
<td>123</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.3.4 Heat Rejection and Dependent Variables</td>
<td>124</td>
</tr>
<tr>
<td>6.3.5 Multiple Regression Analyses</td>
<td>130</td>
</tr>
<tr>
<td>6.4 Total Efficiency of the Hybrid PV-T² Collector System</td>
<td>133</td>
</tr>
<tr>
<td>6.5 Summary</td>
<td>135</td>
</tr>
<tr>
<td>VII DATA ANALYSIS AND RESULTS OF BUILDING SIMULATION IN THE DOE-2 WITH THE RESULTS FROM THE F-CHART AND PV-F CHART PROGRAMS</td>
<td>137</td>
</tr>
<tr>
<td>7.1 Result of First DOE-2 Run</td>
<td>137</td>
</tr>
<tr>
<td>7.1.1 Monthly Energy Use</td>
<td>137</td>
</tr>
<tr>
<td>7.1.2 Zone Temperatures</td>
<td>141</td>
</tr>
<tr>
<td>7.2 Calibrations of the DOE-2 Run# 1</td>
<td>144</td>
</tr>
<tr>
<td>7.2.1 Calibration Process</td>
<td>144</td>
</tr>
<tr>
<td>7.2.2 Calibrated Monthly Energy Use</td>
<td>149</td>
</tr>
<tr>
<td>7.2.3 Calibrated Zone Temperatures</td>
<td>152</td>
</tr>
<tr>
<td>7.3 Investigations on Energy Efficient Strategies and Results</td>
<td>155</td>
</tr>
<tr>
<td>7.3.1 Strategy 1: Improve the Roof’s Insulation</td>
<td>159</td>
</tr>
<tr>
<td>7.3.2 Strategy 2: Improve the 2nd Floor Ceiling Insulation</td>
<td>165</td>
</tr>
<tr>
<td>7.3.3 Strategy 3: Improve Wall Insulation</td>
<td>167</td>
</tr>
<tr>
<td>7.3.4 Strategy 4: Low-E Windows</td>
<td>178</td>
</tr>
<tr>
<td>7.3.5 Strategy 5: Shading Devices on Windows</td>
<td>183</td>
</tr>
<tr>
<td>7.3.6 Strategy 6: High Thermal Mass Walls</td>
<td>187</td>
</tr>
<tr>
<td>7.3.7 Strategy 7: Efficient Air Conditioning Systems</td>
<td>193</td>
</tr>
<tr>
<td>7.3.8 Strategy 8: Electronic Ballasts</td>
<td>194</td>
</tr>
<tr>
<td>7.3.9 Strategy 9: High Efficiency Refrigerators</td>
<td>196</td>
</tr>
<tr>
<td>7.3.10 Strategy 10: Renewable Energy Technology 1 (Hybrid PV-T² Collector System)</td>
<td>201</td>
</tr>
<tr>
<td>7.3.11 Strategy 11: Renewable Energy Technology 2 (Photovoltaic System)</td>
<td>204</td>
</tr>
<tr>
<td>7.3.12 Strategy 12: Renewable Energy Technology 3 (Hybrid PV-T² Collector System and Photovoltaic System)</td>
<td>206</td>
</tr>
<tr>
<td>7.3.13 Strategy 13: Renewable Energy Technology 4 (Flat-Plate Solar Collector)</td>
<td>208</td>
</tr>
<tr>
<td>7.3.14 Combination A: Combination of Strategies 2, 3-4, 7, 8 and 9</td>
<td>210</td>
</tr>
<tr>
<td>7.3.15 Combination B: Combination A Combined with Strategy 4</td>
<td>213</td>
</tr>
<tr>
<td>7.3.16 Combination C: Combination A Combined with Strategy 5</td>
<td>215</td>
</tr>
<tr>
<td>7.3.17 Combination D: Combination A Combined with Strategy 4 and 5</td>
<td>218</td>
</tr>
<tr>
<td>7.3.18 Combination E: Combination D Combined with the Hybrid PV-T² Collector System</td>
<td>220</td>
</tr>
<tr>
<td>7.3.19 Combination F: Combination D Combined with a Photovoltaic System</td>
<td>223</td>
</tr>
<tr>
<td>7.3.20 Combination G: Combination D Combined with the Hybrid PV-T² Collector System and Photovoltaic System</td>
<td>225</td>
</tr>
<tr>
<td>7.4 Comparison of the Results</td>
<td>227</td>
</tr>
<tr>
<td>7.5 Summary</td>
<td>229</td>
</tr>
<tr>
<td>VIII ECONOMIC ANALYSIS</td>
<td>230</td>
</tr>
<tr>
<td>8.1 Inputs for the Economic Analysis</td>
<td>230</td>
</tr>
<tr>
<td>8.1.1 Economic Factors</td>
<td>230</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>8.1.2 First Year Cost</td>
<td>231</td>
</tr>
<tr>
<td>8.1.3 Maintenance and Replacement Costs</td>
<td>232</td>
</tr>
<tr>
<td>8.2.1 Base Case Scenario</td>
<td>236</td>
</tr>
<tr>
<td>8.2.2 Strategy 2: Improvement of 2nd Floor Ceiling’s Insulation</td>
<td>236</td>
</tr>
<tr>
<td>8.2.3 Strategy 3-4: Insulated Light-Weight Concrete Block Walls</td>
<td>236</td>
</tr>
<tr>
<td>8.2.4 Strategy 4: Low-E Windows</td>
<td>237</td>
</tr>
<tr>
<td>8.2.5 Strategy 5: Shading Devices</td>
<td>237</td>
</tr>
<tr>
<td>8.2.6 Strategy 7: SEER-12 Air Conditioning Systems</td>
<td>237</td>
</tr>
<tr>
<td>8.2.7 Strategy 8: Electronic Ballasts</td>
<td>238</td>
</tr>
<tr>
<td>8.2.8 Strategy 9: High Energy Efficient Refrigerators</td>
<td>238</td>
</tr>
<tr>
<td>8.2.9 Strategy 10: Hybrid PV-T² Collector System</td>
<td>238</td>
</tr>
<tr>
<td>8.2.10 Strategy 11: Photovoltaic System</td>
<td>239</td>
</tr>
<tr>
<td>8.2.11 Strategy 12: Hybrid PV-T² Collector System and Photovoltaic System</td>
<td>239</td>
</tr>
<tr>
<td>8.2.12 Strategy 13: Flat-Plate Solar Collector System</td>
<td>240</td>
</tr>
<tr>
<td>8.3 Comparisons of the Results of the Life-Cycle Cost Analysis of Individual Energy Efficiency Strategies and Renewable Energy Systems</td>
<td>240</td>
</tr>
<tr>
<td>8.4.1 Combination A</td>
<td>246</td>
</tr>
<tr>
<td>8.4.2 Combination B</td>
<td>246</td>
</tr>
<tr>
<td>8.4.3 Combination C</td>
<td>247</td>
</tr>
<tr>
<td>8.4.4 Combination D</td>
<td>247</td>
</tr>
<tr>
<td>8.4.5 Combination E</td>
<td>247</td>
</tr>
<tr>
<td>8.4.6 Combination F</td>
<td>248</td>
</tr>
<tr>
<td>8.4.7 Combination G</td>
<td>248</td>
</tr>
<tr>
<td>8.6 Analysis of the Monthly Payments on the Case-Study House</td>
<td>252</td>
</tr>
<tr>
<td>8.7 Summary and Conclusion</td>
<td>254</td>
</tr>
<tr>
<td>IX SUMMARY AND RECOMMENDATIONS</td>
<td>256</td>
</tr>
<tr>
<td>9.1 Summary of Results</td>
<td>256</td>
</tr>
<tr>
<td>9.2 Recommendation for Improving Residential Buildings in Hot and Humid Climates</td>
<td>258</td>
</tr>
<tr>
<td>9.3 Recommendations for Future Research</td>
<td>261</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>263</td>
</tr>
<tr>
<td>APPENDIX A MEASURED DATA FROM THE CASE-STUDY HOUSE</td>
<td>272</td>
</tr>
<tr>
<td>APPENDIX B THE EXPERIMENTAL BOX</td>
<td>281</td>
</tr>
<tr>
<td>APPENDIX C CALIBRATION OF MEASURING DEVICES</td>
<td>314</td>
</tr>
<tr>
<td>APPENDIX D BUILDING ENERGY SIMULATION IN DOE-2</td>
<td>325</td>
</tr>
<tr>
<td>APPENDIX E PREPARATION OF THE BANGKOK TRY FILE USING LS2TRY</td>
<td>397</td>
</tr>
<tr>
<td>APPENDIX F F-CHART AND PV F-CHART INPUT DATA AND RESULTS</td>
<td>407</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>ASHRAE Summer and Winter Comfort Zones: Standard 55a-1995</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>ASHRAE Summer and Winter Comfort Zones: Standard 55-1992</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>Research Methods Diagram</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>Map of Thailand</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Thailand’s Solar Map (NEPO, 2000): Average Daily Solar Radiation on a Horizontal Surface from January to December</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>Day Mode Experiment Diagram</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Day Mode and Night Mode Valve Control Diagram</td>
<td>38</td>
</tr>
<tr>
<td>4.6</td>
<td>Night Mode Experiment Diagram</td>
<td>40</td>
</tr>
<tr>
<td>4.7</td>
<td>Experimental Box and Solar Test Bench (View from the East)</td>
<td>41</td>
</tr>
<tr>
<td>4.8</td>
<td>Experimental Box (View from the Southeast)</td>
<td>42</td>
</tr>
<tr>
<td>4.9</td>
<td>Experimental Box (View from the Northwest)</td>
<td>43</td>
</tr>
<tr>
<td>4.10</td>
<td>Inside the Experimental Box (View from the East)</td>
<td>44</td>
</tr>
<tr>
<td>4.11</td>
<td>Photovoltaic-Thermal Collector/Rejecter (PV-T²) Unit.</td>
<td>45</td>
</tr>
<tr>
<td>4.12</td>
<td>Heat Storage (Cool Tank) and Piping System</td>
<td>47</td>
</tr>
<tr>
<td>4.13</td>
<td>Close-up of the Flow Meter</td>
<td>48</td>
</tr>
<tr>
<td>4.14</td>
<td>Heat Storage (Hot Tank) and Piping System</td>
<td>49</td>
</tr>
<tr>
<td>4.15</td>
<td>Central Electrical Control Unit</td>
<td>50</td>
</tr>
<tr>
<td>4.16</td>
<td>Heat Rejection Box</td>
<td>52</td>
</tr>
<tr>
<td>4.17</td>
<td>Data Logger: Campbell 21X Data Logger</td>
<td>53</td>
</tr>
<tr>
<td>4.18</td>
<td>Diagram of the DOE-2 Input File for the Case-Study House</td>
<td>64</td>
</tr>
<tr>
<td>4.19</td>
<td>Cardboard Model of the Case-Study House</td>
<td>65</td>
</tr>
<tr>
<td>4.20</td>
<td>Virtual Model of the Case-Study House</td>
<td>66</td>
</tr>
<tr>
<td>5.1</td>
<td>The Case-Study House</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>Inside the Attic</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>Green Area of the House</td>
<td>72</td>
</tr>
<tr>
<td>5.4</td>
<td>Air-handling Unit of the Master Bedroom</td>
<td>72</td>
</tr>
<tr>
<td>5.5</td>
<td>Condensing Unit of Bedroom 2’s Air Conditioning System</td>
<td>73</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Site Plan</td>
<td>74</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>First Floor Plan</td>
<td>76</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Second Floor Plan</td>
<td>77</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Courtyard on the Northwest</td>
<td>78</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Water Storage Tank</td>
<td>79</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Living-Dining Room</td>
<td>79</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Kitchen</td>
<td>80</td>
</tr>
<tr>
<td>Figure 5.13</td>
<td>Bedroom-3: An Unconditioned Space on the Second Floor</td>
<td>80</td>
</tr>
<tr>
<td>Figure 5.14</td>
<td>Histograms of Measured Temperature Conditions in the Case-Study House (June – December 2000)</td>
<td>83</td>
</tr>
<tr>
<td>Figure 5.15</td>
<td>Daily Temperature Profiles in the Case-Study House (June – December 2000)</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.16</td>
<td>Histogram Plots of Measured Relative Humidity Conditions in the Case-Study House’s Spaces (June – December 2000)</td>
<td>86</td>
</tr>
<tr>
<td>Figure 5.17</td>
<td>Histogram Plots of Measured Specific Humidity Conditions in the Case-Study House’s Spaces (June – December 2000)</td>
<td>88</td>
</tr>
<tr>
<td>Figure 5.18</td>
<td>Measured Thermal Conditions at the Case-Study House (June – December 2000)</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5.19</td>
<td>Thailand Electricity Consumption in 2000 by Economic Sectors</td>
<td>91</td>
</tr>
<tr>
<td>Figure 5.20</td>
<td>The Case-study House Monthly Energy Use</td>
<td>97</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Thermal Energy Collection of the Hybrid PV-T² System: Measured Data and Results of the Experiment Conducted on December 20, 2002</td>
<td>100</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Thermal Performance of the Hybrid PV-T² System</td>
<td>106</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Thermal Performance of the Hybrid PV-T² System as Compared to the Performance of a Variety of Solar Collectors</td>
<td>109</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Calculation of Thermal Performance Parameters of the Hybrid PV-T² System</td>
<td>110</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Electrical Energy Output and Conditions of the Hybrid PV-T² Experiments for the Dec 20, 2002 experiment</td>
<td>112</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Relationship Between the PV Panel’s Efficiency and PV Panel’s Temperature</td>
<td>115</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>Results from the Night Mode Experiment Conducted on May 3-4, 2003</td>
<td>118</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>Plot of Calculated Heat Rejection as Compared to the Experimental Results Versus the Wind Speed</td>
<td>125</td>
</tr>
</tbody>
</table>
Figure 6.9 Plot of Calculated Heat Rejection as Compared to the Experimental Results
Versus Wind Speed... 126

Figure 6.10 Plot of Calculated Heat Rejection as Compared to the Experimental Results
Versus the Difference Between the Panel’s Surface Temperature and the
Ambient Temperatures... 128

Figure 6.11 Plot of Calculated Heat Rejection as Compared to Experimental Results
Versus \((T_{sur4} - T_{sky4}) \delta\). ... 129

Figure 6.12 Plot of the Measured and Predicted Heat Rejection Rates. 130

Figure 6.13 Plot of the Measured and Predicted Water Temperatures in the Cool Tank............. 132

Figure 6.14 Plot of the Measured and Predicted Water Temperatures in the Cool Tank
at the Last Hour of the Experiment Night...................................... 132

Figure 6.15 Total Performance of the Hybrid PV-T^2 System... 135

Figure 7.1 Actual Electricity Use and DOE-2’s Run #1 Simulated Energy Use versus
the Monthly Average Temperature.. 139

Figure 7.2 Comparison Between the Actual and Run# 1 Simulated Monthly Average Daily
Electricity Use from June to December, 2000.................................... 140

Figure 7.3 Comparison Between the Actual and Run# 1 Simulated Electricity Use
from June to December, 2000... 141

Figure 7.4 Comparison Between the Measured and the DOE-2’s Run# 1 Simulated
Temperatures of the Living-Dining Room and Bedroom-3.................. 142

Figure 7.5 Comparison Between the Measured and the DOE-2’s Run# 1 Simulated
Temperatures of the Master Bedroom and the Attic......................... 143

Figure 7.6 Comparison Between the Actual and the Run# 16 Simulated Monthly
Average Daily Electricity Use from June to December, 2000............. 150

Figure 7.7 Comparison Between the Actual and Run #16 Simulated Electricity Use,
Including the Domestic Hot Water Energy Use from June to December, 2000 ... 151

Figure 7.8 Base Case Monthly Energy Use: January to December, 2000............................ 152

Figure 7.9 Comparison Between the Measured and the DOE-2’s Run #16 Simulated
Temperatures of the Living-Dining Room and Bedroom-3.................... 153

Figure 7.10 Comparison Between the Measured and Run #16 Simulated Temperatures
of the Master Bedroom and the Attic... 154

Figure 7.11 Weather Conditions in Bangkok on September 17, 2000 (from DOE-2 Output)... 159
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.12</td>
<td>Comparison of Annual Energy Use in the Base Case and Building Improvement Strategy 1-1</td>
<td>161</td>
</tr>
<tr>
<td>7.13</td>
<td>Comparison Between Base Case and Strategy 1-1 Space Temperatures</td>
<td>162</td>
</tr>
<tr>
<td>7.14</td>
<td>Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 1-2</td>
<td>163</td>
</tr>
<tr>
<td>7.15</td>
<td>Comparison Between Base Case and Strategy 1-2 Space Temperatures</td>
<td>164</td>
</tr>
<tr>
<td>7.16</td>
<td>Comparison of Annual Energy Use of the Base Case and Building Improvement Strategy 2</td>
<td>166</td>
</tr>
<tr>
<td>7.17</td>
<td>Comparison Between the Base Case and Strategy 2 Space Temperatures</td>
<td>167</td>
</tr>
<tr>
<td>7.18</td>
<td>Comparison of Annual Energy Use of the Base Case and Building Improvement Strategy 3-1</td>
<td>168</td>
</tr>
<tr>
<td>7.19</td>
<td>Comparison between Base Case and Strategy 3-1 Space Temperatures</td>
<td>170</td>
</tr>
<tr>
<td>7.20</td>
<td>Comparison of Annual Energy Use of the Base Case to Building Improvement Strategy 3-2</td>
<td>171</td>
</tr>
<tr>
<td>7.21</td>
<td>Comparison Between the Base Case and Strategy 3-2 Space Temperatures</td>
<td>172</td>
</tr>
<tr>
<td>7.22</td>
<td>Comparison Between the Annual Energy Use of the Base Case and Building Improvement Strategy 3-3</td>
<td>174</td>
</tr>
<tr>
<td>7.23</td>
<td>Comparison Between the Base Case and Strategy 3-3 Space Temperatures</td>
<td>175</td>
</tr>
<tr>
<td>7.24</td>
<td>Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 3-4</td>
<td>177</td>
</tr>
<tr>
<td>7.25</td>
<td>Comparison Between the Base Case and Strategy 3-4 Space Temperatures</td>
<td>178</td>
</tr>
<tr>
<td>7.26</td>
<td>Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 4</td>
<td>179</td>
</tr>
<tr>
<td>7.27</td>
<td>Comparison Between the Base Case and Strategy 4 Space Temperatures</td>
<td>181</td>
</tr>
<tr>
<td>7.28</td>
<td>Comparison Between the Base Case and Strategy 4 Heat Gains through the South Facing Window of Space 2-1</td>
<td>182</td>
</tr>
<tr>
<td>7.29</td>
<td>Comparison of the Annual Energy Use of Base Case and Building Improvement Strategy 5</td>
<td>184</td>
</tr>
<tr>
<td>7.30</td>
<td>Comparison Between the Base Case and Strategy 5 Space Temperatures</td>
<td>185</td>
</tr>
<tr>
<td>7.31</td>
<td>Comparison Between the Base Case and Strategy 5 Heat Gain Through the South Facing Window of Space 2-1</td>
<td>186</td>
</tr>
</tbody>
</table>
Figure 7.32 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 6-1 ... 188
Figure 7.33 Comparison Between the Base Case and Strategy 6-1 Space Temperatures 189
Figure 7.34 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 6-2 ... 191
Figure 7.35 Comparison Between the Base Case and Strategy 6-2 Space Temperatures 192
Figure 7.36 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 7 ... 193
Figure 7.37 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 8 ... 195
Figure 7.38 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 9 ... 196
Figure 7.39 Comparison Between the Base Case and Strategy 9: Equipment Loads and the Electricity Load of Space 1-1 and 2-4 .. 198
Figure 7.40 Comparison between Base Case and Strategy 9 Living-Dining Temperatures 200
Figure 7.41 Comparison between Base Case and Strategy 9 2nd Floor Hall Temperatures 200
Figure 7.42 Fraction of Supplement Solar DHW to the DHW Loads (F) of the South and West Facing Hybrid PV-T² Arrays ... 202
Figure 7.43 Fraction of Supplement Solar DHW to the DHW Loads (F) of the South and West Facing Hybrid PV-T² Arrays Versus Collector Area 202
Figure 7.44 Comparison between Annual Energy Use of Base Case and Building Improved with a Hybrid PV-T² Collector System 203
Figure 7.45 Fraction of Supplemental Electricity to the Electricity Load (F) of the PV Arrays (Combined South, West, East, and North PV arrays) Versus Collector Area .. 205
Figure 7.46 Comparison between Annual Energy Use of Base Case and Building Improved with a Photovoltaic System ... 205
Figure 7.47 Comparison between Annual Energy Use of Base Case and Building Improved with a Hybrid PV-T² Collector System and a Photovoltaic System 207
Figure 7.48 Fraction of Supplemental Solar DHW to the DHW Loads (F) of the South Facing Flat Plate Solar Collector Arrays Versus Collector Area 208
Figure 7.49 Comparison between Annual Energy Use of Base Case and Building Improved with a Flat Plate Solar Collector System ..210
Figure 7.50 Comparison between Annual Energy Use of Base Case and Combination A........211
Figure 7.51 Comparison between Base Case and Combination A Space Temperatures212
Figure 7.52 Comparison of Annual Energy Use of Base Case and Combination B213
Figure 7.53 Comparison between Base Case and Combination B Space Temperatures215
Figure 7.54 Comparison of Annual Energy Use of Base Case and Combination C216
Figure 7.55 Comparison between Base Case and Combination C Space Temperatures217
Figure 7.56 Comparison of Annual Energy Use of Base Case and Combination D219
Figure 7.57 Comparisons between Base Case and Combination D Space Temperatures220
Figure 7.58 Comparison of Annual Energy Use of Base Case and Combination E221
Figure 7.59 Comparisons between Base Case and Combination E Space Temperatures222
Figure 7.60 Comparison of the Annual Energy Use of Base Case and Energy Efficiency Combination F ..224
Figure 7.61 Comparisons between Base Case and Combination F Space Temperatures225
Figure 7.62 Comparison of Annual Energy Use of Base Case and Energy Efficiency Combination G ..226
Figure 7.63 Comparison of Annual Energy Consumptions of Base Case and All Energy Efficiency Measures: January to December, 2000 ..229
Figure 8.1 First Year Cost of the Individual Energy Efficiency Strategies and the Renewable Energy Systems ..241
Figure 8.2 Maintenance Cost of the Individual Energy Efficiency Strategies and the Renewable Energy Systems ..242
Figure 8.3 Annual Electricity Cost of the Individual Energy Efficiency Strategies and the Renewable Energy Systems ..244
Figure 8.4 Annualized Life-Cycle Cost of the Individual Energy Efficiency Strategies and the Renewable Energy Systems ..245
Figure 8.5 First Year Cost of the Combined Energy Efficiency Strategies and the Renewable Energy Systems ..249
Figure 8.6 Annual Maintenance Cost of the Combined Energy Efficiency Strategies and the Renewable Energy Systems ..250
Figure 8.7 Annual Electricity Cost of the Combined Energy Efficiency Strategies and the Renewable Energy Systems ... 251

Figure 8.8 Annualized Life-Cycle Cost of the Combined Energy Efficiency Strategies and the Renewable Energy Systems ... 252

Figure 8.9 Monthly Payments of the Case-Study House for the Individual Energy Efficiency Strategies and the Renewable Energy Systems 253

Figure 8.10 Monthly Payments of the Case-Study House for the Combined Energy Efficiency Strategies and the Renewable Energy Systems 254
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 4.1</th>
<th>Description of the Data Logger’s Channels and Sensors Used in the Experiments</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.1</td>
<td>2000 Thai Residential Electricity Consumption by Building Type</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Number of Thai Residential by Housing Types and Energy Consumption per Housing Unit in Bangkok Metropolitan Area, 2000</td>
<td>93</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Actual Electricity Consumption of the Case-Study House from June to December 2000</td>
<td>94</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Estimated Electricity Consumption by a Water Heater of the Case-Study House</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Estimated Electricity Consumption by Refrigerators of the Case-Study House</td>
<td>96</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Estimated Monthly Electricity Consumption of Refrigerators in the Case-Study House</td>
<td>97</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Measured Data and Results of Thermal Solar Experiments</td>
<td>105</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Measured Data and Results from the Photovoltaic System</td>
<td>113</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Measured Data and Results of the Heat Rejection Experiment Conducted on May 3-4, 2003</td>
<td>120</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Measured Data and the Results of Heat Convection Calculation Conducted on May 3-4, 2003</td>
<td>121</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Measured Data and Results of the Heat Radiation Calculation Conducted on May 3-4, 2003</td>
<td>123</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Total Efficiency of the Hybrid PV-T² Collector System</td>
<td>134</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>The Case-Study House’s Monthly Utility Bills from June to December, 2000</td>
<td>138</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Simulated Energy Use Results from the DOE-2’s First Run</td>
<td>138</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Actual Electricity Use Vs. Simulated Electricity Use Results from the DOE-2’s First Run</td>
<td>139</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Model Building’s Energy Use and the Zone Temperature Calibration Process</td>
<td>147</td>
</tr>
</tbody>
</table>
Table 7.5 Calibrated Model (Base Case) Monthly Electricity Use ... 151
Table 7.6 Summary of Building Improvement Strategies .. 155
Table 7.7 Building Energy Performance Summary: Base Case vs. Strategy 1-1 .. 160
Table 7.8 Building Energy Performance Summary: Base Case vs. Strategy 1-2 .. 163
Table 7.9 Building Energy Performance Summary: Base Case vs. Strategy 2 .. 166
Table 7.10 Building Energy Performance Summary: Base Case vs. Strategy 3-1 .. 169
Table 7.11 Building Energy Performance Summary: Base Case vs. Strategy 3-2 .. 173
Table 7.12 Building Energy Performance Summary: Base Case vs. Strategy 3-3 .. 174
Table 7.13 Building Energy Performance Summary: Base Case vs. Strategy 3-4 .. 177
Table 7.14 Building Energy Performance Summary: Base Case vs. Strategy 4 .. 180
Table 7.15 Building Energy Performance Summary: Base Case vs. Strategy 5 .. 186
Table 7.16 Building Energy Performance Summary: Base Case vs. Strategy 6-1 .. 188
Table 7.17 Building Energy Performance Summary: Base Case vs. Strategy 6-2 .. 191
Table 7.18 Building Energy Performance Summary: Base Case vs. Strategy 7 .. 194
Table 7.19 Building Energy Performance Summary: Base Case vs. Strategy 8 .. 195
Table 7.20 Building Energy Performance Summary: Base Case vs. Strategy 9 .. 197
Table 7.21 Building Energy Performance Summary: Base Case vs. Building Improved by a Hybrid PV-T2 Collector System .. 204
Table 7.22 Building Energy Performance Summary: Base Case vs. Building Improved by PV System .. 206
Table 7.23 Building Energy Performance Summary: Base Case vs. Building Improved by a Hybrid PV-T2 Collector System and a Photovoltaic System .. 207
Table 7.24 Building Energy Performance Summary: Base Case vs. Building Improved by a Flat-Plate Solar Collector System .. 209
Table 7.25 Building Energy Performance Summary: Base Case vs. Combination A .. 211
Table 7.26 Building Energy Performance Summary: Base Case vs. Combination B .. 214
Table 7.27 Building Energy Performance Summary: Base Case vs. Combination C .. 218
Table 7.28 Building Energy Performance Summary: Base Case vs. Combination D .. 219
Table 7.29 Building Energy Performance Summary: Base Case vs. Combination E .. 223
Table 7.30 Building Energy Performance Summary: Base Case vs. Combination F .. 224
Table 7.31 Building Energy Performance Summary: Base Case vs. Combination G .. 227
Table 7.32 Building Energy Performance Summary: Base Case vs. All Energy Efficiency Measures, Renewable Energy Technology 1 to 3, and Combinations A to G 228
Table 8.1 Summary of the Economic Factors in the Analysis .. 231
Table 8.2 Summary of the Total First Year Cost of the Energy Efficiency Strategies and Renewable Energy Technology... 232
Table 8.3 Summary of the Maintenance and Replacement Costs of the Energy Efficient Strategies and Renewable Energy Technology Systems... 233
Table 8.4 Summary of the Total First Year Cost of the Combined Energy Efficiency Strategies and Renewable Energy Systems... 246
CHAPTER I
INTRODUCTION

1.1 Background

1.1.1 World Environmental Problems, Energy Use, and Trends

The world’s primary energy sources consist of fossil fuels such as oil, natural gas and coal. Unfortunately, combustion of fossil fuels releases carbon dioxide (CO₂) and other greenhouse gases, as well as pollutants that have contributed to environmental problems such as global warming, air and water pollution, and other damage to the earth’s ecosystems. Unfortunately, the world’s energy consumption continues to increase, which will undoubtedly worsen the environmental problems.

In 2001, the world’s energy consumption was 404 quadrillion Btu (1 Quad = 1 x 1015 Btu) and is projected to increase by 58 percent to 640 Quads from 2001 to 2025 (i.e., 1.9 percent average annual growth) according to the Energy Information Administration (EIA, 2003). The United States, the world’s leading energy consumer, used about 24 percent (97 Quads) of the world’s energy use in 2001 and is projected to increase its energy use by 43 percent to 139 Quads by the year 2025 (i.e. 1.5 percent average annual growth) (EIA, 2003). In developing countries, which are in Asia, the Middle East, Africa, and Central and South America, energy consumption was 139 Quads in 2001 and is expected to increase by 94 percent to 270 Quads over the same period (i.e. 2.8 percent average annual growth) (EIA, 2003). Thus, by 2025, the energy use in the developing countries will constitute about 42 percent of the total global energy consumption.

1.1.2 Thailand’s Energy Situation

Thailand’s energy consumption decreased at the rate of 8.9 percent during the period of 1997-1998, due to the Asia’s economic recession. In 1998, Thailand’s total energy consumption was 1.83 Quads, which was consumed by four sectors: transportation – 41.3 percent, industrial – 32.2 percent, residential and commercial – 22.4 percent, and other – 4.1 percent (DEDP, 1998). In spite of the total decrease, energy consumption in the residential and

This dissertation follows the format of ASHRAE Transactions.
commercial sector increased by 1.6 percent in 1997, while there were drastic reductions in other sectors. Furthermore, electric demand in the residential sector increased by 17 percent from 1996 to 1998 (DEDP, 1998). After Asia’s economic crisis, the Thai economy recovered and energy consumption dramatically increased. In 2002, Thailand’s total energy consumption was 2.2 Quads (a 20 percent increased from 1.83 Quads in 1998), a relatively high average annual growth rate of 6 percent compared the long term (2002 to 2025) average annual growth rate forecast by the EIA for developing countries in Asia. Finally, Thailand’s total electricity consumption increased by 24 percent from 1998 to 2002 (from 79,899 GWh to 99,122 GWh).

Unfortunately, over 80 percent of Thailand’s energy comes from non-renewable energy (DEDP, 1998). Furthermore, since Thailand depends on imported energy, which constitutes about 43.4 percent of the total energy consumption, Thailand’s energy supply is very dependent on world energy market fluctuations, which will cause havoc with Thailand’s economy.

1.1.3 Thai Housing and Energy Efficiency

In 1996, there were 15 million private households in Thailand according to the National Statistical Office (NSO, 1996). Of those, 12 million or 80 percent were single-family detached houses, which comprised about 50 percent of the total residential energy use. The remaining 20 percent of the dwellings (3 million dwellings), which are row houses and apartments, consumed as much energy as the detached housing. Interestingly, most of the Thai row houses are also used for residential and commercial activities such as retail shops, dental clinics, restaurants, or even garages. Therefore, the Thai residential building energy use depends upon the performance of the building’s envelope (wall, window, and roof) as well as the energy use of the other activities contained within the residence, such as cooking, lighting, etc.

The typical Thai residential construction is concrete post and beam construction, which has been adopted because of severe termite infestation and limited supplies of wood. In the past, most of the residential building materials were hardwoods, which were abundant in the rainforest of Thailand (FAO, 1981). In the past, hardwoods were used in almost every component of the buildings such as columns, beams, walls, and floors. Today, reinforced concrete is the most common structural material in Thailand’s building industry, especially in residential buildings. In residential construction, concrete is not only used to support building structures, it is also used for brick mortar (i.e., cement) and whitewash stucco finishing of the brick and concrete block walls. Concrete and brick are high thermal mass materials, but have
low thermal resistance (R-Value) (approximately 2.0 and 3.3 h·ft²·F/Btu respectively) (TGPPC, 1996). These material properties allow heat, which is mainly from the exterior environment such as solar radiation and outside air temperatures, to be stored in the building envelope. In addition, the embodied energy of these materials is high, so it results in high-energy use in the manufacturing and construction phases. Chulsukon (2002) showed that lightweight walls could be substituted for brick walls to provide an improved, sustainable low-energy houses in hot and humid climates. Unfortunately, the typical construction materials used in Thai houses are not energy efficient and need to be improved.

1.1.4 Renewable Energy

Using renewable energy as an energy source is another option to reduce the consumption of non-renewable energy. In residential buildings, solar energy has been utilized for space heating, and domestic hot water, and for generating electricity using photovoltaic (PV) solar systems. Such systems would seem to be ideal for Thailand since Thailand is located near the equator and has high levels of sunshine year-round. Bangkok’s monthly average daily radiation on a horizontal surface varies little from January to December (ranging from of 16 to 20 MJ/m²) (Duffie and Beckman, 1991). Thus, solar energy could be an abundant source of energy for Thailand. Since more than 40 percent of Thailand’s energy is imported, and with the awareness of environmental problems, the Thai government has been promoting the use of PV through research funds and through demonstrations of PV systems in residential buildings. Although PV is still new in Thailand’s housing industry, with the government’s new policy, the potential for PV systems to become an essential key to reducing energy use in Thai residential buildings is promising.

One photovoltaic system, the hybrid photovoltaic-thermal (PV-T) collector system, has been investigated by several researchers over the last 20 years (Rockendorf et al., 1999). The hybrid photovoltaic-thermal (PV-T) collector system is a combination photovoltaic (for producing electricity) and solar thermal collector (for producing hot water) system. Studies of this collector have highlighted the advantages of the hybrid PV-T collector system over separate systems of PV and solar collector in terms of system efficiency and economics. Unfortunately, very little experimental data exists that demonstrates the advantages of a combined system. Therefore, one of the objectives of this study is to conduct an experimental study of this system as an auxiliary energy source for Thai residential building.
1.2 Purpose and Objectives

The purpose of this research is to study methods that will lead to a reduction of energy consumption in a residential building in hot-humid climates using efficient architectural building components and renewable energy systems (solar energy) to produce electricity, domestic hot water, and supplemental cooling.

The research objectives are to:

1. Identify and characterize the energy use of a case-study house in the hot-humid climate of Thailand.
2. Identify energy efficient residential design features for typical houses in a hot-humid climate using a calibrated simulation.
3. Develop and test a hybrid Photovoltaic-Thermal (PV-T²) system.
4. Apply the test results of the hybrid PV-T² system to the case-study house.
5. Develop generalized design and housing characteristics in terms of energy conservation and affordability, which are appropriate for hot-humid climates.

1.3 Organization of the Dissertation

This dissertation is comprised of nine chapters. This chapter discussed the background, purpose, and objectives of the research.

Chapter II reviews and discusses the previous studies that are related to this research. The review of the literature, which provides the basis for conducting this research, includes human thermal comfort, energy efficiency in housing in Thailand, hybrid photovoltaic-thermal solar collector systems, analysis tools for solar collectors and photovoltaic systems, and thermal simulation programs and techniques.

Chapter III discusses the significance and limitations of the research as well as contributions of the research.

Chapter IV discusses the methodology developed for this research. It includes measurements from a case-study house, experiments with a hybrid photovoltaic-thermal system, simulations of the case-study house, which incorporates the PV-T² experimental results and an economic analysis.
Results of this research are presented in five chapters (chapters V to IX). Chapter V presents the results of the survey of the case-study house, including the measured thermal conditions of the house, energy use, and an analysis of the measured data, and thermal comfort conditions.

Chapter VI presents the results of the experiments on the hybrid photovoltaic solar heating and radiative cooling (PV-T²) collector system. Three experiments were performed in this research using the hybrid PV-T² collector system, which include experiments to determine the solar thermal collection efficiency, experiments to determine electricity generation efficiency, and experiments to determine night sky heat rejection performance.

Chapter VII presents the results of the simulation of the case-study house, which include the calibration of a DOE-2 model against measured data and utility bills. This chapter also presents the results of the investigation of the energy efficient strategies including thermal and electrical energy produced by the hybrid PV-T collector system used to improve the case-study model.

Chapter VIII presents the results from a life-cycle cost-benefit analysis of the investments and savings on the building energy efficiency strategies including the hybrid PV-T collector system.

Finally, Chapter IX summarizes this research and proposes recommendations for improving residential buildings in hot and humid climates and the future research in this area.
CHAPTER II
LITERATURE REVIEW

This chapter reviews literature that relates to this research. The reviewed literature is categorized into five areas: 1) Human thermal comfort, 2) Energy efficiency and solar energy use in housing in Thailand, 3) Hybrid photovoltaic-thermal (PV-T) solar collector systems and night-sky radiation, 4) Analysis of photovoltaic and solar collector systems, and 5) Thermal simulation techniques for buildings. The first section, thermal comfort, reviews human thermal comfort and studies of thermal comfort in hot-humid climates such as Thailand. The second section reviews the Thai government’s energy policy, studies and projects on energy efficient houses, and research into photovoltaic systems for residential buildings in Thailand. The third section reviews hybrid photovoltaic-thermal solar collector systems, which are the systems that this research intends to develop and test, and night-sky radiation, which is a cooling strategy that uses the hybrid PV-T collector as a heat rejecter. The fourth section reviews computer programs that this research used as tools to estimate solar energy collected by the hybrid PV-T solar collector system. The last section reviews building energy simulation programs and the calibration of building simulation models.

2.1 Human Thermal Comfort

The most commonly used definition of human thermal comfort is that by ASHRAE Standard 55-1995, *Thermal Environmental Conditions for Human Occupancy* (ASHRAE, 1995, p.4). However, Thailand’s preference for thermal comfort may be slightly different from ASHRAE’s. This is evident from two thermal comfort studies that were focused on Thailand’s climate. (Busch, 1990; Jitkhajornwanich, 1998).

2.1.1 ASHRAE Thermal Comfort

ASHRAE Standard 55-1995 specifies thermal environments or comfort zones that are acceptable to at least 80 percent of occupants during light, primarily sedentary activities (i.e., resting activities: sleeping, reclining, quiet seated, relaxed standing) (ASHRAE 1992, 1995).
The Standard 55-1995 has divided the human comfort zone into two regions for summer and winter to account for different clothing levels (clothing insulation values or clo values) between seasons. During the summer months, people wear lighter clothes or fabrics than during the winter months. Figure 2.1 shows the ASHRAE Standard 55-1995 human comfort zones.

The boundaries of the winter comfort zone are 64 °F wet bulb for the upper humidity limit, 36 °F dew point temperature for the lower humidity limit, and 68°F and 74°F effective temperature (ET*) lines for the respective lower and upper temperature limits. The boundaries of the summer comfort zone are 68 °F wet bulb for the upper humidity limit, 36 °F dew point temperature for the lower humidity limit, and 73°F and 79°F (ET*) lines for the lower and upper temperature limits respectively.

The lower limit (36 °F dew point) prevents drying of the skin and mucous membranes. However, the upper limit of the comfort zone has been controversial. ASHRAE Standard 55-1995 was revised from ASHRAE Standard 55-1992, which specified 60 percent relative humidity as the upper limits of the summer and winter comfort zones (see Figure 2.2). The upper limit of 60 percent relative humidity was based on the considerations of preventing of mold and mildew growth (Berglund, 1998). This limit was challenged by the evaporative cooler manufactures for not being based on human comfort and also for being too restrictive for the evaporative coolers (Berglund, 1998). Hence, the upper humidity limits were changed to those shown in Figure 2.1.

For this research, since thermal comfort is a main concern; ASHRAE Standard 55-1995 will be used to evaluate thermal comfort conditions of the case-study house. However, since humidity control to avoid the growth of microorganisms is significant, the upper limit of 60 percent relative humidity of ASHRAE Standard 55-1992 is also a criterion to evaluate the conditions of the case-study house.

2.1.2 Studies on Thai Thermal Comfort

The two studies reviewed that concerned Thai thermal comfort included Busch (1990) and Jitkhajornwanich (1998). Both of these studies focused on thermal comfort in Bangkok, which is in the tropical Southeast Asia region. The first study (Busch, 1990) investigated the indoor thermal comfort (air conditioned and naturally ventilated) in Thai office
environments. The second study (Jitkhajornwanich, 1998) investigated the thermal comfort in transitional spaces (i.e., entrance halls, lobby areas, foyers) for indoor (air conditioned and naturally ventilated) and outdoor environments.

In Busch’s study (1990), air-conditioned offices and naturally-ventilated buildings were studied. More than 1,100 Thai office workers were given a survey questionnaire and physical measurements were taken at their office. For the physical measurements, dry-bulb temperature, relative humidity, globe temperature, and air velocity were measured. The result of the thermal comfort conditions were reported using Effective Temperature (ET*) as a thermal comfort index. The ET* is an environmental index that combines the thermal effects of the four environmental variables (i.e. temperature, radiant temperature, humidity, and air velocity) into a single index (Busch, 1990). ASHRAE (2001, p. 8.6) defines the ET* as “…the temperature at 50 percent relative humidity that yields the same total heat loss from the skin as for the actual environment.”

The study showed that the average neutral temperature of Thai office workers was 25.0 °C ET* (77.0 °F), and 25.7 °C ET* (78.3 °F) for the rainy season from May to October. The range of thermal comfort for all cases was from 22 °C ET* (71.6 °F) to 30.5 °C ET* (86.9 °F), which exceeded ASHRAE’s summer comfort zone outward by 4 °C (7.2 °F). This analysis of comfort conditions in naturally-ventilated buildings showed that the subjects preferred 27.4 °C ET (81.3 °F), while the subjects in the air-conditioned buildings preferred 24.7 °C ET (76.5 °F) for their neutral temperatures.

The second study (Jitkhajornwanich, 1998) focused on the experience of subjects in transitional spaces of buildings during the cool season of Bangkok from November to January. The research stated the reason for investigating transitional spaces was that “…such spaces are extremely critical in the process of conditioning the response of building users in passing from the exterior to the interior and vice versa.” (Jitkhajornwanich, 1998, p.113). The result showed that the expected and preferred environments and adaptation of respondents determined the actual thermal sensation. The subjects in the transitional spaces preferred 27.1 °C (80.8 °F) for their neutral temperature. The range of thermal comfort was between 25.5 °C (77.9 °F) and 31.5 °C (88.7 °F), which also exceeded ASHRAE’s summer comfort zone outward by 5.5 °C (9.9 °F).

From both studies, there was some agreement in the neutral temperature in the natural ventilated building of Busch’s study (27.4 °C or 81.3 °F) and the neutral temperature in
Jitkhajornwanich’s study (27.1 °C or 80.8 °F). However, the lower limit of the comfort zone of Busch’s study (22.0 °C or 71.6 °F) is significantly lower than that of Jitkhajornwanich’s study (25.5 °C or 77.9 °F). These studies on thermal comfort in Thailand are very significant to the proposed research. Since one of the proposed objectives is to identify energy efficient residential design features for a typical Thai house. These energy efficient design features must reduce energy use in the building and also condition occupied spaces that need to meet the occupant’s thermal comfort. Therefore, this study will also consider that the average Thai’s thermal comfort temperature is relatively higher than those specified by ASHRAE.

2.2 Energy Efficiency and Solar Energy Application in Housing in Thailand

2.2.1 Energy Policy

Although Thailand’s total energy consumption decreased due to the economic recession of 1997, the energy consumption in the residential and commercial sectors increased despite the recession. The Thai government enacted the Energy Conservation Promotion Act (ECPA) in March 1992. This act aimed to reduce energy consumption in large buildings such as factories and commercial buildings. Unfortunately, energy conservation in the residential sector is not governed by the ECPA. Energy conservation in the residential sector is promoted in other ways such as encouraging citizens to use energy efficient electric appliances, and energy-saving house construction, which are available to the public in the form of pre-drawn houses at a minimum cost (around $1 for a house).

Promoting the use of renewable energy is also one of the strategies to reduce energy consumption in residential buildings. In the 8th National Social and Economic Development Plan (1997-2001), the National Energy Policy Office (NEPO) of Thailand funded research, development and demonstration of photovoltaic technologies such as a pilot project where roof-top, grid-connected photovoltaic systems were installed on houses (Krissanapong, 1997). Major applications of PV systems including water pumping and battery charging systems were built in rural areas. Grid-connected PV systems have also been promoted for houses in urban areas. During 1998-1999, grid-connected PV systems were installed on 10 households in Bangkok through the support of NEPO and the Electricity Generating Authority of Thailand (or
EGAT). The promotion and support of the use of renewable energy such as biomass and PV technologies have been continued in the 9th National Social and Economic Development Plan (2002-2006). This early support of PV by the Thai government has helped expand the use of residential PV systems. According to one study, the annual growth rate of PV demand in South-East Asia countries is expected to 15% per year, which compares to a 10% per year increase expected for industrialized countries (Muntasser et al., 2000).

2.2.2 Studies and Projects of Energy Efficiency Houses

The energy-saving house project, as mentioned earlier, was funded by the Energy Conservation Promotion Fund (ECON Fund), which was established under the Energy Conservation Promotion Act (Energy Conservation Promotion Fund, 2000). The project’s aim is to design prototypes of energy-saving Thai houses. The prototypes were designed by Plan Architect Limited, Bangkok, Thailand and the Faculty of Engineering at Chulalongkorn University, Thailand. Construction plans of four single-family detached houses and an instruction manual for the homeowner were published in July 2000 (Humanist Co. Ltd., 2000). The energy efficient design features included applying passive cooling strategies such as building orientation, building construction and materials, ventilation opening, shading devices, and vegetation and landscape design. The houses were designed without air conditioning systems. Brief descriptions of how to select efficient appliances and electric devices are also described in the booklet. A significant element that made the energy-saving houses different from typical Thai houses was the use of light-weight concrete blocks in the walls, versus the typical concrete blocks and masonry bricks. Light-weight concrete has a higher heat resistance value (R-value) than typical concrete block and brick, and also has much less embodied energy.

A report about the observed room temperatures in one of the energy-saving houses was presented in the Thai Energy Efficiency Journal (in Thai) (Humanist Co. Ltd., 2000). The analysis showed that the living-dining room temperatures were lower than the outside temperatures in the daytime on the hottest day of the year (in April), and the nighttime room temperatures were about the same as the outside temperatures. The data also showed that the room temperature was in the range of 27.5 °C (81.5 °F) to 32.5 °C (90.5 °F). Unfortunately, this is higher than the Thai neutral comfort temperature for natural ventilated buildings as reported in Busch’s study (27.4 °C or 81.3 °F) and Jitkhajornwanich’s study (27.1 °C or 80.8
°F). However, only room temperatures of the hottest day of the year were presented (Humanist Co. Ltd., 2000). Humidity is also a factor of human thermal comfort. Therefore, further performance assessment of energy consumption, room temperature and humidity conditions in the energy-saving houses either by simulation or monitoring the real buildings will be needed to assure that the energy-saving houses are suitable for Thai environment.

Another well-documented example of energy conservation in Thai residential buildings is the house of Boonyatikarn (1999). Passive and active design concepts were used in this house to bring indoor air conditions into the comfort zone. Passive design strategies include lowering the house’s micro-climate temperature around the house using landscaping, water pools, and natural ventilation. Earth-cooling techniques also helped reduce the cooling load of the air conditioning system on the ground floor. High R-value materials for the building envelope (i.e., wall, window, roof), use of less heat generating devices and efficient appliances in the house were also used. This study showed natural ventilation was able to maintain comfort conditions for 4 months of the year (July to October). An atrium in the house helps ventilate the air during this period of the year as well. In the hottest season, the “keep-the-heat-out” concept is combined with the earth-cooling technique and an air conditioning system. The techniques used to keep the heat out of the interior space of the house include sealing the house from the hot and humid outside air. The concept of the “stack effect” is also used to allow the hotter air in the occupied space rise to the top of the ceiling of the house, where it is exhausted.

The earth-cooling techniques used high heat conducting materials, such as Granite, as the floor material, to help bring the coolness from the earth to the room through the floor. He claims that the floor temperature may be close to 27 °C (80.6 °F), which is about the average of Thailand’s earth temperature at the depth of 2 feet (Boonyatikarn, 1999). The air conditioning system also takes advantage of the earth to pre-cool the incoming outside air before it is treated by the air conditioning system. The study suggested the pre-cooled air system may not be cost effective because of the high investment and the limited period of time that the system can work effectively (2-3 hours per day in January and February). For the other cooling periods, two 1.5 ton variable-speed air conditioning units were used. Finally, a heat pipe system was operated with cooling coil of the air conditioning system to help with dehumidification.

The performance of the house included measurement of the energy used by the air conditioning systems during the peak period on the hottest days. His results showed one ton of air conditioning can handle the space up to 110 m² (1,184 ft²). During the off-peak period, one
1 ton of air conditioning served 220 m² (2,368 ft²) of space. Normally, one ton of air conditioning in the typical Thai house serves only about 20 m² (215 ft²).

The thermal performance of Thai residential buildings was also studied by Parker (1991, 1995). Results show that the reduction of heat transferred through the ceiling in Thai residential buildings is a significant strategy for improving energy efficiency (Parker, 1995). By installation of 7.5 cm (2.95 inches) fiberglass insulation in the ceiling, the size of air conditioning systems could be reduced by about 33% (Parker, 1991). Using more energy efficient air conditioning systems and improving the building’s envelope may reduce energy use by the air conditioning systems by over 40% (Parker, 1995).

Although there are only a few of studies on Thai houses that related to energy efficiency, results from the work of Boonyatikarn and Parker show significant improvements in energy efficient Thai houses.

2.2.3 Solar Energy Projects in Thai Residential Buildings

Utilization of a solar energy technology (photovoltaic system) in Thai residential buildings was initiated in 1997 by a grid connected photovoltaic systems pilot project for residential buildings. The main objective of the project was to study the feasibility of utilizing photovoltaic systems in Thai residential buildings. The project was run by Electricity Generating Authority of Thailand (EGAT) and funded by NEPO, which subsidized 45.7% of the total cost of the project (54.3% of the cost was provided by the owners of the buildings). Ten photovoltaic systems were installed on ten Thai houses in the Bangkok Metropolitan area. The installation of the systems took about a month and was finished in March of 1998. Eight of the ten photovoltaic systems used single crystal silicon cells, while the other two used amorphous silicon cells. Each of the photovoltaic systems included photovoltaic arrays, a junction box, an inverter, and a power meter.
2.3 Hybrid Photovoltaic - Thermal Solar Collector Systems and Night Sky Radiation

2.3.1 Hybrid Photovoltaic - Thermal Solar Collector Systems

Hybrid PV-T collector systems have been studied for more than 20 years. A number of researchers have presented theoretical as well as experimental studies on the hybrid PV-T collector systems. The reported hybrid PV-T collector systems were designed and constructed differently. However, in general they are basically comprised of a PV panel and a heat transferring system in which air or water is used as a heat transfer medium to remove heat from the PV collector. Studies of this collector have highlighted the advantages of the hybrid PV-T collector system over separate PV or solar thermal systems in terms of PV efficiency and system efficiency. Hybrid PV-T collector systems also have an advantage in residential energy needs, where the area for the installation of PV and solar collectors are limited. In addition, combining the two collector functions reduces overall costs for support structures and installation (Hendrie, 1979).

Imre et al. (1993) reported results of an experiment on a hybrid PV-T collector system that used water as a heat transfer medium. Results showed electricity output increased by about 7 percent at 1000 W/m² insolation, because cell-temperature of 60 °C (140 °F) could be reduced to 49 °C (120 °F) by removing the heat from the PV cell. Total maximum effectiveness of the system is over 60 percent.

Garg presented a mathematical model of a hybrid PV-T collector system that uses water as a heat transfer medium (Garg and Agarwal, 1995). The model had the aperture of the collector of 2 m² (21.5 ft²). Results showed that system efficiency is maximized when the flow rate was about 0.03 kg/s (3.97 lb/min or about 0.48 gpm). The model predicted the system performance at about 60-80 percent. Garg also presented a simulation model of a hybrid PV-T system that used air as a heat transfer medium (Garg and Adhikari, 1997; 1999). In their analysis single-pane and double-pane systems were simulated and analyzed. Results show parameters that affect efficiencies of the system were mass flow rate, duct depth, collector length, and solar cell density.

Bergene and LØvvik (1995) also proposed model calculations of a hybrid PV-T system. There model was based on the models for flat-plate solar heat collectors presented by Duffie and Beckman (1991) with modifications due to the addition of the solar cells. The model had a heat absorber attached to the back of solar cell. The heat was then removed by
water through a piping system. A glass cover was also included in the model. The model predicted the performance of the system fairly well with system efficiencies of about 60-80%.

Model calculations of a hybrid PV-T collector system were also presented by Sopian et al. (1995). Air, as a heat transfer medium, was passed through the hybrid PV-T unit using two configurations; single-pass and double-pass. Their results showed the system efficiency increased as the mass flow rate increased. The results of analysis showed that the double-pass PV-T system yielded better performance than the single-pass PV-T system at a normal operating collector mass flow rate range. The improved performance of the double-pass PV-T system over the single-pass PV-T system was attributed to the beneficial cooling of the PV cells and the reduction in the temperature of the glass cover.

Tripanagnostopoulos et al. (1996) tested a hybrid PV-T system with two additional elements: glazing and a diffuse reflector (a flat aluminum sheet). Their results showed the thermal energy efficiency of water heating was doubled when the additional glazing was added, but PV efficiency was decreased by about 10-20%, compared to the PV efficiency without the heat transfer system. Electrical energy output from the PV panel was increased by integration of the reflector. Thermal energy output was also increased by the reflector. The reflector gave a 20% increase in solar irradiance on the PV surfaces and this in turn increases the electrical energy output. The system was then equipped and tested with both the additional glazing and the reflector. The results showed that the system yielded a higher electrical energy output than the normal PV-T system and thermal energy output was at satisfactory temperature levels.

Experimental work with the Hybrid PV-T collector systems was conducted in the hot climate of Riyadh, Saudi Arabia by Harbi et al. (1998). The system used water as a medium for transferring heat from the PV panels. The results showed that the hybrid PV-T collector system was not suitable for the Riyadh environment, because of very high ambient temperature in the afternoon that decreased the PV module’s efficiency (30% below its rated efficiency). However, the high ambient temperatures in the summer yielded a good thermal efficiency of the water heating system.

Recently, an experimental study of a hybrid PV-T collector system was carried out by Huang et al. (2001). The purpose of their study was to compare thermal performance of the hybrid PV-T collector system with a conventional solar thermal collector. The results showed that the efficiency of solar hot water produced by the hybrid PV-T collector system was about 76% of the efficiency of the conventional solar thermal collector.
Hybrid PV-T collector systems have also been studied using simulation. Modeling and simulation of a hybrid PV-T collector system was studied by Kalogirou (2001). A computer program, TRNSYS, which is a transient simulation program and Typical Meteorological Year (TMY) weather conditions for Nicosia, Cyprus, were used to model and simulate components of the system. Photovoltaic panels were attached to a theoretical heat exchanger, through which water was then circulated. The study found that the optimum water flow rate of the 27.4 ft² system was about 25 l/h (0.11 gpm). The hybrid PV-T collector system increased the mean annual electrical efficiency of the normal PV system from 2.8% to 7.7%. It was estimated that the system could provide about 50% of the hot water needs of a house.

Small numbers of PV-T systems have been manufactured and custom made for buildings in Europe. Sørensen and Munro (2000) surveyed and reported manufacturers of commercial PV/T collectors and PV-T projects. The survey found 23 PV-T projects or products. However, only four appeared to be commercially available products. Three of the four were water-type, PV-T collectors, which were developed by Chromagaen Solar Energy Systems in Israel (product named “Multi Solar System”), and by SolarWerk and SolarWatt in Germany (product named “Spectrum”). Another was a roof/facade integrated air type PV-T named “PV SolarWall”, which was developed by Conserval Engineering Inc. in Canada. The three water-type PV-T collectors were similar, using flat plate solar heat collectors with PV cells integrated on aluminum plate as an absorber. The PV was also glazed on the outer layer of the module. Of those water type systems, only the Chromagaen Solar Energy System’s Multi Solar System reported the daily performance, which showed outputs of 1.5 kWh/m² heat and 0.4-0.8 kWh/m² electricity in Israeli the climate. PV Solarwall, which is an air-type PV-T system, is able to collect thermal energy four to five times larger than PV energy and the overall efficiency is reported as 70 percent (Conserval Engineering, 2003). The PV Solarwall can deliver thermal energy up to 500 W/m² for space heating. It was also estimated that the PV Solarwall could reduce the payback time of a typical PV system by a factor of three to four.

Although there have been some PV-T systems commercially available in Israel, Europe and North America (Canada), the PV-T systems are very new to the solar energy community and therefore results have not been standardized. To resolve this problem the International Energy Agency (IEA) established a joint working group (IEA PVPS Task 7 Activity 2.5) to evaluate PV-T systems in 1999. The joint working group consists of two IEA implementing agreements: Solar Heating and Cooling Program (SHCP) and Photovoltaic Power Systems Program (PPSP). The objectives of the joint working group cover aspects of PV-T systems
including design specifications, test methods, performance optimization, and market analysis. So far the tasks of the joint working group have not been finished. However, a road map on PV-T systems was drafted and prepared for the 2nd meeting of the IEA SHCP and PVPS joint working group in June 2000 (Leenders and Sørensen, 2000). The road map defines short, medium and long term objectives and issues that need to be studied on the PV-T systems. A draft plan for organization of the working group, which involved engineers, researchers, industry and end users, was also presented. A new task group to work on the PV-T systems is forming under SHCP since it was realized that the primary theoretical and monitoring part needed expertise of the Solar Thermal community. The task group was expected to run for three years starting in June 2004.

Other issues related to PV-T systems are also being studied by the IEA’s task group. Research on PV-T systems using amorphous PV modules as heat absorber of water based PV-T collectors was conducted by collaborative work group of Ecole Polytechnique Federale De Lausanne, Enecolo AG, and Ernst Schweizer AG on behalf of the Swiss Federal Office of Energy (2000). The final report, which is a key reference document for the IEA’s task group, was published in June 2000. The study showed that the most important technical aspects of the PV-T module were high solar absorption which the module needs to work at high temperature with low emissivity. In this report, absorption values and emissivity coefficients of PV cells were measured. The research concluded that the photovoltaic (PV) thin film technology was likely to be suited for the application of PV-T systems technically and financially. The a-Si cells seemed to be stable under thermal cycling test; it reported that some tested cells had not changed their original properties at a temperature of 210 °C (410 °F) for 10 hours.

2.3.2 Night-Sky Radiation Cooling Strategies with Hybrid PV-T Systems

Night-sky radiation has been studied theoretically by Martin (1989), and is covered by the classic textbook by Duffie and Beckman (1991). There are also experimental studies or projects that utilize night sky radiation as a cooling strategy, including the research by Saitoh and Fujino (2001), and Khedari et al. (2000).

Night-sky radiation cooling was used as a cooling strategy in a study of an advanced energy-efficient house (HERBEMAN house) (Saitoh and Fujino, 2001). The sky radiators consisted of uncovered copper tubes with aluminum fins, which were painted black and placed toward the sky on the roof of the house. The study showed that night-sky radiation worked well
under clear sky conditions in low relative humidity and at low wind speeds. The experimental results, in the long-term cool storage mode from the end of March to early May, showed that the tank water temperature can be decreased from about 50 °C (122 °F) to 10°C (50 °F) by sky radiation alone. The water temperature then was further decreased from 10°C (50°F) to 4°C (39°F) by a heat pump in order to be introduced to the fan coil units of the cooling system.

Khedari et al. (2000) conducted an experimental study of night-sky radiation cooling under tropical climate in Thailand. Four types of roofing materials were studied as radiators on the roof: 1) flat white painted metal sheet over CPAC Monier tiles (popular concrete roofing tiles in Thailand), 2) painted white CPAC Monier tiles, 3) CPAC Monier tiles, 4) white-painted, corrugated sheet metal over gypsum board and CAPC Monier tiles. The experimental results showed that the radiators type 1 and 4 (ones that have metal sheets over concrete tiles) performed better than type 2 and 3. Type 1 and 4 radiators yielded a maximum 6 °C (10.8 °F) temperature difference between the radiators’ surfaces temperature and ambient temperature. However, the reported temperature difference graph, the surface temperatures of type 2 and 3 were only 1 to 2 °C (1.8-3.6 °F) higher than those of type 1 and 4. For space cooling, the study discussed air temperatures underneath the four radiators. The experimental results showed that the temperature of air below the metallic sheet (of type 1 and 4 roofings) was lower than the ambient air in the range of 1-3 °C (1.8-5.4 °F), while the temperatures of air below the roof without metallic sheet (type 2 and 3) were higher especially from sunset to about 9:30 P.M. The high temperatures in type 2 and 3 roofing, as reported, were mainly due to high thermal mass of concrete tiles. This study concluded that concrete tiles with metallic sheets may be used as a night space cooling strategy as they can lower the air temperature under the roof in the range of 1-3 °C (1.8-5.4 °F). This study, however, reported only surface temperatures and air temperature underneath those four radiators against ambient temperature. There was no investigation on the magnitude of radiative heat loss to the sky.

A night sky radiation strategy could be operated with the hybrid PV/T collector system by using existing resources that are already present in the system. It requires operating the system at night while electricity and hot water are produced in the daytime. The integration of the night sky radiation to the hybrid PV-T² collector system should yield more productivity of the system than the operation of the Hybrid PV-T² system alone. However, no attempt so far could be found to integrate it to a hybrid PV-T² collector system.
2.4 Analysis of Photovoltaic and Solar Collector Systems

Research concerned with the performance prediction of solar thermal systems, and photovoltaic systems was conducted in the 1970s – 1990s and is well documented in textbooks such as Duffie and Beckman (1991). F-Chart and PV F-Chart are two well accepted computer programs used for analysis and design of solar heating systems and photovoltaic systems respectively. Both programs were created by S.A. Klein and W.A. Beckman at the University of Wisconsin Solar Energy Laboratory. The F-Chart program uses the f-Chart method, which is a solar heating systems analysis method. The F-chart method provides a means for estimating the fraction of a total heating load that will be supplied by solar energy for a given solar heating system under specific operating conditions (Duffie and Beckman, 1991). PV F-Chart is a program that calculates the long-term average performance of PV systems, including: Stand-Alone Photovoltaic Systems, Utility Interface Systems, and Battery Storage Systems (Klein and Beckman, 2001). F-Chart and PV F-Chart will be used to analyze the performance of the hybrid PV-T system in this research. The details of using both programs are described in Chapter IV, Section 4.3.

2.5 Building Thermal Simulation

The proposed research is also concerned with the thermal simulation of buildings. Thermal simulations use dynamic heat loss/gain calculations, which require hourly calculations that involve the space load, energy required by the primary and secondary equipment of building systems, and typical weather conditions (ASHRAE, 2001). Since dynamic energy calculations are complex and require a significant amount of effort to be calculated by manual methods, computer programs are now routinely used to perform such calculations.

2.5.1 Building Energy Simulation Programs

The thermal simulation of buildings originated in the 1960s through the support of the U.S. government. In the U.S., two public domain, hourly building energy simulation programs, DOE-2 (LBNL, 1993) and BLAST (BSO, 1993), have been developed since the 1970s. Both programs are capable of performing a detailed analysis of the energy consumption in a building.
They both are comprised of hundreds of subroutines to simulate dynamic heat and mass flows of a building. They are widely used throughout the world. BLAST (Building Loads Analysis and System Thermodynamics) had been sponsored by the Department of Defense, which ended support for BLAST in 1995 due to budget constraints. DOE-2 which was sponsored by the U.S. Department of Energy (DOE), initially called the Post Office program was created in the late 1960s for the U.S. Post Office. Since then, its development has continued until the last version of DOE-2 was released in spring 2005.

DOE released a new building energy simulation program called EnergyPlus in the spring of 2001. EnergyPlus combines the most popular features and capabilities of BLAST and DOE-2. EnergyPlus also includes a number of new simulation features. Comparisons of the three programs show that EnergyPlus has the most features and capabilities such as sub-hourly user-definable time steps, improve ground heat transfer modeling using three-dimensional finite difference ground models, thermal comfort models based on activity, and anisotropic sky model for improve calculation of diffuse solar on tilted surfaces (Crawley et al., 2000). Due to such advantages and the free distribution of the EnergyPlus program, it is poised to become the most important building energy program ever created. However, EnergyPlus is now very new to the building thermal simulation community as compared with the DOE-2 which has been widely used and remains the most accepted. In summary, the thermal analysis of the case-study building will be performed using the DOE-2 building energy simulation program.

2.5.2 Calibrating Building Simulation Models

As mentioned earlier, DOE-2 will be used to perform the thermal analysis of the case-study house. To create a model that accurately represents a real building, adjustments of the model’s inputs or calibration, is required to obtain an accurate simulation of an existing building under real weather conditions. Calibration techniques for hourly building simulation have been reported by many researchers over the years including Hsieh (1988), Hsieh et al. (1989), Haberl (1988), Kaplan et al. (1990a, 1990b, 1992), Hinchey (1991), Bronson et al. (1992), Bou-Saada and Haberl (1995), Manke et al. (1996), Haberl et al. (1998), and Haberl and Bou-Saada (1998).

Hsieh (1988) compared DOE-2 simulated temperatures with measured temperatures in order to help identify the discrepancy between the simulated and actual building energy use. Hsieh used the measured temperature data to specify thermostat values in the DOE-2 input file instead of using an averaged set point temperature. The result showed that using the measured
data helped reduce the discrepancy between the simulated and actual building energy use.

Hsieh et al. (1989) presented a study that included specific calibration procedures for improving building simulation using DOE-2. The study compared simulation results of two buildings with measured data. The comparison showed that occupant effects were the major sources of discrepancy between the simulated and measured data as the reported highest amount of error was due to the occupant use of lighting and equipment (the error was about 50%). HVAC operation schedule settings were found to be the second highest source of error. Hsieh proposed a method that can overcome the error caused by occupant use of lighting and equipment; electricity consumption was directly measured in offices for one week in order to help develop a daily energy use profile for that week. Calibration procedures also included a detail sensitivity analysis to help determine which building and HVAC system components have the greatest contribution to building energy use.

Kaplan et al. (1990a) proposed short-term measured data for calibrating a DOE-2 model. According to Kaplan, the short-term method provides a cost efficient alternative to analyze building energy performance. There were three calibration periods used to tune the models: a cold weather month, a hot weather month, and a moderate weather month. Kaplan noted that calibrating the model in a moderate month was very difficult due to the unpredictability of HVAC operation schedules and the instability of weather patterns. Thus, two periods of measured data (a cold weather month and a hot weather month) were found to provide the best results to calibrate the models.

In the process of modeling and calibrating a model to an actual building, researchers use graphical methods and statistical methods for comparing the simulated data of the model with the measured data of the actual building. Three-dimensional plots have even been used as a tool for calibration the model. Three studies used three-dimensional plots to display large amounts of hourly data in a simple and concise plot (Haberl et al., 1988; Haberl and Vajda, 1988; Haberl and Komor, 1990). Hinchey (1991) used three dimensional time-series plots showing “residuals” which is the differences between simulated data and measured data to assist with the calibration of the simulation. Simple comparisons of a simulated model to data from an actual building including bar charts, monthly x-y time-series graphs, and monthly percent difference plots (Bronson, 1992; Bronson et. al; 1992; Manke et al., 1996). Bou-Saada (1994) and Haberl and Bou-Saada (1998) presented several new techniques for improving calibrations including graphical methods and statistical methods. Graphical calibration methods included scatter plots and superimposed, juxtaposed binned, box-whisker-mean plots, which
were very helpful for comparing measured and simulated data. Binned box-whisker-mean plots presented profiles of mean and inter-quartile range which were very useful for comparing the trends of the two data sets. Data were also compared in different daytypes and periods. A 24-hour weather daytype bin analysis was performed for evaluation of hourly temperature and schedule dependent data comparisons. For long-term trends, 52-week bin analysis was performed. Several statistical calibration methods were used to as goodness-of-fit indicators including a monthly mean difference, an hourly mean bias error (MBE) for each month, and hourly root mean squared error (RMSE) reported monthly, and hourly coefficient of variation of the root mean squared error (CV(RMSE)) (Kreider and Haberl, 1994).

2.6 Summary of Literature Review

This chapter has reviewed literature that is related to areas of interest of this research. The basis of thermal comfort serves as a guideline or criteria to assess thermal conditions in the case-study house and the improved model. For this research, ASHRAE Standard 55-1995 will be used to evaluate thermal comfort conditions of the case-study house. However humidity control to avoid the growth of microorganisms is significant, thus, the upper limit of 60 percent relative humidity of ASHRAE Standard 55-1992 is also a criterion to evaluate conditions of the case-study house. In addition to the ASHRAE Standard, the studies of Thai thermal comfort showed that Thai residents have a wider comfort range of temperature and exceed ASHRAE’s summer comfort zone outward by 4 to 5.5 °C (7.2 to 9.9 °F). Thus, this study will also consider that the average Thai’s thermal comfort temperature is relatively higher than those specified by ASHRAE.

The review of energy efficiency in housing in Thailand gave insight into the techniques or practices that were successful or recommended for improving energy efficiency in residential buildings. The results from the previous studies showed that improving the building envelope was the main concern and the most significant for improving the energy efficiency of the building. Light-weight concrete blocks were used in projects and studies instead of the typical concrete blocks and bricks. Shading devices, vegetation and landscape were also used to minimize the heat from outside (Boonyatikarn, 1999; Humanist Co. Ltd., 2000). Earth-cooling techniques were used in Boonyatikarn’s house to reduce the cooling load of the air conditioning system on the ground floor (Boonyatikarn, 1999). Studies by Parker (1991, 1995) showed that the reduction of heat transferred through the ceiling in Thai residential buildings is another
significant strategy for improving energy efficiency. By installation of 7.5 cm (2.95 inches) of fiberglass insulation in the ceiling, the size of air conditioning systems could be reduced by about 33% (Parker, 1991). Using more energy efficient air conditioning systems and improving the building’s envelope may reduce energy use by the air conditioning systems by over 40% (Parker, 1995). From the review of the previous studies, improvements to the building envelope were shown to be significant means of reducing cooling energy use. Thus, improving building envelop strategies will be used to reduce energy use in this thesis.

Thailand’s national development plans (8th and 9th National Social and Economic Development Plan) promote the use of renewable energy such as biomass and PV technologies, which has helped expand the use of residential PV systems. Although the use of PV in residential buildings is very low, it is expected to increase rapidly. Thus, this thesis also aims to study the use of PV systems in a Thai residential building which is the case-study of this research.

The review of hybrid PV-T systems provided background knowledge about these systems. There are theoretical and experimental studies of the hybrid PV-T systems that reported energy efficiency and other variables of the systems. One of significant results was an experimental study reported by Tripanagnostopoulos et al.(1996). In this study, glazing and a diffuse reflector (a flat aluminum sheet) were installed on a PV-T system. The results showed that thermal energy efficiency of the water heating was doubled, but the PV efficiency was decreased by about 10-20%. Another significant study is from a theoretical study by Garg and Agarwal (1995). The results showed that the optimum flow rate of water is about 0.5 gpm (the collector of 2 m² or 21.5 ft²). Their model predicted the system performance at about 60-80 percent (with a glass cover), which agreed with a theoretical study by Bergene and Løvvik (1995). From experimental and theoretical studies, the thermal efficiencies of the PV-T systems (without a glass covered) were relatively low, which lowered the total efficiency of the systems. Studies reported that thermal efficiency of the systems was significantly increased by adding a sheet of glass on the PV-T panel. However, since this thesis also aimed to experiment with the heat rejection performance of the PV panel (without additional glazing), the experiment with a bare PV module seemed to be suitable.

There are theoretical and experimental studies and reports of night-sky radiation by several researchers including Martin (1989), Saitoh and Fujino (2001), and Khedari et al. (2000). One of significant results from those studies is an experimental study in a hot and humid climate (i.e., Bangkok, Thailand) by Khedari et al.(2000). In this study, metallic sheets
were installed on a concrete tile roof to help radiating heat from the roof to the sky. The experimental results showed that the metallic sheets could lower ambient air temperature under a concrete tile roof in the range of 1-3 °C (1.8-5.4 °F), while the temperatures of air below the roof without metallic sheets were higher than the ambient air temperature. However, from the reviewed literature, there was no attempt so far could be found to use a PV panel as a heat rejecter.

For analysis of photovoltaic and solar collector systems, F-Chart and PV F-Chart are two well accepted procedures for the analysis and design of solar heating systems and photovoltaic systems respectively. Thus, these programs will be used to analyze the performance of the hybrid PV-T system in this research.

The thermal analysis of the case-study building will be performed using the DOE-2 building energy simulation program. For model calibration, it is very significant to obtain measured data for indoor temperatures and the occupant use of lighting and equipment in order to create an accurate simulation model (Hsieh, 1988; 1989). From Kaplan et al. (1990a), short-term measured data in a cold weather month and a hot weather month were sufficient for calibrating a DOE-2 model. There are several graphical and statistical methods that have been used and very useful for calibrating the model (Haberl and Bou-Saada, 1998). Therefore, this thesis will use short-term measured data and statistical methods including MBE, RMSE, CV(RMSE) for calibrating the DOE-2 model.
CHAPTER III
SIGNIFICANCE AND LIMITATIONS

3.1 Expected Contributions from this Research

This research is expected to provide the following benefits to the development of residential buildings in Thailand.

1) The study will improve the understanding of a typical Thai residential building (base-case house), including its thermal conditions and energy use.

2) Reduced energy use and improved thermal conditions for the base-case house using the DOE-2 simulation program.

3) A guidelines to assist architects and engineers for designing energy-efficient houses in Thailand’s environment.

4) Experimental results from a PV-T² collector system including solar thermal collector performance and photovoltaic performance.

5) Experimental results from a PV-T² collector system used as a heat rejection device.

3.2 Scope and Limitations of the Research

1) The building energy simulation in this thesis is limited to the capabilities of the DOE-2.1e version 119.

2) The solar thermal analysis in this thesis is limited to the specific types of systems that can be analyzed with F-CHART.

3) The PV analysis is limited to the analysis using PV F-CHART.

4) The experimental results of thermal performance of the hybrid PV-T² system are limited to the meteorological conditions experienced during the period from November 6, 2002 to July 3, 2003 in College Station, Texas.
5) The experimental results of electricity production of the hybrid PV-T² system are limited to meteorological condition experienced during the period from December 20, 2002 to June 7, 2003 in College Station, Texas.

6) The experimental results of heat rejection performance of the hybrid PV-T² system are limited to meteorological condition experienced during the period from April 25, 2003 to June 7, 2003 in College Station, Texas.
CHAPTER IV
METODOLOGY

This chapter discusses the four research methods used in this research: 1) Measurements and analysis of a case-study house, 2) Field experiments of a hybrid PV-T² collector system, 3) Building thermal simulations, and 4) Economic analysis. Each of these research methods are summarized and presented in Figure 4.1. The details of each method are described in the following sections.

4.1 Case-Study House

A typical contemporary Thai detached house was selected as a case-study house. The characteristics of this house are described in Section 4.1.1 and 4.1.2 including: building information, building energy use, thermal conditions of spaces in the building, and weather data.

4.1.1 Selection of the Case-Study House

The selection of the case-study house is based on three criteria: 1) location, 2) characteristics of the house and 3) the number of occupants. Detailed criteria are discussed below.

4.1.1.1 Location of the Case-study House

Thailand lies on the Indochinese Peninsula from about 5° to 20° south latitudes and about 98° to 105° east longitude (see Figure 4.2), which is about 1,100 miles from north to south and about 485 miles from east to west. Thailand’s geography is diversified from the long coast and mountains of the southern region to the flat land of the central plain region to the high elevation and mountains in the northern region, and includes a large plateau in the northeast region (FOA, 1981). Thailand’s weather is also diversified. The central plain region is the largest region located in the middle of the country. It is subdivided into three geographic subregions; the southeastern region, the northern rolling plains region, and the Chao Phraya
Experiments: at College Station, Texas in Fall 2002 and Spring 2003

Figure 4.1 Research Methods Diagram.
delta, which is the largest fertile, lowland area of the country (FAO, 1981). Bangkok and vicinity area, which is the most populated area of the country, is in this subregion (NSO, 2000b). Therefore, this research will use a case-study house that is located in Bangkok or the vicinity of Bangkok.

Another consideration for selecting a case-study house is the solar radiation. Figure 4.3 shows the average daily solar radiation on a horizontal surface from January to December. According to Figure 4.3, the average daily solar radiation ranges from 16 to 21 MJ/m\(^2\) · day. The majority of Thailand is in the 18 MJ/m\(^2\)-day region. There is a vast area of the central plain that is in the 18 MJ/m\(^2\)-day insolation range as well. Therefore, the desired location of the case-study house is in the Cha Phraya delta subregion with an average daily horizontal solar radiation of 18 MJ/m\(^2\).

4.1.1.2 Characteristics of the Case-study House

This research aims to investigate a typical contemporary, detached Thai house, which has characteristics defined by Thongpiyapoom (1996). The general characteristics are the following:

- Two-story building with pitched roof covered with concrete tile.

- Three-bedrooms with three-bathrooms.

- Walls constructed of four-inch thick brick coated with white-colored cement.

- Concrete columns, beams, and floors.

- Wood frame casement windows with single-pane tinted glass.

4.1.1.3 Number of Occupants

People exchange heat with the environment. A resting adult produces about 350 Btus of heat per hour (ASHRAE, 2001 p.8.1). Thus, the number of residents affects the thermal condition in a building. People also require fresh air, as well as comfort conditions. The average Thai household has 3.6 persons per house (NSO, 2000b). Thus, the preferred number of occupants in the case-study house is three to four persons.
Figure 4.2 Map of Thailand (Courtesy of The General Libraries, The University of Texas at Austin.).
Figure 4.3 Thailand’s Solar Map: average daily solar radiation on a horizontal surface from January to December. (This figure was redrawn by the author from Thailand’s solar data published by NEPO (2000)).
4.1.2 Data Collection for the Case-Study House

As presented in Figure 4.1, the required data and information for the case-study house can be classified in three categories: building information, building’s energy use, and climate data.

A typical contemporary Thai detached house, which met the previously mentioned criteria, was selected as a case study. Building information includes the building description, types and properties of the materials, and construction. To acquire this information the building was surveyed and photographed. Construction drawings of the building were obtained as well. After surveying the type of building materials, the thermal properties of the materials were obtained from LBNL (1982, 1993), Stein and Reynolds (1992), Watson, D. (1993), and the Thai Gypsum Products Public Company Limited (1996).

The monthly utility bills (from June to December 2000) from the case-study house were then collected. Energy use data from single-family homes in Bangkok and the vicinity of Bangkok were also obtained from the Metropolitan Electricity Authority of Thailand (2000) and the National Statistical Office of Thailand (NSO, 2000a). Energy use from both sources is presented in the next chapter.

The required weather data was categorized into two levels: macroclimate and microclimate. Bangkok weather data was acquired as macroclimate data, which included air temperature, relative humidity, solar radiation, and wind speed. The hourly weather data of Bangkok for the year 2000 was obtained from the Thai Meteorological Department, including dry-bulb temperature, relative humidity, wind speed, and solar radiation. These hourly weather data were then used to create the weather file, which was used in the calibrated building simulation.

The microclimate data included measurements of the interior conditions in the case-study house. These data were obtained by on-site measurements inside the case-study house. Four measurement devices (portable data loggers) for measuring and recording temperature and humidity were installed in the case-study building, including: one in an air-conditioned space, two in unconditioned spaces (1st floor and 2nd floor spaces), and one in the attic space. Microclimate data, which presents the thermal conditions of the house, was then compared with ASHRAE’s thermal comfort standard (ASHRAE, 1995, 2001). The measured thermal conditions and the results of Thai thermal comfort studies by Busch (1990) and Jitkhajornwanich (1998) are also discussed in the next chapter. The amount of monthly
energy use indicated by the utility bills was averaged to daily energy use by dividing by the
days in the month and then plotted against the average daily ambient temperatures for the
utility billing period. Plots of monthly daily averaged energy use versus daily ambient
temperatures show the effect of outside air temperature on the energy use of the house.

4.1.3 Instrument Calibrations

Portable data loggers were used to measure the temperature and humidity of the case-
study house. Calibrations of both types of measurements were performed to ensure accurate
measurements. Temperature sensors were calibrated with a calibrated hand-held Type-T
thermocouple. The thermocouple was calibrated with ice-point and water boiling-point
temperatures (Wise, and Soulen, 1986). Distilled water was used to make the ice and boiling
water. Calibration of the humidity sensors used a method of humidity control by chemical salts
that is described by Greenspan (1976). The results of the calibrations are presented in the
Appendix C.

4.2 Experiment of the Hybrid Photovoltaic-Thermal (PV-T²) Collector

One of the objectives of this research was to develop a hybrid photovoltaic-thermal
(PV-T²) collector system that can simultaneously convert solar energy to electricity and produce
hot water (for domestic hot water supply) in the daytime, as well as radiate heat to the night sky.
To accomplish these objectives, an experimental test box of a hybrid PV-T² panel was designed
and constructed, and experiments conducted. The following sections explain the experimenta-
tion, the experimental box, its components, the system’s test procedures, and the data collection.

4.2.1 Design of the Experiments

As mentioned in the literature review on hybrid PV-T systems, there are basically two
types of heat transfer systems that are defined by their heat transfer media: air or water. Since
one of the objectives of the hybrid PV-T system is to be able to produce domestic hot water
(DHW), a water-type system was chosen. The liquid system also has an advantage over the
air-type system namely, the direct heat transfer between collected heat and the potable water.
The tested system was included to collect thermal and electrical energy during the daytime and
to reject heat during nighttime. Thus, experiments on the hybrid PV-T² system had two operating modes: day mode and night mode. The day mode use the photovoltaic panel as a dual energy collector unit (electrical and thermal energy). The night mode used the same photovoltaic panel as a heat rejection unit.

4.2.1.1 Day Mode Experiment

In the day mode, the collector unit collects solar energy and converts it to electricity and thermal energy. In the experimental setup a photovoltaic (PV) panel was used to collect solar energy and convert it to electricity, and thermal energy was extracted from the PV panel through a heat exchanger system that is integrated into the PV panel (see Appendix B, B.1: Experimental Box for construction of the hybrid PV-T²).

In the day mode experiments, a supply of “cool” water to be heated was prepared the night before the day mode experiment day. Experiments were then run to determine the necessary input parameters for running F-CHART. The electricity produced by the PV panel was measured on a series of days with varying panel temperatures to determine the necessary performance parameters for running PV F-CHART. To set up the day mode thermal collection, the night before the experiment, the water temperature in the Hot Tank was lowered to a temperature that was controlled by a submersed external thermostat, with heat rejected using a radiator with a blower. In the actual experiment, the thermostat was set to the lowest set-point temperature and the pump and the radiator were run all night, so the water temperature could reach the lowest temperature each night. This also solved a technical problem when the pump was not continuously run, since the pump would lose its prime and stop pumping when the thermostat was satisfied, making it unable to start again without priming. To cool the water in the Hot Tank, pump# B and the fan inside the radiator were turned on, while valve# 10 and 11 are open (see Figure 4.4 and 4.5). This allowed water to circulate in a loop from the Hot Tank to the radiator and back to the tank, removing heat from the water, which resulted in decreasing water temperature.

After the water in the Hot Tank is prepared for the day mode experiment, the experiment could be started in the morning when the sun rose. The experiment started with checking the water level and temperature in the Hot Tank using a calibrated liquid-in-glass thermometer. The tank can contain approximately five gallons of water. However, the water level was set at four gallons in each experiment to allow space above the water level for supply
and return piping. Variations in the initial water temperature corresponded to variations in the ambient temperature. Initial water temperatures will be further discussed in Chapter VII.

Figure 4.4 Day Mode Experiment Diagram.
Starting the day mode experiment consisted of turning on/off several devices, opening/closing different valves, and adjusting water flow rates at the globe valve (Valve# 12) (see Figures 4.4 and 4.5). The procedure to run the day mode experiment is listed below:

1. Turn on pump# B by adjusting the temperature set-point of thermostat B to the highest temperature, so the pump will be continuously running to maximize the exposure time of the circulating water to the heat collected in the PV panel.

2. Open valves#: 3, 4, 5, 9, 11

3. Adjust water flow rate at valve# 12 to the appropriate flow rate (the experimental flow rate was 1 gallon per minute)

Once the pump is on and the valves are opened or adjusted, water is circulated from the Hot Tank through valve# 11, to pump# B, to valve# 3, 4, 12, to the collector unit, to valve# 5, 9, and back to the Hot tank (see Figures 4.4 and 4.5). During the daytime of day mode experiment, if a night mode experiment is to be performed the following evening, then the water temperature of the Cool Tank also needs to be prepared. Preparation of the night mode experiment during the day time is explained in the next section.

4.2.1.2 Night Mode Experiment

In the night mode, the heat rejection experiment uses the collector unit as a heat rejecter. The water is heated as a batch during the previous day to approximately the same temperature using the compact water heater of the system. The hybrid PV-T² unit rejects energy through the collector panel by convection and long-wave radiation to the ambient.

As mentioned earlier, in the daytime prior to a heat-rejection experiment, water for experimenting in the night mode needs to be heated to a pre-determined temperature. To accomplish this, the water temperature of the Cool Tank is controlled by a submersed thermostat which activated a water heater. For heating the water in the Cool Tank, pump# 1 and the water heater are turned on; while valves# 1 and 8 are open (see Figures 4.5 and 4.6). The water is then heated as it circulates from the Cool Tank to the water heater and back to the tank.

Several other preparations were needed before a heat rejection experiment could be performed. First, during the early night mode experiments, it was observed that stored heat in
the body of collector/rejecter unit, from solar radiation or high ambient temperatures during the
day time, had an adverse effect on the night mode experiment. The heat stored in the hybrid
PV-T² collector during the daytime produced erroneous results in the first hour of the night
mode experiments. Therefore, the temperature readings and rejected heat in the first hour could
not be used for the system’s performance assessment. To resolve this problem with the heat
stored in the hybrid PV-T² collector, a well insulated aluminum shield was used to cover the
hybrid PV-T² collector during the day before a nighttime heat rejection experiment was to be
performed.

After the water in the Cool Tank was prepared, the night mode experiment was started
in the evening when the sun went down. Like the day mode experiment, the surface of the PV
panel needed be clean to ensure the consistent exposure to the sky each night the experiment

Figure 4.5 Day Mode and Night Mode Valve Control Diagram.
was conducted. The experiment started with checking the water level and temperature in the Cool Tank using a calibrated liquid-in-glass thermometer. The water level in the Cool Tank was kept at 4 gallons. Prior to the experiment the water in the Cool Tank was heated to 130-140 °F, which also happened to be the maximum temperature of the water heater.

The procedure for starting the night mode experiment is listed below:

1. Turn on pump# A by adjusting the temperature set-point of thermostat B to the lowest temperature, so the pump will run continuously to maximize the exposure time of the circulating water to the ambient air and night sky.

2. Turn on valves#: 1, 2, 7, 10, and 11.

3. Adjust the water flow rate at valve# 12 (the best experimented flow rates was determined to be 1.0 GPM)

Once the pump is on and the valves are opened or adjusted, water is circulated from the Cool Tank through valve# 1, to pump# A, to valves# 2, 4, 12, to the collector unit, to valve# 7, and back to the Cool Tank.
4.2.2 Experimental Box

The experimental box was designed and constructed during the spring semester of 2001 through summer semester 2002. The experimental box was initially constructed in the Architecture woodshop. It was designed to be able to be disassembled in order to move it from
the woodshop to the solar test platform which is on the roof of the Langford Architecture Building A. Figure 4.7 shows the finished experimental box, solar test bench, and Dr. Kie Whan Oh’s experimental box (Oh, 2000) on the solar test platform.

![Figure 4.7](image)

Figure 4.7 Experimental Box and Solar Test Bench (View from the East).

The hybrid PV-T2 collector system consists of five sub-systems: 1) an energy collector/rejecter unit (PV-T2 unit), 2) piping and heat storing systems, 3) a central electrical control system 4) a water temperature regulating system, and 5) a data acquisition system. All of these sub-systems are housed in the experimental box, except the energy collector unit, which is situated on the top of the box.
Figures 4.8 and 4.9 show the experimental box viewed from the southeast and northwest respectively. In Figure 4.8, the hybrid PV-\(T^2\) collector unit, part of the piping system, and thermocouple can be seen in the picture. Figure 4.10 shows the systems that are inside the experimental box. The construction of the experimental box is presented in Appendix B.

Figure 4.8 Experimental Box (View from the Southeast).
4.2.2.1 Energy Collector/Rejecter (PV-T2) Unit

The energy collector/rejecter was designed to be a hybrid PV-T collector in the daytime and a heat rejecter at night. It is comprised of a photovoltaic (PV) module, a heat exchanger plate, pipes, insulation, and a frame and supports (see Figure 4.11). A small polycrystalline PV module (Solarex SX-10) was selected as the photovoltaic collector panel for the system. It has a maximum power output of 10 Watts. The description of the PV module including the electrical characteristics and physical dimensions is presented in Appendix B.

The heat exchanger is basically two thin copper plates soldered with 3/8 inch copper pipe (see Appendix C). It was salvaged from the collector plate of a liquid-type solar collector. The heat exchanger was fastened to the back of the PV panel that was mounted on a steel plate and an aluminum frame. A high thermal conductance paste was used to improve the heat transfer.
Figure 4.10 Inside the Experimental Box (View from the East). The experimental box houses four systems that are described in this chapter. As seen in this picture, the left tank is the Cool Tank used in night mode experiment, and the right tank is the Hot Tank used in day mode experiment. The water heater is hung on the wall in the middle of the box. Piping systems run mostly on the walls and on the floor at in the back of the box. On the left door is the cover of the PV-T² units. On the right door are the system operating procedures and tool storage.

efficiency between the PV module and the heat exchanger. The high thermal conductance paste is commercially called “Type 44 Heat Sink Compound” made by GC Electronics (GC Electronics, 2003). The heat sink compound is a good conductor, with a thermal conductivity of 5.22 ft²·h·F/Btu·in, but it is not an adhesive material. Therefore, a metal bar, which was connected to the aluminum frame, was installed to press the heat exchanger plates down onto the back of the PV module. Between the bar and the heat exchanger plates, an insulator was inserted to avoid unwanted heat transferring out of the system.
The PV-T2 unit is connected to heat storing systems (i.e., the Hot Tank and Cool Tank) through a piping system, which is described in the next section. In Figure 4.11, two insulated rubber tubes, which are wrapped with aluminum tape, are the flexible inlet and outlet connections to the collector. The insulation helps minimize the heat loss through the rubber tubes. The aluminum tape protects the insulation from solar radiation, and it also serves as cladding for the tubes to protect them from the weather.

![Photovoltaic-Thermal Collector/Rejecter (PV-T2) Unit](image)

Figure 4.11 Photovoltaic-Thermal Collector/Rejecter (PV-T2) Unit.
There are also two weather-proof conduits that are connected to the PV-T² unit. In Figure 4.11, the left gray flexible conduit is for a thermocouple line and a solar radiation sensor line, and the other conduit (right) is for the PV’s power output line. The thermocouple in the left conduit was used to measure temperature at the back of the PV module. The head of the thermocouple was inserted in between the back of the PV module and the heat exchanger plates. It was positioned in the middle of the module. A silicon photodiode type pyranometer (LI-COR, Inc., 1991), which was installed on the PV-T² unit, was used for measuring solar radiation in the plane of the collector.

There was also a thermocouple that was used to measure the front surface temperature of the PV module. It was installed in the middle of the collector’s front surface, roughly opposite to the thermocouple inside the collector’s module (see Figure 4.11). The head of the thermocouple was attached to the PV’s surface with aluminum tape, which was then covered with ½ of a foam ball and aluminum tape to prevent the influence of the solar radiation and ambient air temperature at the surface. Silicone was used to attach the foam ball to the collector’s surface.

4.2.2.2 Heat Storage and Piping Systems

The Hot Tank and Cool Tank were regular drinking water/ice tanks that were used for storing water in the experiments (manufactured by the Igloo Corp., Houston, Texas). The Hot Tank contains water that is used for storing heat in the Day mode. The Cool Tank contains water that is used for shedding heat in the Night mode. The tanks are 5-gallon tanks suitable for hot or cold liquids. The operating level of water in the experiments, in both Day mode and Night mode, is four gallons in each tank. Space above the water level (at four gallons) in each tank was allowed for inserting the supply and return piping.

The purpose of the piping systems is to circulate heat from the Hot Tank and the Cool Tank to the other devices including the PV-T² unit. There are four piping loops in the system: two main loops are for circulating water from the Hot and Cool Tanks to the PV-T² collector, one loop is for circulating the Hot Tank to the heat rejecter box, and one loop is for circulating water from the Cool Tank to the compact water heater (see Figure 4.5). All of the piping loops share various pipes, valves and pumps. All pipes were ½ inch copper pipes. Valves were installed for controlling the direction of the flow of the water. The valves also help prevent water from draining back into the tanks when the system was not operating. This is important
since the volume of water in the pipes above the tanks when combined with an already full tank exceeded the tank capacity. Hence, when the pumps were off, the valves were shut to prevent backflow into the tanks. In the worst case, air would enter the pipes, causing the pump to lose its prime. There are 2 water pumps in the system: one (pump# A) for the Cool Tank and another (pump# B) for the Hot Tank. Pump# A was used to pump water from the Cool Tank to the PV-T^2 unit, or to the compact water heater. (see Figures 4.5 and 4.12). Pump# B was used to pump water from the Hot Tank to the PV-T^2 collector, or to the heat rejection unit (see Figures 4.5 and 4.14).

Figure 4.12 Heat Storage (Cool Tank) and Piping System (See Close-up of the Flow Meter in Figure 4.13).
Another component of the piping system is a water flow meter, which shows the flow rate controlled by the globe valve installed directly below the flow meter (see Figures 4.12 and 4.13). After the flow meter was installed in the piping system, its flow rate measurement was cross checked.

Figure 4.13 Close-up of the Flow Meter. The flow meter was designed for solar hot water system. The flow rate scale ranged from 0 to 10 GPM. However, the maximum flow rate was about 1 GPM. Unfortunately, this low flow was at the very bottom of the scale. Therefore, a new scale was determined and experimentally marked on masking tape on the lower part of the flow meter.
4.2.2.3 Central Electrical Control Unit

The Central Electrical Control Unit (CECU) is where the electricity is brought in and distributed to all other devices which are pumps, exhaust fan, light bulb, water heater, blower in the radiator unit, data logger, and electrical circuit. Figure 4.15 shows the CECU; the gray box
was opened for the photograph (normally there is a cover on the box). The diagram of the CECU is shown in Figures 4.4 and 4.6.

![Central Electrical Control Unit](image)

Figure 4.15 Central Electrical Control Unit.

The Central Electrical Control Unit consists of a main switch, three electromechanical switches (relays), five receptacles, two switches, and a 120V to 24V transformer. The main switch controls distribution of electricity from the power line to the experiment box. From the main switch, electricity (120 V) is distributed to the relays, and to a combined receptacle/switch
(receptacle C). Receptacle C is an electrical outlet for other external devices such as a laptop computer that may need power supply while connected to the data logger. The light switch in Receptacle C is for turning the light on or off. This light also served to warm the interior of the box during freezing conditions.

Relays A and B are configured in the same way; each one is connected to a thermostat and two receptacles. For instance, Relay A is connected to Receptacle A and Thermostat A. Those are called “Control Set A”. Control Set A is for controlling electrical current flow to the water heater and Pump A. The relays are powered by the 24V transformer. The relays’ contacts are normally open (NO) type. When the thermostats reach the set-point temperature, they signal the relay to close the contact. In this mode, the 120 VAC circuit is energized and the power is supplied to the electric devices that are plugged in.

The Control Set C works in the same way as the Control Sets A and B except that Relay 3 is directly connected to an exhaust fan and a light. In Control Set C, there is a two-way switch that is used to switch between heating mode (use of the light) and cooling mode (use of exhaust fan) to regulate the air temperature inside the experiment box. Control Set C is called the Interior Temperature Control System. The Interior Temperature Control System is to prevent the interior air temperature from extreme conditions. The thermostat can be set in the cooling mode (summer) or heating mode (winter) at a pre-determined set-point temperature. On cold days, the heating mode is selected, and the thermostat can be set at 40 °F. The light is turned-on whenever the temperature drops below the set-point temperature. On hot days, when the cooling mode is selected, the thermostat can be set at 100 °F. The exhaust fan is then turned-on whenever the temperature rises above the set-point temperature.

4.2.2.4 Water Temperature Regulating Systems

As mentioned in Section 4.1.2, water in both the Hot and Cool Tanks needs to be cooled or heated to a temperature before conducting the experiments. The systems to perform such tasks are called the Water Temperature Regulating Systems. There are two separate systems for each experiment or mode (Day Mode and Night Mode) to regulate the water temperature in each tank. The Day Mode system consists of a heat rejection box and Control Set B of the Central Electrical Control Units (see Figure 4.16). The heat rejection box was custom made from an automobile radiator, a blower, and aluminum plates. The construction of the heat rejection box is described in the Appendix B. The Night Mode system consists of an instantaneous, compact water heater, which is controlled by Control Set A of the Central
Electrical Control Units. The operation of the Water Temperature Regulating Systems in the Day Mode and the Night Mode was described earlier in Sections 4.2.1.1 and 4.2.1.2 respectively.

Figure 4.16 Heat Rejection Box. The radiator is inside the rectangular black box, and contains an air blower. Thermostat# B on the right of the photo is the control thermostat for the radiator and pump# B (shown in Figure 4.14).

4.2.2.5 The Data Acquisition System

The data logger, a Campbell Scientific 21X Micrologger, was used to monitor and store data needed from the experiments. The logger was installed on the North wall of the experiment box (See Figure 4.17). A customized steel box was used to house the logger. The original cover of the box was cut into two parts: an upper and a lower part. The upper part allowed sensors/conduits to come into the data logger box. The lower part was used to cover the logger during normal use when access to the logger was not required. Eight channels of
analog inputs were used to record data from temperature sensors, a solar radiation sensor, and the electrical power output from the PV panel (see Table 4.1).

![Data Logger: Campbell 21X Data Logger.](image)

Figure 4.17 Data Logger: Campbell 21X Data Logger.

4.2.3 Instrument Calibrations

The measuring devices used in the experiments include: a solar radiation sensor, temperature sensors (Type T), liquid-in-glass thermometers, and a water flow meter. These devices were calibrated before use to ensure their accuracy. These calibrations were then applied to the raw measurements to obtain more accurate measurement. The calibration methods for the instruments and calibration results are presented in Appendix C.
Table 4.1

Description of the Data Logger’s Channels and Sensors Used in the Experiments

<table>
<thead>
<tr>
<th>Analog Inputs Channels</th>
<th>Channels and Sensors Description</th>
<th>Locations of Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solar Radiation Sensor: Li-Cor (LI-200SA) Pyranometer Sensor</td>
<td>On the plane of PV-T² unit (See Figure 4.11)</td>
</tr>
<tr>
<td>2</td>
<td>Temperature Sensor: Thermocouple Type T for measuring temperatures of the PV panel</td>
<td>At the back of the PV panel in the PV-T² unit (See Appendix B.1)</td>
</tr>
<tr>
<td>3</td>
<td>Temperature Sensor: Thermocouple Type T for measuring temperatures of inlet water entering the PV-T² unit</td>
<td>Thermalwell A (See Figure 4.13)</td>
</tr>
<tr>
<td>4</td>
<td>Temperature Sensor: Thermocouple Type T for measuring temperatures of outlet water leaving the PV-T² unit</td>
<td>Thermalwell B (See Figure 4.13)</td>
</tr>
<tr>
<td>5</td>
<td>Temperature Sensor: Thermocouple Type T for measuring water temperature in the Cool Tank</td>
<td>Immersed in the Cool Tank at the 2 gallon level</td>
</tr>
<tr>
<td>6</td>
<td>Temperature Sensor: Thermocouple Type T for measuring water temperature in the Hot Tank and later was used to measure the PV panel's surface temperature for the Night Mode experiments</td>
<td>Immersed in the Hot Tank at the 2 gallon level. Later, moved to PV’s surface</td>
</tr>
<tr>
<td>7</td>
<td>Voltage output from the PV panel</td>
<td>Resistor circuit board located on the ceiling of the box (see Figure 4.15)</td>
</tr>
<tr>
<td>8</td>
<td>Current output form the PV panel</td>
<td>Resistor circuit board located on the ceiling of the box (see Figure 4.15)</td>
</tr>
</tbody>
</table>

4.2.4 Test Procedures and Data Analysis

Since test procedures for hybrid PV-T systems have not been standardized, standard tests of solar thermal collectors and photovoltaic systems were used for determining the thermal and electrical performance of the Hybrid PV-T system (Huang et al., 2001; Tripanagnostopoulos et al., 2002; Zondag et al., 2002; Sandnes and Rekstad, 2002). Section 4.2.4.1 describes the standard test method used to determine the thermal performance of the hybrid PV-T² collector. Section 4.2.4.2 describes the standard test method used to determine the electrical performance of the hybrid PV-T² collector. Since one of the objectives of this research is also to test the heat rejection performance of a hybrid PV-T² collector, and since no previous studies
could be found that integrated a hybrid PV-T collector or used PV panels as a night sky heat rejecter, a test procedure was developed for determining the heat rejection performance of the hybrid PV-T² system. Section 4.2.4.3 describes the two test methods used to determine the heat rejection performance of the hybrid PV-T² collector.

4.2.4.1 Thermal Performance of the Hybrid PV-T² System

The experiment performed for this study used the PV panel as a solar thermal collector. Therefore, the PV surface, which is a sheet of glass, was considered to be similar to an unglazed flat-plate thermal solar collector (absorber) of the hybrid PV-T² system. Since the proposed hybrid PV-T² is a liquid-type system, a relevant standard test for determining the thermal performance of the hybrid PV-T² collector is ANSI/ASHRAE 96-1989 (ASHRAE, 1989) Standard: Method of Testing to Determine the Thermal Performance of Unglazed Flat-plate Liquid type Solar Collector (ASHRAE, 1989). Although other standards exist for testing solar collectors, this standard was the most useful because it contained information about translating the results for use by the F-CHART analysis method.

To test the thermal performance of an unglazed flat-plate, liquid-type collector, according to the standard, the instantaneous efficiency of the collector needs to be determined at several operating temperatures. Therefore, an outside experiment, such as the one used in this study, requires experimentally measuring solar radiation incident on the PV panel, the temperature of the liquid entering and leaving the collector, the flow rate of the heat transfer fluid, the ambient temperature, and wind speed. The thermal efficiency of the unglazed flat-plate liquid-type collectors is then determined by:

\[
\eta_{ther} = \frac{m \cdot c_p (t_{f,e} - t_{f,d})}{A_g \cdot I_i} \tag{4.1}
\]

where

- \(\eta_{ther} \) = Thermal efficiency of the Hybrid PV-T² Collector based on gross collector area (%).
- \(m \) = Mass flow rate of the heat transfer fluid (water), kg/s [lb/h].
- \(c_p \) = Specific heat of the heat transfer fluid (water), J/(kg °C) [Btu/(lb °F)].
The test procedure and data processing used in this experiment, which is guided by ASHRAE standard 96-1989, are described below:

1. The test was performed on four clear days, which allowed four different values of the inlet temperatures to be used to obtain the values of \((t_{f,i} - t_a)/I_t\). One value of \((t_{f,i} - t_a)/I_t\) was in the negative range of approximately -0.02 to -0.15 ° (°C · m²)/W to reduce the extrapolation error. This was accomplished by filling the tank with ice water.

2. All tests started when the sun rose and ended when the sun set. However, only four data points, two data points before and after solar noon, were used to calculated the collector thermal efficiency and \((t_{f,i} - t_a)/I_t\). The data logger’s data interval time was set to 15 minutes, so the collected data is in the range of 30 minutes from solar noon.

3. The calculated thermal efficiency was then plotted on a Hottel-Whillier-Newton Plot, which has \((t_{f,i} - t_a)/I_t\) on X-axis and the thermal efficiency on Y-axis. A linear regression line of the data was generated from the four sets of data points and the equation of the regression line obtained.

4. The test intercept (Frτα) was calculated from the equation of the regression line. The test slope (FrUL) was then determined by using of the slope of the linear regression line.

4.2.4.2 Electrical Performance of the Hybrid PV-T² System

Four parameters were needed to analyze the Hybrid PV-T² system’s electrical performance: 1) cell temperature at the Nominal Operating Cell Temperature (NOCT), 2) the array reference efficiency, 3) the array reference temperature, and 4) the array temperature.
coefficient. The cell temperature at the NOCT and the array reference temperature were obtained from the manufacture’s specifications. These two parameters are further described in detail in Appendix F.

The aim of this experiment was to analyze two electrical/thermal characteristics of the PV panel: 1) the array reference efficiency and 2) the array temperature coefficient for use with the PV F-CHART program. The array reference efficiency was obtained from the manufacture’s specifications and the measurement of the physical size of the PV array. The array temperature coefficient was the rate at which the array’s efficiency linearly decreased with increasing panel temperature. The array temperature coefficient was obtained from the relationship of the PV’s efficiency and the PV array’s temperatures. This required experimentally measuring: the solar radiation on the PV panel, the temperature of the PV panel, the ambient temperature, and the power output from the PV panel. The measured data were then used to calculate efficiency of the PV panel, which is determined by:

$$\eta_{\text{elec}} = \frac{P_{\text{pv}}}{A_g \cdot I_i}$$ \hspace{1cm} (4.2)

where

- η_{elec} = Electrical efficiency of the Hybrid PV-T Collector based on gross collector area (%).
- P_{pv} = Power, electrical output, of the photovoltaic panel (PV), W.
- A_g = Gross collector area (PV panel’s aperture area), m2 (ft2).
- I_i = Total solar irradiation incident upon the aperture plane of collector, W/m2 [Btu/(h - ft2)].

The test procedure to measure the parameters required to calculate the electrical efficiency and the array temperature coefficient was based upon the guidelines of two standard tests: 1) ASTM Standard E 1036 (ASTM 1996), and 2) the International Standard IEC 61724 (IEC, 1998).

ASTM Standard E 1036 describes test methods of the electrical performance of photovoltaic modules and arrays (non-concentrator terrestrial photovoltaic device) under natural or simulated sunlight using a calibrated reference cell. International Standard IEC 61724
describes general guidelines for monitoring and analysis of the electrical performance of photovoltaic systems.

The test procedure and data processing used in this research are described below:

1. The test was performed simultaneously with the experiment of thermal solar collection. Thus, the test is performed on at least four clear days.

2. The test started at sunrise and ended at sunset. However, four data points, two data points before and after solar noon, were used to calculate the PV’s electrical efficiency. The data logger’s data interval time was set to 15 minutes, so the collected data is in the range of 30 minutes from solar noon.

3. The calculated PV panel’s efficiency was then plotted on the Y-axis against the panel’s temperature on the X-axis. A linear regression line of the plotted data was generated using a spreadsheet program and the equation of the regression line was obtained. The array temperature coefficient was then calculated from the coefficients of the regression equation.

4.2.4.3 Heat Rejection Performance of the Hybrid PV-T² System

This research developed a test procedure to assess the heat rejection performance using the PV panel as a heat rejecter. The test procedure and data processing procedures of the heat rejection experiment used in this research are described below:

1. The test was performed on twelve clear nights. The test ran from sunset to sunrise the next day.

2. Unlike the experiments of the solar thermal collector performance and the PV electricity production, 15-minute data from the whole night were used to assess the heat rejection performance of the PV panel.

3. The measured data included temperatures of the water in the cool tank, inlet and outlet water temperatures, ambient conditions and the mass flow rate of the water. These data were used to calculate the heat rejected from the PV panel.

4. From the experimental results of heat rejected, a regression analysis was performed in order to define the relationship of the rate of heat rejected from the PV against environmental
parameters including ambient temperature, the PV’s surface temperature, wind speed, and the sky temperature.

From the measured data, the heat rejected from the PV can be calculated by two methods, which are described below:

1) Calculating Heat Loss by the Water Temperature Difference in the Cool Tank

\[
\dot{Q}_{\text{rej,AT}_c} = \dot{Q}_{\text{rej-meas,AT}_c} + Q_{\text{pump}} \quad (4.3)
\]

where

\[
\dot{Q}_{\text{rej-meas,AT}_c} = \text{energy change in the cool tank} = m \cdot c_p (t_{c,i} - t_{c,j}) \quad (\text{Btu/15 mins})
\]

\[Q_{\text{pump}} = \text{energy gained from the water circulating pump} \quad (\text{Btu/15 mins})
\]

\[
\Delta Q_{\text{rej,AT}_c} = \text{total rejected heat} \quad (\text{Btu/15 mins})
\]

\[m = \text{mass of the transfer fluid (water) in the Cool tank, kg (lb)}\]

\[c_p = \text{specific heat of the transfer fluid (water), J/(kg \cdot ^\circ C) [Btu/(lb \cdot ^\circ F)}]\]

\[t_i = \text{temperature of the transfer fluid in the Cool tank at time i, } ^\circ C \text{ (°F)}\]

\[t_j = \text{temperature of the transfer fluid in the Cool tank at time } j = i + 15 \text{ mins, } ^\circ C \text{ (°F)}\]

2) Calculating Heat Loss by the panel Inlet and Outlet Water Temperatures

\[
\dot{Q}_{\text{rej-meas,AT}_u} = \dot{m} \cdot c_p (t_{f,i} - t_{f,e}) \quad (4.4)
\]

where

\[\dot{Q}_{\text{rej.meas,AT}_u} = \text{measured rejected heat calculated by temperature difference of } t_{f,e} \text{ and } t_{f,i}\]

\[\dot{m} = \text{mass flow rate of the transfer fluid (water), kg/s (lb/h)}\]

\[c_p = \text{specific heat of the transfer fluid (water), J/(kg \cdot ^\circ C) [Btu/(lb \cdot ^\circ F)}]\]

\[t_{f,e} = \text{temperature of the transfer fluid leaving the collector/rejecter, } ^\circ C \text{ (°F)}\]
\(t_{r,i} \) = temperature of the transfer fluid entering the collector/rejecter, °C (°F)

Results from the experiment were then comparing with theoretical results, which are calculated by the following equations:

\[
\dot{Q}_{\text{rej,cal}} = \dot{Q}_{\text{cv}} + \dot{Q}_{\text{rad}}
\]

where

\(\dot{Q}_{\text{rej,cal}} \) = Calculated heat loss (Btu/h)

\(\dot{Q}_{\text{cv}} \) = Convective heat loss (Btu/h)

\(\dot{Q}_{\text{rad}} \) = Radiative heat loss (Btu/h)

\[
\dot{Q}_{\text{cv}} = h_{\text{cv}} \cdot A \cdot (T_{\text{sur}} - T_a)
\]

\[
h_{\text{cv}} = C \left(\frac{1}{d} \right)^{0.2} \left(\frac{1}{T_{\text{avg}}} \right)^{0.181} (\Delta T_{\text{a-s}})^{0.266} \sqrt{1 + 1.277(\text{Wind})}
\]

(ASHRAE, 2001, pp. 25.15)

where

\(\dot{Q}_{\text{cv}} \) = Convective heat loss (Btu/h), (Kreider and Rabl, 1994, p. 43-44)

\(A \) = Collector Area (Ft²)

\(C \) = Constant depending on shape and heat flow condition

- 1.79 for horizontal plates, warmer than air, facing upward
- 0.89 for horizontal plates, warmer than air, facing downward
- 0.89 for horizontal plates, cooler than air, facing upward
- 1.79 for horizontal plates, cooler than air, facing downward

\(d \) = diameter for cylinder, in. For flat surfaces and large cylinders (d>24 in.), use \(d = 24 \) in.

\(h_{\text{cv}} \) = Convection surface coefficient (Btu/(h·ft²·°F)), (ASHRAE, 2001, pp. 25.15)

\(\dot{Q}_{\text{cv}} \) = Convective Heat Loss (Btu/h)

\(T_a \) = Temperature of ambient air (°F)

\(T_{\text{avg}} \) = Average temperature of the air film = \((T_a + T_{\text{sur}})/2 \) (°R)
\[T_{\text{sur}} = \text{Temperature of the collector surface (°F)} \]
\[\Delta T_{s-a} = \text{Surface to air temperature difference (°R)} \]
\[\text{Wind} = \text{air speed (mph)} \]

Net radiation between a horizontal flat plate and the sky is calculated by eq. 4.8. However a view factor is applied, because the PV panel is tilted. Equation 4.9 is used in the calculation instead of equation 4.8.

\[
\dot{Q}_{\text{rad}} = \varepsilon \cdot A \cdot \sigma \cdot (T_{\text{sur}}^4 - T_{\text{sky}}^4) \quad (4.8)
\]

\[
\dot{Q}_{\text{rad}} = \varepsilon \cdot A \cdot F_{c-s} \cdot \sigma \cdot (T_{\text{sur}}^4 - T_{\text{sky}}^4) \quad (4.9)
\]

\[
T_{\text{sky}} = T_a \left[0.711 + 0.0056T_{dp} + 0.000073T_{dp}^2 + 0.013 \cos(15t) \right]^{1/4} \quad (4.10)
\]

where
- \(\dot{Q}_{\text{rad}} \) = Radiative heat loss (W), (Duffie and Beckman, 1991, 157-158)
- \(A \) = Collector Area (m²)
- \(t \) = Hour from midnight
- \(T_a \) = Temperature of ambient air (K)
- \(T_{dp} \) = Dew point temperature (°C)
- \(T_{\text{sur}} \) = Temperature of collector surface (K)
- \(T_{\text{sky}} \) = Temperature of sky (K), (Berdahl and Martin, 1984)
- \(\varepsilon \) = Emissivity
- \(\sigma \) = Stefan-Boltzmann constant (5.67 x 10⁻⁸ W/(m²·K⁴))
- \(F_{c-s} \) = Tilt Factor or Shape Factor from the collector to sky = \(\frac{1 + \cos \beta}{2} \) (Martin, 1989)
- \(\beta \) = Slope, the angle between the plane of the surface in question and the horizontal; \(0^\circ \leq \beta \leq 180^\circ \).
4.3 Analysis of Impact of Hybrid PV-T² System on the Case-Study House

This research used the F-CHART and PV F-CHART programs to analyze the thermal and electricity produced by the Hybrid PV-T² collector system to integrate the results into the simulation of the case-study house. For the analysis of the heat rejection, a regression model was generated from the heat rejection experiment that can be used to calculate the amount of heat rejected under Bangkok weather.

The F-CHART program (Klein and Beckman, 1985) was used to assess the thermal energy produced by the Hybrid PV-T² for the case-study house, which is located in Thailand. The test slope (FrUL) and test intercept (Frτα) parameters, which were used in the analysis were found from the experimental results described in Section 7.3. The input parameters and results of the solar collector analysis using F-CHART are presented in Chapter VII and Appendix F.

The PV F-CHART (Klein and Beckman, 2001) program was used to analyze the electricity produced by the Hybrid PV-T² for the case-study house. The PV panel efficiency and temperature coefficient were the two parameters that were also determined from the experimental results. The input parameter set and results of the photovoltaic system analysis using PV F-CHART are also presented in Chapter VII and Appendix F.

Finally, the regression models of the heat rejected by the PV panel are used to assess the potential heat rejection from the PV array on the case-study house under Bangkok weather data conditions.

4.4 Building Energy Simulation

4.4.1 Creating the Base Case DOE-2 Input File

A computer model of the case-study house was constructed using the DOE-2 program (LBNL, 1999, 2001). The input file, which describes the case-study house, consists of many components as shown in Figure 4.18. The building dimensions were obtained from the architectural drawings of the case-study house. The DrawBDL architectural rendering program, (Huang and Associates, 2000), was used to check the accuracy of the building’s geometry in the DOE-2 input file. A cardboard model was also used to study the case-study house’s interior spaces and their relationship (see Figure 4.19), which was especially helpful for determining
how to zone the house. A virtual model was also constructed using AutoCAD (a computer-aided design program) in order to help construct the case-study house model in the DOE-2 program. Figure 4.20 shows the virtual model built using AutoCAD. All coordinates of the walls, windows, and roofs were retrieved from the virtual model, and input into the DOE-2 program. After the initial DOE-2 input file was constructed and the first run was performed, the model was calibrated to compare the measured and simulated thermal conditions in the spaces and the energy use. Section 4.4.2 describe methods used to calibrate the model.

The simulation of the case-study house, which is located in the vicinity of Bangkok, Thailand, uses the Bangkok 2000 weather data. The Bangkok weather data was obtained from the Meteorological Department of Thailand. The weather data, which consisted of computer files in ASCII text format, were directly obtained on diskettes. Next, the weather data was reformatted so it could be processed by the DOE-2 program. To accomplish this, the Bangkok 2000 weather data was reformatted into the Test Reference Year (TRY) data format. Preparation and generation of the DOE-2 weather file is discussed in Appendix E.

4.4.2 Calibrated Simulated Model to the Case-Study House

For this study, two comparisons were used for the calibration:

1) Average monthly electricity use. This was a comparison between the actual monthly electricity used from the electricity bills and the monthly electricity use from the DOE-2 simulation.

2) Hourly zone temperatures. Measured temperatures in the unconditioned spaces and the air-conditioned spaces of the case-study house were compared with the simulated model’s zone temperatures.

Additional details about the calibration of the simulation are presented in Chapter VII. The statistical methods used to calibrate the model are also presented.
Figure 4.18 Diagram of the DOE-2 Input File for the Case-Study House.
Figure 4.19 Cardboard Model of the Case-Study House. The model could be disassembled to help see the relationships of the spaces on each floor, and the interior walls and floors between the first and second floor.
Figure 4.20 Virtual Model of the Case-Study House.
4.5 Economic Analysis

An economic analysis of the case-study house that compares the base-case building with the same building improved by the energy efficiency strategies and renewable energy technologies was performed using the annualized life-cycle cost analysis method that was described in ASHRAE (1999) and Haberl (1993). Details of equations used in the analysis are presented in Appendix G.

The primary input data for the economic analysis includes the owning costs, operating cost, and maintenance costs. Other elements that were established or defined to calculate annual owning costs, include: study period length, discount rate (id), inflation rate (j), mortgage rate (im), and periodic costs such as insurance, and property tax. The final results of the economic analysis, which were annualized life-cycle costs and monthly payments, were used to determine which energy efficiency strategies or renewable energy technologies were acceptable to consumers.

4.6 Summary of the Methodology

This chapter described the research methods that were used to develop a calibrated simulation of the case-study house, the experiments of a hybrid PV-T² collector system, the analysis of the impact of the hybrid PV-T² system on the case-study house, the thermal building simulation, and the economic analysis.

The analysis of the case-study house involved the selection of the case-study house, data collection, and instrument calibration. Selection of the case-study house had three criteria: 1) the preferred location was in the metropolitan Bangkok area or its vicinity, 2) the selected house represented a typical contemporary detached Thai house, and 3) the preferred number of occupants was three to four persons. The data collection of the case-study house included the building information, the building’s energy use, and climate data. The case-study house was surveyed and its monthly utility bills were obtained. Portable data loggers were installed in the case-study house to measure and record the temperature and humidity conditions in the case-study house. Weather data for the corresponding region were also obtained to facilitate the calibrated simulation.

The experimented measurements of the hybrid PV-T² collector system included the design of the experiments (day mode and night mode), design and construction of the experimental box, instrument calibration, and the development of test procedures and data
The hybrid PV-T² collector system was designed to measure the thermal and electricity performance during the daytime and to measure the heat rejected during the nighttime. The experiments were performed on the roof of Langford Architecture Building A at Texas A&M University. Instrument calibration was performed on the solar radiation sensor, temperature sensors (thermocouples), and flow meter prior to the initiation of the experiment.

The test procedures and data analysis of the thermal, electrical, and heat rejection performance of the hybrid PV-T² collector system were described. The test procedures and data analysis of the system’s thermal performance were developed based on standard methods. The test procedures and data analysis of the system’s electrical performance was developed based upon two standards. For the heat rejection experiment, a procedure was developed that would collect data over a range of temperatures to allow for an empirical validation of previously published equation.

For the analysis of the impact of the hybrid PV-T² collector system on the case-study house, the F-CHART and PV F-CHART programs were used to analyze the thermal and electricity energy produced by the hybrid PV-T² collector system that was then integrated onto the case-study house. For the analysis of the heat rejection, regression models were generated from the heat rejection experiments that can be used to calculate the amount of heat rejected under Bangkok weather conditions.

For the building thermal simulation, the DOE-2 program (LBNL, 1982) was used to analyze various building improvements. A Test Reference Year (TRY) of weather data for Bangkok, 2000, was generated using measured Bangkok weather data. The preparation and generation of the DOE-2 weather file is discussed in Appendix E.

The economic analysis of the case-study house that compares the base-case building with the same building improved by the energy efficiency strategies and renewable energy technologies was performed using the annualized life-cycle cost analysis method (ASHRAE, 1999; Haberl, 1993).
CHAPTER V

DATA ANALYSIS AND RESULTS OF THE CASE-STUDY HOUSE

This chapter discusses the case-study house, including the measured thermal conditions of the spaces in the house, and the building’s energy consumption compared to other Thai residential units. An analysis of the thermal conditions of the spaces compared to outdoor conditions is also presented.

5.1 The Case-Study House

A typical contemporary single-family detached Thai house was selected as the case-study house for this research. The case-study house met the three primary selection criteria, which are the location, building characteristics, and number of occupants, as discussed in Chapter IV, Section 4.4.1. The case-study house is located in a municipal area of Nonthabury province which is in the vicinity of metropolitan Bangkok. The house was visited and surveyed in May of 2000. The building’s exterior and interior spaces were photographed, and the building’s construction and materials were also inspected. Portable data loggers were installed in both the conditioned and unconditioned spaces as described in the research methodology in Chapter IV. This chapter presents the details of the case-study house including the building and occupant characteristics, the building’s air conditioning systems, drawings of the house and pictures of the interior and exterior spaces.

5.1.1 Building Characteristics and Occupants

The case-study house is a three bedroom, two-story building with a hipped roof (see Figure 5.1). The structure of the house is post and beam reinforced concrete. The first floor is reinforced concrete slab on ground. The second floor is reinforced concrete floor on concrete beams. The exterior and interior walls of the house are four-inch brick with painted cement plaster. All of the windows and exterior doors are wooden-framed, single-pane glass. The roof structure is steel frame which is covered with cement tiles. The roof is not insulated. However, the second floor ceilings are insulated with four-inch fiberglass wool coated with a reflective layer (see Figure 5.2). It can be seen in Figure 5.2 that the surface of the reflective layer was covered with dust, which diminishes the effectiveness of the reflective layer of the insulation.
The Case-Study House. The picture shows the southeast view of case-study house, which is situated on a corner lot. The street on the left is the main street of the neighborhood. The street on the right is a dead-end street, which serves only 2 houses. The back of the house is next to an undeveloped open-space area. Thus, the house has only one side (west side) that is shaded by an adjacent house. This picture also shows the only green vegetation around the house which is on the east side.

The occupants of the selected case-study house include three adults and a three-year old child. One of the adults is a college student who stays at the house only on weekends. Therefore, the house was assumed to be occupied by two adults and one child on the weekdays, with three adults and one child on the weekends. This compares well with the average Thai household size, which is 3.6 persons (NSO 2000).

The house faces south and is situated on a corner lot (as shown in Figure 5.1). The lot size is relatively large when compared to the neighboring houses. The extra land allows space for plants, which are located on the east side of the house (see Figures 5.1 and 5.3). These think mongo plants provide natural good shading on the living room and the master bedroom.
Figure 5.2 Inside the Attic. This picture shows the structure of the roof and the insulating material of the second floor ceiling. The roof’s steel frame is supported by concrete columns. 240 Volt branch circuit wiring is draped in the foreground. The vertical lines are the ceiling’s hangers. This picture was taken over the second floor bathroom’s ceiling facing north.

5.1.2 The Building’s Air Conditioning Systems

The case-study house is partially air conditioned with two packaged air conditioning systems: one in the master bedroom and the other in bedroom-2. Both air conditioning systems are mini-split systems that have air-handling units in the rooms and condensing units outside (see Figures 5.4 and 5.5). The master bedroom’s air conditioning system has a cooling capacity of 17400 Btu/hr (1.45 tons or 5.1 kW). Bedroom-2’s air conditioning system has a cooling capacity of 12,000 Btu/hr (1.0 tons or 3.5 kW).
Figure 5.3 Green Area of the House. This picture shows the lawn area of the house on the east side. The picture was taken under a pergola that provides shading for the dining room. The big tree is a mango plant that is covered with large opaque leaves. It also provides shading for the building including the master bedroom that is on the second floor.

Figure 5.4 Air-handling Unit of the Master Bedroom. Above the window on the right wall (west facing wall) is the air-handling unit of the air conditioning system of the master bedroom. The condensing unit is located outside on the right wall. The thermostat (not seen in the picture) is on the interior wall that separates between the master bedroom and the hallway.
Figure 5.5 Condensing Unit of Bedroom-2’s Air Conditioning System. This picture shows the north facing wall of the second floor, which are bedroom 2 (on the left) and bedroom 3 (on the right). On the left of the picture is the condensing unit of the mini-split air conditioning system that serves bedroom-2. This air conditioning system is normally operated only on weekends. Bedroom 3, which is on the lower right of the picture, is not air-conditioned. Hence, the windows are full open.

5.1.3 Building Drawings and Pictures

5.1.3.1 The Building’s Site Plan

The house is in a village that was developed in a suburban area of metropolitan Bangkok. However, the lot sizes of the houses in the village are quite small, due to the high cost of the land. The land area of the case-study house is about 1,940 sq.ft., while the building foot print is about 870 sq.ft. with a total area of 1,641 sq.ft. Thus, the ratio of the land to building area is about 1.2 : 1. The site plan of the case-study house is shown in Figure 5.6.
Figure 5.6 Site Plan. The house is facing almost directly south. It has only one side, which is on the west that is adjacent to a neighbor. The east side faces a dead-end street. On the north, it is next to an undeveloped open space.

5.1.3.2 Building Floor Plans and Pictures

Figure 5.7 shows the first floor plans of the case-study house. The interior spaces on the first floor are the living room, dining room, kitchen and bathroom. The garage is a semi-interior space, which has no external walls on the west and south sides, due to the presence of the driveway. There is also a courtyard on the northwest of the building. The function of the courtyard is for activities such as clothes drying. All of the spaces in the first floor are unair-
conditioned. Therefore, the thermal conditions of the first floor spaces rely on controlling the fenestration which consists of opening and closing the windows, doors and curtains to cool the space with natural ventilation.

Figure 5.8 shows the second floor plan of the case-study house. The spaces on the second floor are the master bedroom, bedroom-2, bedroom-3, a bathroom, the stairway and hall. The master bedroom and bedroom-2 are the only two spaces on the second floor (and also of the house) that are air-conditioned. These two spaces are conditioned by two separate thermostatically controlled air conditioning systems, which are only used in the nighttime. Bedroom-2 is not used on the weekdays, so the air conditioning system in this room is operated only on weekends. Bedroom-3 is used as a multipurpose room, for such activities as clothes ironing, and includes space for furniture storage, and bookshelves. The bathroom on the second floor is the only space in the house that has an electric water heater, since it is the only bathroom that the residents used for bathing or showering; the bathroom on the first floor is not used for bathing.

Figure 5.9 shows the courtyard on the northwest of the building. The courtyard is used primarily for clothes drying as seen in the picture. The courtyard is adjacent to the neighboring building on the west side (left side of the photo). In the courtyard, there is a 1,600 liter water storage tank with a water pump located next to the building (see Figure 5.10). This tank serves as a main water storage for the house’s water supply needs. The water pump is necessary because of the low water pressure from the municipal water supply system.

The living-dining room is shown in Figure 5.11. This space is not air-conditioned, so natural ventilation is maximized by the opening of windows and doors. Figure 5.12 is a view looking from the dining area to the kitchen. A 14-cu.ft. three-door refrigerator is on the left of the picture. The size of the refrigerator is large compared to that of a typical Thai household. More than 70 percent of refrigerator sales in Thailand are one-door manual-defrost models. Approximately 15 percent are two-door automatic defrost models (EPPO, 2001). Large residential refrigerators, such as the one in this household, therefore represent less than 15 percent of the total residential sales in Thailand (EPPO, 2001).
Figure 5.7 First Floor Plan.
Figure 5.8 Second Floor Plan.
Figure 5.13 shows bedroom-3, which is an unconditioned space located on the second floor. This space is not used as a bedroom, but rather it serves as a multipurpose space as seen in the picture. On the right side of Figure 5.13, a second refrigerator is located in the hallway. This refrigerator is used to refrigerate drinking water, medicine, and milk for a baby. Having more than one refrigerator is not typical for Thai households, therefore the energy used for refrigeration in this house is higher than an average household.

Figure 5.9 Courtyard on the Northwest. This exterior space is primarily used for clothes drying as shown in the picture. On the right of the picture is a 1,600 liter (423 gallon) portable water tank. See Figure 5.10 for more details.
Figure 5.10 Water Storage Tank. This tank contains potable water from the municipal domestic water supply.

Figure 5.11 Living-Dining Room. The living-dining room area is an unconditioned space.
Figure 5.12 Kitchen. The kitchen is next to the dining area

Figure 5.13 Bedroom-3: An Unconditioned Space on the Second Floor. The left side of the picture is the view from the hallway looking toward the exterior. The right part of the figure is the view from inside the room toward the hallway of the second floor. Bedroom 3 is actually used as a multipurpose room, (i.e., clothes ironing and storage of books and furniture).
5.2 Analysis of the Measured Data and Thermal Comfort

As mentioned earlier in Section 5.1.2, the case-study house was partially air-conditioned, so it had conditioned spaces and unconditioned spaces. Thus, measurements of thermal conditions in the case-study house were performed in both types of spaces for the purpose of comparing the measured temperatures with simulated temperatures. To accomplish this, portable data loggers (Onset Computer Corporation, 2000) were installed in the case-study house from June to December 2000. The placement of the data loggers was described in Chapter IV. Time-series plots of the seven months of measured data for all spaces are included in Appendix A. This section presents results of the analysis of the measured data: temperatures and humidity.

5.2.1 Measured Temperatures in Spaces of the Case-Study House

Figure 5.14 shows the distribution of the indoor dry bulb temperatures (i.e., living room, master bedroom, bedroom-3, and attic) compared to the coincident outdoor ambient temperatures. To accomplish this Bangkok weather data for the year 2000 was obtained from the Department of Meteorology, Thailand.

As mentioned previously, the living room, bedroom-3 and attic are all unconditioned spaces. However, these spaces are on different floor and orientations of the building. Therefore, they show slightly temperature distributions. The living room is on the first floor and has exterior walls in almost every direction (i.e., south, east and west). Bedroom-3 is on the second floor and has only two exterior walls; west and north walls. However, bedroom-3 is also under the attic.

From Figure 5.14, the outdoor temperatures cover a wider range than those of the indoor spaces except the attic. The range of outdoor temperatures (highest temperature – lowest temperature) is 32 °F; while the indoor temperatures of the unconditioned living space are in narrower ranges (17 °F and 21.5 °F for living room and bedroom-3, respectively). The outdoor temperatures, however, have only slightly dominant temperatures in the 79-82 °F range, while the indoor temperatures of the living room and bedroom-3 have dominant temperatures in different ranges. The measured temperatures that occurred most often in the living room and bedroom-3 were 83-86 °F and 85-88 °F respectively, indicating that bedroom-3, which was on the second floor, was hotter than the living room. However, the frequency of the 85-86 °F
dominant temperature of the living room was larger than that of bedroom-3. For the attic, temperature conditions varied over a much wider range than those outdoors, especially at higher temperatures. The attic temperatures reached the maximum temperature range of 115-116 °F, while the highest outdoor temperatures are in the range of 95-96 °F.

For the conditioned space, the master bedroom had a range of temperatures very close to those of bedroom-3 which is also on the second floor. However, the most frequent temperatures in the master bedroom are in the range of 79 to 82 °F, which is lower than those of bedroom-3 (85-88 °F). This difference is certainly because of the operation of the master bedroom’s air conditioning system during the evening. The most frequent temperature range of the master bedroom accounted for approximately one half of the total hours of the measured data (2600 hours of temperatures in the range of 79 to 82 °F to the total of 5136 hours). This confirms that the master bedroom’s air conditioning system was operated about 12 hours per day as scheduled. In general, the indoor temperatures (except in the attic) have less variability than the outdoor temperatures.

The 24-hour daily temperature profiles of the indoor spaces in the case-study house are shown in Figure 5.15. The daily temperature profiles of the living room and bedroom-3 show similar 24-hour profiles (i.e., the temperature swings). In both spaces, the temperatures reach the lowest point in the morning about 7:00 to 8:00 a.m., and reach the highest point in the afternoon (at about 3:00 p.m. for the living room and about 4:00 p.m. for bedroom-3). The difference in the range of hourly temperatures of both spaces seems to suggest the influence of the ground temperature. The location of the space also plays a crucial role in the temperatures profiles.

In reference to the ASHRAE Comfort Zone, the mean temperatures of the living room and bedroom-3 rarely dropped into the upper limit of the comfort zone. Whereas, in the master bedroom the mean temperatures approached the upper limit soon after the A/C was switched on and remained there until the A/C was switched-off. Interesting, the ambient temperatures reached the upper limit of the ASHRAE comfort zone about the same time as the master bedroom.

The daily temperature profile of the attic shows an obvious difference between temperature conditions in the daytime versus the nighttime. The attic’s mean temperature reaches its lowest point of about 78 °F in the morning (about 7:00 a.m.), and rises rapidly to the reach highest point of about 102 °F at about 1:00 to 2:00 p.m. The temperature declines after
2:00 p.m., but is still relatively high in the afternoon and the evening compared to the outdoor mean temperatures. The mean temperatures of the attic from 3:00 p.m. to 6:00 p.m. were between 90 °F to 100 °F, while the outdoor mean temperature in the same period were between about 82°F to 88 °F. After 6:00 p.m. the attic’s temperatures were still higher than the outdoor
temperatures. In the early morning hours between 1:00 to 8:00 a.m. the mean attic temperatures are virtually identical to the ambient temperatures, which show the influence of the attic ventilation and night-sky radiation. The peak of the attic’s temperature profile in the daytime (at 2:00 p.m.) shows that solar radiation plays a very significant role in the temperature of the attic. The relatively high temperatures of the attic after sunset show the impact of the high thermal mass roof and attic walls, which are the main components of the roof.

The daily temperature profile of the master bedroom is the only profile of an air-conditioned space (Figure 5.15). According to the air conditioning operating schedule obtained from the residents, the air conditioning system of the master bedroom was operated only during nighttime (from 7:00 p.m. to 7:00 a.m.). The set-point temperature of the thermostat was 26 °C (78.8 °F). In Figure 5.15 the profile shows a relatively flat profile during the air-conditioned period. The measure data show that it takes, on average, about two hours to lower the bedroom temperature to the thermostat set-point. The mean temperature once the room temperature is pulled-down is about 81°F, which is slightly higher than the thermostat set-point. This may be caused by the placement of the data logger. The data logger was placed on an interior wall that was partitioned between the master bedroom and the hall, which is an unconditioned space on the second floor. There were no data loggers placed in the hall. However, the hall is adjacent to bedroom-3, which is also not air-conditioned. Therefore, simulated temperatures in the hall, during the master bedroom’s conditioned period, were assumed to be a little higher than the temperatures in bedroom-3, since there is a refrigerator in the hall. The mean temperatures of bedroom-3 varied from approximately 84 °F to 87 °F during the period that the master bedroom was conditioned (from 7:00 p.m. to 7:00 a.m.). Thus, there were temperature differences of about 5 to 9 °F between the conditioned and unconditioned spaces. This was believed to be the reason for the consistently higher logger readings.
Figure 5.15 Daily Temperature Profiles in the Case-Study House (June – December 2000).
5.2.2 Measured Humidity in Spaces of the Case-Study House

Figure 5.16 shows the variability of the relative humidity of the indoor spaces (i.e., living room, master bedroom, and bedroom-3) compared to outdoor relative humidity levels. The outdoor relative humidity is from Bangkok weather data for 2000 obtained from the

Figure 5.16 Histograms of Measured Relative Humidity Conditions in the Case-Study House’s Spaces (June – December 2000).
Department of Meteorology, Thailand. In general, the range of relative humidity in the indoor spaces is narrower than the outdoor relative humidity. The outdoor relative humidity is in a broader range, and it has over 1,100 hours at extreme humid conditions above 95-96 % RH. The missing data above 95-96 % RH were trimmed by the Department of Meteorology. As seen from Figure 5.16, for all space, there are significant differences between the indoor and outdoor relative humidity. However, there are fewer differences when one compares their humidity levels as specific humidity.

Specific humidity is the ratio of the mass of water vapor to the total mass of the moist air (ASHRAE, 2001, p. 6.12). Figure 5.17 shows the variability of the specific humidity of the indoor spaces compared to outdoor specific humidity levels. From Figure 5.17, for specific humidity of the unconditioned spaces (i.e. living room and bedroom-3) is relatively close to the outdoor specific humidity. It could be noted that the specific humidity of living room, which is on the ground floor, is very similar to that of the outdoor. However, the specific humidity of the master bedroom, which is a conditioned space in the nighttime, is significantly different from the outdoor specific humidity. There are less hours of high specific humidity (0.018 to 0.022) of the indoor than the outdoor specific humidity. Indoor specific humidity is mostly in the lower range, which is significantly different from the outdoor. Thus, it means that most of the time, in the living room and bedroom-3 the indoor air has slightly less moisture vapor (or relative dryer) than the outdoor air. In the master bedroom this trend is more pronounced. This is because of the operation of the air conditioning system. From Figure 5.17, it can be concluded that the A/C system in the master bedroom dehumidifies the bedroom when operating, and this dry air then spills into the other spaces and partially dehumidifies the remaining rooms.

The measured indoor relative humidity, together with the measured indoor temperatures, were used to study the thermal comfort conditions of the indoor spaces. The next section presents the results of an analysis of the thermal comfort conditions in the indoor and outdoor spaces compared to ASHRAE’s thermal comfort standard.
Figure 5.17 Histograms of Measured Specific Humidity Conditions in the Case-Study House (June – December 2000).

5.2.3 Psychrometric Plots of Measured Indoor Conditions of Spaces in the Case-Study House

Figure 5.18 shows the thermal conditions of the living room, bedroom-3, master bedroom, and the outdoors plotted on the ASHRAE psychrometric chart with the comfort zones super-imposed on the chart. As mentioned previously, the living room and bedroom-3 were
unconditioned spaces, therefore the thermal conditions in these two spaces are mostly outside ASHRAE’s comfort zone. According to ASHRAE’s thermal comfort standard, the occupants in the living room and bedroom-3 should not be thermally comfortable. However, it is clear that the house’s occupants experienced some degree of satisfaction in these unconditioned spaces. This is probably due to the Thailand lifestyle that has allowed Thais to be accustomed to living in hot and humid conditions. The traditional Thai lifestyle includes wearing light clothes, use of natural ventilation (i.e., windows), and the use of electric fans.

In Figure 5.18 the master bedroom’s psychrometric plot shows data for both conditioned and unconditioned periods. The plot shows that there were more conditions occurring close to ASHRAE’s summer comfort zone compared to the plot of bedroom-3, which is an unconditioned space on the second floor. The clustered data along the upper rim of ASHRAE’s summer comfort zone were the conditions when the air conditioning system was operated. This shows that even when the room was air-conditioned, according to the standard, the conditions were barely comfortable. However, thermal comfort for Thais is different from ASHRAE’s as discussed in the literature review. Specifically, the range of Thai resident’s thermal comfort is broader than ASHRAE’s and exceeds the ASHRAE’s summer comfort zone outward by at least 4 °C (7.2 °F). There is also a consideration that the occupants willingly set the thermostat set-point at 26 °C (78.8 °F), this would be the temperature that they preferred or feel comfortable with during sleeping. Therefore, through interviews it was found that thermal conditions in the master bedroom, when the air conditioning system is operated, are considered as comfortable conditions for the case-study house’s occupants.
Figure 5.18 Measured Thermal Conditions at the Case-Study House (June – December 2000).

5.3 Building Energy Use

This section discusses the case-study house’s electricity consumption during seven months of monitoring thermal conditions in the spaces from June to December 2000. This section also discusses electricity consumption of Thai residences by building type in order to compare them to the case-study house’s electricity consumption.
5.3.1 Electricity Consumption in the Thai Residential Buildings

In 2000, Thailand’s total electricity consumption was 87,597 GWh, which was consumed by four sectors: industrial, commercial, residential, agricultural, and other (EPPO, 2003). Figure 5.19 shows the electricity consumption of these sectors in a pie chart. From the chart, Thai residences consumed about 22 percent of the total electricity consumption of the country. Of this 22 percent, electricity was consumed by three residential building types (see Table 5.1).

Table 5.1 presents the residential electricity consumption and percentage of each building type to the total residential electricity use in 2000. The residential electricity was consumed by three housing types: 1) detached houses, 2) rowhouse/town houses, and 3) apartment/condominiums. Table 5.1 shows that about one half (49 percent) of residential energy use was consumed by detached houses, while rowhouse/townhouses and
apartment/condominiums consumed 40 and 11 percent of the total residential energy use, respectively.

TABLE 5.1

2000 Thai Residential Electricity Consumption by Building Type
(MEA, 2000; EPPO, 2003)

<table>
<thead>
<tr>
<th>Housing Type</th>
<th>MEA†</th>
<th>PEA††</th>
<th>Total (MEA+PEA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GWh</td>
<td>%</td>
<td>GWh</td>
</tr>
<tr>
<td>Detached House</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Detached House*</td>
<td>187</td>
<td>3</td>
<td>2,067</td>
</tr>
<tr>
<td>Large Detached House**</td>
<td>2,660</td>
<td>39</td>
<td>4,577</td>
</tr>
<tr>
<td>Rowhouse/Townhouse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,071</td>
<td>30</td>
<td>5,625</td>
</tr>
<tr>
<td>Apartment/Condominium</td>
<td>1,964</td>
<td>29</td>
<td>242</td>
</tr>
<tr>
<td>Total (Actual Data)</td>
<td>6,882</td>
<td>100</td>
<td>12,511</td>
</tr>
</tbody>
</table>

† Electricity sales from Metropolitan Electricity Authority of Thailand (MEA, 2000).
†† Electricity sales from Provincial Electricity Authority of Thailand (EPPO, 2003).
* Monthly electricity consumption is less than 150 kWh.
** Monthly electricity consumption is more than 150 kWh.
ε Electricity consumption is estimated from the percentage of residential energy consumption for each housing type in 1998 (EGAT, 1998).

As mentioned earlier in this chapter, the case-study house is located in the vicinity of Bangkok. Therefore, comparing its electricity use with residential buildings that are in the Bangkok Metropolitan area is more appropriate than comparing it to residential buildings in the provincial area. Annual and monthly electricity use per household in the Bangkok Metropolitan area is presented in Table 5.2. Annual energy consumption per household was calculated by dividing the annual energy use of each housing type by the number of houses in each housing
type. The case-study house was considered as a large detached house, since its monthly energy use was more than 150 kWh (MEA, 2000). Comparison of the case-study house’s energy use with the energy use of large detached houses was therefore considered the most appropriate. However, there were no statistics about the number of small and large detached houses. Thus, only annual and monthly energy consumption of the detached houses, which combined small and large detached houses, were used to compare with the case-study house’s energy use.

TABLE 5.2

<table>
<thead>
<tr>
<th>Housing Type</th>
<th>Number of Households*</th>
<th>Energy Consumption</th>
<th>Energy Consump. per Household</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Household</td>
<td>%</td>
<td>GWh</td>
</tr>
<tr>
<td>Detached House</td>
<td>898,055</td>
<td>50.8</td>
<td>2847</td>
</tr>
<tr>
<td>Small Detached House**</td>
<td>N/A</td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>Large Detached House***</td>
<td>N/A</td>
<td></td>
<td>2660</td>
</tr>
<tr>
<td>Rowhouse/Townhouse</td>
<td>645,256</td>
<td>36.5</td>
<td>2071</td>
</tr>
<tr>
<td>Apartment/Condominium</td>
<td>224,514</td>
<td>12.7</td>
<td>1964</td>
</tr>
<tr>
<td>Total</td>
<td>1,767,825</td>
<td>100</td>
<td>6882</td>
</tr>
</tbody>
</table>

* NSO 2000
** Electricity consumption less than 150 kWh/month
*** Electricity consumption more than 150 kWh/month

From Table 5.2, the average annual and monthly electricity consumption per household for detached houses and rowhouse/townhouse was about the same. Interestingly, the annual and monthly electricity consumption per household for apartment/condominium category was about 2.7 times higher than that of the detached house and rowhouse/townhouse category. The reason for this is unknown since there no reports or studies of Thai residential building’s energy use per household by building type could be located. Regardless, since only the energy use per household for detached houses is needed to compare with the case-study house’s energy use, no
further review was performed. The next section presents the case-study house’s electricity consumption compared to the average electricity use per household in the Bangkok Metropolitan area.

5.3.2 Monthly Energy Use of the Case-Study House

Utility bills for the case-study house were obtained from the residents. Seven months of electricity use, from June to December 2000, are presented in Table 5.3. In the table, the monthly average daily electricity use was calculated by dividing each month’s electricity use by the actual number of days in the billing cycle. The resultant monthly average daily electricity use was then used to calibrate the case-study house base-case simulation model, which is presented in Chapter VII.

TABLE 5.3

Actual Electricity Consumption of the Case-Study House from June to December 2000

<table>
<thead>
<tr>
<th>Month</th>
<th>From</th>
<th>To</th>
<th>Number of Days</th>
<th>Electricity Use (kWh)</th>
<th>Avg Elec. Use (kWh/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>29-May-00</td>
<td>28-Jun-00</td>
<td>30</td>
<td>450</td>
<td>15.00</td>
</tr>
<tr>
<td>July</td>
<td>28-Jun-00</td>
<td>28-Jul-00</td>
<td>30</td>
<td>414</td>
<td>13.80</td>
</tr>
<tr>
<td>August</td>
<td>28-Jul-00</td>
<td>29-Aug-00</td>
<td>32</td>
<td>454</td>
<td>14.19</td>
</tr>
<tr>
<td>September</td>
<td>29-Aug-00</td>
<td>28-Sep-00</td>
<td>30</td>
<td>334</td>
<td>11.13</td>
</tr>
<tr>
<td>October</td>
<td>28-Sep-00</td>
<td>28-Oct-00</td>
<td>30</td>
<td>451</td>
<td>15.03</td>
</tr>
<tr>
<td>November</td>
<td>28-Oct-00</td>
<td>28-Nov-00</td>
<td>31</td>
<td>382</td>
<td>12.32</td>
</tr>
<tr>
<td>December</td>
<td>28-Nov-00</td>
<td>28-Dec-00</td>
<td>30</td>
<td>405</td>
<td>13.50</td>
</tr>
<tr>
<td>June to Dec.</td>
<td>29-May-00</td>
<td>28-Dec-00</td>
<td>213</td>
<td>2890</td>
<td>13.57</td>
</tr>
</tbody>
</table>

For the period from June to December 2000, the average electricity use was 413 kWh per month, which is approximately 56 percent more than the average electricity use per month of a detached house (264 kWh per month). Thus, this research does not assume that the case-study represents all detached houses, in regards to the electricity use, in the Bangkok Metropolitan area.
Metropolitan area.

One of the reasons for the above average electricity use in the case-study house is that the number of appliances in the case-study house were more than an average household contained. For example, the case-study house had two refrigerators, while there were only 0.85 refrigerators per household in the municipal area (NSO, 2000). In addition, the case-study house had two air conditioning systems, while there were 0.25 air conditioning units per household in the municipal area (NSO, 2000). Energy use by the water heater is also significant. Table 5.4 presents the estimation of electricity use by the water heater of the case-study house. The residents used the hot water only for showering.

TABLE 5.4

Estimated Electricity Consumption by a Water Heater of the Case-Study House

<table>
<thead>
<tr>
<th>Month</th>
<th>Water Temp.* (°F)</th>
<th>Water Temp. for Showering** (°F)</th>
<th>Temp. Difference (°F)</th>
<th>Hot Water Use*** (lbs/day)</th>
<th>Energy Use for DHW Use per Day (Btus)</th>
<th>Days in the billing cycle (days)</th>
<th>Vacation Living Days (days)</th>
<th>Actual Living Days (days)</th>
<th>Estimated Energy Use for DHW Use per Month (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>82.4</td>
<td>110</td>
<td>27.6</td>
<td>625.5</td>
<td>1726.3</td>
<td>5.06</td>
<td>30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>July</td>
<td>82.8</td>
<td>110</td>
<td>27.2</td>
<td>625.5</td>
<td>1703.8</td>
<td>4.99</td>
<td>30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>August</td>
<td>82.8</td>
<td>110</td>
<td>27.2</td>
<td>625.5</td>
<td>1703.8</td>
<td>4.99</td>
<td>32</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>September</td>
<td>81.5</td>
<td>110</td>
<td>28.5</td>
<td>625.5</td>
<td>1782.6</td>
<td>5.22</td>
<td>30</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>October</td>
<td>81.7</td>
<td>110</td>
<td>28.3</td>
<td>625.5</td>
<td>1771.4</td>
<td>5.19</td>
<td>30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>November</td>
<td>79.7</td>
<td>110</td>
<td>30.3</td>
<td>625.5</td>
<td>1895.2</td>
<td>5.55</td>
<td>31</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>December</td>
<td>81.0</td>
<td>110</td>
<td>29.0</td>
<td>625.5</td>
<td>1816.4</td>
<td>5.32</td>
<td>30</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

* Estimated monthly water temperature by using monthly average ambient temperatures from weather data (Kusuda, 1965)
** Water Temperature for showering assumed from Stein and Reynolds (1992)
*** Calculated from the case-study house's owner information: 40 mins of DHW per day (estimated flow rate of 2 GPM)

According to the calculated hot water electricity use in Table 5.4, during the seven-month period, the energy used by water heater was accounted for 37.6 percent of the total energy consumption per month. The estimated monthly energy use by the water heater was used to calibrate the hot water energy use of the base-case model in the building simulation in Chapter VII.
The refrigerators monthly energy use was calculated from the rated annual electricity energy use (MOST, 1998). Table 5.5 presents rated annual electricity energy use and average hourly and daily energy use of the refrigerators. The estimated monthly refrigerator energy use is presented in Table 5.6. From Table 5.6, the average seven-month energy use for the refrigerators was calculated to be 22 percent of the whole-house energy use.

The energy consumption of the case-study house’s air conditioning systems was calculated using the DOE-2 building simulation program. Chapter VII presents results of the simulated energy analysis using a calibrated model, which includes energy use by the air conditioning systems, the water heater, lighting, and equipment.

From the results of the estimated energy use by the water heater and the refrigerators in the case-study house, the monthly electricity energy use of both the water heater and the refrigerators as well as the total monthly electricity use were plotted in Figure 5.20. In the figure, it can be seen that energy use by the water heater and the refrigerators was approximately 60 percent of the total monthly energy use. Thus, reducing the energy use of the water heating and refrigerators offers a significant opportunity for the case-study residence.

TABLE 5.5

<table>
<thead>
<tr>
<th>Refrigerator Size (ft³)</th>
<th>Rated Annual Energy Use (kWh)</th>
<th>Avg. Hourly Energy Use (kWh)</th>
<th>Avg. Daily Energy Use (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 *</td>
<td>14</td>
<td>657</td>
<td>0.075</td>
</tr>
<tr>
<td>2**</td>
<td>6.5</td>
<td>427</td>
<td>0.049</td>
</tr>
<tr>
<td>Total</td>
<td>20.5</td>
<td>1084</td>
<td>0.124</td>
</tr>
</tbody>
</table>

* Refrigerator in the kitchen, 5 year-old with high standard rating
** Refrigerator on the second floor, 14 year-old with low standard rating
TABLE 5.6
Estimated Monthly Electricity Consumption by Refrigerators in the Case-Study House

<table>
<thead>
<tr>
<th>Month</th>
<th>Days in the Billing Cycle</th>
<th>Whole-house Monthly Electricity Use (kWh)</th>
<th></th>
<th>Energy Use for Refrigerators per Month</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(kWh) (%)</td>
<td></td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>30</td>
<td>450 89.1</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>30</td>
<td>414 89.1</td>
<td>21.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>32</td>
<td>454 95.0</td>
<td>20.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>30</td>
<td>334 89.1</td>
<td>26.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>30</td>
<td>451 89.1</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>31</td>
<td>382 92.1</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>30</td>
<td>405 89.1</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>413 90.4</td>
<td>22.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.20 The Case-Study House Monthly Energy Use. The total monthly electricity use is shown plotted with the estimated energy uses of the water heater and the refrigerators.
5.5 Summary

This chapter has discussed the case-study house, including the measured thermal conditions of the spaces in the house, and the building’s energy consumption compared to other similar Thai residences units. The thermal conditions in the house were found to be outside the ASHRAE comfort zone. Energy consumption of the case-study house was found to be above the average energy consumption of detached Thai houses. The averaged DHW and refrigerator energy use were accounted for 37.6 and 22.1 percent of the total energy consumption per month, respectively. Thus, both DHW and refrigerator energy use were account for approximately 60 percent of the total energy consumption per month. Therefore, this is a good opportunity to reduce energy use of the DHW and refrigerator.
CHAPTER VI
DATA ANALYSIS AND RESULTS OF EXPERIMENTS WITH THE HYBRID
PHOTOVOLTAIC-THERMAL COLLECTOR AND THE NIGHT SKY
COOLING SYSTEM

This chapter presents the measured data, data analyses and the results of experiments with the triple effect photovoltaic-thermal collector/rejecter experiments. This chapter is divided into three sections: 1) thermal performance, 2) electrical performance, and 3) night sky cooling performance.

6.1 Experimental Case 1: Thermal Performance of the PV-T2 System

The experiments with the thermal performance of the PV-T2 system utilized the day mode experiment, which included experiments with the electricity production of the system. The day mode experiments were performed over a number of days, with eight clear days of day mode experiments selected for inclusion in the analysis of the thermal performance of the system. A single day of measured data and the results of the thermal collection analysis are presented in Figure 6.1, in Section 6.1.1. The remainder of the measured data and the results of all the experiments are presented in Appendix B. Selected data points, which were used to characterize the thermal performance of the PV-T2 system, are presented in Table 6.1.

6.1.1 Results from the Thermal Solar Collector System

Figure 6.1 presents the measured data and the results of the analysis of the experiments with the thermal performance of the hybrid PV-T2 system conducted on December 20, 2002. In Figure 6.1, graphs (a), (b), and (c) show the measured data from the experimental box. Graphs (d) shows the measurements of weather data which was collected from a nearby building with a weather station (i.e., the Zachary building). Graphs (e) and (f) show the gross collected thermal energy and the collected solar thermal energy by using two different calculation methods. Each graph is discussed in the following Section.
Figure 6.1 Thermal Energy Collection of the Hybrid PV-T² System: Measured Data and Results of the Experiment Conducted on December 20, 2002.
Graph (a) shows the total solar radiation measured in the collector plane, which was tilted at a 30 degree angle toward to south. On December 20, 2002, the sun rose at approximately 7:30 a.m. However, the collector was blocked from direct solar radiation by the penthouse walls on the roof of the Architecture Building A, where the experimental box was located. The collector was shaded from the sun’s rays until approximately 8 a.m. However, the system was switched to the anti-freezing mode the night before the experiment due to the cold weather, so the collector and the radiation sensor were both covered (see Appendix B.5 for the details of the anti-freezing mode). This can be seen by the straight line on the plotted data in graph (a); solar radiation fell onto the collector when it was uncovered at 9:30 a.m. Since only a few points near to the solar noon hour were used for the analysis the missing data in the morning hours did not affect the collector’s performance parameters.

As mentioned above, the system was operated in the anti-freezing mode the night before the experiment, although the ambient temperatures did not reach the freezing point, as seen in graph (d). This system switch was a necessary precaution to prevent the possible freezing of water in the collector and the pipes, especially the exterior ones. Placing the system in the anti-freezing mode caused the PV’s temperatures to move up and down as shown in graphs (b) and (c). This was due to the operation of the water heater, which was turned on and off by its thermostat. The thermostat was set at a medium set-point temperature (i.e., warm water: 100 °F). This temperature was sufficient to prevent freezing. The system was switched from the anti-freezing mode to the day mode experiment at 9:30 a.m., as seen by the drop in the PV temperature and inlet and outlet temperatures shown in graphs (b) and (c). Graph (b) also shows the hot tank temperature, which remained constant at approximately 67 °F, prior to the previous day mode experiment. This was due to the cold weather. Thus, the radiator was not used to cool the hot tank water since the water temperature was already low, which was appropriate for the day mode experiment.

The temperature of the PV increased from 74 °F in the morning to a peak of approximately 95 °F in the afternoon (from 2:00 p.m. to 3:00 p.m.), while the peak solar radiation (about 950 W/m² in the collector plane) occurred from noon to 1:00 p.m. The highest ambient temperature (68 °F) of the day occurred at 4:00 pm. The ambient temperature reached its lowest point (42 °F) at approximately 8:00 a.m. The PV panel temperature decreased after 3:00 p.m. and reached the lowest point (85 °F) at 5:00 p.m. when the experiment was concluded. Hot tank water temperatures increased from the constant temperature (67 °F) at the beginning of the experiment to the highest temperature (91 °F) at the end of the experiment.
then slowly declined when the sun had set. This yielded a temperature difference of 24 °F.

Graphs (e) and (f) in Figure 6.1 show the results of the analysis of the thermal energy collection of the PV-T² system. The gross thermal energy collection was determined by calculating the heat gain rate (in 15 minute increments) of the water in the hot tank. These calculated 15 minute heat gains represent the cumulative gross thermal energy gain. The cumulative gross thermal energy collection is calculated by Equation 6.1.

\[
Q_{th,g} = \sum_{j=1}^{n} m \cdot c_p \cdot (t_{h,j+15} - t_{h,j})
\]

(6.1)

where

- \(Q_{th,g} \) = Gross cumulative thermal energy output from the hybrid PV-T² collector system and the water circulating pump, Btu
- \(m \) = Mass flow rate of the transfer fluid (water), lb/15-min
- \(c_p \) = Specific heat of the transfer fluid (water), Btu/(lb °F)
- \(t_{h,j} \) = Temperature of water in the hot tank at the \(j \)th time interval, °F
- \(t_{h,j+15} \) = Temperature of water in the hot tank at the \(j \)th + 15 mins time interval, °F

The results of the heat gain rate and gross thermal energy collections are shown in graphs (e) and (f). Both graphs show the same results of the thermal energy collection for the same period, which allows for a comparison by two different methods: 1) the calculation of water temperature gain in the hot tank, and 2) the integration of water temperature differences in inlet and outlet temperatures. The first method involves heat gain from the pump, while the second method does not.

The cumulative collected solar heat gain rate (method 1), was calculated from the water temperature changes in the hot tank (Equation 6.2), and excludes the heat of the pump.

\[
\dot{Q}_{th,sol-Tank} = \dot{m} \cdot c_p \cdot (t_{h,j+15} - t_{h,j}) - \dot{Q}_p
\]

(6.2)

Where
\[\dot{Q}_{th,sol-Tank} = \text{Cumulative collected solar energy rate that is calculated by the change of hot tank water temperature and energy gain from the pump, Btu} \]

\[\dot{m} = \text{Mass flow rate of the transfer fluid, lb/15 min} \]

\[c_p = \text{Specific heat of the transfer fluid (water), Btu/(lb \cdot ^\circ F)} \]

\[t_{h,j+15} = \text{Temperature of water in the hot tank at the } j^{th} + 15 \text{ mins time interval, } ^\circ F \]

\[t_{h,j} = \text{Temperature of water in the hot tank at the } j^{th} \text{ min time interval, } ^\circ F \]

\[\dot{Q}_p = \text{Heat gain rate from the pump (see Appendix B.7)} \]

Graph (e) shows the results of the collected solar energy calculation using method 1 and compares it to the total heat gain (gross collected energy). The results show that the daily collected solar energy (the maximum collected solar energy before the system began losing heat) was approximately 75 percent of the gross collected energy. The peak of the collected solar energy and gross collected energy occurred at approximately 5:00 p.m. After 5:00 p.m. the system began losing heat as the sun was setting. At this time the gross collected energy and the collected solar energy decreased, as seen in graph (e).

The collected solar heat gain rate (method 2), which is calculated from the inlet and outlet water temperatures, is calculated by Equation 6.3.

\[\dot{Q}_{th,sol-ie} = \dot{m} \cdot c_p \cdot (t_{f,e} - t_{f,i}) \quad (6.3) \]

where

\[\dot{Q}_{th,sol-ie} = \text{Collected solar energy rate that is calculated by inlet and outlet temperatures, Btu/15-min} \]

\[\dot{m} = \text{Mass flow rate, lb/15-min} \]

\[c_p = \text{Specific heat of the transfer fluid (water), J/(kg \cdot ^\circ C) [Btu/(lb \cdot ^\circ F)]} \]

\[t_{f,e} = \text{Temperature of outlet water, } ^\circ C \quad (^\circ F) \]

\[t_{f,i} = \text{Temperature of inlet water, } ^\circ C \quad (^\circ F) \]
Graph (f) shows the results of the collected solar energy calculation using method 2 and compares it to the total heat gain (gross collected energy). The results show that the daily collected solar energy (i.e., the maximum collected solar energy before the system began losing heat) was approximately 25 percent of the gross collected energy. The peak solar energy collection rate occurred at approximately 3:00 p.m., while the total gross collected energy occurred when the system was shut off at 5:00 p.m.

The comparison of the two calculation methods shows a difference between the heat gain rates which is caused from the heat gain rate from the pump. From the null test of the pump’s heat gain rate, it was found that the pump contributed heat to the system in the range of 3 to 24 Btu/15 min (see Appendix B). The high rates occurred when the water temperature in the system was relatively cool (when the experiment had just begun), while the low rates occurred when the water temperature in the system was relatively hot. In the analysis, the averaged pump heat gain (6 Btu/15-min) of the system was used in the solar heat gain rate calculation (method 1).

Measured data from the eight day mode experiment days were selected to be analyzed for the thermal performance of the hybrid PV-T² collector. The measured data and the results of all the experiment days are presented in Appendix B. Table 6.1 shows the measured data and the results of the four data points of the eight experiment days that were used to analyze the thermal performance of the hybrid PV-T² collector in the next section.
6.1.2 Thermal Performance of the Hybrid PV-T² System

This section presents the experimental results of the thermal performance of the PV-T² collector. The thermal efficiency of the PV-T² collector was determined using a Hottel-Whiller-Newton Plot, displayed in Figure 6.2.

The measured data and results from the eight experimental days are shown in Figure 6.2. The measured data (\((t_{f,j}-t_a)/t_f\)) is plotted on the X-axis, and the experimental results of the thermal efficiency of the collector are plotted on the Y-axis. Most of the plotted data (\((t_{f,j}-t_a)/t_f\)) are positive except for the results of the experiment conducted on January 16, 2003, which were specifically designed to result in negative results of (\((t_{f,j}-t_a)/t_f\)). ASHRAE Standard 96-1980
(ASHARE, 1989) recommends that at least one value of \(\frac{(t_{ij} - t_a)}{I_i} \) should be of a negative value. Negative values of \(\frac{(t_{ij} - t_a)}{I_i} \) were accomplished by setting inlet water temperatures much lower than the ambient air temperatures at solar noon. As shown in Table 6.1, all inlet water temperatures except those on January 16, 2003, were higher than the ambient temperatures. To accomplish this ice water was used for the day mode experiment on January 16, 2003, in order to make the inlet water temperature much lower than the ambient temperature. A significant amount of ice was put into the hot tank, causing the hot tank water to reach near-ice temperatures (32.6 °F to 38.9 °F) during the experiment.

![Figure 6.2 Thermal Performance of the Hybrid PV-T² System.](image-url)
A regression line and a mathematical expression of that regression line, which represents the thermal performance of the hybrid PV-T² collector, were generated from the experimental data. The linear regression shows a maximum efficiency of 45 percent when the parameter \((t_i-t_a)/I_t\) is zero, and has zero efficiency when the parameter \((t_i-t_a)/I_t\) is approximately 0.08 °F ·hr ·ft²/Btu.

The next section compares the thermal performance of the hybrid PV-T² collector with other solar collectors. A linear equation was used to calculate two thermal performance parameters: the Test Slope \((F_{UL})\) and the Test Intercept \((F_{\tau \alpha})\). These two parameters were required for an analysis of the hybrid PV-T² system with the F-Chart program. Section 6.1.4 presents a calculation of these two parameters.

6.1.3 A Comparison of the Performance of the Hybrid-PV-T² System and a Selection of Solar Thermal Collectors

The thermal performance of the hybrid PV-T² collector was compared to published data for ten solar collectors. In Figure 6.3, the measured data and the linear regression line from Figure 6.2 were superimposed on a published graph of the performance of a variety of solar collectors presented by Newton and Gilman (1981).

From those comparisons of solar collectors displayed in Figure 6.3, it can be concluded that the performance of the hybrid PV-T² is in the range of \((t_i-t_a)/I_t\) from 0 to 0.08 °F ·hr ·ft²/Btu, which is less efficient than the performance of an unglazed collector. The maximum efficiency (i.e., when the parameter \((t_i-t_a)/I_t\) is zero), of the hybrid PV-T² collector is 45 percent, which is very close to that of two liquid types: a plastic lense cover with tracking concentration (45 percent), and an evacuated tube (42 percent). In summary, the thermal efficiency of the hybrid PV-T collector is relatively low as compared to those solar collectors presented in Figure 6.3.

There are several factors contributed to the low efficiency. First, although there were attempts to attach the copper plates to the back surface of the PV panel using the conductive paste, there could be air gaps between the copper plates and the back surface of the PV panel. These air gaps would resist the heat conduction from the PV panel to the copper plates. Second, there were two copper pipes that carry heat from the copper plates spaced at 6”. The spacing of the pipes could also be a factor that reduced thermal efficiency of the PV panel. These factors reduced the thermal efficiency of the hybrid PV-T collector and therefore need to be study in...
There are ways to improve the thermal efficiency of the hybrid PV-T collector. The thermal performance of the hybrid PV-T collector, which is relatively low, could be improved by adding a sheet of glass in front of the collector (Tripanagnostopoulos et al., 1996). The glazing would help prevent the collected heat from escaping the PV panel’s surface. A reflector (such as a flat aluminum sheet) would also help to increase solar energy on the PV panel’s surface, thus increase the efficiency of the system.

6.1.4 Generating of Solar Collector Parameters for Analysis of the Solar Collector System in the F-Chart Program

The Test Slope (FrUL) and the Test Intercept (Frτα) are the two experimental parameters required for an analysis of the hybrid PV-T system in the F-Chart program. Figure 6.4 shows the two parameters that were calculated from a linear regression of the data points.

The calculation of the test slope (FrUL) and the test intercept (Frτα) are described in the following steps.

1) From the regression equation: \[y = -5.6194x + 0.4526 \] (6.1)

 The Test Intercept is the value of \(y \) when \(x \) is zero:

 \[y \text{ intercept} = Fr\tau\alpha = 0.4526 \]

2) The Test Slope of the test data is \([-5.6194]\), which represents FrUL.

 From these calculations, the test slope (FrUL) is 5.6194 Btu/hr \(\cdot \) ft\(^2\) \(\cdot \) °F, and the test intercept (Frτα) is 0.45 %.

6.2 Experimental Case 2: Electrical Performance of the PV-T² System

The experiment concerning the electrical performance of the PV-T² system was part of the day mode experiment, which included the experiment with the thermal performance of the system that was described in Section 6.1. Eight days of day mode experiments were selected for inclusion in this analysis of the thermal performance of the system. Of those eight experimental days, five were included in experiments with the electrical performance. In the early experimental days, there was a problem with the resistor circuit board that served as the load on the PV system. During this period, the resistors were overloaded by the electricity produced by the PV, and were destroyed. Therefore, there was no measured electrical output from the PV system during the earlier day mode experiments. The broken resistor circuit board was later replaced with a new resistor circuit board with a higher electrical resistance so it could...
handle the electrical load from the PV. One day of measured data and the results of electrical output analysis are presented in Figure 6.5 in Section 6.2.1. The measured data and the results of all the experiment days are presented in Appendix B. Selected data points that were used to analyze the electrical performance of the system are presents in Table 6.2.

![Figure 6.4](image)

Figure 6.4 Calculation of Thermal Performance Parameters of the Hybrid PV-T² System.

6.2.1 Results from the Photovoltaic System

Figure 6.5 presents the measured data and the results of the electrical performance analysis of the hybrid PV-T² system conducted on December 20, 2002. In Figure 6.4, Graph (e) shows the measured voltage and amperage (current) outputs from the PV panel. Graph (f) shows the electrical power output from the PV panel. The measured data from the experimental box and the corresponding weather data [Graph (a), (b), (c) and (d)] collected on December 20,
2002, shown in Figure 6.1, are also shown in Figure 6.5.

From Figure 6.5, it can be seen that as the PV-T² unit was uncovered at approximately 9:30 a.m., the PV began to immediately produce electricity as shown in graphs (a) and (f). As the solar radiation increased during the morning (i.e., prior to the local solar noon), the PV panel’s power output also increased. The measured output power reached its maximum at 7.86 Watts at the solar noon, while the temperature of the PV panel increased to 90 °F from, approximately 74 °F when the experiment began. The measured solar radiation on the PV panel’s plane was 942 Watts/m²; the solar energy that fell on the PV surface was 93.35 Watts (the PV’s surface area is 0.01 m²) (see Table 6.2). This yielded on the efficiency of the PV array of 8.4 percent. After the PV’s output power reached its peak at the solar noon, it stayed above 7 watts until approximately 3:00 p.m. when it rapidly decreased as the sun’s intensity decreased.

Table 6.2 presents the measured data, weather data and the results of the PV panel efficiencies of the five experimental days. Only the four data points near solar noon on each experimental day that were used to calculate the PV panel’s efficiency are shown in Table 6.2. All data for all days are presented in Appendix B.

The experiment with the electrical performance of the hybrid PV-T² system was conducted over a wide range of weather conditions and PV panel temperatures. The experiments conducted on May 31, 2003 and June 7, 2003, were performed in hot weather conditions; the temperatures on both these days at solar noon was approximately 100 °F. On both days the skies were clear with low wind speeds (see Table 6.2). These conditions caused the PV panel’s temperatures to be very high (around 120 °F) resulting in relatively low power outputs for the PV panel, which were about 6.6 Watts.
Figure 6.5 Electrical Energy Output and Conditions of the Hybrid PV-T2 Experiments for the Dec 20, 2002 experiment.
TABLE 6.2

Measured Data and Results from the Photovoltaic System

<table>
<thead>
<tr>
<th>Date</th>
<th>T_p (°F)</th>
<th>T_a (°C)</th>
<th>I_p (W/sq.m)</th>
<th>A_p (W)</th>
<th>Voltage (V)</th>
<th>Ampere (A)</th>
<th>Power (W)</th>
<th>T_a (°F)</th>
<th>RH (%)</th>
<th>Wind Spd (mph)</th>
<th>Efficiency (η)</th>
<th>PV Array Efficiency (η)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/20/02 12:15 PM</td>
<td>89.71</td>
<td>32.09</td>
<td>937.01</td>
<td>92.76</td>
<td>17.14</td>
<td>0.46</td>
<td>7.83</td>
<td>62.44</td>
<td>36.98</td>
<td>5.71</td>
<td>0.0844</td>
<td>8.44</td>
</tr>
<tr>
<td>12/20/02 12:30 PM</td>
<td>89.91</td>
<td>32.17</td>
<td>942.16</td>
<td>93.27</td>
<td>17.17</td>
<td>0.46</td>
<td>7.86</td>
<td>62.77</td>
<td>36.10</td>
<td>6.47</td>
<td>0.0843</td>
<td>8.43</td>
</tr>
<tr>
<td>12/20/02 12:45 PM</td>
<td>91.21</td>
<td>32.90</td>
<td>942.99</td>
<td>93.35</td>
<td>17.12</td>
<td>0.46</td>
<td>7.82</td>
<td>63.11</td>
<td>35.21</td>
<td>7.24</td>
<td>0.0838</td>
<td>8.38</td>
</tr>
<tr>
<td>12/20/02 1:00 PM</td>
<td>91.82</td>
<td>33.32</td>
<td>939.22</td>
<td>92.98</td>
<td>17.09</td>
<td>0.46</td>
<td>7.79</td>
<td>63.45</td>
<td>34.33</td>
<td>8.00</td>
<td>0.0838</td>
<td>8.38</td>
</tr>
<tr>
<td>1/6/02 12:15 PM</td>
<td>97.63</td>
<td>36.44</td>
<td>894.28</td>
<td>88.53</td>
<td>16.73</td>
<td>0.45</td>
<td>7.45</td>
<td>65.09</td>
<td>42.09</td>
<td>8.69</td>
<td>0.0841</td>
<td>8.41</td>
</tr>
<tr>
<td>1/6/02 12:30 PM</td>
<td>98.83</td>
<td>37.13</td>
<td>904.60</td>
<td>89.56</td>
<td>16.72</td>
<td>0.45</td>
<td>7.44</td>
<td>66.32</td>
<td>40.28</td>
<td>8.13</td>
<td>0.0831</td>
<td>8.31</td>
</tr>
<tr>
<td>1/6/02 12:45 PM</td>
<td>99.83</td>
<td>37.68</td>
<td>904.60</td>
<td>89.56</td>
<td>16.69</td>
<td>0.44</td>
<td>7.41</td>
<td>67.58</td>
<td>38.46</td>
<td>7.56</td>
<td>0.0828</td>
<td>8.28</td>
</tr>
<tr>
<td>1/6/02 1:00 PM</td>
<td>100.33</td>
<td>37.96</td>
<td>902.39</td>
<td>89.34</td>
<td>16.67</td>
<td>0.44</td>
<td>7.39</td>
<td>68.84</td>
<td>36.65</td>
<td>7.00</td>
<td>0.0827</td>
<td>8.27</td>
</tr>
<tr>
<td>1/10/03 1:30 PM</td>
<td>52.20</td>
<td>11.22</td>
<td>932.59</td>
<td>92.33</td>
<td>17.89</td>
<td>0.48</td>
<td>8.66</td>
<td>53.70</td>
<td>35.44</td>
<td>14.91</td>
<td>0.0938</td>
<td>9.38</td>
</tr>
<tr>
<td>1/10/03 1:45 PM</td>
<td>51.96</td>
<td>11.10</td>
<td>915.65</td>
<td>90.65</td>
<td>17.82</td>
<td>0.48</td>
<td>8.58</td>
<td>53.86</td>
<td>35.19</td>
<td>14.99</td>
<td>0.0947</td>
<td>9.47</td>
</tr>
<tr>
<td>1/11/03 2:00 PM</td>
<td>51.63</td>
<td>10.90</td>
<td>892.81</td>
<td>88.39</td>
<td>17.72</td>
<td>0.48</td>
<td>8.46</td>
<td>54.02</td>
<td>34.94</td>
<td>15.06</td>
<td>0.0958</td>
<td>9.58</td>
</tr>
<tr>
<td>1/11/03 2:15 PM</td>
<td>51.22</td>
<td>10.69</td>
<td>864.82</td>
<td>86.62</td>
<td>17.55</td>
<td>0.47</td>
<td>8.29</td>
<td>54.02</td>
<td>34.69</td>
<td>15.16</td>
<td>0.0969</td>
<td>9.68</td>
</tr>
<tr>
<td>5/31/03 1:30 PM</td>
<td>121.57</td>
<td>49.76</td>
<td>892.08</td>
<td>88.32</td>
<td>15.87</td>
<td>0.42</td>
<td>6.68</td>
<td>101.66</td>
<td>32.09</td>
<td>1.93</td>
<td>0.0756</td>
<td>7.56</td>
</tr>
<tr>
<td>5/31/03 1:45 PM</td>
<td>122.07</td>
<td>50.04</td>
<td>896.49</td>
<td>88.75</td>
<td>15.88</td>
<td>0.42</td>
<td>6.67</td>
<td>102.32</td>
<td>31.32</td>
<td>2.06</td>
<td>0.0752</td>
<td>7.52</td>
</tr>
<tr>
<td>5/31/03 2:00 PM</td>
<td>123.98</td>
<td>51.04</td>
<td>896.49</td>
<td>88.75</td>
<td>15.75</td>
<td>0.42</td>
<td>6.59</td>
<td>102.97</td>
<td>30.55</td>
<td>2.19</td>
<td>0.0742</td>
<td>7.42</td>
</tr>
<tr>
<td>5/31/03 2:15 PM</td>
<td>123.98</td>
<td>51.10</td>
<td>889.87</td>
<td>88.10</td>
<td>15.66</td>
<td>0.42</td>
<td>6.50</td>
<td>103.08</td>
<td>30.50</td>
<td>2.66</td>
<td>0.0738</td>
<td>7.38</td>
</tr>
<tr>
<td>6/7/03 1:30 PM</td>
<td>121.17</td>
<td>49.54</td>
<td>906.81</td>
<td>89.77</td>
<td>15.75</td>
<td>0.42</td>
<td>6.66</td>
<td>96.46</td>
<td>34.94</td>
<td>1.90</td>
<td>0.0742</td>
<td>7.42</td>
</tr>
<tr>
<td>6/7/03 1:45 PM</td>
<td>121.77</td>
<td>49.87</td>
<td>907.54</td>
<td>89.85</td>
<td>15.74</td>
<td>0.42</td>
<td>6.64</td>
<td>97.24</td>
<td>34.31</td>
<td>1.67</td>
<td>0.0739</td>
<td>7.39</td>
</tr>
<tr>
<td>6/7/03 2:00 PM</td>
<td>122.27</td>
<td>50.15</td>
<td>907.54</td>
<td>89.85</td>
<td>15.75</td>
<td>0.42</td>
<td>6.64</td>
<td>98.03</td>
<td>33.68</td>
<td>1.44</td>
<td>0.0739</td>
<td>7.39</td>
</tr>
<tr>
<td>6/7/03 2:15 PM</td>
<td>122.57</td>
<td>50.32</td>
<td>903.86</td>
<td>89.48</td>
<td>15.72</td>
<td>0.42</td>
<td>6.61</td>
<td>98.72</td>
<td>32.97</td>
<td>1.51</td>
<td>0.0739</td>
<td>7.39</td>
</tr>
</tbody>
</table>

The experiments conducted on December 20, 2002, and January 6, 2003, were performed in relatively cool weather conditions; the temperatures on these two days ranged from 62 to 68 °F, and the wind speeds ranged from 5.7 to 8.7 mph (see Table 6.2). On these days the PV panel’s temperatures at solar noon were in the range from 89 to 100 °F. These conditions resulted in relatively high power outputs at the solar noon (7.6 watts) each day.

The experiment conducted on January 16, 2003, was performed with the coldest conditions and was the windiest of the five experimental days. The ambient temperature at solar noon was approximately 54 °F, and the wind speed was 15 mph. The experiment conducted on January 16, 2003, was intended to test the thermal and electrical outputs when the PV was very cold. As mentioned in Section 6.1, ice was put into the hot tank to lower the inlet water temperature and the PV temperature. As a result the PV panel’s temperature was much lower than the other four experimental days. The average PV temperature at solar noon was 51.7 °F. These conditions resulted in the highest power output measured during the five experimental days which was 8.5 watts (9.53 % efficiency).
PV panel efficiencies were calculated from the five-day data of the PV’s power output and solar radiation on the PV’s plane. The PV array efficiencies and the PV panel temperatures recorded in Table 6.2 were later used to calculate an array temperature coefficient discussed in the next section.

6.2.2 Electrical Performance of the Hybrid PV-T\(^2\) System

This section discusses the determination of the array temperature coefficient, which is the rate at which the array efficiency linearly decreases with the PV panel’s temperature. This coefficient is required for the PV F-Chart program to analyze the electrical performance of the Hybrid PV-T\(^2\) system presented in Chapter VIII.

The results of the PV panel’s efficiency measurements discussed in the previous section were plotted against the PV panel’s temperatures as shown in Figure 6.6. To calculate the array temperature coefficient a linear regression was performed as shown. Figure 6.6 shows that the PV panel’s efficiency decreases as the PV panel temperature increases. Hence, the lower the temperature of the PV panel, the greater the efficiency. The slope of the line is the rate at which the array efficiency decreases with the PV panel’s temperature. From the equation outlined in Figure 6.6, the efficiency decreased at the rate of 0.0005 per degree Celsius. This value is the array temperature coefficient of the Hybrid PV-T\(^2\) collector, which was later used for the system input parameter in the PV F-Chart program to analyze the electrical performance of the Hybrid PV-T\(^2\) system.

There is a disagreement between the measured PV panel’s electrical efficiency and the rated efficiency by the PV manufacture (Solarex). The manufacture tested PV panels in a solar simulator at Standard Test Conditions (STC) which are illumination of 1 kW/m\(^2\) and cell temperature of 25 °C (Solarex, 1999). The listed maximum power of the PV panel used in this experiment at STC is 10 W (Solarex, 1999). This yields the efficiency of 10 percent (the surface area of the PV panel is 0.1 m\(^2\)). From the results of the measured PV panel’s efficiency presented in Figure 6.6, the efficiency is about 8.7 percent at the panel temperature of 25 °C (the cell temperature was assumed to be close to the panel temperature). The difference of the rated efficiency by the manufacture and the measured efficiency could be due to a couple of factors. First, in this study, the PV panel was analyzed under the real weather condition that could not be controlled. An important factor was the solar radiation on the experiment days which was lower than 1 kW/m\(^2\) as specified in the STC. Second, the PV industry including research
institutions and manufactures use sophisticated and expensive devices called I-V curve tracers to determine the efficiency of a PV panel. This device could accurately measure the maximum power output of a PV panel. However, this device was not used in this research because of its availability and cost. This study used a series of resistors as a load of the PV system. This fixed resistors limited the measurement of maximum power of the PV panel. Thus, the measured PV output in most likely below the maximum power that could produce by the PV panel using an I-V curve tracer. These two factors contributed significantly to the efficiency of the PV. Therefore, because of these measurements, this research assumes that the maximum PV output is approximately 10 percent.

![Graph showing the relationship between PV panel efficiency and temperature. The equation is y = -0.0005X + 0.1016.]

Figure 6.6 Relationship Between the PV Panel’s Efficiency and PV Panel’s Temperature.

6.3 Experimental Case 3: Night Sky Cooling Strategy

The night sky cooling strategy using the PV-T² collector was tested in the night mode experiment, which was performed over several evenings. Twelve nights of the night mode experiments were selected for inclusion in the analysis of the heat rejection performance of the
collector. One night of measured data and the results of the heat rejection analysis are presented in Figure 6.7, in Section 6.3.1. The measured data and the results from all the remaining experiments are presented in Appendix B.

A theoretical heat rejection for each night of the night mode experiments was also calculated using equations found in a solar engineering text book (Duffie and Beckman, 1991). The theoretical heat rejection consists of calculations of convective heat loss and radiative heat loss. These calculations are presented in Section 6.3.2. The purpose of these theoretical calculations was to compare the theoretical results with the experimental results.

6.3.1 Results from the Heat Rejection Experiment

Figure 6.7 presents the measured data and the results of the analysis of the night mode experiment of the hybrid PV-T^2 system conducted on May 3-4, 2003. In Figure 6.7, Graph (a) shows the surface temperatures of the PV panel and weather data, including ambient temperature, relative humidity, dew point temperature, and the sky temperature. Graph (b) shows the wind speed and the convection coefficient. Graph (c) shows the results of the experimental and theoretical heat rejection rate. This section discusses only the experimental results. The theoretical results are discussed in the next section.

The heat rejection experiment began at 9:00 p.m. on May 3, 2003 and ended the next morning at 6:00 a.m. As described in the methodology, water in the cool tank was heated by the water heater prior to the experiment. Before the experiment began, the cool tank water temperature was approximately 137 °F (see Table 6.3). When the system was turned to the night mode experiment at 8:15 p.m., the water temperature dropped to 133 °F. This was due to the fact that the relatively cool water existing in the pipe drained back to the cool tank and mixed with the heated water. Thus, it quickly lowered the temperature of the water. The measured data from this beginning period was not used for heat rejection calculations, since the sudden dropping of the water temperature in the cool tank was not due to heat being rejected by the PV panel, but was instead due to the mixing of the waters. Therefore, the measured data for the heat rejection calculations began approximately 30 minutes after the system was turned to the night mode.
Air temperature and dew-point temperatures varied slightly during the experiment night. The ambient temperature was 81°F when the experiment began at 9:00 a.m., and gradually dropped during the night to its lowest point at 74.5°F (from 2:00 a.m. to 3:00 a.m.). Dew-point temperatures also varied a small amount (75.6 °F to 72.3 °F). These conditions resulted in a small change of the estimated sky temperature during the night; the sky temperature varied between 67 °F and 58 °F. While there was only a small change in the ambient temperature and dew-point temperature during the night, the wind speed changed considerably [see Graph (b)]. The wind speed was approximately 3 mph at 9:00 p.m. and had continuously increased to a high of 10.4 mph at 3:00 a.m. Although the wind speed had changed during the night, the convective surface coefficient \(h_{cv} \) changed very little, especially during the relatively high wind speeds (from 6 to 10 mph). These weather conditions and PV surface temperatures affected the heat rejection rates of the PV panel. The relationship between these variables and the heat rejection rates are presented in Section 6.3.4.

Graph (c) shows the experimental results for the two heat rejection rates, which were calculated by two different methods: 1) calculation of the heat loss (rejected) from the system by calculating the temperature change in the cool tank, and 2) calculation of the heat rejection rate by the difference between the inlet and outlet water temperatures. The results of the two methods show the similarities and differences between the heat rejection rates.

The highest heat rejection rates occurred immediately after beginning the experiment when, the temperature difference between the PV surface and the sky was at its highest. The significant temperature differences were largely due to the high temperature of the PV surface, since the ambient and sky temperatures changed very little, and the wind speed was very low (less than 3 mph). From Graph (c), it can be noticed that the heat rejection rates from both calculation methods are relatively similar near the beginning of the experiment to 10:30 p.m. After that the differences between the results become greater. There are similar results from night mode experiments which are presented in Appendix B. The lowest heat rejection rates from both methods occurred in the morning, between 5 and 6 a.m., when temperature differences between the PV surface and the sky, and between the PV surface and the ambient air were the smallest (a 30 °F difference and a 13.4 °F difference respectively).

Experimental results were compared to the results from the theoretical calculations as shown in Figure 6.7. The theoretical results are presented and discussed in the next chapter. Comparisons of the results are discussed in Section 6.3.3.
Figure 6.7 Results from the Night Mode Experiment Conducted on May 3-4, 2003.
6.3.2 Results from Theoretical Heat Rejection Calculations

Theoretical heat rejection consists of calculations using convective and radiative heat losses presented in Chapter IV. The total heat rejection rate is presented in Graph (c) in Figure 6.7. Results from the convective heat loss calculations are presented in Section 6.3.2.1, and the results from the radiative heat loss calculations are presented in Section 6.3.2.2.

6.3.2.1 Results from Convective Heat Loss Calculations

Table 6.4 shows the weather data, measured data, and results from the convective heat loss calculation conducted on May 3-4, 2003. The weather data used in the calculation includes the ambient temperature and the wind speed. The surface temperature of the PV was the only measured data from the experimental box used in the convective heat loss calculation. Constants and parameters used in the calculation, which are not shown on Table 6.4, are presented in Chapter IV, Section 4.2.4.3. The convective heat loss rates shown on Table 6.4 were plotted on Figure 6.7, Graph (c), so that they might be compared with the experimental results.

From equations 4.6 and 4.7, the ambient temperature, PV surface temperature, and wind speeds are seen to be key parameters in determining the convective heat loss rate. From Table 6.4, it can be seen that the convective heat loss rates ranged from 32 to 56 Btu/h-ft². Figure 6.6 shows that high convective heat loss rates occurred when the difference of the PV surface temperature and ambient temperature was large, which was between 10:15 p.m. and 10:45 p.m. The effect of the wind speed can be seen during this period. In this period, the temperature difference between the PV surface and the ambient air was at approximately the same, since the experiment began at 9:00 p.m. However, the wind speed was nearly two times higher (i.e., the wind speed increased from 2.6 to 6 mph between 9:00 p.m. and 11:00 p.m. Convective heat loss decreased after this period and reached its lowest rate when the experiment was ended at 6:00 a.m., even though the wind speed had considerably increased during the night.
120

TABLE 6.3
Measured Data and Results of the Heat Rejection Experiment
Conducted on May 3-4, 2003
Measured Data from the Experiment Box

Heat Rejection Calculation

Heat Rejection Calculation

Method 1 (using ∆T c)

Date
TP
(°F)
*5/3/2003 8:00:00 P 81.70
*5/3/2003 8:15:00 P 108.95
*5/3/2003 8:30:00 P 117.56
*5/3/2003 8:45:00 P 117.36
5/3/03 9:00 PM 114.66
5/3/03 9:15 PM 113.16
5/3/03 9:30 PM 112.15
5/3/03 9:45 PM 110.95
5/3/03 10:00 PM 110.35
5/3/03 10:15 PM 109.95
5/3/03 10:30 PM 108.65
5/3/03 10:45 PM 108.05
5/3/03 11:00 PM 106.24
5/3/03 11:15 PM 105.14
5/3/03 11:30 PM 104.24
5/3/03 11:45 PM 103.54
5/4/03 12:00 AM 102.64
5/4/03 12:15 AM 101.83
5/4/03 12:30 AM 101.33
5/4/03 12:45 AM 100.43
5/4/03 1:00 AM
99.33
5/4/03 1:15 AM
98.73
5/4/03 1:30 AM
98.03
5/4/03 1:45 AM
97.53
5/4/03 2:00 AM
97.43
5/4/03 2:15 AM
96.92
5/4/03 2:30 AM
96.32
5/4/03 2:45 AM
95.82
5/4/03 3:00 AM
95.72
5/4/03 3:15 AM
95.52
5/4/03 3:30 AM
95.02
5/4/03 3:45 AM
94.82
5/4/03 4:00 AM
94.32
5/4/03 4:15 AM
94.22
5/4/03 4:30 AM
93.92
5/4/03 4:45 AM
93.82
5/4/03 5:00 AM
93.32
5/4/03 5:15 AM
93.12
5/4/03 5:30 AM
93.12
5/4/03 5:45 AM
92.82
5/4/03 6:00 AM
92.72

T f,i
(°F)

T f,e
(°F)

Tc
(°F)

Tsur
(°F)

94.59
128.35
130.25
128.55
126.95
125.44
123.94
122.64
121.34
120.23
119.03
118.03
117.03
116.03
115.03
114.12
113.22
112.32
111.52
110.72
109.92
109.12
108.31
107.61
106.91
106.31
105.71
105.11
104.51
104.11
103.61
103.11
102.71
102.30
101.90
101.50
101.20
100.80
100.50
100.30
100.00

92.94
126.89
129.79
128.09
126.49
124.89
123.48
122.18
120.88
119.78
118.68
117.58
116.58
115.57
114.67
113.67
112.77
111.87
111.07
110.27
109.47
108.66
107.96
107.26
106.56
105.96
105.36
104.76
104.16
103.76
103.26
102.76
102.36
101.96
101.56
101.26
100.85
100.55
100.25
99.95
99.65

137.16
132.86
130.25
128.55
126.95
125.35
123.95
122.55
121.24
120.14
118.94
117.94
116.94
115.94
114.94
114.04
113.14
112.24
111.33
110.63
109.73
108.93
108.23
107.53
106.83
106.23
105.63
105.03
104.43
103.93
103.43
103.03
102.53
102.12
101.72
101.42
101.02
100.72
100.42
100.12
99.82

81.93
99.66
110.67
111.27
107.87
106.37
105.46
104.46
104.26
104.26
102.96
102.66
100.46
99.26
98.46
97.75
96.95
96.15
95.75
94.95
93.75
93.25
92.45
92.25
92.35
91.95
91.45
90.95
91.05
90.95
90.45
90.35
89.94
89.94
89.74
89.64
89.24
89.04
89.14
88.84
88.94

* Data was not used in the heat rejection analysis

T f,e-T f,i
∆Tc
(°F Diff.) (°F Diff.)
-1.65
-1.46
-0.46
-0.46
-0.46
-0.56
-0.46
-0.46
-0.46
-0.46
-0.35
-0.45
-0.45
-0.45
-0.35
-0.45
-0.45
-0.45
-0.45
-0.45
-0.45
-0.45
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.35
-0.25
-0.35
-0.25
-0.25
-0.35
-0.35

0.40
4.30
2.60
1.70
1.60
1.60
1.40
1.40
1.30
1.10
1.20
1.00
1.00
1.00
1.00
0.90
0.90
0.90
0.90
0.70
0.90
0.80
0.70
0.70
0.70
0.60
0.60
0.60
0.60
0.50
0.50
0.40
0.50
0.40
0.40
0.30
0.40
0.30
0.30
0.30
0.30

Qc
(Btu)

∆Qc
(Btu)

4575.66
4432.06
4345.24
4288.47
4235.04
4181.61
4134.86
4088.11
4044.70
4007.97
3967.90
3934.50
3901.11
3867.72
3834.32
3804.27
3774.21
3744.16
3714.11
3690.73
3660.68
3633.96
3610.59
3587.21
3563.84
3543.80
3523.76
3503.73
3483.69
3467.00
3450.30
3436.94
3420.24
3406.89
3393.53
3383.51
3370.15
3360.14
3350.12
3340.10
3330.08

13.36
143.59
86.82
56.77
53.43
53.43
46.75
46.75
43.41
36.73
40.07
33.39
33.39
33.39
33.39
30.05
30.05
30.05
30.05
23.38
30.05
26.71
23.38
23.38
23.38
20.04
20.04
20.04
20.04
16.70
16.70
13.36
16.70
13.36
13.36
10.02
13.36
10.02
10.02
10.02
10.02

Qrej-1
(Btu/15 min)
19.29
149.53
92.76
62.71
59.37
59.37
52.69
52.69
49.35
42.67
46.01
39.33
39.33
39.33
39.33
35.99
35.99
35.99
35.99
29.31
35.99
32.65
29.31
29.31
29.31
25.97
25.97
25.97
25.97
22.63
22.63
19.29
22.63
19.29
19.29
15.96
19.29
15.96
15.96
15.96
15.96

Method 2 (using Tf,e-T f,i)
Qrej-1
(Btu/h)
77.18
598.11
371.04
250.82
237.47
237.47
210.75
210.75
197.39
170.68
184.04
157.32
157.32
157.32
157.32
143.96
143.96
143.96
143.96
117.25
143.96
130.61
117.25
117.25
117.25
103.89
103.89
103.89
103.89
90.53
90.53
77.18
90.53
77.18
77.18
63.82
77.18
63.82
63.82
63.82
63.82

Qrej-2
Btu/15 min
199.84
177.18
55.77
55.69
55.61
67.69
55.46
55.40
55.34
55.28
43.08
55.18
55.13
55.08
42.88
54.99
54.94
54.90
54.86
54.82
54.78
54.74
42.55
42.52
42.49
42.46
42.43
42.40
42.37
42.35
42.33
42.30
42.28
42.26
42.24
30.07
42.21
30.04
30.02
42.16
42.15

Qrej-2
Btu/h
799.37
708.73
223.08
222.75
222.44
270.75
221.86
221.60
221.35
221.14
172.30
220.71
220.51
220.32
171.52
219.95
219.77
219.60
219.44
219.29
219.13
218.97
170.22
170.08
169.94
169.83
169.71
169.59
169.48
169.40
169.30
169.20
169.13
169.05
168.97
120.29
168.83
120.15
120.10
168.66
168.60


In summary, the wind speed had a noticeable effect on the convective heat loss rate. However, the temperature difference between the PV surface and the ambient air mainly determined the magnitude of the rate at which the heat was convectively lost. Effects of the wind and other variables were analyzed using all the collected night mode data (from all twelve nights). The results are presented in section 6.3.4.
6.3.2.2 Results from the Radiative Heat Loss Calculation

Table 6.5 shows the weather data, measured data, and results from the radiative heat loss calculation conducted on May 3-4, 2003. Weather data used in this calculation includes the hourly ambient temperature, relative humidity, and the wind speed. Sky temperatures were calculated from the ambient and dew point temperatures. The surface temperature of the PV was the only measured data from the experimental box used in the radiative heat loss calculation. Constants and parameters used in the calculation which are not shown on Table 6.5 are presented in Chapter IV, Section 4.2.4.3. Radiative heat loss rates shown on Table 6.5 are plotted on Figure 6.7, Graph (c), so that they might be compared to the experimental results.

From equation 4.8, it can be seen that the PV surface temperature and the sky temperature are key parameters for determining the radiative heat loss rate (with a constant surface area). From Table 6.5, the radiative heat loss rates can be seen to range from 28 to 41 Btu/h-ft². Figure 6.7 shows that high radiative heat loss rates occurred when the difference between the PV surface temperature and the sky temperature was at its greatest, which occurred at the beginning of the experiment (9:00 p.m.). Radiative heat loss decreased as the temperature difference between the PV surface and the sky decreased, and reached its lowest rate when the experiment ended at 6:00 a.m.

From the results of the radiative and convection heat losses calculated on May 3-4, 2003, it can be seen that both heat loss rates were very similar; radiative heat loss rates were only slightly lower than convective heat loss rates. However, the relative humidity of the experiment night was quite high (i.e., it ranged from 80 to 90 percent), and therefore the calculated sky temperature was relatively warm as compared to the weather conditions of the night mode experiment conducted on April 25-26, 2003 (see the results of this night mode experiment in Appendix B). The high humidity and warm night sky caused the low radiative heat loss rate. During the night mode experiment conducted on April 25-26, 2003, the radiative heat loss rates were higher than the convective heat loss rates. This was also contributed to by the low wind speeds during the night.

The results from the radiative and convective heat losses of May 3-4, 2003, show that the PV surface temperature was the most influential factor in both the radiative and convective heat losses. Wind speed was also a factor that could accelerate the convective heat loss rate, as describe in Section 6.3.2.1.
TABLE 6.5
Measured Data and Results of the Heat Radiation Calculation Conducted on May 3-4, 2003

<table>
<thead>
<tr>
<th>Date</th>
<th>Measured Data</th>
<th>Sky Temperature Calculation</th>
<th>Radiative Heat Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_s (°F)</td>
<td>T_{sk} (K)</td>
<td>Q_{rad} (Watt)</td>
</tr>
<tr>
<td>5/3/03 9:00 PM</td>
<td>81.14</td>
<td>300.45</td>
<td>107.87</td>
</tr>
<tr>
<td>5/3/03 9:15 PM</td>
<td>80.76</td>
<td>300.24</td>
<td>106.37</td>
</tr>
<tr>
<td>5/3/03 9:30 PM</td>
<td>80.38</td>
<td>300.03</td>
<td>105.46</td>
</tr>
<tr>
<td>5/3/03 9:45 PM</td>
<td>79.99</td>
<td>299.81</td>
<td>104.46</td>
</tr>
<tr>
<td>5/3/03 10:00 PM</td>
<td>79.61</td>
<td>299.60</td>
<td>104.26</td>
</tr>
<tr>
<td>5/3/03 10:15 PM</td>
<td>79.30</td>
<td>299.43</td>
<td>104.26</td>
</tr>
<tr>
<td>5/3/03 10:30 PM</td>
<td>78.98</td>
<td>299.25</td>
<td>102.96</td>
</tr>
<tr>
<td>5/3/03 10:45 PM</td>
<td>78.67</td>
<td>299.08</td>
<td>102.62</td>
</tr>
<tr>
<td>5/3/03 11:00 PM</td>
<td>78.36</td>
<td>298.99</td>
<td>101.46</td>
</tr>
<tr>
<td>5/3/03 11:15 PM</td>
<td>77.82</td>
<td>298.60</td>
<td>99.26</td>
</tr>
<tr>
<td>5/3/03 11:30 PM</td>
<td>77.28</td>
<td>298.30</td>
<td>98.46</td>
</tr>
<tr>
<td>5/3/03 11:45 PM</td>
<td>76.74</td>
<td>298.01</td>
<td>97.75</td>
</tr>
<tr>
<td>5/4/03 12:00 AM</td>
<td>76.20</td>
<td>297.71</td>
<td>96.95</td>
</tr>
<tr>
<td>5/4/03 12:15 AM</td>
<td>75.93</td>
<td>297.56</td>
<td>96.15</td>
</tr>
<tr>
<td>5/4/03 12:30 AM</td>
<td>75.66</td>
<td>297.41</td>
<td>95.75</td>
</tr>
<tr>
<td>5/4/03 12:45 AM</td>
<td>75.39</td>
<td>297.26</td>
<td>95.45</td>
</tr>
<tr>
<td>5/4/03 1:00 AM</td>
<td>75.12</td>
<td>297.11</td>
<td>95.15</td>
</tr>
<tr>
<td>5/4/03 1:15 AM</td>
<td>74.97</td>
<td>297.02</td>
<td>94.85</td>
</tr>
<tr>
<td>5/4/03 1:30 AM</td>
<td>74.81</td>
<td>296.93</td>
<td>94.54</td>
</tr>
<tr>
<td>5/4/03 1:45 AM</td>
<td>74.65</td>
<td>296.85</td>
<td>94.23</td>
</tr>
<tr>
<td>5/4/03 2:00 AM</td>
<td>74.49</td>
<td>296.76</td>
<td>93.93</td>
</tr>
<tr>
<td>5/4/03 2:15 AM</td>
<td>74.34</td>
<td>296.71</td>
<td>93.64</td>
</tr>
<tr>
<td>5/4/03 2:30 AM</td>
<td>74.20</td>
<td>296.67</td>
<td>93.36</td>
</tr>
<tr>
<td>5/4/03 3:00 AM</td>
<td>74.13</td>
<td>296.63</td>
<td>93.08</td>
</tr>
<tr>
<td>5/4/03 3:15 AM</td>
<td>74.07</td>
<td>296.61</td>
<td>92.82</td>
</tr>
<tr>
<td>5/4/03 3:30 AM</td>
<td>73.98</td>
<td>296.58</td>
<td>92.56</td>
</tr>
<tr>
<td>5/4/03 4:00 AM</td>
<td>73.87</td>
<td>296.54</td>
<td>92.31</td>
</tr>
<tr>
<td>5/4/03 4:15 AM</td>
<td>73.76</td>
<td>296.49</td>
<td>92.07</td>
</tr>
<tr>
<td>5/4/03 4:30 AM</td>
<td>73.66</td>
<td>296.44</td>
<td>91.83</td>
</tr>
<tr>
<td>5/4/03 5:00 AM</td>
<td>73.54</td>
<td>296.39</td>
<td>91.60</td>
</tr>
</tbody>
</table>

* Hours from midnight

6.3.3 Comparisons of Results from the Heat Rejection Experiment and the Theoretical Calculations

The results of the night mode experiment conducted on May 3-4, 2003, were presented and discussed in the previous sections. This has shown that the experimental results do not agree with the theoretical results. The experimental results from all twelve experiment nights, presented in Appendix B, are similar to the results of the May 3-4, 2003 experiment; the theory predicts lower heat rejection rates as compared to the experimental results. The next section will discuss the variables and their influences on the heat rejection rates. As discussed in Section 6.3.1, the results of heat rejection rate calculated by the temperature change in the cool tank (method 1) were closer to the theoretical results than the results from method 2. Thus, the results of heat rejection rate that calculated by method 1 were chosen to further investigate...
relationships between the heat rejection rate and three dependent variables in the next section. Differences between the experimental and the theoretical results are also rendered in the following sections.

6.3.4 Heat Rejection and Dependent Variables

From the experimental and theoretical results of the heat rejections, it was found that there were four variables that affected the heat rejection rates: 1) the wind speed, 2) the surface temperature of the PV panel, 3) the ambient temperature, and 4) the sky temperature. The following sections present the plotted data of both the experimental and the theoretical heat rejection rates, versus each of those variables or the relationship between those variables.

6.3.4.1 Dependent Variable 1: Wind Speed

Unfortunately there are several variables that simultaneously affect the heat rejection rate. Therefore, to see wind speeds affect on the heat rejection rate, other variables needed to be controlled or limited to a certain range. Thus, experimental and theoretical results from the twelve nights were sorted according to ambient, dew-point, and PV surface temperatures, using a 10 °F range for the various wind speeds. Limited ranges of the variables, as well as the plot of the sorted results, are shown in Figures 6.8 and 6.9.

From Figure 6.8, it can be seen that as the wind speed increases, both the experimental and the theoretical heat rejection rates increase. Interestingly, the experimental and theoretical results are very close when there is no wind (i.e., low wind speeds at 0-2 mph). However, there are still some discrepancies between the two results. First, in general, the experimental results show a higher heat rejection rate than the theoretical at any given wind speed. Second, the experimental heat rejection rate appears to increase at a higher rate as the wind speed increases.
Figure 6.8 Plot of Calculated Heat Rejection as Compared to the Experimental Results Versus the Wind Speed. Dry-bulb and dew-point temperatures are between 60 °F and 70 °F. The panel’s surface temperatures are between 80 °F and 90 °F.

Figure 6.9 shows the results at a higher temperature range of examined variables as compared to the results in Figure 6.8. In this figure the ambient and dew-point temperatures were between 70 and 80 °F, and the PV panel surface temperatures were between 90 and 100 °F. The data in Figure 6.9 show some differences to the results in Figure 6.8. First, the experimental and theoretical results are not as close as those in Figure 6.9 at the lower wind speeds. Second, in general, the experimental results in Figure 6.9 show higher heat rejection rates as compared to the theoretical results at a given wind speed. Third, the experimental heat
rejection rate in Figure 6.9 appears to increase less at a higher wind speeds when compared to the rate in Figure 6.8. The combination of Figure 6.8 and Figure 6.9 would indicate a rapidly rising heat rejection rate from 0-7 mph, and a diminishing rise from 7-10 mph, which is unexpected.

![Plot of Calculated Heat Rejection as Compared to the Experimental Results Versus Wind Speed. Dry-bulb and dew-point temperatures are between 70 °F and 80 °F and the Panel’s surface temperatures are between 90 °F and 100 °F.]

The results from both Figures 6.8 and 6.9 indicate that the theory under-predicts the heat rejection rate of the experimental panel. Finally, it appears that additional tests are needed to further characterize the panel performance.
6.3.4.2 Dependent Variable 2: Difference between PV Surface Temperature and the Ambient Temperature ($T_{\text{sur}} - T_a$)

All experimental and theoretical results from the twelve nights were used to analyze the effect of the temperature difference between the ambient air and the PV panel’s surface temperature to heat rejection rate. Thus, there were no controlled variables, and each variable was analyzed in a specific range.

In Figure 6.10, the experimental and theoretical results are plotted versus the temperature difference between ambient air and the PV surface. The data from both the experimental and the theoretical results show that the heat rejection rate increases as the temperature difference between the PV panel and the ambient increases. Not surprisingly, the experimental heat rejection rate appears to increase at a higher rate as the temperature difference increases, with the difference between the results becoming greater as the temperature differences increase.

6.3.4.3 Dependent Variable 3: Difference between Surface Temperature and the Sky Temperature ($T_{\text{sur}^4} - T_{\text{sky}^4} \cdot d$)

Similar to the analysis of the Dependent Variable 2, all experimental and theoretical results from the twelve nights were used to analyze the effect of the temperature difference between the sky temperature and the PV surface to heat rejection rate. Thus, there were no controlled variables. However, each variable was in a certain range.

In Figure 6.11, the experimental and theoretical results were plotted versus ($T_{\text{sur}^4} - T_{\text{sky}^4} \cdot d$, where d is the Stepan-Boltzmann constant = 0.1714×10^{-8} Btu/(h · ft²·°R⁴). The data from both the experimental and the theoretical results show that the heat rejection rate is well described by the ($T_{\text{sur}^4} - T_{\text{sky}^4} \cdot d$) relationship. However, the experimental heat rejection rate appears to increase at a higher rate as the temperature difference increases.
Figure 6.10 Plot of Calculated Heat Rejection as Compared to the Experimental Results Versus the Difference Between the Panel’s Surface Temperature and the Ambient Temperatures. (The ranges of dry-bulb, dew-point, the panel’s surface temperatures and the wind speed are varied.)
As seen from the plots of theoretical and experimental heat rejection rates, the PV panel could reject heat, which has various heat rejection rates depend on those variables [i.e., wind speed, \((T_{sur} - T_a)\), and \((T_{sur} - T_{sky}) \cdot d\)]. Since the aim of this research was to conduct experimental study of the heat rejection from a PV panel and compare the experimental results with the theoretical and experimental results. Thus, this research had not made any attempts to adjust the experiment values to reconcile with the theoretical ones.
6.3.5 Multiple Regression Analyses

Regression analyses were performed using a data analysis tool (the add-on analysis tool in Microsoft Excel). All results from the twelve experiment nights were used in this analysis. The three independent variables used in the analysis were the temperature difference between the PV surface and the ambient air, the wind speed, and \((T_{sur}^d - T_{sky}^d) \cdot d\) relationship.

Regression analyses were performed to obtain the mathematical expressions for the predicted heat rejection rate and the predicted water temperature in the cool tank.

6.3.5.1 Multiple Regression Analysis of Heat Rejection Rate

Figure 6.12 presents the measured heat rejection rate, the predicted results, and the difference between the actual and the predicted results. Equation 6.2 was obtained from the regression analysis. It is a model that predicts the heat rejection rate of the whole system, which includes the heat of the pump. In general, the predicted results are reasonably close to the actual temperatures (\(R^2\) is 0.77 and the standard error is 20.90 Btu/hr).

![Figure 6.12 Plot of the Measured and Predicted Heat Rejection Rates.](image-url)
\[
\dot{Q}_{ref, pred} = -95.15 + 7.22(T_{\text{sur}} - T_a) + 5.33(Wind - Speed) + 9.29((T_{\text{sur}}^4 - T_{\text{sky}}^4) \cdot \delta) \tag{6.2}
\]

where

\[
\begin{align*}
T_a & = \text{Temperature of ambient air (K)} \\
T_{\text{sur}} & = \text{Temperature of collector surface (K)} \\
T_{\text{sky}} & = \text{Temperature of sky (K), (Berdahl and Martin, 1984)} \\
d & = \text{Stepen-Boltzman constant}
\end{align*}
\]

6.3.5.2 Multiple Regression Analyses of Water Temperatures in the Cool Tank

Two regression analyses of water temperatures in the cool tank were performed. The first analysis used all the data of the experimented period from all twelve experiment nights to predict the heat loss rate for the whole system (tank + pump). The second analysis used only the last hour of data from each of the experiment nights to predict the final temperature. Figure 6.13 presents the measured cool tank water temperature, the predicted results, and the difference between the actual and the predicted. Equation 6.3 was obtained from the regression analysis. It is a model that predicts the cool tank temperature. From Figure 6.13, it can be seen that the predicted water temperatures were very close to the actual temperatures (R^2 is 0.95 and the standard error is 1.97 °F).

\[
T_{\text{tank, all}} = 75.665 + 0.159(T_{\text{sur}} - T_a) + 0.670(Wind - Speed) + 6.486((T_{\text{sur}}^4 - T_{\text{sky}}^4) \cdot \delta) \tag{6.3}
\]

Figure 6.14 presents the last hour of data measured from the cool tank water temperature, the predicted results, and the difference between the actual and the predicted. From Figure 6.14, it can be seen that the predicted water temperatures were very close to the measured data. (R^2 is 0.91 and the standard error is 1.58). Equation 6.4 was obtained from the regression analysis. It is a model that predicts the cool tank temperature for in the last hour of the night mode experiment.
Figure 6.13 Plot of the Measured and Predicted Water Temperatures in the Cool Tank.

Figure 6.14 Plot of the Measured and Predicted Water Temperatures in the Cool Tank at the Last Hour of the Experiment Night.
6.4 Total Efficiency of the Hybrid PV-T² Collector System

Section 6.1 and 6.2 presented thermal and electrical performance of the hybrid PV-T² collector system respectively. This section presents the total collector performance in the day mode experiment of the hybrid PV-T² collector system. Total efficiency of a hybrid PV-T collector system \(\eta_{th+e} \) is defined as total thermal energy and total electrical energy divided by total insolation over the collector (Garg and Agarwal, 1995). The total efficiency \(\eta_{th+e} \), thus, equals to thermal efficiency plus electrical efficiency (as shown in equation 6.5).

\[
\eta_{th+e} = \eta_t + \eta_e \quad (6.5)
\]

Table 6.6 presents the experimental results of the total efficiency of the hybrid PV-T² collector system. Thermal efficiencies were obtained from Table 6.1. Electrical efficiencies were obtained from Table 6.2. Total efficiency of the hybrid PV-T² collector system presented in the far right column of Table 6.2 is the result of addition of thermal and electrical efficiencies.

Figure 6.15 presents total efficiency of the hybrid PV-T² collector system as a function of \([(t_t-t_a)/I_t]\). As shown in Figure 6.15, the maximum efficiency [when \((t_t-t_a)/I_t = 0\)] is approximately 54 percent.
TABLE 6.6

Total Efficiency of the Hybrid PV-T² Collector System

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>$(t_r - t_a)/I_t$ °F.Hr.sq.ft/Blu</th>
<th>Efficiency</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>η</td>
<td>η_th</td>
<td>η_e</td>
<td>η_th+e</td>
</tr>
<tr>
<td>12/20/02</td>
<td>12:15 PM</td>
<td>0.043</td>
<td>0.248</td>
<td>0.0844</td>
<td>0.333</td>
<td></td>
</tr>
<tr>
<td>12/20/02</td>
<td>12:30 PM</td>
<td>0.046</td>
<td>0.094</td>
<td>0.0843</td>
<td>0.178</td>
<td></td>
</tr>
<tr>
<td>12/20/02</td>
<td>12:45 PM</td>
<td>0.047</td>
<td>0.093</td>
<td>0.0838</td>
<td>0.177</td>
<td></td>
</tr>
<tr>
<td>12/20/02</td>
<td>1:00 PM</td>
<td>0.048</td>
<td>0.246</td>
<td>0.0838</td>
<td>0.330</td>
<td></td>
</tr>
<tr>
<td>1/6/02</td>
<td>12:15 PM</td>
<td>0.068</td>
<td>0.094</td>
<td>0.0841</td>
<td>0.178</td>
<td></td>
</tr>
<tr>
<td>1/6/02</td>
<td>12:30 PM</td>
<td>0.068</td>
<td>0.092</td>
<td>0.0831</td>
<td>0.175</td>
<td></td>
</tr>
<tr>
<td>1/6/02</td>
<td>12:45 PM</td>
<td>0.069</td>
<td>0.091</td>
<td>0.0828</td>
<td>0.174</td>
<td></td>
</tr>
<tr>
<td>1/6/02</td>
<td>1:00 PM</td>
<td>0.072</td>
<td>0.091</td>
<td>0.0827</td>
<td>0.174</td>
<td></td>
</tr>
<tr>
<td>1/16/03</td>
<td>12:30 PM</td>
<td>-0.047</td>
<td>0.736</td>
<td>0.0938</td>
<td>0.830</td>
<td></td>
</tr>
<tr>
<td>1/16/03</td>
<td>12:45 PM</td>
<td>-0.039</td>
<td>0.611</td>
<td>0.0947</td>
<td>0.706</td>
<td></td>
</tr>
<tr>
<td>1/16/03</td>
<td>1:15 PM</td>
<td>-0.060</td>
<td>0.837</td>
<td>0.0958</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>1/16/03</td>
<td>1:30 PM</td>
<td>-0.062</td>
<td>0.849</td>
<td>0.0968</td>
<td>0.946</td>
<td></td>
</tr>
<tr>
<td>5/31/03</td>
<td>1:30 PM</td>
<td>0.039</td>
<td>0.161</td>
<td>0.0756</td>
<td>0.237</td>
<td></td>
</tr>
<tr>
<td>5/31/03</td>
<td>1:45 PM</td>
<td>0.040</td>
<td>0.160</td>
<td>0.0752</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td>5/31/03</td>
<td>2:00 PM</td>
<td>0.042</td>
<td>0.321</td>
<td>0.0742</td>
<td>0.395</td>
<td></td>
</tr>
<tr>
<td>5/31/03</td>
<td>2:15 PM</td>
<td>0.045</td>
<td>0.162</td>
<td>0.0738</td>
<td>0.235</td>
<td></td>
</tr>
<tr>
<td>6/7/03</td>
<td>1:30 PM</td>
<td>0.052</td>
<td>0.159</td>
<td>0.0742</td>
<td>0.233</td>
<td></td>
</tr>
<tr>
<td>6/7/03</td>
<td>1:45 PM</td>
<td>0.052</td>
<td>0.158</td>
<td>0.0739</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>6/7/03</td>
<td>2:00 PM</td>
<td>0.053</td>
<td>0.158</td>
<td>0.0739</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>6/7/03</td>
<td>2:30 PM</td>
<td>0.055</td>
<td>0.162</td>
<td>0.0739</td>
<td>0.235</td>
<td></td>
</tr>
</tbody>
</table>
6.5 Summary

This chapter has presented the experimental results from the triple effect hybrid PV-T² system. The thermal, electrical, and heat rejection performance of the system was tested and discussed. Selected results are later used in Chapter VII to assess the benefits of this system in a residential application, which was the case-study house. The following is the summary of findings of each effect of the hybrid PV-T² system:

1) Thermal Efficiency

- The hybrid PV-T² collector system had the maximum thermal efficiency of 45 percent. The measured Test Intercept (Frτα) was 0.45 and the measured collector loss coefficient data was -5.6194, which represents FrUL.

Figure 6.15 Total Performance of the Hybrid PV-T² System.
- The thermal efficiency of the hybrid PV-T² collector system varied significantly with ambient temperature, the thermal efficiency becoming zero at \((t_i - t_a)/I_i > 0.08\).

2) Electrical Efficiency

- The relationship of the PV-T² panel’s electrical efficiency and panel temperature was reported. The electrical efficiency decreases at the rate of 0.0005 % per one degree Celsius. This value was the array temperature coefficient of the Hybrid PV- T² collector, which was later used for the system input parameter in the PV F-Chart program to analyze the electrical performance of the Hybrid PV- T² system.

3) Total Efficiency

- Total efficiency, which is the combined thermal and electrical efficiencies, was found from the day mode experiment. The maximum efficiency \([\text{when } (t_i-t_a)/I_i = 0]\) was approximately 54 percent.

4) Heat Rejection

- The experimental results of heat rejection for the whole system (tank + pump) were presented and compared with the theoretical results. Theoretical heat rejection rates were lower than the experimental results. From the experimental results, relationships between heat rejection rates and three variables \([\text{i.e., wind speed, } T_{\text{sur}} - T_a, \text{ and } (T_{\text{sur}4} - T_{\text{sky}4}) \delta]\) were found. A regression analysis of the relationships between the experimental heat rejection rates and those variables was performed and reported. A regression analysis of the relationships between the water temperature in the tank and those variables was also performed and reported.
CHAPTER VII
DATA ANALYSIS AND RESULTS OF BUILDING SIMULATION IN THE DOE-2 WITH THE RESULTS FROM THE F-CHART AND PV-F CHART PROGRAMS

This chapter presents and discusses the results of the simulation of the case-study house which include the calibration of the DOE-2 model against both the measured data and utility bills. This chapter also presents the results of the simulation investigation into energy efficient strategies used to improve the case-study house. There are three main sections presented in this chapter. Section 7.1 presents the results of the first DOE-2 run, Section 7.2 presents the calibration process and the results of the final calibrated model, and Section 7.3 presents the results of the investigation into the energy efficient strategies, as well as supplemental energy provided by the hybrid PV-T² collector system, and the photovoltaic system.

7.1 Result of First DOE-2 Run

The first DOE-2 model that ran without errors and gave reasonable results was considered Run # 1. This section presents the results of DOE-2 Run #1 which include both the simulated energy use and the simulated zone temperatures. Simulated energy use is compared to actual energy use in Section 7.1.1. Section 7.1.2 displays the results of the simulated zone temperatures as compared to the measured zone temperatures.

7.1.1 Monthly Energy Use

The monthly electricity bills for the case-study house were obtained from the homeowner. Table 7.1 shows the monthly electricity consumption of the case-study house over a seven month period (from June to December, 2000). Since there were a different number of days in the billing period for each month, the daily average electricity use for each billing period was also calculated. Daily average electricity use is useful when comparing the actual energy use to the simulated use. The simulated energy use was for the calendar month (i.e., the first to the end of the month).
TABLE 7.1

The Case-Study House’s Monthly Utility Bills from June to December, 2000

<table>
<thead>
<tr>
<th>Month</th>
<th>From</th>
<th>To</th>
<th>Number of Days</th>
<th>Electricity Use (kWh)</th>
<th>Avg Elec. Use (kWh/day)</th>
<th>Avg. Outdoor Temp. (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>29-May-00</td>
<td>28-Jun-00</td>
<td>30</td>
<td>450</td>
<td>15.00</td>
<td>82.48</td>
</tr>
<tr>
<td>July</td>
<td>28-Jun-00</td>
<td>28-Jul-00</td>
<td>30</td>
<td>414</td>
<td>13.80</td>
<td>82.48</td>
</tr>
<tr>
<td>August</td>
<td>29-Jul-00</td>
<td>29-Aug-00</td>
<td>32</td>
<td>454</td>
<td>14.19</td>
<td>82.96</td>
</tr>
<tr>
<td>September</td>
<td>29-Aug-00</td>
<td>28-Sep-00</td>
<td>30</td>
<td>334</td>
<td>11.13</td>
<td>81.62</td>
</tr>
<tr>
<td>October</td>
<td>28-Sep-00</td>
<td>28-Oct-00</td>
<td>30</td>
<td>451</td>
<td>15.03</td>
<td>81.65</td>
</tr>
<tr>
<td>November</td>
<td>28-Oct-00</td>
<td>28-Nov-00</td>
<td>31</td>
<td>382</td>
<td>12.32</td>
<td>79.51</td>
</tr>
<tr>
<td>December</td>
<td>28-Nov-00</td>
<td>28-Dec-00</td>
<td>30</td>
<td>405</td>
<td>13.50</td>
<td>81.03</td>
</tr>
<tr>
<td>June to Dec.</td>
<td>29-May-00</td>
<td>28-Dec-00</td>
<td>213</td>
<td>2890</td>
<td>13.57</td>
<td>81.68</td>
</tr>
</tbody>
</table>

TABLE 7.2

Simulated Energy Use Results from the First DOE-2’s Run

<table>
<thead>
<tr>
<th>Month</th>
<th>Lighting (kWh)</th>
<th>Equipment (kWh)</th>
<th>Cooling (kWh)</th>
<th>Vent Fans (kWh)</th>
<th>Energy use (kWh/month)</th>
<th>Period (days)</th>
<th>Avg. Energy use (kWh/day)</th>
<th>Avg. Temp. (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>27</td>
<td>195</td>
<td>130</td>
<td>16</td>
<td>369</td>
<td>30</td>
<td>12.29</td>
<td>82.43</td>
</tr>
<tr>
<td>July</td>
<td>30</td>
<td>206</td>
<td>149</td>
<td>18</td>
<td>403</td>
<td>31</td>
<td>12.99</td>
<td>82.72</td>
</tr>
<tr>
<td>August</td>
<td>28</td>
<td>201</td>
<td>155</td>
<td>19</td>
<td>403</td>
<td>31</td>
<td>13.02</td>
<td>82.68</td>
</tr>
<tr>
<td>September</td>
<td>28</td>
<td>197</td>
<td>117</td>
<td>14</td>
<td>356</td>
<td>30</td>
<td>11.86</td>
<td>81.46</td>
</tr>
<tr>
<td>October</td>
<td>30</td>
<td>206</td>
<td>127</td>
<td>16</td>
<td>379</td>
<td>31</td>
<td>12.22</td>
<td>81.65</td>
</tr>
<tr>
<td>November</td>
<td>28</td>
<td>198</td>
<td>110</td>
<td>14</td>
<td>351</td>
<td>30</td>
<td>11.69</td>
<td>79.76</td>
</tr>
<tr>
<td>December</td>
<td>29</td>
<td>204</td>
<td>133</td>
<td>16</td>
<td>383</td>
<td>31</td>
<td>12.34</td>
<td>81.00</td>
</tr>
<tr>
<td>June to Dec.</td>
<td>200</td>
<td>1408</td>
<td>921</td>
<td>113</td>
<td>2643</td>
<td>214</td>
<td>12.34</td>
<td>81.67</td>
</tr>
</tbody>
</table>

The results of both the simulated monthly and daily average electricity uses are shown in Table 7.2. The comparison of the actual to the simulated daily average electricity uses is presented in Table 7.3. Statistical indices which were used to compare the results of the simulated to the actual data, including the mean bias error (MBE), the root mean squared error (RMSE), and the coefficient of variation for the root mean squared error [CV(RMSE)], are all reported in Table 7.3 as well.

From Table 7.3, the results can be seen to show that the DOE-2 Run # 1 underpredicted the actual monthly energy use by approximately 9 percent (the MBE was -9.03 percent, and the RMSE was 1.67 kWh/day). The CV(RMSE) was 12.33 percent. Figure 7.1, which presents both the actual and the simulated daily electricity uses versus the outdoor
temperature, shows that in general the simulated daily electricity use is lower than the actual average daily electricity use.

TABLE 7.3

<table>
<thead>
<tr>
<th>Month</th>
<th>Actual Electricity Use (kWh/day)</th>
<th>DOE-2 Simulated Elec. Use (kWh/day)</th>
<th>Error (Simulated-Actual)</th>
<th>Error Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>15.00</td>
<td>12.29</td>
<td>-2.71</td>
<td>7.36</td>
</tr>
<tr>
<td>July</td>
<td>13.80</td>
<td>12.99</td>
<td>-0.81</td>
<td>0.66</td>
</tr>
<tr>
<td>August</td>
<td>14.19</td>
<td>13.02</td>
<td>-1.17</td>
<td>1.37</td>
</tr>
<tr>
<td>September</td>
<td>11.13</td>
<td>11.86</td>
<td>0.72</td>
<td>0.52</td>
</tr>
<tr>
<td>October</td>
<td>15.03</td>
<td>12.22</td>
<td>-2.82</td>
<td>7.94</td>
</tr>
<tr>
<td>November</td>
<td>12.32</td>
<td>11.69</td>
<td>-0.63</td>
<td>0.40</td>
</tr>
<tr>
<td>December</td>
<td>13.50</td>
<td>12.34</td>
<td>-1.16</td>
<td>1.34</td>
</tr>
<tr>
<td>SUM</td>
<td>-8.58</td>
<td>19.59</td>
<td></td>
<td>19.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N (months)</th>
<th>MBE (%)</th>
<th>RMSE (kWh/day)</th>
<th>CV(RMSE) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.00</td>
<td>-9.03</td>
<td>1.67</td>
<td>12.33</td>
</tr>
</tbody>
</table>

Figure 7.1 Actual Electricity Use and DOE-2’s Run #1 Simulated Energy Use versus the Monthly Average Temperature
A comparison of the actual to the simulated daily average electricity uses is also presented in a time-series plot in Figure 7.2. Figure 7.2 shows that, in general, the DOE-2 Run# 1 under-predicted the case-study house’s daily average electricity use, which corresponds to the results from the statistical index (MBE). A comparison of the actual to the simulated monthly total electricity uses, shown in Figure 7.3, shows similar results to the comparison of the daily electricity uses.

Figure 7.2 Comparison Between the Actual and Run# 1 Simulated Monthly Average Daily Electricity Use from June to December, 2000
7.1.2 Zone Temperatures

Figures 7.4 and 7.5 present a 2-week time-series plot of both measured and simulated zone temperatures in four spaces of the case-study house (i.e., the living room, the master bedroom, bedroom-3, and the attic). All results of the measured and the Run# 1 simulated zone temperature comparisons are presented in Appendix D. The RMSE and CV(RMSE) for each zone temperature and the average of all zone temperatures are presented in Table 7.4.
Figure 7.4 Comparison Between the Measured and the DOE-2 Run# 1 Simulated Temperatures of the Living-Dining Room and Bedroom-3.

Figure 7.5 Comparison Between the Measured and the DOE-2 Run# 1 Simulated Temperatures of the Master Bedroom and the Attic.
From Figures 7.4, 7.5 and Table 7.4, in general the model predicted the simulated zone temperatures of the living spaces (i.e. the living room, the master bedroom, and the attic) fairly well as compared to the simulated attic temperatures. However, in Figure 7.5, the simulated zone temperature of the attic is very different from the measured temperatures in the attic, especially the temperature swings from nighttime to daytime. The simulated attic temperature predicted a wider range as compared to the measured temperatures. The highest temperatures (which occurred in the daytime) reached approximately 140 °F for the simulated temperature, while only 110 °F for the measured temperature. The lowest temperatures occurred in the nighttime, reaching approximately 65 °F for the simulated temperature, and approximately 75 °F for the measured temperature.

In summary, there were significant differences between the measured and the simulated zone temperatures from the DOE-2 Run# 1, particularly in the attic temperatures. Although the attic is not a living space, its thermal condition affects the adjacent living spaces’ thermal conditions through the transfer of heat through the ceiling. The master bedroom, which is an air-conditioned space, is located below the attic, so the attic’s thermal condition affects the air conditioning load and therefore the overall energy consumption. Therefore, calibrations for predicted versus measured zone temperatures in all zones including the attic were performed. The process and results of these zone temperature calibrations are presented in the next section.

7.2 Calibrations of the DOE-2 Run# 1

Calibrations of the model’s zone temperatures and the building’s energy consumption were both performed. In the calibration process, there were also some modeling assumptions in the input file that needed to be modified or added to the file. Corrections made to the first DOE-2 run, as well as the energy use and zone temperature calibrations are all discussed in Section 7.2.1.

7.2.1 Calibration Process

Calibrations of the model’s zone temperatures and energy consumption were performed by adjusting the input parameters in the DOE-2 input file, rerunning the simulation, extracting the required data from the new output file and comparing it to the measured data. The calibrations were performed over numerous runs. Table 7.4 shows the adjustments and the
results for each run, which included the RMSE and the CV(RMSE) of the zone temperatures, as well as the whole-building energy consumption. As mentioned earlier, besides the zone temperatures and the building’s energy consumption calibrations, corrections were made to the modeling assumptions. These corrections are also described in Table 7.4.

In Table 7.4, the major zone temperature calibration adjustments can be summarized by space, as listed below:

1) SPACE 1-1 (Living-Dining Room)
 - Used effective value of floor area (60% larger than the value in Run# 1)

2) SPACE 2-1 (Master Bedroom)
 - Adjusted windows’ transmittance to 50% to account for curtain usage
 (reduced from 79% in Run# 1)

3) SPACE 2-3 (Bedroom-3)
 - Reduced air change rate from 1.0 in Run# 1 to 0.5
 - Used effective value of volume (200% larger than Run# 1) and area (100% larger than Run# 1)

4) SPACE-ATTIC (Attic)
 - Created thermal mass walls in the attic and adjusted infiltration schedule
 (explained in the following paragraph)

In Run #8, high thermal mass walls (i.e., brick walls) were created inside the attic to account for the roof’s actual concrete structure and the brick walls that are present in the case-study house’s attic (see Figure 5.2). This caused the CV(RMSE) to drop from 19.33 percent to 7.64 percent. Also, additional adjustments were made to the attic in later runs. The effective wall area was later increased from 1,200 ft² to 1,600 ft² in Run #9. Also, in Run #9, the attic’s infiltration schedule was adjusted; the nighttime air-change rate (from 6 p.m. to 6 a.m.) was set to 15 and the daytime air-change rate was set to 1. The adjustment of the wall area and the infiltration schedule reduced the CV(RMSE) from 7.64 to 6.47 percent.
From Table 7.4, the whole-building energy use (WBEU) was directly adjusted by the lighting and equipment schedules (Run #11 and Run #14), and adjustments to the parameters of the building’s systems. In Run #14, the energy use by the refrigerators was revised, using detailed information about the refrigerators was obtained from the homeowner. This adjustment to the equipment energy use did, in fact, increase the difference in the WBEU. The WBEU was also indirectly adjusted by the calibration of the zone temperatures. However, this effect did not have a substantial impact on the monthly energy use prediction.

There was also an important correction made to the model’s building system. In the early runs, an instantaneous compact water heater was specified in the model as equipment that was present in the second floor bathroom. The load was estimated from the rated power of that water heater. A water heater should be specified as part of a building’s system, since its energy consumption depends on usage schedule and the environment (i.e., ground temperature). Thus, the instantaneous compact water heater was later assigned as a domestic hot water system in the PLANT section of Run #10, instead of an equipment load in SPACE 2-4. After assigning the water heater in Run #10, adjustments were made to the water flow rate to match the simulated energy use of the water heater to the estimated energy use calculated from the actual data provided by the occupants. (i.e., the schedule of usage).
TABLE 7.4
Model Building’s Energy Use and the Zone Temperature Calibration Process

<table>
<thead>
<tr>
<th>Run</th>
<th>Changes Made to Model</th>
<th>Space</th>
<th>RMSE (° F) and CV(RMSE) (%) of WBEU</th>
<th>RMSE (° F) and CV(RMSE) (%) of Zone Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1) Base Model</td>
<td>Space 1-1: Living Rm.</td>
<td>1.97 ° F</td>
<td>2.31 %</td>
</tr>
<tr>
<td></td>
<td>Basic Input Parameters:</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.53 ° F</td>
<td>3.60 %</td>
</tr>
<tr>
<td></td>
<td>1) Air Change/hr = 1 (Attic = 30)</td>
<td>Space 2-3: Bedroom-3</td>
<td>2.79 ° F</td>
<td>3.23 %</td>
</tr>
<tr>
<td></td>
<td>Thermostat Set Point of Conditioned Space = 78.8 ° F (Set-point temperature data were obtained from the occupants)</td>
<td>Space Attic: Attic</td>
<td>13.24 ° F</td>
<td>15.04 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td></td>
<td>1.67 kWh/day</td>
<td>3.48 %</td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td></td>
<td>12.33 %</td>
<td>3.98 %</td>
</tr>
<tr>
<td>2</td>
<td>1) Applied U-EFFECTIVE command for the ground floors</td>
<td>Space 1-1: Living Rm.</td>
<td>10.55 ° F</td>
<td>12.43 %</td>
</tr>
<tr>
<td></td>
<td>2) Changed DOE-2 material library code from CC14 to CC03 (Undried heavy weight to dried heavy weight)</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.34 ° F</td>
<td>2.81 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space 2-3: Bedroom-3</td>
<td>2.82 ° F</td>
<td>3.04 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space Attic: Attic</td>
<td>13.23 ° F</td>
<td>15.03 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td></td>
<td>3.37 kWh/day</td>
<td>4.32 %</td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td></td>
<td>24.84 %</td>
<td>4.98 %</td>
</tr>
<tr>
<td>3</td>
<td>1) Corrected MAT-FIC-1 value</td>
<td>Space 1-1: Living Rm.</td>
<td>15.39 ° F</td>
<td>18.11 %</td>
</tr>
<tr>
<td></td>
<td>MAT-FIC-1 = MATERIAL RESISTANCE = 2.437</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.24 ° F</td>
<td>2.69 %</td>
</tr>
<tr>
<td></td>
<td>2) Corrected Floor Weight of ceiling to = 0</td>
<td>Space 2-3: Bedroom-3</td>
<td>2.44 ° F</td>
<td>2.82 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space Attic: Attic</td>
<td>13.24 ° F</td>
<td>15.03 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td></td>
<td>2.19 kWh/day</td>
<td>3.74 %</td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td></td>
<td>16.12 %</td>
<td>5.96 %</td>
</tr>
<tr>
<td>4</td>
<td>1) Space 1-1: Used nominal volume (60%)</td>
<td>Space 1-1: Living Rm.</td>
<td>3.56 ° F</td>
<td>4.19 %</td>
</tr>
<tr>
<td></td>
<td>2) Space 2-1: Increased opaqueness of the glass to account for curtains (transmittance = 50%)</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.22 ° F</td>
<td>2.67 %</td>
</tr>
<tr>
<td></td>
<td>Thermostat Set Point = 79.8 ° F</td>
<td>Space 2-3: Bedroom-3</td>
<td>2.73 ° F</td>
<td>3.16 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space Attic: Attic</td>
<td>13.77 ° F</td>
<td>14.47 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td></td>
<td>1.89 kWh/day</td>
<td>3.42 %</td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td></td>
<td>16.12 %</td>
<td>5.96 %</td>
</tr>
<tr>
<td>5</td>
<td>1) Adjusted window transmittance of Space 1-1, 1-2 and 2-3 to 50%</td>
<td>Space 1-1: Living Rm.</td>
<td>3.03 ° F</td>
<td>3.57 %</td>
</tr>
<tr>
<td></td>
<td>2) Created shading for Space 2-3 (Space 1-2’s north wall is as a vertical fin to Space 2-3)</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.30 ° F</td>
<td>2.76 %</td>
</tr>
<tr>
<td></td>
<td>3) Space Attic: changed absorbtance value of the roof tile absorbance = 0.88 (dark brown paint)</td>
<td>Space 2-3: Bedroom-3</td>
<td>2.58 ° F</td>
<td>3.08 %</td>
</tr>
<tr>
<td></td>
<td>4) Added SHADING-SURFACE = YES for the roof</td>
<td>Space Attic: Attic</td>
<td>14.94 ° F</td>
<td>16.97 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td></td>
<td>1.88 kWh/day</td>
<td>3.91 %</td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td></td>
<td>13.88 %</td>
<td>4.46 %</td>
</tr>
<tr>
<td>6</td>
<td>1) SPACE 1-3: Assigned as PLENUM (changed from unconditioned space)</td>
<td>Space 1-1: Living Rm.</td>
<td>3.05 ° F</td>
<td>3.59 %</td>
</tr>
<tr>
<td></td>
<td>2) SPACE 2-3: Used nominal value of volume and area of the space (200% and 100% respectively) and added an interior wall next to in SPACE1-2</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.27 ° F</td>
<td>2.79 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space 2-3: Bedroom-3</td>
<td>1.59 ° F</td>
<td>1.83 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space Attic: Attic</td>
<td>14.94 ° F</td>
<td>16.98 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td></td>
<td>1.87 kWh/day</td>
<td>3.87 %</td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td></td>
<td>13.77 %</td>
<td>4.41 %</td>
</tr>
<tr>
<td>Run</td>
<td>Changes Made to Model</td>
<td>Space</td>
<td>RMSE (° F) and CV(RMSE) (%) of WBEU</td>
<td>RMSE (° F) and CV(RMSE) (%) of Zone Temperature</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>-------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>1) SPACE-ATTIC: Created interior wall that should have been present, and changed Air-Change to 1 for daytime and 5 for nighttime (i.e., edited infiltration schedule) Space 1-1: Living Rm.</td>
<td>Space 1-1: Living Rm.</td>
<td>3.08 ° F</td>
<td>3.62 %</td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.49 ° F</td>
<td>2.98 %</td>
</tr>
<tr>
<td></td>
<td>3)</td>
<td>Space 2-3: Bedroom-3</td>
<td>1.79 ° F</td>
<td>2.07 %</td>
</tr>
<tr>
<td></td>
<td>4)</td>
<td>Space Attic: Attic</td>
<td>17.01 ° F</td>
<td>19.33 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td>1.78 kWh/day</td>
<td>4.39 ° F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td>13.12 %</td>
<td>5.00 %</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1) Created SPACE-ATTIC-2 that is in SPACE-ATTIC SPACE-ATTIC-2 has only interior walls (1200 ft²) (Put a massive wall inside the attic to represent the roof’s concrete structure and walls in the attic) Space 1-1: Living Rm.</td>
<td>Space 1-1: Living Rm.</td>
<td>3.07 ° F</td>
<td>3.61 %</td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.19 ° F</td>
<td>2.63 %</td>
</tr>
<tr>
<td></td>
<td>3)</td>
<td>Space 2-3: Bedroom-3</td>
<td>1.60 ° F</td>
<td>1.85 %</td>
</tr>
<tr>
<td></td>
<td>4)</td>
<td>Space Attic: Attic</td>
<td>6.75 ° F</td>
<td>7.67 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td>1.63 kWh/day</td>
<td>1.97 ° F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td>12.62 %</td>
<td>2.27 %</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1) SPACE-ATTIC-2: Increased interior wall area to 1600 sq.ft., volume = 1000 cu.ft and use infiltration schedule of SPACE-ATTIC SPACE-ATTIC: Adjusted infiltration schedule 1 for daytime, 15 for nighttime (starting at 6 PM) Space 1-1: Living Rm.</td>
<td>Space 1-1: Living Rm.</td>
<td>2.68 ° F</td>
<td>3.15 %</td>
</tr>
<tr>
<td></td>
<td>2) SPACE-LIVING: Adjusted monthly ground temperatures (from Sreshthaputra, 2003) to 2 °F lower and used nominal values of the floor area (50% larger) Space 2-1: Master Bedroom</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.10 ° F</td>
<td>2.52 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td>1.65 kWh/day</td>
<td>1.76 ° F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td>12.13 %</td>
<td>1.95 %</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1) Corrected hot water heater specified in equipment by specifying in PLANT ASSIGNMENT instead Space 1-1: Living Rm.</td>
<td>Space 1-1: Living Rm.</td>
<td>2.59 ° F</td>
<td>3.05 %</td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td>Space 2-1: Master bedroom</td>
<td>2.08 ° F</td>
<td>2.50 %</td>
</tr>
<tr>
<td></td>
<td>3)</td>
<td>Space 2-3: Bedroom-3</td>
<td>1.53 ° F</td>
<td>1.77 %</td>
</tr>
<tr>
<td></td>
<td>4)</td>
<td>Space Attic: Attic</td>
<td>6.73 ° F</td>
<td>7.05 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td>1.19 kWh/day</td>
<td>1.92 ° F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td>8.62 %</td>
<td>2.20 %</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1) Reduced Energy use by Equipment Space 1-1: Living Rm.</td>
<td>Space 1-1: Living Rm.</td>
<td>2.34 ° F</td>
<td>2.76 %</td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td>Space 2-1: Master Bedroom</td>
<td>2.07 ° F</td>
<td>2.49 %</td>
</tr>
<tr>
<td></td>
<td>3)</td>
<td>Space 2-3: Bedroom-3</td>
<td>1.50 ° F</td>
<td>1.74 %</td>
</tr>
<tr>
<td></td>
<td>4)</td>
<td>Space Attic: Attic</td>
<td>6.74 ° F</td>
<td>7.05 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td>0.97 kWh/day</td>
<td>1.83 ° F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td>7.90 %</td>
<td>2.17 %</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1) Space 1-1 Increased Floor Area (Used nominal value) 60% larger than the actual one Space 1-1: Living Rm.</td>
<td>Space 1-1: Living Rm.</td>
<td>0.94 ° F</td>
<td>1.11 %</td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td>Space 2-1: Master Bedroom</td>
<td>1.59 ° F</td>
<td>1.91 %</td>
</tr>
<tr>
<td></td>
<td>3)</td>
<td>Space 2-3: Bedroom-3</td>
<td>1.34 ° F</td>
<td>1.55 %</td>
</tr>
<tr>
<td></td>
<td>4)</td>
<td>Space Attic: Attic</td>
<td>6.25 ° F</td>
<td>7.24 %</td>
</tr>
<tr>
<td></td>
<td>Average RMSE</td>
<td>1.02 kWh/day</td>
<td>1.69 ° F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average CV(RMSE)</td>
<td>7.39 %</td>
<td>1.93 %</td>
<td></td>
</tr>
</tbody>
</table>
Table 7.4
(Continued)

<table>
<thead>
<tr>
<th>Run</th>
<th>Changes Made to Model</th>
<th>Space</th>
<th>RMSE (° F) and CV(RMSE) (%) of WBEU</th>
<th>RMSE (° F) and CV(RMSE) (%) of Zone Temperature</th>
</tr>
</thead>
</table>
| 13 | 1) Used monthly ambient temperatures from the weather file as monthly ground temperature (Kusuda, 1965)
2) Adjusted water flow rate to 2.25 GPM
3) Added window frames that were missing in the model | Space 1-1: Living Rm. | 1.10 ° F | 1.29 % |
| | | Space 2-1: Master Bedroom | 1.92 ° F | 1.95 % |
| | | Space 2-3: Bedroom-3 | 1.38 ° F | 1.59 % |
| | | Space Attic: Attic | 6.38 ° F | 7.25 % |
| | | Average RMSE: | 0.96 kWH/day | 1.70 % |
| | | Average CV(RMSE) | 6.95 % | 1.94 % |
| 14 | 1) Adjusted Lighting and Equipment Schedules | Space 1-1: Living Rm. | 1.27 ° F | 1.49 % |
| | | Space 2-1: Master Bedroom| 1.61 ° F | 1.93 % |
| | | Space 2-3: Bedroom-3 | 1.38 ° F | 1.59 % |
| | | Space Attic: Attic | 6.38 ° F | 7.25 % |
| | | Average RMSE: | 2.19 kWH/day | 1.71 % |
| | | Average CV(RMSE) | 15.87 % | 1.95 % |
| 15 | 1) Adjusted amount of DHW use to match the estimated energy use by the hot water heater | Space 1-1: Living Rm. | 1.27 ° F | 1.49 % |
| | | Space 2-1: Master Bedroom| 1.91 ° F | 1.93 % |
| | | Space 2-3: Bedroom-3 | 1.38 ° F | 1.59 % |
| | | Space Attic: Attic | 6.38 ° F | 7.25 % |
| | | Average RMSE: | 1.33 kWH/day | 1.71 % |
| | | Average CV(RMSE) | 9.63 % | 1.95 % |
| 16 | 1) Adjusted Lighting and Equipment Schedules and energy use by the refrigerators | Space 1-1: Living Rm. | 1.14 ° F | 1.34 % |
| | 2) Used window library glass (code number > 1000) and added window frames | Space 2-1: Master Bedroom| 1.52 ° F | 1.82 % |
| | | Space 2-3: Bedroom-3 | 1.17 ° F | 1.36 % |
| | | Space Attic: Attic | 6.36 ° F | 7.22 % |
| | | Average RMSE: | 0.94 kWH/day | 1.68 % |
| | | Average CV(RMSE) | 6.81 % | 1.92 % |

7.2.2 Calibrated Monthly Energy Use

Figure 7.6 presents the results of the calibrated monthly average daily energy use, which were the results of RUN # 16. The figure shows that there were some differences between the actual and the calibrated data; the calibrated model under predicted the energy use in June, September, and October, and over predicted the energy use in July, August, November, and December. However, as can be seen in the graph, the profile of the simulated energy use is similar to that of the actual energy use. There was relatively high energy consumption in July, August, and October, while September there was the lowest month. The occupants of the house
reported that they had a vacation (4 days) in September, which helps to explain the low energy use in this month.

Figure 7.6 Comparison Between the Actual Utility Bills and the Run# 16 Simulated Monthly Average Daily Electricity Use from June to December, 2000.

Figure 7.7 shows the total monthly electricity use, and domestic hot water (DHW) electricity use, which repeats the results of RUN # 16. The results of the simulated monthly energy use as compared to the actual energy use were similar to the results of monthly average daily energy use that are presented in Figure 7.6. The simulated results from RUN #16 were considered sufficiently close to the actual data to declare RUN #16 as the calibrated base-case model. Table 7.5 and Figures 7.8 present the results of an annual simulation from RUN #16.
Figure 7.7 Comparison Between the Actual and Run #16 Simulated Electricity Use, including the Domestic Hot Water Energy Use from June to December, 2000.

TABLE 7.5
Calibrated Model (Base Case) Monthly Electricity Use

<table>
<thead>
<tr>
<th>Month</th>
<th>Lighting (kWh)</th>
<th>Equipment (kWh)</th>
<th>Cooling (kWh)</th>
<th>Pump (kWh)</th>
<th>Vent Fans (kWh)</th>
<th>DHW (kWh)</th>
<th>Energy use (kWh/month)</th>
<th>Period (days)</th>
<th>Avg. Energy use (kWh/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>24</td>
<td>129</td>
<td>118</td>
<td>4</td>
<td>13</td>
<td>161</td>
<td>449</td>
<td>31</td>
<td>14.48</td>
</tr>
<tr>
<td>February</td>
<td>22</td>
<td>116</td>
<td>111</td>
<td>3</td>
<td>12</td>
<td>145</td>
<td>409</td>
<td>28</td>
<td>14.61</td>
</tr>
<tr>
<td>March</td>
<td>24</td>
<td>128</td>
<td>165</td>
<td>4</td>
<td>20</td>
<td>142</td>
<td>503</td>
<td>31</td>
<td>16.23</td>
</tr>
<tr>
<td>April</td>
<td>24</td>
<td>129</td>
<td>168</td>
<td>4</td>
<td>18</td>
<td>138</td>
<td>477</td>
<td>30</td>
<td>15.90</td>
</tr>
<tr>
<td>May</td>
<td>24</td>
<td>129</td>
<td>175</td>
<td>4</td>
<td>20</td>
<td>144</td>
<td>496</td>
<td>31</td>
<td>16.00</td>
</tr>
<tr>
<td>June</td>
<td>23</td>
<td>124</td>
<td>122</td>
<td>4</td>
<td>14</td>
<td>150</td>
<td>437</td>
<td>30</td>
<td>14.57</td>
</tr>
<tr>
<td>July</td>
<td>24</td>
<td>129</td>
<td>140</td>
<td>4</td>
<td>16</td>
<td>153</td>
<td>466</td>
<td>31</td>
<td>15.03</td>
</tr>
<tr>
<td>August</td>
<td>24</td>
<td>128</td>
<td>149</td>
<td>4</td>
<td>17</td>
<td>153</td>
<td>475</td>
<td>31</td>
<td>15.32</td>
</tr>
<tr>
<td>September</td>
<td>20</td>
<td>107</td>
<td>89</td>
<td>3</td>
<td>10</td>
<td>134</td>
<td>363</td>
<td>30</td>
<td>12.10</td>
</tr>
<tr>
<td>October</td>
<td>24</td>
<td>129</td>
<td>105</td>
<td>4</td>
<td>12</td>
<td>159</td>
<td>433</td>
<td>31</td>
<td>13.97</td>
</tr>
<tr>
<td>November</td>
<td>23</td>
<td>124</td>
<td>83</td>
<td>4</td>
<td>9</td>
<td>165</td>
<td>408</td>
<td>30</td>
<td>13.60</td>
</tr>
<tr>
<td>December</td>
<td>24</td>
<td>129</td>
<td>112</td>
<td>4</td>
<td>13</td>
<td>163</td>
<td>445</td>
<td>31</td>
<td>14.35</td>
</tr>
<tr>
<td>Jan to Dec.</td>
<td>280</td>
<td>1497</td>
<td>1557</td>
<td>46</td>
<td>174</td>
<td>1807</td>
<td>5361</td>
<td>214</td>
<td>14.88</td>
</tr>
</tbody>
</table>
7.2.3 Calibrated Zone Temperatures

Figures 7.9 and 7.10 present 2-week time-series plots of both measured and simulated zone temperatures in four spaces of the case-study house (i.e., the living room, the master bedroom, bedroom-3, and the attic). All results of the measured data and the Run# 16 simulated zone temperature comparisons are presented in Appendix D. The RMSE and CV(RMSE) for each zone temperature and the average of all zone temperatures are presented in Table 7.4.

From Figures 7.9 and 7.10, it can be seen that the simulated zone temperatures in all spaces were significantly closer to the actual data than the results of Run# 1 (see Figures 7.4 and 7.5). This is especially so for the simulated attic temperatures, which were substantially improved.

Figure 7.8 Base Case Monthly Energy Use: January to December, 2000.
Figure 7.9 Comparison Between the Measured Data and Run #16 Simulated Temperatures of the Living-Dining Room and Bedroom-3.
Figure 7.10 Comparison Between the Measured Data and Run #16 Simulated Temperatures of the Master Bedroom and the Attic.
7.3 Investigation of Energy Efficient Strategies and Results

Once the model was calibrated to the case-study house, nine energy efficiency strategies and two renewable energy systems (i.e., the hybrid PV-T^2 collector system and the photovoltaic system) were then analyzed to determine which were the most efficient. The individual energy efficiency strategies were also combined with other energy efficiency strategies and renewable energy technologies. Descriptions of these energy efficiency strategies and renewable energy systems, as well as their combinations are shown in Table 7.6. Additional information about each measure including the inputs to the DOE-2, F-CHART or PV F-CHART programs can be found in Appendices D and F.

TABLE 7.6
Summary of Building Improvement Strategies

<table>
<thead>
<tr>
<th>Building Improvement Strategy No.</th>
<th>Concept</th>
<th>Strategy</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Lower or eliminate heat coming through the roof | Improve the roof’s insulation | Increase heat resistance of insulation placed behind the roof’s tiles (i.e., not on the 2nd floor ceiling)
1) Strategy 1-1: R-7 fiberglass insulation
2) Strategy 1-2: R-14 fiberglass insulation |
| 2 | Lower or eliminate heat coming through the roof | Improve the ceiling’s insulation in the attic | Increase heat resistance of insulation placed on the 2nd floor ceiling (upgraded from existing R-11 to R-28 fiberglass insulation) |
| 3 | Lower or eliminate heat coming through the walls | Improve the wall’s heat resistance | Use high R-value light-weight concrete block
1) Strategy 3-1: 4”(10 cm) light-weight concrete block
2) Strategy 3-2: 6”(15 cm) light-weight concrete block
3) Strategy 3-3: 4” light-weight concrete block with insulation on the outside wall
4) Strategy 3-4: 4” light-weight concrete block with insulation on the inside wall |
TABLE 7.6
(Continued)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Lower or eliminate heat coming through the windows</td>
<td>Use Low-e windows</td>
<td>Replace single-pane clear glass with double-pane low-e glazing (tinted)</td>
</tr>
<tr>
<td>5</td>
<td>Lower or eliminate heat coming through the windows</td>
<td>Use shading devices for the windows</td>
<td>Install vertical and horizontal fins for windows on south, east and west</td>
</tr>
<tr>
<td>6</td>
<td>Balance/lower interior temperatures using high thermal mass exterior walls</td>
<td>High thermal mass wall</td>
<td>Increase mass of existing wall (4” brick); 1) Strategy 6-1: 8”(20 cm) brick wall 2) Strategy 6-2: 12”(30 cm) brick wall</td>
</tr>
<tr>
<td>7</td>
<td>Improve efficiency of the air conditioning system</td>
<td>Use highly energy efficient air conditioning systems</td>
<td>Use SEER-12 air conditioning systems</td>
</tr>
<tr>
<td>8</td>
<td>Improve efficiency of the lighting system</td>
<td>Use electronic ballasts</td>
<td>Replace magnetic ballasts of 32 W T-9 Circline lamps with electronic ballasts</td>
</tr>
<tr>
<td>9</td>
<td>Improve efficiency of the refrigerators</td>
<td>Replace existing refrigerators with highly energy efficient refrigerators</td>
<td>Use the highest standard refrigerators (with the same volume of existing ones)</td>
</tr>
<tr>
<td>10</td>
<td>[Renewable Energy Technology (RET) 1] Generate on-site thermal (DHW) and electrical energy</td>
<td>Install a hybrid PV-T² collector system</td>
<td>A hybrid PV-T² collector system was installed to supply all DHW needs. The electricity output from the system is a supplemental energy for the base case.</td>
</tr>
<tr>
<td>11</td>
<td>[Renewable Energy Technology (RET) 2] Generate on-site electric energy</td>
<td>Install a photovoltaic system</td>
<td>A photovoltaic system was installed to supply electricity to the base case.</td>
</tr>
<tr>
<td>12</td>
<td>[Renewable Energy Technology (RET) 3] Generate on-site thermal (DHW) and electrical energy</td>
<td>Install a hybrid PV-T² collector system and a photovoltaic system</td>
<td>To increase the renewable electricity supply by the RET-1 to the base case, a photovoltaic system (RET-2) was included in the system.</td>
</tr>
</tbody>
</table>
TABLE 7.6
(Continued)

<table>
<thead>
<tr>
<th>Combination</th>
<th>Generate on-site thermal (DHW) by flat plate solar collector</th>
<th>Install a flat plate solar collector system (a typical type of solar collectors)</th>
<th>To increase the thermal efficiency of the solar DHW system (The hybrid PV-T² collector was not included in this strategy)</th>
</tr>
</thead>
</table>
| Combination A | Combination of strategies that improve building’s envelope, building systems, and a major appliance. | Combine strategies 2, 3-4, 7, 8, and 9 | -Increase 2nd floor ceiling’s insulation (R-28)
-Weight-concrete walls with insulation on the inside wall
-Energy efficient air conditioners
-Electronic ballasts
-Energy efficient refrigerators
-Low-e windows |
| Combination B | Combination of strategies that improve the building’s envelope (including low-e windows), building systems, and a major appliance | Combination A + Strategy 4 (low-e windows) | -Increase 2nd floor ceiling’s insulation (R-28)
-Weight-concrete walls with insulation on the inside wall
-Energy efficient air conditioners
-Electronic ballasts
-Energy efficient refrigerators
-Low-e windows |
| Combination C | Combination of strategies that improve the building’s envelope, building systems, a major appliance, and shading devices | Combination A + Strategy 5 (shading devices) | -Increase 2nd floor ceiling’s insulation (R-28)
-Weight-concrete walls with insulation on the inside wall
-Energy efficient air conditioners
-Electronic ballasts
-Energy efficient refrigerators
-Shading devices |
| Combination D | Combination of strategies that improve the building’s envelope (including low-e windows), building systems, a major appliance, and shading devices | Combination A + Strategies 4 and 5 | -Increase 2nd floor ceiling’s insulation (R-28)
-Weight-concrete walls with insulation on the inside wall
-Energy efficient air conditioners
-Electronic ballasts
-Energy efficient refrigerators
-Low-e windows
-Shading devices |
| Combination E | Combination of energy efficiency measures and a renewable energy system. | Combination D with PV-T² collector system | Energy reduction from all strategies (except 1, 2, and 6) and supplemental energy from the PV-T² collector system |
The hourly data for one-day (September 17, 2000) that included simulated zone temperatures from the DOE-2 simulation are used to present the impact of the building’s improvement strategies on the space temperatures. September 17, 2000, was chosen because it was a clear day. The solar load, which is high on clear days, was a target for reduction by energy efficiency strategies, as presented in Table 7.6. Weather conditions for September 17, 2000, which include the dry-bulb temperature, relative humidity, wind speed, and solar radiation, are all shown in Figure 7.11.

The DOE-2 input data and the output (the building energy performance summary or BEPS report) of those individual energy efficiency strategies that changed the base-case model are presented in Appendix D. The BEPS report for combinations A through G are also presented in Appendix D. The F-Chart and PV-F Chart’s input data and results are all presented in Appendix F.

The following sections present the results from the building’s improvement strategies shown in Table 7.6. Sections 7.3.1 to 7.3.9 present the results from the analysis of individual energy efficiency strategies. Sections 7.3.10 to 7.3.12 present the results from the analysis of renewable energy systems (i.e., the hybrid PV-T² collector system and the photovoltaic system). Sections 7.3.13 to 7.3.19 present the results of the analysis of these combinations of the energy efficiency strategies and renewable energy systems.

TABLE 7.6
(Continued)

<table>
<thead>
<tr>
<th>Combination</th>
<th>Description</th>
<th>Description</th>
<th>Energy reduction from all strategies (except 1,2, and 6) and supplemental energy from the photovoltaic system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination F</td>
<td>Combination of energy efficiency measures and a renewable energy system</td>
<td>Combination D with photovoltaic system</td>
<td>Energy reduction from all strategies (except 1,2, and 6) and supplemental energy from the photovoltaic system</td>
</tr>
<tr>
<td>Combination G</td>
<td>Combination of energy efficiency measures and renewable energy systems</td>
<td>Combination D with PV-T² collector system and photovoltaic system</td>
<td>Energy reduction from all strategies (except 1,2, and 6) and supplemental energy from the PV-T² collector system and the photovoltaic system</td>
</tr>
</tbody>
</table>
7.3.1 Strategy 1: Improve the Roof’s Insulation

Strategy 1 was one of the energy efficiency strategies that aimed to improve the case-study building’s envelope. The case-study house had no insulation installed behind its concrete roof tiles. Concrete roof tile is a high thermal mass building material that can store and transfer the solar load to the attic, and then to the living spaces that are below that attic. Thus, placing insulation behind the roof tile was analyzed to see how well it blocked or minimized the solar load from the attic to the living spaces. It was anticipated that this should help lower the second
floor’s air temperatures which were normally high, especially during the daytime. This strategy would also help reduce air conditioning energy use in those spaces under the attic. R-7 and R-14 fiberglass insulations were inserted into the DOE-2 model as indicated in Appendix D. The results of the R-7 and R-14 insulation addition are shown in Sections 7.3.1.1 and 7.3.1.2

7.3.1.1 Strategy 1-1: R-7 Fiberglass Insulation Underside the Roof Tiles

Figure 7.12 shows the simulated annual energy use of the improved roof insulation (Strategy 1-1), as compared to the base-case house. The Building Energy Performance Summary (BEPS) of the improved Strategy 1-1 as compared to the base case is also shown in Table 7.7. From Figure 7.12 and Table 7.7, it can be seen that energy used for space cooling and ventilation fans was reduced by 1.8 and 1.2 percent respectively. This resulted in a decrease of total energy consumption by 0.5 percent, or 28 kWh per year, which had modest decrease on the cooling energy use and even less decrease on the annual energy use.

TABLE 7.7

Building Energy Performance Summary: Base Case vs. Strategy 1-1

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th>Energy Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1454</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>163</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>5247</td>
</tr>
</tbody>
</table>
Figure 7.12 Comparison of Annual Energy Use in the Base Case and Building Improvement Strategy 1-1.

Figure 7.13 shows the simulated zone temperatures of the improved model as compared to the base case. In the lower right graph in Figure 7.13, it can be seen that, in general, air temperatures in the attic dropped dramatically after the R-7 insulation was installed on the underside of the roof tiles. The peak temperature, which occurred around noon, dropped from 115 ºF to approximately 95 ºF. However, the peak of 95 ºF occurred over a longer period (around 2 hours – from noon to 2:00 p.m.).

The decreased temperatures in the attic resulted in a small decrease of temperatures in the master bedroom and bedroom-3 in both the daytime and the evening, as shown in the lower left and upper right graphs in Figure 7.13, respectively. Bedroom-3 was not conditioned, so the decreased temperatures in this space did not contribute to the energy reduction in the air conditioning system. Instead, the reduction was due to the lower cooling loads on the conditioned spaces (i.e. the master bedroom and bedroom-2). In the first floor space, the living room’s temperature did not change, as shown in the upper left graph of Figure 7.13.
7.3.1.2 Strategy 1-2: R-14 fiberglass Insulation Underside the Roof Tiles

Figure 7.14 shows the annual energy use of the improved model using Strategy 1-2, R-14 fiberglass insulation as compared to the base case. The BEPS output of the improved model Strategy 1-2 as compared to the base case is shown in Table 7.8. From Figure 7.14 and Table 7.8, energy used for space cooling and ventilation fans was reduced by 2.5 and 3 percent respectively. This resulted in a small decrease of total energy consumption by 0.8 percent, or
42 kWh per year, which had a small, but noticeable impact on the cooling energy use, and a very small impact on the annual energy use.

Figure 7.14 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 1-2.

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th>Energy Saved</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basecase kWh</td>
<td>Improved Model kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
<td>0</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1443</td>
<td>37</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>5233</td>
<td>42</td>
</tr>
</tbody>
</table>

TABLE 7.8

Building Energy Performance Summary: Base Case vs. Strategy 1-2
Figure 7.15 shows the simulated zone temperatures of the improved model as compared to the base case. The impact on the spaces’ temperatures were similar to the results of Strategy 1-1, with the exception of the lower right graph of Figure 7.15 where it can be seen that, in general, air temperatures in the attic were further reduced from Strategy 1-1. The peak temperature, which occurred around noon, dropped from 115 °F to approximately 92 °F. This was a 3 °F temperature decrease from the Strategy 1-1. From the lower left and upper right graphs in Figure 7.15, it can be seen that there was little further decrease in temperature in the master bedroom and bedroom-3, in either the daytime or evening, as compared to Strategy 1-1. For the first floor space, the living room’s temperatures was not changed, as was the case with
Strategy 1-1 (shown in the upper left graph of Figure 7.15).

The small impact of Strategies 1-1 and 1-2 on the living spaces’ temperatures and the building’s energy use is probably due to the fact that there already was R-11 fiberglass insulation installed on the second floor ceiling (see Figure 5.2). Installing insulation behind the roof tiles did reduce air temperatures in the attic, but it did not significantly reduce air temperatures in the living spaces or in the building energy use.

7.3.2 Strategy 2: Improve the 2nd Floor Ceiling Insulation

Strategy 2 aimed to increase the heat resistance of the insulation that is placed on the 2nd floor ceiling (upgraded from the existing R-11 to R-28 fiberglass insulation). It was learned from the results of Strategies 1-1 and 1-2 that installing insulation on the back of the roof tiles did not significantly reduce the living spaces’ air temperatures or the building’s energy use. Strategy 2 was therefore an attempt to see if there was a difference between upgrading the 2nd floor ceiling’s insulation and installing insulation on the back of the roof tiles.

Figure 7.16 shows the annual energy use of the improved model entitled Strategy 2, as compared to that of the base case. The BEPS output of the improved model Strategy 2 as compared to the base case is shown in Table 7.9. From Figure 7.16 and Table 7.9, energy use for space cooling and ventilation fans were reduced by 3.3 and 3.0 percent respectively. This resulted in a decrease of total energy consumption by 1 percent, or 54 kWh per year, which had small impact on the cooling energy use, and an even smaller impact on the annual energy use.

Figure 7.17 shows the simulated zone temperatures of the improved model as compared to the base case. The results of the air temperatures in the living spaces (i.e., the master bedroom, bedroom-3, and the living room) were similar to the results of Strategies 1-1 and 1-2. There were small decreases in zone temperatures in the living spaces on the second floor, but not in the living room on the ground floor. However, the temperatures in the attic were totally different from those of Strategies 1-1 and 1-2, as expected. In the lower right graph of the Figure 7.17, it can be seen that in general, air temperatures in the attic increased slightly from the base case, which is probably due to the decrease cooling of the attic by the space below. The peak temperature, which occurred around noon, increase from 115 °F to approximately 116 °F. The increase in insulation prevented the cooling from the bedrooms below, thus the attic temperatures rose higher.
Figure 7.16 Comparison of Annual Energy Use of the Base Case and Building Improvement Strategy 2.

TABLE 7.9
Building Energy Performance Summary: Base Case vs. Strategy 2

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1.0</td>
</tr>
</tbody>
</table>
In summary, from the results of Strategies 1-1, 1-2 and 2, it can be seen that the living spaces’ air temperatures and building energy use slightly deceased from the base case. Strategy 2 yielded the highest reduction in building energy use (1 percent) as compared to Strategy 1-1 (0.5 percent) and Strategy 1-2 (0.8 percent).

Figure 7.17 Comparison Between Base Case and Strategy 2 Space Temperatures.

7.3.3 Strategy 3: Improve Wall Insulation

Strategy 3 was another of the energy efficiency strategies that aimed to improve the case-study building’s envelope. The base case’s exterior walls were 4-inch brick walls
plastered with cement on both the exterior and interior sides of the walls. Four light-weight concrete wall systems were investigated in this Strategy as described in Table 7.6. The four following sections present the results of each light-weight concrete wall system.

7.3.3.1 Strategy 3-1: 4” (10 cm) Light-weight Concrete Block

Strategy 3-1 replaced the typical 4-inch brick walls, which are used in Thai housing, with light-weight concrete block walls. Light-weight concrete blocks are considered as a new construction material in Thai housing industry. Most walls used in Thai houses are 4-inch brick and concrete block. This strategy endeavored to investigate the impact of light-weight concrete block walls on space temperatures and building energy use of the base case.

Figure 7.18 shows the annual energy use of the improved model Strategy 3-1 as compared to that of the base case. The BEPS of the improved model Strategy 3-1 as compared to the base case is shown in Table 7.10. From Figure 7.18 and Table 7.10, it can be seen that energy used for space cooling and ventilation fans were reduced by 24.5 and 29.1 percent respectively. This resulted in a decrease of total energy consumption by 7.8 percent, or 411 kWh per year.
Figure 7.19 shows the simulated zone temperatures of the improved model as compared to the base-case simulation. From Figure 7.16, it can be seen that, in general, air temperatures in all spaces of the improved model were higher than those of the base case. However, as was mentioned earlier, the BEPS reported a reduction in air conditioning energy use as shown in the Table 7.10. Since there were no other adjustments made, except to the walls on the DOE-2 Strategy 3-1 input file, the reduction of energy consumption by the air conditioning systems occurred because of reduced cooling loads from the walls. One reason for this is that the light-weight concrete block walls store less heat than the 4-inch brick walls. The light-weight concrete had a density of approximately 30 lb/ft³ as compared to that of to 120 lb/ft³ of the brick walls (LBNL, 1982 p. X.B.5). Since the A/C is only run in the evenings the light weight walls take less time to cool down and therefore use less cooling energy.

The upper right graph in Figure 7.16 shows the space temperatures of bedroom-3, an unconditioned space. From the graph, the results of the improved model Strategy 3-1 show that the improved model’s space temperatures from midnight to 7:00 a.m. were significantly lower than that of the base case. The improved model’s space temperatures were also slightly lower than that of the base case from around 10:00 p.m. to 12:00 a.m. Bedroom-3, bedroom-2 and the master bedroom are adjacent spaces on the second floor. Thus, this caused the reduction in energy use of the air conditioning systems, as reported by the BEPS in Table 7.10.

TABLE 7.10

Building Energy Performance Summary: Base Case vs. Strategy 3-1

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th>Energy Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1117</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>117</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>4864</td>
</tr>
</tbody>
</table>
7.3.3.2 Strategy 3-2: 6” (15 cm) Light-weight Concrete Block

Strategy 3-2 was similar to Strategy 3-1, with the difference that 6-inch light-weight concrete blocks were used instead of 4-inch light-weight concrete blocks. Increasing the thickness of the walls resulted in higher insulation levels. This strategy investigated the change in the building’s energy use and space temperatures from Strategy 3-2.

Figure 7.20 shows the annual energy use of the improved model Strategy 3-2 as
compared to that of the base-case simulation. The BEPS output of the improved model Strategy 3-2 as compared to the base case is shown in Table 7.11. From Figure 7.20 and Table 7.11, it can be seen that the energy used for space cooling and ventilation fans was reduced by 24.8 and 29.7 percent, respectively. This resulted in a decrease of total energy consumption of 7.9 percent or 416 kWh per year. The results from Strategy 3-2 are similar to the results from Strategy 3-1, which had a reduction of 7.8 percent in building energy use. Thus, there was no significant difference in the reduction of the building’s energy use by increasing the thickness of the light-weight concrete walls from 4 to 6 inches. The results of the space temperatures, which are shown in Figure 7.21, were also similar to the results obtained from Strategy 3-1.

![Figure 7.20](image)

Figure 7.20 Comparison of Annual Energy Use of the Base Case to Building Improvement Strategy 3-2.
Figure 7.21 Comparison Between the Base Case and Strategy 3-2 Space Temperatures.
TABLE 7.11

Building Energy Performance Summary: Base Case vs. Strategy 3-2

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td>Energy Saved kWh & (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1113</td>
<td>367</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>116</td>
<td>49</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>4859</td>
<td>416</td>
<td>7.9</td>
<td></td>
</tr>
</tbody>
</table>

7.3.3.3 **Strategy 3-3: 4” (15 cm) Light-weight Concrete Block Wall with Exterior Insulation**

The results of Strategy 3-1 and 3-2 show the 6-inch light-weight concrete blocks yielded very little difference in space temperatures or building energy use versus the 4-inch wall. Thus, the 4-inch light-weight blocks were used in this strategy to further improve the effectiveness of the wall. Thus, this strategy was similar to Strategy 3-1 except that an insulation layer and siding material were incorporated into the walls. R-10 foam boards (Polystyrene) and non-asbestos fiber cement boards were installed on the exterior side of the wall. Plastic sheets (vapor seal) would be installed between the foam boards and cement boards to block moisture out. The details of the wall’s thermal properties are presented in Appendix D.

Figure 7.22 shows the annual energy use of the improved model Strategy 3-3 as compared to that of the base-case simulation. The BEPS output of the improved model Strategy 3-3 as compared with the base-case simulation is shown in Table 7.12. From Figure 7.22 and Table 7.12, energy used for space cooling and ventilation fans was reduced by 25.6 and 29.7 percent, respectively. This resulted in the decrease of total energy consumption by 8.1 percent, or 428 kWh per year. This was a small improvement from the Strategy 3-1 that saw a 7.8 percent or 411 kWh reduction in annual energy use.
Figure 7.22 Comparison Between the Annual Energy Use of the Base Case and Building Improvement Strategy 3-3.

Table 7.12
Building Energy Performance Summary: Base Case vs. Strategy 3-3

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
</tr>
</tbody>
</table>
The space temperatures of Strategy 3-3 are shown in Figure 7.23. The temperatures of the master bedroom and the attic were similar to Strategies 3-2 and 3-1. However, the temperatures in the living room and bedroom-3 were slightly different from Strategies 3-1 and 3-2. The living room temperatures from midnight to 6:00 a.m. were slightly higher than those in the base case, which were different from the results presented by Strategies 3-1 and 3-2. The space temperatures in this period were approximately the same as those in the base case.

Figure 7.23 Comparison Between the Base Case and Strategy 3-3 Space Temperatures.
For bedroom-3, the space temperature profile shifted slightly up from Strategies 3-1, and 3-2. The results of the bedroom-3 temperatures in Strategies 3-1 and 3-2 from midnight to 6:00 a.m. were lower than those in the base case, but Strategy 3-3’s bedroom-3 temperatures were higher than those in the base case.

In summary, although there was a reduction of building energy use (from the air conditioning systems) that further improved from Strategies 3-1 and 3-2, there were also increases in space temperatures in the living room and bedroom-3. Thus, both of these spaces would actually be less comfortable with Strategy 3-3 during those periods when the A/C system was turned-off.

7.3.3.4 Strategy 3-4: 4” (15 cm) Light-weight Concrete Block Walls with Interior Insulation

Strategy 3-4 was similar to Strategy 3-3, but the wall’s insulation was located in the interior. The siding material that was used in Strategy 3-3 was not necessary, since the insulation was inside. Gypsum boards were used as an interior finishing material, which covered the insulation layer. This strategy was performed in order to investigate the effects of interior insulation on the building’s energy consumption and space temperatures, as compared to Strategy 3-3 which had the insulation on the exterior side.

Figure 7.24 shows the annual energy use of the improved model entitled Strategy 3-4, as compared to that of the base case. The BEPS output of the improved model Strategy 3-4, as compared to the base case is shown in Table 7.13. From Figure 7.24 and Table 7.13, it can be seen that the energy used for space cooling and ventilation fans was reduced by 28.6 and 33.3 percent, respectively. This resulted in a decrease of total energy consumption by 9.1 percent, or 479 kWh per year. The results of Strategy 3-3 show that it can reduce the annual energy consumption by 8.1 percent. Thus Strategy 3-4 can save one percent more of the building’s energy use than Strategy 3-3.

The results of the space temperatures were similar to the results from Strategy 3-3. There were temperature increases during those periods when the A/C was turned-off in all spaces as compared to the base case’s temperatures as shown in Figure 7.25.
Figure 7.24 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 3-4.

TABLE 7.13

Building Energy Performance Summary: Base Case vs. Strategy 3-4

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case</td>
</tr>
<tr>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
</tr>
</tbody>
</table>
7.3.4 Strategy 4: Low-E Windows

Strategy 4 was one of the energy efficiency strategies that aimed to improve the building’s envelope. Single-pane clear glass windows with wooden frames were replaced with double-glazed Low-E glass windows with thermal-break aluminum frames. Both the thermal and the optical performance of the Low-E windows are an improvement over that of single-pane clear glass. Double-pane windows with inert gas (argon) between the panes have a greater...
insulating value (R-value) than the existing windows. The Low-E coating on the inside of the outdoor pane of glass selectively transmits the sun’s visible light (short-wave radiation) while reflecting a majority of radiant heat (long-wave infrared radiation) (Ander, G., 1995).

Figure 7.26 shows the annual energy use of the improved model entitled Strategy 4 as compared to that of the base-case simulation. The BEPS output of the improved model Strategy 4 as compared to the base case is shown in Table 7.14. From Figure 7.26 and Table 7.14, it can be seen that the energy used for space cooling and ventilation fans was increased by 0.5 and 0.6 percent, respectively. This resulted in an increase of total energy consumption by 0.2 percent, or 9 kWh per year.

Figure 7.26 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 4.
TABLE 7.14
Building Energy Performance Summary: Base Case vs. Strategy 4

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th>Energy Saved</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
<td>0</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1488</td>
<td>-8</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>166</td>
<td>-1</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>5284</td>
<td>-9</td>
</tr>
</tbody>
</table>

However, it can be seen from Figure 7.27 that the temperatures in the living spaces, where the Low-E windows were installed, decreased in the daytime, especially the temperatures in the living room where there was a large area of glass on the south wall (see Figure 5.11). Living room temperatures actually decreased in the nighttime as well, but to a smaller degree when compared to the daytime. This was probably because there was less heat stored in the space (i.e., in the concrete floor and walls) in the daytime. Thus, there was less heat released during the nighttime when the outdoor temperature was lower than the living room temperature.

As previously mentioned, the energy used by the air conditioning system actually slightly increased due to the change of windows. This was because the Low-E windows effectively decreased heat gain through windows in the daytime, but the air conditioning systems were only operated during the nighttime. Thus, the air conditioning systems did not benefit from the Low-E windows, since the cooling load was not reduced. Figure 7.28 shows the DOE-2 report of heat gains through the south facing window of the master bedroom. In Figure 7.28, the results of the base-case windows (i.e., single-pane window) are compared to the results of Strategy 4 (double-pane Low-E window).

During the daytime, from 7:00 a.m. to 6:00 p.m., the Low-E window performed better than the single-pane window; the total heat gain through the Low-E window was lower than that of the single-pane window, especially at the time of peak load (i.e., 1:00 p.m.). There was a heat gain at the rate of approximately 330 Btu/h through the single-pane window, while there
was a heat gain at the rate of approximately 150 Btu/h through the Low-E window. This shows that the Low-E window can reduce heat gain by approximately 55 percent during the peak load time.

Figure 7.27 Comparison Between the Base Case and Strategy 4 Space Temperatures.
During the nighttime there was no solar radiation and thus the total heat gain/loss was equal to the conductive heat gain/loss. From Figure 7.25, it can be seen that from 6:00 p.m. to approximately 7:00 a.m., there was more heat lost from the single-pane window than from the double-pane Low-E window. This is because the ambient temperatures were lower than the master bedroom temperatures during those periods. From Figure 7.11, it can be seen that the ambient temperatures from midnight to 7:00 a.m. ranged of 75 °F to 80 °F (mostly below 77.5 °F) while the room temperature was around 78.8 °F (the thermostat set-point temperature).

Thus, the ambient temperatures were lower than the room temperatures. This caused a heat loss from the space to the environment. Double-pane Low-E glass, which has higher heat resistance than single-pane glass, allowed the heat to be transmitted at the lower rate. Thus, there was more heat lost from the base-case window than from Strategy 4.
In summary, Low-E windows reduced space temperatures during the daytime. Thus, their use could help improve thermal comfort conditions in these spaces. However, during the nighttime, there are periods when the ambient temperatures were lower than the room temperatures of the conditioned spaces. In this situation, Low-E windows transmitted less heat to the environment than the single-pane windows. Thus, there was a higher cooling load on the air conditioning system, because the inside temperature of the single-pane window would have been lower than the double-pane window. However, there was only a 0.2 percent increase in the energy consumption of the air conditioning system.

7.3.5 Strategy 5: Shading Devices on Windows

In Strategy 5 shading devices were installed on all windows except the north facing windows and those windows that were already shaded, such as the windows that opened to the garage. In the simulation a shading device for a window comprised of one horizontal fin and two vertical fins. Horizontal fins were also installed as “building shades”. They were placed between the two pillars that were situated in front of the living room and the master bedroom. These fins were used to block solar radiation to the two spaces that had large areas of glass (glass doors) on the south walls. The details of the shading devices (i.e., the DOE-2 input data) are presented in Appendix D.

Figure 7.29 shows the annual energy use of the improved model for Strategy 5, as compared to that of the base-case simulation. The BEPS output of the improved model Strategy 5 as compared to the base case is shown in Table 7.15. From Figure 7.29 and Table 7.15, it can be seen that the energy used for space cooling and ventilation fans decreased by 1.7 and 1.8 percent, respectively. This resulted in a decrease of total energy consumption by 0.5 percent, or 28 kWh per year.

For the space temperatures, it can be seen from Figure 7.30 that the shading devices slightly decreased the master bedroom and bedroom-3 space temperatures in the daytime. This caused a reduction of 0.5 percent in the energy consumption by the air conditioning systems which were operated during the nighttime. Therefore, there was actually a small reduction in the cooling loads due to the shading devices. Figure 7.31 shows that the heat gained through the window was lowered if the shading devices were installed. At the peak load time of 1:00 p.m., heat was gained at the rate of approximately 330 Btu/h through the window without the shading device, while heat was gained at the rate of approximately 200 Btu/h through the
window with the shading device. This shows that shading devices can reduce the heat gains by approximately 40 percent during the peak load times. However, at the case-study house, since the air conditioning systems were only run in the evenings, this had a small effect on reducing the electricity use.

![Comparison of the Annual Energy Use of Base Case and Building Improvement Strategy 5.](image)

Figure 7.29 Comparison of the Annual Energy Use of Base Case and Building Improvement Strategy 5.
Figure 7.30 Comparison between the Base Case and Strategy 5 Space Temperatures.
TABLE 7.15
Building Energy Performance Summary: Base Case vs. Strategy 5

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Baseline Site Energy Consumptions</th>
<th>Improved Model Site Energy Consumptions</th>
<th>Energy Saved kWh</th>
<th>Energy Saved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>(%)</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1455</td>
<td>25</td>
<td>1.7</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>162</td>
<td>3</td>
<td>1.8</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>5247</td>
<td>28</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 7.31 Comparison Between the Base Case and Strategy 5 Heat Gain Through the South Facing Window of Space 2-1.
7.3.6 Strategy 6: High Thermal Mass Walls

In the study of the thermal conditions in old and new temples in Thailand by Sreshthaputra (2003) it was found that the old Thai temples that had high thermal mass brick walls (2.5 ft. of thickness), which provided lower annual average indoor temperatures than newer temples that were constructed with 4-inch brick walls. Thus, Strategy 6 aimed to investigate the effects of high thermal mass walls on space temperatures, as well as building energy uses in the case-study house.

The case-study house’s walls were constructed with 4-inch bricks. In this study, eight-inch and twelve-inch bricks were investigated (i.e., the walls were 2 and 3 times thicker than the base case). Sections 7.3.6.1 and 7.3.6.2 present the results of the eight-inch and twelve-inch walls, respectively.

7.3.6.1 Strategy 6-1: High Thermal Mass Wall (8” Brick)

Figure 7.32 shows the annual energy use of Strategy 6-1, as compared to that of the base-case simulation. The BEPS output of Strategy 6-1 as compared to the base case is shown in Table 7.16. From Figure 7.32 and Table 7.16, it can be seen that the energy used for space cooling and ventilation fans increase by 3.5 and 7.3 percent, respectively. This resulted in an increase of total energy consumption by 1.2 percent, or 64 kWh per year.

For space temperatures, the daily temperature profiles of the living spaces significantly changed from those of the base case. From Figure 7.33 it can be seen that, in general, the living space temperatures in the daytime decreased, which is in contrast to the nighttime space temperatures that increased. The changes were more obvious in the second floor spaces (i.e., the master bedroom and bedroom-3).

For the living room, which was on the ground floor, there was a slight increase of room temperature (approximately 0.5 °F) from midnight to 9:00 a.m. From 9:00 a.m. to 7:00 p.m., Strategy 6-1’s space temperatures were slightly lower (approximately 1 °F) than those of the base-case simulation. After 7:00 p.m., space temperatures in Strategy 6-1 and the base-case simulation did not differ.
Figure 7.32 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 6-1.

TABLE 7.16

Building Energy Performance Summary: Base Case vs. Strategy 6-1

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td>Energy Saved kWh</td>
<td>(%)</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1532</td>
<td>-52</td>
<td>-3.5</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>177</td>
<td>-12</td>
<td>-7.3</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>5339</td>
<td>-64</td>
<td>-1.2</td>
</tr>
</tbody>
</table>
For the master bedroom and bedroom-3, space temperatures in Strategy 6-1 were higher than those of the base case from midnight to 10:00 a.m. The increase of temperatures was at its peak from 5:00 to 7:00 a.m., when there was a temperature difference of approximately 2 °F. The change in temperatures during this period could be seen only in bedroom-3’s graph, since the master bedroom was conditioned during this period. In the daytime, however, there was a significant decrease in the master bedroom and bedroom-3’s space temperatures. For bedroom-3, Strategy 6-1’s space temperatures were lower than those of the base case, from 10:00 a.m. to
midnight. The decrease of temperatures was at its peak from 4:00 to 7:00 p.m., when there was
a temperature difference of approximately 3 °F. For the master bedroom, the space
temperatures were also significantly decreased from those of the base case, from 9:00 a.m. to
6:00 p.m. The decrease of temperatures was at its peak in the afternoon (from 2:00 to 6:00
p.m.) when there was a temperature difference of approximately 3 to 3.5 °F. Attic temperatures
increased slightly during the nighttime from those of base case. In general, the high thermal
mass walls which were below the attic did not affect attic temperatures.

In summary, a high thermal mass wall caused an increase in the building’s energy use
through the air conditioning system, since nighttime space temperatures were increased because
the thermal mass captured more of the daytime heating, which the air conditioning systems then
needed to remove during the evening. However, there was a significant decrease in space
temperatures especially in the second floor spaces. Thus, a high thermal mass wall can improve
comfort conditions during the daytime, however it increased air conditioning load in the
simulated case-study house.

7.3.6.2 Strategy 6-2: High Thermal Mass Wall (12” Brick)

Figure 7.34 shows the annual energy use of Strategy 6-2 as compared to that of the
base-case simulation. The BEPS output of Strategy 6-2 as compared with the base case is
shown in Table 7.17. From Figure 7.34 and Table 7.17, it can be seen that the energy used for
space cooling and ventilation fans increased by 0.4 and 3.0 percent respectively. This resulted
in an increase of total energy consumption by 0.2 percent, or 11 kWh per year.

Figure 7.35 shows the results of the Strategy 6-2’s space temperatures as compared to
those of the base-case simulation. The results show that the Strategy 6-2 space temperatures
were very similar to the results of Strategy 6-1, showing a slightly larger decrease in the master
bedroom’s temperatures in Strategy 6-2. The master bedroom’s peak temperatures, which
occurred from 3:00 p.m. to 6:00 p.m., were reduced by approximately 4 °F, while there was a
decrease in the peak temperature of 3-3.5 °F in Strategy 6-1.

The results of Strategy 6-1 and 6-2 show that, in case-study house, the high thermal
mass walls did not reduce the building’s energy use. However, they could significantly improve
the daytime thermal comfort in these spaces especially in the second floor spaces. Eight-inch
Figure 7.34 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 6-2.

TABLE 7.17

Building Energy Performance Summary: Base Case vs. Strategy 6-2

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
</tr>
</tbody>
</table>
and twelve-inch brick walls yielded similar results for the building’s energy use and space temperatures, with the twelve-inch wall showing the largest effect.

Figure 7.35 Comparison Between the Base Case and Strategy 6-2 Space Temperatures.
7.3.7 Strategy 7: Efficient Air Conditioning Systems

This strategy aimed to improve the building’s air conditioning systems. Energy use by the air conditioning systems in the base-case house accounted for approximately 30 percent of the total building’s energy use. Existing SEER-10 air conditioning systems were replaced with SEER-12 air conditioning systems in order to improve the energy efficiency of these systems.

Figure 7.36 shows the annual energy use of the improved model entitled Strategy 7 as compared to that of the base-case simulation. The BEPS output of the improved model Strategy 7, as compared to the base-case simulation is shown in Table 7.18. From Figure 7.36 and Table 7.18, it can be seen that the energy used for space cooling decreased by 12.6 percent. This resulted in a decrease of total energy consumption by 3.5 percent, or 187 kWh per year. No significant change occurred in the space temperature profiles.

Figure 7.36 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 7.
TABLE 7.18

Building Energy Performance Summary: Base Case vs. Strategy 7

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Base case kWh</th>
<th>Improved Model kWh</th>
<th>Energy Saved kWh</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>280</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1293</td>
<td>187</td>
<td>12.6</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>165</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>5088</td>
<td>187</td>
<td>3.5</td>
</tr>
</tbody>
</table>

7.3.8 Strategy 8: Electronic Ballasts

This strategy aimed to improve the building’s lighting system. The base-case house’s lighting systems used fluorescent lamps as its lighting source. Fluorescent lamps are very energy efficient. However, the fluorescent lamps in the case-study house were connected to magnetic ballasts. These magnetic ballasts are less energy efficient than electronic ballasts. Replacing the magnetic ballasts with electronic ballasts improves the overall efficiency of the lighting system. Thus, the energy use for lighting was reduced. Besides saving energy through the replacement of the electronic ballasts, electronic ballasts are often less noisy when operating (Stein, B. and J.S. Reynolds, 1992).

Figure 7.37 shows the annual energy use of Strategy 8 as compared to that of the base-case simulation. The BEPS output of Strategy 8 as compared to the base case is shown in Table 7.19. From Figure 7.37 and Table 7.19, it can be seen that the energy used for the lighting system decreased by 13.2 percent. This resulted in a decrease of total energy consumption by 0.8 percent, or 40 kWh per year.
Figure 7.37 Comparison of the Annual Energy Use of the Base Case and Building Improvement Strategy 8.

TABLE 7.19
Building Energy Performance Summary: Base Case vs. Strategy 8

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
</tr>
</tbody>
</table>
7.3.9 Strategy 9: High Efficiency Refrigerators

This energy efficiency strategy replaced the existing refrigerators with energy efficient models. There were two refrigerators in the case-study house. The first one, in the kitchen, had a volume of 14 ft³ and a rated annual energy use of 657 kWh per year. The second one, in the second floor hall, had a volume of 6.5 ft³ and a rated annual energy use of 427 kWh per year. The first refrigerator was replaced with a 14.54 ft³ refrigerator that had a rated annual energy use of 372 kWh per year. The second refrigerator was replaced with a 4.9 ft³ refrigerator that had a rated annual energy use of 316 kWh per year. The second new refrigerator’s size was smaller than that of the existing one because it was reported by the occupants that the refrigerator was only used to refrigerate a few small items such as medicine and milk.

Figure 7.38 shows the annual energy use of the improved model entitled Strategy 9 as compared to that of the base case. The BEPS of the improved model Strategy 9 as compared to the base case is shown in Table 7.20. From Figure 7.38 and Table 7.20, it can be seen that the

![Figure 7.38](image-url)
The reduction of energy use by the new refrigerators resulted in a decrease in the sensible loads from the heat that the refrigerators contributed to the living-dining room and the second floor hall. In Figure 7.39, the upper left graph shows the results of the base-case equipment’s sensible load in the living-dining room area, where the first refrigerator was situated as compared to that of Strategy 9. The graph shows the sensible load that the space gained from the equipment (appliances) including a television set, microwave oven, and refrigerator. The graph shows that after the new refrigerator was installed, the equipment’s sensible load in the living-dining room dropped significantly. At the peak equipment load, which occurred at 6:00 p.m., the load was reduced by approximately 17 percent (from 409 Btu/hr to 341 Btu/hr). In Figure 7.39, the reduction in the living-dining room’s electricity load in Btu/hr is presented in the lower left graph. The electricity load profile shown in the graph is the total electricity load of the living-dining room, which includes the electricity used by lighting and equipment. The graph shows that the total electricity used in this space was reduced by the installation of the new refrigerator. The electricity only consumed by the refrigerator from midnight to 6:00 a.m. can also be seen in the graph. During this period, all fluorescent lamps were switched off, and the refrigerator was the only appliance operating. The
refrigerator’s energy use was reduced by approximately 43 percent [from 256 Btu/hr (81.47 Watts) to 145 Btu/hr (46 Watts)]. The reduction of heat from the refrigerator caused the space temperatures of the living-dining room to slightly decrease by 0.2 °F (annual average) as shown in 7.40.

Figure 7.39 Comparison Between the Base Case and Strategy 9: Equipment Loads and the Electricity Load of Space 1-1 and 2-4.
The results of the replacement of the second floor’s refrigerator were similar to the results of the first refrigerator’s replacement. The upper right graph in Figure 7.39 shows the results of the base-case equipment’s sensible loads in the second floor hall where the second refrigerator was situated as compared to that of Strategy 9. The refrigerator was the only equipment in this space, so the graph represents the refrigerator’s sensible load. As shown in the graph, the space’s sensible load dropped by approximately 26 percent (from 149 Btu/hr or 43.7 Watts to 111 Btu/hr or 32.5 Watts). In Figure 7.38, in the lower right graph, the reduction in the second floor hall’s electricity load in Btu/hr was also presented. Besides the refrigerator, the electricity load in this space also included the load from the lighting system. The “bumps” in this graph were the electricity load caused by the assumed operation of a fluorescent lamp in the bathroom (the hall and the bathroom were assigned as one space/zone in the DOE-2). The graph shows that the new refrigerator reduced the space’s electric load by approximately 26 percent (from 166 Btu/hr or 48.7 Watts to 123 Btu/hr or 36 Watts). The reduction of heat from the refrigerator caused the second floor’s hall temperatures to slightly decrease by 0.3 ºF (annual average) as shown in Figure 7.41.

In summary, high energy efficient refrigerators not only reduced the building’s energy consumption, they also improved space temperatures by contributing less heat to the spaces.
Figure 7.40 Comparison between Base Case and Strategy 9 Living-Dining Temperatures.

Figure 7.41 Comparison between Base Case and Strategy 9 2nd Floor Hall Temperatures.
7.3.10 Strategy 10: Renewable Energy Technology 1 (Hybrid PV-T² Collector System)

This section presents the results from the analysis of supplemental thermal and electrical energy from the hybrid-PV-T² collector system. The objective of this analysis was to supply all domestic hot water (DHW) needs by the hybrid-PV-T² collector system. Thus, the size of the hybrid PV-T² array was first analyzed by using the F-Chart program to determine the required thermal energy to supply the DHW load. Then, the electrical energy produced by the hybrid-PV-T² collector system (with the same array size) was analyzed by the PV-F Chart program. The results of thermal and electrical energy produced by the hybrid-PV-T² collector system are presented below. The input parameters and the output from F-Chart and PV-F chart programs are presented and discussed in the Appendix F.

From the analysis of thermal energy produced by the hybrid PV-T² collectors, the required collector area to meet all of the DHW monthly loads was 294 ft². Of this collector area, 170 ft² (the maximum available area on the south side roof) and 124 ft² of the collector were installed on the south and west sides of the roof, respectively. Figure 7.42 shows the monthly results of both south and west sides of the hybrid PV-T² collector arrays. In Figure 7.42, it can be seen that the south facing collectors could not supply all the DHW monthly demands. The highest percentage of the monthly DHW supply to the demand is in March (87 percent), and the lowest are in June (63 percent) and August (64 percent), respectively. Thus, June and August were the key months to determine the required area of the collectors. The west side collectors provided more thermal energy to fulfill the DHW load as shown in Figure 7.42. The area of the west-side collectors was increased until all of the monthly DHW loads were fully supplied.

Figure 7.43 shows the fraction of the energy supply by the collector to the DHW load (F) versus collector area (combined south and west side roof). In the Figure 7.43, only the key months (July and October) and the annual average of the fraction of solar supplied were plotted on the graph (i.e., F factor). As shown in the figure, October required the largest area of collectors (294 ft²). Therefore, the required hybrid PV-T² collector area was determined to be 294 ft².
Figure 7.42 Fraction of Supplemental Solar DHW to the DHW Loads \((F) \) of the South and West Facing Hybrid PV-\(T^2 \) Arrays.

Figure 7.43 Fraction of Supplemental Solar DHW to the DHW Loads \((F) \) of the South and West Facing Hybrid PV-\(T^2 \) Arrays Versus Collector Area. July and October were key months to determine the hybrid PV-\(T^2 \) collector area.
Figure 7.44 shows the annual energy use of the improved model as compared to that of the base case. In this analysis the monthly DHW use was reduced by the amount provided by the collector. The BEPS output of the improved model as compared with the base case is shown in Table 7.21. From Figure 7.44 and Table 7.21, energy used for DHW was reduced by 100 percent, since every month’s DHW demands were met. For the supplemental electrical energy, the energy used for lighting was reduced by 14.2 percent (daytime lighting load accounts for 14 percent of the total lighting load). The energy use for equipment, pump, air conditioning systems, and ventilation fans were reduced by 25.1, 100, 0.8 and 0.6 percent. The reductions in the energy used for air conditioning systems and ventilation fans were caused by the shading of the hybrid-PV-T^2 arrays. From all the results, the total energy consumption was reduced by 43.3 percent, or 2282 kWh per year.

Figure 7.44 Comparison between Annual Energy Use of Base Case and Building Improved with a Hybrid PV-T^2 Collector System.
TABLE 7.21

Building Energy Performance Summary: Base Case vs. Building Improved by a Hybrid PV-T² Collector System

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Energy Consumptions</th>
<th></th>
<th>Energy Saved</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>240</td>
<td>40</td>
<td>14.3</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1121</td>
<td>376</td>
<td>25.1</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1468</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>0</td>
<td>46</td>
<td>100.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>164</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>0</td>
<td>1807</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>2993</td>
<td>2282</td>
<td>43.3</td>
</tr>
</tbody>
</table>

7.3.11 Strategy 11: Renewable Energy Technology 2 (Photovoltaic System)

This section presents the results from the analysis of supplemental electrical energy from a PV system. PV modules were installed on all available area of the roof (1053 ft²). The results of the analysis of the supplemental electric energy are presented as a plot of the electric demand versus collector area in Figure 7.45. In the figure, it can be seen that the maximum electricity supplied by the PV system was only 0.22 percent of the total electric demand. This was due to most of electricity loads occurring in the nighttime when there was no electrical supply from the PV, and the fact that the system was configured without battery.

Figure 7.46 shows the annual energy use of the improved model as compared to that of the base-case simulation. The BEPS output of the improved model as compared with the base case is shown in Table 7.22. In this table the PV electric output was deducted against the equipment load. From Figure 7.46 and Table 7.22, energy use for area lighting, equipment, space cooling, pump, and ventilation fans were reduced by 14.2, 72.8, 3.3, 100, and 3.0 percent, respectively. These reductions of space cooling and ventilation fans are more than that of the Renewable Energy Technology 1 (hybrid PV-T system), since there was more roof area that was covered by the PV arrays (In the analysis using DOE-2, the PV arrays were simulated as...
shading on the roof). From all results, the total energy consumption was reduced by 23.3 percent, or 1229 kWh per year.

Figure 7.45 Fraction of the Supplemental Electricity to the Electricity Load (F-factor) of the PV Arrays (Combined South, West, East, and North PV arrays) Versus Collector Area.

Figure 7.46 Comparison Between Annual Energy Use of Base Case and Building Improved with a Photovoltaic System.
TABLE 7.22

Building Energy Performance Summary: Base Case vs. Building Improved by PV System

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Base case kWh</th>
<th>Improved Model kWh</th>
<th>Energy Saved kWh</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>240</td>
<td>40</td>
<td>14.2</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>408</td>
<td>1089</td>
<td>72.8</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1431</td>
<td>49</td>
<td>3.3</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>0</td>
<td>46</td>
<td>100.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>160</td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>4046</td>
<td>1229</td>
<td>23.3</td>
</tr>
</tbody>
</table>

7.3.12 Strategy 12: Renewable Energy Technology 3 (Hybrid PV-T² Collector System and Photovoltaic System)

This section presents the combination of results from the analysis of supplemental thermal and electrical energy from the hybrid-PV-T² collector system (from Section 7.3.10: Renewable Energy Technology 1) and the results from the analysis of a photovoltaic system. The results of supplemental electrical energy produced by the photovoltaic system were not obtained from Section 7.3.11, since the available installation area of the PV arrays was changed. The PV array shared the roof area with the hybrid PV-T² array. Thus, the electrical energy produced by the PV system was recalculated.

Figure 7.47 shows the annual energy use of the improved model as compared to that of the base-case simulation. The BEPS output of the improved model as compared with the base case is shown in Table 7.23. From Figure 7.47 and Table 7.23, energy use for area lighting, equipment, space cooling, pump, and ventilation fans were reduced by 14.2, 50.1, 4.2, 100, and 3.6 percent. The energy used for DHW was reduced by 100 percent, since the hybrid-PV-T² system was able to provide all DHW demands. From all results, the total energy consumption was reduced by 51.4 percent, or 2,710 kWh per year.
Figure 7.47 Comparison between Annual Energy Use of Base Case and Building Improved with a Hybrid PV-T² Collector System and a Photovoltaic System.

TABLE 7.23

Building Energy Performance Summary: Base Case vs. Building Improved by a Hybrid PV-T² Collector System and a Photovoltaic System

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
</tr>
</tbody>
</table>
7.3.13 Strategy 13: Renewable Energy Technology 4 (Flat-Plate Solar Collector)

From the results of the analysis of supplemental thermal energy in Sections 7.3.10 and 7.3.12, it was found that it required a lot of area of the hybrid-PV-T² collector to supply all domestic hot water (DHW) needs. This is because of the low thermal efficiency of the hybrid-PV-T² collector. Thus, a solar collector system (double glazing flat-plate collector system), which has relatively high thermal efficiency and is a popular type of solar collector, was selected to include in the analysis of supplemental thermal energy for DHW by the F-Chart program. This section presents the results from the analysis of supplemental thermal energy from a double glazing flat-plate collector system. The technical data of this collector was obtained from Klein and Beckman (1985). The input parameters and the output from the F-Chart program are presented and discussed in the Appendix F.

Figure 7.48 shows the fraction of the energy supply by the collector to the DHW load (F) versus collector area (combined south and west side roof). In the Figure 7.48, only the key months (July and October) and the annual average of the fraction of solar supplied “F” were plotted on the graph. As shown in the figure, October required the largest area of collector

![Figure 7.48](image-url)
(approximately 230 ft²). Therefore, the required collector area was 230 ft². From this result, the required collector area to supply all DHW needs by the flat plate solar collector is about 22 percent less than the hybrid-PV-T² collector which required 290 ft². This confirms that the flat plate solar collector actually has higher thermal efficiency than the hybrid-PV-T² collector.

Figure 7.49 shows the annual energy use of the improved model as compared to that of the base-case simulation. The BEPS output of the improved model as compared with the base case is shown in Table 7.24. From Figure 7.49 and Table 7.24, there were no changes in energy use for area lighting, equipment, space cooling, pump, and ventilation fans. The energy used for DHW was reduced by 100 percent, since the flat plate solar collector system was able to provide all DHW demands. However, there was an increase of the energy use by the pump that was a part of the solar collector system. The pump for the solar collector system (100 W) was estimated to operate 12 hours per day for 365 days, which consumed electricity about 438 kWh per year. From all results, the total energy consumption was reduced by 26.7 percent, or 1,490 kWh per year.

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Base case kWh</th>
<th>Improved Model kWh</th>
<th>Energy Saved kWh</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>240</td>
<td>40</td>
<td>14.3</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1497</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>1480</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>484</td>
<td>-438</td>
<td>-952.2</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>165</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>0</td>
<td>1807</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>3866</td>
<td>1409</td>
<td>26.7</td>
</tr>
</tbody>
</table>
7.3.14 Combination A: Combination of Strategies 2, 3-4, 7, 8, and 9

Combination A is a strategy that combines Strategies 2, 3-4, 7, 8, and 9 together. The second floor ceiling was upgraded from existing R-11 to R-28 fiberglass insulation. The 4-inch brick walls were replaced by the insulated 4-inch light-weight concrete walls (Strategy 3-4). The air conditioning systems (Strategy 7) were replaced by higher energy efficiency air conditioning system (upgraded from SEER-10 to SEER-12). The existing refrigerators (Strategy 9) were replaced with the new refrigerators that consume much less energy. The magnetic ballasts were replaced by more energy efficient electronic ballasts.

Figure 7.50 shows the annual energy use of the improved model entitled Combination A, as compared to that of the base-case simulation. The BEPS output of the Combination A as compared to the base case is shown in Table 7.25. From Figure 7.50 and Table 7.25, it can be seen that the energy used for area lights, equipment, space cooling and ventilation fans decreased by 15.2, 26.2, 42.2 and 37.6 percent, respectively. The pump and DHW energy uses
were not changed. This resulted in a decrease of total energy consumption by 21.2 percent, or 1,121 kWh per year.

![Figure 7.50](image-url)
Figure 7.50 Comparison between Annual Energy Use of Base Case and Combination A.

TABLE 7.25

Building Energy Performance Summary: Base Case vs. Combination A

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Base case kWh</th>
<th>Improved Model kWh</th>
<th>Energy Saved kWh</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>238</td>
<td>42.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1105</td>
<td>392</td>
<td>26.2</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>856</td>
<td>624</td>
<td>42.2</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>103</td>
<td>62</td>
<td>37.6</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>4154.5</td>
<td>1120.5</td>
<td>21.2</td>
</tr>
</tbody>
</table>
Figure 7.51 shows the simulated zone temperatures of the improved combined model as compared to the base-case simulation. It can be seen that, the results of space temperatures were similar to the results from Strategy 3-4. In general, there were temperatures increased in all spaces as compared to the base-case temperatures except there was a slightly decrease in the living room temperatures from 3:00 p.m. to midnight.

Figure 7.51 Comparison between Base Case and Combination A Space Temperatures
7.3.15 Combination B: Combination A Combined with Strategy 4

Combination B combines Combination A with Strategy 4 (Low-E glass). Figure 7.52 shows the annual energy use of the Combination B, as compared to that of the base case. The BEPS of the Combination B as compared to the base case is shown in Table 7.26. From Figure 7.52 and Table 7.26, it can be seen that the energy used for area light, equipment, space cooling and ventilation fans decrease by 15.2, 26.2, 43.1 and 40 percent, respectively. The pump and DHW energy uses were not changed. This resulted in a decrease of total energy consumption by 21.6 percent, or 1,138.5 kWh per year. Thus, this strategy further decreased the building’s energy consumption from Combination A which had the annual energy reduction of 1,120.5 kWh, or 21.2 percent.

![Figure 7.52 Comparison of Annual Energy Use of Base Case and Combination B.](image-url)
TABLE 7.26

Building Energy Performance Summary: Base Case vs. Combination B

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td>Energy Saved kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>238</td>
<td>42.5</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1105</td>
<td>392</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>842</td>
<td>638</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>99</td>
<td>66</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>4136.5</td>
<td>1138.5</td>
</tr>
</tbody>
</table>

While there was only a small improvement of the building energy consumption from Combination A, Combination B’s living space temperatures were significantly improved as shown in Figure 7.53. The master bedroom’s daytime temperatures decreased from Combination A and were slightly lower than those of the base case. The living room temperatures dramatically dropped throughout the day, especially in the afternoon. However, there was a slight decrease of the bedroom-3 temperature.

From the results of Combination B, there was not only an improvement of the building energy use; the temperatures in living spaces were also improved.
7.3.16 Combination C: Combination A Combined with Strategy 5

Combination C combines Combination A with Strategy 5 (shading devices). Figure 7.54 shows the annual energy use of the Combination C, as compared to that of the base-case simulation. The BEPS output of the Combination C as compared to the base case is shown in Table 7.27. From Figure 7.54 and Table 7.27, it can be seen that the energy used for area light,
equipment, space cooling and ventilation fans decrease by 15.2, 26.2, 42.4 and 38.2 percent, respectively. The pump and DHW energy uses were not changed. This resulted in a decrease of total energy consumption by 21.3 percent, or 1,124.5 kWh per year. Thus, there was no significant reduction in the building’s energy consumption as compared to Combination A which had the annual energy reduction of 1,120.5 kWh, or 21.2 percent.

For space temperatures, the temperatures in all spaces were similar to those of Combination A, thus the space temperatures were generally higher than the base case’s space temperatures as shown in Figure 7.55.

![Figure 7.54](image.png)
Figure 7.54 Comparison of Annual Energy Use of Base Case and Combination C.
Figure 7.55 Comparison between Base Case and Combination C Space Temperatures.
TABLE 7.27
Building Energy Performance Summary: Base Case vs. Combination C

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td>Energy Saved kWh</td>
<td>Energy Saved (%)</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>238</td>
<td>42.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1105</td>
<td>392</td>
<td>26.2</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>853</td>
<td>627</td>
<td>42.4</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>102</td>
<td>63</td>
<td>38.2</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>4150.5</td>
<td>1124.5</td>
<td>21.3</td>
</tr>
</tbody>
</table>

7.3.17 Combination D: Combination A Combined with Strategy 4 and 5

Combination D combines Combination A with Strategies 4 and 5 (Low-E and shading devices, respectively). Figure 7.55 shows the annual energy use of the Combination D, as compared to that of the base case. The BEPS of the Combination D as compared to the base case is shown in Table 7.28. From Figure 7.56 and Table 7.28, it can be seen that the energy used for area light, equipment, space cooling and ventilation fans decrease by 15.2, 26.2, 43.4 and 40.6 percent, respectively. The pump and DHW energy use were not changed. This resulted in a decrease of total energy consumption by 21.7 percent, or 1,143.5 kWh per year. Thus, there was no significant reduction in the building’s energy consumption as compared to Combination A, which had the annual energy reduction of 1,120.5 kWh, or 21.2 percent.

For space temperatures, the temperatures in all spaces were similar to those of Combination B, thus the space temperatures decreased from the base-case space temperatures as shown in Figure 7.57. Thus, this shows that, with the presence of low-e windows, the shading devices did not effectively further improve the space temperatures.
Figure 7.56 Comparison of Annual Energy Use of Base Case and Combination D.

TABLE 7.28

Building Energy Performance Summary: Base Case vs. Combination D

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th>Energy Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>238</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>1105</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>838</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>98</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>4131.5</td>
</tr>
</tbody>
</table>
7.3.18 Combination E: Combination D Combined with the Hybrid PV-T² Collector System

Combination E combines Combination D with Renewable Energy Technology 1 (hybrid PV-T² collector system). Figure 7.58 shows the annual energy use of the Combination E, as compared to that of the base case. The BEPS of the Combination E as compared to the base case is shown in Table 7.28. From Figure 7.58 and Table 7.29, it can be seen that the
energy used for area light, equipment, space cooling and ventilation fans decrease by 27.0, 51.7, 44.2 and 41.2 percent, respectively. All of the energy used for DHW and pump was reduced by 100 percent, since the hybrid PV-T² collector system could supply all of the DHW demands and pump electricity use. This resulted in a decrease of total energy consumption by 64.9 percent, or 3424 kWh per year. Thus, this is a very significant reduction in the building’s energy consumption as compared to Combination A to D, which had the annual energy reduction of approximately 21 percent.

For space temperatures, in general, the temperatures in the living space are similar to those of Combination D as shown in the lower left graph of Figure 7.58. However, the attic temperatures were reduced in the daytime due to the effect of shading from the hybrid PV-T² array as shown in Figure 7.59.

![Figure 7.58 Comparison of Annual Energy Use of Base Case and Combination E.](image-url)
Space 1-1 (Living-Dining Room) Temperatures:
Base case Vs. Improved Model (Combi-E)
Sept 17, 2000

Space 2-1 (Master Bedroom) Temperatures:
Base case Vs. Improved Model (Combi-E)
Sept 17, 2000

Space 2-3 (Bedroom-3) Temperatures:
Base case Vs. Improved Model (Combi-E)
Sept 17, 2000

Space Attic Temperatures:
Base case Vs. Improved Model (Combi-E)
Sept 17, 2000

Figure 7.59 Comparisons between Base Case and Combination E Space Temperatures.
TABLE 7.29

Building Energy Performance Summary: Base Case vs. Combination E

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td>Energy Saved kWh</td>
<td>(%)</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>204</td>
<td>76</td>
<td>27.0</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>723</td>
<td>774</td>
<td>51.7</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>826</td>
<td>654</td>
<td>44.2</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>0</td>
<td>46</td>
<td>100.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>97</td>
<td>68</td>
<td>41.2</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>0</td>
<td>1807</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>1851</td>
<td>3424</td>
<td>64.9</td>
</tr>
</tbody>
</table>

7.3.19 Combination F: Combination D Combined with a Photovoltaic System

Combination F combines Combination D with Renewable Energy Technology 2 (PV system). Figure 7.60 shows the annual energy use of the Combination F, as compared to that of the base case. The BEPS of the Combination F as compared to the base case is shown in Table 7.30. From Figure 7.60 and Table 7.30, it can be seen that the energy used for area light, equipment, space cooling and ventilation fans decrease by 27.0, 90, 43.3 and 43 percent, respectively. The pump energy use was reduced by 100 percent. There was no energy reduction in the DHW, since there was no supplemental thermal energy from the PV system. This resulted in a decrease of total energy consumption by 41.4 percent, or 2,181 kWh per year. Thus, this is a significant reduction in the building’s energy consumption as compared to Combination A to D which had the annual energy reduction of approximately 21 percent. However, the reduction of energy use was less than that of Combination E (64.9 percent) which could supply all DHW requirements.

For space temperatures, in general, the temperatures in the master bedroom and bedroom-3 were slightly lower than those of Combination E as shown in the lower left graph of Figure 7.61. However, the living room temperatures were not changed. The attic temperatures were dramatically reduced in the daytime due to the effect of shading from the PV array shown in Figure 7.61.
Figure 7.60 Comparison of the Annual Energy Use of Base Case and Energy Efficiency Combination F.

TABLE 7.30
Building Energy Performance Summary: Base Case vs. Combination F

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th>Energy Saved</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base case kWh</td>
<td>Improved Model kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>Area Lights</td>
<td>280</td>
<td>204</td>
<td>76</td>
</tr>
<tr>
<td>Equipment</td>
<td>1497</td>
<td>150</td>
<td>1347</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1480</td>
<td>838</td>
<td>642</td>
</tr>
<tr>
<td>Pumps</td>
<td>46</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Vent Fans</td>
<td>165</td>
<td>94</td>
<td>71</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>1807</td>
<td>1807</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5275</td>
<td>3094</td>
<td>2181</td>
</tr>
</tbody>
</table>
7.3.20 Combination G: Combination D Combined with the Hybrid PV-T² Collector System and a Photovoltaic System

Combination G combines Combination D with both Renewable Energy Technology 1 (hybrid PV-T² collector system) and Renewable Energy Technology 2 (photovoltaic system). Figure 7.62 shows the annual energy use of the Combination G, as compared to that of the base case. The BEPS of the Combination G as compared to the base case is shown in Table 7.31.
From Figure 7.62 and Table 7.31, it can be seen that the energy used for area lights, equipment, space cooling and ventilation fans decrease by 27.0, 76.6, 46.1 and 42.4 percent, respectively. All of the energy used for the DHW and the pumps was reduced by 100 percent, since the hybrid PV-T² collector system could supply all of the DHW demands and pump electricity use. This resulted in a decrease of total energy consumption by 72.6 percent, or 3,829 kWh per year. Thus, this is a very significant reduction in the building’s energy consumption as compared to Combination A to D which had the annual energy reduction of approximately 21 percent, and to Combination E and F that reduced the annual energy uses by 64.9 and 41.4 percent, respectively. The space temperatures of Combination G were identical to those of Combination F, since the whole roof area was covered in both combinations.

![Comparison of Annual Energy Use of Base Case and Energy Efficiency Combination G.](image)

Figure 7.62 Comparison of Annual Energy Use of Base Case and Energy Efficiency Combination G.
TABLE 7.31
Building Energy Performance Summary: Base Case vs. Combination G

<table>
<thead>
<tr>
<th>Category of Use</th>
<th>Annual Site Energy Consumptions</th>
<th>Base case kWh</th>
<th>Improved Model kWh</th>
<th>Energy Saved kWh</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Lights</td>
<td></td>
<td>280</td>
<td>204</td>
<td>76</td>
<td>27.0</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td>1497</td>
<td>350</td>
<td>1147</td>
<td>76.6</td>
</tr>
<tr>
<td>Space Cooling</td>
<td></td>
<td>1480</td>
<td>797</td>
<td>683</td>
<td>46.1</td>
</tr>
<tr>
<td>Pumps</td>
<td></td>
<td>46</td>
<td>0</td>
<td>46</td>
<td>100.0</td>
</tr>
<tr>
<td>Vent Fans</td>
<td></td>
<td>165</td>
<td>95</td>
<td>70</td>
<td>42.4</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td></td>
<td>1807</td>
<td>0</td>
<td>1807</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5275</td>
<td>1446</td>
<td>3829</td>
<td>72.6</td>
</tr>
</tbody>
</table>

7.4 Comparison of the Results

The results of Strategies 1-10, Renewable Energy Technologies (RETs) 1-4, and Combinations A-G are compared in Table 7.32 and Figure 7.63. From the table, for the individual energy efficiency strategies (excluding the RETs 1-4), Strategy 3-4 (insulated light-weight concrete block walls) was the most effective strategies (9.08 percent of total energy reduction). Strategies 3-2, 3-3, and 3-4 were also in ranked high (4th, 3rd, 2nd, respectively). The energy reductions by the renewable energy technologies as compared to the individual energy efficiency strategies, (RET 3), which is the combined PV-T² and PV systems, was ranked in first place (51.37 percent of the building’s energy reduction). The PV-T² collector system (RET 1) and the flat plate solar collector system (RET 2) were ranked in second place and third place, respectively (a reduction of 43.25 percent and 26.71 percent of the building’s energy use respectively). The PV system was ranked in fourth place, which reduced energy use by 23.30 percent). It is interesting that RET 4, which is the improvement of the building by the flat plate solar collector system, could reduce energy use more that RET 2 (the PV system). This is because RET 4 could supply all the DHW needs, which is highest energy use in all categories, while RET 2 could not supply electricity to the DHW system since the DHW was used in the early morning and evening.

Comparisons of the results of Combination A to G are also presented in Table 7.32. From the table, Combination G was ranked in the 1st place which was able to reduce the
building’s energy use by 72.58 percent. Combination E and F were ranked in the 2nd and 3rd (64.92 and 41.35 percent, respectively).

TABLE 7.32

Building Energy Performance Summary: Base Case vs. All Energy Efficiency Measures, Renewable Energy Technology 1 to 4, and Combinations A to G

<table>
<thead>
<tr>
<th>Energy Efficiency Measures</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base-case</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 1-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation behind the roof tiles (R-7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 1-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulation behind the roof tiles (R-14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase insulation on the 2nd floor's ceiling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 3-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High R-value light weight concrete wall (4")</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 3-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High R-value light weight concrete wall (6")</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 3-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-1 + Insulation on the exterior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-1 + Insulation on the interior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Double-pane Low-e windows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shading devices on windows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 6-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Thermal Mass Wall (8" brick)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 6-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Thermal Mass Wall (12" brick)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High energy efficient air-conditioning systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electronic Ballasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High energy efficient refrigerator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 10 (RET 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplemental Energy from the Hybrid PV-T² system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 11 (RET 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplemental Energy from the PV system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 12 (RET 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplemental Energy from the PV-T² and PV systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy 13 (RET 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplemental Energy from a flat plate solar collector</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination A</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy 2 + 3-4 + 7 + 8 + 9</td>
<td>238 1105 856 46</td>
<td>103 1807 4155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination B</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination A + Strategy 4</td>
<td>238 1105 842 46</td>
<td>99 1807 4137</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination C</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination A + Strategy 5</td>
<td>238 1105 853 46</td>
<td>102 1807 4151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination D</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination A + Strategy 4 and 5</td>
<td>238 1105 838 46</td>
<td>98 1807 4132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination E</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combi. D + Sup Energy from Hybrid PV-T²</td>
<td>204 723 826 0</td>
<td>97 1807 1851</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination F</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combi. D + Sup Energy from PV</td>
<td>204 150 838 0</td>
<td>94 1807 3094</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination G</th>
<th>Annual Energy Consumption (kWh)</th>
<th>Annual Energy Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combi. D + Sup Energy from Hybrid PV-T² and PV</td>
<td>204 350 797 0</td>
<td>95 1807 1446</td>
</tr>
</tbody>
</table>
Figure 7.63 Comparison of Annual Energy Consumptions of Base Case and All Energy Efficiency Measures: January to December, 2000.

7.5 Summary

This chapter has presented and discussed the results of the simulation of the case-study house which include the calibration of the model against both the measured data and utility bills. This chapter also presented the results of the investigation into energy efficient strategies, renewable energy technologies, and combinations of those used to improve the case-study model. The energy reductions by each strategy and the combinations were presented. The comparisons of the energy efficient strategies and renewable energy technologies as well as their combinations were reported.
CHAPTER VIII
ECONOMIC ANALYSIS

This chapter presents an economic analysis of the case-study house that compares the base-case building with the same building improved by the energy efficiency strategies and renewable energy technologies discussed in the previous chapter. This chapter presents an analysis of each of the energy efficiency strategies and renewable energy technologies, as well as combinations of the strategies. This study uses the annualized life-cycle cost method described in ASHRAE (1999) and Haberl (1993).

8.1 Inputs for the Economic Analysis

The primary input data for the economic analysis includes the owning costs, operating cost, and maintenance costs. Other elements that were established or defined to calculate annual owning costs, include: study period length, discount rate (id), inflation rate (j), mortgage rate (im), and periodic costs such as insurance, and property tax. All of those factors, which are presented in Table 8.1, are discussed in Section 8.1.1, except the first cost which is discussed in Section 8.1.2.

The operating costs included the cost of electricity. The annual electricity use was obtained from the analysis of building energy use (Chapter VII), which included the annual electricity use of the base-case house and the improvements represented by Strategies 1 to 9, Strategies 10 to 13 (Renewable Energy Technologies 1 to 4), and Combinations A to G. The cost of electricity was calculated from the amount of electricity used (kWh) and the rate of electricity consumption charge for Thai residential building (approximately $0.075 per kWh). The annual electricity cost is presented in Appendix G. Maintenance costs, which include replacement costs, are summarized in Table 8.2 in Section 8.13.

8.1.1 Economic Factors

This section discusses the economic factors that were used in the economic analysis. These factors include the study period, discount rate (id), inflation rate (j), mortgage rate (im),
depreciation, and other periodic costs such as insurance and property tax. These factors were established using various source of information including Thailand’s published economic statistics (Table 8.1).

| Table 8.1 |
| Summary of the Economic Factors in the Analysis |

Life of the Project	25 Yrs
Investment Tax Credit	$0
Discount Rate (id)	3.0 %
Inflation Rate (j)	1.80 %
Fuel Inflation Rate (je)	4.0 %
Mortgage Rate (im)	4.0 %
Income Tax	5.0 %
Property Tax	0.0 %

The life of the project or study period was assumed to be 25 years. No investment tax credits were applied in this analysis, since there were no tax incentives for residential energy conservation or renewable energy use by the time this study was performed. Thailand’s inflation rate (1.8 percent) was obtained from the Bank of Thailand (BOT, 2004). The fuel inflation rate (je) was 4.0 percent (BOT, 2004). There were many mortgage rates in Thailand, which vary from year to year; a fixed mortgage rate of 4 percent was used. The house was exempted from property taxes since it was a small residential building, therefore no taxes were assumed.

8.1.2 First Year Cost

Table 8.2 shows the initial costs of the base-case house and the increased costs due to the improvement from the energy efficiency strategies and renewable energy systems. Total first year costs of each strategy or renewable energy system were from the summation of the base-case house’s first year cost and the increased cost of each improvement. The cost of the base-case house included the costs of land, building, two air conditioning systems, and two
refrigerators. Details of the base-case costs and the increased costs are presented in Appendix G.

Table 8.2

Summary of the Total First Year Cost of the Energy Efficiency Strategies and Renewable Energy Technology

<table>
<thead>
<tr>
<th>Energy Efficiency Strategies and Renewable Energy Technology</th>
<th>Increased Cost</th>
<th>Total First Year Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-Case House</td>
<td></td>
<td>$63,163</td>
</tr>
<tr>
<td>2<sup>nd</sup> Floor Ceiling Insulation</td>
<td>$563</td>
<td>$63,726</td>
</tr>
<tr>
<td>Insulated Light-Weight Concrete Block Wall</td>
<td>$4,364</td>
<td>$67,527</td>
</tr>
<tr>
<td>Low-E Windows</td>
<td>$2,098</td>
<td>$65,261</td>
</tr>
<tr>
<td>Shading Devices</td>
<td>$457</td>
<td>$63,620</td>
</tr>
<tr>
<td>SEER-12 Air-Conditioning Systems</td>
<td>$749</td>
<td>$63,912</td>
</tr>
<tr>
<td>Electronic Ballasts</td>
<td>$182</td>
<td>$63,345</td>
</tr>
<tr>
<td>High Energy Efficient Refrigerators</td>
<td>$125</td>
<td>$63,288</td>
</tr>
<tr>
<td>PV-T<sup>2</sup> System</td>
<td>$30,994</td>
<td>$94,157</td>
</tr>
<tr>
<td>PV System</td>
<td>$57,139</td>
<td>$120,303</td>
</tr>
<tr>
<td>PV-T<sup>2</sup> System and PV System</td>
<td>$72,158</td>
<td>$135,322</td>
</tr>
<tr>
<td>Flat-Plate Solar Collector (Double Glazing)</td>
<td>$16,224</td>
<td>$79,387</td>
</tr>
</tbody>
</table>

8.1.3 Maintenance and Replacement Costs

Table 8.3 shows annual maintenance and replacement costs of the base-case house, energy efficiency strategies, and renewable energy systems. Annual maintenance cost of the base-case house ($50) was for the air conditioning systems that need regular maintenance such as filter cleaning. The annual replacement cost of the base-case house ($20) was estimated to account for the replacement of lighting system, such as incandescent lamps (task lights), and fluorescent lamps. The base-case house’s replacement cost at the end of the 15th year was for two air conditioning systems ($1,125) and magnetic ballasts ($77). For this analysis, the base-case air conditioning systems were assumed to be SEER-10—similar to the existing systems. At the end of the 20th year, the base-case house’s replacement cost of $750 was used to account for the replacement of the two refrigerators.
Table 8.3

Summary of the Maintenance and Replacement Costs of the Energy Efficient Strategies and Renewable Energy Technology Systems

<table>
<thead>
<tr>
<th>Energy Efficiency Strategies and Renewable Energy Technology</th>
<th>Annual Maintenance Costs</th>
<th>Replacement Costs</th>
<th>Replacement Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-Case House</td>
<td>$50.00</td>
<td>$20.00</td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td>$1,202.00 at 15th Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$625.00 at 20th Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Floor Ceiling's Insulation</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>Insulated Light-Weight Concrete Block Walls</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>Low-E Windows</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>Shading Devices</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>12 SEER Air-Conditioning Systems</td>
<td>$50.00</td>
<td>$1,873.77 at 15th Years</td>
<td></td>
</tr>
<tr>
<td>Electronic Ballasts</td>
<td>$0.00</td>
<td>$258 at 15th Years</td>
<td></td>
</tr>
<tr>
<td>High Energy Efficient Refrigerators</td>
<td>$0.00</td>
<td>$750 at 20th Years</td>
<td></td>
</tr>
<tr>
<td>PV-T^2 System</td>
<td>$50.00</td>
<td>$505 at 10th and $180 at 20th Years</td>
<td></td>
</tr>
<tr>
<td>PV System</td>
<td>$50.00</td>
<td>$285 at 10th and $60 at 20th Years</td>
<td></td>
</tr>
<tr>
<td>PV-T^2 System and PV System</td>
<td>$100.00</td>
<td>$790 at 10th and $220 at 20th Years</td>
<td></td>
</tr>
<tr>
<td>Flat-Plate Solar Collector System</td>
<td>$50.00</td>
<td>$220 at 10th and $120 at 20th Years</td>
<td></td>
</tr>
</tbody>
</table>

The annual maintenance and replacement costs of energy efficiency strategies and renewable energy systems are shown in Table 8.3. As shown in Table 8.3, the second floor ceiling insulation, insulated light-weight concrete block walls, Low-e windows, and shading devices were assumed to have no annual maintenance and replacement costs. The electronic ballasts for the fluorescent lamps and the energy efficient refrigerators also required no annual maintenance. However, a replacement at the end of 15th year ($259) and the 20th year ($750) were assumed, respectively. For the SEER-12 air conditioning systems, the annual maintenance cost was $50.00. Since the estimated service life of a residential split-type air conditioning system is 15 years (ASHRAE, 1999), the replacement of the air conditioning systems (with the same SEER) was projected to occur at the end of year 15 ($1874).

Photovoltaic systems normally require only surface cleaning for the photovoltaic array. Dust deposits lower the efficiency of the photovoltaic panel, thus decreasing output energy from the system. Therefore, regular cleaning of the PV surface is necessary, however during the raining season (from May to September), the cleaning may not be necessary since the rain cleans the panels. An annual maintenance cost of $50.00 was estimated for the cleaning of the photovoltaic arrays. A similar maintenance cost for the hybrid PV-T^2 collector system and the Flat-Plate Solar Collector system was assumed ($50.00 per year for each system).
Replacement of a PV or PV-T2 module (120 Watts) was expected at the 10th year and 20th. The cost of the polycrystalline silicon PV modules was projected to decrease from $3.00 per Watt (as of 2002) to $2.00 per Watt in 2010 (Maycock, 2004). Thus, the cost was projected to decrease at the rate of $0.125 per Watt per year. The first replacement of the PV module (at the 10th year) would be in 2014. There was no projection of the PV module cost beyond 2010 in this report. In this study, the cost of the PV module is expected to be $1.5 per Watt which is lower than the cost in 2010 (expected a decrease rate of $0.125 per Watt per year).

From a report of the Department of Energy (DOE, 2004), the cost of crystalline-silicon PV module was estimated to be $0.90 per Watt in 2020 and $0.53 per Watt in 2030. The second replacement of the PV module (at the 20th year) will be in 2024. From the estimated cost of the PV module in 2020 and 2030, the cost of the PV module in 2024 will be around $0.7 per Watt. The cost of a polycrystalline silicon PV module is approximately $0.30 per Watt lower than the cost of a crystalline-silicon PV module (Maycock, 2004). Thus, the cost of the polycrystalline silicon PV module in 2024 will be $0.4 per Watt.

Therefore, the cost of the PV module would be $180 for the 10th year (2014) and $48 for the 20th year (2024). The initial installation cost including power-related Balance of System (BOS) (i.e., DC-to-AC inverter, maximum power point tracker, and wiring) and area-related BOS (i.e., support structure of the PV array) costs approximately 40 percent and 28 percent of the PV module cost, respectively (DOE, 2004). The replacement of the PV module requires some wiring. The inverter, the tracker and the support structure of the PV array are not expected to be replaced. Thus, the installation cost of a replacement PV module was estimated to be lower than 40 percent of the PV module cost. In this study, the installation cost of the PV module was expected to be around 25 percent of the PV module cost (i.e., $45 for the 10th year and $12 for the 20th year).

From the above discussion about the cost of the PV modules and the installation cost, the total replacement costs of the PV module were estimated to $225 and $60 for the 10th year (2014) and 20th year (2024), respectively. Similar replacement costs for the hybrid PV-T2 collector system were assumed ($225 and $60 for the 10th year (2014) and 20th year (2024), respectively). However, the hot water pump was planned to be replaced at 10th year ($100) and 20th year ($120). Therefore, the replacement cost of the hybrid PV-T2 collector system was $325 at 10th year and $180 at 20th year. For the replacement cost of the Flat-Plate Solar Collector System, the hot water pump was planned to be replaced at 10th year ($100) and 20th year ($120).

In Chapter VII, the results of the energy efficiency strategies and the renewable energy systems was discussed including details about the amount of electricity saved and the impact on indoor air temperatures. This section discusses the results of the life-cycle cost analysis of the individual energy efficiency strategies and renewable energy strategies.

From the nine energy efficiency strategies, there were seven energy efficiency strategies that were selected to be analyzed in the economic analysis. An economic analysis was also performed on all renewable energy systems that were analyzed in Chapter VII. Those seven energy efficiency strategies and renewable energy systems evaluated with the economic analysis are listed below:

- Strategy 2: Insulation on 2nd Floor Ceiling
- Strategy 3-4: Insulated Light-weight Concrete Block Walls
- Strategy 4: Low-e Windows
- Strategy 5: Shading Devices
- Strategy 7: SEER-12 Air Conditioning Systems
- Strategy 8: Electronic Ballasts
- Strategy 9: High Efficiency Refrigerators

The two strategies that were not effective either in the reduction of building energy use or the living space’s temperature were Strategies 1 and 6 (Strategy 1-1: R-7 insulation underside the roof tiles, Strategy 1-2: R-14 insulation underside the roof tiles, Strategy 6-1: 8-inch High Thermal Mass Wall, and Strategy 6-2: 12-inch High Thermal Mass Wall). Strategies 1-1 and 1-2 dramatically reduced the attic’s temperature, but they had little impact on the living space’s temperature and building energy use (less than one percent of building energy use). Thermal mass walls (Strategy 6-1 and 6-2) were also not included in this analysis. From the results of Strategy 6-1 and 6-2 in Chapter VII, although daytime space temperatures of the living spaces were significantly reduced, the building energy use was actually slightly increased due to the
nighttime temperature rise in the living space.

The analyses of the individual energy efficiency strategies and renewable energy strategies are presented in the following sections. Comparison of the results using a life-cycle cost analysis is presented in Section 8.3.

8.2.1 Base-Case Scenario

The base-case scenario represents the “as is” condition of the case-study house. The existing condition of the case-study house was discussed in Chapter V. The base-case house cost $63,163 which was estimated from the current cost per square foot of Thai residential buildings in 2004 (Bureau of Budget, 2004). Of this amount, the building cost $47,548 and the land cost $15,615. The cost of the base-case house was also included the cost of two air conditioning systems ($1,125) and two refrigerators ($625). The annual energy use for the house was 5,275 kWh. The annual cost of electricity was $396. The maintenance and replacement costs of the base-case house were discussed in Section 8.1.3. From the results of the analysis, which is presented in Appendix G, the annualized life-cycle cost of the base-case house was -$2,818.

8.2.2 Strategy 2: Improvement of 2nd Floor Ceiling’s Insulation

Upgrading the insulation on the 2nd floor ceiling from R-11 to R-28 would add $563 to the base-case cost. This resulted in an increase of the total cost from $47,548 to $48,111. The maintenance and replacement costs did not increased from the base-case scenario, since there were no maintenance and replacement cost required for the insulation during the period of the analysis. The annual cost of electricity was $392 which was $4 lower than the base-case simulation. The annualized life-cycle cost of the Strategy 2 is -$2,832, which is an annualized increase of $14 from the annualized life-cycle cost of the base-case house.

8.2.3 Strategy 3-4: Insulated Light-Weight Concrete Block Walls

The base-case’s 4” brick walls cost $3,185 and the insulated light-weight concrete block walls cost $7,549, which resulted in an increase cost of $4,364 from the base-case house. The maintenance and replacement costs of Strategy 3-4 were similar to those of the base-case scenario, since there were no maintenance and replacement costs required for the insulated
light-weight concrete block walls during the period of the analysis. The annual cost of electricity was $360 which was $36 lower than the base-case simulation. The annualized life-cycle cost of the Strategy 3-4 was -$2,963, which was an increase of $145 above the annualized life-cycle cost of the base-case house.

8.2.4 Strategy 4: Low-E Windows

The Low-e windows cost $3,188 which is an increase of $2,098 from the existing windows (single-pane glass windows costing $1090). The maintenance and replacement costs did not increased from the base-case scenario, since there were no maintenance and replacement costs required for the Low-e windows during the period of the analysis. The annual cost of electricity was $396 which was approximately equal to that of the base-case simulation. The simulated annualized life-cycle cost of the Strategy 4 was -$2,907, which was an annualized increase of $89 above the annualized life-cycle cost of the base-case house.

8.2.5 Strategy 5: Shading Devices

The shading devices were estimated to cost an additional $475. This resulted in a total first cost of $63,620. There were no maintenance and replacement costs for the shading devices. The annual cost of electricity was $393 which was $2 lower than the base-case. The simulated annualized life-cycle cost of the Strategy 5 was -$2,829, which was an annualized increase of $11 from the annualized life-cycle cost of the base-case house.

8.2.6 Strategy 7: SEER-12 Air Conditioning Systems

The two SEER-12 air conditioning systems cost $1,874 which is an increase of $749 from the existing air conditioning systems (SEER-10). The annual maintenance and replacement costs were assumed not to increase from the base-case scenario ($70.00), since there were no extra maintenance costs for the SEER-12 compared to SEER-10 air conditioning systems. The replacement of the air conditioning systems at the year 15th would cost $1,874 (approximately $750 more than the SEER-10 air conditioning systems). At the year 15, higher SEER split-type air conditioning systems may be available. However, this study assumed that the replacement in the 15th year use SEER-12 systems. For the SEER-12 system the annual cost of electricity was $382 which was $14.00 lower than the base case. The annualized life-cycle
cost of the Strategy 7 was -$2,852 which was an increase of $40 from the annualized life-cycle cost of the base-case house.

8.2.7 Strategy 8: Electronic Ballasts

The base-case house has eleven fluorescent lamps that include magnetic ballasts. The cost of eleven electronic ballasts would be $259, which was $182 higher than the cost of existing magnetic ballasts ($77). The annual maintenance and replacement costs were assumed not to increase from the base-case scenario ($70), since there were no extra annual maintenance and replacement costs for the electronic ballasts. The life of a ballast was assumed to be approximately 15 years. The replacement cost of the electronic ballasts at the year 15th with new electronic ballasts was assumed to be $258. The simulated annual cost of electricity for the electronic ballasts was $392 which was $3.30 lower than the base-case costs. The simulated annualized life-cycle cost of Strategy 8 was -$2,818 which was an annualized increase of $6 from the annualized life-cycle cost of the base-case house.

8.2.8 Strategy 9: High Energy Efficient Refrigerators

As mentioned in Chapter V and VII, the base-case house had two refrigerators. The replacement of the existing refrigerators with high energy efficiency refrigerators would cost $125 more than the base-case house. The annual maintenance and replacement costs were assumed not to increase from the base-case scenario ($70), since no extra annual maintenance and replacement costs for the new refrigerators was assumed. The life of a refrigerator was assumed to be 20 years. The replacement cost of the refrigerators at the year 20th would be $750. The simulated annual cost of electricity was $365, which was $30.30 lower than the base-case simulation. The annualized life-cycle cost of the Strategy 6 was -$2,780, which was a decrease of $32 from the annualized life-cycle cost of the base-case house.

8.2.9 Strategy 10: Hybrid PV-T² Collector System

The cost of the hybrid PV-T² collector system was estimated as $30,994. This would increase the first cost of the house from $63,163 to $94,157. The annual maintenance cost of the hybrid PV-T² collector system was estimated as $50.00. The replacement costs expected at the 10th year ($325) and in the 20th year ($160) were as discussed in Section 8.1.3. From the
results of the supplemental energy analysis in Chapter VII, the hybrid PV-T\(^2\) collector system could reduce the base-case’s annual energy use from 5,275 kWh to 2,993 kWh, which reduced the simulated annual electricity cost from $396 to $225. The annualized life-cycle cost was -$4,757 which was an annualized increase of $1,244 from the annualized life-cycle cost of the base-case house.

8.2.10 Strategy 11: Photovoltaic System

The PV modules that were installed on all the available area of the roof (1053 ft\(^2\)) was estimated to cost $41,165. This would increase the first cost of the house from $63,163 to $104,328. The annual maintenance cost of the PV system was estimated as $50.00. Replacement costs were expected at the 10\(^{th}\) year ($225.00) and 20\(^{th}\) year ($60) as discussed in Section 8.1.3. From the results of the supplemental energy analysis in Chapter VII, the PV system could supply 1,229 kWh per year, which reduced the base-case’s annual energy demand from the grid from 5,275 kWh to 4,046 kWh. Therefore, the annual electricity cost reduced from $395.6 to $303.5. The annualized life-cycle cost was -$6,070 which was an annualized increase of $2,557 from the annualized life-cycle cost of the base-case house.

8.2.11 Strategy 12: Hybrid PV-T\(^2\) Collector System and Photovoltaic System

The cost of the hybrid PV-T\(^2\) collector system was estimated as $30,934. The PV system, which covered the rest area of the roof (759 ft\(^2\), was estimated as $41,165. Thus the total first cost of both systems was $72,158. This would increase the first cost of the house from $63,133 to $135,322. The annual maintenance cost of the two systems was $100.00. The replacement costs, which are the summation of the replacement costs of both systems, were expected to be $550 in the 10\(^{th}\) year and $220 in the 20\(^{th}\) year. From the results of the supplemental energy analysis in Chapter VII, both systems could supply 2,710 kWh of electricity, which reduced the base-case’s annual energy demand from the grid by 51.37 percent (from 5,275 kWh to 2,565 kWh). This resulted in the reduction of the annual electricity cost from $396 to $192. The annualized life-cycle cost was -$6,735, which was an annualized increase of $3,222 from the annualized life-cycle cost of the base-case house.
8.2.12 Strategy 13: Flat-Plate Solar Collector System

The cost of the Flat-Plate solar collector system was estimated as $16,224. This would increase the first cost of the house from $63,163 to $79,387. The annual maintenance cost of the Flat-Plate solar collector system was estimated as $50.00. The replacement costs expected at the 10th year ($100) and in the 20th year ($120) were as discussed in Section 8.1.3. From the results of the supplemental energy analysis in Chapter VII, the Flat-Plate solar collector system could reduce the base-case’s annual energy use from 5,275 kWh to 3,866 kWh, which reduced the simulated annual electricity cost from $396 to $290. The annualized life-cycle cost was $4,165 which was an annualized increase of $652 from the annualized life-cycle cost of the base-case house.

8.3 Comparisons of the Results of the Life-Cycle Cost Analysis of Individual Energy Efficiency Strategies and Renewable Energy Systems

This section compares the results of the life-cycle cost analysis of the base-case house with the individual energy efficiency strategies as well as the renewable energy systems. Figure 8.1 presents the first cost of the base-case house as compared to those of the energy efficiency strategies and the renewable energy systems. From Figure 8.1, in general, the first costs of energy efficiency strategies were not significantly different from the first cost of the base-case house. However, the first costs of the renewable energy systems were significantly higher than the cost of the base-case house as can be seen in the Figure 8.1.

For the energy efficiency strategies, the cost of light-weight concrete walls was the highest first cost among the energy efficiency strategies. The second highest cost of the energy efficiency strategies was the low-e windows. Other strategies did not substantially increase the first cost of the base-case house.

For the renewable energy systems, the cost of the Flat-Plate solar collector system was relatively lower than other renewable energy systems since it is the only system that had no PV panel installed. The cost of the hybrid PV-T² collector system was higher than the Flat-Plate solar collector system, but lower than other renewable energy systems. This was because the hybrid PV-T² system required larger area to meet the DHW demand. The total cost of the photovoltaic system was approximately equal to the cost of the base-case house. This high cost was due to the fact that the PV modules were installed on the whole area of the roof. The cost of the PV modules was very high in Thailand. The PV modules need to be imported from the
manufactures in foreign countries such as the United States and Japan, since currently there were no PV manufactures in Thailand. The highest first cost among all renewable energy systems and all strategies was the combination of the hybrid PV-T² collector system and the PV system.

Figure 8.1 First Year Cost of the Individual Energy Efficiency Strategies and the Renewable Energy Systems.

In this strategy, the PV arrays were installed on the roof where the space was available after installation of the hybrid PV-T² collectors. Installing these two systems on the whole area of the roof was very costly as it can be seen in the Figure 8.1 that the total cost was more than one time of the base-case house.

The maintenance costs of all energy efficiency strategies (except the renewable energy systems) were equal to that of the base case which was $50.00 per year. As can be seen in the Figure 8.2, the total maintenance cost, when the house was equipped with the renewable energy
systems, was considerably higher than those of the base case and the energy efficiency strategies. The annual maintenance cost for either the hybrid PV-T^2 collector system, PV system was $100, while the cost of $150 was estimated for the combination of the two systems. The annual maintenance cost for the Flat-Plate solar collector system was also $100.

The comparison of the annual electricity cost of the base-case house with energy efficiency strategies and renewable energy systems is presented in Figure 8.3. From the figure, the base-case house’s annual electricity cost was the highest as compared to those of energy efficiency strategies and renewable energy systems. The annual electricity costs of the house when it was equipped with the Low-e windows and the shading devices were approximately equal to that of the base-case house. The annual electricity costs of the house, when it was

![Figure 8.2](image_url)

Figure 8.2 Maintenance Cost of the Individual Energy Efficiency Strategies and the Renewable Energy Systems.
equipped with the additional insulation on the second floor’s ceiling and the electronic ballasts, were slightly lower (approximately 1 percent) lower than that of the base-case house ($4.10 and $3.40 lower, respectively). The SEER-12 air conditioning systems reduced the annual electricity cost by $14.00 (3.6 percent). The insulated light-weight concrete block walls and the new refrigerators were the most effective in the reduction of the electricity cost. The annual electricity cost of the electricity was reduced by $36.00 and $30.00 when the house was constructed with the insulated light-weight concrete block walls and when the new refrigerators were installed.

The renewable energy systems significantly reduced the electricity cost as can be seen in the Figure 8.3. The hybrid PV-T² collector system and PV system could lower the electricity cost from $396 to $225 (43.25 percent decrease) and $304 (23.30 percent decrease) respectively. The hybrid PV-T² collector system was able to reduce more electricity cost, as compared to the PV system, because it could supply all DHW need for the base case as discussed in Chapter VII. Thus a considerably amount of electricity was saved from heating the water by the water heater. The combination of the hybrid PV-T² collector system and the PV system resulted in further reduction in the annual electricity cost which was $192. This was approximately 51 percent reduction of the annual electricity cost, which was the highest reduction among the renewable energy systems. The Flat-Plate solar collector system could lower the electricity cost from $396 to $290 (27 percent decrease). This reduction was solely from the supplement of all DHW demand in the house.

The annualized life-cycle cost of the base-case house as compared to the energy efficiency strategies and the renewable energy systems was presented in Figure 8.4. In general, the life-cycle costs of all energy efficiency strategies (except the renewable energy systems) were not significantly different from that of the base-case house. The highest annualized life-cycle cost of the energy efficiency strategies was the light-weight concrete block walls which as -$3,664. This was a difference of $151 as compared to the base case. The lowest annualized life-cycle cost of all strategies was the replacement of the existing refrigerators with the new high energy efficient refrigerators which was $3,481 which was $32.00 lower than that of the base-case house.
The annualized life-cycle costs of the renewable energy technologies were significantly higher than those of the base-case house and the energy efficiency strategies as shown in Figure 8.4. Among the renewable energy systems, the Flat-Plate solar collector system yielded the lowest annualized life-cycle cost (-$4,165) which is approximately 18.5 percent higher than that of the base-case house. The PV system had the annualized life-cycle cost of -$6,070 which is considerably higher than that of the hybrid PV-T² collector system ($1,313 higher). The annualized life-cycle cost of the combination of the hybrid PV-T² collector system and the PV system was the highest. Its life-cycle cost was -$1,978 and -$665 more than those of the hybrid PV-T² collector systems and the PV systems.

This section discusses the results of the life-cycle cost analysis of Combinations A to G. Combinations A to D were the combined energy efficiency strategies. Combinations E to G were the Combination D with the renewable energy systems. Table 8.4 shows the increased cost of each combination and their total first cost as compared to the base-case’s first cost. The maintenance and replacement costs of each combination are presented in Appendix G. The first costs, maintenance and replacement costs of each combination are the following.

Figure 8.4 Annualized Life-Cycle Cost of the Individual Energy Efficiency Strategies and the Renewable Energy Systems.
Table 8.4

Summary of the Total First Year Cost of the Combined Energy Efficiency Strategies and Renewable Energy Systems

<table>
<thead>
<tr>
<th>Combinations of Energy Efficiency Strategies and Renewable Energy Technology</th>
<th>Increased Cost</th>
<th>Total First Year Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-Case House</td>
<td>$63,163</td>
<td>$63,163</td>
</tr>
<tr>
<td>Combination A</td>
<td>$5,981</td>
<td>$69,145</td>
</tr>
<tr>
<td>Combination B</td>
<td>$8,080</td>
<td>$71,243</td>
</tr>
<tr>
<td>Combination C</td>
<td>$6,438</td>
<td>$69,602</td>
</tr>
<tr>
<td>Combination D</td>
<td>$8,537</td>
<td>$71,700</td>
</tr>
<tr>
<td>Combination E</td>
<td>$39,530</td>
<td>$102,694</td>
</tr>
<tr>
<td>Combination F</td>
<td>$65,676</td>
<td>$128,839</td>
</tr>
<tr>
<td>Combination G</td>
<td>$80,695</td>
<td>$143,858</td>
</tr>
</tbody>
</table>

8.4.1 Combination A

Combination A is a strategy that combines Strategies 2, 3-4, 7, 8, and 9 together (see Section 8.2 for the list of strategies). The increased cost of Combination A from the base-case house was $5,981 which resulted in the total first cost of $69,145. The annual maintenance and replacement costs of Combination A were similar to those of the base-case house which was $70 (see Table 8.3). The replacement cost at the 15th year will be $2032. Of this amount, $1,874 will be for the air conditioning systems and $258 will be for electronic ballasts. At the 20th year, the refrigerators will be replaced with the new ones which will cost $750. The annual electricity cost of Combination A was $312 which was $84 lower than that of the base-case. The annualized life-cycle cost of Combination A was -$3,711 which was an increase of $198 from the annualized life-cycle cost of the base-case house.

8.4.2 Combination B

Combination B is a strategy that combines Combination A with Strategy 4 (low-e glass). The increased cost of Combination B from the base-case house was $8,080 which resulted in the total first cost of $71,243. The annual maintenance and replacement costs of Combination B were identical to Combination A. The replacement costs at the 15th and 20th year were also the same with Combination A. The annual electricity cost of the Combination B was $310 which was $85 lower than that of the base-case. The annualized life-cycle cost of
Combination B was -$3,804 which was an increase of $291 from the annualized life-cycle cost of the base-case house.

8.4.3 Combination C

Combination C is a strategy that combines Combination A with Strategy 5 (shading devices). The increased cost of Combination C from the base-case house was $6,439 which resulted in the total first cost of $69,602. The annual maintenance and replacement costs of Combination C were identical to Combinations A and B. Since there was no replacement required for the shading devices, the replacement costs at the 15th and 20th year were also the same with Combinations A. The annual electricity cost of the Combination C was $311 which was $84 lower than that of the base-case. The annualized life-cycle cost of Combination C was -$3,732 which was an increase of $219 from the annualized life-cycle cost of the base-case house.

8.4.4 Combination D

Combination D is a strategy that combines Combination A with Strategy 4 (low-e glass) and Strategy 5 (shading device). The increased cost of Combination D from the base-case house was $8,537 which resulted in the total first cost of $71,700. The annual maintenance and replacement costs of Combination D were identical to Combinations A, B and C. The replacement costs at the 15th and 20th year were also the same with Combinations A, B and C. The annual electricity cost of Combination D was $310 which was $86 lower than that of the base case. The annualized life-cycle cost of Combination D was -$3,824 which was an increase of $311 from the annualized life-cycle cost of the base-case house.

8.4.5 Combination E

Combination E combines Combination D with Renewable Energy Technology 1 (i.e., hybrid PV-T² collector system). The increased cost of Combination E from the base-case house was $39,530 which resulted in the total first cost of $102,694. The annual maintenance and replacement costs of Combination E were $120 which increased by $50 from those of Combination D due to the maintenance cost of the hybrid PV-T² collector system. The annual electricity cost of Combination E was $139 which was $257 lower than that of the base-case.
The annualized life-cycle cost of Combination E was -$5,069 which was an increase of $1,556 from the annualized life-cycle cost of the base-case house.

8.4.6 Combination F

Combination F combines Combination D with Renewable Energy Technology 2 (PV system). The increased cost of Combination F from the base-case house was $65,676 which resulted in the total first cost of $128,839. The annual maintenance and replacement costs of Combination F were $120, which increased by $50 from those of Combination D due to the maintenance cost of the PV system. The annual electricity cost of Combination F was $232 which was $164 lower than that of the base-case. The annualized life-cycle cost of Combination F was -$6,420 which was an increase of $2,907 from the annualized life-cycle cost of the base-case house.

8.4.7 Combination G

Combination G combines Combination D with Renewable Energy Technology 3 (hybrid PV-T^2 collector system and PV system). The increased cost of Combination G from the base-case house was $80,695 which resulted in the total first cost of $143,858. The annual maintenance and replacement costs of Combination F were $170 which increased by $100 from those of Combination D due to the maintenance cost of the hybrid PV-T^2 collector system and the PV system. The annual electricity cost of Combination G was $109 which was $287 lower than that of the base-case. The annualized life-cycle cost of Combination F was -$7,724 which was an increase of $4,211 from the annualized life-cycle cost of the base-case house.

8.5 Comparisons of the Results of the Life-Cycle Cost Analysis of the Combined Energy Efficiency Strategies and Renewable Energy Systems

This section compares the results of the life-cycle cost analysis of the base-case house with Combinations A to G. Figure 8.5 presents the first cost of the base-case house as compared to those of the Combinations A to G. From Figure 8.5, the first costs of Combinations A to D were higher than the base case; the increased costs were in a range of $6,000 to $8,500 from that of the base case. The first costs of Combination E to G were considerably higher than that of the base case and Combinations A to D. As can be seen in
Figure 8.5, the increased costs of Combination A to D were much lower than that of Combination E to G which combined the renewable energy systems with the energy efficiency strategies.

Figure 8.5 *First Year Cost of the Combined Energy Efficiency Strategies and the Renewable Energy Systems.*

Figure 8.6 present the annual maintenance cost of the base-case house as compared to those of Combination A to G. The annual maintenance costs of Combinations A to D were $50 which equaled to that of the base-case house. The annual maintenance costs of Combinations E and F were $100. The annual maintenance cost of Combination G was the highest among all combinations which was $150.
The annual electricity costs of Combinations A to G are compared with that of the base case as shown in Figure 8.7. From the figure, the annual electricity cost of Combinations A to D were approximately $310 which approximately $85 lowered than the base-case’s annual electricity cost. The annual electricity costs of Combination E to G were significantly lower than that of the base-case. Combination E, which equipped the hybrid PV-T² collector system with Combination D, ranked the second lowest annual electricity cost ($139) as compared to Combinations A to G. Combination F, which equipped the PV system with Combination D, ranked the third lowest annual electricity cost ($232) as compared to Combinations A to G. Combination G reduced the base-case’s annual electricity cost to $108 which was the lowest annual electricity cost as compared to all combinations.
Figure 8.7 Annual Electricity Cost of the Combined Energy Efficiency Strategies and the Renewable Energy Systems.

The results of the annualized life-cycle cost of the base-case as compared to Combinations A to G are shown in Figure 8.8. From the figure, it can be seen that the annualized life-cycle cost of the base case were the lowest. The annualized life-cycle costs of all combinations were higher than that of the base case. However, the annualized life-cycle costs of Combinations A to D were relatively close to that of the base case, while the annualized life-cycle costs of Combination E to G were significantly higher than the base case’s annualized life-cycle cost. Combination G had the annualized life-cycle cost of $7,006 which was two times higher than that of the base case. However, annual operating costs of a house with the PV-T² system would be much less affected by rising energy costs.
8.6 Analysis of the Monthly Payments on the Case-Study House

Figure 8.9 shows the average monthly payments of the base-case house as compared to the individual energy efficiency strategies. The monthly payment consists of insurance cost, maintenance costs, electricity costs and mortgage costs. In Figure 8.9, the mortgage cost is the largest portion of the monthly payment. All of the monthly payments were close to the base-case’s monthly payment except those of renewable energy systems. The base-case monthly payment was $337, while the energy efficiency strategies’ monthly payments were in a range of $340 to $722. The monthly payments of hybrid PV-T² collector system, PV system and their combination were considerably high as compared to those of the base case and the energy efficiency strategies, which was due to the high cost of mortgage payment. The electricity costs were dramatically reduced by that renewable energy systems, however, the electricity costs were relatively small portions of the monthly payments. Thus, the reduction in the electricity cost due to the implementation of the renewable energy systems had little effect on the monthly payments. Among the renewable energy systems, the monthly payment of the Flat-Plate solar
The collector system was the lowest ($424), which was an increase of approximately 25 percent from the base-case.

![Bar chart showing monthly payments for various strategies and systems.]

Figure 8.9 Monthly Payments of the Case-Study House for the Individual Energy Efficiency Strategies and the Renewable Energy Systems.

Figure 8.10 shows the average monthly payments of the base-case house as compared to Combinations A to G. The monthly payments shown in Figure 8.10 were similar to those in Figure 8.9. The monthly payments of Combinations A to D, which combined energy efficiency strategies together, were relatively close to the base-case monthly payment. The base-case
monthly payment was $337, while monthly payments of Combination A to D were in a range of $369 to $382. The monthly payments of Combinations E to G were relatively high, which was due to the high mortgage payments. Combinations E to G combined energy efficiency strategies with renewable energy systems, which have high first costs. This caused considerably high monthly payments although the monthly electricity costs were significantly reduced.

![Figure 8.10 Monthly Payments of the Case-Study House for the Combined Energy Efficiency Strategies and the Renewable Energy Systems.](Figure8.10)

8.7 Summary and Conclusion

This chapter discussed the economic analysis of the case-study house as compared with the building that was improved by the energy efficiency strategies and the renewable energy technologies. The first cost, maintenance and replacement costs, and energy costs were presented for each scenario. The final results of the economic analysis, which were annualized
life-cycle costs and monthly payments, were then presented and discussed. The results from the analysis showed that the lowest annualized life-cycle cost ($3,481) was achieved by Strategy 9, which was the replacement of new refrigerators. This strategy did not only yield the lowest annualized life-cycle cost, but it was also the only strategy that had an annualized life-cycle cost that was lower than the base case.

The results of monthly payments of the energy efficiency strategies including Combinations A to D showed that their monthly payments were not significantly higher than that of the base-case house. This suggested that improving the base-case house using the energy efficiency strategies for Combination A to D (except renewable energy systems) should be acceptable to consumers if an emphasis is placed on annual operating costs, versus first costs. Strategies E, F and G would need significant mortgage incentives to make them affordable by an average homeowner. On the other hand, if energy prices increase significantly beyond current prices (i.e., 2 to 3 times today’s costs) this would significantly change the assumption used in the economic analysis, resulting in more emphasis in reducing energy use.
This chapter presents the summary of the results from previous chapters and proposes a recommendation or a guideline for improving residential buildings in hot humid climates and recommendations for future research. Section 9.1 summarizes the results of the case-study house, hybrid PV-T2 experiments and building energy simulations that were presented in the previous chapters. A guideline for improving energy efficiency and thermal comfort in Thai residential buildings was discussed in Section 9.2. Section 9.3 discusses future work that could be further investigated in the fields of hybrid PV-T2 collector system and energy efficiency in Thai residential buildings.

9.1 Summary of Results

Thermal conditions and building energy use in the case-study house were investigated. The thermal conditions in the house were found to be outside the ASHRAE comfort zone. Although this research considers that a Thais’ thermal comfort may be different from as specified in the ASHRAE comfort zone, occupants were expected to live under condition that were not thermally comfortable (i.e., high temperature and high humidity conditions), which occurred mostly in unconditioned spaces (i.e. living room, and bedroom-3) and in the master bedroom in the daytime. Energy consumption of the case-study house was found to be above the average energy consumption of a Thai detached house. This was felt to be due to the number of appliances (i.e., two refrigerators and two air conditioning systems) were more than an average household contained.

The thermal, electrical, and heat rejection performances of the hybrid PV-T2 collector system were tested and discussed. The hybrid PV-T2 collector system had the maximum thermal efficiency of 45 percent. The measured Test Intercept (Fr\textalpha) was 0.45 and the measured collector loss coefficient data was -5.6194, which represent FrUL. Thermal efficiency of the hybrid PV-T2 collector system varied significantly with ambient temperature, the thermal efficiency becoming zero at (t\textsubscript{i} – t\textsubscript{a})/I\textsubscript{i} > 0.08, which approximately corresponds to an inlet temperature of 88 °F, under bright solar condition of 300 Btu/ft2-h and an ambient
temperature of 68 ºF. The relationship of the PV-T² panel’s electrical efficiency and panel
temperature was reported. The electrical efficiency decreases at the rate of 0.0005 percent per
one degree Celsius. This value was the array temperature coefficient of the hybrid PV- T²
collector, which was later used for the system input parameter in the PV F-Chart program to
analyze the electrical performance of the Hybrid PV- T² system. The total efficiency, which is
the combined thermal and electrical efficiencies, was found from the day mode experiment.
The maximum total efficiency [when (tₐ-tₜ)/Iₜ = 0] was approximately 54 percent.

The experimental results, which tested the heat rejection for the whole system (tank +
pump), were presented and compared with the theoretical results. The theoretical heat rejection
rates were much lower than that of the experimental results. From the experimental results,
relationships between heat rejection rates and three variables [i.e., wind speed, Tₚ₋ Tₐ, and
(Tₚ₅₈ - Tₜ₈₄)* δ] were found. A linearized regression analysis of the relationships between the
experimental heat rejection rates and those variables was performed and reported. A regression
analysis of the relationships between the water temperature in the tank and those variables was
also performed and reported.

The results of building simulation using the DOE-2 program, combined with the results
from F-Chart and PV-T Chart programs were reported. For the individual energy efficiency
strategies (excluding the renewable energy systems), Strategy 3-4 (insulated light-weight
concrete block walls) was the most effective strategies (9.08 percent of total energy reduction).
Strategies 3-2, 3-3, and 3-4 were also effective (4th, 3rd, 2nd, respectively).

When comparing the results of all individual strategies including the renewable energy
systems (Strategies 1 to 13), Strategy 13 (Renewable Energy Technology 3: hybrid PV-T²
system and PV system) was ranked in 1st. It reduced the base-case energy use by 51 percent.
The individual PV-T² collector system (Strategy 10) and the flat-plate solar collector system
(Strategy 14) were ranked second and third, respectively (a reduction of 43.25 percent and
26.71 percent of the building’s energy use, respectively). The PV system was ranked in the
fourth place, which reduced energy use by 23.30 percent). It is interesting that the flat-plate solar
collector system, could reduce energy use more the PV system. This is certainly because the
flat-plate solar collector system could supply all DHW needs, which is highest energy use in all
categories, while the PV system, which had no battery storage, could not supply electricity to
the DHW system since the DHW was used in the early morning and evening.
The results of Combination A to G which were shown in Table 7.32, Combination G was ranked in 1st place which was able to reduce the building’s energy use by 72.58 percent. Combination E and F were ranked in the 2nd and 3rd (64.92 and 41.35 percent, respectively). From these analyses, it is clear that achieving a zero net energy house would only require a modest investment over Combination G.

An annualized life-cycle cost analysis of the case-study house, energy efficiency strategies and the renewable energy technologies was performed. The results from the analysis showed that the lowest annualized life-cycle cost ($3,481) was achieved by Strategy 9 which was the replacement of new refrigerators. This strategy did not only yield the lowest annualized life-cycle cost, but it was also the only strategy that had an annualized life-cycle cost that was lower than the base-case. The results of monthly payments of the energy efficiency strategies including Combinations A to D showed that their monthly payments were not significantly higher than that of the base-case house. This suggested that improving the base-case house using the energy efficiency strategies shown (except renewable energy systems) should be acceptable to consumers if an emphasis is placed on annual operating costs, versus first costs.

9.2 Recommendation for Improving Residential Buildings in Hot and Humid Climates

As described in the research objective, this research aimed to develop generalized design and housing characteristics in term of energy conservation and affordability for hot-humid climates.

The generalized design for energy conservation alone may not totally be applicable in residential buildings in hot-humid climates. Although the case-study house represented a typical Thai residential building in a hot-humid climate, differences in occupants’ lifestyles may need different solutions or strategies. In addition, the economic scenarios that were used in the life-cycle cost analysis used a Thailand’s economic input variables. Thus, the recommendations that were based on the financial feasibility from the life-cycle cost analysis are only appropriate for Thailand’s circumstances. Hence, they may not be applicable or appropriate for residential buildings in other hot-humid climate regions that have different economic conditions. The recommendations are discussed below.

1) From the results of the economic analysis, Strategy 9 (high energy efficient refrigerators) had the lowest annualized life-cycle cost as compared to the base-case house, all energy efficiency
strategies, renewable energy systems, and Combinations A to G. The replacement of the refrigerators is also the simplest strategy that could be accomplished by occupants or homeowners. Thus, this strategy is the first recommendation in the improvement of the building. However, although high energy efficient refrigerators could significantly reduce building energy use, they did not significantly improve the simulated space temperatures.

2) From the simulation results of Strategy 5 (Shading devices), simulated temperatures in the living spaces slightly decrease after shading devices were installed (see Figure 7.30). Although the shading devices may not dramatically improve the thermal conditions in the living spaces, a slightly decrease in space temperature is considered as a major improvement of the spaces’ thermal conditions since the base case’s space temperatures were considered uncomfortable as discussed in Chapter V. Therefore shading devices especially for south facing rooms are recommended.

3) Similar to Strategy 5, the results of Strategy 4 (low-e windows) showed that daytime space temperatures slightly decreased after installing the low-e windows. Thus, for the room that is occupied or the room that has an air-condition system operated in the daytime, low-e windows would be effective for improving of the room’s thermal condition and results in small reduction of energy used by the air conditioning system.

However, in the case of the case-study house, the master bedroom and bedroom-3 were only the spaces that were air-conditioned and they were operated only during the nighttime. Hence, the low-e windows and shading had a limited impact on reducing the energy use. Also as mentioned in Chapter VII, Section 7.3.4, during the nighttime, there were periods of time where the ambient temperatures were lower than the room temperatures of the conditioned spaces. In this situation, low-e windows transmitted less heat to the environment as compared to the single-pane windows. Thus, there was an unexpected higher cooling load on the air conditioning system when the low-e windows were used. Fortunately, this only caused an increase of 0.2 percent of the energy consumed by the air conditioning systems. Therefore, installing low-e windows in the nighttime air-conditioned spaces does not significantly reduce energy used by the air conditioning systems. Because of this, the low-e windows are not recommended in the nighttime air-conditioned spaces, but they are recommended for daytime air-conditioned spaces.
4) For the improvements to the building systems, SEER-12 air conditioning systems and electronic ballasts were cost effective; from the results of economic analysis, annualized life-cycle costs and monthly payments of both were very close to those of the base-case house. Therefore, SEER-12 air conditioning systems and electronic ballasts are recommended.

5) Strategy 3-4 (insulated light-weight concrete block walls) was the most effective strategy in the reduction of building energy use. However, insulated light-weight concrete block walls were not cost effective due to their relatively high cost as compared to the typical four-inch brick walls. However, in the study of building simulation of Strategy 3-4, all four-inch brick exterior walls were replaced by the insulated light-weight concrete block walls. Nevertheless, the building energy use was decreased due to the air conditioning systems that operated in only 2 rooms (i.e. mater bedroom and bedroom-3). Thus replacement of the existing exterior walls with the insulated light-weight concrete block walls for the air-conditioned spaces certainly would cost much less than replacement of the whole exterior walls of the building. This strategy was not simulated because energy reductions due to the replacement of the exterior walls of the air-conditioned spaces were expected not to be significantly different from the energy reduction results of the Strategy 3-4. Hence, the Economic analysis of the selectively improved exterior walls needs to be further studied.

6) The results of monthly payments of the energy efficiency strategies, which include second floor ceiling insulation, insulated light-weight concrete block walls, shading devices, SEER-12 air conditioning systems, electronic ballasts, high efficiency refrigerators, and Combinations A to D, showed that their monthly payments were not significantly higher than that of the base-case house. Thus, improving the base-case house using these energy efficiency strategies is recommended.

In summary, all individual strategies analyzed in the economic analysis except Strategies 10 to 12 and Combination A to D are recommended. Low-e windows are recommended for daytime air-conditioned spaces. Insulated light-weight concrete block walls are recommended for air-conditioned spaces.
9.3 Recommendations for Future Research

1) Applications of Heat Rejection by the hybrid PV-T² Collectors

The results from the night mode experiment showed that heat could be rejected from the PV panel by the means of radiative and convective heat losses. However, the impact of this strategy’s cooling performance or heat removing capacity on the case-study house was not simulated with the DOE-2 programs. PV panels that are used to reject heat could provide a significant improvement for situation where a significant amount of 120 °F heat needs rejecting. One example might be the use of a “cool” storage reservoir that is cooled each night and then used the following day to reduce condenser temperatures. This would improve the efficiency of the air conditioning systems. Therefore, this needs further study.

2) Study of Indoor Air Quality (IAQ) in Thai Residential Building

In the study of case-study house, it was found that relative humidities in the living spaces were significantly high. There were many times that relative humidities in the master bedroom and the living room were higher than 70 percent which can indicate the beginning of mold and mildew. However, when the case-study house’s survey was performed, there were no appearance of mold and mildew on the interior surfaces of the walls. Mold may not be visible or it may not be present on the surfaces (such as walls) in the space. This may be due to the fact that growth of mold requires sufficient time at specific thermal conditions (temperature and humidity). ASHRAE (1999, p 20.2) presents the time required for visible mold growth. For instance, at 70 percent relative humidity, visible mold growth requires approximately 100 days (at 77 °F). Although temperatures in the living space were mostly above 77 °F (see Figure 5.15), the relative humidity was not high all the time. Thus this may explain the lack of visible mold in the case-study house. However, this research was not aimed to study IAQ problems in Thai residences, but rather studies the general characteristics of thermal conditions in Thai residential buildings. Further study of mold growth in Thai residential buildings or in partially-conditioned residential buildings in hot and humid climates are essential to improve the building’s IAQ.

3) Applications of Excess heat from the hybrid PV-T² Collectors

From the discussion about further study in IAQ of Thai residential building in previous section, there is a recommendation on an application of the thermal energy (warm water) that is
produced by the hybrid PV-T² Collectors. The available warm water which may exceed the
DHW demand may be used to dehumidify the humid indoor air. To accomplish this, a
concentrated salt solution is sprayed into the air stream to absorb moisture from the indoor air.
As this salt solution absorbs moisture it becomes a weak salt solution. This weak salt solution is
then reconcentrated by evaporating the water at 180-212 °F using heat from the solar collectors.
This strong salt solution is then cooled and recirculated back to the spray chamber where it
absorbs moisture etc. Such a system is capable of removing a large portion of the moisture,
which will reduce indoor humidity level and improve comfort conditions. Also, since it obtains
its heat from the solar collectors it accomplishes this dehumidification at a fraction of the
electricity used in a normal A/C system.
REFERENCES

Blast Support Office (BSO) 1993. *Blast User Reference*, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL.

Haberl, J.S. 1988. *Using the DOE-2 Building Energy Analysis Computer Program; Session one*, Joint Center for Energy Management, Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO.

APPENDIX A
MEASURED DATA FROM THE CASE-STUDY HOUSE

Measured temperatures and humidities in the case-study house are presented in Section A.1 and A.2, respectively. Calibrations of the portable data loggers used for measuring and recoding temperature and humidity in the case-study house are presented in Appendix C.

A.1 Measured Temperatures in the Case-Study House

Measured temperatures in four spaces of the case-study house compared with outdoor temperatures are presented in time series plots in Figure A.1 to A.4. The measured data were obtained by on-site measurements of indoor conditions of the case-study house from four measurement devices (portable data loggers), including: one in an air-conditioned space, two in unconditioned spaces (1st floor and 2nd floor spaces), and one in the attic space. Figure A.1 shows measured temperatures of living-dining room, which was an unconditioned space on the ground floor, compared with the outdoor temperatures. Figure A.2 shows measured temperatures of bedroom-3, which was an unconditioned space on the second floor, compared with the outdoor temperatures. Figure A.3 shows measured temperatures of master bedroom, which was a conditioned space on the second floor, compared with the outdoor temperatures. Figure A.4 shows measured attic temperatures compared with the outdoor temperatures. The outdoor temperatures plotted in Figure A.1 to A.4 were Bangkok weather data 2000 that was directly obtained from the Thai Meteorological Department.
Figure A.1 Measured Living-dining Room Temperatures Compared with the Corresponding Outdoor Temperatures
Figure A.2 Measured Bedroom-3 Temperatures Compared with the Corresponding Outdoor Temperatures
Figure A.3 Measured Master Bedroom Temperatures Compared with the Corresponding Outdoor Temperatures
Figure A.4 Measured Attic Temperatures Compared with the Corresponding Outdoor Temperatures
A.2 Measured Relative Humidities in the Case-Study House

Measured relative humidities in three living spaces of the case-study house compared with outdoor humidity are presented in time series plots in Figure A.5 to A.7. The measured data were obtained by on-site measurements of indoor humidities of the case-study house from three measurement devices (portable data loggers), including: one in an air-conditioned space, and two in unconditioned spaces (1st floor and 2nd floor spaces). Figure A.5 shows measured relative humidities of living-dining room, which was an unconditioned space on the ground floor, compared with the outdoor relative humidities. Figure A.6 shows measured relative humidities of bedroom-3, which was an unconditioned space on the second floor, compared with the outdoor relative humidities. Figure A.7 shows the measured relative humidities of the master bedroom, which was a conditioned space on the second floor, compared with the outdoor relative humidities. The outdoor relative humidities plotted in Figure A.5 to A.7 were Bangkok weather data 2000 that was directly obtained from the Thai Meteorological Department.
Figure A.5 Measured Living Room Relative Humidities Compared with the Corresponding Outdoor Humidities
Figure A.6 Measured Bedroom-3 Relative Humidities Compared with the Corresponding Outdoor Humidities
Figure A.7 Measured Master Bedroom Relative Humidities Compared with the Corresponding Outdoor Humidities
B.1 Construction of Experiment Box and Measurement Devices

Figure B.1 Construction of the Experiment Box: (a) the insulated base, (b) walls were built in modules, (c) the beam over the doors was installed, (d) a close-up of joint of the beam, (e) the inside of the roof-insulated with fiberglass, and (f) the roof after cover with the roofing material.
Figure B.2 Construction of the Energy Collector/Rejecter Unit. The bottom part of the picture is the heat exchanger that was modified from a solar collector absorber plate. The upper left part of the picture is the heat exchanger placed on the back of the PV panel. The upper right part of the picture shows a close-up of heat exchanger and the PV panel. As it can be seen, the PV’s aluminum frame needed to be lathed to accommodate the pipe.
Figure B.3 Water Flow Rate Controlling System. The above picture shows part of the piping system before assembling which includes thermalwell, globe valve, and flow meter. Thermalwell is a small pipe that was extended into the pipe. A thermocouple was inserted into the thermalwell to measure the temperature of water in the pipe.
Figure B.4 Construction of the Heat Rejecter. The heat rejection box was custom made from an automobile radiator (as seen in the top picture), a blower, and aluminum plates. The heat rejection box is part of the Water Temperature Regulating Systems that was explained in Section 4.2.2.2.
B.2 Input Program for the Campbell 21X Data Logger

The following is the description of an input file created by SCWIN to program the Campbell 21X data logger. SCWIN, which is a subprogram in PC200W, is used to create input file for the logger (Campbell Scientific, Inc., 2001). The logger can also be programmed directly (without PC200W) using the keyboard on the logger’s panel (Campbell Scientific, Inc., 1989).

7/18/2002
15:35:14
Created by SCWIN (Version 1.1)
SCWIN Program: Li-Temp.DEF
-Wiring for 21X-

LI200S Pyranometer
1H: Red
1L: Black
GROUND: Clear

Type T (copper-constantan) Thermocouple (1)
2H: Blue
2L: Red

Type T (copper-constantan) Thermocouple (2)
3H: Blue
3L: Red

Type T (copper-constantan) Thermocouple (3)
4H: Blue
4L: Red

Type T (copper-constantan) Thermocouple (4)
5H: Blue
5L: Red

Type T (copper-constantan) Thermocouple (5)
6H: Blue
6L: Red

Differential Voltage
GROUND: Shield
7H: High
7L: Low

4-20 mA Input
GROUND: J umper to 4-20 mA Low
8H: High
8L: Low
B.3 Results from the Day Mode Experiment

This section presents the measured data and results of the day mode experiment. The results of eight days of the day mode experiments are shown in Figure B.5 to B.16. The results of thermal and electrical experiment of the hybrid PV-T² collector system are shown in those figures except the results from the experiments on November 6 and 7, 2002 that there are only the results of thermal energy. As it was explained in Chapter VI, Section 6.2, there was a problem with the resistor circuit board, so electricity output from the PV could not be measured on both days.

B.4 Results from the Night Mode Experiment

This section presents the measured data and results of the night mode experiment. The results of twelve nights of the night mode experiment are shown in Figures B.17 to 27.
Figure B.5 Results from Day Mode Experiment on November 6, 2002.
Figure B.6 Results from Day Mode Experiment on November 7, 2002.
Figure B.7 Results from Day Mode Experiment on December 20, 2002.
Figure B.8 Results (a-d) from Day Mode Experiment on January 6, 2003.
Figure B.9 Results (e-j) from Day Mode Experiment on January 6, 2003.
Figure B.10 Results (a-d) from Day Mode Experiment on January 16, 2003.
Figure B.11 Results (e-j) from Day Mode Experiment on January 16, 2003.
Figure B.11 Results (a-d) from Day Mode Experiment on May 31, 2003.
Figure B.12 Results (e-h) from Day Mode Experiment on May 31, 2003.
Figure B.13 Results (a-d) from Day Mode Experiment on June 7, 2003.
Figure B.14 Results (e-h) from Day Mode Experiment on June 7, 2003.
Figure B.15 Results (a-d) from Day Mode Experiment on July 3, 2003.
Figure B.16 Results (e-h) from Day Mode Experiment on July 3, 2003.
Figure B.17 Results from Night Mode Experiment on April 26-27, 2003.
Figure B.18 Results from Night Mode Experiment on April 28-29, 2003.
Weather Conditions and PV Panel Temperatures

April 30 to May 1, 03

PV Convective Surface Coefficient Vs. Wind Speed

April 30 to May 1, 03

Measured Vs. Calculated Heat Rejection Rate

April 30 to May 1, 03

Figure B.19 Results from Night Mode Experiment on April 30 to May 1, 2003.
Figure B.20 Results from Night Mode Experiment on May 1-2, 2003.
Figure B.21 Results from Night Mode Experiment on May 3-4, 2003.
Weather Conditions and PV Panel Temperatures

May 13-14, 03

PV Convective Surface Coefficient Vs. Wind Speed

May 13-14, 03

Measured Vs. Calculated Heat Rejection Rate

May 13-14, 03

Figure B.22 Results from Night Mode Experiment on May 13-14, 2003.
Figure B.23 Results from Night Mode Experiment on May 15-16, 2003.
Weather Conditions and PV Panel Temperatures

May 19-20, 03

Temperature (°F)

RH (%)

Sky Temperature (°F)
Ambient Temperature (°F)
Dew-point Temperature
PV Surface Temperature
PV Surface and Ambient Temperatures Difference
Relative Humidity

PV Convective Surface Coefficient Vs. Wind Speed

May 19-20, 03

hcv (Btu/(h·ft²·°F))

Wind Speed (mph)

PV Convective Surface Coefficient
Wind Speed

Measured Vs. Calculated Heat Rejection Rate

May 19-20, 03

Heat Rejection Rate (Btu/h)

Measured Total Heat Loss (ΔT cool tank)
Calculated Total Heat Loss
Calculated Convective Heat Loss
Calculated Radiative Heat Loss
Measured Total Heat Loss (Ti - Te)

Figure B.24 Results from Night Mode Experiment on May 19-20, 2003.
Figure B.25 Results from Night Mode Experiment on May 29-30, 2003.
Figure B.26 Results from Night Mode Experiment on May 30-31, 2003.
Figure B.27 Results from Night Mode Experiment on June 6-7, 2003
B.5 Anti-freezing Mode Diagram

An anti-freezing mode was used to prevent the damage that could occur to the PV-T2 panel and the piping system due to the freezing water. The system was switched to the anti-freezing mode in very cool days/nights (when the ambient air temperature was lower than 40 °F), which occurred during the winter. Figure B.28 shows the anti-freezing mode diagram. In Figure B.28, there are three extra equipments that need to equip to the system to protect the water in the PV-T2 panel and the piping system from freezing: 1) Insulated cover for the PV-T2 panel, 2) Two four-foot water hoses, 3) Foam insulation (Polystyrene) to cover the radiator’s inlet and outlet air ducts.

As shown in the Figure B.28, the anti-freezing mode consists of two independent piping loops: 1) PV-T2 panel loop, 2) Radiator loop. The PV-T2 panel loop was to prevent freezing water occurred in the PV-T2 panel and the exterior pipes/tubes that connect to the panel. The loop was operated by pumping water in the Cool tank to the water heater, and then the heated water was circulated through the PV-T2 panel, which was covered with the insulated cover, by piping system and the extra water hoses. Then, from the PV-T2 panel, the heated water drained back to the Cool tank. For the Radiator loop, this loop was to prevent freezing water occurred in the radiator that has inlet and outlet air ducts extended to the exterior. The inlet and outlet air ducts were insulated with form insulation (polystyrene). The water in the hot tank was pumped to the radiator, and drained back to the hot tank. Although the water in this loop was not heated by the water heater as the water in the PV-T2 panel loop (due to the difficulty of pipes and water hose connection), the light bulb was also turned on in the anti-freezing mode to warm the interior air, so the radiator was also warmed by the heat from the light bulb. The heat from the light bulb and the heat contributed from the pump were proved to be sufficient to prevent the water in the radiator from freezing. The circulation of water in the two loops continued until the system was shut off when the ambient temperature was above 40 °F.
Figure B.28 Anti-Freezing Mode Diagram. There are two water circulating loop: PV-T² panel Loop (shown on the left side of the diagram) and Radiator Loop (shown on the right side).
B.6 Null Test: Heat Gain from the Pump

A null test was conducted in order to measure the heat gain rate that was contributed from the pump. The method was circulating water from a tank through a small piping loop inside the experiment box. The box and the pipes were well insulated, so the only one heat source is from the pump. The water in the cool tank was pumped by Pump A and circulated through the water heater that is turn off, and circulated back to the cool tank. The duration of the test was approximately thirteen hours. Temperature of water in the hot tank was measured and recorded by the data logger. Figure B.29 shows the energy gain rate from the pump and gross collective energy from the pump.

From Figure B.29, in the first three hours, energy gain from the pump was relatively high (16-70 – 23.38 Btu/15 min). The energy gain from the pump was declined to a range of 3.43 to 6.68 Btu/15 min from minute 600th to minute 800th. The energy gain rate in this period was relative stable, so the averaged pump heat gain was calculated from this period which was 5.94 Btu/15 min.

Figure B.29 Results from the Null Mode Experiment. The graph shows the rate of heat from the pump contributed to the system.
C.1 Calibration of Devices Used in the Case-Study House

Portable data loggers were used to measure the temperature and humidity of the case-study house. Temperature sensors were calibrated with a calibrated Type-T thermocouple. The thermocouple was calibrated with ice-point and water boiling-point temperatures (Wise, 1986; ASTM E 563-97). Distilled water was used to make ice and boiling water. Calibration of the humidity sensors used a method of humidity control by chemical systems that were described by Greenspan (1976).

Figure C.1 shows temperatures measured by the portable data loggers or “Hobos” # 1 to # 4 versus reference temperatures measured by a calibrated thermocouple. The portable data loggers and the calibrated thermocouple were placed together in a refrigerator that was used for instrument calibration. Three point temperatures calibration was performed. The refrigerator temperature was controlled by adjusting its thermostat for below freezing point and cool temperature measurements, and by turning it off for room temperature measurement. Figure C.2 shows temperatures measured by the portable data loggers after they were calibrated versus the reference temperatures.

There were three humidity sensors in those four portable data loggers (Hobo# 4 was used to measure only temperatures). Humidity calibrations of the three portable data loggers were performed by placing all data loggers in a small glass container. Three saturated salt solutions, which were Lithium Chloride, Magnesium Chloride, and Sodium Chloride, were used to generate constant relative humidities which occurred in the air above these solutions in a small container. In the container, constant relative humidities of approximately 11 percent, approximately 32 percent, and approximately 75 percent were generated by Lithium Chloride, Magnesium Chloride, and Sodium Chloride, respectively. Each of the saturated salt solutions was put in the container where the data loggers were positioned to stay above the solutions. The data loggers were set to measure both temperature and humidity. A calibrated RTD thermometer connected with a data logger was used to measured air temperature in the container. Figure C.4 shows the calibration of the RTD thermometer which was calibrated with
ice-point and water boiling-point temperatures (Wise, 1986). The container, then, was put a refrigerator. For each of saturated salt solutions, the temperature of the refrigerator was adjusted to three different temperature conditions (low temperature, room temperature, and high temperature). The refrigerator’s thermostat was adjusted to low temperature position in the case of the low temperature measurement. The refrigerator was turned off in the case of room temperature measurement. A 60W incandescent lamp was put in the refrigerator (with the refrigerator turned off) to create a high temperature condition in the refrigerator. In this high temperature condition, the refrigerator’s door was not completely closed because the air temperature in the refrigerator could be extremely high and not constant. Thus, this condition should be avoided. Reference humidities in those conditions of each salt were calculated be by using temperatures measured by the RTD (Greenspan, 1976). The results of the humidity calibration of the portable data loggers are presented in Figure C.3.
Figure C.1 Temperatures Measured by Portable Data loggers versus Temperatures Measured by a Reference Thermometer.
Figure C.2 Calibrated Temperatures Measured by Portable Data loggers versus Temperatures Measured by a Reference Thermometer.
Figure C.3 Humidity Calibrations of The Portable Data Logger.
From Top to bottom: Hobo#1, Hobo#2 and Hobo#3.
C.2 Calibration of Devices Used in the Hybrid PV-T Experiment

C.2.1 Instruments Used for Measuring Temperature

Liquid-in-glass thermometer, Type T thermocouples, portable data loggers were used for measuring temperature in the research. Liquid-in-glass thermometer and Type T thermocouples were calibrated with ice-point and water boiling-point temperatures (Wise, 1986; ASTM E 563-97). The calibration of the thermocouples is showed in Figure C.5. The calibration of the liquid-in-glass thermometer is showed in Figure C.6.
Figure C.5 Temperature Calibrations of The Thermocouples.
Figure C.6 Temperature Calibrations of The Liquid-in-glass Thermometers.
C.2.2 Instrument used for measuring solar radiation: pyranometer.

A photovoltaic-type sensor (LI-COR pyranometer) was used for my study. It was used to measure on-plain solar radiation on the Photovoltaic-Thermal panel. Calibration method that was used to calibrate the LI-COR Pyranometer is described by LI-COR, inc. (1991, p 15) as the following:

“The LI-COR SA Pyranometer has been calibrated against an Eppley Precision Spectral Pyranometer (PSP) of which the calibration is periodically confirmed. The calibration was performed under daylight conditions by a computer sampling of instantaneous readings from the Eppley and LI-COR pyranometers. Instantaneous readings were taken continuously for 10 minutes and then averaged. Sequential ten minute averaging periods were run from sunup to sundown for 3-4 days. These ten minute averages were then evaluated and used to compute an average calibration constant. The uncertainty of calibration is ±5%.”

Klima (2000) calibrated photovoltaic-type sensors (LI-CORs) against PSP for his work at solar test bench at Langford Architecture building. He described that the PSP was reconditioned by the Eppley Laboratory and compared against a NIST standard pyranometer. Calibration constants were provided for the sensor by Eppley.

For my study, PSP at solar test bench was used to be a reference instrument for calibrating a LI-COR radiation sensor by the procedure that described by LI-COR. However, data logger at solar test bench was set to record data every 15 minute. Figure C.7 shows global solar radiation measured by PSP and LI-COR radiation sensor and Figure C.8 show solar radiation measured by PSP and calibrated LI-COR radiation sensor. Data from LI-COR (before and after calibration) is also plotted against PSP in Figure C.9 and C.10.
Figure C.7 PSP and LI-COR.

Figure C.8 PSP and Calibrated LI-COR.
Figure C.9 PSP Versus LI-COR

Figure C.10 PSP Versus Calibrated LI-COR
D.1 DOE-2 Input File of the Base-Case House

Figure D.1 shows the output from DrawBDL which represents the base-case house including surroundings. The DOE-2 input file of the base-case house is presented in the following pages.

Figure D.1 DrawBDL Output of the Base-Case House
This program bears a copyright notice to prevent rights from being claimed by any other party. This program shall not be redistributed or sold without written approval from the author.

$************************** L O A D **************************************$

INPUT LOADS ..

TITLE LINE-1 *CASE STUDY HOUSE: THE JEERASAK’S HOUSE, THAILAND*
 LINE-2 *Base-Case: Calibration #16* ..

RUN-PERIOD JAN 1 2000 THRU SEP 20 2000
 SEP 25 2000 THRU DEC 31 2000 ..

ABORT ERRORS ..
DIAGNOSTIC WARNINGS ..

$------------------------------HOURLY REPORTS-------------------------------$

SCH-1 = SCHEDULE THRU JAN 1 (ALL)(1,24)(1)
 THRU DEC 31 (ALL)(1,24)(1) ..

G1 = REPORT-BLOCK VARIABLE-TYPE = GLOBAL
 VARIABLE-LIST = (2,3,4,10,13,14,16,23,30) ..

$ V-L (Global)= 2 = Ground temperature (Rankine)
$ V-L (Global)= 3 = Wet-bulb temperature (Fahrenheit)
$ V-L (Global)= 4 = Dry-bulb temperature (Fahrenheit)
$ V-L (Global)=10 = Humidity ratio (lb of water/lb of dry air)
$ V-L (Global)=16 = Cloud type in the DOE2 V.119 output,
 but defined as Wind speed (knots) in manual 2.1A
$ V-L (Global)=13 = Duffuse Solar in the DOE2 V.119 output,
 but defined as Total horizontal solar radiation from the weather file (But/hr-sq.ft).
$ V-L (Global)=14 = Total direct normal solar radiation from the weather file (But/hr-sq.ft).
$ V-L (Global)=23 = Heat loss by horizontal surface to sky (Btu/hr-sq.ft)
$ V-L (Global)=30 = Direct normal extraterrestrial solar radiation

H-REPORT-1 = H-R R-SCH=SCH-1 R-B=(G1) ..

LOADS-REPORT VERIFICATION = (LV-A,LV-H)

$ BUILDING LOCATION

$ CITY = NONTHABURY (VICINITY OF BANGKOK)
$ COUNTRY = THAILAND

BUILDING-LOCATION
LATITUDE = 13.44
LONGITUDE = -100.06
ALTITUDE = 6.627 ($2.02 m)
TIME-ZONE = -7
DAYLIGHT-SAVINGS = NO
CLEARNESS-NUMBER
AZIMUTH = 10.0
GROUND-T = (82,82,82,82,82,82,82,82,82,82,82,82) Ground T. 2000 Pattarayut (2002)
GROUND-T = (80,80,80,80,80,80,80,80,80,80,80,80) Ground T. 1999 Sreshthaputra (2003)
GROSS-AREA = 1315 $(122.00 m)

$ BUILDING DESCRIPTION

$ FLOOR==
$ FLOOR\ STRUCTURE$
$ CONCRETE\ SLAB$
$ THICKNESS: 3.937" (10 cm)$
$ REFERENCE: THERMAL\ PROPERTY\ FROM\ DOE-2\ MATERIAL\ LIBRARY$
$ CODE-WORD: CC14 4" (10.16 cm) CONCRETE, HEAVY\ WEIGHT$
$ UNDRIE\ AGGREGATE, 140 lbs.$
$ THICKNESS = 0.3333 Ft.$
$ CONDUCTIVITY = 1.0417 Btu.Ft/Hr.Sq.Ft.*F$
$ DENSITY = 140 Lb/cu.Ft.$
$ Specific Heat = 0.2 Btu/Lb.*F$
$ Resistance = 0.32 Hr.Sq.Ft.*F/Btu$

$ FLOOR\ FINISHINGS$
$ CERAMIC\ TILE 8"x 8"$
$ THICKNESS: 0.3936" (1 cm)$
$ REFERENCE: ASHRAE(1997)$
$ THICKNESS = 0.0328 Ft.$
$ CONDUCTIVITY = 1.2709 Btu.Ft/Hr.Sq.Ft.*F (2.2 W/m*K)$
$ DENSITY = 16.25 Lb/cu.Ft. (260 kg/m^3)$
$ Specific Heat = 0.1793 Btu/Lb.*F (750 J/kg*K)$
$ Resistance = --- Hr.Sq.Ft.*F/Btu$

$ PARQUET$
$ THICKNESS: 3/4" (19.05 cm)$
$ REFERENCE: THERMAL\ PROPERTY\ FROM\ DOE-2\ MATERIAL\ LIBRARY$
$ CODE-WORD: WD11 WOOD,HARD,3/4"$
$ THICKNESS = 0.0625 Ft.$
$ CONDUCTIVITY = 0.0916 Btu.Ft/Hr.Sq.Ft.*F (k value) (W/m*K)$
$ DENSITY = 45.0 Lb/cu.Ft. (kg/m^3)$
$ Specific Heat = 0.30 Btu/Lb.*F (J/kg*K)$
$ Resistance = 0.68 Hr.Sq.Ft.*F/Btu$

MAT-FIC-1 = MATERIAL RESISTANCE = 2.437 .. $ Resistance of fictitious layer

SOIL-12IN = MATERIAL
THICKNESS = 1.0
CONDUCTIVITY = 1.0
DENSITY = 115
Specific-Heat = 0.1 ..
$ (Winkelmann 1998)$

CERAMIC-MAT = MATERIAL
THICKNESS = 0.0328
CONDUCTIVITY = 1.2709
DENSITY = 16.25
Specific-Heat = 0.1793 ..
$ Resistance = ---$

CERAMIC-LA = LAYERS MATERIAL=(MAT-FIC-1,SOIL-12IN,CC03)
INSIDE-FILM-RES = 0.92 ..

CERAMIC-FLOOR = CONSTRUCTION LAYERS = CERAMIC-LA ..

CERAMIC-LA-2 = LAYERS MATERIAL=(MAT-FIC-1,CC03)
INSIDE-FILM-RES = 0.92 ..

CERAMIC-FLOOR-2 = CONSTRUCTION LAYERS = CERAMIC-LA-2 ..

PARQUET-MAT = MATERIAL
THICKNESS = 0.0625
CONDUCTIVITY = 0.0916
DENSITY = 45.0
Specific Heat = 0.30
Resistance = 0.68 ..

PARQUET-LA = LAYERS MATERIAL = (CC03, WD11) ..

PARQUET-FLOOR = CONSTRUCTION LAYERS = PARQUET-LA ..

$ WALL===
$ WALL\ CONSTRUCTION
$ BRICK
$ THICKNESS: 3.937" (10 cm)$
$ REFERENCE: THERMAL\ PROPERTY\ FROM\ DOE-2\ MATERIAL\ LIBRARY$
$ CODE-WORD: BK01 4" (10.16 cm) COMMON BRICK
$ THICKNESS = 0.3333 \text{ Ft.}$
$ CONDUCTIVITY = 0.4167 \text{ Btu.Ft/Hr.Sq.Ft.*F}$
$ DENSITY = 120 \text{ Lb/cu.Ft.}$
$ Specific \text{ Heat} = 0.2 \text{ Btu/Lb.*F}$
$ Resistance = 0.8 \text{ Hr.Sq.Ft.*F/Btu}$

$ WALL \text{ FINISHINGS}$
$ CEMENT$
$ THICKNESS: 0.3936" (1 \text{ cm})$
$ REFERENCE: CEMENT PLASTER, SAND AGGREGATE FROM STEIN & REYNOLDS (1992)$
$ THICKNESS = 0.0328 \text{ Ft.}$
$ CONDUCTIVITY = 0.3079 \text{ Btu.Ft/Hr.Sq.Ft.*F} (0.533 \text{ W/m*K})$
$ DENSITY = 116 \text{ Lb/cu.Ft.} (--- \text{ kg/m}^3)$
$ Specific \text{ Heat} = 0.2 \text{ Btu/Lb.*F} (--- \text{ J/kg*K})$
$ Resistance = --- \text{ Hr.Sq.Ft.*F/Btu}$

$ PLASTER-MAT = \text{ MATERIAL}$
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2
 Resistance = ---

$ BRICK-LA = \text{ LAYERS MATERIAL = (PLASTER-MAT, BK01, PLASTER-MAT) ..}$
$ BRICK-WALL = \text{ CONSTRUCTION LAYERS = BRICK-LA ..}$

$ CEILING$
$ypsum-board-ceiling$
$ THICKNESS: 0.47" (12 \text{ cm})$
$ REFERENCE: THERMAL PROPERTY FROM DOE-2 MATERIAL LIBRARY$
$ CODE-WORD: GP01 1/2" (12.70 \text{ cm}) GYPSUM OR PLASTER BOARD$
$ THICKNESS = 0.0417 \text{ Ft.}$
$ CONDUCTIVITY = 0.0926 \text{ Btu.Ft/Hr.Sq.Ft.*F}$
$ DENSITY = 50 \text{ Lb/cu.Ft.}$
$ Specific-Heat = 0.2 \text{ Btu/Lb.*F}$
$ Resistance = 0.45 \text{ Hr.Sq.Ft.*F/Btu}$

$ AIR GAP$
$ THICKNESS: 4" (10 \text{ cm}) OR MORE$
$ REFERENCE: THERMAL PROPERTY FROM DOE-2 MATERIAL LIBRARY$
$ CODE-WORD: AL33 AIR LAYER, 4" OR MORE, HORIZONTAL ROOFS$
$ Resistance = 0.92 \text{ Hr.Sq.Ft.*F/Btu}$

$ FIBER GLASS INSULATION$
$ THICKNESS: 3.5$
$ REFERENCE: THERMAL PROPERTY FROM DOE-2 MATERIAL LIBRARY$
$ CODE-WORD: IN02 MINERAL WOOL/FIBER R-11$
$ THICKNESS = 0.2957 \text{ Ft.}$
$ CONDUCTIVITY = 0.0250 \text{ Btu.Ft/Hr.Sq.Ft.*F}$
$ DENSITY = 6 \text{ Lb/cu.Ft.}$
$ Specific-Heat = 0.2 \text{ Btu/Lb.*F}$
$ Resistance = 11.83 \text{ Hr.Sq.Ft.*F/Btu}$

$ GYPSUM-CEILING1 = \text{ LAYERS MATERIAL = (AL33, GP01)}$
 THICKNESS = (1.0, 0.417) ..
$ AIR GAP 30 CM$
$ GYPSUM-CEILING-1ST = \text{ CONSTRUCTION LAYERS = GYPSUM-CEILING1 ..}$

$ GYPSUM-CEILING2 = \text{ LAYERS MATERIAL = (IN02, GP01)}$
 THICKNESS = (0.2957, 0.0417) ..
$ GYPSUM-CEILING-2ND = \text{ CONSTRUCTION LAYERS = GYPSUM-CEILING2 ..}$

$ ROOF$
$ CEMENT TILE (CPAC MONIA)$
$ THICKNESS: 1" (2.54 \text{ cm})$
$ REFERENCE: THERMAL PROPERTY FROM DOE-2 MATERIAL LIBRARY$
$ CODE-WORD: CM01 CEMENT 1" MORTAR$
$ THICKNESS = 0.0833 \text{ Ft.}$
$ CONDUCTIVITY = 0.4167 \text{ Btu.Ft/Hr.Sq.Ft.*F}$
$ DENSITY = 116 \text{ Lb/cu.Ft.}$
$ Specific-Heat = 0.2 \text{ Btu/Lb.*F}$
$ Resistance = 0.2 \text{ Hr.Sq.Ft.*F/Btu}$

$ ASBESTOS-CEMENT TILE$
$ THICKNESS: 0.25" (6.4 \text{ cm})$
$ REFERENCE: THERMAL PROPERTY FROM DOE-2 MATERIAL LIBRARY
$ CODE-WORD: AB02
$ THICKNESS = 0.028 Ft.
$ CONDUCTIVITY = 0.3450 Btu.Ft/Hr.Sq.Ft.*F
$ DENSITY = 120 Lb/cu.Ft.
$ Specific Heat = 0.2 Btu/Lb.*F
$ Resistance = 0.06 Hr.Sq.Ft.*F/Btu
$ AIR GAP
$ THICKNESS: 4" (10 cm) OR MORE
$ REFERENCE: THERMAL PROPERTY FROM DOE-2 MATERIAL LIBRARY
$ CODE-WORD: A33 AIR LAYER, 4" OR MORE, HORIZONTAL ROOFS
$ Resistance = 0.92 Hr.Sq.Ft.*F/Btu

CEMENT-CPAC = MATERIAL
THICKNESS = 0.0833
CONDUCTIVITY = 0.4167
DENSITY = 116
Specific Heat = 0.2
Resistance = 0.2 ..

ROOF1 = LAYERS MATERIAL = (CEMENT-CPAC,A33) ..
CEMENT-ROOF1 = CONSTRUCTION
ABSORPTANCE = 0.88
LAYERS = ROOF1 ..

$ WINDOW & DOOR

GLASS-1 = GLASS-TYPE GLASS-TYPE-CODE = 1000 $ 3 mm CLEAR GLASS
 FRAME-ABS = 0.7
 FRAME-CONDUCTANCE = 0.434 .. $

GLASS-2 = GLASS-TYPE GLASS-TYPE-CODE = 1000 $ 3 mm CLEAR GLASS
 FRAME-ABS = 0.7
 FRAME-CONDUCTANCE = 0.434 ..

$ OCCUPANCY SCHEDULE

$ SPACE 1-1 : LIVING ROOM
OCC1-1WD = DAY-SCHEDULE
 (1,7) (0) (8) (0.25) (9,13) (0.25)
 (14,17) (0) (18) (0.25) (19) (0.75) (20,24) (0) ..
OCC1-1WE = DAY-SCHEDULE
 (1,7) (0) (8) (0.25) (9,19) (0.35) (20,24) (0) ..
OCC1-1WEEK = WEEK-SCHEDULE
 (WD) OCC1-1WD (WEH) OCC1-1WE ..
OCC1-1YEAR = SCHEDULE
 THRU DEC 31 OCC1-1WEEK ..

$ SPACE 1-2 : STAIRWAY
UNOCC1-2 = DAY-SCHEDULE
 (1,24) (0) ..
UNOCC1-2WEEK = WEEK-SCHEDULE
 DAYS = (ALL)
 DAY-SCHEDULE = UNOCC1-2 ..
UNOCC1-2YEAR = SCHEDULE
 THRU DEC 31 UNOCC1-2WEEK ..

$ SPACE 1-3 : PLENUM
UNOCC1-3 = DAY-SCHEDULE
 (1,24) (0) ..
UNOCC1-3WEEK = WEEK-SCHEDULE
 DAYS = (ALL)
 DAY-SCHEDULE = UNOCC1-3 ..
UNOCC1-3YEAR = SCHEDULE
 THRU DEC 31 UNOCC1-3WEEK ..

$ SPACE 1-6 : LAUNDRY AREA
UNOCC1-6 = DAY-SCHEDULE
 (1,24) (0) ..
UNOCC1-6WEEK = WEEK-SCHEDULE
 DAYS = (ALL)
DAY-SCHEDULE = UNOCC1-6
UNOCC1-6YEAR = SCHEDULE
THRU DEC 31 UNOCC1-6WEEK

$ SPACE 2-1 : MASTER BEDROOM
OCC2-1WD = DAY-SCHEDULE
(1,7) (0.75) (8,19) (0) (20,24) (0.75)
OCC2-1WE = DAY-SCHEDULE
(1,7) (0.75) (8,19) (0) (20,24) (0.75)
OCC2-1WEEK = WEEK-SCHEDULE
(WD) OCC2-1WD (WEH) OCC2-1WE
OCC2-1YEAR = SCHEDULE
THRU DEC 31 OCC2-1WEEK

$ SPACE 2-2 : BEDROOM 2
OCC2-2WD = DAY-SCHEDULE
(1,24) (0)
OCC2-2WE = DAY-SCHEDULE
(1,7) (0.25) (8,19) (0) (20,24) (0.25)
OCC2-2WEEK = WEEK-SCHEDULE
(WD) OCC2-2WD (WEH) OCC2-2WE
OCC2-2YEAR = SCHEDULE
THRU DEC 31 OCC2-2WEEK

$ SPACE 2-3 : BEDROOM 3 (NOT USED AS A BEDROOM, BUT FOR VERSATILE USES)
OCC2-3WD = DAY-SCHEDULE
(1,24) (0)
OCC2-3WE = DAY-SCHEDULE
(1,24) (0)
OCC2-3WEEK = WEEK-SCHEDULE
(WD) OCC2-3WD (WEH) OCC2-3WE
OCC2-3YEAR = SCHEDULE
THRU DEC 31 OCC2-3WEEK

$ SPACE 2-4 : BATHROOM & 2ND FLOOR HALL
UNOCC2-4 = DAY-SCHEDULE
(1,24) (0)
UNOCC2-4WEEK = WEEK-SCHEDULE
DAYS = (ALL)
DAY-SCHEDULE = UNOCC2-4
UNOCC2-4YEAR = SCHEDULE
THRU DEC 31 UNOCC2-4WEEK

$ LIGHTING SCHEDULE

$ SPACE 1-1 : LIVING RM (32 W), DINING RM (32 W)
$ KITCHEN (32 W), BATHROOM (3.2 W)
$ LIGHT IN BATHROOM IS USED FOR SHORT PERIODS OF TIME
$ AND ITS LIGHT SCHEDULE IS IN THE SAME PROFILE AS LIVING RM,
$ DINING RM AND KITCHEN, SO THE POWER (WATT) OF LIGHT IS
$ DEFINED ABOUT 1/10 OF IT ACTUAL VALUE (3.2 W).

LIGHT1-1WD = DAY-SCHEDULE
(1,8) (0) (9,13) (0)
(14,17) (0) (18,20) (1) (21,22) (0.75)
(23) (0) (24) (0)

LIGHT1-1WE = DAY-SCHEDULE
(1,8) (0) (9,13) (0)
(14,17) (0) (18,20) (1) (21,22) (0.75)
(23) (0) (24) (0)

LIGHT1-1WEEK = WEEK-SCHEDULE
(WD) LIGHT1-1WD (WEH) LIGHT1-1WE
LIGHT1-1YEAR = SCHEDULE
THRU DEC 31 LIGHT1-1WEEK

$ SPACE 1-2 : STAIRWAY (32 W)
LIGHT1-2WD = DAY-SCHEDULE
(1,8) (0) (9,13) (0) (14,17) (0) (18) (0)
(19,20) (1) (21) (0.5) (22,24) (0)

LIGHT1-2WE = DAY-SCHEDULE
(1,8) (0) (9,13) (0) (14,17) (0) (18) (0)
(19,20) (1) (21) (0.5) (22,24) (0)

LIGHT1-2WEEK = WEEK-SCHEDULE
$\text{SPACE 1-6: LAUNDRY AREA (32 W)}$

\begin{align*}
\text{LIGHT1-6WD} &= \text{DAY-SCHEDULE} \\
&= (1,8)(0) (9,13)(0) (14,17)(0) (18,20)(0) (21,24)(0) \\
\text{LIGHT1-6WE} &= \text{DAY-SCHEDULE} \\
&= (1,8)(0) (9,13)(0) (14,17)(0) (18,21)(0) (22,24)(0) \\
\text{LIGHT1-6WEEK} &= \text{WEEK-SCHEDULE} \\
&= (\text{WD}) \text{LIGHT1-6WD} (\text{WEH}) \text{LIGHT1-6WE} \\
\text{LIGHT1-6YEAR} &= \text{SCHEDULE} \\
&= \text{THRU DEC 31 LIGHT1-6WEEK} \\
\end{align*}

$\text{SPACE 2-1: MASTER BEDROOM (2 X 32 W = 64 W)}$

\begin{align*}
\text{LIGHT2-1WD} &= \text{DAY-SCHEDULE} \\
&= (1,7)(0) (9,19)(0) (20)(0.33) (21,22)(1) (23)(0.5) (24)(0) \\
\text{LIGHT2-1WE} &= \text{DAY-SCHEDULE} \\
&= (1,7)(0) (8,19)(0) (20)(0.33) (21,22)(1) (23)(0.5) (24)(0) \\
\text{LIGHT2-1WEEK} &= \text{WEEK-SCHEDULE} \\
&= (\text{WD}) \text{LIGHT2-1WD} (\text{WEH}) \text{LIGHT2-1WE} \\
\text{LIGHT2-1YEAR} &= \text{SCHEDULE} \\
&= \text{THRU DEC 31 LIGHT2-1WEEK} \\
\end{align*}

$\text{SPACE 2-2: BEDROOM 2 (32 W)}$

\begin{align*}
\text{LIGHT2-2WD} &= \text{DAY-SCHEDULE} \\
&= (1,24)(0) \\
\text{LIGHT2-2WE} &= \text{DAY-SCHEDULE} \\
&= (1,7)(0) (8,18)(0) (19,21)(0) (22,24)(1) \\
\text{LIGHT2-2WEEK} &= \text{WEEK-SCHEDULE} \\
&= (\text{WD}) \text{LIGHT2-2WD} (\text{WEH}) \text{LIGHT2-2WE} \\
\text{LIGHT2-2YEAR} &= \text{SCHEDULE} \\
&= \text{THRU DEC 31 LIGHT2-2WEEK} \\
\end{align*}

$\text{SPACE 2-3: BEDROOM 3 (32 W)}$

\begin{align*}
\text{LIGHT2-3WD} &= \text{DAY-SCHEDULE} \\
&= (1,19)(0) (20)(0.16) (21,24)(0) \\
\text{LIGHT2-3WE} &= \text{DAY-SCHEDULE} \\
&= (1,19)(0) (20)(0.16) (21,24)(0) \\
\text{LIGHT2-3WEEK} &= \text{WEEK-SCHEDULE} \\
&= (\text{WD}) \text{LIGHT2-3WD} (\text{WEH}) \text{LIGHT2-3WE} \\
\text{LIGHT2-3YEAR} &= \text{SCHEDULE} \\
&= \text{THRU DEC 31 LIGHT2-3WEEK} \\
\end{align*}

$\text{SPACE 2-4: BATHROOM(32 W) & 2ND FLOOR HALL (32 W)}$

\begin{align*}
\text{LIGHT2-4WD} &= \text{DAY-SCHEDULE} \\
&= (1,6)(0) (7)(0.33) (8,18)(0) (19)(0.33) (20,24)(0) \\
\text{LIGHT2-4WE} &= \text{DAY-SCHEDULE} \\
&= (1,7)(0) (8)(0.33) (9,18)(0) (19)(0.33) (20,24)(0) \\
\text{LIGHT2-4WEEK} &= \text{WEEK-SCHEDULE} \\
&= (\text{WD}) \text{LIGHT2-4WD} (\text{WEH}) \text{LIGHT2-4WE} \\
\text{LIGHT2-4YEAR} &= \text{SCHEDULE} \\
&= \text{THRU DEC 31 LIGHT2-4WEEK} \\
\end{align*}

$\text{EQUIPMENT SCHEDULE}$

$\text{SPACE 1-1: LIVING ROOM (TV-85 W + Electric Fan-60 W = 145 W)}$

$\text{SPACE 2-1: DINING ROOM (MICROWAVE OVEN-1000 W + TOASTER-700 W = 1700 W)}$

$\text{SPACE 2-1: KITCHEN ROOM (REFRIGERATOR-150 W (657 kwh/year) + ELECTRIC RICE COOKER-700 W = 650 W)}$

$\text{TOTAL} = 2495$ $\text{W OR 2.495 KW (Adjusted to 2.3 KW)}$

\begin{align*}
\text{EQUIP1-1WD} &= \text{DAY-SCHEDULE} \\
&= (1,7)(0.0326) (8)(0.0519) (9,17)(0.0326) (18)(0.109) (19,20)(0.0736) (21,24)(0.0326) \\
\text{EQUIP1-1WE} &= \text{DAY-SCHEDULE} \\
&= (1,7)(0.0326) (8)(0.0519) (9,10)(0.0326) (11,17)(0.0736) (18)(0.109) (19,20)(0.0736) (21,24)(0.0326) \\
\text{EQUIP1-1WEEK} &= \text{WEEK-SCHEDULE} \\
\end{align*}
$ SPACE 1-6 SEMI-OUTDOOR: LAUNDRY AREA (CLOTH WASHER = 260 W)

- **EQUIP1-6WD**: DAY-SCHEDULE
 - (1,8) (0) (9) (0.25) (10,24) (0)
- **EQUIP1-6WE**: DAY-SCHEDULE
 - (1,8) (0) (9) (0.25) (10,24) (0)
- **EQUIP1-6WEEK**: WEEK-SCHEDULE
 - (WD) EQUIP1-6WD (WEH) EQUIP1-6WE
- **EQUIP1-6YEAR**: SCHEDULE
 - THRU DEC 31 EQUIP1-6WEEK

$ SPACE 2-1: MASTER BEDROOM (TV-95 W + ELECT. FAN 60 W + DESK LAMP 60 W = 215 W)

- **EQUIP2-1WD**: DAY-SCHEDULE
 - (1,7) (0) (8,20) (0) (21) (0.44) (22) (0.22) (23) (0.22) (24) (0)
- **EQUIP2-1WE**: DAY-SCHEDULE
 - (1,7) (0) (8,20) (0) (21) (0.44) (22) (0.44) (23) (0.22) (24) (0)
- **EQUIP2-1WEEK**: WEEK-SCHEDULE
 - (WD) EQUIP2-1WD (WEH) EQUIP2-1WE
- **EQUIP2-1YEAR**: SCHEDULE
 - THRU DEC 31 EQUIP2-1WEEK

$ SPACE 2-2: BEDROOM 2 (TV-48 W + DESK LAMP-60 W = 108 W)

- **EQUIP2-2WD**: DAY-SCHEDULE
 - (1,24) (0)
- **EQUIP2-2WE**: DAY-SCHEDULE
 - (1,7) (0) (8,20) (0) (21) (0) (22) (0) (23) (0.44) (24) (0)
- **EQUIP2-2WEEK**: WEEK-SCHEDULE
 - (WD) EQUIP2-2WD (WEH) EQUIP2-2WE
- **EQUIP2-2YEAR**: SCHEDULE
 - THRU DEC 31 EQUIP2-2WEEK

$ SPACE 2-3: BEDROOM 3 (IRON = 1200 W)

- **EQUIP2-3WD**: DAY-SCHEDULE
 - (1,15) (0) (16) (0.25) (17,24) (0)
- **EQUIP2-3WE**: DAY-SCHEDULE
 - (1,15) (0) (16) (0.25) (17,24) (0)
- **EQUIP2-3WEEK**: WEEK-SCHEDULE
 - (WD) EQUIP2-3WD (WEH) EQUIP2-3WE
- **EQUIP2-3YEAR**: SCHEDULE
 - THRU DEC 31 EQUIP2-3WEEK

$ SPACE 2-4: BATHROOM & HALL

- **EQUIP2-4WD**: DAY-SCHEDULE
 - (1,24) (0.486)
- **EQUIP2-4WE**: DAY-SCHEDULE
 - (1,24) (0.486)
- **EQUIP2-4WEEK**: WEEK-SCHEDULE
 - (WD) EQUIP2-4WD (WEH) EQUIP2-4WE
- **EQUIP2-4YEAR**: SCHEDULE
 - THRU DEC 31 EQUIP2-4WEEK

$ WASHING MACHINE

- **WASHING-WD**: DAY-SCHEDULE
 - (1,8) (0) (9) (0.3) (10,24) (0)
- **WASHING-WE**: DAY-SCHEDULE
 - (1,8) (0) (9) (0.5) (10,24) (0)
- **WASHING-WEEK**: WEEK-SCHEDULE
 - (WD) WASHING-WD (WEH) WASHING-WE
- **WASHING-YEAR**: SCHEDULE
 - THRU DEC 31 WASHING-WEEK

$ INFILTRATION SCHEDULE

- **INFIL-DAY**: DAY-SCHEDULE
 - (1,24) (1)
- **INFIL-WEEK**: WEEK-SCHEDULE
 - DAYS = (ALL)

\[\text{DAY-SCHEDULE = INFIL-DAY ..} \]

\[\text{INFIL-YEAR = SCHEDULE} \]
\[\text{THRU DEC 31 INFIL-WEEK ..} \]

\[\text{INFIL-DAY-L = DAY-SCHEDULE} \]
\[(1,7) (0.1) (8,18) (1) (19,24) (0.1) .. \]

\[\text{INFIL-WEEK-L = WEEK-SCHEDULE} \]
\[\text{DAYS = (ALL)} \]
\[\text{DAY-SCHEDULE = INFIL-DAY-L ..} \]

\[\text{INFIL-YEAR-L = SCHEDULE} \]
\[\text{THRU DEC 31 INFIL-WEEK-L ..} \]

\$ ATTIC'S INFILTRATION SCHEDULE

\[\text{INFIL-DAY-ATT = DAY-SCHEDULE} \]
\[(1,7) (1) (8,20) (0.2) (21,24) (1) .. \]

\[\text{INFIL-WEEK-ATT = WEEK-SCHEDULE} \]
\[\text{DAYS = (ALL)} \]
\[\text{DAY-SCHEDULE = INFIL-DAY-ATT ..} \]

\$ SHADING SCHEDULE

\[\text{CURTAIN-1-DAY = DAY-SCHEDULE} \]
\[(1,24) (0.8) .. \]

\[\text{CURTAIN-1-WEEK = WEEK-SCHEDULE} \]
\[\text{DAYS = (ALL)} \]
\[\text{DAY-SCHEDULE = CURTAIN-1-DAY ..} \]

\[\text{CURTAIN-1 = SCHEDULE} \]
\[\text{THRU DEC 31 CURTAIN-1-WEEK ..} \]

\[\text{CURTAIN-2-DAY = DAY-SCHEDULE} \]
\[(1,24) (0.5) .. \]

\[\text{CURTAIN-2-WEEK = WEEK-SCHEDULE} \]
\[\text{DAYS = (ALL)} \]
\[\text{DAY-SCHEDULE = CURTAIN-2-DAY ..} \]

\[\text{CURTAIN-2 = SCHEDULE} \]
\[\text{THRU DEC 31 CURTAIN-2-WEEK ..} \]

\$ SET DEFAULT VALUES

\[\text{$\text{SET-DEFAULT FOR SPACE FLOOR-WEIGHT=0 ..} \}

\[\text{$\text{SET-DEFAULT FOR WINDOW HEIGHT=4.0 GLASS-TYPE=W-1 Y=3 ..} \}

\$ GENERAL SPACE CONDITIONS

\[\text{LIVING-SPACE = SPACE-CONDITIONS} \]
\[\text{TEMPERATURE = (85) $ AVERAGE MEASURED TEMPERATURE OF LIVING RM.} \]

\[\text{\$PEOPLE-SCHEDULE = INDIVIDUAL} \]
\[\text{NUMBER-OF-PEOPLE = 3.3 $ 3 ADULTS AND ONE YEAR OLD BABY} \]
\[\text{PEOPLE-HEAT-GAIN = 400} \]

\[\text{\$LIGHTING-SCHEDULE = INDIVIDUAL} \]
\[\text{LIGHTING-TYPE = SUS-FLUOR} \]
\[\text{LIGHT-TO-SPACE = 0.8} \]

\[\text{\$EQUIP-SCHEDULE = INDIVIDUAL} \]
\[\text{\$EQUIPMENT-KW = INDIVIDUAL} \]
\[\text{INF-METHOD = AIR-CHANGE} \]
\[\text{AIR-CHANGES/HR = 1 $ INDIVIDUAL} \]
\[\text{INF-SCHEDULE = INFIL-YEAR} \]
\[\text{ZONE-TYPE = UNCONDITIONED $ INDIVIDUAL} \]
\[\text{FURNITURE-TYPE = HEAVY} \]
\[\text{FLOOR-WEIGHT = 0 ..} \]

\[\text{$ Set FLOOR-WEIGHT = 0 for automatic calculation of Custom Weighting Factor (CWF) $} \]

\[\text{PLENUM-SPACE = SPACE-CONDITIONS} \]
\[\text{ZONE-TYPE = PLENUM ..} \]

\[\text{ATTIC-SPACE = SPACE-CONDITIONS} \]
\[\text{TEMPERATURE = (87.5) $ AVERAGE MEASURED TEMPERATURE OF ATTIC} \]
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 5 $ INDIVIDUAL
INF-SCHEDULE = INFIL-YEAR-ATT
ZONE-TYPE = CONDITIONED $ INDIVIDUAL
FLOOR-WEIGHT = 0 ..

ATTIC-SPACE-B = SPACE-CONDITIONS $ THERMAL MASS IN THE ROOF (CONCRETE BEAMS AND BRICK WALLS)
TEMPERATURE = (87.5) $ AVERAGE MEASURED TEMPERATURE OF ATTIC
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0 $ INDIVIDUAL
INF-SCHEDULE = INFIL-YEAR-ATT
ZONE-TYPE = CONDITIONED $ INDIVIDUAL
FLOOR-WEIGHT = 0 ..

$ SPECIFIC SPACE DETAILS

$ SPACE 1-1 : LIVING ROOM, DINING AREA, KITCHEN, BATHROOM
SPACE1-1 = SPACE
SPACE-CONDITIONS = LIVING-SPACE
PEOPLE-SCHEDULE = OCC1-1YEAR
LIGHTING-SCHEDULE = LIGHT1-1YEAR
EQUIP-SCHEDULE = EQUIP1-1YEAR
LIGHTING-KW = 0.0992
EQUIPMENT-KW = 2.3 $ was 2.495
INF-SCHEDULE = INFIL-YEAR-L
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 10 $ INDIVIDUAL
AREA = 757.44 $ 60% larger than the actual (473.40)
VOLUME = 2329.7 .. $ 60% less than the actual (3882.87)

RIGHT1-1 = EXTERIOR-WALL
WIDTH = 12.139
HEIGHT = 8.202
AZIMUTH = 90
X = 32.82 Y = 10.59
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-R-1-1 = WINDOW
WIDTH = 2.293
HEIGHT = 2.949
X = 4.593
Y = 2.953
GLASS-TYPE = GLASS-1
SHADING-SCHEDULE = CURTAIN-1 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33 ..

BACK1-7 = EXTERIOR-WALL
WIDTH = 1.969
HEIGHT = 8.202
AZIMUTH = 0
X = 32.82 Y = 22.729
Z = 0
CONSTRUCTION = BRICK-WALL ..

RIGHT1-2 = EXTERIOR-WALL
WIDTH = 6.562
HEIGHT = 8.202
AZIMUTH = 90
X = 30.851
Y = 22.729
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-R-1-2 = WINDOW
WIDTH = 2.293
HEIGHT = 2.949
X = 1.8045
Y = 2.953
GLASS-TYPE = GLASS-1
SHADING-SCHEDULE = CURTAIN-1 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33 ..

RIGHT1-4 = EXTERIOR-WALL
WIDTH = 12.139
HEIGHT = 8.202
AZIMUTH = 90
X = 30.851
Y = 29.291
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-R-1-4 = WINDOW
WIDTH = 5.246
HEIGHT = 5.902
X = 3.1165
Y = 0
GLASS-TYPE = GLASS-1
SHADING-SCHEDULE = CURTAIN-1 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33 ..

BACK1-2 = EXTERIOR-WALL
WIDTH = 10.499
HEIGHT = 8.202
AZIMUTH = 0
X = 30.851
Y = 41.43
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-B-1-2 = WINDOW
WIDTH = 5.246
HEIGHT = 2.949
X = 2.6245
Y = 2.953
GLASS-TYPE = GLASS-1
FRAME-WIDTH = 0.33 ..

BACK1-1 = EXTERIOR-WALL
WIDTH = 9.842
HEIGHT = 8.202
AZIMUTH = 0
X = 20.351
Y = 41.43
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-B-1-1-1 = WINDOW $ DOOR WITH GLASS
WIDTH = 2.129
HEIGHT = 3.232
X = 0.82
Y = 3.232
GLASS-TYPE = GLASS-1
FRAME-WIDTH = 1 ..

WINDOW-B-1-1-2 = WINDOW
WIDTH = 3.933
HEIGHT = 2.949
X = 3.609
Y = 2.953
GLASS-TYPE = GLASS-1
FRAME-WIDTH = 0.33 ..

LEFT1-3 = EXTERIOR-WALL
WIDTH = 11.574
HEIGHT = 8.202
AZIMUTH = 270
X = 10.51
Y = 41.43
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-L-1-3 = WINDOW
WIDTH = 3.933
HEIGHT = 2.949
X = 1.2155
Y = 2.953
GLASS-TYPE = GLASS-1
FRAME-WIDTH = 0.33 ..

LEFT1-4 = EXTERIOR-WALL
WINDOW-L-1-4 = WINDOW
WIDTH = 2.951
HEIGHT = 1.0
X = 0.6345
Y = 5.232
GLASS-TYPE = GLASS-1
SHADING-SCHEDULE = CURTAIN-1 $ SANDED GLASS
FRAME-WIDTH = 0.33 ..

LEFT1-1 = EXTERIOR-WALL
WIDTH = 11.483
HEIGHT = 8.202
AZIMUTH = 270
X = 19.696
Y = 22.073
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-L-1-1 = WINDOW
WIDTH = 3.933
HEIGHT = 2.949
X = 3.117
Y = 2.953
GLASS-TYPE = GLASS-1
FRAME-WIDTH = 0.33 ..

FRONT1-1 = EXTERIOR-WALL
WIDTH = 13.124
HEIGHT = 8.202
AZIMUTH = 180
X = 19.696
Y = 10.59
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-P-1-1 = WINDOW
WIDTH = 7.867
HEIGHT = 5.902
X = 0.984
Y = 0
GLASS-TYPE = GLASS-1
SHADING-SCHEDULE = CURTAIN-1 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33 ..

INTER1-2 = INTERIOR-WALL
AREA = 37.319
NEXT-TO = SPACE1-1
CONSTRUCTION = BRICK-WALL ..

INTER1-3 = INTERIOR-WALL
AREA = 78.03
NEXT-TO = SPACE1-1
CONSTRUCTION = BRICK-WALL ..

FLOOR1-1 = UNDERGROUND-FLOOR
HEIGHT = 47.34
WIDTH = 100
TILT = 180
U-EFFECTIVE = 0.03
CONSTRUCTION = CERAMIC-FLOOR ..

CEILING1-1-A = INTERIOR-WALL
AREA = 151.35
NEXT-TO = SPACE1-3
TILT = 0
CONSTRUCTION = GYPSUM-CEILING-1ST ..
CEILING1-1-B = INTERIOR-WALL
 AREA = 68.89
 NEXT-TO = SPACE1-3
 TILT = 0
 CONSTRUCTION = GYPSUM-CEILING-1ST

CEILING1-1-C = INTERIOR-WALL
 AREA = 120.56
 NEXT-TO = SPACE1-3
 TILT = 0
 CONSTRUCTION = GYPSUM-CEILING-1ST

CEILING1-1-D = INTERIOR-WALL
 AREA = 63.23
 NEXT-TO = SPACE1-3
 TILT = 0
 CONSTRUCTION = GYPSUM-CEILING-1ST

CEILING1-1-E = INTERIOR-WALL
 AREA = 42.49
 NEXT-TO = SPACE1-3
 TILT = 0
 CONSTRUCTION = GYPSUM-CEILING-1ST

$ SPACE 1-2 : STAIRWAY (CORE)
SPACE1-2 = SPACE
 SPACE-CONDITIONS = LIVING-SPACE
 PEOPLE-SCHEDULE = UNOCC1-2YEAR
 LIGHTING-SCHEDULE = LIGHT1-2YEAR
 LIGHTING-KW = 0.032
 EQUIPMENT-KW = 0.0
 AREA = 98.17
 VOLUME = 1835.79

BACK1-4 = EXTERIOR-WALL
 WIDTH = 3.281
 HEIGHT = 10.499
 AZIMUTH = 0
 X = 10.51
 Y = 29.947
 Z = 0
 CONSTRUCTION = BRICK-WALL

BACK2-3 = EXTERIOR-WALL
 WIDTH = 1.969
 HEIGHT = 8.202
 AZIMUTH = 0
 X = 9.198
 Y = 29.947
 Z = 10.499
 CONSTRUCTION = BRICK-WALL

LEFT1-2 = EXTERIOR-WALL
 WIDTH = 7.874
 HEIGHT = 18.701
 AZIMUTH = 270
 X = 7.229
 Y = 29.947
 Z = 0
 CONSTRUCTION = BRICK-WALL

WINDOW-L-1-2 = WINDOW
 WIDTH = 3.277
 HEIGHT = 5.902
 X = 1.9685
 Y = 10.499
 GLASS-TYPE = GLASS-2
 SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
 FRAME-WIDTH = 0.33

FRONT1-2 = EXTERIOR-WALL
 WIDTH = 12.467
 HEIGHT = 10.499
 AZIMUTH = 180
 X = 7.229
Y = 22.073
Z = 0
CONSTRUCTION = BRICK-WALL ..

WINDOW-F-1-2 = WINDOW $ FRONT DOOR (STEEL FRAME DOOR WITH GLASS)
WIDTH = 1.95
HEIGHT = 5.297
X = 8.858
Y = 0
GLASS-TYPE = GLASS-1
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33 ..

FRONT2-2 = EXTERIOR-WALL
WIDTH = 1.969
HEIGHT = 8.202
AZIMUTH = 180
X = 7.229
Y = 22.073
Z = 10.499
CONSTRUCTION = BRICK-WALL ..

INTER1-1 = INTERIOR-WALL
AREA = 78.034
NEXT-TO = SPACE1-1
CONSTRUCTION = BRICK-WALL ..

FLOOR1-5 = UNDERGROUND-FLOOR
AREA = 89.99
U-EFFECTIVE = 0.26126
CONSTRUCTION = CERAMIC-FLOOR ..

CEILING1-5 = INTERIOR-WALL
AREA = 89.99
TILT = 0
NEXT-TO = SPACE-ATTIC
CONSTRUCTION = GYPSUM-CEILING-2ND ..

$ SPACE 1-6 : SEMI-OUTDOOR *******NOT USED*******

SPACE1-6 = SPACE
SPACE-CONDITIONS = LIVING-SPACE
PEOPLE-SCHEDULE = UNOCC1-6YEAR
LIGHTING-SCHEDULE = LIGHT1-6YEAR
EQUIP-SCHEDULE = EQUIP1-6YEAR
LIGHTING-KW = 0
EQUIPMENT-KW = 0.260
AREA = 95.0332
VOLUME = 779.462 ..

BACK1-8 = EXTERIOR-WALL
WIDTH = 10
HEIGHT = 7
AZIMUTH = 0
X = 30.851
Y = 46.43
Z = 0
CONSTRUCTION = BRICK-WALL ..

BACK1-9 = EXTERIOR-WALL
WIDTH = 10
HEIGHT = 7
AZIMUTH = 0
X = 20.851
Y = 46.43
Z = 0
CONSTRUCTION = BRICK-WALL ..

BACK1-10 = EXTERIOR-WALL
WIDTH = 0.341
HEIGHT = 7
AZIMUTH = 0
X = 10.851
Y = 46.43
Z = 0
CONSTRUCTION = BRICK-WALL ..

$**$
$ SPACE1-3 : PLENUM

SPACE1-3 = SPACE
 SPACE-CONDITIONS = PLENUM-SPACE
 AREA = 473.40
 VOLUME = 1086.48 ..

RIGHT1-1P = EXTERIOR-WALL
 WIDTH = 12.139
 HEIGHT = 2.297
 AZIMUTH = 90
 X = 32.82 Y = 10.59
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

BACK1-7P = EXTERIOR-WALL
 WIDTH = 1.969
 HEIGHT = 2.297
 AZIMUTH = 0
 X = 32.82 Y = 22.729
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

RIGHT1-2P = EXTERIOR-WALL
 WIDTH = 6.562
 HEIGHT = 2.297
 AZIMUTH = 90
 X = 30.851
 Y = 22.729
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

RIGHT1-4P = EXTERIOR-WALL
 WIDTH = 12.139
 HEIGHT = 2.297
 AZIMUTH = 90
 X = 30.851
 Y = 29.291
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

BACK1-2P = EXTERIOR-WALL
 WIDTH = 10.499
 HEIGHT = 2.297
 AZIMUTH = 0
 X = 30.851
 Y = 41.43
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

BACK1-1P = EXTERIOR-WALL
 WIDTH = 9.842
 HEIGHT = 2.297
 AZIMUTH = 0
 X = 20.351
 Y = 41.43
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

LEFT1-3P = EXTERIOR-WALL
 WIDTH = 11.574
 HEIGHT = 2.297
 AZIMUTH = 270
 X = 10.51
 Y = 41.43
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

LEFT1-4P = EXTERIOR-WALL
 WIDTH = 4.55
 HEIGHT = 2.297
 AZIMUTH = 270
 X = 10.51
 Y = 34.406
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..
LEFT1-1P = EXTERIOR-WALL
 WIDTH = 11.483
 HEIGHT = 2.297
 AZIMUTH = 270
 X = 19.696
 Y = 22.073
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

FRONT1-1P = EXTERIOR-WALL
 WIDTH = 13.124
 HEIGHT = 2.297
 AZIMUTH = 180
 X = 19.696
 Y = 10.59
 Z = 8.202
 CONSTRUCTION = BRICK-WALL ..

$**
$ SPACE 2-1 : MASTER BEDROOM
SPACE2-1 = SPACE
 SPACE-CONDITIONS = LIVING-SPACE
 PEOPLE-SCHEDULE = OCC2-1YEAR
 LIGHTING-SCHEDULE = LIGHT2-1YEAR
 EQUIP-SCHEDULE = EQUIP2-1YEAR
 LIGHTING-KW = 0.064
 EQUIPMENT-KW = 0.215
 AREA = 270.33
 VOLUME = 2217.212 ..

FRONT2-1 = EXTERIOR-WALL
 WIDTH = 23.622
 HEIGHT = 8.202
 AZIMUTH = 180
 X = 9.198
 Y = 10.59
 Z = 10.499
 CONSTRUCTION = BRICK-WALL ..

WINDOW-F-2-1-1 = WINDOW
 WIDTH = 5.246
 HEIGHT = 2.949
 X = 2.953
 Y = 2.953
 GLASS-TYPE = GLASS-2
 SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
 FRAME-WIDTH = 0.33 ..

WINDOW-F-2-1-2 = WINDOW
 WIDTH = 4.42
 HEIGHT = 5.902
 X = 13.292
 Y = 0
 GLASS-TYPE = GLASS-2
 SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
 FRAME-WIDTH = 0.33 ..

RIGHT2-1 = EXTERIOR-WALL
 WIDTH = 11.811
 HEIGHT = 8.202
 AZIMUTH = 90
 X = 32.82
 Y = 10.59
 Z = 10.499
 CONSTRUCTION = BRICK-WALL ..

WINDOW-R-2-1 = WINDOW
 WIDTH = 2.293
 HEIGHT = 2.949
 X = 4.593
 Y = 2.953
 GLASS-TYPE = GLASS-2
 SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
 FRAME-WIDTH = 0.33 ..
LEFT2-1 = EXTERIOR-WALL
 WIDTH = 11.483
 HEIGHT = 8.202
 AZIMUTH = 270
 X = 9.198
 Y = 22.073
 Z = 10.499
 CONSTRUCTION = BRICK-WALL ..

WINDOW-L-2-1 = WINDOW
 WIDTH = 2.293
 HEIGHT = 2.949
 X = 3.681
 Y = 2.953
 GLASS-TYPE = GLASS-2
 SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
 FRAME-WIDTH = 0.33 ..

INTER2-1-A = INTERIOR-WALL
 AREA = 132.25
 NEXT-TO = SPACE2-4
 CONSTRUCTION = BRICK-WALL ..

INTER2-1-B = INTERIOR-WALL
 AREA = 61.50
 NEXT-TO = SPACE1-2
 CONSTRUCTION = BRICK-WALL ..

FLOOR2-1-A = INTERIOR-WALL
 AREA = 155
 NEXT-TO = SPACE1-3
 CONSTRUCTION = PARQUET-FLOOR ..

FLOOR2-1-B = EXTERIOR-WALL $FLOOR ABOVE THE PARKING SPACE
 WIDTH = 10.412
 HEIGHT = 11.811
 AZIMUTH = 180
 TILT = 180
 X = 9.198
 Y = 22.401
 Z = 10.499
 CONSTRUCTION = PARQUET-FLOOR ..

CEILING2-1 = INTERIOR-WALL
 AREA = 270.33
 TILT = 0
 NEXT-TO = SPACE-ATTIC
 CONSTRUCTION = GYPSUM-CEILING-2ND ..

$ SPACE 2-2 : BEDROOM 2
SPACE2-2 = SPACE
 SPACE-CONDITIONS = LIVING-SPACE
 PEOPLE-SCHEDULE = OCC2-2YEAR
 LIGHTING-SCHEDULE = LIGHT2-2YEAR
 EQUIP-SCHEDULE = EQUIP2-2YEAR
 LIGHTING-KW = 0.032
 EQUIPMENT-KW = 0.108
 AREA = 131.87
 VOLUME = 1081.504 ..

RIGHT2-3 = EXTERIOR-WALL
 WIDTH = 11.811
 HEIGHT = 8.202
 AZIMUTH = 90
 X = 32.82
 Y = 29.691
 Z = 10.499
 CONSTRUCTION = BRICK-WALL..

WINDOW-R-2-3 = WINDOW
 WIDTH = 2.293
 HEIGHT = 2.949
 X = 4.101
Y = 2.953
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33 ..

BACK2-2 = EXTERIOR-WALL
WIDTH = 11.494
HEIGHT = 8.202
AZIMUTH = 0
X = 32.82
Y = 41.43
Z = 10.499
CONSTRUCTION = BRICK-WALL ..

WINDOW=B-2-2 = WINDOW
WIDTH = 4.586
HEIGHT = 2.949
X = 3.445 Y = 2.953
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33 ..

INTER2-3-A = INTERIOR-WALL
AREA = 67.27
NEXT-TO = SPACE2-4
CONSTRUCTION = BRICK-WALL ..

INTER2-3-B = INTERIOR-WALL
AREA = 26.92
NEXT-TO = SPACE2-4
CONSTRUCTION = BRICK-WALL ..

INTER2-5 = INTERIOR-WALL
AREA = 96.87
NEXT-TO = SPACE2-3
CONSTRUCTION = BRICK-WALL ..

FLOOR2-2-A = INTERIOR-WALL
AREA = 112.382
NEXT-TO = SPACE1-3
CONSTRUCTION = PARQUET-FLOOR ..

FLOOR2-2-B = EXTERIOR-WALL $ CANTILEVERED FLOOR
WIDTH = 1.969
HEIGHT = 11.811
AZIMUTH = 180
TILT = 180
X = 30.851
Y = 41.43
Z = 10.499
CONSTRUCTION = PARQUET-FLOOR ..

CEILING2-2 = INTERIOR-WALL
AREA = 131.87
TILT = 0
NEXT-TO = SPACE-ATTIC
CONSTRUCTION = GYPSUM-CEILING-2ND ..

$ SPACE 2-3 : BEDROOM 3
SPACE2-3 = SPACE
SPACE-CONDITIONS = LIVING-SPACE
PEOPLE-SCHEDULE = OCC2-3YEAR
LIGHTING-SCHEDULE = LIGHT2-3YEAR
EQUIP-SCHEDULE = EQUIP2-3YEAR
LIGHTING-KW = 0.032
EQUIPMENT-KW = 1.2
AREA = 278.76 $ Nominal value (100% larger) than the actual (139.38)
AIR-CHANGES/HR = 0.5 $ INDIVIDUAL
VOLUME = 2286.4 .. $ Nominal value (100% larger) than the actual
(1143.201)

BACK2-1 = EXTERIOR-WALL
WIDTH = 12.138
HEIGHT = 8.202
AZIMUTH = 0
X = 21.336
Y = 41.43
Z = 10.499
CONSTRUCTION = BRICK-WALL ..

WINDOW-B-2-1 = WINDOW
 WIDTH = 4.586
 HEIGHT = 2.949
 X = 1.969
 Y = 2.953
 GLASS-TYPE = GLASS-2
 SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
 FRAME-WIDTH = 0.33 ..

LEFT2-3 = EXTERIOR-WALL
 WIDTH = 11.483
 HEIGHT = 8.202
 AZIMUTH = 270
 X = 9.198
 Y = 41.43
 Z = 10.499
 CONSTRUCTION = BRICK-WALL ..

WINDOW-L-2-3 = WINDOW
 WIDTH = 2.289
 HEIGHT = 2.949
 X = 4.757
 Y = 2.953
 GLASS-TYPE = GLASS-2
 SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
 FRAME-WIDTH = 0.33 ..

FLOOR2-3-A = INTERIOR-WALL
 AREA = 129.64
 NEXT-TO = SPACE1-3
 CONSTRUCTION = PARQUET-FLOOR ..

FLOOR2-3-B = EXTERIOR-WALL $ CANTILEVERED FLOOR
 WIDTH = 1.969
 HEIGHT = 11.493
 AZIMUTH = 180
 TILT = 180
 X = 9.198
 Y = 41.43
 Z = 10.499
 CONSTRUCTION = PARQUET-FLOOR ..

INTER2-3 = INTERIOR-WALL
 AREA = 150 $ Nominal value (actual is 75)
 NEXT-TO = SPACE1-2
 CONSTRUCTION = BRICK-WALL ..

CEILING2-3 = INTERIOR-WALL
 AREA = 139.38
 TILT = 0
 NEXT-TO = SPACE-ATTIC
 CONSTRUCTION = GYPSUM-CEILING-2ND ..

$ SPACE 2-4 : BATHROOM & 2ND FLOOR HALL
SPACE2-4 = SPACE
 SPACE-CONDITIONS = LIVING-SPACE
 PEOPLE-SCHEDULE = UNOCC2-4YEAR
 LIGHTING-SCHEDULE = LIGHT2-4YEAR
 EQUIP-SCHEDULE = EQUIP2-4YEAR
 LIGHTING-KW = 0.064
 EQUIPMENT-KW = 0.1
 AREA = 90.00
 VOLUME = 738.13 ..

RIGHT2-2 = EXTERIOR-WALL
 WIDTH = 7.218
 HEIGHT = 8.202
 AZIMUTH = 90
 X = 32.82
 Y = 22.401
 Z = 10.499
 CONSTRUCTION = BRICK-WALL ..
WINDOW-R-2-2 = WINDOW
WIDTH = 2.951
HEIGHT = 1.0
X = 1.969
Y = 5.232
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ Sanded Glass
FRAME-WIDTH = 0.33 ..

$INTER2-2 = INTERIOR-WALL
$ AREA = 59.20
$ NEXT-TO = **THIS WALL IS IN THIS SPACE**
$ CONSTRUCTION = BRICK-WALL ..

FLOOR2-4-A = INTERIOR-WALL
AREA = 45
NEXT-TO = SPACE1-3
CONSTRUCTION = PARQUET-FLOOR ..

FLOOR2-4-B = INTERIOR-WALL
AREA = 45
NEXT-TO = SPACE1-1
CONSTRUCTION = CERAMIC-FLOOR-2 ..

FLOOR2-4-C = EXTERIOR-WALL $Cantilevered Floor
WIDTH = 7.218
HEIGHT = 1.969
AZIMUTH = 90
X = 30.851
Y = 22.401
Z = 10.499
CONSTRUCTION = CERAMIC-FLOOR-2 ..

CEILING2-4 = INTERIOR-WALL
AREA = 90.00
TILT = 0
NEXT-TO = SPACE-ATTIC
CONSTRUCTION = GYPSUM-CEILING-2ND ..

$ SPACE-ATTIC : ATTIC
SPACE-ATTIC = SPACE
SPACE-CONDITIONS = ATTIC-SPACE
AREA = 1375.42
VOLUME = 3677.363 ..

FRONT-A-1 = EXTERIOR-WALL
WIDTH = 23.622
HEIGHT = 2.297
AZIMUTH = 180
X = 9.198
Y = 10.59
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL ..

RIGHT-A-1 = EXTERIOR-WALL
WIDTH = 30.84
HEIGHT = 2.297
AZIMUTH = 90
X = 32.82
Y = 10.59
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL ..

BACK-A-1 = EXTERIOR-WALL
WIDTH = 23.622
HEIGHT = 2.297
AZIMUTH = 0
X = 32.82
Y = 41.43
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL ..

LEFT-A-1 = EXTERIOR-WALL
WIDTH = 11.483
HEIGHT = 2.297
AZIMUTH = 270
X = 9.198
Y = 41.43
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL

BACK-A-2 = EXTERIOR-WALL
WIDTH = 1.969
HEIGHT = 2.297
AZIMUTH = 0
X = 9.198
Y = 29.947
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL

LEFT-A-2 = EXTERIOR-WALL
WIDTH = 7.874
HEIGHT = 2.297
AZIMUTH = 270
X = 7.229
Y = 29.947
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL

FRONT-A-2 = EXTERIOR-WALL
WIDTH = 1.969
HEIGHT = 2.297
AZIMUTH = 180
X = 7.229
Y = 22.073
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL

LEFT-A-3 = EXTERIOR-WALL
WIDTH = 11.483
HEIGHT = 2.297
AZIMUTH = 270
X = 9.198
Y = 22.073
Z = 18.701
SHADING-SURFACE = YES
CONSTRUCTION = BRICK-WALL

ROOF-L-1 = ROOF
POLYGON = L-1
CONSTRUCTION = CEMENT-ROOF1

ROOF-R-1 = ROOF
POLYGON = R-1
$ AZIMUTH = 0 X=0 Y=0 Z=0
SHADING-SURFACE = YES
CONSTRUCTION = CEMENT-ROOF1

B-1 = POLYGON (36.443,44.671,20.998) (7.224,44.671,20.998) (21.834,30.062,29.414)
ROOF-B-1 = ROOF
POLYGON = B-1
$ AZIMUTH = 0 X=0 Y=0 Z=0
SHADING-SURFACE = YES
CONSTRUCTION = CEMENT-ROOF1

ROOF-F-1-a = ROOF
POLYGON = F-1-a
$ AZIMUTH = 0 X=0 Y=0 Z=0
SHADING-SURFACE = YES
CONSTRUCTION = CEMENT-ROOF1 ..

F-1-b = POLYGON (16.046,6.979,20.998) (25.255,16.188,26.2675)
 (21.834,21.588,29.414) ..

ROOF-F-1-b = ROOF
 POLYGON = F-1-b
 $ AZIMUTH = 0 X=0 Y=0 Z=0
 SHADING-SURFACE = YES
 CONSTRUCTION = CEMENT-ROOF1 ..

 (25.255,16.188,26.2675) ..

ROOF-F-1-c = ROOF
 POLYGON = F-1-c
 $ AZIMUTH = 0 X=0 Y=0 Z=0
 SHADING-SURFACE = YES
 CONSTRUCTION = CEMENT-ROOF1 ..

F-1-d = POLYGON (34.464,6.979,20.998) (36.443,6.979,20.998)
 (21.834,21.588,29.414) ..

ROOF-F-1-d = ROOF
 POLYGON = F-1-d
 $ AZIMUTH = 0 X=0 Y=0 Z=0
 SHADING-SURFACE = YES
 CONSTRUCTION = CEMENT-ROOF1 ..

F-2 = POLYGON (16.046,2.058,20.998) (34.464,2.058,20.998)
 (25.255,11.267,26.2675) ..

ROOF-F-2 = ROOF
 POLYGON = F-2
 $ AZIMUTH = 0 X=0 Y=0 Z=0
 SHADING-SURFACE = YES
 CONSTRUCTION = CEMENT-ROOF1 ..

R-2 = POLYGON (34.464,2.058,20.998) (34.464,6.979,20.998)
 (25.255,16.188,26.2675) (25.255,11.267,26.2675) ..

ROOF-R-2 = ROOF
 POLYGON = R-2
 $ AZIMUTH = 0 X=0 Y=0 Z=0
 SHADING-SURFACE = YES
 CONSTRUCTION = CEMENT-ROOF1 ..

L-2-a = POLYGON (16.046,2.058,20.998) (25.255,11.267,26.2675)
 (16.046,6.979,20.998) ..

ROOF-L-2-a = ROOF
 POLYGON = L-2-a
 $ AZIMUTH = 0 X=0 Y=0 Z=0
 SHADING-SURFACE = YES
 CONSTRUCTION = CEMENT-ROOF1 ..

L-2-b = POLYGON (25.255,11.267,26.2675) (25.255,16.188,26.2675)
 (16.046,6.979,20.998) ..

ROOF-L-2-b = ROOF
 POLYGON = L-2-b
 $ AZIMUTH = 0 X=0 Y=0 Z=0
 SHADING-SURFACE = YES
 CONSTRUCTION = CEMENT-ROOF1 ..

EX-CEILING-F1 = EXTERIOR-WALL
 WIDTH = 27.245 HEIGHT = 3.611
 AZIMUTH = 180 TILT = 0
 X=9.158 Y=6.979 Z=20.998
 SHADING-SURFACE = YES
 CONSTRUCTION = GYPSUM-CEILING-2ND ..

EX-CEILING-F2 = EXTERIOR-WALL
 WIDTH = 18.418 HEIGHT = 4.921
 AZIMUTH = 180 TILT = 0
 X=16.046 Y=2.058 Z=20.998
SHADING-SURFACE = YES
CONSTRUCTION = GYPSUM-CEILING-2ND ..

EX-CEILING-R1 = EXTERIOR-WALL
WIDTH = 30.84 HEIGHT = 1.979
AZIMUTH = 90 TILT = 0
X=36.443 Y=10.59 Z=20.998
SHADING-SURFACE = YES
CONSTRUCTION = GYPSUM-CEILING-2ND ..

EX-CEILING-B1 = EXTERIOR-WALL
WIDTH = 27.245 HEIGHT = 3.241
AZIMUTH = 0 TILT = 0
X=36.443 Y=44.671 Z=20.998
SHADING-SURFACE = YES
CONSTRUCTION = GYPSUM-CEILING-2ND ..

EX-CEILING-L1 = EXTERIOR-WALL
WIDTH = 14.724 HEIGHT = 1.969
AZIMUTH = 270 TILT = 0
X=7.229 Y=44.671 Z=20.998
SHADING-SURFACE = YES
CONSTRUCTION = GYPSUM-CEILING-2ND..

EX-CEILING-L2 = EXTERIOR-WALL
WIDTH = 15.094 HEIGHT = 1.969
AZIMUTH = 270 TILT = 0
X=7.229 Y=22.073 Z=20.998
SHADING-SURFACE = YES
CONSTRUCTION = GYPSUM-CEILING-2ND ..

$ SPACE-ATTIC-2 : ATTIC
SPACE-ATTIC-2 = SPACE
SPACE-CONDITIONS = ATTIC-SPACE-B
AREA = 500
VOLUME = 750 ..

INTER-ATT-1 = INTERIOR-WALL
AREA = 400
NEXT-TO = SPACE-ATTIC
CONSTRUCTION = BRICK-WALL ..

INTER-ATT-2 = INTERIOR-WALL
AREA = 400
NEXT-TO = SPACE-ATTIC
CONSTRUCTION = BRICK-WALL ..

INTER-ATT-3 = INTERIOR-WALL
AREA = 400
NEXT-TO = SPACE-ATTIC
CONSTRUCTION = BRICK-WALL ..

$**
GROUP A: GARAGE
**

A-BACK-1 = BUILDING-SHADE
X=4.539 Y=22.073 Z=0 H=9.249 W=1.25
AZ=0 TILT=90 ..

A-BACK-2 = BUILDING-SHADE
X=7.229 Y=22.073 Z=9.249 H=3.75 W=3.94
AZ=0 TILT=90 ..

A-LEFT-1 = BUILDING-SHADE
X=3.289 Y=22.073 Z=0 H=9.249 W=1.25
AZ=270 TILT=90 ..

A-LEFT-2 = BUILDING-SHADE
X=3.289 Y=22.073 Z=9.249 H=3.75 W=11.483
AZ=270 TILT=90 ..

A-LEFT-3 = BUILDING-SHADE
X=3.289 Y=10.59 Z=0 H=10.499 W=4.265
AZ=270 TILT=90 ..

$START LEFT TRIANGLE AREA
A-LEFT-4-1 = BUILDING-SHADE
X=3.289 Y=10.59 Z=10.499 H=0.301 W=3.7515
AZ=270 TILT=90 ..

A-LEFT-4-2 = BUILDING-SHADE
X=3.289 Y=10.59 Z=10.8 H=0.2 W=3.4103
AZ=270 TILT=90 ..

A-LEFT-4-3 = BUILDING-SHADE
X=3.289 Y=10.59 Z=11 H=0.2 W=3.0691
AZ=270 TILT=90 ..

A-LEFT-4-4 = BUILDING-SHADE
X=3.289 Y=10.59 Z=11.2 H=0.2 W=2.7279
AZ=270 TILT=90 ..

A-LEFT-4-5 = BUILDING-SHADE
X=3.289 Y=10.59 Z=11.4 H=0.2 W=2.3867
AZ=270 TILT=90 ..

A-LEFT-4-6 = BUILDING-SHADE
X=3.289 Y=10.59 Z=11.6 H=0.2 W=2.0455
AZ=270 TILT=90 ..

A-LEFT-4-7 = BUILDING-SHADE
X=3.289 Y=10.59 Z=11.8 H=0.2 W=1.7043
AZ=270 TILT=90 ..

A-LEFT-4-8 = BUILDING-SHADE
X=3.289 Y=10.59 Z=12 H=0.2 W=1.3631
AZ=270 TILT=90 ..

A-LEFT-4-9 = BUILDING-SHADE
X=3.289 Y=10.59 Z=12.2 H=0.2 W=1.0219
AZ=270 TILT=90 ..

A-LEFT-4-10 = BUILDING-SHADE
X=3.289 Y=10.59 Z=12.4 H=0.2 W=0.6807
AZ=270 TILT=90 ..

A-LEFT-4-11 = BUILDING-SHADE
X=3.289 Y=10.59 Z=12.6 H=0.2 W=0.3395
AZ=270 TILT=90 ..

$END LEFT TRIANGLE AREA

A-LEFT-ROOF = BUILDING-SHADE
X=3.289 Y=22.073 Z=11.6 H=6.0724 W=11.483
AZ=270 TILT=13 ..

A-FRONT-1 = BUILDING-SHADE
X=3.289 Y=6.234 Z=0 H=9.249 W=1.25
AZ=180 TILT=90 ..

A-FRONT-2 = BUILDING-SHADE
AZ=180 TILT=90 ..

A-FRONT-ROOF = BUILDING-SHADE
AZ=180 TILT=30 ..

A-RIGHT-1 = BUILDING-SHADE
AZ=90 TILT=90 ..

$START RIGHT TRIANGLE AREA

A-RIGHT-2-1 = BUILDING-SHADE
X=19.696 Y=6.7475 Z=10.499 H=0.301 W=3.7515
AZ=90 TILT=90 ..

A-RIGHT-2-2 = BUILDING-SHADE
X=19.696 Y=7.0938 Z=10.8 H=0.2 W=3.4103
AZ=90 TILT=90 ..
A-RIGHT-2-3 = BUILDING-SHADE
X=19.696 Y=7.435 Z=11 H=0.2 W=3.0691
AZ=90 TILT=90 ..

A-RIGHT-2-4 = BUILDING-SHADE
X=19.696 Y=7.7762 Z=11.2 H=0.2 W=2.7279
AZ=90 TILT=90 ..

A-RIGHT-2-5 = BUILDING-SHADE
X=19.696 Y=8.1174 Z=11.4 H=0.2 W=2.3867
AZ=90 TILT=90 ..

A-RIGHT-2-6 = BUILDING-SHADE
X=19.696 Y=8.4586 Z=11.6 H=0.2 W=2.0455
AZ=90 TILT=90 ..

A-RIGHT-2-7 = BUILDING-SHADE
X=19.696 Y=8.7998 Z=11.8 H=0.2 W=1.7043
AZ=90 TILT=90 ..

A-RIGHT-2-8 = BUILDING-SHADE
X=19.696 Y=9.141 Z=12 H=0.2 W=1.3631
AZ=90 TILT=90 ..

A-RIGHT-2-9 = BUILDING-SHADE
X=19.696 Y=9.4822 Z=12.2 H=0.2 W=1.0219
AZ=90 TILT=90 ..

A-RIGHT-2-10 = BUILDING-SHADE
X=19.696 Y=9.8234 Z=12.4 H=0.2 W=0.6807
AZ=90 TILT=90 ..

A-RIGHT-2-11 = BUILDING-SHADE
X=19.696 Y=10.1646 Z=12.6 H=0.2 W=0.3395
AZ=90 TILT=90 ..

$END RIGHT TRIANGLE AREA

$GROUP B: PILLAR AND BALCONY

$PILLAR

B-FRONT-1-1 = BUILDING-SHADE
X=19.696 Y=5.667 Z=0 H=20.998 W=1.3125
AZ=180 TILT=90 ..

B-RIGHT-1-1 = BUILDING-SHADE
X=21.0085 Y=5.667 Z=0 H=20.998 W=1.3125
AZ=90 TILT=90 ..

B-LEFT-1-1 = BUILDING-SHADE
X=19.696 Y=6.9795 Z=0 H=20.998 W=1.3125
AZ=270 TILT=90 ..

B-FRONT-1-2 = BUILDING-SHADE
X=29.536 Y=5.667 Z=0 H=20.998 W=1.3125
AZ=180 TILT=90 ..

B-RIGHT-1-2 = BUILDING-SHADE
X=30.8485 Y=5.667 Z=0 H=20.998 W=1.3125
AZ=90 TILT=90 ..

B-LEFT-1-2 = BUILDING-SHADE
X=29.536 Y=6.9795 Z=0 H=20.998 W=1.3125
AZ=270 TILT=90 ..

$BALCONY

B-PIECE-1 = BUILDING-SHADE
AZ=248 TILT=90 ..

B-PIECE-2 = BUILDING-SHADE
AZ=228 TILT=90 ..

B-PIECE-3 = BUILDING-SHADE
$GROUP B: BUILDING SHADE

B-PIECE-4 = BUILDING-SHADE
AZ=202 TILT=90 ..

B-PIECE-5 = BUILDING-SHADE
AZ=193 TILT=90 ..

B-PIECE-6 = BUILDING-SHADE
AZ=171 TILT=90 ..

B-PIECE-7 = BUILDING-SHADE
X=27.017 Y=6.589 Z=9.25 H=4.25 W=1.762
AZ=152 TILT=90 ..

B-PIECE-8 = BUILDING-SHADE
AZ=132 TILT=90 ..

B-FLOOR-P-1 = BUILDING-SHADE
AZ=180 TILT=0 ..

B-FLOOR-P-2 = BUILDING-SHADE
AZ=180 TILT=0 ..

B-FLOOR-P-3 = BUILDING-SHADE
X=23.703 Y=6.589 Z=9.25 H=0.828 W=3.314
AZ=180 TILT=0 ..

$GROUP C: FENCE AND ADJACENT BUILDING

C-LEFT-1 = BUILDING-SHADE
X=0 Y=46.09 Z=0 H=5 W=46.09
AZ=270 TILT=90 ..

C-LEFT-2 = BUILDING-SHADE
X=0 Y=46.09 Z=5 H=5 W=40
AZ=270 TILT=90 ..

C-LEFT-3-1 = BUILDING-SHADE
X=-19.691 Y=44.6701 Z=0 H=20.998 W=42.613
AZ=270 TILT=90 ..

C-LEFT-3-2A = BUILDING-SHADE
X=-19.691 Y=37.062 Z=20.998 H=4.416 W=27.613
AZ=270 TILT=90 ..

C-LEFT-3-2B = BUILDING-SHADE
X=-19.691 Y=40.062 Z=20.998 H=2.416 W=3
AZ=270 TILT=90 ..

C-LEFT-3-3A = BUILDING-SHADE
X=-19.691 Y=30.062 Z=25.414 H=4 W=8.474
AZ=270 TILT=90 ..

C-LEFT-3-3B = BUILDING-SHADE
X=-19.691 Y=33.062 Z=25.414 H=2 W=3
AZ=270 TILT=90 ..

C-LEFT-3-3C = BUILDING-SHADE
AZ=270 TILT=90 ..

C-BACK-1 = BUILDING-SHADE
X=39.068 Y=46.09 Z=0 H=5 W=39.068
AZ=0 TILT=90 ..

C-BACK-2 = BUILDING-SHADE
X=30.851 Y=46.09 Z=5 H=4 W=20.341
AZ=0 TILT=90 ..

C-BACK-3 = BUILDING-SHADE $ROOF
X=30.851 Y=46.09 Z=9 H=4.7 W=20.341
AZ=0 TILT=15 ..

C-RIGHT-1A = BUILDING-SHADE
X=39.068 Y=4 Z=0 H=2 W=42.099
AZ=90 TILT=90 ..

C-RIGHT-1B = BUILDING-SHADE
X=39.068 Y=4 Z=2 H=3 W=42.099
TR=0.8 AZ=90 TILT=90 ..

C-FRONT-1A = BUILDING-SHADE
X=0 Y=0 Z=0 H=2 W=3.943
AZ=180 TILT=90 ..

C-FRONT-1B = BUILDING-SHADE
X=0 Y=0 Z=2 H=3 W=3.943
TR=0.8 AZ=180 TILT=90 ..

C-FRONT-2A = BUILDING-SHADE
X=19.696 Y=0 Z=0 H=2 W=16.1165
AZ=180 TILT=90 ..

C-FRONT-2B = BUILDING-SHADE
X=19.696 Y=0 Z=2 H=3 W=16.1165
TR=0.8 AZ=180 TILT=90 ..

C-FRONT-3A = BUILDING-SHADE
X=35.8125 Y=0 Z=0 H=2 W=5.0
AZ=130 TILT=90 ..

C-FRONT-3B = BUILDING-SHADE
X=35.8125 Y=0 Z=2 H=3 W=5.0
TR=0.8 AZ=130 TILT=90 ..

C-FRONT-4 = BUILDING-SHADE $Profile of the house on the south
X=-150 Y=-42 Z=0 H=29 W=187
AZ=180 TILT=90 ..

C-RIGHT-2 = BUILDING-SHADE $Profile of the house on the east
X=96 Y=-80 Z=0 H=29 W=120
AZ=90 TILT=90 ..

C-RIGHT-3 = BUILDING-SHADE $Profile of the house on the east
X=37 Y=-126 Z=0 H=29 W=84
AZ=90 TILT=90 ..

C-FRONT-5 = BUILDING-SHADE $Profile of the house on the south
X=37 Y=-126 Z=0 H=29 W=187
AZ=180 TILT=90 ..

$GROUP D: TREES AND BUSHES

D-RIGHT-1 = BUILDING-SHADE
X=35.15 Y=6.856 Z=2.5 H=8 W=37.21
TR=0.2 AZ=90 TILT=90 ..

D-RIGHT-2 = BUILDING-SHADE
X=35.15 Y=16 Z=2 H=24.998 W=12
TR=0.1 AZ=90 TILT=90 ..

D-FRONT-1 = BUILDING-SHADE
X=30.54 Y=3.09 Z=2 H=10 W=8
TR=0.1 AZ=135 TILT=90 ..

B-FRONT-2 = BUILDING-SHADE
X=19.696 Y=4.667 Z=0 H=6 W=8
TR=0.1 AZ=180 TILT=90 ..

$GROUP E: ROOF OVERHANG (PART OF THE ROOF)
$AND SPACE2-1'S SHADING TO THE 1ST FLOOR
EX-CEILING-F1-SH = BUILDING-SHADE
WIDTH = 27.245 HEIGHT = 3.611
AZIMUTH = 180 TILT = 0
X=9.198 Y=6.979 Z=21.008
TR=0.0 ..

EX-CEILING-F2-SH = BUILDING-SHADE
WIDTH = 18.418 HEIGHT = 4.921
AZIMUTH = 180 TILT = 0
X=16.046 Y=2.058 Z=21.008
TR=0.0 ..

EX-CEILING-R1-SH = BUILDING-SHADE
WIDTH = 30.84 HEIGHT = 3.623
AZIMUTH = 90 TILT = 0
X=36.443 Y=10.59 Z=21.008
TR=0.0 ..

EX-CEILING-B1-SH = BUILDING-SHADE
WIDTH = 27.245 HEIGHT = 3.241
AZIMUTH = 0 TILT = 0
X=36.443 Y=44.671 Z=21.008
TR=0.0 ..

EX-CEILING-L1-SH = BUILDING-SHADE
WIDTH = 14.724 HEIGHT = 1.969
AZIMUTH = 270 TILT = 0
X=7.229 Y=44.671 Z=21.008
TR=0.0 ..

EX-CEILING-L2-SH = BUILDING-SHADE
WIDTH = 15.094 HEIGHT = 1.969
AZIMUTH = 270 TILT = 0
X=7.229 Y=22.073 Z=21.008
TR=0.0 ..

FLOOR2-1-B-SH = BUILDING-SHADE $FLOOR ABOVE THE PARKING SPACE
WIDTH = 10.412 HEIGHT = 11.811
AZIMUTH = 180 TILT = 0
X = 9.198 Y = 10.59 Z = 10.509
TR=0.0 ..

WALL1-2-B-SH = BUILDING-SHADE $NORTH WALL 2ND FLOOR OF SPACE1-2
WIDTH = 1.969 HEIGHT = 8.202
AZIMUTH = 0
X = 9.198 Y = 29.947 Z = 10.499
TR=0.0 ..

$**************************BLOCK REPORTS*******************************

$ WINDOW-F-2-1-2 is a south facing window of SPACE2-1
W1 = REPORT-BLOCK VARIABLE-TYPE = WINDOW-F-2-1-2
VARIABLE-LIST = (1,14,15,16,17) ..
H-REPORT-2 = H-R R-SCH=SCH-1 R-B=(W1) ..

$ WINDOW-F-1-1 is a south facing window of SPACE1-1
W2 = REPORT-BLOCK VARIABLE-TYPE = WINDOW-F-1-1
VARIABLE-LIST = (1,14,15,16,17) ..
H-REPORT-3 = H-R R-SCH=SCH-1 R-B=(W2) ..

$ V-L (Window)= 1 = Window U-value (includes inside and outside film
$ $ V-L (Window)= 14 = Solar energy absorbed by glass and conducted into the
$ $ space divided by window area, before multiplication by
$ $ shading coefficient (Btu/hr.sq.ft)
$ $ V-L (Window)= 15 = Heat gain through window by solar radiation (Btu/hr)
$ $ V-L (Window)= 16 = Shading coefficient
$ $ V-L (Window)= 17 = Heat gain through window by conduction (Btu/hr)
$**
END

COMPUTE LOADS

$**
END ..

COMPUTE LOADS ..

$************************** S Y S T E M ****************************

INPUT SYSTEMS ..

SYSTEMS-REPORT VERIFICATION = (SV-A)
SUMMARY = (SS-A, SS-B, SS-C, SS-D, SS-J) ..

$****************************SYSTEM PARAMETERS***
PARAMETER

$ P-HIR=1.25 HIR = 1/AFUE(ANNUAL FUEL UTILIZATION EFFICIENCY
$ e.g. AFUE = 80% --> HIR = 1.25
$ TURN OFF TO GO TO FUNCTION, 05/25/2003, S.KIM

$ P-EIR=0.341 EIR = 3.41/SEER (SEASONAL ENERGY EFFICIENCY RATIO)
$ e.g. SEER = 10 --> EIR = 0.341
$ TURN OFF TO GO TO FUNCTION, 05/25/2003, S.KIM

$ P-COOLINGCAPACITY = 0 $PARAMETER FOR COOLING CAPACITY, IF THE VALUE IS 0 OR
$ THE KEYWORD IS UNDEFINED THE SYSTEM IS AUTOSIZED BY
$ DOE-2.

$ P-HEATINGCAPACITY = 0 $PARAMETER FOR HEATING CAPACITY, IF THE VALUE IS 0 OR
$ THE KEYWORD IS UNDEFINED THE SYSTEM IS AUTOSIZED BY
$ DOE-2.

$************************ADD FUNCTION FOR DIFFERENT SYSTEM, 05/20/2003, S.KIM********************

P-HEAT-SOURCE = ELECTRIC $ COMMAND IN SYSTEM, 5/20/2003, S.KIM
P-DHW-TYPE = ELEC-DHW-HEATER $ COMMAND IN PLANT-ASSIGNMENT, 5/20/2003, S.KIM
P-HIR=1 $ COMMAND IN SYSTEM-EQUIPMENT
$ ASSUME ELECTRIC STRIP HEAT EFFICIENCY = 1
$ REDEFINITION BY S.KIM, 05/25/2003, S.KIM
$ HIR = 3.41/HSPF (HEATING SEASONAL PERFORMANCE FACTOR
$ e.g. HSPF = 6.8 --> HIR = 0.50

FOR HEAT-PUMP
P-EIR=0.341 $ COMMAND IN SYSTEM-EQUIPMENT
$ EIR = 3.41/SEER (SEASONAL ENERGY EFFICIENCY RATIO)
$ e.g. SEER = 10 --> EIR = 0.341
P-FIR=1.25 $ COMMAND IN SYSTEM-EQUIPMENT
$ NOT USED AT THIS SYSTEM, BUT SHOULD ACTIVATE FOR
FUNCTION
$ 05/25/2003, S.KIM
$END OF SYSTEM PARAMETERS

$ HEATING & COOLING SCHEDULES -SHUTDOWN
DAY-SHUT = DAY-SCHEDULE (1,24) (0) ..
WEEK-SHUT = WEEK-SCHEDULE (ALL) DAY-SHUT ..
YEAR-SHUT = SCHEDULE THRU DEC 31
WEEK-SCHEDULE = WEK-SHUT ..

$ COOLING SCHEDULE
$ SPACE2-1: BEDROOM 1
COOL2-1W = DAY-SCHEDULE (1,7) (1) (8,18) (0) (19,24) (1) ..

ON-VACATION = WEEK-SCHEDULE
(WD) VACA-WD (WE) VACA-WE ..

COOL2-1YEAR = SCHEDULE
THRU JUL 10 WEEK-SCHEDULE = COOL2-1WEEK
THRU JUL 15 WEEK-SCHEDULE = ON-VACATION
THRU DEC 31 WEEK-SCHEDULE = COOL2-1WEEK ..

$ SPACE2-2: BEDROOM 2
COOL2-2WD = DAY-SCHEDULE (1,7) (0) (8,18) (0) (19,24) (0) ..
COOL2-2WE = DAY-SCHEDULE (1,7) (1) (8,18) (0) (19,24) (1) ..
COOL2-2WEEK = WEEK-SCHEDULE (WD) COOL2-2WD (WEH) COOL2-2WE ..
COOL2-2YEAR = SCHEDULE
THRU DEC 31 WEEK-SCHEDULE = COOL2-2WEEK ..

$ THERMOSTAT SCHEDULE

$ HEATING THERMOSTAT SCHEDULE FOR ALL ZONES (NO HEATING)
TDAY-HEAT = DAY-SCHEDULE (1,24) (55) .. $ 12.78 C (SHUT DOWN)
TWEK-HEAT = WEEK-SCHEDULE (ALL) TDAY-HEAT ..
TYEAR-HEAT = SCHEDULE THRU DEC 31
WEEK-SCHEDULE = TWEK-HEAT ..

$ COOLING THERMOSTAT SCHEDULE
$ SPACE2-1: BEDROOM 1
TCOOL2-1WD = DAY-SCHEDULE (1,7) (79.8) (8,18) (99) (19,24) (79.8) ..
TCOOL2-1WE = DAY-SCHEDULE (1,7) (79.8) (8,18) (99) (19,24) (79.8) ..
TCOOL2-1WEEK = WEEK-SCHEDULE (WD) TCOOL2-1WD (WEH) TCOOL2-1WE ..
TCOOL2-1YEAR = SCHEDULE THRU DEC 31
WEEK-SCHEDULE = TCOOL2-1WEEK ..

$ SPACE2-2: BEDROOM 2
TCOOL2-2WD = DAY-SCHEDULE (1,7) (99) (8,18) (99) (19,24) (99) ..
TCOOL2-2WE = DAY-SCHEDULE (1,7) (80.6) (8,18) (99) (19,24) (80.6) ..
TCOOL2-2WEEK = WEEK-SCHEDULE (WD) TCOOL2-2WD (WEH) TCOOL2-2WE ..
TCOOL2-2YEAR = SCHEDULE THRU DEC 31
WEEK-SCHEDULE = TCOOL2-2WEEK ..

$ FOR SPACE1-2, SPACE1-3, SPACE1-6, SPACE2-3, SPACE2-4, SPACE-STTIC
TCOOL-WD = DAY-SCHEDULE (1,7) (150) (8,18) (150) (19,24) (150) ..
TCOOL-WE = DAY-SCHEDULE (1,7) (150) (8,18) (150) (19,24) (150) ..
TCOOL-WEEK = WEEK-SCHEDULE (WD) TCOOL-WD (WEH) TCOOL-WE ..
TCOOL-YEAR = SCHEDULE THRU DEC 31
WEEK-SCHEDULE = TCOOL-WEEK ..

DHWSCH-1 =SCHEDULE THRU DEC 31 (ALL)
(1,7)(0) (8) (0.33) (9,18) (0) (19)(0.33)(20,24) (0) .. $Schedule from survey data of occupants

$ COOLING THERMOSTAT SCHEDULE FOR A/C UNUSED ZONES

$ ZONE-CONTROL

RESIDENTIAL-ZONE = ZONE-CONTROL
DESIGN-HEAT-T = 55 $NO HEATING
HEAT-TEMP-SCH = TYEAR-HEAT $NO HEATING
DESIGN-COOL-T = 78.8 $26 C
$COOL-TEMP-SCH = INDIVIDUAL
THERMOSTAT-TYPE = TWO-POSITION .. $ ON/OFF ?THERMOSTAT-TYPE
$THROTTLING-RANGE = 0.5 .. $IT'S A DEFAULT FOR RESYS.

$ CONDITIONED ZONES

SPACE2-1 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL2-1YEAR
SIZING-OPTION = ADJUST-LOADS ..

SPACE2-2 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL2-2YEAR
SIZING-OPTION = ADJUST-LOADS ..

$ UNCONDITIONED ZONES

SPACE1-1 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

SPACE1-2 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

SPACE1-3 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

SPACE1-6 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

SPACE2-3 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

SPACE2-4 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

$ PLENUM

$SPACE-PLENUM = ZONE
$ZONE-TYPE = PLENUM
$SIZING-OPTION = ADJUST-LOADS
$DESIGN-HEAT-T = 50
$DESIGN-COOL-T = 99 ..

$ ATTIC (DEFINED AS UNCONDITION ZONES)

SPACE-ATTIC = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

SPACE-ATTIC-2 = ZONE
ZONE-TYPE = CONDITIONED
ZONE-CONTROL = RESIDENTIAL-ZONE
COOL-TEMP-SCH = TCOOL-YEAR
SIZING-OPTION = ADJUST-LOADS ..

$ SYSTEMS

$SYSTEM FOR SPACE2-1
SYS2-1 = SYSTEM
SYSTEM-TYPE = RESYS
ZONE-NAMES = (SPACE2-1)
MAX-SUPPLY-T = 77.05
MIN-SUPPLY-T = 70.0
HEATING-SCHEDULE = YEAR-SHUT $ NO HEATING
HEATING-CAPACITY = 0 $ NO HEATING
HEAT-SOURCE = ELECTRIC $ NO HEATING
COOLING-SCHEDULE = COOL2-1YEAR
COOLING-CAPACITY = 17401
COOLING-EIR = 0.325 ..
$ NOTE***
$ DATA FROM THE AIR-CONDITIONING SYSTEM'S MANUFACTURE
$ BRAND: DAIKIN, MODEL: FT18GV1LS
$ SEER = 10.5
$ COOLING-EIR = 3.41/SEER = 3.41/10.5 = 0.325
$ NOTE***
$SYSTEM FOR SPACE2-2
SYS2-2 = SYSTEM
SYSTEM-TYPE = RESYS
ZONE-NAMES = (SPACE2-2)
MAX-SUPPLY-T = 77.05
MIN-SUPPLY-T = 70.0
HEATING-SCHEDULE = YEAR-SHUT $ NO HEATING
HEATING-CAPACITY = 0 $ NO HEATING
HEAT-SOURCE = ELECTRIC $ NO HEATING
COOLING-SCHEDULE = COOL2-2YEAR
COOLING-CAPACITY = 12000
COOLING-EIR = 0.325 ..

$ NOTE***
$ DATA FROM THE AIR-CONDITIONING SYSTEM'S MANUFACTURE
$ BRAND: CARRIER, MODEL: 42RS012
$ SEER = 10.5
$ COOLING-EIR = 3.41/SEER = 3.41/10.5 = 0.325
$ NOTE***
$SYSTEM FOR SPACE1-1, SPACE1-2, SPACE1-3, SPACE1-6, SPACE2-3, SPACE2-4,
$ SPACE-ATTIC AND SPACE-ATTIC-2
SYS-UNCON = SYSTEM
SYSTEM-TYPE = RESYS
ZONE-NAMES = (SPACE1-1,SPACE1-2,SPACE1-3, SPACE1-6,SPACE2-3,SPACE2-4,SPACE-ATTIC,SPACE-ATTIC-2)
MAX-SUPPLY-T = 77.05
MIN-SUPPLY-T = 70.0
HEATING-SCHEDULE = YEAR-SHUT $ NO HEATING
HEATING-CAPACITY = 0 $ NO HEATING
HEAT-SOURCE = ELECTRIC $ NO HEATING
COOLING-SCHEDULE = YEAR-SHUT
COOLING-CAPACITY = 60000
COOLING-EIR = 0.325 ..

$ ***********************************PLANT ASSIGNMENT***
PLANT1 = PLANT-ASSIGNMENT SYSTEM-NAMES = (SYS2-1, SYS2-2, SYS-UNCON)
$ PLANT-REPORTS = YES
$ MAX-FLUID-T = 110
$ MIN-FLUID-T = 75
$ FLUID-VOLUME = 15
$ DHW-TYPE = ELECTRIC
$ DHW-FLOW = S.KIM,05/20/2003, ADD PARAMETER FOR MACRO
$ DHW-SCH = DHWSCH-1
$ DHW-INLET-T-SCH = Unused, Default=Monthly Gnd Temp From the Weather Tape
$ DHW-SUPPLY-T = 110
$ DHW-GAL/MIN = 0.278
$ DHW-GAL/MIN = 1.875
$ DHW-SIZE = Unused(0 to 1000)(GAL)
$ DHW-HEAT-RATE = Unused(0 to 100000)(BTU/HR)
$ DHW-EIR = 1
$ FOR ELECTRIC = 1 (0 TO 3)
$ DHW-LOSS = 0
$ DHW-EIR-FT = Unused
$ DHW-HEAT-RATE-FT = Unused,Default(0 To 1)
$ DHW-EIR-FPLR = Unused,Default(0 To 0.1)(W/BTU)
$ DHW-PUMP= ELEC = 0.02
$ DHW-PUMP=SCH = DHWSCH-1
$ DHW-HSUP-RATE = Unused(0 To 100000)(BTU/HR)
$ DHW-HSTOR-RATE = Unused(0 To 100000)(BTU/HR)
$END OF THE PLANT ASSIGNMENT COMMAND
HR-SCH-SYS = SCHEDULE THRU DEC 31 (ALL) (1,24) (1) ..
SREP-SYS1-1 = REPORT-BLOCK VARIABLE-TYPE = SPACE1-1
 VARIABLE-LIST = (6) ..
SREP-SYS1-2 = REPORT-BLOCK VARIABLE-TYPE = SPACE1-2
 VARIABLE-LIST = (6) ..
SREP-SYS1-3 = REPORT-BLOCK VARIABLE-TYPE = SPACE1-3
 VARIABLE-LIST = (6) ..
SREP-SYS2-1 = REPORT-BLOCK VARIABLE-TYPE = SPACE2-1
 VARIABLE-LIST = (6,33) ..
SREP-SYS2-2 = REPORT-BLOCK VARIABLE-TYPE = SPACE2-2
 VARIABLE-LIST = (6,33) ..
SREP-SYS2-3 = REPORT-BLOCK VARIABLE-TYPE = SPACE2-3
 VARIABLE-LIST = (6) ..
SREP-SYS2-4 = REPORT-BLOCK VARIABLE-TYPE = SPACE2-4
 VARIABLE-LIST = (6) ..
$SREP-SYS-PLM = REPORT-BLOCK VARIABLE-TYPE = SPACE-PLENUM
$ VARIABLE-LIST = (6) ..
SREP-SYS-ATC = REPORT-BLOCK VARIABLE-TYPE = SPACE-ATTIC
 VARIABLE-LIST = (6) ..
SREP-SYS-ATC-2 = REPORT-BLOCK VARIABLE-TYPE = SPACE-ATTIC-2
 VARIABLE-LIST = (6) ..
SPLANT = REPORT-BLOCK VARIABLE-TYPE = PLANT1
 VARIABLE-LIST = (3) .. $ ZONE ELECTRICITY USE

SYSTEM-REPORT-1 = HOURLY-REPORT REPORT-SCHEDULE = HR-SCH-SYS
 REPORT-BLOCK = (SREP-SYS1-1, SREP-SYS1-2, SREP-SYS1-3,
 SREP-SYS2-1, SREP-SYS2-2, SREP-SYS2-3, SREP-SYS2-4, SREP-SYS-ATC,
 SREP-SYS-ATC-2) ..
END ..
COMPUTE SYSTEMS ..

$************************** P L A N T *********************
INPUT PLANT ..
PLANT-REPORT VERIFICATION = (PV-A)
 SUMMARY = (BEPS, REPJ, PS-D, PS-E) ..
PLANT-PARAMETERS
 HERM-REC-COND-TYPE = AIR ..

 $ AIR-CONDITIONING SYSTEMS

A/C = PLANT-EQUIPMENT
 TYPE = HERM-REC-CHLR
 SIZE = -999 .. $BASE ON PEAK LOAD

END ..
COMPUTE PLANT ..
STOP ..
D.2 Input Files of Energy Efficiency Strategy

D.2.1 Strategy 1: Improve the Roof’s Insulation

D.2.1.1 Existing Roof Construction

CEMENT-CPAC = MATERIAL
THICKNESS = 0.0833
CONDUCTIVITY = 0.4167
DENSITY = 116
Specific-Heat = 0.2
Resistance = 0.2 ..

ROOF1 = LAYERS MATERIAL = (CEMENT-CPAC,AL33) ..

CEMENT-ROOF1 = CONSTRUCTION
ABSORPTANCE = 0.88
LAYERS = ROOF1 ..

D.2.1.2 Strategy 1-1: R-7 Fiberglass Insulation Underside the Roof Tiles

CEMENT-CPAC = MATERIAL
THICKNESS = 0.0833
CONDUCTIVITY = 0.4167
DENSITY = 116
Specific-Heat = 0.2
Resistance = 0.2 ..

CRB-R7 = MATERIAL
THICKNESS = 0.1667
CONDUCTIVITY = 0.0250
DENSITY = 6
Specific-Heat = 0.2
Resistance = 7.12 ..

ROOF1 = LAYERS MATERIAL = (CEMENT-CPAC,CRB-R7,AL33) ..

CEMENT-ROOF1 = CONSTRUCTION
ABSORPTANCE = 0.88
LAYERS = ROOF1 ..

D.2.1.3 Strategy 1-2: R-14 Fiberglass Insulation Underside the Roof Tiles

CEMENT-CPAC = MATERIAL
THICKNESS = 0.0833
CONDUCTIVITY = 0.4167
DENSITY = 116
Specific-Heat = 0.2
Resistance = 0.2 ..

CRB-R14 = MATERIAL
THICKNESS = 0.3334
CONDUCTIVITY = 0.0250
DENSITY = 6
Specific-Heat = 0.2
Resistance = 14.24 ..

ROOF1 = LAYERS MATERIAL = (CEMENT-CPAC,CRB-R14,AL33) ..

CEMENT-ROOF1 = CONSTRUCTION
ABSORPTANCE = 0.88
D.2.2 Strategy 2: Improve the 2nd Floor Ceiling Insulation

D.2.2.1 Existing 2nd Floor Ceiling Insulation

GYPSUM-CEILING2 = LAYERS
 MATERIAL = (IN02, GP01)
 THICKNESS = (0.2957, 0.0417) ..
GYPSUM-CEILING-2ND = CONSTRUCTION LAYERS = GYPSUM-CEILING2 ..

D.2.2.2 New 2nd Floor Ceiling Insulation

CRB-R28 = MATERIAL
 THICKNESS = 0.667
 CONDUCTIVITY = 0.0250
 DENSITY = 6
 Specific-Heat = 0.2
 Resistance = 28.48 ..

GYPSUM-CEILING2 = LAYERS
 MATERIAL = (CRB-R28, GP01)
 THICKNESS = (0.667, 0.0417) ..
GYPSUM-CEILING-2ND = CONSTRUCTION LAYERS = GYPSUM-CEILING2 ..

D.2.3 Strategy 3: Improve Wall Insulation

D.2.3.1 Existing Wall Construction

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2 ..
$ Resistance = ---

BRICK-LA = LAYERS MATERIAL = (PLASTER-MAT, BK01, PLASTER-MAT) ..
BRICK-WALL = CONSTRUCTION LAYERS = BRICK-LA ..

D.2.3.2 Strategy 3-1: 4" Light-weight Concrete Block

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2 ..
$ Resistance = ---

L-W-CON = MATERIAL
 THICKNESS = 0.33 4 Concrete Block
 CONDUCTIVITY = 0.056
 DENSITY = 31
 Specific-Heat = 0.2
 Resistance = 4.356 ..
BRICK-LA = LAYERS MATERIAL = (PLASTER-MAT, L-W-CON, PLASTER-MAT)
BRICK-WALL = CONSTRUCTION LAYERS = BRICK-LA

D.2.3.3 Strategy 3-2: 6" Light-weight Concrete Block

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2
 $ Resistance = ---
L-W-CON = MATERIAL
 THICKNESS = 0.5 $ 6" Concrete Block
 CONDUCTIVITY = 0.056
 DENSITY = 31
 Specific-Heat = 0.2
 Resistance = 6.534

D.2.3.4 Strategy 3-3: 4" Light-weight Concrete Block with Exterior Insulation

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2
 $ Resistance = ---
L-W-CON = MATERIAL
 THICKNESS = 0.33 $4" Concrete Block
 CONDUCTIVITY = 0.056
 DENSITY = 31
 Specific-Heat = 0.2
 Resistance = 4.356

$ FOAM BOARD (EXTRUDED EXPANED POLYSTYRENE (XEPS))
F-BOARD = MATERIAL
 THICKNESS = 0.166 $2" FOAM BOARD
 CONDUCTIVITY = 0.033
 DENSITY = 1.8
 Specific-Heat = 0.29
 Resistance = 10

$ FIBRE CEMENT BOARD (NON-ASBESTOS FIBRE CEMENT)
F-C-B = MATERIAL
 THICKNESS = 0.0328 $ 0.394" FIBRE CEMENT BOARD
 CONDUCTIVITY = 0.011
 DENSITY = 106
 Specific-Heat = 0.24
 Resistance = 0.0984

BRICK-LA = LAYERS MATERIAL = (F-C-B, F-BOARD, L-W-CON, PLASTER-MAT)
BRICK-WALL = CONSTRUCTION LAYERS = BRICK-LA

D.2.3.4 Strategy 3-3: 4" Light-weight Concrete Block with Interior Insulation

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2
 $ Resistance = ---
L-W-CON = MATERIAL
 THICKNESS = 0.33 $4'' Concrete Block
 CONDUCTIVITY = 0.056
 DENSITY = 31
 Specific-Heat = 0.2
 Resistance = 4.356..

$ FOAM BOARD (EXTRUDED EXPANDED POLYSTYRENE (XEPS))
F-BOARD = MATERIAL
 THICKNESS = 0.166 $2'' FOAM BOARD
 CONDUCTIVITY = 0.033
 DENSITY = 1.8
 Specific-Heat = 0.29
 Resistance = 10 ..

$GP01 IS 1/2 INCH GYPSUM OR PLASTER BOARD

BRICK-LA = LAYERS MATERIAL = (PLASTER-MAT, L-W-CON, F-BOARD, GP01)..
BRICK-WALL = CONSTRUCTION LAYERS = BRICK-LA..

D.2.4 Strategy 4: Low-E Window

The window properties of existing window and new window were verified by Window 4 program. The following sections show results of DOE-2 verification reports and the output from WINDOW 4 of the existing window and new window.

D.2.4.1 Existing Window: Single Pane Clear Glass

1) DOE-2 Verification Report

 * 258 * GLASS-1 = GLASS-TYPE GLASS-TYPE-CODE = 1000 $ 3 mm CLEAR GLASS
 * 259 *
 * 260 *

 FRAME-ABS = 0.7
 FRAME-CONDUCTANCE = 0.434..

GLAZING SELECTED FROM WINDOW LIBRARY--
 TYPE: SINGLE CLEAR

G-T-C LAYERS U-SI U-IP SC SHCG TSOL TVIS GAP(mm) GAS-FILL
1000 1 6.31 1.11 1.00 0.86 0.84 0.90 0.0

2) WINDOW 4 Glass Property Report

 WINDOW 4.1 DOE-2 Data File : Multi Band Calculation

 Unit System : SI
 Name : DOE-2 WINDOW LIB
 Desc : Single Clear
 Window ID : 1000
 Tilt : 90.0
 Glazings : 1
 Frame : 0 None
 Spacer : 0
 Total Height: 1097.3 mm
 Total Width : 899.2 mm
 Glass Height: 1097.3 mm
 Glass Width : 899.2 mm
Mullion

<table>
<thead>
<tr>
<th>Gap</th>
<th>Thick</th>
<th>Cond</th>
<th>dCond</th>
<th>Vis</th>
<th>dVis</th>
<th>Dens</th>
<th>dDens</th>
<th>Pr</th>
<th>dPr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Angle

<table>
<thead>
<tr>
<th>Angle</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90 Hemis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsol</td>
<td>0.837</td>
<td>0.836</td>
<td>0.835</td>
<td>0.830</td>
<td>0.821</td>
<td>0.800</td>
<td>0.752</td>
<td>0.639</td>
<td>0.390</td>
<td>0.000</td>
</tr>
<tr>
<td>Abs1</td>
<td>0.088</td>
<td>0.089</td>
<td>0.090</td>
<td>0.093</td>
<td>0.097</td>
<td>0.101</td>
<td>0.105</td>
<td>0.108</td>
<td>0.105</td>
<td>0.000</td>
</tr>
<tr>
<td>Abs2</td>
<td>0</td>
</tr>
<tr>
<td>Abs3</td>
<td>0</td>
</tr>
<tr>
<td>Abs4</td>
<td>0</td>
</tr>
<tr>
<td>Abs5</td>
<td>0</td>
</tr>
<tr>
<td>Abs6</td>
<td>0</td>
</tr>
</tbody>
</table>

2.2.1.2 New Window: Double Pane Low-E Window

1) **DOE-2 Verification Report**

* 258 * **GLASS-1** = **GLASS-TYPE** GLASS-TYPE-CODE = 2638 $ Low-E Window

* 259 * **SPACER-TYPE-CODE** = 4

* 260 * **FRAME-ABS** = 0.2 $ White gross painted

* 261 * **FRAME-CONDUCTANCE** = 1.245 ... $ Thermally broken

GLAZING SELECTED FROM WINDOW LIBRARY--

| TYPE: DOUBLE LOW-E (e2=.1) TINT IG |
| LAYERS U-SI U-IP SC SHCG TSOL TVIS GAP(mm) GAS-FILL |
| 2638 | 2 | 1.46 | 0.26 | 0.43 | 0.37 | 0.28 | 0.44 | 12.7 Argon |

2) **WINDOW 4 Glass Property Report**

WINDOW 4.1 DOE-2 Data File : Multi Band Calculation

Unit System : SI

Name : DOE-2 WINDOW LIB

Desc : Double Low-E

Window ID : 2638

Tilt : 90.0

Glazings : 2
D.2.5 Strategy 5: Shading Devices on Windows

The base-case house had no shading devices. The following is the shading devices that were installed on the base-case house.

WINDOW-R-1-1 = WINDOW
WIDTH = 2.293
HEIGHT = 2.949
X = 4.593
Y = 2.953
GLASS-TYPE = GLASS-1
SHADING-SCHEDULE = CURTAIN-1 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33
OH-W = 2.953 OH-D = 2.461
L-F-H = 3.609 L-F-D = 2.461
R-F-H = 3.609 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31

WINDOW-L-1-3 = WINDOW
WIDTH = 3.933
HEIGHT = 2.949
X = 1.2155
Y = 2.953
GLASS-TYPE = GLASS-1
FRAME-WIDTH = 0.33
OH-W = 4.59 OH-D = 2.461
L-F-H = 3.609 L-F-D = 2.461
R-F-H = 3.609 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31

WINDOW-L-1-2 = WINDOW
WIDTH = 3.277
HEIGHT = 5.902
X = 1.9685
Y = 10.499
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33
OH-W = 3.94 OH-D = 2.461
L-F-H = 6.56 L-F-D = 2.461
R-F-H = 6.56 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31

$ ADDITIONAL SHADING DEVICE OF WINDOW-L-1-2***************
WEST-1-2-H2 = BUILDING-SHADE
X=4.77 Y=27.98 Z=14.874 H=2.46 W=3.94
AZ=270 TILT=0 ..
WEST-1-2-H3 = BUILDING-SHADE
X=4.77 Y=27.98 Z=12.688 H=2.46 W=3.94
AZ=270 TILT=0 ..
$**
WINDOW-F-2-1-1 = WINDOW
WIDTH = 5.246
HEIGHT = 2.949
X = 2.953
Y = 2.953
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33
OH-W = 5.91 OH-D = 2.461
L-F-H = 3.609 L-F-D = 2.461
R-F-H = 3.609 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31

WINDOW-R-2-1 = WINDOW
WIDTH = 2.293
HEIGHT = 2.949
X = 4.593
Y = 2.953
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33
OH-W = 2.953 OH-D = 2.461
L-F-H = 3.609 L-F-D = 2.461
R-F-H = 3.609 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31

WINDOW-L-2-1 = WINDOW
WIDTH = 2.293
HEIGHT = 2.949
X = 3.691
Y = 2.953
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33
OH-W = 2.953 OH-D = 2.461
L-F-H = 3.609 L-F-D = 2.461
R-F-H = 3.609 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31

WINDOW-R-2-3 = WINDOW
WIDTH = 2.293
HEIGHT = 2.949
X = 4.101
Y = 2.953
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33
OH-W = 2.953 OH-D = 2.461
L-F-H = 3.609 L-F-D = 2.461
R-F-H = 3.609 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31 .

WINDOW-L-2-3 = WINDOW
WIDTH = 2.289
HEIGHT = 2.949
X = 4.757
Y = 2.953
GLASS-TYPE = GLASS-2
SHADING-SCHEDULE = CURTAIN-2 $ ACCOUNTED FOR THE CURTAIN
FRAME-WIDTH = 0.33
OH-W = 2.953 OH-D = 2.461
L-F-H = 3.609 L-F-D = 2.461
R-F-H = 3.609 R-F-D = 2.461
SKY-FORM-FACTOR = 0.31 .

$************************** ADDITIONAL SHADING DEVICES ******************************

$ SHADING DEVICE FOR WINDOW-F-2-1-2 AND F-1-1

SOUTH-1-1-H1 = BUILDING-SHADE
X=21.01 Y=5.34 Z=5 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H2 = BUILDING-SHADE
X=21.01 Y=5.34 Z=6 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H3 = BUILDING-SHADE
X=21.01 Y=5.34 Z=7 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H4 = BUILDING-SHADE
X=21.01 Y=5.34 Z=8 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H5 = BUILDING-SHADE
X=21.01 Y=5.34 Z=9 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H6 = BUILDING-SHADE
X=21.01 Y=5.34 Z=10 H=1.64 W=8.53
AZ=180 TILT=0 ..

$SOUTH-1-1H7 IS NOT USED

SOUTH-1-1-H8 = BUILDING-SHADE
X=21.01 Y=5.34 Z=12 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H9 = BUILDING-SHADE
X=21.01 Y=5.34 Z=13 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H10 = BUILDING-SHADE
X=21.01 Y=5.34 Z=14 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H11 = BUILDING-SHADE
X=21.01 Y=5.34 Z=15 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H12 = BUILDING-SHADE
X=21.01 Y=5.34 Z=16 H=1.64 W=8.53
AZ=180 TILT=0 ..

SOUTH-1-1-H13 = BUILDING-SHADE
X=21.01 Y=5.34 Z=17 H=1.64 W=8.53
AZ=180 TILT=0 ..
D.2.6 Strategy 6: High Thermal Mass Wall

D.2.6.1 Existing Wall Construction

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2 ..
 $ Resistance = ---

BRICK-LA = LAYERS MATERIAL = (PLASTER-MAT, BK01, PLASTER-MAT) ..
BRICK-WALL = CONSTRUCTION LAYERS = BRICK-LA ..

D.2.6.2 Strategy 6-1: High Thermal Mass Wall (8” Brick)

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2 ..
 $ Resistance = ---

BRICK-LA = LAYERS MATERIAL = (PLASTER-MAT, BK02, PLASTER-MAT) ..
BRICK-WALL = CONSTRUCTION LAYERS = BRICK-LA ..

$BK02 is 8 inch thick common brick

D.2.6.3 Strategy 6-2: High Thermal Mass Wall (12” Brick)

PLASTER-MAT = MATERIAL
 THICKNESS = 0.0328
 CONDUCTIVITY = 0.3079
 DENSITY = 116
 Specific-Heat = 0.2 ..
 $ Resistance = ---

BRICK-LA-2 = LAYERS MATERIAL = (PLASTER-MAT, BK01, PLASTER-MAT) ..
BRICK-WALL-2 = CONSTRUCTION LAYERS = BRICK-LA-2 ..

BRICK-LA = LAYERS MATERIAL = (PLASTER-MAT, BK03, PLASTER-MAT) ..
BRICK-WALL = CONSTRUCTION LAYERS = BRICK-LA ..

$BK03 is 12 inch thick common brick

D.2.7 Strategy 7: High Energy Efficient Air-Conditioning Systems

D.2.7.1 Existing Air-Conditioning Systems

$ SYSTEMS

$SYSTEM FOR SPACE2-1
SYS2-1 = SYSTEM
 SYSTEM-TYPE = RESYS
D.2.7.1 Proposed Air-Conditioning Systems

$SYSTEM FOR SPACE2-1
SYS2-1 = SYSTEM
SYSTEM-TYPE = RESYS
ZONE-NAMES = (SPACE2-1)
MAX-SUPPLY-T = 77.05
MIN-SUPPLY-T = 70.0
HEATING-SCHEDULE = YEAR-SHUT $ NO HEATING
HEATING-CAPACITY = 0 $ NO HEATING
HEAT-SOURCE = ELECTRIC $ NO HEATING
COOLING-SCHEDULE = COOL2-1YEAR
COOLING-CAPACITY = 17401
COOLING-EIR = 0.284 ..

$ NOTE**
$ Proposed New A/C has EER of 12, COP of 12/3.412 = 3.517
$ COOLING-EIR = 1/COP
$ = 1/3.517 = 0.284
$ NOTE**

$SYSTEM FOR SPACE2-2
SYS2-2 = SYSTEM
SYSTEM-TYPE = RESYS
ZONE-NAMES = (SPACE2-2)
MAX-SUPPLY-T = 77.05
MIN-SUPPLY-T = 70.0
HEATING-SCHEDULE = YEAR-SHUT $ NO HEATING
HEATING-CAPACITY = 0 $ NO HEATING
HEAT-SOURCE = ELECTRIC $ NO HEATING
COOLING-SCHEDULE = COOL2-2YEAR
COOLING-CAPACITY = 12000
COOLING-EIR = 0.325 ..

$ NOTE**
$ SYSTEM FOR SPACE2-2
SYS2-2 = SYSTEM
SYSTEM-TYPE = RESYS
ZONE-NAMES = (SPACE2-1)
MAX-SUPPLY-T = 77.05
MIN-SUPPLY-T = 70.0
HEATING-SCHEDULE = YEAR-SHUT $ NO HEATING
HEATING-CAPACITY = 0 $ NO HEATING
HEAT-SOURCE = ELECTRIC $ NO HEATING
COOLING-SCHEDULE = COOL2-1YEAR
COOLING-CAPACITY = 17401
COOLING-EIR = 0.284 ..

$ NOTE**
$ Proposed New A/C has EER of 12, COP of 12/3.412 = 3.517
$ COOLING-EIR = 1/COP
$ = 1/3.517 = 0.284
$ NOTE**

$SYSTEM FOR SPACE2-2
SYS2-2 = SYSTEM
SYSTEM-TYPE = RESYS
ZONE-NAMES = (SPACE2-2)
MAX-SUPPLY-T = 77.05
MIN-SUPPLY-T = 70.0
HEATING-SCHEDULE = YEAR-SHUT $ NO HEATING
HEATING-CAPACITY = 0 $ NO HEATING
HEAT-SOURCE = ELECTRIC $ NO HEATING
COOLING-SCHEDULE = COOL2-2YEAR
COOLING-CAPACITY = 12000
D.2.8 Strategy 8: Energy Efficient Lighting – Electronic Ballasts

D.2.8.1 Existing Lighting Load

$ SPECIFIC SPACE DETAILS
$ SPACE 1-1 : LIVING ROOM, DINING AREA, KITCHEN, BATHROOM
SPACE1-1 = SPACE
SPACE-CONDITIONS = LIVING-SPACE
PEOPLE-SCHEDULE = OCC1-1YEAR
LIGHTING-SCHEDULE = LIGHT1-1YEAR
EQUIP-SCHEDULE = EQUIP1-1YEAR
LIGHTING-KW = 0.0992
EQUIPMENT-KW = 2.3 $ was 2.495
INF-SCHEDULE = INFIL-YEAR-L
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 10 $ INDIVIDUAL
AREA = 757.44 $ Nominal value- 60% larger than the actual
VOLUME = 2329.7 .. $ Nominal value- 60% less than the actual

D.2.8.2 Improved Lighting Load

$ SPECIFIC SPACE DETAILS
$ SPACE 1-1 : LIVING ROOM, DINING AREA, KITCHEN, BATHROOM
SPACE1-1 = SPACE
SPACE-CONDITIONS = LIVING-SPACE
PEOPLE-SCHEDULE = OCC1-1YEAR
LIGHTING-SCHEDULE = LIGHT1-1YEAR
EQUIP-SCHEDULE = EQUIP1-1YEAR
LIGHTING-KW = 0.084 $ a 15% reduction from 0.0992 KW
EQUIPMENT-KW = 2.3 $ Nominal value (was 2.495)
INF-SCHEDULE = INFIL-YEAR-L
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 10 $ INDIVIDUAL
AREA = 757.44 $ Nominal value- 60% larger than the actual
VOLUME = 2329.7 .. $ Nominal value- 60% less than the actual

D.2.9 Strategy 9: Energy Efficient Refrigerators

D.2.9.1 Existing Refrigerator Loads

$ EQUIPMENT SCHEDULE
$ SPACE 1-1 : LIVING ROOM (TV-85 W + Electric Fan-60 W = 145 W)
$ DINING ROOM (MICROWAVE OVEN-1000 W + TOASTER-700 W = 1700 W)
D.2.9.2 Improved Refrigerator Loads

$ \text{EQUIPMENT SCHEDULE}$

$\text{SPACE 1-1: LIVING ROOM}$

$\text{Refrigerator Energy Use = 372 kWh/year}$

$\text{EQUIP1-1WD} = \text{DAY-SCHEDULE}$

\[
(1,7)(0.01846) \quad (8)(0.037) \quad (9,17)(0.01846) \quad (18)(0.0945) \\
(19,20)(0.059) \quad (21,24)(0.01846) \quad ..
\]

$\text{EQUIP1-1WE} = \text{DAY-SCHEDULE}$

\[
(1,7)(0.01846) \quad (8)(0.037) \quad (9,10)(0.01846) \\
(11,17)(0.059) \quad (18)(0.0958) \quad (19,20)(0.0595) \\
(21,24)(0.01846) \quad ..
\]

$\text{EQUIP1-1WEEK} = \text{WEEK-SCHEDULE}$

\[
(\text{WD}) \text{ EQUIP1-1WD} \quad (\text{WEH}) \text{ EQUIP1-1WE} \quad ..
\]

$\text{EQUIP1-1YEAR} = \text{SCHEDULE}$

\[
\text{THRU DEC 31 EQUIP1-1WEEK} \quad ..
\]

$\text{SPACE 2-4 : BATHROOM & HALL}$

$\text{Refrigerator Energy Use = 316 kWh/year}$

$\text{EQUIP2-4WD} = \text{DAY-SCHEDULE}$

\[
(1,24)(0.3607) \quad ..
\]

$\text{EQUIP2-4WE} = \text{DAY-SCHEDULE}$

\[
(1,24)(0.3607) \quad ..
\]

$\text{EQUIP2-4WEEK} = \text{WEEK-SCHEDULE}$

\[
(\text{WD}) \text{ EQUIP2-4WD} \quad (\text{WEH}) \text{ EQUIP2-4WE} \quad ..
\]

$\text{EQUIP2-4YEAR} = \text{SCHEDULE}$

\[
\text{THRU DEC 31 EQUIP2-4WEEK} \quad ..
\]

D.3 Results of Run# 1 and Run#16 (Base-case) Zone Temperatures

The results of the case-study house’s simulated zone temperatures from Run# 1 as compared to the measured temperature are presented in Figure D.2 to D.5. The results of the
case-study house’s simulated zone temperatures from Run# 16, which was considered as the base-case, as compared to the measured temperature are presented in Figure D.6 to D.9.

D.4 DOE-2 Hourly Reports

DOE-2 hourly report of indoor temperature of the base-case house, the base-case house with energy efficiency strategies, and renewable energy systems are presented in Sections D.4.1 and D.4.2. The presented hourly data is an example of one day data (September 17, 2000).
Figure D.2 Comparison of Run# 1 Simulated and Measured Living Room Temperatures.
Figure D.3 Comparison of Run# 1 Simulated and Measured Bedroom-3 Temperatures.
Figure D.4 Comparison of Run# 1 Simulated and Measured the Master Bedroom Temperatures.
Figure D.5 Comparison of Run# 1 Simulated and Measured Attic Temperatures.
Figure D.6 Comparison of Run# 16 Simulated and Measured Living Room Temperatures.
Figure D.7 Comparison of Run# 16 Simulated and Measured Bedroom-3 Temperatures.
Figure D.8 Comparison of Run# 16 Simulated and Measured Master Temperatures.
Figure D.9 Comparison of Run# 16 Simulated and Measured Attic Temperatures.
D.4.1 DOE-2 Hourly Report of Indoor Temperature of the Base-Case House

Case Study House: The Jeerasak's House, Base-Case

Run Description:
- **Run #:** 16
- **System-Report-1:** = Hourly-Report

Space and Zone Temperatures

<table>
<thead>
<tr>
<th>Zone</th>
<th>Temp (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85.4</td>
</tr>
<tr>
<td>2</td>
<td>85.2</td>
</tr>
<tr>
<td>3</td>
<td>85.0</td>
</tr>
<tr>
<td>4</td>
<td>84.9</td>
</tr>
<tr>
<td>5</td>
<td>84.7</td>
</tr>
<tr>
<td>6</td>
<td>85.0</td>
</tr>
<tr>
<td>7</td>
<td>85.6</td>
</tr>
<tr>
<td>8</td>
<td>86.0</td>
</tr>
<tr>
<td>9</td>
<td>86.3</td>
</tr>
<tr>
<td>10</td>
<td>87.0</td>
</tr>
<tr>
<td>11</td>
<td>87.6</td>
</tr>
<tr>
<td>12</td>
<td>87.6</td>
</tr>
<tr>
<td>13</td>
<td>88.1</td>
</tr>
<tr>
<td>14</td>
<td>88.3</td>
</tr>
<tr>
<td>15</td>
<td>88.3</td>
</tr>
<tr>
<td>16</td>
<td>88.2</td>
</tr>
<tr>
<td>17</td>
<td>88.2</td>
</tr>
<tr>
<td>18</td>
<td>88.5</td>
</tr>
<tr>
<td>19</td>
<td>88.5</td>
</tr>
<tr>
<td>20</td>
<td>87.9</td>
</tr>
<tr>
<td>21</td>
<td>87.6</td>
</tr>
<tr>
<td>22</td>
<td>87.3</td>
</tr>
<tr>
<td>23</td>
<td>87.1</td>
</tr>
<tr>
<td>24</td>
<td>86.8</td>
</tr>
</tbody>
</table>

Daily Summary (Sep 17)

- **MN:** 84.7
- **MX:** 88.3
- **SM:** 2082.6
- **AV:** 86.8
D.4.2 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategies

D.3.2.1 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 1-1 (R-7 Insulation Underside the Roof Tiles)

CASE STUDY HOUSE: THE JEERASAK'S HOUSE, Model Improvement Strategy 1-1

R-7 Insulation behind the roof tiles

<table>
<thead>
<tr>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

917 1 85.4 84.3 85.6 79.7 80.5 85.5 86.4 86.3
917 2 85.2 83.9 85.2 79.7 80.5 84.5 85.4 85.7
917 3 85.0 83.4 85.0 79.7 80.4 84.1 85.1 85.2
917 4 84.8 83.0 84.7 79.7 80.5 83.6 84.8 84.8
917 5 84.6 82.6 84.6 79.6 80.4 83.2 84.6 84.3
917 6 85.0 82.1 84.4 79.6 80.5 83.1 84.5 84.6
917 7 85.6 82.1 84.4 79.7 80.5 83.2 84.7 88.3
917 8 86.0 82.4 84.6 82.4 88.1 83.4 85.4 90.2
917 9 86.2 83.1 85.2 83.8 90.4 84.5 87.1 91.7
91710 87.0 83.9 85.7 85.3 92.1 85.3 88.1 93.3
91711 87.6 84.7 86.2 86.5 93.0 86.1 88.9 94.5
91712 87.8 85.5 86.7 87.6 93.7 86.9 89.4 95.5
91713 88.0 86.4 87.0 88.6 94.1 87.7 89.9 95.2
91714 88.2 87.2 87.3 89.5 94.4 88.4 90.2 95.1
91715 88.3 87.8 87.5 89.9 94.4 89.0 90.5 93.8
91716 88.1 88.1 87.7 90.0 94.2 90.3 90.6 92.7
91717 87.8 88.2 87.9 89.9 93.8 89.6 90.7 91.9
91718 88.0 88.2 88.0 89.9 93.5 89.5 90.7 91.2
91719 87.8 88.1 88.0 79.8 80.6 89.3 90.8 90.6
91720 87.6 87.4 87.0 79.9 80.7 88.1 87.4 90.0
91721 87.2 87.0 86.8 79.9 80.6 87.6 87.1 89.5
91722 87.1 86.6 86.6 79.9 80.6 87.2 86.8 89.0
91723 86.8 86.3 86.4 79.8 80.6 86.8 86.6 88.6
91724 86.6 85.9 86.3 79.8 80.5 86.4 86.4 88.2

0 DAILY SUMMARY (SEP 17)

<table>
<thead>
<tr>
<th></th>
<th>MN</th>
<th>MX</th>
<th>SM</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN</td>
<td>84.6</td>
<td>82.1</td>
<td>84.4</td>
<td>79.6</td>
</tr>
<tr>
<td>MX</td>
<td>88.3</td>
<td>88.2</td>
<td>88.0</td>
<td>90.0</td>
</tr>
<tr>
<td>SM</td>
<td>2082.0</td>
<td>2048.2</td>
<td>2088.7</td>
<td>2000.5</td>
</tr>
<tr>
<td>AV</td>
<td>86.8</td>
<td>85.3</td>
<td>86.2</td>
<td>83.4</td>
</tr>
</tbody>
</table>
D.4.2.2 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 1-2 (R-14 Insulation Underside the Roof Tiles)

CASE STUDY HOUSE: THE JEERASAK'S HOUSE, Model Improvement Strategy 1-2

DOE-2.1E-119 Mon Feb 2 01:15:58 2004SDL RUN 1

R-14 Insulation behind the roof tiles

SYSTEM-REPORT-1 = HOURLY-REPORT

<table>
<thead>
<tr>
<th>SPACE1-1</th>
<th>SPACE1-2</th>
<th>SPACE1-3</th>
<th>SPACE2-1</th>
<th>SPACE2-2</th>
<th>SPACE2-3</th>
<th>SPACE2-4</th>
<th>SPACE-AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONE</td>
<td>ZONE</td>
<td>ZONE</td>
<td>ZONE</td>
<td>ZONE</td>
<td>ZONE</td>
<td>ZONE</td>
<td>ZONE</td>
</tr>
<tr>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>917 1</td>
<td>85.4</td>
<td>84.2</td>
<td>85.6</td>
<td>79.7</td>
<td>80.5</td>
<td>85.4</td>
<td>86.3</td>
</tr>
<tr>
<td>917 2</td>
<td>85.2</td>
<td>83.8</td>
<td>85.2</td>
<td>79.7</td>
<td>80.5</td>
<td>84.5</td>
<td>85.3</td>
</tr>
<tr>
<td>917 3</td>
<td>85.0</td>
<td>83.4</td>
<td>84.9</td>
<td>79.7</td>
<td>80.5</td>
<td>84.0</td>
<td>85.0</td>
</tr>
<tr>
<td>917 4</td>
<td>84.8</td>
<td>83.0</td>
<td>84.7</td>
<td>79.7</td>
<td>80.5</td>
<td>83.6</td>
<td>84.8</td>
</tr>
<tr>
<td>917 5</td>
<td>84.6</td>
<td>82.6</td>
<td>84.5</td>
<td>79.6</td>
<td>80.4</td>
<td>83.2</td>
<td>84.6</td>
</tr>
<tr>
<td>917 6</td>
<td>85.0</td>
<td>82.1</td>
<td>84.3</td>
<td>79.6</td>
<td>80.5</td>
<td>83.1</td>
<td>84.5</td>
</tr>
<tr>
<td>917 7</td>
<td>85.6</td>
<td>82.1</td>
<td>84.4</td>
<td>79.7</td>
<td>80.5</td>
<td>83.2</td>
<td>84.7</td>
</tr>
<tr>
<td>917 8</td>
<td>86.0</td>
<td>82.4</td>
<td>84.6</td>
<td>82.4</td>
<td>88.1</td>
<td>83.3</td>
<td>85.3</td>
</tr>
<tr>
<td>917 9</td>
<td>86.2</td>
<td>83.1</td>
<td>85.2</td>
<td>83.8</td>
<td>90.3</td>
<td>84.4</td>
<td>87.0</td>
</tr>
<tr>
<td>917 10</td>
<td>87.0</td>
<td>83.9</td>
<td>85.7</td>
<td>85.2</td>
<td>92.0</td>
<td>85.2</td>
<td>88.0</td>
</tr>
<tr>
<td>917 11</td>
<td>87.5</td>
<td>84.7</td>
<td>86.2</td>
<td>86.4</td>
<td>92.9</td>
<td>86.0</td>
<td>88.7</td>
</tr>
<tr>
<td>917 12</td>
<td>87.8</td>
<td>85.4</td>
<td>86.6</td>
<td>87.5</td>
<td>93.6</td>
<td>86.7</td>
<td>89.3</td>
</tr>
<tr>
<td>917 13</td>
<td>88.0</td>
<td>86.3</td>
<td>87.0</td>
<td>88.5</td>
<td>94.0</td>
<td>87.5</td>
<td>89.7</td>
</tr>
<tr>
<td>917 14</td>
<td>88.2</td>
<td>87.1</td>
<td>87.3</td>
<td>89.3</td>
<td>94.2</td>
<td>88.3</td>
<td>90.1</td>
</tr>
<tr>
<td>917 15</td>
<td>88.3</td>
<td>87.7</td>
<td>87.5</td>
<td>89.7</td>
<td>94.2</td>
<td>88.8</td>
<td>90.3</td>
</tr>
<tr>
<td>917 16</td>
<td>88.1</td>
<td>88.0</td>
<td>87.7</td>
<td>89.9</td>
<td>94.0</td>
<td>90.2</td>
<td>90.5</td>
</tr>
<tr>
<td>917 17</td>
<td>87.8</td>
<td>88.2</td>
<td>87.8</td>
<td>89.8</td>
<td>93.7</td>
<td>89.4</td>
<td>90.5</td>
</tr>
<tr>
<td>917 18</td>
<td>88.0</td>
<td>88.1</td>
<td>87.9</td>
<td>89.8</td>
<td>93.3</td>
<td>89.4</td>
<td>90.5</td>
</tr>
<tr>
<td>917 19</td>
<td>87.8</td>
<td>88.0</td>
<td>88.0</td>
<td>79.8</td>
<td>80.6</td>
<td>89.2</td>
<td>90.6</td>
</tr>
<tr>
<td>917 20</td>
<td>87.6</td>
<td>87.4</td>
<td>86.9</td>
<td>79.9</td>
<td>80.7</td>
<td>88.0</td>
<td>87.3</td>
</tr>
<tr>
<td>917 21</td>
<td>87.2</td>
<td>87.0</td>
<td>86.7</td>
<td>79.9</td>
<td>80.6</td>
<td>87.5</td>
<td>87.0</td>
</tr>
<tr>
<td>917 22</td>
<td>87.1</td>
<td>86.5</td>
<td>86.5</td>
<td>79.9</td>
<td>80.6</td>
<td>87.1</td>
<td>86.8</td>
</tr>
<tr>
<td>917 23</td>
<td>86.8</td>
<td>86.2</td>
<td>86.4</td>
<td>79.8</td>
<td>80.6</td>
<td>86.7</td>
<td>86.5</td>
</tr>
<tr>
<td>917 24</td>
<td>86.6</td>
<td>85.9</td>
<td>86.2</td>
<td>79.8</td>
<td>80.5</td>
<td>86.4</td>
<td>86.3</td>
</tr>
</tbody>
</table>

AV

MN	84.6	82.1	84.3	79.6	80.4	83.1	84.5	84.6
MX	88.3	88.2	88.0	89.9	94.2	90.2	90.6	91.6
SM	2061.8	2046.9	2067.7	1999.1	2067.2	2071.1	2099.6	2122.8
AV	86.7	85.3	86.2	83.3	86.1	86.3	87.5	88.5
D.4.2.3 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 2 (Improve the 2nd Floor Ceiling Insulation: Upgrade R-11 to R-28)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>917 1</td>
<td>917 2</td>
<td>917 3</td>
<td>917 4</td>
<td>917 5</td>
<td>917 6</td>
<td>917 7</td>
<td>917 8</td>
<td>917 9</td>
</tr>
<tr>
<td>85.4</td>
<td>85.2</td>
<td>85.0</td>
<td>84.8</td>
<td>84.6</td>
<td>85.0</td>
<td>85.6</td>
<td>86.0</td>
<td>86.3</td>
</tr>
<tr>
<td>84.2</td>
<td>83.8</td>
<td>83.4</td>
<td>83.0</td>
<td>82.5</td>
<td>82.1</td>
<td>82.1</td>
<td>82.4</td>
<td>83.1</td>
</tr>
<tr>
<td>85.6</td>
<td>85.2</td>
<td>85.0</td>
<td>84.8</td>
<td>84.6</td>
<td>84.4</td>
<td>84.4</td>
<td>84.6</td>
<td>85.2</td>
</tr>
<tr>
<td>79.7</td>
<td>79.7</td>
<td>79.7</td>
<td>79.7</td>
<td>79.6</td>
<td>79.7</td>
<td>79.7</td>
<td>79.7</td>
<td>83.9</td>
</tr>
<tr>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.4</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>90.5</td>
</tr>
<tr>
<td>85.5</td>
<td>84.5</td>
<td>84.0</td>
<td>83.6</td>
<td>83.1</td>
<td>83.1</td>
<td>83.2</td>
<td>88.2</td>
<td>94.5</td>
</tr>
<tr>
<td>86.4</td>
<td>85.4</td>
<td>85.1</td>
<td>84.8</td>
<td>84.6</td>
<td>84.5</td>
<td>84.7</td>
<td>88.5</td>
<td>90.5</td>
</tr>
<tr>
<td>84.4</td>
<td>83.1</td>
<td>82.2</td>
<td>81.3</td>
<td>80.3</td>
<td>87.9</td>
<td>95.7</td>
<td>101.6</td>
<td>113.6</td>
</tr>
</tbody>
</table>

0 DAILY SUMMARY (SEP 17)

<table>
<thead>
<tr>
<th>MN</th>
<th>MX</th>
<th>SM</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.6</td>
<td>88.3</td>
<td>2082.2</td>
<td>86.8</td>
</tr>
<tr>
<td>82.1</td>
<td>88.3</td>
<td>2048.7</td>
<td>85.4</td>
</tr>
<tr>
<td>84.4</td>
<td>88.1</td>
<td>2069.6</td>
<td>86.2</td>
</tr>
<tr>
<td>79.6</td>
<td>90.2</td>
<td>2002.2</td>
<td>83.4</td>
</tr>
<tr>
<td>80.4</td>
<td>94.7</td>
<td>2071.1</td>
<td>86.3</td>
</tr>
<tr>
<td>83.1</td>
<td>90.5</td>
<td>2074.7</td>
<td>86.4</td>
</tr>
<tr>
<td>84.5</td>
<td>90.5</td>
<td>2104.8</td>
<td>87.7</td>
</tr>
<tr>
<td>80.3</td>
<td>90.9</td>
<td>2319.0</td>
<td>96.6</td>
</tr>
<tr>
<td>ZONE</td>
<td>TEMP</td>
<td>ZONE</td>
<td>TEMP</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>85.5</td>
<td>2</td>
<td>85.2</td>
</tr>
<tr>
<td>2</td>
<td>82.2</td>
<td>6</td>
<td>80.3</td>
</tr>
<tr>
<td>3</td>
<td>85.1</td>
<td>10</td>
<td>86.8</td>
</tr>
<tr>
<td>4</td>
<td>79.7</td>
<td>14</td>
<td>89.7</td>
</tr>
<tr>
<td>5</td>
<td>80.4</td>
<td>18</td>
<td>87.7</td>
</tr>
<tr>
<td>6</td>
<td>84.7</td>
<td>22</td>
<td>91.7</td>
</tr>
<tr>
<td>7</td>
<td>87.2</td>
<td>10</td>
<td>92.6</td>
</tr>
<tr>
<td>8</td>
<td>85.6</td>
<td>14</td>
<td>92.7</td>
</tr>
<tr>
<td>9</td>
<td>80.4</td>
<td>18</td>
<td>91.9</td>
</tr>
<tr>
<td>10</td>
<td>84.7</td>
<td>22</td>
<td>91.7</td>
</tr>
<tr>
<td>11</td>
<td>87.2</td>
<td>14</td>
<td>92.6</td>
</tr>
<tr>
<td>12</td>
<td>90.6</td>
<td>18</td>
<td>91.8</td>
</tr>
<tr>
<td>13</td>
<td>90.7</td>
<td>22</td>
<td>92.0</td>
</tr>
<tr>
<td>14</td>
<td>89.0</td>
<td>16</td>
<td>92.0</td>
</tr>
<tr>
<td>15</td>
<td>94.7</td>
<td>18</td>
<td>93.8</td>
</tr>
<tr>
<td>16</td>
<td>92.7</td>
<td>22</td>
<td>92.2</td>
</tr>
<tr>
<td>17</td>
<td>91.9</td>
<td>19</td>
<td>90.9</td>
</tr>
<tr>
<td>18</td>
<td>90.9</td>
<td>20</td>
<td>90.0</td>
</tr>
<tr>
<td>19</td>
<td>93.8</td>
<td>21</td>
<td>88.9</td>
</tr>
<tr>
<td>20</td>
<td>88.9</td>
<td>22</td>
<td>91.9</td>
</tr>
<tr>
<td>21</td>
<td>88.9</td>
<td>1</td>
<td>94.5</td>
</tr>
<tr>
<td>22</td>
<td>88.9</td>
<td>2</td>
<td>94.5</td>
</tr>
<tr>
<td>23</td>
<td>88.9</td>
<td>3</td>
<td>94.5</td>
</tr>
<tr>
<td>24</td>
<td>88.9</td>
<td>4</td>
<td>94.5</td>
</tr>
<tr>
<td>25</td>
<td>88.9</td>
<td>5</td>
<td>94.5</td>
</tr>
<tr>
<td>26</td>
<td>88.9</td>
<td>6</td>
<td>94.5</td>
</tr>
</tbody>
</table>

D.4.2.4 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 3-1 (Improve Wall Insulation: 4" Light-weight Concrete Block Wall)
D.4.2.5 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 3-2 (Improve Wall Insulation: 6” Light-weight Concrete Block Wall)

| ZONE |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| TEMP |
F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
917 1	85.7	83.1	85.8	79.7	80.5	85.2	87.9	84.5										
917 2	85.5	82.5	85.4	79.7	80.4	84.4	87.3	83.2										
917 3	85.4	82.0	85.2	79.7	80.4	83.8	87.0	82.2										
917 4	85.3	81.6	85.1	79.6	80.4	83.3	86.7	81.3										
917 5	85.1	81.2	84.9	79.6	80.4	82.8	86.4	80.4										
917 6	85.9	80.7	85.0	79.7	80.5	83.2	86.9	88.0										
917 7	86.8	81.5	85.2	79.7	80.6	84.1	87.9	96.1										
917 8	87.2	82.7	85.4	83.7	90.7	84.9	89.0	102.1										
917 9	87.3	84.1	86.2	85.5	92.2	86.0	90.0	106.8										
91710	87.9	85.5	86.5	87.2	92.9	87.1	90.6	111.2										
91711	88.3	86.7	86.7	88.5	93.0	88.1	91.1	114.6										
91712	88.3	87.8	86.9	89.9	93.4	89.2	91.5	117.0										
91713	88.4	89.0	87.2	91.2	93.9	90.3	91.9	114.5										
91714	88.4	89.9	87.5	92.1	94.2	91.2	92.3	112.7										
91715	88.3	90.0	87.7	92.3	94.0	91.5	92.4	106.9										
91716	88.0	89.6	87.8	92.0	93.2	92.9	92.4	102.1										
91717	87.5	89.0	87.8	91.3	92.4	91.4	92.1	98.8										
91718	87.7	88.3	87.7	90.8	91.6	90.7	91.9	96.5										
91719	87.5	87.8	87.7	79.9	80.5	90.0	91.9	94.7										
91720	87.3	87.1	86.6	80.0	80.5	89.1	90.2	93.2										
91721	87.0	86.5	86.4	79.9	80.5	88.3	89.7	91.7										
91722	86.9	85.8	86.3	79.9	80.5	87.7	89.2	90.5										
91723	86.6	85.4	86.2	79.8	80.5	87.1	88.9	89.5										
91724	86.5	84.9	86.1	79.8	80.4	86.6	88.5	88.3										

0 DAILY SUMMARY (SEP 17)
MN	85.1	80.7	84.9	79.6	80.4	82.8	86.4	80.4
MX	88.4	90.0	97.8	92.9	92.4	117.0		
SM	2086.7	2052.8	2073.3	2021.5	2067.6	2098.5	2153.8	2326.8
AV	87.0	85.5	86.4	84.2	86.2	87.4	89.7	97.0
D.4.2.6 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 3-3 (Improve Wall Insulation: 4" Light-weight Concrete Block Wall with Exterior Insulation)

CASE STUDY HOUSE: THE JEERASAK'S HOUSE, Model Improvement Strategy 3-3

Space Temperature Report

<table>
<thead>
<tr>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Zone 6</th>
<th>Zone 7</th>
<th>Zone 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp 1</td>
<td>85.9</td>
<td>83.1</td>
<td>86.0</td>
<td>79.7</td>
<td>80.5</td>
<td>85.7</td>
<td>88.9</td>
</tr>
<tr>
<td>Temp 2</td>
<td>85.8</td>
<td>82.5</td>
<td>85.7</td>
<td>79.7</td>
<td>80.5</td>
<td>85.0</td>
<td>88.4</td>
</tr>
<tr>
<td>Temp 3</td>
<td>85.7</td>
<td>82.1</td>
<td>85.5</td>
<td>79.7</td>
<td>80.4</td>
<td>84.5</td>
<td>88.0</td>
</tr>
<tr>
<td>Temp 4</td>
<td>85.6</td>
<td>81.7</td>
<td>85.4</td>
<td>79.7</td>
<td>80.4</td>
<td>84.0</td>
<td>87.8</td>
</tr>
<tr>
<td>Temp 5</td>
<td>85.5</td>
<td>81.3</td>
<td>85.3</td>
<td>79.6</td>
<td>80.4</td>
<td>83.5</td>
<td>87.5</td>
</tr>
<tr>
<td>Temp 6</td>
<td>86.3</td>
<td>80.9</td>
<td>85.3</td>
<td>79.7</td>
<td>80.5</td>
<td>84.1</td>
<td>88.5</td>
</tr>
<tr>
<td>Temp 7</td>
<td>87.1</td>
<td>81.9</td>
<td>85.4</td>
<td>79.7</td>
<td>80.6</td>
<td>85.0</td>
<td>89.5</td>
</tr>
<tr>
<td>Temp 8</td>
<td>87.4</td>
<td>82.3</td>
<td>85.6</td>
<td>83.3</td>
<td>88.8</td>
<td>85.6</td>
<td>90.5</td>
</tr>
<tr>
<td>Temp 9</td>
<td>87.4</td>
<td>84.5</td>
<td>86.1</td>
<td>84.9</td>
<td>90.1</td>
<td>86.4</td>
<td>90.9</td>
</tr>
</tbody>
</table>
| DAILY SUMMARY (SEP 17)
| MN | 85.5 | 80.9 | 85.3 | 79.6 | 80.4 | 83.5 | 87.5 |
| MX | 88.4 | 89.8 | 87.7 | 91.8 | 92.8 | 92.9 | 92.9 |
| SM | 901.9 | 2051.1 | 2074.1 | 2016.1 | 2051.4 | 2106.5 | 2174.1 |
| AV | 87.2 | 85.5 | 86.4 | 84.0 | 85.5 | 87.8 | 90.6 |
D.4.2.7 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 3-4 (Improve Wall Insulation: 4” Light-weight Concrete Block Wall with Interior Insulation)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
</tr>
<tr>
<td>-----(6)</td>
<td>-----(6)</td>
<td>-----(6)</td>
<td>-----(6)</td>
<td>-----(6)</td>
<td>-----(6)</td>
<td>-----(6)</td>
<td>-----(6)</td>
<td>-----(6)</td>
<td></td>
</tr>
<tr>
<td>917 1</td>
<td>85.9</td>
<td>83.2</td>
<td>86.1</td>
<td>79.7</td>
<td>80.5</td>
<td>85.7</td>
<td>89.2</td>
<td>84.6</td>
<td>90.3</td>
</tr>
<tr>
<td>917 2</td>
<td>85.8</td>
<td>82.7</td>
<td>85.7</td>
<td>79.7</td>
<td>80.4</td>
<td>85.0</td>
<td>88.8</td>
<td>83.3</td>
<td>89.5</td>
</tr>
<tr>
<td>917 3</td>
<td>85.7</td>
<td>82.3</td>
<td>85.6</td>
<td>79.7</td>
<td>80.4</td>
<td>84.4</td>
<td>88.5</td>
<td>82.4</td>
<td>88.6</td>
</tr>
<tr>
<td>917 4</td>
<td>85.6</td>
<td>81.9</td>
<td>85.4</td>
<td>79.7</td>
<td>80.4</td>
<td>84.0</td>
<td>88.2</td>
<td>81.5</td>
<td>87.9</td>
</tr>
<tr>
<td>917 5</td>
<td>85.5</td>
<td>81.5</td>
<td>85.3</td>
<td>79.6</td>
<td>80.4</td>
<td>83.5</td>
<td>88.0</td>
<td>80.5</td>
<td>87.3</td>
</tr>
<tr>
<td>917 6</td>
<td>86.3</td>
<td>81.1</td>
<td>85.3</td>
<td>79.7</td>
<td>80.5</td>
<td>84.0</td>
<td>88.4</td>
<td>83.3</td>
<td>86.5</td>
</tr>
<tr>
<td>917 7</td>
<td>87.2</td>
<td>81.8</td>
<td>85.4</td>
<td>79.7</td>
<td>80.6</td>
<td>84.9</td>
<td>89.1</td>
<td>90.4</td>
<td>89.9</td>
</tr>
<tr>
<td>917 8</td>
<td>87.4</td>
<td>83.0</td>
<td>85.5</td>
<td>83.6</td>
<td>89.8</td>
<td>85.5</td>
<td>90.0</td>
<td>102.5</td>
<td>93.6</td>
</tr>
<tr>
<td>917 9</td>
<td>87.4</td>
<td>84.2</td>
<td>86.2</td>
<td>85.4</td>
<td>91.3</td>
<td>86.4</td>
<td>90.5</td>
<td>107.2</td>
<td>96.5</td>
</tr>
<tr>
<td>91710</td>
<td>88.0</td>
<td>85.6</td>
<td>86.4</td>
<td>87.2</td>
<td>91.9</td>
<td>87.4</td>
<td>91.0</td>
<td>111.6</td>
<td>99.0</td>
</tr>
<tr>
<td>91711</td>
<td>88.3</td>
<td>86.7</td>
<td>86.7</td>
<td>88.5</td>
<td>92.0</td>
<td>88.4</td>
<td>91.4</td>
<td>115.0</td>
<td>101.5</td>
</tr>
<tr>
<td>91712</td>
<td>88.3</td>
<td>87.7</td>
<td>86.9</td>
<td>90.0</td>
<td>92.6</td>
<td>89.5</td>
<td>91.9</td>
<td>117.4</td>
<td>103.5</td>
</tr>
<tr>
<td>91713</td>
<td>88.4</td>
<td>88.7</td>
<td>87.2</td>
<td>91.4</td>
<td>93.2</td>
<td>90.5</td>
<td>92.3</td>
<td>114.8</td>
<td>105.2</td>
</tr>
<tr>
<td>91714</td>
<td>88.4</td>
<td>89.5</td>
<td>87.4</td>
<td>92.3</td>
<td>93.6</td>
<td>91.3</td>
<td>92.5</td>
<td>113.0</td>
<td>104.6</td>
</tr>
<tr>
<td>91715</td>
<td>88.3</td>
<td>89.5</td>
<td>87.7</td>
<td>92.5</td>
<td>93.3</td>
<td>91.4</td>
<td>92.7</td>
<td>107.1</td>
<td>104.2</td>
</tr>
<tr>
<td>91716</td>
<td>87.9</td>
<td>89.0</td>
<td>87.7</td>
<td>92.1</td>
<td>92.6</td>
<td>93.1</td>
<td>92.6</td>
<td>102.3</td>
<td>101.9</td>
</tr>
<tr>
<td>91717</td>
<td>87.5</td>
<td>88.4</td>
<td>87.8</td>
<td>91.4</td>
<td>91.8</td>
<td>91.4</td>
<td>92.4</td>
<td>98.9</td>
<td>99.9</td>
</tr>
<tr>
<td>91718</td>
<td>87.7</td>
<td>87.7</td>
<td>87.7</td>
<td>90.9</td>
<td>91.1</td>
<td>90.7</td>
<td>92.2</td>
<td>96.7</td>
<td>98.4</td>
</tr>
<tr>
<td>91719</td>
<td>87.5</td>
<td>87.4</td>
<td>87.7</td>
<td>79.9</td>
<td>80.5</td>
<td>90.0</td>
<td>92.3</td>
<td>94.8</td>
<td>97.4</td>
</tr>
<tr>
<td>91720</td>
<td>87.4</td>
<td>86.8</td>
<td>86.7</td>
<td>80.0</td>
<td>80.5</td>
<td>89.3</td>
<td>91.2</td>
<td>93.3</td>
<td>96.5</td>
</tr>
<tr>
<td>91721</td>
<td>87.1</td>
<td>86.3</td>
<td>86.5</td>
<td>79.9</td>
<td>80.5</td>
<td>88.6</td>
<td>90.9</td>
<td>91.8</td>
<td>95.7</td>
</tr>
<tr>
<td>91722</td>
<td>87.0</td>
<td>85.7</td>
<td>86.4</td>
<td>79.9</td>
<td>80.5</td>
<td>88.1</td>
<td>90.5</td>
<td>90.7</td>
<td>94.9</td>
</tr>
<tr>
<td>91723</td>
<td>86.8</td>
<td>85.3</td>
<td>86.3</td>
<td>79.8</td>
<td>80.5</td>
<td>87.6</td>
<td>90.3</td>
<td>89.7</td>
<td>94.2</td>
</tr>
<tr>
<td>91724</td>
<td>86.7</td>
<td>84.9</td>
<td>86.2</td>
<td>79.8</td>
<td>80.4</td>
<td>87.1</td>
<td>90.0</td>
<td>88.5</td>
<td>93.6</td>
</tr>
</tbody>
</table>

0 DAILY SUMMARY (SEP 17)

<table>
<thead>
<tr>
<th>MN</th>
<th>MX</th>
<th>SM</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.5</td>
<td>88.4</td>
<td>2092.2</td>
<td>87.2</td>
</tr>
<tr>
<td>81.1</td>
<td>89.5</td>
<td>2051.0</td>
<td>85.5</td>
</tr>
<tr>
<td>85.3</td>
<td>87.8</td>
<td>2076.0</td>
<td>86.5</td>
</tr>
<tr>
<td>79.6</td>
<td>90.5</td>
<td>2022.2</td>
<td>84.3</td>
</tr>
<tr>
<td>80.4</td>
<td>93.6</td>
<td>2059.4</td>
<td>85.8</td>
</tr>
<tr>
<td>83.5</td>
<td>93.1</td>
<td>2108.0</td>
<td>97.8</td>
</tr>
<tr>
<td>88.0</td>
<td>92.7</td>
<td>2174.9</td>
<td>90.6</td>
</tr>
<tr>
<td>80.5</td>
<td>117.4</td>
<td>2332.3</td>
<td>97.2</td>
</tr>
<tr>
<td>86.5</td>
<td>105.2</td>
<td>2300.6</td>
<td>95.9</td>
</tr>
</tbody>
</table>
D.4.2.8 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 4 (Low-E Windows)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>917 1</td>
<td>85.1</td>
<td>84.3</td>
<td>85.6</td>
<td>79.7</td>
<td>80.5</td>
<td>85.6</td>
<td>86.4</td>
<td>84.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 2</td>
<td>85.0</td>
<td>83.9</td>
<td>85.2</td>
<td>79.7</td>
<td>80.5</td>
<td>84.7</td>
<td>85.4</td>
<td>82.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 3</td>
<td>84.8</td>
<td>83.5</td>
<td>84.9</td>
<td>79.7</td>
<td>80.5</td>
<td>84.2</td>
<td>85.1</td>
<td>81.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 4</td>
<td>84.6</td>
<td>83.1</td>
<td>84.7</td>
<td>79.7</td>
<td>80.5</td>
<td>83.7</td>
<td>84.8</td>
<td>81.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 5</td>
<td>84.4</td>
<td>82.7</td>
<td>84.5</td>
<td>79.7</td>
<td>80.5</td>
<td>83.3</td>
<td>84.6</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 6</td>
<td>84.7</td>
<td>82.2</td>
<td>84.3</td>
<td>79.6</td>
<td>80.5</td>
<td>83.1</td>
<td>84.5</td>
<td>87.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 7</td>
<td>85.0</td>
<td>82.2</td>
<td>84.3</td>
<td>79.7</td>
<td>80.5</td>
<td>83.2</td>
<td>84.7</td>
<td>95.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 8</td>
<td>85.3</td>
<td>82.5</td>
<td>84.5</td>
<td>82.5</td>
<td>87.5</td>
<td>83.5</td>
<td>85.5</td>
<td>100.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 9</td>
<td>85.6</td>
<td>83.2</td>
<td>85.1</td>
<td>83.9</td>
<td>89.9</td>
<td>84.6</td>
<td>87.2</td>
<td>105.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91710</td>
<td>86.3</td>
<td>84.0</td>
<td>85.7</td>
<td>85.5</td>
<td>91.7</td>
<td>85.4</td>
<td>88.3</td>
<td>109.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91711</td>
<td>86.8</td>
<td>84.8</td>
<td>86.2</td>
<td>86.7</td>
<td>92.8</td>
<td>86.2</td>
<td>89.2</td>
<td>112.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91712</td>
<td>87.0</td>
<td>85.6</td>
<td>86.6</td>
<td>87.9</td>
<td>93.6</td>
<td>89.0</td>
<td>90.4</td>
<td>115.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91713</td>
<td>87.3</td>
<td>86.4</td>
<td>86.9</td>
<td>89.0</td>
<td>94.1</td>
<td>87.9</td>
<td>90.3</td>
<td>112.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91714</td>
<td>87.5</td>
<td>87.2</td>
<td>87.3</td>
<td>89.4</td>
<td>94.4</td>
<td>88.6</td>
<td>90.7</td>
<td>111.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91715</td>
<td>87.6</td>
<td>87.8</td>
<td>87.5</td>
<td>90.2</td>
<td>94.4</td>
<td>91.0</td>
<td>90.9</td>
<td>105.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91716</td>
<td>87.5</td>
<td>88.1</td>
<td>87.7</td>
<td>90.4</td>
<td>94.3</td>
<td>90.5</td>
<td>91.0</td>
<td>100.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91717</td>
<td>87.3</td>
<td>88.3</td>
<td>87.8</td>
<td>90.3</td>
<td>94.0</td>
<td>89.7</td>
<td>91.0</td>
<td>97.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91718</td>
<td>87.5</td>
<td>88.2</td>
<td>87.9</td>
<td>90.3</td>
<td>93.6</td>
<td>89.7</td>
<td>91.0</td>
<td>95.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91719</td>
<td>87.3</td>
<td>88.2</td>
<td>88.0</td>
<td>79.9</td>
<td>89.5</td>
<td>91.0</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91720</td>
<td>87.1</td>
<td>87.5</td>
<td>86.9</td>
<td>80.0</td>
<td>80.7</td>
<td>88.2</td>
<td>87.6</td>
<td>92.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91721</td>
<td>86.8</td>
<td>87.1</td>
<td>86.7</td>
<td>79.9</td>
<td>80.6</td>
<td>87.7</td>
<td>87.3</td>
<td>91.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91722</td>
<td>86.6</td>
<td>86.6</td>
<td>86.5</td>
<td>79.9</td>
<td>80.6</td>
<td>87.3</td>
<td>87.0</td>
<td>89.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91723</td>
<td>86.4</td>
<td>86.3</td>
<td>86.4</td>
<td>79.9</td>
<td>80.6</td>
<td>87.0</td>
<td>86.7</td>
<td>88.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91724</td>
<td>86.2</td>
<td>86.0</td>
<td>86.2</td>
<td>79.8</td>
<td>80.6</td>
<td>86.6</td>
<td>86.5</td>
<td>87.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 DAILY SUMMARY (SEP 17)

MN 84.4 82.2 84.3 79.6 80.5 83.1 84.5 80.0
MX 87.6 88.3 88.0 90.4 94.4 90.5 91.0 115.2
SM 2069.9 2049.5 2067.6 2053.6 2067.5 2076.3 2106.4 2303.9
AV 86.2 85.4 86.2 83.5 86.1 86.5 87.8 96.0
D.4.2.9 DOE-2 Hourly Report of Indoor Temperature of the Energy Efficiency Strategy 5 (Shading Devices on Windows)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>917 1</td>
<td>85.3</td>
<td>917 2</td>
<td>85.1</td>
<td>917 3</td>
<td>84.9</td>
<td>917 4</td>
<td>84.8</td>
<td>917 5</td>
<td>84.6</td>
<td>917 6</td>
<td>84.9</td>
<td>917 7</td>
<td>85.5</td>
</tr>
<tr>
<td></td>
<td>84.3</td>
<td></td>
<td>83.9</td>
<td></td>
<td>84.9</td>
<td></td>
<td>83.0</td>
<td></td>
<td>82.6</td>
<td></td>
<td>82.2</td>
<td></td>
<td>82.3</td>
</tr>
<tr>
<td></td>
<td>85.6</td>
<td></td>
<td>85.2</td>
<td></td>
<td>84.9</td>
<td></td>
<td>84.7</td>
<td></td>
<td>84.5</td>
<td></td>
<td>84.3</td>
<td></td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>79.7</td>
<td></td>
<td>79.7</td>
<td></td>
<td>79.7</td>
<td></td>
<td>79.7</td>
<td></td>
<td>79.6</td>
<td></td>
<td>79.6</td>
<td></td>
<td>79.7</td>
</tr>
<tr>
<td></td>
<td>80.5</td>
</tr>
<tr>
<td></td>
<td>84.6</td>
<td></td>
<td>84.6</td>
<td></td>
<td>84.1</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.2</td>
<td></td>
<td>83.2</td>
<td></td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>85.4</td>
<td></td>
<td>85.1</td>
<td></td>
<td>84.8</td>
<td></td>
<td>84.8</td>
<td></td>
<td>84.6</td>
<td></td>
<td>84.5</td>
<td></td>
<td>84.7</td>
</tr>
<tr>
<td></td>
<td>82.7</td>
<td></td>
<td>80.9</td>
<td></td>
<td>80.9</td>
<td></td>
<td>80.9</td>
<td></td>
<td>80.9</td>
<td></td>
<td>80.9</td>
<td></td>
<td>80.9</td>
</tr>
<tr>
<td></td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>84.7</td>
<td></td>
<td>79.2</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
</tr>
<tr>
<td></td>
<td>83.2</td>
<td></td>
<td>85.5</td>
<td></td>
<td>85.5</td>
<td></td>
<td>85.3</td>
<td></td>
<td>85.5</td>
<td></td>
<td>85.3</td>
<td></td>
<td>85.5</td>
</tr>
<tr>
<td></td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>79.7</td>
<td></td>
<td>80.5</td>
<td></td>
<td>80.5</td>
<td></td>
<td>80.5</td>
<td></td>
<td>80.5</td>
<td></td>
<td>80.5</td>
<td></td>
<td>80.5</td>
</tr>
<tr>
<td></td>
<td>84.1</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
<td></td>
<td>83.6</td>
</tr>
<tr>
<td></td>
<td>80.5</td>
</tr>
</tbody>
</table>

DAILY SUMMARY (SEP 17)

<table>
<thead>
<tr>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN</td>
<td>84.6</td>
<td>84.3</td>
<td>79.6</td>
<td>80.4</td>
<td>83.2</td>
<td>84.5</td>
<td>80.0</td>
</tr>
<tr>
<td>MK</td>
<td>88.1</td>
<td>88.2</td>
<td>87.9</td>
<td>90.1</td>
<td>94.3</td>
<td>90.5</td>
<td>90.9</td>
</tr>
<tr>
<td>SM</td>
<td>2078.8</td>
<td>2049.2</td>
<td>2067.6</td>
<td>2001.5</td>
<td>2065.9</td>
<td>2076.8</td>
<td>2105.9</td>
</tr>
<tr>
<td>AV</td>
<td>86.6</td>
<td>85.4</td>
<td>86.2</td>
<td>83.4</td>
<td>86.1</td>
<td>86.5</td>
<td>87.7</td>
</tr>
</tbody>
</table>

Case Study House: The Jeerasak's House

<table>
<thead>
<tr>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
</tr>
<tr>
<td>MN</td>
<td>86.7</td>
<td>85.1</td>
<td>85.9</td>
<td>86.4</td>
<td>86.7</td>
<td>86.7</td>
<td>87.1</td>
<td>87.1</td>
<td>87.4</td>
<td>87.6</td>
<td>87.5</td>
<td>87.4</td>
<td>86.6</td>
<td>87.1</td>
<td>87.1</td>
</tr>
<tr>
<td>MX</td>
<td>86.7</td>
<td>85.1</td>
<td>85.9</td>
<td>86.4</td>
<td>86.7</td>
<td>86.7</td>
<td>87.1</td>
<td>87.1</td>
<td>87.4</td>
<td>87.6</td>
<td>87.5</td>
<td>87.4</td>
<td>86.6</td>
<td>87.1</td>
<td>87.1</td>
</tr>
<tr>
<td>SM</td>
<td>2080.9</td>
<td>2042.1</td>
<td>2061.3</td>
<td>1987.6</td>
<td>2038.4</td>
<td>2072.8</td>
<td>2104.5</td>
<td>2308.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td>86.7</td>
<td>85.1</td>
<td>85.9</td>
<td>86.4</td>
<td>86.7</td>
<td>86.7</td>
<td>87.1</td>
<td>87.1</td>
<td>87.4</td>
<td>87.6</td>
<td>87.5</td>
<td>87.4</td>
<td>86.6</td>
<td>87.1</td>
<td>87.1</td>
</tr>
</tbody>
</table>

0 Daily Summary (Sep 17)
- **MN**: 86.7, 85.1, 85.9, 86.4, 86.7, 86.7, 87.1, 87.1, 87.4
- **MX**: 86.7, 85.1, 85.9, 86.4, 86.7, 86.7, 87.1, 87.1, 87.4
- **SM**: 2080.9, 2042.1, 2061.3, 1987.6, 2038.4, 2072.8, 2104.5, 2308.9
- **AV**: 86.7, 85.1, 85.9, 86.4, 86.7, 86.7, 87.1, 87.1, 87.4
Daily Summary (SEP 17)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN</td>
<td>85.5</td>
</tr>
<tr>
<td>MX</td>
<td>87.4</td>
</tr>
<tr>
<td>SM</td>
<td>2079.8</td>
</tr>
<tr>
<td>AV</td>
<td>86.6</td>
</tr>
</tbody>
</table>

Hourly Report

<table>
<thead>
<tr>
<th>Zone</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>917 1</td>
<td>85.8</td>
</tr>
<tr>
<td>917 2</td>
<td>85.7</td>
</tr>
<tr>
<td>917 3</td>
<td>85.7</td>
</tr>
<tr>
<td>917 4</td>
<td>85.6</td>
</tr>
<tr>
<td>917 5</td>
<td>85.5</td>
</tr>
<tr>
<td>917 6</td>
<td>85.9</td>
</tr>
<tr>
<td>917 7</td>
<td>86.4</td>
</tr>
<tr>
<td>917 8</td>
<td>86.6</td>
</tr>
<tr>
<td>917 9</td>
<td>86.6</td>
</tr>
<tr>
<td>91710</td>
<td>87.0</td>
</tr>
<tr>
<td>91711</td>
<td>87.3</td>
</tr>
<tr>
<td>91712</td>
<td>87.3</td>
</tr>
<tr>
<td>91713</td>
<td>87.4</td>
</tr>
<tr>
<td>91714</td>
<td>87.4</td>
</tr>
<tr>
<td>91715</td>
<td>87.4</td>
</tr>
<tr>
<td>91716</td>
<td>87.2</td>
</tr>
<tr>
<td>91717</td>
<td>87.0</td>
</tr>
<tr>
<td>91718</td>
<td>87.2</td>
</tr>
<tr>
<td>91719</td>
<td>87.1</td>
</tr>
<tr>
<td>91720</td>
<td>87.0</td>
</tr>
<tr>
<td>91721</td>
<td>86.8</td>
</tr>
<tr>
<td>91722</td>
<td>86.8</td>
</tr>
<tr>
<td>91723</td>
<td>86.6</td>
</tr>
<tr>
<td>91724</td>
<td>86.6</td>
</tr>
</tbody>
</table>

Notes:

- **Case Study House:** The Jeerasak's House, Model Improvement Strategy 6-2
- **System-Report-1 = Hourly-Report**
- **SDL Run:** 1
- **Run Date:** Fri Feb 6 00:34:08 2004
- **Report Page:** 260

Space 1-1:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>F</td>
</tr>
<tr>
<td>917 1</td>
<td>85.8</td>
</tr>
<tr>
<td>917 2</td>
<td>85.7</td>
</tr>
<tr>
<td>917 3</td>
<td>85.7</td>
</tr>
<tr>
<td>917 4</td>
<td>85.6</td>
</tr>
<tr>
<td>917 5</td>
<td>85.5</td>
</tr>
<tr>
<td>917 6</td>
<td>85.9</td>
</tr>
<tr>
<td>917 7</td>
<td>86.4</td>
</tr>
<tr>
<td>917 8</td>
<td>86.6</td>
</tr>
<tr>
<td>917 9</td>
<td>86.6</td>
</tr>
<tr>
<td>91710</td>
<td>87.0</td>
</tr>
<tr>
<td>91711</td>
<td>87.3</td>
</tr>
<tr>
<td>91712</td>
<td>87.3</td>
</tr>
<tr>
<td>91713</td>
<td>87.4</td>
</tr>
<tr>
<td>91714</td>
<td>87.4</td>
</tr>
<tr>
<td>91715</td>
<td>87.4</td>
</tr>
<tr>
<td>91716</td>
<td>87.2</td>
</tr>
<tr>
<td>91717</td>
<td>87.0</td>
</tr>
<tr>
<td>91718</td>
<td>87.2</td>
</tr>
<tr>
<td>91719</td>
<td>87.1</td>
</tr>
<tr>
<td>91720</td>
<td>87.0</td>
</tr>
<tr>
<td>91721</td>
<td>86.8</td>
</tr>
<tr>
<td>91722</td>
<td>86.8</td>
</tr>
<tr>
<td>91723</td>
<td>86.6</td>
</tr>
<tr>
<td>91724</td>
<td>86.6</td>
</tr>
</tbody>
</table>

Daily Summary (SEP 17):

- **Average Temperature:** 86.7°F
- **Minimum Temperature:** 84.9°F
- **Maximum Temperature:** 97.6°F
- **Minimum Daily Temperature:** 95.6°F
- **Maximum Daily Temperature:** 112.8°F
- **Average Daily Temperature:** 87.8°F
- **Minimum Hourly Temperature:** 82.1°F
- **Maximum Hourly Temperature:** 114.9°F
- **Average Hourly Temperature:** 86.4°F
- **Minimum Hourly Temperature:** 79.8°F
- **Maximum Hourly Temperature:** 96.3°F
- **Average Hourly Temperature:** 85.7°F
D.4.2.12 DOE-2 Hourly Report of Indoor Temperature of Combination A

<table>
<thead>
<tr>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>917 1</td>
<td>85.5</td>
<td>82.9</td>
<td>85.6</td>
<td>79.7</td>
<td>80.5</td>
<td>85.2</td>
<td>88.0</td>
<td>85.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 2</td>
<td>85.4</td>
<td>82.4</td>
<td>85.3</td>
<td>79.7</td>
<td>80.4</td>
<td>84.6</td>
<td>87.7</td>
<td>83.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 3</td>
<td>85.3</td>
<td>82.0</td>
<td>85.1</td>
<td>79.7</td>
<td>80.4</td>
<td>84.0</td>
<td>87.4</td>
<td>82.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 4</td>
<td>85.2</td>
<td>81.6</td>
<td>85.0</td>
<td>79.7</td>
<td>80.4</td>
<td>83.6</td>
<td>87.2</td>
<td>81.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 5</td>
<td>85.1</td>
<td>81.3</td>
<td>84.9</td>
<td>79.6</td>
<td>80.4</td>
<td>83.2</td>
<td>87.0</td>
<td>80.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 6</td>
<td>85.9</td>
<td>80.8</td>
<td>84.9</td>
<td>79.7</td>
<td>80.5</td>
<td>83.7</td>
<td>87.5</td>
<td>88.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 7</td>
<td>86.7</td>
<td>81.6</td>
<td>85.0</td>
<td>79.7</td>
<td>80.6</td>
<td>84.5</td>
<td>88.1</td>
<td>97.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 8</td>
<td>87.0</td>
<td>82.6</td>
<td>85.1</td>
<td>83.2</td>
<td>89.5</td>
<td>85.0</td>
<td>88.8</td>
<td>103.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>917 9</td>
<td>87.0</td>
<td>83.7</td>
<td>85.7</td>
<td>84.8</td>
<td>90.9</td>
<td>85.8</td>
<td>89.2</td>
<td>108.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91710</td>
<td>87.6</td>
<td>85.0</td>
<td>86.0</td>
<td>86.5</td>
<td>91.4</td>
<td>86.7</td>
<td>89.5</td>
<td>112.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91711</td>
<td>88.0</td>
<td>86.0</td>
<td>86.2</td>
<td>87.7</td>
<td>91.3</td>
<td>87.5</td>
<td>89.8</td>
<td>116.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91712</td>
<td>87.9</td>
<td>87.0</td>
<td>86.4</td>
<td>89.0</td>
<td>91.7</td>
<td>88.4</td>
<td>90.1</td>
<td>118.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91713</td>
<td>88.0</td>
<td>87.9</td>
<td>86.6</td>
<td>90.3</td>
<td>92.2</td>
<td>89.4</td>
<td>90.4</td>
<td>115.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91714</td>
<td>88.0</td>
<td>88.7</td>
<td>86.9</td>
<td>91.2</td>
<td>92.5</td>
<td>90.1</td>
<td>90.7</td>
<td>114.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91715</td>
<td>87.9</td>
<td>88.7</td>
<td>87.1</td>
<td>91.4</td>
<td>92.3</td>
<td>90.3</td>
<td>90.8</td>
<td>108.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91716</td>
<td>87.6</td>
<td>88.3</td>
<td>87.1</td>
<td>91.1</td>
<td>91.6</td>
<td>92.1</td>
<td>90.8</td>
<td>103.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91717</td>
<td>87.2</td>
<td>87.7</td>
<td>87.2</td>
<td>90.5</td>
<td>90.8</td>
<td>90.5</td>
<td>90.6</td>
<td>99.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91718</td>
<td>87.3</td>
<td>87.1</td>
<td>87.1</td>
<td>90.1</td>
<td>90.2</td>
<td>89.8</td>
<td>90.6</td>
<td>97.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91719</td>
<td>87.1</td>
<td>86.7</td>
<td>87.1</td>
<td>79.9</td>
<td>80.5</td>
<td>89.2</td>
<td>90.6</td>
<td>95.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91720</td>
<td>86.9</td>
<td>86.2</td>
<td>86.2</td>
<td>79.9</td>
<td>80.5</td>
<td>88.5</td>
<td>89.7</td>
<td>94.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91721</td>
<td>86.6</td>
<td>85.7</td>
<td>86.0</td>
<td>79.9</td>
<td>80.5</td>
<td>87.9</td>
<td>89.4</td>
<td>92.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91722</td>
<td>86.6</td>
<td>85.2</td>
<td>85.9</td>
<td>79.9</td>
<td>80.5</td>
<td>87.3</td>
<td>89.1</td>
<td>91.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91723</td>
<td>86.4</td>
<td>84.8</td>
<td>85.8</td>
<td>79.8</td>
<td>80.5</td>
<td>86.9</td>
<td>88.9</td>
<td>90.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91724</td>
<td>86.3</td>
<td>84.5</td>
<td>85.7</td>
<td>79.8</td>
<td>80.4</td>
<td>86.5</td>
<td>88.7</td>
<td>89.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 DAILY SUMMARY (SEP 17)

MN	85.1	80.8	84.9	79.6	80.4	83.2	87.0	80.9
MX	86.0	88.7	91.4	92.5	92.1	90.8	118.5	
SM	2002.4	2038.4	2064.0	2012.5	2050.6	2090.8	2140.6	2350.1
AV	86.8	84.9	86.0	83.9	85.4	87.1	89.2	97.9
D.4.2.13 DOE-2 Hourly Report of Indoor Temperature of Combination B

CASE STUDY HOUSE: THE JEERASAK'S HOUSE, Combination B

SYSTEM-REPORT-1 = HOURLY-REPORT

<table>
<thead>
<tr>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE1-1</td>
<td>917 1</td>
<td>917 2</td>
<td>917 3</td>
<td>917 4</td>
<td>917 5</td>
<td>917 6</td>
<td>917 7</td>
<td>917 8</td>
<td>917 9</td>
</tr>
<tr>
<td></td>
<td>84.8</td>
<td>84.7</td>
<td>84.6</td>
<td>84.5</td>
<td>84.5</td>
<td>85.0</td>
<td>85.5</td>
<td>85.8</td>
<td>85.8</td>
</tr>
<tr>
<td></td>
<td>82.9</td>
<td>82.4</td>
<td>82.1</td>
<td>81.8</td>
<td>81.5</td>
<td>81.1</td>
<td>81.7</td>
<td>82.5</td>
<td>83.5</td>
</tr>
<tr>
<td></td>
<td>85.0</td>
<td>84.7</td>
<td>79.7</td>
<td>84.4</td>
<td>84.4</td>
<td>84.4</td>
<td>84.5</td>
<td>84.6</td>
<td>85.1</td>
</tr>
<tr>
<td></td>
<td>79.7</td>
<td>79.7</td>
<td>80.4</td>
<td>79.7</td>
<td>79.7</td>
<td>80.5</td>
<td>80.6</td>
<td>82.8</td>
<td>82.8</td>
</tr>
<tr>
<td></td>
<td>80.5</td>
<td>80.5</td>
<td>84.0</td>
<td>80.4</td>
<td>80.4</td>
<td>83.5</td>
<td>84.1</td>
<td>80.9</td>
<td>80.9</td>
</tr>
<tr>
<td></td>
<td>87.0</td>
<td>83.3</td>
<td>87.0</td>
<td>83.6</td>
<td>83.6</td>
<td>86.8</td>
<td>87.5</td>
<td>88.8</td>
<td>88.8</td>
</tr>
<tr>
<td></td>
<td>82.8</td>
<td>86.6</td>
<td>82.8</td>
<td>86.6</td>
<td>86.6</td>
<td>86.8</td>
<td>87.5</td>
<td>103.3</td>
<td>103.3</td>
</tr>
<tr>
<td></td>
<td>87.2</td>
<td>87.6</td>
<td>88.7</td>
<td>87.6</td>
<td>87.6</td>
<td>87.6</td>
<td>88.8</td>
<td>108.1</td>
<td>108.1</td>
</tr>
<tr>
<td></td>
<td>85.9</td>
<td>85.2</td>
<td>84.2</td>
<td>85.2</td>
<td>85.2</td>
<td>85.2</td>
<td>88.5</td>
<td>112.6</td>
<td>112.6</td>
</tr>
<tr>
<td></td>
<td>92.1</td>
<td>88.9</td>
<td>89.1</td>
<td>88.9</td>
<td>88.9</td>
<td>88.9</td>
<td>89.9</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>93.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>108.0</td>
<td>108.0</td>
</tr>
<tr>
<td></td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>87.4</td>
<td>87.4</td>
<td>87.6</td>
<td>87.6</td>
<td>87.6</td>
<td>87.6</td>
<td>87.6</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>86.3</td>
<td>86.3</td>
<td>86.3</td>
<td>86.3</td>
<td>86.3</td>
<td>86.3</td>
<td>86.3</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>85.5</td>
<td>85.5</td>
<td>85.5</td>
<td>85.5</td>
<td>85.5</td>
<td>85.5</td>
<td>85.5</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>86.8</td>
<td>86.8</td>
<td>86.8</td>
<td>86.8</td>
<td>86.8</td>
<td>86.8</td>
<td>86.8</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>89.3</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>90.1</td>
<td>90.1</td>
<td>90.1</td>
<td>90.1</td>
<td>90.1</td>
<td>90.1</td>
<td>90.1</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>89.7</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>87.7</td>
<td>87.7</td>
<td>87.7</td>
<td>87.7</td>
<td>87.7</td>
<td>87.7</td>
<td>87.7</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>87.9</td>
<td>87.9</td>
<td>87.9</td>
<td>87.9</td>
<td>87.9</td>
<td>87.9</td>
<td>87.9</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>116.1</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
<td>95.5</td>
<td>95.5</td>
</tr>
<tr>
<td></td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>94.1</td>
<td>94.1</td>
</tr>
<tr>
<td></td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td></td>
<td>88.3</td>
<td>88.3</td>
<td>88.3</td>
<td>88.3</td>
<td>88.3</td>
<td>88.3</td>
<td>88.3</td>
<td>90.3</td>
<td>90.3</td>
</tr>
<tr>
<td></td>
<td>88.1</td>
<td>88.1</td>
<td>88.1</td>
<td>88.1</td>
<td>88.1</td>
<td>88.1</td>
<td>88.1</td>
<td>89.1</td>
<td>89.1</td>
</tr>
<tr>
<td></td>
<td>86.2</td>
<td>86.2</td>
<td>86.2</td>
<td>86.2</td>
<td>86.2</td>
<td>86.2</td>
<td>86.2</td>
<td>88.1</td>
<td>88.1</td>
</tr>
<tr>
<td></td>
<td>86.9</td>
<td>86.9</td>
<td>86.9</td>
<td>86.9</td>
<td>86.9</td>
<td>86.9</td>
<td>86.9</td>
<td>89.1</td>
<td>89.1</td>
</tr>
<tr>
<td></td>
<td>86.5</td>
<td>86.5</td>
<td>86.5</td>
<td>86.5</td>
<td>86.5</td>
<td>86.5</td>
<td>86.5</td>
<td>89.1</td>
<td>89.1</td>
</tr>
<tr>
<td></td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>86.4</td>
<td>89.1</td>
<td>89.1</td>
</tr>
</tbody>
</table>

0 DAILY SUMMARY (SEP 17)

<table>
<thead>
<tr>
<th>MN</th>
<th>MX</th>
<th>SM</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.5</td>
<td>86.7</td>
<td>2058.1</td>
<td>85.8</td>
</tr>
<tr>
<td>81.1</td>
<td>87.7</td>
<td>2029.4</td>
<td>84.6</td>
</tr>
<tr>
<td>84.4</td>
<td>86.5</td>
<td>2049.2</td>
<td>85.4</td>
</tr>
<tr>
<td>79.7</td>
<td>90.4</td>
<td>2004.5</td>
<td>84.3</td>
</tr>
<tr>
<td>80.4</td>
<td>90.5</td>
<td>2030.8</td>
<td>83.5</td>
</tr>
<tr>
<td>83.3</td>
<td>91.0</td>
<td>2076.8</td>
<td>84.6</td>
</tr>
<tr>
<td>86.6</td>
<td>90.0</td>
<td>2125.9</td>
<td>86.5</td>
</tr>
<tr>
<td>80.9</td>
<td>118.5</td>
<td>2349.6</td>
<td>88.6</td>
</tr>
</tbody>
</table>

D.4.2.14 DOE-2 Hourly Report of Indoor Temperature of Combination C

CASE STUDY HOUSE: THE JEERASAK’S HOUSE, Combination C

Combination A + Strategy 5

Space 1-1, Space 1-2, Space 1-3, Space 2-1, Space 2-2, Space 2-3, Space 2-4, Space-Zone

<table>
<thead>
<tr>
<th>Zone</th>
<th>Temp</th>
<th>Temp</th>
<th>Temp</th>
<th>Temp</th>
<th>Temp</th>
<th>Temp</th>
<th>Temp</th>
<th>Temp</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>917 1</td>
<td>85.7</td>
<td>83.4</td>
<td>85.7</td>
<td>79.7</td>
<td>80.5</td>
<td>85.4</td>
<td>88.1</td>
<td>85.1</td>
<td></td>
</tr>
<tr>
<td>917 2</td>
<td>85.6</td>
<td>82.9</td>
<td>85.4</td>
<td>79.7</td>
<td>80.5</td>
<td>84.8</td>
<td>87.7</td>
<td>83.8</td>
<td></td>
</tr>
<tr>
<td>917 3</td>
<td>85.5</td>
<td>82.5</td>
<td>85.2</td>
<td>79.7</td>
<td>80.4</td>
<td>84.2</td>
<td>87.5</td>
<td>87.2</td>
<td></td>
</tr>
<tr>
<td>917 4</td>
<td>85.4</td>
<td>82.1</td>
<td>85.1</td>
<td>79.7</td>
<td>80.4</td>
<td>83.8</td>
<td>87.3</td>
<td>81.9</td>
<td></td>
</tr>
<tr>
<td>917 5</td>
<td>85.3</td>
<td>81.8</td>
<td>85.0</td>
<td>79.6</td>
<td>80.4</td>
<td>83.3</td>
<td>87.1</td>
<td>80.9</td>
<td></td>
</tr>
<tr>
<td>917 6</td>
<td>86.2</td>
<td>82.0</td>
<td>85.0</td>
<td>79.7</td>
<td>80.5</td>
<td>84.2</td>
<td>87.5</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td>917 7</td>
<td>87.0</td>
<td>82.6</td>
<td>85.1</td>
<td>79.7</td>
<td>80.6</td>
<td>85.0</td>
<td>88.1</td>
<td>97.1</td>
<td></td>
</tr>
<tr>
<td>917 8</td>
<td>87.3</td>
<td>83.7</td>
<td>85.3</td>
<td>83.3</td>
<td>87.7</td>
<td>85.5</td>
<td>88.8</td>
<td>103.3</td>
<td></td>
</tr>
<tr>
<td>917 9</td>
<td>87.2</td>
<td>84.9</td>
<td>85.8</td>
<td>85.0</td>
<td>88.7</td>
<td>86.3</td>
<td>89.2</td>
<td>108.1</td>
<td></td>
</tr>
<tr>
<td>91710</td>
<td>87.9</td>
<td>86.3</td>
<td>86.0</td>
<td>86.8</td>
<td>89.3</td>
<td>87.2</td>
<td>89.5</td>
<td>112.6</td>
<td></td>
</tr>
<tr>
<td>91711</td>
<td>88.2</td>
<td>87.4</td>
<td>86.3</td>
<td>88.3</td>
<td>89.9</td>
<td>88.1</td>
<td>89.8</td>
<td>116.1</td>
<td></td>
</tr>
<tr>
<td>91712</td>
<td>88.2</td>
<td>88.5</td>
<td>86.5</td>
<td>89.9</td>
<td>90.7</td>
<td>89.1</td>
<td>90.2</td>
<td>118.5</td>
<td></td>
</tr>
<tr>
<td>91713</td>
<td>88.2</td>
<td>89.4</td>
<td>86.7</td>
<td>91.2</td>
<td>91.5</td>
<td>90.0</td>
<td>90.5</td>
<td>115.9</td>
<td></td>
</tr>
<tr>
<td>91714</td>
<td>88.2</td>
<td>89.9</td>
<td>87.0</td>
<td>92.0</td>
<td>92.0</td>
<td>90.7</td>
<td>90.7</td>
<td>114.1</td>
<td></td>
</tr>
<tr>
<td>91715</td>
<td>88.1</td>
<td>89.8</td>
<td>87.2</td>
<td>92.0</td>
<td>91.8</td>
<td>90.7</td>
<td>90.9</td>
<td>108.0</td>
<td></td>
</tr>
<tr>
<td>91716</td>
<td>87.8</td>
<td>89.3</td>
<td>87.3</td>
<td>91.6</td>
<td>91.2</td>
<td>92.5</td>
<td>90.9</td>
<td>103.1</td>
<td></td>
</tr>
<tr>
<td>91717</td>
<td>87.4</td>
<td>88.6</td>
<td>87.4</td>
<td>90.9</td>
<td>90.5</td>
<td>90.8</td>
<td>90.7</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>91718</td>
<td>87.5</td>
<td>87.9</td>
<td>87.3</td>
<td>90.4</td>
<td>89.9</td>
<td>90.2</td>
<td>90.6</td>
<td>97.4</td>
<td></td>
</tr>
<tr>
<td>91719</td>
<td>87.3</td>
<td>87.5</td>
<td>87.3</td>
<td>79.9</td>
<td>80.6</td>
<td>89.5</td>
<td>90.7</td>
<td>95.5</td>
<td></td>
</tr>
<tr>
<td>91720</td>
<td>87.1</td>
<td>87.0</td>
<td>86.3</td>
<td>79.9</td>
<td>80.6</td>
<td>88.8</td>
<td>89.8</td>
<td>94.1</td>
<td></td>
</tr>
<tr>
<td>91721</td>
<td>86.8</td>
<td>86.4</td>
<td>86.2</td>
<td>79.9</td>
<td>80.5</td>
<td>88.1</td>
<td>89.4</td>
<td>92.5</td>
<td></td>
</tr>
<tr>
<td>91722</td>
<td>86.8</td>
<td>85.9</td>
<td>86.0</td>
<td>79.9</td>
<td>80.5</td>
<td>87.6</td>
<td>89.2</td>
<td>91.4</td>
<td></td>
</tr>
<tr>
<td>91723</td>
<td>86.6</td>
<td>85.5</td>
<td>85.9</td>
<td>79.8</td>
<td>80.5</td>
<td>87.1</td>
<td>89.0</td>
<td>90.3</td>
<td></td>
</tr>
<tr>
<td>91724</td>
<td>86.5</td>
<td>85.1</td>
<td>85.8</td>
<td>79.8</td>
<td>80.5</td>
<td>86.7</td>
<td>88.7</td>
<td>89.1</td>
<td></td>
</tr>
</tbody>
</table>

Daily Summary (Sep 17)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>SM</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.3</td>
<td>81.8</td>
<td>2087.6</td>
<td>87.0</td>
</tr>
<tr>
<td>85.3</td>
<td>81.8</td>
<td>2060.4</td>
<td>85.8</td>
</tr>
<tr>
<td>85.3</td>
<td>81.8</td>
<td>2066.7</td>
<td>86.1</td>
</tr>
<tr>
<td>85.3</td>
<td>81.8</td>
<td>2018.5</td>
<td>84.1</td>
</tr>
<tr>
<td>85.3</td>
<td>81.8</td>
<td>2039.6</td>
<td>85.0</td>
</tr>
<tr>
<td>85.3</td>
<td>81.8</td>
<td>2099.6</td>
<td>87.5</td>
</tr>
<tr>
<td>85.3</td>
<td>81.8</td>
<td>2142.1</td>
<td>89.3</td>
</tr>
<tr>
<td>85.3</td>
<td>81.8</td>
<td>2350.2</td>
<td>97.9</td>
</tr>
</tbody>
</table>
CASE STUDY HOUSE: THE JEERAK’S HOUSE, Combination D

SYSTEM-REPORT-1 = HOURLY-REPORT

<table>
<thead>
<tr>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
<th>ZONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
<td>TEMP</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

0 DAILY SUMMARY (SEP 17)

MN	84.5	81.7	84.5	79.7	80.4	83.4	86.6	80.9
MX	86.6	88.2	86.6	89.0	90.2	89.0	90.1	108.0
SM	2060.6	2041.7	2050.3	2007.2	2024.5	2081.5	2126.5	2349.6
AV	85.9	85.1	85.4	83.6	84.4	86.7	88.6	97.9
D.4.2.16 DOE-2 Hourly Report of Indoor Temperature of Combination E

CASE STUDY HOUSE: THE JEERASAK’S HOUSE, Combination E

Combination D + Shading from PV-T

<table>
<thead>
<tr>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
<th>ZONE</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>917 1</td>
<td>84.9</td>
<td>917 2</td>
<td>84.8</td>
<td>917 3</td>
<td>84.7</td>
<td>917 4</td>
<td>84.6</td>
<td>917 5</td>
<td>84.5</td>
</tr>
<tr>
<td>917 6</td>
<td>85.1</td>
<td>917 7</td>
<td>85.7</td>
<td>917 8</td>
<td>85.9</td>
<td>917 9</td>
<td>85.9</td>
<td>917 10</td>
<td>86.4</td>
</tr>
<tr>
<td>917 11</td>
<td>86.7</td>
<td>917 12</td>
<td>86.7</td>
<td>917 13</td>
<td>86.8</td>
<td>917 14</td>
<td>86.8</td>
<td>917 15</td>
<td>86.8</td>
</tr>
<tr>
<td>917 16</td>
<td>86.6</td>
<td>917 17</td>
<td>86.3</td>
<td>917 18</td>
<td>86.4</td>
<td>917 19</td>
<td>86.2</td>
<td>917 20</td>
<td>86.1</td>
</tr>
<tr>
<td>917 21</td>
<td>85.8</td>
<td>917 22</td>
<td>85.7</td>
<td>917 23</td>
<td>85.6</td>
<td>917 24</td>
<td>85.5</td>
<td>917 25</td>
<td>85.5</td>
</tr>
</tbody>
</table>

DAILY SUMMARY (SEP 17)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN</td>
<td>84.5</td>
</tr>
<tr>
<td>MX</td>
<td>86.8</td>
</tr>
<tr>
<td>SM</td>
<td>2060.3</td>
</tr>
<tr>
<td>AV</td>
<td>85.8</td>
</tr>
</tbody>
</table>

D.4.2.17 DOE-2 Hourly Report of Indoor Temperature of Combinations F and G
Combinations F and G had PV or PV-T^2 panels covered the whole area of the roof. DOE-2 hourly report below is the effect of PV or PV-T^2 panels to the indoor temperature of Combinations F and G.

CASE STUDY HOUSE: THE JEERASAK'S HOUSE, Combination F

<table>
<thead>
<tr>
<th>ZONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9171</th>
<th>84.8</th>
<th>82.9</th>
<th>84.7</th>
<th>79.7</th>
<th>80.5</th>
<th>84.6</th>
<th>87.0</th>
<th>83.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9172</td>
<td>84.7</td>
<td>82.5</td>
<td>84.5</td>
<td>79.7</td>
<td>80.5</td>
<td>84.1</td>
<td>87.0</td>
<td>82.3</td>
</tr>
<tr>
<td>9173</td>
<td>84.6</td>
<td>82.1</td>
<td>84.4</td>
<td>79.7</td>
<td>80.5</td>
<td>83.7</td>
<td>86.5</td>
<td>81.8</td>
</tr>
<tr>
<td>9174</td>
<td>84.6</td>
<td>81.8</td>
<td>84.3</td>
<td>79.7</td>
<td>80.4</td>
<td>83.3</td>
<td>86.3</td>
<td>81.3</td>
</tr>
<tr>
<td>9175</td>
<td>84.5</td>
<td>81.5</td>
<td>84.2</td>
<td>79.7</td>
<td>80.4</td>
<td>83.0</td>
<td>86.2</td>
<td>80.8</td>
</tr>
<tr>
<td>9176</td>
<td>85.0</td>
<td>81.6</td>
<td>84.2</td>
<td>79.7</td>
<td>80.5</td>
<td>83.5</td>
<td>86.5</td>
<td>82.5</td>
</tr>
<tr>
<td>9177</td>
<td>85.6</td>
<td>82.1</td>
<td>84.3</td>
<td>79.7</td>
<td>80.6</td>
<td>83.9</td>
<td>87.0</td>
<td>86.3</td>
</tr>
<tr>
<td>9178</td>
<td>85.8</td>
<td>82.9</td>
<td>84.4</td>
<td>82.6</td>
<td>86.2</td>
<td>84.3</td>
<td>87.6</td>
<td>88.6</td>
</tr>
<tr>
<td>9179</td>
<td>85.9</td>
<td>83.8</td>
<td>84.8</td>
<td>83.9</td>
<td>87.0</td>
<td>84.8</td>
<td>87.9</td>
<td>90.5</td>
</tr>
<tr>
<td>91710</td>
<td>86.4</td>
<td>84.8</td>
<td>85.0</td>
<td>85.3</td>
<td>87.5</td>
<td>85.5</td>
<td>88.1</td>
<td>92.4</td>
</tr>
<tr>
<td>91711</td>
<td>86.7</td>
<td>85.7</td>
<td>85.2</td>
<td>86.4</td>
<td>87.8</td>
<td>86.2</td>
<td>88.3</td>
<td>93.7</td>
</tr>
<tr>
<td>91712</td>
<td>86.6</td>
<td>86.4</td>
<td>85.3</td>
<td>87.6</td>
<td>88.3</td>
<td>86.8</td>
<td>88.5</td>
<td>95.0</td>
</tr>
<tr>
<td>91713</td>
<td>86.7</td>
<td>87.1</td>
<td>85.5</td>
<td>88.7</td>
<td>88.9</td>
<td>87.6</td>
<td>88.7</td>
<td>94.4</td>
</tr>
<tr>
<td>91714</td>
<td>86.7</td>
<td>87.6</td>
<td>85.7</td>
<td>89.5</td>
<td>89.3</td>
<td>88.1</td>
<td>88.9</td>
<td>94.1</td>
</tr>
<tr>
<td>91715</td>
<td>86.7</td>
<td>87.6</td>
<td>85.9</td>
<td>89.8</td>
<td>89.2</td>
<td>88.3</td>
<td>89.0</td>
<td>92.3</td>
</tr>
<tr>
<td>91716</td>
<td>86.5</td>
<td>87.3</td>
<td>86.0</td>
<td>89.7</td>
<td>88.9</td>
<td>90.3</td>
<td>89.1</td>
<td>90.9</td>
</tr>
<tr>
<td>91717</td>
<td>86.2</td>
<td>86.8</td>
<td>86.1</td>
<td>89.4</td>
<td>88.5</td>
<td>88.9</td>
<td>89.0</td>
<td>89.7</td>
</tr>
<tr>
<td>91718</td>
<td>86.3</td>
<td>86.3</td>
<td>86.0</td>
<td>89.1</td>
<td>88.1</td>
<td>88.4</td>
<td>89.0</td>
<td>88.8</td>
</tr>
<tr>
<td>91719</td>
<td>86.1</td>
<td>86.1</td>
<td>86.0</td>
<td>79.9</td>
<td>80.6</td>
<td>87.9</td>
<td>89.1</td>
<td>88.0</td>
</tr>
<tr>
<td>91720</td>
<td>86.0</td>
<td>85.7</td>
<td>85.2</td>
<td>80.0</td>
<td>80.6</td>
<td>87.4</td>
<td>88.3</td>
<td>87.5</td>
</tr>
<tr>
<td>91721</td>
<td>85.7</td>
<td>85.3</td>
<td>85.1</td>
<td>79.9</td>
<td>80.5</td>
<td>86.8</td>
<td>88.1</td>
<td>86.8</td>
</tr>
<tr>
<td>91722</td>
<td>85.7</td>
<td>84.8</td>
<td>85.0</td>
<td>79.9</td>
<td>80.5</td>
<td>86.4</td>
<td>87.9</td>
<td>86.4</td>
</tr>
<tr>
<td>91723</td>
<td>85.5</td>
<td>84.5</td>
<td>84.9</td>
<td>79.8</td>
<td>80.5</td>
<td>86.1</td>
<td>87.7</td>
<td>86.0</td>
</tr>
<tr>
<td>91724</td>
<td>85.4</td>
<td>84.2</td>
<td>84.9</td>
<td>79.8</td>
<td>80.5</td>
<td>85.7</td>
<td>87.5</td>
<td>85.5</td>
</tr>
</tbody>
</table>

DAILY SUMMARY (SEP 17)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>84.5</td>
<td>81.5</td>
<td>84.2</td>
<td>79.7</td>
<td>80.4</td>
<td>83.0</td>
<td>86.2</td>
<td>80.8</td>
</tr>
<tr>
<td>89.7</td>
<td>87.6</td>
<td>86.1</td>
<td>89.0</td>
<td>89.3</td>
<td>90.3</td>
<td>89.1</td>
<td>95.0</td>
</tr>
<tr>
<td>1999.1</td>
<td>2016.4</td>
<td>2065.5</td>
<td>2109.1</td>
<td>2108.5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX E

PREPARATION OF THE BANGKOK TRY FILE USING LS2TRY

The DOE-2 weather file used in this research was prepared and generated from a raw Bangkok weather data using the ATCHWEA and LS2TRY programs developed by Sreshthaputra (2002) and Bronson (1992) respectively. The procedure for generating the DOE-2 weather data file (TRY format) is illustrated in a flowchart in Figure E.1. There are mainly three phases in the procedure that need to perform: 1) Preparation of raw weather data using ATCHWEA and Microsoft Excel, 2) Preparation of weather data using LS2TRY, and 3) Packing weather data file using DOE-2 weather processor. Descriptions of each phase, which are explanations of Figure E.1, are elaborated in the following sections (E.1, E.2 and E.3).
Figure E.1 Methodology to Generate Thai Weather File (TRY Format) from Raw Weather Data.
E.1. Preparation of Raw Weather Data Using ATCHWEA and Microsoft Excel

E.1.1 Editing Raw Weather Data

The Bangkok weather data 2000 was obtained from the Meteorological Department, Thailand. The Bangkok weather data includes dry-bulb temperature, relative humidity, global solar radiation, and wind speed. Each data was in text file. The following is an example of a month of the Bangkok dry-bulb temperature data of 2000. Data from 7:00 a.m. to 18:00 p.m. of the 6th to 25th was omitted in the example since the space constrain of the page.

<table>
<thead>
<tr>
<th>Day</th>
<th>0100</th>
<th>0200</th>
<th>0300</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
<th>2400</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.4</td>
<td>24.9</td>
<td>24.4</td>
<td>23.7</td>
<td>23.1</td>
<td>22.2</td>
<td>...</td>
<td>28.9</td>
<td>28.5</td>
<td>27.9</td>
<td>27.4</td>
<td>26.9</td>
<td>26.0</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25.2</td>
<td>24.8</td>
<td>23.2</td>
<td>23.1</td>
<td>22.8</td>
<td>23.2</td>
<td>...</td>
<td>29.2</td>
<td>28.7</td>
<td>28.0</td>
<td>26.9</td>
<td>26.6</td>
<td>26.5</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.3</td>
<td>26.5</td>
<td>26.2</td>
<td>25.6</td>
<td>24.9</td>
<td>24.9</td>
<td>...</td>
<td>29.7</td>
<td>28.5</td>
<td>28.4</td>
<td>28.1</td>
<td>27.1</td>
<td>27.2</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>26.1</td>
<td>25.0</td>
<td>24.7</td>
<td>24.0</td>
<td>23.3</td>
<td>...</td>
<td>29.7</td>
<td>29.0</td>
<td>28.6</td>
<td>28.1</td>
<td>27.7</td>
<td>27.5</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.1</td>
<td>25.7</td>
<td>26.8</td>
<td>26.1</td>
<td>25.0</td>
<td>24.9</td>
<td>...</td>
<td>30.3</td>
<td>29.5</td>
<td>29.1</td>
<td>28.3</td>
<td>28.0</td>
<td>27.4</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26.7</td>
<td>25.9</td>
<td>25.5</td>
<td>24.9</td>
<td>24.7</td>
<td>24.2</td>
<td>...</td>
<td>28.7</td>
<td>28.5</td>
<td>27.6</td>
<td>26.4</td>
<td>25.3</td>
<td>25.7</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>24.7</td>
<td>24.0</td>
<td>22.7</td>
<td>21.5</td>
<td>21.7</td>
<td>20.5</td>
<td>...</td>
<td>25.6</td>
<td>25.2</td>
<td>24.1</td>
<td>24.0</td>
<td>23.3</td>
<td>22.9</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>22.1</td>
<td>21.9</td>
<td>21.6</td>
<td>21.1</td>
<td>20.9</td>
<td>20.0</td>
<td>...</td>
<td>25.5</td>
<td>24.4</td>
<td>23.6</td>
<td>23.7</td>
<td>22.2</td>
<td>22.0</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>21.5</td>
<td>20.9</td>
<td>20.2</td>
<td>20.3</td>
<td>20.1</td>
<td>19.6</td>
<td>...</td>
<td>27.6</td>
<td>26.2</td>
<td>25.7</td>
<td>25.3</td>
<td>24.3</td>
<td>23.7</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>23.7</td>
<td>22.8</td>
<td>22.4</td>
<td>22.0</td>
<td>21.7</td>
<td>21.4</td>
<td>...</td>
<td>25.6</td>
<td>25.2</td>
<td>24.8</td>
<td>23.9</td>
<td>23.4</td>
<td>23.4</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>23.8</td>
<td>23.0</td>
<td>22.3</td>
<td>22.4</td>
<td>22.0</td>
<td>22.0</td>
<td>...</td>
<td>27.6</td>
<td>26.5</td>
<td>25.9</td>
<td>24.4</td>
<td>24.3</td>
<td>23.5</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>25.3</td>
<td>24.9</td>
<td>24.4</td>
<td>24.1</td>
<td>23.6</td>
<td>23.4</td>
<td>...</td>
<td>28.6</td>
<td>27.6</td>
<td>27.0</td>
<td>26.4</td>
<td>25.9</td>
<td>25.7</td>
<td>27.4</td>
<td></td>
</tr>
</tbody>
</table>
Table E.1

Unit Conversions of the Weather Data

<table>
<thead>
<tr>
<th>Climatic Elements</th>
<th>Original Units of Weather Data</th>
<th>Unit Conversions</th>
<th>New Units of Weather Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry-bulb temperature</td>
<td>°C</td>
<td>1multiply by 9/5 and add 32</td>
<td>°F</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>%</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Solar Radiation</td>
<td>10^{-2} MJ/m²</td>
<td>2multiply by 2.7</td>
<td>W/m²</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>Knot</td>
<td>1multiply by 1.152</td>
<td>mph</td>
</tr>
</tbody>
</table>

1 ASHRAE (2001) pp. 37.2
2 SERI (2002)

E.1.2 Running Atchwea

Atchwea is the program that is used to convert weather data in table form into time-series data. Running Atchwea program needs weather data that was prepared in Section E.1.1. be in the same directory of the program. The weather data needs also to be renamed as INPUT.TXT. Then at the DOS prompt in the Atchwea’s directory, the program is run by calling the program followed by INPUT.TXT, for example: “C:\ATCHWEA>ATCHWEA INPUT.TXT”. After the run, the program generated a new file named “OUTPUT.TXT”. This file is the weather data that is in time-series format. The output is shown in section E.1.3. Source code of ATCHWEA, which was written in FORTRAN, is shown below.

```
 PROGRAM ATCHWEA

 Integer V0,D,N

 Print*, '**** PROGRAM ATCHWEA ****'
 Print*, '**** AUGUST,2000  ****'
 Print*, 'ATCH SRESHTAPUTRA *
 Print*, ''
 Print*, 'How Many Days in a Year?'
 Read*,D
```

open (unit=10, file='INPUT.TXT', status='OLD')
open (unit=11, file='OUTPUT.TXT', status='NEW')
print*, 'READING INPUT DATA'
N=1
write(11,5) 'Day of Year','Day of Month','Hour','value'
do 12 count=1,D
read (10,*) V0,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,
print*, 'WRITING OUTPUT FILE'
write(11,15) N,V0,'0100',V1
write(11,15) N,V0,'0200',V2
write(11,15) N,V0,'0300',V3
write(11,15) N,V0,'0400',V4
write(11,15) N,V0,'0500',V5
write(11,15) N,V0,'0600',V6
write(11,15) N,V0,'0700',V7
write(11,15) N,V0,'0800',V8
write(11,15) N,V0,'0900',V9
write(11,15) N,V0,'1000',V10
write(11,15) N,V0,'1100',V11
write(11,15) N,V0,'1200',V12
write(11,15) N,V0,'1300',V13
write(11,15) N,V0,'1400',V14
write(11,15) N,V0,'1500',V15
write(11,15) N,V0,'1600',V16
write(11,15) N,V0,'1700',V17
write(11,15) N,V0,'1800',V18
write(11,15) N,V0,'1900',V19
write(11,15) N,V0,'2000',V20
write(11,15) N,V0,'2100',V21
write(11,15) N,V0,'2200',V22
write(11,15) N,V0,'2300',V23
write(11,15) N,V0,'2400',V24
N=N+1
12 continue
format(1X,1X,A11,3X,A12,3X,A4,7X,A5)
format(1X,3X,I3,12X,I2,10X,A4,5X,F7.2)
print*, 'DONE'
END
E.1.3 Outputs from ATCHWEA

An example of OUTPUT.TXT is shown below. There four columns in the output file. The first three columns from left are titled as below. The last column is the weather data that was converted into time-series format. In the example, the last column is the Bangkok dry-bulb temperature data of 2000 listed from the first hour of the year to the last hour of the year.

<table>
<thead>
<tr>
<th>Day of Year</th>
<th>Day of Month</th>
<th>Hour</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0100</td>
<td>77.72</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0200</td>
<td>76.82</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0300</td>
<td>75.92</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0400</td>
<td>74.66</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0500</td>
<td>73.58</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0600</td>
<td>71.96</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0700</td>
<td>71.06</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0800</td>
<td>76.64</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0900</td>
<td>79.88</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>83.48</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1100</td>
<td>85.46</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1200</td>
<td>87.98</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>1300</td>
<td>89.06</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>1400</td>
<td>90.14</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>1500</td>
<td>88.34</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>1600</td>
<td>88.16</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>1700</td>
<td>88.16</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>1800</td>
<td>85.64</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>1900</td>
<td>83.66</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>2000</td>
<td>79.70</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>2100</td>
<td>80.06</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>2200</td>
<td>78.26</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>2300</td>
<td>78.08</td>
</tr>
<tr>
<td>366</td>
<td>31</td>
<td>2400</td>
<td>76.82</td>
</tr>
</tbody>
</table>

E.1.4 Including All Weather Files into One Excel File

Output files of the four climatic elements, which are dry-bulb temperature, relative humidity, solar radiation, and wind speed, were combined into one file in the Excel—one column for each element.
E.2 Preparation of Weather Data Using LS2TRY

E.2.1 Weather_file.dat

RAW WEATHER DATA FILE: WEATER_FILE.DAT

<table>
<thead>
<tr>
<th>DATE</th>
<th>HOUR</th>
<th>TEMP</th>
<th>HUMID</th>
<th>PRESS</th>
<th>WIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>02</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>03</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>04</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>05</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>06</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>07</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>08</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>09</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>10</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>11</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>12</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

E.2.2 Base_weather_file.dat

BASE_WEATHER_FILE.DAT

<table>
<thead>
<tr>
<th>DATE</th>
<th>HOUR</th>
<th>TEMP</th>
<th>HUMID</th>
<th>PRESS</th>
<th>WIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>02</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>03</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>04</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>05</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>06</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>07</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>08</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>09</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>10</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>11</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1997</td>
<td>01</td>
<td>12</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

E.2.3 Instruction.ins

INSTRUCTION FILE: INSTRUCTION.INS

E.2.4 Weather_try.seq

LS2TRY OUTPUT: WEATHER_TRY.SEQ (BANGKOK00.TRY or WEATHR.TMP)
E.3 Packing Weather Data File Using DOE-2 Weather Processor

DOE-2 weather processor requires two input files: WEATHR.TMP and INPUT.TMP. WEATHR.TMP is the output file from LS2TRY. INPUT.TMP is an instruction file that tells the weather processor what functions to perform. INPUT.TMP also supplies additional information that is needed to perform in the packing process. Detailed description of the input file is in E.3.1.

E.3.1 Instruction File

INSTRUCTION FILE: BANGKOK00.INS (INPUT.TMP)

```
PACK
BANGKOK 2000
TRY 44444 999 71309100620ENTSOLAR 4.2 0.025
0.56 0.54 0.58 0.52 0.48 0.44 0.41 0.56 0.57
END
```

Calculation of Monthly Average Clearness Index is presented in section E.3.2.

E.3.2 Calculation of Monthly Average Clearness Index

Table E.1 shows calculation of clearness index of Bangkok 2000.

```
<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly Average Daily Extraterrestrial Radiation at Bangkok (MJ/m²)</td>
<td>30.50</td>
<td>33.28</td>
<td>36.24</td>
<td>37.96</td>
<td>38.13</td>
<td>37.88</td>
<td>37.85</td>
<td>37.81</td>
<td>36.63</td>
<td>34.00</td>
<td>30.96</td>
<td>29.50</td>
</tr>
<tr>
<td>Monthly Average Clearness Index (K₂ bar)</td>
<td>0.56</td>
<td>0.54</td>
<td>0.58</td>
<td>0.45</td>
<td>0.52</td>
<td>0.49</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.41</td>
<td>0.56</td>
<td>0.57</td>
</tr>
</tbody>
</table>
```

Table E.1

Unit Conversions of the Weather Data.
E.3.3 DOE-2 Weather Packer Outputs

DOE-2.1E/B2D WEATHER UTILITY PROGRAM

INPUT VERIFICATION

RUN TYPE: PACK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION NAME</td>
<td>BANGKOK 2000</td>
</tr>
<tr>
<td>TAPE TYPE</td>
<td>TRY</td>
</tr>
<tr>
<td>STATION NUMBER</td>
<td>44444</td>
</tr>
<tr>
<td>TIME ZONE</td>
<td>7</td>
</tr>
<tr>
<td>LATITUDE</td>
<td>13.080</td>
</tr>
<tr>
<td>LONGITUDE</td>
<td>100.600</td>
</tr>
<tr>
<td>WORD SIZE</td>
<td>30-BIT</td>
</tr>
<tr>
<td>FILE TYPE</td>
<td>SOLAR</td>
</tr>
<tr>
<td>INTERP INTERVAL</td>
<td>4</td>
</tr>
<tr>
<td>MAX TEMPCHANGE</td>
<td>20.000</td>
</tr>
<tr>
<td>SOIL DIFFUSIVITY</td>
<td>0.025</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (1)</td>
<td>0.560</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (2)</td>
<td>0.540</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (3)</td>
<td>0.580</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (4)</td>
<td>0.450</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (5)</td>
<td>0.520</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (6)</td>
<td>0.490</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (7)</td>
<td>0.440</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (8)</td>
<td>0.480</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (9)</td>
<td>0.440</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (10)</td>
<td>0.410</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (11)</td>
<td>0.560</td>
</tr>
<tr>
<td>CLEARANCE NUMBER (12)</td>
<td>0.570</td>
</tr>
</tbody>
</table>
APPENDIX F

F-CHART AND PV F-CHART INPUT DATA AND RESULTS

In the analysis of supplemental thermal and electrical energies from the hybrid PV-T² collector system using F-Chart and PV F-Chart, the available installation area, which was the roof area, needed to be defined. Figure F.1 shows available area on the roof of the case-study house for installation of the PV-T² or PV arrays. Table F.1 shows gross roof areas on each side of the roof versus PV array areas. The PV array areas were obtained from number of PV panels shown in Figure F.1 multiplied by PV module area (11.3 ft²). Table F.1 also shows the percentage of the total PV area to the gross roof area which is approximately 77 percent.

TABLE F.1

The Case-Study House’s Roof Area and PV Array Area

<table>
<thead>
<tr>
<th>Roof Sides</th>
<th>Gross Roof Area (ft²)</th>
<th>Max. of Number of PV panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main Hip</td>
<td>Front Hip</td>
</tr>
<tr>
<td>North</td>
<td>246</td>
<td>N/A</td>
</tr>
<tr>
<td>South</td>
<td>148</td>
<td>98</td>
</tr>
<tr>
<td>East</td>
<td>389</td>
<td>52</td>
</tr>
<tr>
<td>West</td>
<td>389</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>1172</td>
<td>202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PV Array Area (ft²)</th>
<th>PV Area to The Gross Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>181</td>
</tr>
<tr>
<td>South</td>
<td>102</td>
</tr>
<tr>
<td>East</td>
<td>317</td>
</tr>
<tr>
<td>West</td>
<td>317</td>
</tr>
<tr>
<td>Total</td>
<td>917</td>
</tr>
</tbody>
</table>

North	73.6	N/A	73.6
South	69.4	69.1	
East	79.6		
West	79.6		
Total	76.6		
Figure F.1 Case-Study House and Available Roof Area for Installation of the PV panels
F.1 Analysis of Thermal Energy Produced by the Hybrid PV-T² Collector System Using F-Chart

F.1.1 Input Data for the Analysis in the F-Chart Program

The solar thermal collector system, which is part of the hybrid PV-T² collector system, is showed in the Figure F.2. The PV-T² collector was considered as an unglazed flat-plate solar collector, thus this type of solar collector was chosen for the analysis of solar thermal collection of the hybrid PV-T² collector. The input collector parameters and input system parameter used in the F-CHART are presented in Figure F.2 and Figure F.3 respectively.

![Figure F.2 Schematic Diagram of the Hybrid PV-T² System. This Diagram illustrates only components of thermal energy collection for domestic hot water supply.](image-url)
TABLE F.2

Input Collector Parameters used in the F-Chart

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>Collector Parameters</th>
<th>South</th>
<th>West</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of collector panels</td>
<td>15</td>
<td>11</td>
<td>panel</td>
</tr>
<tr>
<td>2</td>
<td>Collector panel area</td>
<td>11.31</td>
<td>11.31</td>
<td>ft²</td>
</tr>
<tr>
<td>3</td>
<td>FR*UL (test slope)</td>
<td>5.62</td>
<td>5.62</td>
<td>Btu/hr·ft²·°F</td>
</tr>
<tr>
<td>4</td>
<td>FRTAUALPHA (test intercept)</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Collector slope</td>
<td>30</td>
<td>30</td>
<td>Degree</td>
</tr>
<tr>
<td>6</td>
<td>Collector azimuth (South=0)</td>
<td>-10</td>
<td>80</td>
<td>Degree</td>
</tr>
<tr>
<td>7</td>
<td>Incidence angle mod TYPE(8-10)</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Number of glazings</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Inc angle modifier constant</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Inc angle modifier value(s)</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Collector flowrate/area</td>
<td>11</td>
<td>11</td>
<td>lb/hr·ft²</td>
</tr>
<tr>
<td>12</td>
<td>Collector fluid specific heat</td>
<td>1</td>
<td>1</td>
<td>Btu/lb·°F</td>
</tr>
<tr>
<td>13</td>
<td>Modify test values (1=Y,2=N)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Test collector flowrate/area</td>
<td>N/A</td>
<td>N/A</td>
<td>lb/hr·ft²</td>
</tr>
<tr>
<td>15</td>
<td>Test fluid specific heat</td>
<td>N/A</td>
<td>N/A</td>
<td>Btu/lb·°F</td>
</tr>
</tbody>
</table>
TABLE F.3
Input System Parameters used in the F-Chart

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>System Parameters</th>
<th>Roof Sides</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>South</td>
<td>West</td>
</tr>
<tr>
<td>1</td>
<td>City call number</td>
<td>346</td>
<td>346</td>
</tr>
<tr>
<td>2</td>
<td>Water storage volume</td>
<td>320</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>Building UA (0 for DHW only)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Fuel (1=EL, 2=NG, 3=OIL, 4=OTHER)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Efficiency of fuel usage</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Domestic hot water (1=Y, 2=N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Daily hot water usage</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Water set temperature</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>9</td>
<td>Environment temperature</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>DHW storage tank size</td>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td>11</td>
<td>UA of aux storage tank</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>12</td>
<td>Pipe heat loss (1=Y, 2=N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Inlet pipe UA</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>Outlet pipe UA</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Relative load HX size</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Collector-storage HX (1=Y, 2=N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Tank side flowrate/area</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>Heat exchanger effectiveness</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

F.1.2 Results from the Analysis

F.1.2.1 Results from the South Facing Collectors

The hybrid PV-T² collectors were first chosen to install in the south side of the roof. The analysis was performed by varying the area of the collector from 22.6 ft² (2 panels) to the maximum available area, which was 170 ft² (26 panels) on the south side of the roof. Figure F.3
presents the results (Fraction of DHW loads or “F”) versus collector area. Table 8.3 presents the results of 8th Run which used the maximum area of the south side roof. It can be seen in the Figure F.3 and Table F.3 that, with the maximum roof area on the south side, the system could supply the highest solar DHW in March (F = 0.87) and the lowest in July and October (F=0.63 and 0.64, respectively). To supply all DHW need, more collectors were installed on the west side of the roof. Next section presents the results from the west collectors.

Figure F.3 Fraction of Supplemental Solar DHW to the DHW Loads (F) of the South Facing Collector. The collector area ranges from 0 to the maximum collector area of the south facing roof (170 ft²).
TABLE F.3
Results from the Analysis of the Solar DHW:
the 8th Run of South Facing Collectors

<table>
<thead>
<tr>
<th>Month</th>
<th>Solar Energy MMBTU</th>
<th>DHW Load MMBTU</th>
<th>Auxiliary Energy MMBTU</th>
<th>F Solar DHW MMBTU</th>
<th>Supplemental Solar DHW MMBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>9</td>
<td>1.6</td>
<td>0.3</td>
<td>0.81</td>
<td>1.3</td>
</tr>
<tr>
<td>FEB</td>
<td>8.1</td>
<td>1.4</td>
<td>0.3</td>
<td>0.81</td>
<td>1.1</td>
</tr>
<tr>
<td>MAR</td>
<td>9.6</td>
<td>1.5</td>
<td>0.2</td>
<td>0.87</td>
<td>1.3</td>
</tr>
<tr>
<td>APR</td>
<td>6.9</td>
<td>1.4</td>
<td>0.4</td>
<td>0.71</td>
<td>1</td>
</tr>
<tr>
<td>MAY</td>
<td>7.7</td>
<td>1.5</td>
<td>0.4</td>
<td>0.75</td>
<td>1.1</td>
</tr>
<tr>
<td>JUN</td>
<td>6.8</td>
<td>1.5</td>
<td>0.5</td>
<td>0.67</td>
<td>1</td>
</tr>
<tr>
<td>JUL</td>
<td>6.5</td>
<td>1.5</td>
<td>0.6</td>
<td>0.63</td>
<td>0.9</td>
</tr>
<tr>
<td>AUG</td>
<td>7.4</td>
<td>1.5</td>
<td>0.4</td>
<td>0.71</td>
<td>1.1</td>
</tr>
<tr>
<td>SEP</td>
<td>7</td>
<td>1.5</td>
<td>0.5</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>OCT</td>
<td>6.7</td>
<td>1.6</td>
<td>0.6</td>
<td>0.64</td>
<td>1</td>
</tr>
<tr>
<td>NOV</td>
<td>8.8</td>
<td>1.6</td>
<td>0.3</td>
<td>0.8</td>
<td>1.3</td>
</tr>
<tr>
<td>DEC</td>
<td>9.2</td>
<td>1.6</td>
<td>0.3</td>
<td>0.82</td>
<td>1.3</td>
</tr>
<tr>
<td>Total/Avg.</td>
<td>93.8</td>
<td>18.1</td>
<td>4.7</td>
<td>0.74</td>
<td>13.4</td>
</tr>
</tbody>
</table>

F.1.2.2 Results from the West Facing Collectors

Figure F.4 presents the results (Fraction of DHW loads or “F”) versus collector area.
Table F.4 presents the results of the 6th Run, which could sufficiently supply the total DHW need.
It was required 11 panel (124 ft²) of the collector as shown in Figure F.4. Table 8.5 presents the total solar DHW supplied by the south and west collectors.
Figure F.4 Fraction of Supplemental Solar DHW to the DHW Loads (F) of the West Facing Collectors
TABLE F.4

Results from the Analysis of the Solar DHW:
the 6th Run of the West Facing Collectors

<table>
<thead>
<tr>
<th>Month</th>
<th>Solar Energy MMBTU</th>
<th>DHW Load MMBTU</th>
<th>Auxiliary Energy MMBTU</th>
<th>F</th>
<th>Supplemental Solar DHW MMBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>5.5</td>
<td>1.6</td>
<td>0.8</td>
<td>0.51</td>
<td>0.8</td>
</tr>
<tr>
<td>FEB</td>
<td>5.3</td>
<td>1.4</td>
<td>0.6</td>
<td>0.55</td>
<td>0.8</td>
</tr>
<tr>
<td>MAR</td>
<td>6.7</td>
<td>1.5</td>
<td>0.5</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>APR</td>
<td>5.2</td>
<td>1.4</td>
<td>0.7</td>
<td>0.51</td>
<td>0.7</td>
</tr>
<tr>
<td>MAY</td>
<td>6.2</td>
<td>1.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>JUN</td>
<td>5.5</td>
<td>1.5</td>
<td>0.7</td>
<td>0.54</td>
<td>0.8</td>
</tr>
<tr>
<td>JUL</td>
<td>5.2</td>
<td>1.5</td>
<td>0.8</td>
<td>0.48</td>
<td>0.7</td>
</tr>
<tr>
<td>AUG</td>
<td>5.6</td>
<td>1.5</td>
<td>0.7</td>
<td>0.53</td>
<td>0.8</td>
</tr>
<tr>
<td>SEP</td>
<td>5</td>
<td>1.5</td>
<td>0.8</td>
<td>0.47</td>
<td>0.7</td>
</tr>
<tr>
<td>OCT</td>
<td>4.5</td>
<td>1.6</td>
<td>1</td>
<td>0.38</td>
<td>0.6</td>
</tr>
<tr>
<td>NOV</td>
<td>5.5</td>
<td>1.6</td>
<td>0.7</td>
<td>0.52</td>
<td>0.9</td>
</tr>
<tr>
<td>DEC</td>
<td>5.5</td>
<td>1.6</td>
<td>0.8</td>
<td>0.51</td>
<td>0.8</td>
</tr>
<tr>
<td>Total/Avg.</td>
<td>65.6</td>
<td>18.1</td>
<td>8.7</td>
<td>0.52</td>
<td>9.4</td>
</tr>
</tbody>
</table>

TABLE 8.5

Results from the Analysis of the Solar DHW:
South and West Facing Collectors

<table>
<thead>
<tr>
<th>Month</th>
<th>Supplemental Solar DHW</th>
<th>DHW Load</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>South (MMBTU)</td>
<td>West (MMBTU)</td>
<td>Total (MMBTU)</td>
</tr>
<tr>
<td>JAN</td>
<td>1.3</td>
<td>0.8</td>
<td>2.1</td>
</tr>
<tr>
<td>FEB</td>
<td>1.1</td>
<td>0.8</td>
<td>1.9</td>
</tr>
<tr>
<td>MAR</td>
<td>1.3</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>APR</td>
<td>1</td>
<td>0.7</td>
<td>1.7</td>
</tr>
<tr>
<td>MAY</td>
<td>1.1</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>JUN</td>
<td>1</td>
<td>0.8</td>
<td>1.8</td>
</tr>
<tr>
<td>JUL</td>
<td>0.9</td>
<td>0.7</td>
<td>1.6</td>
</tr>
<tr>
<td>AUG</td>
<td>1.1</td>
<td>0.8</td>
<td>1.9</td>
</tr>
<tr>
<td>SEP</td>
<td>1</td>
<td>0.7</td>
<td>1.7</td>
</tr>
<tr>
<td>OCT</td>
<td>1</td>
<td>0.6</td>
<td>1.6</td>
</tr>
<tr>
<td>NOV</td>
<td>1.3</td>
<td>0.9</td>
<td>2.2</td>
</tr>
<tr>
<td>DEC</td>
<td>1.3</td>
<td>0.8</td>
<td>2.1</td>
</tr>
<tr>
<td>YR</td>
<td>13.4</td>
<td>9.4</td>
<td>22.8</td>
</tr>
</tbody>
</table>
F.2 Analysis of Electricity Generated by the Hybrid PV-T² Collector System Using PV-F Chart

The collector area of the hybrid PV-T² collector was determined by the required DHW need as presented in Section F.1. This section presents the results of the analysis of electricity produced by the south and west PV-T² collectors using PV-F CHART. Table F.6 presents input parameters for the south and west PV-T² collectors. The results of the analysis are presented in Table F.7. The annual electricity supplied by the PV-T² collectors (807.6 kWh) shown in Table F.7 was the annual electricity saving from the base-case’s annual electricity use when it was installed with the Hybrid PV-T² system.

TABLE F.6
Input Parameters for the PV System:
South and West Facing Hybrid PV-T² Arrays

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>South Facing Array</th>
<th>West Facing Array</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cell temperature at NOCT conditions</td>
<td>47</td>
<td>47</td>
<td>°C</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>Array reference efficiency</td>
<td>0.114</td>
<td>0.114</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Array reference temperature</td>
<td>25</td>
<td>25</td>
<td>°C</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>Array temperature coefficient*1000</td>
<td>0.5</td>
<td>0.5</td>
<td>1/°C</td>
<td>***</td>
</tr>
<tr>
<td>5</td>
<td>Power tracking efficiency</td>
<td>0.9</td>
<td>0.9</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Power conditioning efficiency</td>
<td>0.88</td>
<td>0.88</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Percent standard deviation of load</td>
<td>0</td>
<td>0</td>
<td>%</td>
<td>Default</td>
</tr>
<tr>
<td>8</td>
<td>Array area</td>
<td>15.77</td>
<td>11.56</td>
<td>m²</td>
<td>Collector area</td>
</tr>
<tr>
<td>9</td>
<td>Area slope</td>
<td>30</td>
<td>30</td>
<td>degrees</td>
<td>Roof's slope</td>
</tr>
<tr>
<td>10</td>
<td>Array azimuth (South=0)</td>
<td>-10</td>
<td>80</td>
<td>degrees</td>
<td></td>
</tr>
</tbody>
</table>

* Manufacture specification
** Calculated from manufacture specification and physical measurement of the array
*** Experimental value
TABLE F.7
Summary of Monthly and Annual Electricity Produced and Supplied by the South and West Hybrid PV-T2 Arrays

<table>
<thead>
<tr>
<th>Month</th>
<th>Load (kWh)</th>
<th>Elec. Produced by the PV-T2 Array</th>
<th>Electricity Supplied by the PV-T2 Arrays</th>
<th>Electricity Sold (kWh)</th>
<th>Electricity Purchase (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>South (PV-T2) (kWh)</td>
<td>West (PV-T2) (kWh)</td>
<td>Total (kWh)</td>
<td>(kWh)</td>
</tr>
<tr>
<td>January</td>
<td>448</td>
<td>225</td>
<td>138</td>
<td>362</td>
<td>67.58</td>
</tr>
<tr>
<td>February</td>
<td>405</td>
<td>202</td>
<td>131</td>
<td>333</td>
<td>62.46</td>
</tr>
<tr>
<td>March</td>
<td>448</td>
<td>238</td>
<td>166</td>
<td>403</td>
<td>72.90</td>
</tr>
<tr>
<td>April</td>
<td>434</td>
<td>170</td>
<td>127</td>
<td>298</td>
<td>65.84</td>
</tr>
<tr>
<td>May</td>
<td>448</td>
<td>188</td>
<td>152</td>
<td>340</td>
<td>72.67</td>
</tr>
<tr>
<td>June</td>
<td>434</td>
<td>164</td>
<td>135</td>
<td>299</td>
<td>68.66</td>
</tr>
<tr>
<td>July</td>
<td>448</td>
<td>159</td>
<td>127</td>
<td>286</td>
<td>68.81</td>
</tr>
<tr>
<td>August</td>
<td>448</td>
<td>181</td>
<td>139</td>
<td>319</td>
<td>69.71</td>
</tr>
<tr>
<td>September</td>
<td>434</td>
<td>172</td>
<td>124</td>
<td>296</td>
<td>64.21</td>
</tr>
<tr>
<td>October</td>
<td>448</td>
<td>165</td>
<td>111</td>
<td>277</td>
<td>62.09</td>
</tr>
<tr>
<td>November</td>
<td>434</td>
<td>221</td>
<td>136</td>
<td>357</td>
<td>66.17</td>
</tr>
<tr>
<td>December</td>
<td>448</td>
<td>232</td>
<td>137</td>
<td>369</td>
<td>67.64</td>
</tr>
<tr>
<td>Year</td>
<td>5275</td>
<td>2317</td>
<td>1620</td>
<td>3937</td>
<td>807.59</td>
</tr>
</tbody>
</table>

F.3 Analysis of Electricity Generated by the PV System Using PV-F Chart

As present in Chapter VII, Section 7.3.11, Strategy 10 (Renewable Energy System 2) was installed with PV modules on all available area of the roof (1053 ft²) without the presence of the Hybrid PV-T2 collectors. This section presents the results of the analysis of electricity produced by the south, west, east, and north PV arrays using PV-F CHART. Table F.8 presents input parameters for the south and west PV collectors. The results of the analysis are presented in Table F.9. The annual electricity supplied by the PV collectors (1174.9 kWh) shown in Table F.9 was the annual electricity saving of the base-case’s annual electricity use when it was installed with the PV system.
TABLE F.8

Input Parameters for the PV System:

South, West, East, and North Facing PV Arrays

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>South Facing Array</th>
<th>West Facing Array</th>
<th>East Facing Array</th>
<th>North Facing Array</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cell temperature at NOCT conditions</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>°C</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>Array reference efficiency</td>
<td>0.114</td>
<td>0.114</td>
<td>0.114</td>
<td>0.114</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Array reference temperature</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>°C</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>Array temperature coefficient*1000</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>1/°C</td>
<td>Default</td>
</tr>
<tr>
<td>5</td>
<td>Power tracking efficiency</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td>6</td>
<td>Power conditioning efficiency</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td>7</td>
<td>Percent standard deviation of load</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>%</td>
<td>Default</td>
</tr>
<tr>
<td>8</td>
<td>Array area</td>
<td>15.77</td>
<td>32.58</td>
<td>32.58</td>
<td>16.82</td>
<td>m²</td>
<td>PV area</td>
</tr>
<tr>
<td>9</td>
<td>Area slope</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>degrees</td>
<td>Roof's slope</td>
</tr>
<tr>
<td>10</td>
<td>Array azimuth (South=0)</td>
<td>-10</td>
<td>80</td>
<td>-100</td>
<td>170</td>
<td>degrees</td>
<td></td>
</tr>
</tbody>
</table>

* Manufacture specification

Calculated from manufacture specification and physical measurement of the array

TABLE F.9

Summary of Monthly and Annual Electricity Produced and Supplied by the South, West, East, and North PV Arrays

<table>
<thead>
<tr>
<th>Month</th>
<th>Load (kWh)</th>
<th>South (kWh)</th>
<th>West (kWh)</th>
<th>East (kWh)</th>
<th>North (kWh)</th>
<th>Total (kWh)</th>
<th>Electricity Supplied by the PV Arrays (kWh)</th>
<th>Electricity Sold (kWh)</th>
<th>%</th>
<th>Electricity Purchase (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>448</td>
<td>202</td>
<td>348</td>
<td>300</td>
<td>111</td>
<td>961</td>
<td>87.30</td>
<td>19.5</td>
<td>873</td>
<td>361</td>
</tr>
<tr>
<td>February</td>
<td>405</td>
<td>182</td>
<td>323</td>
<td>301</td>
<td>125</td>
<td>940</td>
<td>85.73</td>
<td>21.2</td>
<td>855</td>
<td>319</td>
</tr>
<tr>
<td>March</td>
<td>448</td>
<td>211</td>
<td>415</td>
<td>384</td>
<td>181</td>
<td>1201</td>
<td>105.23</td>
<td>23.5</td>
<td>1048</td>
<td>343</td>
</tr>
<tr>
<td>April</td>
<td>434</td>
<td>155</td>
<td>325</td>
<td>323</td>
<td>163</td>
<td>966</td>
<td>100.34</td>
<td>23.1</td>
<td>866</td>
<td>333</td>
</tr>
<tr>
<td>May</td>
<td>448</td>
<td>171</td>
<td>384</td>
<td>396</td>
<td>212</td>
<td>1163</td>
<td>114.99</td>
<td>25.7</td>
<td>1048</td>
<td>333</td>
</tr>
<tr>
<td>June</td>
<td>434</td>
<td>150</td>
<td>346</td>
<td>360</td>
<td>197</td>
<td>1053</td>
<td>103.36</td>
<td>25.5</td>
<td>943</td>
<td>323</td>
</tr>
<tr>
<td>July</td>
<td>448</td>
<td>148</td>
<td>359</td>
<td>336</td>
<td>192</td>
<td>999</td>
<td>108.99</td>
<td>24.3</td>
<td>955</td>
<td>339</td>
</tr>
<tr>
<td>August</td>
<td>448</td>
<td>165</td>
<td>354</td>
<td>357</td>
<td>185</td>
<td>1060</td>
<td>108.37</td>
<td>24.2</td>
<td>952</td>
<td>340</td>
</tr>
<tr>
<td>September</td>
<td>434</td>
<td>157</td>
<td>318</td>
<td>309</td>
<td>150</td>
<td>934</td>
<td>95.97</td>
<td>22.1</td>
<td>838</td>
<td>338</td>
</tr>
<tr>
<td>October</td>
<td>448</td>
<td>151</td>
<td>288</td>
<td>270</td>
<td>121</td>
<td>829</td>
<td>88.64</td>
<td>19.3</td>
<td>743</td>
<td>361</td>
</tr>
<tr>
<td>November</td>
<td>434</td>
<td>195</td>
<td>346</td>
<td>303</td>
<td>116</td>
<td>964</td>
<td>67.12</td>
<td>20.1</td>
<td>877</td>
<td>346</td>
</tr>
<tr>
<td>December</td>
<td>448</td>
<td>208</td>
<td>351</td>
<td>297</td>
<td>106</td>
<td>960</td>
<td>85.86</td>
<td>19.2</td>
<td>875</td>
<td>362</td>
</tr>
<tr>
<td>Year</td>
<td>5275</td>
<td>2092</td>
<td>4136</td>
<td>3947</td>
<td>1848</td>
<td>12023</td>
<td>1174.88</td>
<td>22.3</td>
<td>10849</td>
<td>4100</td>
</tr>
</tbody>
</table>
F.4 Analysis of Electricity Generated by the Hybrid PV-T² Collector System and PV System Using PV-F Chart

As present in Chapter VII, Section 7.3.12, Strategy 11 (Renewable Energy System 3) was installed with both hybrid PV-T² collector system and PV system. The array area of the hybrid PV-T² collector system was the same as the area that was required to supply all DHW need in the case-study house which defined in Section F.1 The rest area of the roof was installed with the PV arrays. This section presents the results of the analysis of electricity produced by both systems using PV-F CHART. The input parameters of the Hybrid PV-T² system, which is the same as input parameters, are presented in Table F.6. Table F.10 presents input parameters for the PV system. The results of the analysis are presented in Table F.11. The annual electricity supplied by both systems (1174.9 kWh) shown in Table F.11 was the annual electricity saving of the base-case’s annual electricity use when it was installed with the hybrid PV-T² collector system and PV system.

TABLE F.10

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>West Facing Array</th>
<th>East Facing Array</th>
<th>North Facing Array</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cell temperature at NOCT conditions</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>°C</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>Array reference efficiency</td>
<td>0.114</td>
<td>0.114</td>
<td>0.114</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>3</td>
<td>Array reference temperature</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>°C</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>Array temperature coefficient*1000</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>1/°C</td>
<td>Default</td>
</tr>
<tr>
<td>5</td>
<td>Power tracking efficiency</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td>6</td>
<td>Power conditioning efficiency</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td></td>
<td>Default</td>
</tr>
<tr>
<td>7</td>
<td>Percent standard deviation of load</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>%</td>
<td>Default</td>
</tr>
<tr>
<td>8</td>
<td>Array area</td>
<td>21.02</td>
<td>32.58</td>
<td>16.82</td>
<td>m²</td>
<td>PV area</td>
</tr>
<tr>
<td>9</td>
<td>Area slope</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>degrees</td>
<td>Roof's slope</td>
</tr>
<tr>
<td>10</td>
<td>Array azimuth (South=0)</td>
<td>80</td>
<td>-100</td>
<td>170</td>
<td>degrees</td>
<td></td>
</tr>
</tbody>
</table>

* Manufacture specification
** Calculated from manufacture specification and physical measurement of the array
TABLE F.11

Summary of Monthly and Annual Electricity Produced and Supplied by the Hybrid PV-T² and PV Arrays

<table>
<thead>
<tr>
<th>Month</th>
<th>Load kWh</th>
<th>South (PV-T²) kWh</th>
<th>West (PV-T²) kWh</th>
<th>East (PV) kWh</th>
<th>North (PV) kWh</th>
<th>Total kWh</th>
<th>Sell kWh</th>
<th>Purchase kWh</th>
<th>%</th>
<th>Total kWh</th>
<th>Sell kWh</th>
<th>Purchase kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>448</td>
<td>225</td>
<td>136</td>
<td>225</td>
<td>316</td>
<td>111</td>
<td>1013</td>
<td>88.29</td>
<td>19.7</td>
<td>925</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>402</td>
<td>202</td>
<td>131</td>
<td>215</td>
<td>312</td>
<td>125</td>
<td>989</td>
<td>85.85</td>
<td>21.2</td>
<td>899</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>448</td>
<td>238</td>
<td>166</td>
<td>268</td>
<td>401</td>
<td>181</td>
<td>1254</td>
<td>106.14</td>
<td>23.7</td>
<td>1146</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>434</td>
<td>170</td>
<td>127</td>
<td>210</td>
<td>324</td>
<td>163</td>
<td>985</td>
<td>85.85</td>
<td>21.2</td>
<td>899</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>448</td>
<td>188</td>
<td>152</td>
<td>248</td>
<td>393</td>
<td>212</td>
<td>1192</td>
<td>115.74</td>
<td>25.8</td>
<td>1077</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>434</td>
<td>164</td>
<td>135</td>
<td>223</td>
<td>356</td>
<td>196</td>
<td>1074</td>
<td>110.33</td>
<td>25.4</td>
<td>964</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>448</td>
<td>159</td>
<td>127</td>
<td>212</td>
<td>335</td>
<td>181</td>
<td>1014</td>
<td>109.34</td>
<td>24.4</td>
<td>905</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>448</td>
<td>181</td>
<td>139</td>
<td>229</td>
<td>356</td>
<td>184</td>
<td>1089</td>
<td>108.77</td>
<td>24.3</td>
<td>980</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>434</td>
<td>172</td>
<td>124</td>
<td>205</td>
<td>312</td>
<td>150</td>
<td>963</td>
<td>95.65</td>
<td>22.1</td>
<td>867</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>448</td>
<td>165</td>
<td>111</td>
<td>186</td>
<td>276</td>
<td>121</td>
<td>859</td>
<td>87.22</td>
<td>19.5</td>
<td>772</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>434</td>
<td>221</td>
<td>136</td>
<td>224</td>
<td>318</td>
<td>116</td>
<td>1014</td>
<td>87.64</td>
<td>20.2</td>
<td>927</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>448</td>
<td>232</td>
<td>137</td>
<td>226</td>
<td>315</td>
<td>105</td>
<td>1018</td>
<td>86.89</td>
<td>19.4</td>
<td>929</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>5275</td>
<td>2317</td>
<td>1620</td>
<td>2668</td>
<td>4014</td>
<td>1847</td>
<td>12466</td>
<td>1181.01</td>
<td>22.4</td>
<td>11285</td>
<td>4094</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX G

INPUT DATA AND RESULTS OF THE ECONOMIC ANALYSIS

Appendix G consists of three sections. Section G.1 presents input data for the annualized life-cycle cost analysis and the results. Section G.2 presents the costs of the base-case house, energy efficiency strategies and the cost of the renewable energy systems that used in the economic analysis. Section G.3 presents economic analysis techniques which includes definitions and equations used in the analysis.

G.1 Input Data for the Annualized Life-Cycle Cost Analysis and the Results

Input data for the annualized life-cycle cost analysis for the individual energy efficiency strategies are presented in Table G.1. The results of the analysis are presented in Table G.3. Input data for the annualized life-cycle cost analysis for Combination A to G are presented in Table G.2. The results of the analysis are presented in Table G.4.

The costs of base-case house and energy efficiency strategies as well as the cost of the renewable energy systems that used in the economic analysis are presented in Table G.5 to G.8. The source of the costs is showed in Table G.9.
| Input Data for the Annualized Life Cycle-Cost Analysis of Individual Energy Efficiency Strategies |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Total 1st Yr. Cost = | Base-Case House | Insulation on Ceiling | L-W Concrete Block wall | Low-e Windows | Shading Device | High Effi. A/C |
| $63,163 | $63,726 | $67,527 | $65,261 | $63,620 | $63,912 |
| **Invest. Tax Credit =** | 0 | 0 | 0 | 0 | 0 | 0 |
| **Life =** | 25 | 25 | 25 | 25 | 25 | 25 |
| **Salvage value =** | 0 | 0 | 0 | 0 | 0 | 0 |
| **Salvage Year =** | 25 | 25 | 25 | 25 | 25 | 25 |
| **Replacement/disposal =** | $100.00 | $100.00 | $100.00 | $100.00 | $100.00 | $100.00 |
| **Replace/disposal Yr =** | 5 | 5 | 5 | 5 | 5 | 5 |
| **Replacement/disposal =** | $100.00 | $100.00 | $100.00 | $100.00 | $100.00 | $100.00 |
| **Replace/disposal Yr =** | 10 | 10 | 10 | 10 | 10 | 10 |
| **Replacement/disposal =** | $1,302.00 | $1,302.00 | $1,302.00 | $1,302.00 | $1,302.00 | $1,950.77 |
| **Replace/disposal Yr =** | 15 | 15 | 15 | 15 | 15 | 15 |
| **Replacement/disposal =** | $725.00 | $725.00 | $725.00 | $725.00 | $725.00 | $725.00 |
| **Replace/disposal Yr =** | 20 | 20 | 20 | 20 | 20 | 20 |
| **Replacement/disposal =** | $100.00 | $100.00 | $100.00 | $100.00 | $100.00 | $100.00 |
| **Replace/disposal Yr =** | 25 | 25 | 25 | 25 | 25 | 25 |
| **Discount Rate (id) =** | 3.00% | 3.00% | 3.00% | 3.00% | 3.00% | 3.00% |
| **Inflation Rate (j) =** | 1.80% | 1.80% | 1.80% | 1.80% | 1.80% | 1.80% |
| **Fuel Inflation Rate (je) =** | 4.00% | 4.00% | 4.00% | 4.00% | 4.00% | 4.00% |
| **Mortgage Rate (im) =** | 4.00% | 4.00% | 4.00% | 4.00% | 4.00% | 4.00% |
| **Annual Electricity Cost** | $395.63 | $391.58 | $359.70 | $396.30 | $393.53 | $381.60 |
| **Annual Maintenance** | $50.00 | $50.00 | $50.00 | $50.00 | $50.00 | $50.00 |
| **Annual Insurance** | $50.00 | $50.00 | $50.00 | $50.00 | $50.00 | $50.00 |
| **Depreciation** | 7.00% | 7.00% | 7.00% | 7.00% | 7.00% | 7.00% |
| **Income Tax (%) =** | 5.00% | 5.00% | 5.00% | 5.00% | 5.00% | 5.00% |
| **Property Tax (%) =** | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
| **% of system cost =** | 100% | 100% | 100% | 100% | 100% | 100% |
| **Salvage Tax =** | 0% | 0% | 0% | 0% | 0% | 0% |
TABLE G.1 (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Base-Case House</th>
<th>Electronic Ballasts</th>
<th>High Effi. Refrigerators</th>
<th>PV-T²</th>
<th>PV</th>
<th>PV-T² and PV</th>
<th>Flat-Plate Solar Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1st Yr. Cost</td>
<td>$63,163</td>
<td>$63,345</td>
<td>$63,288</td>
<td>$94,157</td>
<td>$120,303</td>
<td>$135,322</td>
<td>$79,387</td>
</tr>
<tr>
<td>Invest. Tax Credit</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salvage value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salvage Year</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$425.00</td>
<td>$425.00</td>
<td>$425.00</td>
<td>$425.00</td>
<td>$425.00</td>
<td>$425.00</td>
<td>$425.00</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$1,302.00</td>
<td>$1,302.00</td>
<td>$1,302.00</td>
<td>$1,302.00</td>
<td>$1,302.00</td>
<td>$1,302.00</td>
<td>$1,302.00</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$2,020.00</td>
<td>$2,020.00</td>
<td>$2,020.00</td>
<td>$2,020.00</td>
<td>$2,020.00</td>
<td>$2,020.00</td>
<td>$2,020.00</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$845.00</td>
<td>$845.00</td>
<td>$845.00</td>
<td>$845.00</td>
<td>$845.00</td>
<td>$845.00</td>
<td>$845.00</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Discount Rate (id)</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
</tr>
<tr>
<td>Inflation Rate (j)</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
</tr>
<tr>
<td>Fuel Inflation Rate (je)</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
</tr>
<tr>
<td>Mortgage Rate (im)</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
</tr>
<tr>
<td>Annual Electricity Cost</td>
<td>$395.63</td>
<td>$392.25</td>
<td>$365.33</td>
<td>$224.51</td>
<td>$303.46</td>
<td>$192.37</td>
<td>$289.95</td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$100.00</td>
<td>$150.00</td>
<td>$200.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Annual Insurance</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$100.00</td>
<td>$150.00</td>
<td>$200.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Depreciation</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
</tr>
<tr>
<td>Income Tax (%)</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td>Property Tax (%)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>% of system cost</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Salvage Tax</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
TABLE G.1 (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Base-Case</th>
<th>Combination A</th>
<th>Combination B</th>
<th>Combination C</th>
<th>Combination D</th>
<th>Combination E</th>
<th>Combination F</th>
<th>Combination G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1st Yr. Cost</td>
<td>$63,163</td>
<td>$69,145</td>
<td>$71,243</td>
<td>$69,602</td>
<td>$71,700</td>
<td>$102,694</td>
<td>$128,839</td>
<td>$143,858</td>
</tr>
<tr>
<td>Invest. Tax Credit</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Life (yr)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Salvage value (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td>750</td>
<td>1250</td>
</tr>
<tr>
<td>Salvage Year (yr)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$585.00</td>
<td>$870.00</td>
<td>$1,355.00</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$1,302.00</td>
<td>2132.27</td>
<td>2132.27</td>
<td>2132.27</td>
<td>2132.27</td>
<td>2132.27</td>
<td>2132.27</td>
<td>2132.27</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$725.00</td>
<td>849.52</td>
<td>849.52</td>
<td>849.52</td>
<td>849.52</td>
<td>1334.52</td>
<td>1619.52</td>
<td>2104.52</td>
</tr>
<tr>
<td>Replace/disposal Yr</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Discount Rate (id)</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>3.00%</td>
</tr>
<tr>
<td>Inflation Rate (j)</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
<td>1.80%</td>
</tr>
<tr>
<td>Fuel Inflation Rate (je)</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
</tr>
<tr>
<td>Mortgage Rate (im)</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
<td>4.00%</td>
</tr>
<tr>
<td>Annual Electricity Cost</td>
<td>$395.63</td>
<td>$311.59</td>
<td>$310.24</td>
<td>$311.29</td>
<td>$309.86</td>
<td>$309.86</td>
<td>$309.86</td>
<td>$309.86</td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$100.00</td>
<td>$150.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Annual Insurance</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
</tr>
<tr>
<td>Depreciation</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
</tr>
<tr>
<td>Income Tax (%)</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td>Property Tax (%)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>% of system cost</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Salvage Tax</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
TABLE G.3

The Results from the Annualized Life Cycle-Cost Analysis of Individual Energy Efficiency Strategies

<table>
<thead>
<tr>
<th></th>
<th>Base-Case House</th>
<th>Insulation on Ceiling</th>
<th>L-W Concrete Block wall</th>
<th>Low-e Windows</th>
<th>Shading Devices</th>
<th>High Effi. A/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1st Yr. Cost</td>
<td>$63,163</td>
<td>$63,726</td>
<td>$67,527</td>
<td>$65,261</td>
<td>$63,620</td>
<td>$63,912</td>
</tr>
<tr>
<td>Capital & Interest</td>
<td>-$2,932</td>
<td>-$2,958</td>
<td>-$3,134</td>
<td>-$3,029</td>
<td>-$2,953</td>
<td>-$2,967</td>
</tr>
<tr>
<td>Salvage value</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>-$25</td>
<td>-$25</td>
<td>-$25</td>
<td>-$25</td>
<td>-$25</td>
<td>-$25</td>
</tr>
<tr>
<td>Replacement/disposal</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>-$496</td>
<td>-$491</td>
<td>-$451</td>
<td>-$497</td>
<td>-$493</td>
<td>-$478</td>
</tr>
<tr>
<td>Property tax</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Interest deduction</td>
<td>$44</td>
<td>$45</td>
<td>$47</td>
<td>$46</td>
<td>$45</td>
<td>$45</td>
</tr>
<tr>
<td>Depreciation deduction</td>
<td>$50</td>
<td>$50</td>
<td>$53</td>
<td>$52</td>
<td>$50</td>
<td>$51</td>
</tr>
<tr>
<td>Total</td>
<td>-$3,513</td>
<td>-$3,533</td>
<td>-$3,664</td>
<td>-$3,608</td>
<td>-$3,531</td>
<td>-$3,553</td>
</tr>
</tbody>
</table>

Annual and Monthly Payments

<table>
<thead>
<tr>
<th></th>
<th>Annual</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Elect Cost</td>
<td>$395.63</td>
<td>$32.97</td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$50.00</td>
<td>$4.17</td>
</tr>
<tr>
<td>Annual Insurance</td>
<td>$50.00</td>
<td>$4.17</td>
</tr>
<tr>
<td>Annual Mortgage Payment</td>
<td>$4,043.21</td>
<td>$336.93</td>
</tr>
<tr>
<td>Total Annual Payment</td>
<td>$4,538.83</td>
<td>$378.24</td>
</tr>
</tbody>
</table>

Monthly Elect Cost $32.97

Monthly Maintenance Cost $4.17

Monthly Mortgage Payment $336.93
TABLE G.3
(Continued)

<table>
<thead>
<tr>
<th></th>
<th>Base-Case House</th>
<th>Electronic Ballasts</th>
<th>High Effi. Refrigerators</th>
<th>PV-T²</th>
<th>PV</th>
<th>PV-T² and PV</th>
<th>Flat-Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1st Yr. Cost =</td>
<td>$63,163</td>
<td>$63,345</td>
<td>$63,288</td>
<td>$94,157</td>
<td>$120,303</td>
<td>$135,322</td>
<td>$79,387</td>
</tr>
<tr>
<td>Capital & Interest</td>
<td>-$2,932</td>
<td>-$2,940</td>
<td>-$2,938</td>
<td>-$4,370</td>
<td>-$5,584</td>
<td>-$6,281</td>
<td>-$3,685</td>
</tr>
<tr>
<td>Salvage value =</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Replacement/disposal =</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
</tr>
<tr>
<td>Replacement/disposal =</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$17</td>
<td>-$13</td>
<td>-$55</td>
<td>-$8</td>
</tr>
<tr>
<td>Replacement/disposal =</td>
<td>-$25</td>
<td>-$25</td>
<td>-$30</td>
<td>-$31</td>
<td>-$27</td>
<td>-$70</td>
<td>-$29</td>
</tr>
<tr>
<td>Replacement/disposal =</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
<td>-$3</td>
</tr>
<tr>
<td>Operating Costs =</td>
<td>-$496</td>
<td>-$491</td>
<td>-$458</td>
<td>-$281</td>
<td>-$380</td>
<td>-$241</td>
<td>-$363</td>
</tr>
<tr>
<td>Property tax =</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Maintenance =</td>
<td>-$48</td>
<td>-$48</td>
<td>-$48</td>
<td>-$95</td>
<td>-$95</td>
<td>-$95</td>
<td>-$95</td>
</tr>
<tr>
<td>Insurance =</td>
<td>-$48</td>
<td>-$48</td>
<td>-$48</td>
<td>-$95</td>
<td>-$95</td>
<td>-$95</td>
<td>-$95</td>
</tr>
<tr>
<td>Interest deduction =</td>
<td>$44</td>
<td>$44</td>
<td>$44</td>
<td>$66</td>
<td>$84</td>
<td>$95</td>
<td>$56</td>
</tr>
<tr>
<td>Depreciation deduction =</td>
<td>$50</td>
<td>$50</td>
<td>$50</td>
<td>$50</td>
<td>$75</td>
<td>$95</td>
<td>$107</td>
</tr>
<tr>
<td>Total</td>
<td>-$3,513</td>
<td>-$3,520</td>
<td>-$3,485</td>
<td>-$4,804</td>
<td>-$6,118</td>
<td>-$6,786</td>
<td>-$4213</td>
</tr>
</tbody>
</table>

Annual Costs

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Elec Cost</td>
<td>$395.6</td>
<td>$392.3</td>
<td>$365.3</td>
<td>$224.5</td>
<td>$303.5</td>
<td>$192.4</td>
<td>$290.0</td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$50.0</td>
<td>$50.0</td>
<td>$50.0</td>
<td>$100.0</td>
<td>$150.0</td>
<td>$200.0</td>
<td>$100.0</td>
</tr>
<tr>
<td>Annual Insurance</td>
<td>$50.0</td>
<td>$50.0</td>
<td>$50.0</td>
<td>$100.0</td>
<td>$100.0</td>
<td>$100.0</td>
<td>$100.0</td>
</tr>
<tr>
<td>Annual Mortgage Payment</td>
<td>$4,043.2</td>
<td>$4,054.8</td>
<td>$4,051.2</td>
<td>$6,027.2</td>
<td>$7,700.8</td>
<td>$8,662.2</td>
<td>$5,081.7</td>
</tr>
<tr>
<td>Total Annual Payment</td>
<td>$4,538.8</td>
<td>$4,547.1</td>
<td>$4,516.5</td>
<td>$6,451.7</td>
<td>$8,254.3</td>
<td>$9,154.6</td>
<td>$5,571.7</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly Elec Cost</td>
<td>$33.0</td>
<td>$32.7</td>
<td>$30.4</td>
<td>$18.7</td>
<td>$25.3</td>
<td>$16.0</td>
<td>$24.2</td>
</tr>
<tr>
<td>Monthly Maintenance Cost</td>
<td>$4.2</td>
<td>$4.2</td>
<td>$4.2</td>
<td>$8.3</td>
<td>$12.5</td>
<td>$16.7</td>
<td>$8.3</td>
</tr>
<tr>
<td>Monthly Insurance Cost</td>
<td>$4.2</td>
<td>$4.2</td>
<td>$4.2</td>
<td>$8.3</td>
<td>$8.3</td>
<td>$8.3</td>
<td>$8.3</td>
</tr>
<tr>
<td>Monthly Mortgage Payment</td>
<td>$336.9</td>
<td>$337.9</td>
<td>$337.6</td>
<td>$502.3</td>
<td>$641.7</td>
<td>$721.9</td>
<td>$423.5</td>
</tr>
<tr>
<td>Total Monthly Payment</td>
<td>$378.2</td>
<td>$378.9</td>
<td>$376.4</td>
<td>$537.6</td>
<td>$687.9</td>
<td>$762.9</td>
<td>$464.3</td>
</tr>
</tbody>
</table>
TABLE G.4
The Results from the Annualized Life Cycle-Cost Analysis of Combinations A to G

<table>
<thead>
<tr>
<th></th>
<th>Base-Case House</th>
<th>Combination A</th>
<th>Combination B</th>
<th>Combination C</th>
<th>Combination D</th>
<th>Combination E</th>
<th>Combination F</th>
<th>Combination G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1st Yr. Cost =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital & Interest</td>
<td>-$2,932</td>
<td>-$3,209</td>
<td>-$3,307</td>
<td>-$3,231</td>
<td>-$3,328</td>
<td>-$4,767</td>
<td>-$5,980</td>
<td>-$6,677</td>
</tr>
<tr>
<td>Salvage value =</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$17</td>
<td>$26</td>
<td>$43</td>
</tr>
<tr>
<td>Replacement/disposal =</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
<td>-$4</td>
</tr>
<tr>
<td>Replacement/disposal =</td>
<td>-$25</td>
<td>-$30</td>
<td>-$30</td>
<td>-$30</td>
<td>-$30</td>
<td>-$47</td>
<td>-$56</td>
<td>-$73</td>
</tr>
<tr>
<td>Property tax =</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Maintenance =</td>
<td>-$48</td>
<td>-$48</td>
<td>-$48</td>
<td>-$48</td>
<td>-$48</td>
<td>-$95</td>
<td>-$143</td>
<td>-$190</td>
</tr>
<tr>
<td>Interest deduction =</td>
<td>$44</td>
<td>$49</td>
<td>$50</td>
<td>$49</td>
<td>$50</td>
<td>$72</td>
<td>$90</td>
<td>$101</td>
</tr>
<tr>
<td>Depreciation deduction =</td>
<td>$50</td>
<td>$55</td>
<td>$56</td>
<td>$55</td>
<td>$57</td>
<td>$81</td>
<td>$101</td>
<td>$113</td>
</tr>
<tr>
<td>Total</td>
<td>-$3,513</td>
<td>-$3,711</td>
<td>-$3,804</td>
<td>-$3,732</td>
<td>-$3,824</td>
<td>-$5,069</td>
<td>-$6,420</td>
<td>-$7,006</td>
</tr>
<tr>
<td>Annual Elec Cost</td>
<td>$395.63</td>
<td>$311.59</td>
<td>$310.24</td>
<td>$311.29</td>
<td>$309.86</td>
<td>$138.80</td>
<td>$232.03</td>
<td>$108.47</td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$100.00</td>
<td>$150.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Annual Insurance</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
<td>$50.00</td>
</tr>
<tr>
<td>Annual Mortgage Payment</td>
<td>$4,043.21</td>
<td>$4,426.09</td>
<td>$4,560.40</td>
<td>$4,455.34</td>
<td>$4,589.65</td>
<td>$6,573.61</td>
<td>$8,247.24</td>
<td>$9,208.65</td>
</tr>
<tr>
<td>Total Annual Payment</td>
<td>$4,538.83</td>
<td>$4,837.67</td>
<td>$4,970.63</td>
<td>$4,866.63</td>
<td>$4,999.51</td>
<td>$6,682.42</td>
<td>$8,679.27</td>
<td>$9,567.13</td>
</tr>
<tr>
<td>Monthly Elec Cost</td>
<td>$32.97</td>
<td>$25.97</td>
<td>$25.85</td>
<td>$25.94</td>
<td>$25.82</td>
<td>$11.57</td>
<td>$19.34</td>
<td>$9.04</td>
</tr>
<tr>
<td>Monthly Mortgage Payment</td>
<td>$336.93</td>
<td>$368.84</td>
<td>$380.03</td>
<td>$371.28</td>
<td>$382.47</td>
<td>$547.80</td>
<td>$687.27</td>
<td>$767.39</td>
</tr>
<tr>
<td>Total Monthly Payment</td>
<td>$378.24</td>
<td>$403.14</td>
<td>$414.22</td>
<td>$405.55</td>
<td>$416.63</td>
<td>$571.87</td>
<td>$723.27</td>
<td>$797.26</td>
</tr>
</tbody>
</table>

TABLE G.5

The Cost of the Existing Components of the Base-Case House

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Number of Unit</th>
<th>Unit</th>
<th>Material Cost per Unit ($)</th>
<th>Mat. Total Cost ($)</th>
<th>Labor/Construction Cost per Unit ($)</th>
<th>Total Labor Cost ($)</th>
<th>Total Cost ($)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Insulation on the 2nd floor's ceiling</td>
<td>69</td>
<td>m²</td>
<td>$6.84</td>
<td>$472.06</td>
<td>$0.58</td>
<td>$39.68</td>
<td>$512</td>
<td>BTEI, 2004</td>
</tr>
<tr>
<td>3</td>
<td>4" brick wall</td>
<td>265.99</td>
<td>m²</td>
<td>$4.98</td>
<td>$1,323.32</td>
<td>$3.55</td>
<td>$944.28</td>
<td>$2,268</td>
<td>BB, 2004</td>
</tr>
<tr>
<td></td>
<td>Painting</td>
<td>531.99</td>
<td>m²</td>
<td>$0.75</td>
<td>$398.99</td>
<td>$0.98</td>
<td>$518.69</td>
<td>$918</td>
<td>BB, 2004</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3,185</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Windows and Exterior Doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$635</td>
<td>BTEI, 2004</td>
</tr>
<tr>
<td></td>
<td>Single pane clear glass</td>
<td>320.51</td>
<td>ft²</td>
<td>$0.33</td>
<td>$106.41</td>
<td>$1.65</td>
<td>$628.84</td>
<td>$635</td>
<td>BTEI, 2004</td>
</tr>
<tr>
<td></td>
<td>Wooden frame and Mullion*</td>
<td>19.98</td>
<td>ft³</td>
<td>$15.20</td>
<td>$303.70</td>
<td>Included in Mat. Cost</td>
<td>-</td>
<td>$304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Painting*</td>
<td>365.40</td>
<td>ft²</td>
<td>$0.16</td>
<td>$58.46</td>
<td>Included in Mat. Cost</td>
<td>-</td>
<td>$58</td>
<td>BB, 2004</td>
</tr>
<tr>
<td></td>
<td>Hinge</td>
<td>32.00</td>
<td>Unit</td>
<td>$2.25</td>
<td>$72.00</td>
<td></td>
<td>-</td>
<td>$72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handle</td>
<td>23</td>
<td>Unit</td>
<td>$0.88</td>
<td>$20.13</td>
<td></td>
<td>-</td>
<td>$20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,090</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Shading device</td>
<td>0</td>
<td>m²</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(No shading device)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Existing Air-conditioning Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIT, 2004</td>
</tr>
<tr>
<td></td>
<td>A/C system-1</td>
<td>1</td>
<td></td>
<td>$625.00</td>
<td>$625.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/C system-2</td>
<td>1</td>
<td></td>
<td>$500.00</td>
<td>$500.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,125</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Magnetic Ballasts</td>
<td>11</td>
<td>piece</td>
<td>$5.00</td>
<td>$55.00</td>
<td>$2.00</td>
<td>$22.00</td>
<td>$77</td>
<td>BTEI, 2004</td>
</tr>
<tr>
<td>9</td>
<td>Refrigerators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIT, 2004</td>
</tr>
<tr>
<td></td>
<td>Refrigerator-1</td>
<td>1</td>
<td>Unit</td>
<td>$475.00</td>
<td>$475.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerator-2</td>
<td>1</td>
<td>Unit</td>
<td>$150.00</td>
<td>$150.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$625</td>
<td></td>
</tr>
<tr>
<td>Strategy</td>
<td>Description</td>
<td>Number of Unit</td>
<td>Unit</td>
<td>Material Cost per Unit ($)</td>
<td>Mat. Total Cost ($)</td>
<td>Labor/Construction Cost per Unit ($)</td>
<td>Total Labor Cost ($)</td>
<td>Total Cost ($)</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>Insulation on the 2nd floor ceiling</td>
<td>69 m²</td>
<td>$15.00</td>
<td>$1,035.00</td>
<td>$0.58</td>
<td>$39.68</td>
<td>$1,075</td>
<td>BTEI, 2004</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4" Light Weight Concrete Block Walls</td>
<td>266 m²</td>
<td>$7.65</td>
<td>$2,034.85</td>
<td>$2.10</td>
<td>$558.59</td>
<td>$2,593</td>
<td>BTEI, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Include Light Weight Cement and Light Weight Plastering Cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Form board (Polystyrene)</td>
<td>266 m²</td>
<td>$16.13</td>
<td>$4,290.48</td>
<td>$1.00</td>
<td>$265.99</td>
<td>$4,556</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plastic sheet (Vapor seal)</td>
<td>266 m²</td>
<td>$1.00</td>
<td>$265.99</td>
<td>$0.50</td>
<td>$133.00</td>
<td>$399</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Painting</td>
<td>532 m²</td>
<td>$0.75</td>
<td>$398.99</td>
<td>$0.98</td>
<td>$518.69</td>
<td>$918</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Wall Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$7,549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Low-E glass</td>
<td>320.51 ft²</td>
<td>$2.33</td>
<td>$747.42</td>
<td>$2.48</td>
<td>$793.25</td>
<td>$1,541</td>
<td>Toolbase Service, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum frame</td>
<td>211.47 ft</td>
<td>$3.84</td>
<td>$811.25</td>
<td></td>
<td></td>
<td>$811</td>
<td>BTEI, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mullion</td>
<td>193.84 ft</td>
<td>$3.84</td>
<td>$743.65</td>
<td></td>
<td></td>
<td>$744</td>
<td>BTEI, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hinge</td>
<td>32.00 Unit</td>
<td>$2.25</td>
<td>$72.00</td>
<td></td>
<td></td>
<td>$72</td>
<td>BTEI, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handle</td>
<td>23 Unit</td>
<td>$0.88</td>
<td>$20.13</td>
<td></td>
<td></td>
<td>$20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3,188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Shading device</td>
<td>40 m²</td>
<td>$8.93</td>
<td>$357.00</td>
<td>$2.50</td>
<td>$100.00</td>
<td>$457</td>
<td>BB, 2004</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Air-Conditioning Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/C system-1</td>
<td>1</td>
<td>$999.39</td>
<td>$999.39</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$999</td>
<td>ConsumerSerch.com, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/C system-2</td>
<td>1</td>
<td>$874.39</td>
<td>$874.39</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$874</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,873.77</td>
<td>$1,874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Electronic Ballasts</td>
<td>11 piece</td>
<td>$21.50</td>
<td>$236.50</td>
<td>$2.00</td>
<td>$22.00</td>
<td>$259</td>
<td>Buylighting.com, 2004</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Refrigerators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerator-1</td>
<td>1 Unit</td>
<td>$517.32</td>
<td>$517.32</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$517</td>
<td>ConsumerSerch.com, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerator-2</td>
<td>1 Unit</td>
<td>$232.20</td>
<td>$232.20</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$232</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PV-T² System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$30,994</td>
<td>See Table G.7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PV system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$57,139</td>
<td>See Table G.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PV-T² and PV systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$72,158</td>
<td>See Table G.7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Flat-Plate Solar Collector</td>
<td>230 ft²</td>
<td>$71</td>
<td>$16,224</td>
<td>Included</td>
<td>$0.00</td>
<td>$16,224</td>
<td>See Table G.8</td>
<td></td>
</tr>
</tbody>
</table>
TABLE G.7

The Cost of the Renewable Energy Systems

<table>
<thead>
<tr>
<th>Renewable Energy Systems</th>
<th>Description</th>
<th>Cost per Unit ($)</th>
<th>Unit</th>
<th>Number of Unit</th>
<th>Mat. Total Cost ($)</th>
<th>Total Cost ($)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) PV (on all roof area)</td>
<td>PV Module Cost</td>
<td>$3.04 Wp</td>
<td>11160</td>
<td>$33,926</td>
<td>Maycock, P. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-Related BOS</td>
<td>$1.22 Wp</td>
<td>11160</td>
<td>$13,615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area-Related BOS</td>
<td>$0.86 Wp</td>
<td>11160</td>
<td>$9,598</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Total</td>
<td></td>
<td></td>
<td></td>
<td>$57,139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Solar Collector</td>
<td>Not included the PV array</td>
<td>$51.09 ft²</td>
<td>294</td>
<td>$15,019</td>
<td>See Table G.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes absorber plate, heat exchanger piping system, pumps, and preheat tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-Related BOS</td>
<td>$1.22 Wp</td>
<td>3120</td>
<td>$3,806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area-Related BOS</td>
<td>$0.86 Wp</td>
<td>3120</td>
<td>$2,683</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar Collector System (from item 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Total</td>
<td></td>
<td></td>
<td></td>
<td>$15,974</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>$30,994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) PV (Not include the PV panels of the PV-T² System)</td>
<td>PV Module Cost</td>
<td>$3.04 Wp</td>
<td>8040</td>
<td>$24,442</td>
<td>Maycock, P. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-Related BOS</td>
<td>$1.22 Wp</td>
<td>8040</td>
<td>$9,809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area-Related BOS</td>
<td>$0.86 Wp</td>
<td>8040</td>
<td>$6,914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Total</td>
<td></td>
<td></td>
<td></td>
<td>$41,165</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE G.8
The Cost of a Flat-Plate Solar Collector and Cost Estimation of the Thermal Collection System of the Hybrid PV-T² Collector System

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
<th>Description</th>
<th>Cost</th>
<th>Percentage</th>
<th>Cost/sq.ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 Solar Collectors</td>
<td>4 x 8 each</td>
<td>$1,350.00</td>
<td>29.9</td>
<td>$21.09</td>
</tr>
<tr>
<td>2</td>
<td>Mounting hardware</td>
<td></td>
<td>$300.00</td>
<td>6.6</td>
<td>$4.69</td>
</tr>
<tr>
<td>3</td>
<td>Pump</td>
<td></td>
<td>$200.00</td>
<td>4.4</td>
<td>$3.13</td>
</tr>
<tr>
<td>4</td>
<td>80 Gallon Storage Tank</td>
<td>Includes heat exchanger</td>
<td>$662.50</td>
<td>14.7</td>
<td>$10.35</td>
</tr>
<tr>
<td>5</td>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expansion Tank</td>
<td></td>
<td>$30.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Scoop</td>
<td></td>
<td>$13.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure relief valve</td>
<td></td>
<td>$35.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flow meter</td>
<td></td>
<td>$120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature gauge</td>
<td></td>
<td>$44.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential controller</td>
<td></td>
<td>$110.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Misc. Electric parts</td>
<td></td>
<td>$75.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Misc. Pumbing parts</td>
<td></td>
<td>$75.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>$502.00</td>
<td>11.1</td>
<td>$7.84</td>
</tr>
<tr>
<td>6</td>
<td>Labor</td>
<td></td>
<td>$1,500.00</td>
<td>33.2</td>
<td>$23.44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>$4,514.50</td>
<td>100</td>
<td>$70.54</td>
</tr>
</tbody>
</table>

From the above data, the following was used to esimate the cost of the thermal collection system of the Hybrid PV-T² system.

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat collector plate</td>
<td>$6.33</td>
<td></td>
</tr>
<tr>
<td>Items 3 to 6</td>
<td>$44.76</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$51.09</td>
<td></td>
</tr>
</tbody>
</table>

Data of items 1 to 6 was from Innovative Power Systems (www.ips-solar.com/solarheating/cost.htm)
Closed-Loop Solar Domestic Hot Water System for a Typical Minnesota Home

TABLE G.9
The Source of the Estimated Cost Presented in Table G.5 to G.7

<table>
<thead>
<tr>
<th>No.</th>
<th>Source</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ministry of Commerce, Thailand (BTEI, 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Department of Internal Trade</td>
<td>Cost of Refrigerators and Air-Conditioning Systems</td>
<td>www.dit.go.th Viewed in February, 2004</td>
</tr>
<tr>
<td></td>
<td>Ministry of Commerce, Thailand (DIT, 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Toolbase Service, 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Buylighting.com</td>
<td></td>
<td>www.buylighting.com Viewed in February, 2004</td>
</tr>
<tr>
<td></td>
<td>(Buylighting.com, 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ConsumerSearch.com</td>
<td></td>
<td>www.consumerserch.com Viewed in February, 2004</td>
</tr>
<tr>
<td></td>
<td>(ConsumerSerch.com, 2004)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G.3 Economic Analysis Techniques

The annualized life-cycle cost analysis used the following economic analysis techniques, which were obtained from Economic Calculations for ASHRAE handbook (Haberl, 1993).

Definitions of terms:

\[C_e = \text{cost of energy to operate the system for one period} \]

\[C_{s,\text{assess}} = \text{initial assessed system value} \]

\[C_{s,\text{salv}} = \text{system salvage value at the end of its useful life in constant dollars} \]

\[C_{s,\text{init}} = \text{initial system cost} \]

\[C_y = \text{annualized system cost in constant dollars} \]

\[D_{k,\text{sl}} \text{ or } D_{k,\text{SD}} = \text{amount of depreciation at the end of period } k \text{ depending on the type of depreciation schedule used, where } D_{k,\text{sl}} \text{ is the straight line depreciation method and } D_{k,\text{SD}} \text{ represents the sum-of-digits depreciation method in constant dollars} \]

\[F = \text{future value of a sum of money} \]

\[i_d = \text{discount rate} \]

\[i_m = \text{market mortgage rate (real rate + general inflation rate)} \]

\[i_m P_k = \text{interest charge at the end of period } k \]

\[i = (i_d - j)/(1 + j) = \text{effective discount rate adjusted for energy inflation} \]

\[j, \text{sometimes called the real discount rate} \]

\[i^- = (i_d - j_e)/(1 + j_e) = \text{effective discount rate adjusted for energy inflation} \]

\[j_e \]

\[I = \text{annual insurance costs} \]

\[\text{ITC} = \text{investment tax credit for energy efficiency improvements, if applicable} \]

\[j = \text{general inflation rate per period} \]
\[j_e \quad = \quad \text{general energy rate per period} \]

\[k \quad = \quad \text{end if period(s) in which replacement(s), repair(s), depreciation, or interest is calculated} \]

\[M \quad = \quad \text{periodic maintenance cost} \]

\[n \quad = \quad \text{number of period(s) under consideration} \]

\[P \quad = \quad \text{a sum of money at the present time, i.e., its present value} \]

\[P_k \quad = \quad \text{outstanding principle of the loan for } C_{x, \text{init}} \text{ at the end of period } k \text{ in current dollars} \]

\[R_k \quad = \quad \text{net replacement(s), repair cost(s), or disposals at the end of period } k \text{ in constant dollars} \]

\[T_{\text{inc}} \quad = \quad \text{(state tax rate + federal tax rate) – (state tax rate X federal tax rate)} \]

where tax rates are based on the last dollar earned, i.e., the marginal rates

\[T_{\text{prop}} \quad = \quad \text{property tax rate} \]

\[T_{\text{salv}} \quad = \quad \text{tax rate applicable to salvage value of the system} \]

Single Payment

\[F = P(1 + i)^n \quad (1) \]

\[P = F / (1 + i)^n = F \times \text{PWF}(i, n) \quad (2) \]

\[\text{PWF}(i, n) = 1 / (1 + i)^n \quad (3) \]

Accounting for Varying Inflation Rates

\[i' = \frac{1 + i_d}{1 + j} - 1 = \frac{(i_d - j)}{1 + j} \quad (4) \]

\[i'' = \frac{1 + i_d}{1 + j_e} - 1 = \frac{(i_d - j_e)}{1 + j_e} \quad (5) \]
\[F = P \left[1 + \frac{i_d}{1 + j} \right]^n = P \left(1 + i' \right)^n \]
\[P = F \left[\left(1 + i_d \right) / (1 + j) \right]^n \]
\[P = F \left(1 + i' \right)^n = F \times \text{PWF}(i', n) \]
\[\text{PWF}(i', n) = 1 / (1 + i')^n \]

Recovering Capital as a Series of Payments

\[S = \frac{P_{\text{ann}} \left[1 - (1 + i)^{-n} \right]}{i} \]
\[P_{\text{ann}} = Si / \left[1 - (1 + i) \right]^n \]
\[\text{CRF}(i, n) = i \left[1 - (1 + i)^{-n} \right] = i \left(1 + i \right)^n / \left[(1 + i)^n - 1 \right] \]

Annualized Costs

\[C_y = \text{- capital and interest + salvage value - replacements (or disposals) - operating energy - property tax - maintenance - insurance + interest tax deduction + depreciation (for commercial systems)} \]

where

\[(\text{CRF}_{i, \text{init}} - \text{ITC}) \text{CRF}(i, n) \]
= capital and interest

\[C_{s, \text{salv}} \text{PWF}(i', n) \text{CRF}(i', n)(1 - T_{\text{salv}}) \]
= salvage value

\[\sum_{k=1}^{n} \left[R_k \text{PWF}(i', k) \right] \text{CRF}(i', n)(1 - T_{\text{inc}}) \]
= replacements or disposals

\[C_s[\text{CRF}(i, n)/\text{CRF}(i', n)](1 - T_{\text{inc}}) \]
= operating energy

\[C_{s, \text{assess}} T_{\text{prop}} (1 - T_{\text{inc}}) \]
= property tax

\[M(1 - T_{\text{inc}}) \]
= maintenance

\[I(1 - T_{\text{inc}}) \]
= insurance
\[T_{\text{inc}} \sum_{k=1}^{n} \left[i_m P_{k-1} PWF(i_d, k) \right] \text{CRF}(i^*, n) = \text{interest tax deduction} \]

\[T_{\text{inc}} \sum_{k=1}^{n} \left[D_k PWF(i_d, k) \right] \text{CRF}(i^*, n) = \text{depreciation (for commercial systems)} \]

\[P_k = \left(C_{s, \text{init}} - \text{ITC} \right) \left[(1 + i_m)^{k-1} + \frac{(1 + i_m)^{k-1} - 1}{(1 + i_m)^n - 1} \right] \quad (14) \]

\[\sum_{k=1}^{n} \left[i_m P_k / (1 + i_d)^k \right] = \left[\frac{\text{CRF}(i_m, n)}{\text{CRF}(i_d, n)} + \frac{1}{(1 + i_m)} \frac{i_m - \text{CRF}(i_m, n)}{\text{CRF}(i_d - i_m)/(1 + i_m), n} \right] \times \left(C_{s, \text{init}} - \text{ITC} \right) \quad (15) \]

\[\sum_{k=1}^{n} \left[i_m P_k / (1 + i_d)^k \right] = \left[1 + \frac{n}{(1 + i_m)} [i_m - \text{CRF}(i_m, n)] \right] \left(C_{s, \text{init}} - \text{ITC} \right) \quad (16) \]

\[D_{s, SL} = \left(C_{s, \text{init}} - C_{s, \text{salv}} \right) / n \quad (17) \]

\[D_{s, SD} = \left(C_{s, \text{init}} - C_{s, \text{salv}} \right) \left[2(n - k + 1) \right] / n(n + 1) \quad (18) \]
VITA

PERSONAL INFORMATION

Name: Sakkara Rasisuttha
Permanent Address: 41/9 Ravadee Rd., Nonthabury, 11000, Thailand
Birthday: February 11, 1971, Bangkok, Thailand
Current Address: Faculty of Architecture, Khon Kaen University
Khon Kaen, 40002, Thailand Phone: 66-043-362-046

EDUCATION

1988-1993 Bachelor of Architecture, Khon Kaen University, Khon Kaen, Thailand.

WORK EXPERIENCE

2004-Present Lecturer, Faculty of Architecture, Khon Kaen University, Thailand.
1994-1996 Lecturer, Faculty of Architecture, Khon Kaen University, Thailand, taught architectural design, computer aided design in architecture.