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ABSTRACT 

 

The Incorporation of Bubbles into a  

Computer Graphics Fluid Simulation. (May 2004) 

Shannon Thomas Greenwood, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Donald House 

 

 

We present methods for incorporating bubbles into a photorealistc fluid simulation.  

Previous methods of fluid simulation in computer graphics do not include bubbles.  Our system 

automatically creates bubbles, which are simulated on top of the fluid simulation.  These bubbles 

are approximated by spheres and are rendered with the fluid to appear as one continuous surface.  

This enhances the overall realism of the appearance of a splashing fluid for computer graphics.   

Our methods leverage the particle level set representation of the fluid surface.  We create 

bubbles from escaped marker particles from the outside to the inside.  These marker particles 

might represent air that has been trapped within the fluid surface.  Further, we detect when air is 

trapped in the fluid and create bubbles within this space.  This gives the impression that the air 

pocket has become bubbles and is an inexpensive way to simulate the air trapped in air pockets. 

The results of the simulation are rendered with a raytracer that includes caustics. This allows 

the creation of photorealistic images.  These images support our position that the simple addition 

of bubbles included in a fluid simulation creates results that are much more true to life. 
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1 INTRODUCTION 

Water is everywhere.  It is what we drink, bathe in, and admire in scenic views.  Despite 

being so common, simulating and rendering water is one of the greatest challenges in computer 

graphics.  Recent methods have produced excellent results but have not achieved complete 

realism. In part, this is due to the lack of the inclusion of bubbles in a dynamically splashing 

fluid. 

                            

Figure 1: Water simulation with bubbles. 

 

Bubbles are an inseparable part of water and other fluids.  Bubbles are common even in 

uncarbonated water.  Previous methods have not incorporated bubbles and therefore have not 

looked as realistic as possible.  It is our position that the simple addition of bubbles 

approximated by spheres included in a fluid simulation creates results that are much more true to 

life (as in Figure 1). 

In this thesis, we incorporate bubbles into a fluid simulation using marker particles that have 

escaped from the outside into the inside of a fluid surface. These escaped marker particles might 

represent air volume that has been trapped inside the liquid, and are a good indication of where 

bubbles could form in a dynamically splashing liquid.  Further, we examine the possibility of 

detecting and converting trapped air pockets into bubbles.  

 We implemented a fluid simulation as described by Enright et al. [6].  On top of this  

_______________ 
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simulation, we simulated bubbles that are affected by the fluid and each other but have no effect 

on the fluid.  We then render the bubbles and fluid to appear as one fluid surface.  The bubble 

simulation and rendering is largely based on work done by Kück et al. [13]. 

This thesis is formatted as follows. Section 2 is a brief discussion of background material.  

The discussion of methodology in this paper is broken up into four sections.  In section 3, we 

discuss the fluid simulation. In section 4, we discuss the creation of bubbles from discarded 

marker particles.  In section 5, we discuss the simulation of these bubbles, and in section 6, we 

discuss rendering the integrated bubble/fluid simulation.  Finally, in section 7, we discuss our 

results.  
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2 PREVIOUS WORK 

2.1 OVERVIEW OF PREVIOUS FLUID SIMULATIONS 

The simulation of complex water motion for computer graphics, using the Navier-Stokes 

equations, has been based on results in the computational fluid dynamics community.  Foster and 

Metaxes [10] used the marker and cell method of Harlow and Welch [12] to create a 3D 

animation of water.  Chen, Johnson, and Raad [3] improved this method by placing marker 

particles only near the surface of the fluid.  Stam [14] introduced a semi-Lagrangian treatment of 

the advection portion of the Navier-Stokes equations allowing large timesteps without causing 

instability.  Foster and Fedkiw [9] introduced a hybrid liquid volume model that combined a 

level set with marker particles.  The markers and level set were advected forward in smaller 

timesteps than that used for the fluid in order to reduce the error in the representation of the 

surface.  Further work by Enright et al. [6] proposed the use of marker particles outside of the 

liquid volume in order to better preserve columns of air formed in the fluid.   

2.2 PREVIOUS WORK FOR FOAM AND BUBBLES 

 

Foams and bubbles have been studied mainly because of their surface minimizing properties.   

Analytical solutions to bubble clusters up to the size of three bubbles have been found.  Glassner 

modeled these groups with CSG operations.  

[11].  Numerical solutions must be used for larger bubble clusters, since their liquid films are not 

spherical. 

Kermode and Bolton simulated foams in two dimensions as a network of curved films 

[2][15]. Durian created a model that uses a group of interacting bubbles to represent foam [4][5].   

Differing from the network based approaches; Durian's method simplifies the simulation of the 

foam because it does not have to deal with changes in topology. Using similar techniques, Kück 

et al. simulated and rendered foams in 3 dimensions[13], and our simulation/rendering of 

bubbles is largely based on these techniques. 
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3 FLUID SIMULATION REVIEW 

In order to simulate bubbles with fluids, we had to implement a fluid simulation.  We 

specifically implemented the methods described by Enright et al [6].  This section discusses 

these methods. 

3.1 NAVIER-STOKES EQUATIONS 

 

For numerical simulation of the Navier-Stokes equations, the velocities and pressures are 

typically stored as fields in a three-dimensional grid of cells as in figure 2.  The pressures are 

defined on the center of the cells, and the components of velocities are defined at the centers of 

the faces of the cells.  

                                            

Figure 2: A single grid cell with three of its six face velocities shown [9]. 

 

The Navier-Stokes equations for describing the motion of an incompressible fluid consist 

of two parts.   The first, 

u 0∇ =i                                                                                (1) 
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enforces incompressibility.  Here, u is the velocity field and ∇ is the gradient operator.   u∇i  is 

the divergence of the velocity, which can be thought of as the net flow of fluid out of a 

differential cell.  By requiring the divergence to be zero, the flow in matches the flow out, and 

thus mass is conserved.   

The second part of the Navier-Stokes equations,  

t
1u ( u) (u )u- p= ν∇ ∇ − ∇ ∇
ρ

i i +g                                                       (2) 

couples the velocity and pressure fields relating them through momentum.  Here ν  is viscosity, 

 is density, designates pressure, and g  represents external accelerations, like gravity, acting 

on the fluid.  Since there are no analytic solutions, these equations are solved numerically over 

time to model the behavior of an incompressible liquid.  

ρ p

3.1.1 Solving the Navier-Stokes Equations in Multiple Parts 

For computer graphics, as long as the fluid looks convincing, it does not matter whether 

the underlying fluid velocities are completely accurate.  This might be quite different for a 

mechanical engineer who demands accurate fluid velocities and pressures in a simulation of a 

dam.  He is solely interested in achieving accuracy, while in computer graphics we are interested 

in the creation of attractive images and can ignore accuracy to a certain degree.  The methods 

preferred for computer graphics sacrifice some accuracy for stability and speed.  These methods 

guarantee that the simulation is stable, and allow the use of large timesteps.  By allowing large 

timesteps, computation time is reduced, and the simulation can be executed faster.   

As first shown by Stam [14], the Navier-Stokes equations can be solved in four parts.  

The steps are:  

P P P Pprojectadd force advect diffuse

0 1 2 3( ) ( ) ( ) ( ) ( ).w x w x w x w x w x→ → → → 4                           (3) 

Here x denotes position.  is the velocity at its initial state during a time step.  Successive 

portions of the Navier-Stokes equations are applied creating , ,and .  The 

divergent velocity field is finally projected creating which is the divergence free 

velocity field at the end of the time step (see subsection 3.1.1.4).  It should be noted that when 

explicit methods are used, a simple Euler step is all that is necessary.  The computation and 

0 ( )w x

3 ( )w x

1( )w x

( )x

2 ( )w x 3 ( )w x

4w
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memory requirements for higher order methods make them undesirable when accuracy is not the 

highest priority.   

3.1.1.1 Forces 

For the forces part of the equation (g), we simply take an Euler timestep to add in the 

forces, as in 

1 0( ) ( )w x w x g t= + ∆ .                                                        (4)  

3.1.1.2 Advection 

For the advective1 term of the equations ( (u )u− ∇i ), a semi-Lagrangian method is used to 

enforce stability, as in  

2 1( ) ( ( , ))w x w p x t= −∆ .                                             (5) 

The velocity is traced back in time one timestep, and the backtraced velocity is used for the new 

velocity field.  The tracing function shown here, ( , )p x t−∆ takes two parameters.  The first is the 

position x .  The second parameter tells the tracing function to backtrack one timestep.  The 

result returned is the position traced from the position

t−∆

x one timestep backward through the 

velocity field .  The velocity value of at this position becomes the values of at 

position 

1( )w x 1(w x) 2 ( )w x

x .  Stam[14] implemented the backtracing function ( , )p x t−∆ with a second order 

adaptive particle tracer.  Higher order interpolants are undesirable due to high overshoots and 

oscillations.  We simply used a small Euler step to backtrace velocities.  This may be inefficient, 

but is not a problem because this part of the Navier-Stokes equation is not computationally 

expensive. 

 By backtracing the velocities, the momentum of the velocity field is carried forward in 

time.  This method guarantees stability because no velocity values can be higher than previous 

velocities. 

                                                 
1 Advection and Convection are used here as in [13].  In fluid dynamics, advection and convection are often used 
interchangeably to describe fluid movement.   
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3.1.1.3 Diffusion 

For the convective1 , diffusion, or viscous term ( ( u)ν∇ ∇i ), Stam used an implicit 

solution.  We explicitly solved this portion of the equation with local viscosity adjustment as 

suggested by Foster and Fedkiw [9] where 

2
3( ) 2 ( )x

ww w x t
t

∂
= + ∆

∂
    ,                                                   (6) 

and 

22
2=w w

t
ν .∂
∇

∂
                                                                (7) 

2
2w∇ is discretized using standard central differencing and if 2w

t
∂
∂

is too large causing instability, 

it is clipped to a manageable value (based on the CFL condition, see section below). 

3.1.1.4 Projection  

Finally, incompressibility is enforced.  Here, projection is defined as the operation that 

begins with the divergent velocity field and results in a divergence free velocity field  

(using the pressure field 

3w 4w

p ).  As discussed by Stam[14], a single equation relating velocity and 

pressure can be obtained by combining eq.1 and eq.2.  A mathematical result known as the 

Helmholtz-Hodge Decomposition, states that a vector field can be divided into a divergence free 

vector field and the gradient of a scalar field.  This takes the form 

,w u q= +∇                                                        (8) 

where u  is the divergence free vector field ( 0u∇ =i ) and q is the scalar field.  This allows the 

definition of a projection operator P which projects any vector field  onto its divergent free 

part . 

w

u = Pw

This operator is implicitly defined by taking the divergence of both sides of the equation 

giving 
2w q∇ = ∇i .                                                               (9) 

This causes to drop out of the equation because u 0u∇ =i .  We can solve for if we have w. 

Rearranging equation 8 gives 

q

u Pw w q= = −∇ .                                                        (10) 
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To apply this to the Navier-Stokes equations, we substitute the divergent velocity field  and 

the scalar field 

3w

1 p
ρ
∇  into equation 9 and we get 

2
3p wρ∇ = ∇i .                                                            (11) 

After solving for pressure, we can solve for the divergence free velocity  by substituting into 

equation 10 giving 

4w

4 3
1w w
ρ

p= − ∇ .                                                        (12) 

The laplacian operator (∇ ) on the left side of equation 11 is a matrix with length and width of 

N, where N is the number of cells in the simulation grid.  To solve for

2

p , this matrix must be 

inverted and is too large to be inverted by analytical methods.  Fortunately, the matrix is mostly 

empty since each cell is only related to adjacent cells.  A sparse matrix solver may be used to 

numerically invert the matrix to a high degree of accuracy.  Foster and Fedkiw [9] used a 

preconditioned conjugate gradient method in order to invert the matrix and solve for pressure.  

It should be noted that as in equation 11, the gradient of the velocities is needed at the 

location of the pressure, and the gradient of the pressure is needed at the location of the 

velocities. Thus by staggering velocities and pressures fields, as in Figure 2, there is better 

accuracy than defining all values at the center of the cell. 

3.1.2 Empty Cells 

The Navier-Stokes equations solve for the velocities inside of the fluid, but they do not 

specify the velocities outside of the fluid or at the boundary of the fluid.  Cells that contain only 

fluid are considered fluid cells, and they are only governed by the Navier-Stokes equations.  

Cells that contain no fluid are considered empty cells and are not simulated.  Not simulating the 

air outside of the fluid saves computation time.  Since the air outside of a fluid often does not 

affect the fluid’s motion, this is a reasonable time saving measure.   

3.1.3 Surface Cells 

Cells that contain both air and fluid are considered surface cells.   The pressures of the 

surface cells are set to a user defined atmospheric constant.  The velocities of the surface cells 
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must be explicitly set to be divergence free. The setting of surface velocities is a heuristic, and its 

main purpose is to keep the fluid from unrealistically gaining or losing fluid. The primary 

movement of the fluid is government by the Navier-Stokes equations in the fluid cells.  Chen et 

al.  [3] discusses individual cases for making the surface cells divergence free. Enright et al.  [6] 

discusses using the methods described by Adalstein and Sethian [1] to extrapolate velocities for 

surface cells into a few empty cells while simultaneously making the surface cells divergence 

free.   

 It is useful to extrapolate velocities into empty cells adjacent to the surface because of 

the semi-Lagrangian method for solving the advection term.  Backtracing velocity values may 

lead out of the current fluid.  If velocity values are not extrapolated into empty cells, the 

velocities in the empty cells are zero.  Backtracing zero values can cause the fluid to settle faster. 

3.1.4 CFL Condition 

The goal of solving the Navier-Stokes equations with these methods is stability, so the 

largest timestep possible can be used. The CFL condition (Courant-Friedrichs-Levy) states that 

the timestep must be smaller than the minimum time over which something significant can 

happen.  Using the methods outlined above, the Navier-Stokes have been solved with good 

results at 5 times the CFL condition [9].  For this discrete system describing fluid, the relevant 

CFL condition is the time in which the fluid can jump over an entire cell skipping it entirely, or 

 t u∆ < ∆τ/,                                                                              (13) 

i.e. the timestep should be less than the width ∆τof a cell divided by the magnitude of the 

maximum velocity.  If it is possible for fluid to skip over an entire cell, velocities in the skipped 

cell may not affect portions of the fluid.  This is significant because the fluid passes over the cell 

without being affected by the velocity within the cell. 

3.2 LEVEL SET 

We used a level set method to represent the fluid as described in [6] and [9].  A level set is 

a temporally smoothed dynamic implicit function.  The function is defined on a high resolution 

Eulerian sub-grid that sits inside of the Navier-Stokes grid.  The isocontour where the implicit 

functionφ  equals zero defines the surface interface. φ is a signed distance function that is 
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positive outside of the surface and negative inside.  The surface can be ray traced directly using a 

root finding algorithm.  The zero values can be found easily because at any point the value of φ  

explicitly gives the minimum distance to the surface.  

  The level set is moved forward in time by  

t u 0φ + ∇φ =i ,                                                                   (14) 

which is similar to the advection term of the Navier-Stokes equations.  This advection equation 

could be solved using semi-Lagrangian methods, but these are too inaccurate.  To achieve high 

accuracy, we use the higher order upwind differencing procedure described in [7].  This uses a 

wide envelope when discretizing  to achieve high-order spatial accuracy.   ∇φ

As the level set is advected, it is stretched and compacted.  A signed distance function 

must be maintained for efficient rendering and accurate simulation. 

3.3 PARTICLES 

Level sets do not preserve sharp detail for coarse grids and dynamic surfaces, so there may 

be severe volume loss as seen in Figure 3.  To address this issue, Foster and Fedkiw [9] 

combined a level set with particles on the inside of the fluid. 

                                            

Figure 3: Prevention of volume loss using marker particles on the inside of a level set. Thin water column (left), 

representation by level set alone (middle), and level set with marker particles on the inside(right). 

 

While this prevented volume loss in sharp areas of the level set, it did not prevent volume 

gain in sharp areas that curved inward into the fluid surface such as an air column as seen Figure 

4.   
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Figure 4: Particles on the inside only versus particles on both sides.  Thin air column(left), hybrid representation 

with particles on inside only (middle), and hybrid representation with particles on inside and outside(right). 

 

Enright et. Al [6] used particles on the inside and outside to prevent both volume loss and 

volume gain of the level set.  It should be noted that when using particles alone to represent a 

fluid, it is very difficult to maintain an appealing surface, so a hybrid level-set/particle method is 

the optimal solution for representing the fluid surface. 

3.3.1 Particle Error Correction 

We associate a spherical implicit surface function  

( ) ( pp p px s r x xφ = − − )
G G G

                                                 (15) 

with each particle, where  is the sign of the particle (negative inside, positive outside), is the 

radius, and 

ps pr

px is the position[6].   

When we reconstruct the level set, we compare φ  with pφ  at the grid points containing 

the particle.  For a negative particle we update φ  with pφ  if pφ  is the lower value.  For a positive 

particle we do the same if  is the greater value.   pφ

The marker particles are integrated forward separately from the level set using a forward 

Euler time integration scheme.  Particles that are on the wrong side of the interface by more than 

their radius are used to reconstruct the level set.  For moving the particles and level set, a smaller 

timestep obeying the CFL condition (see equation 13) should be used to avoid dissipation [9].  

This is not a problem because updating the surface is not too expensive computationally.  

Enforcing incompressibility is the most expensive part of the algorithm. 
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3.3.2  Particle Seeding and Reseeding 

Before the simulation, particles are seeded on both sides of the interface.  Particles are 

randomly placed in the desired density per cell.  Enright et al. [6]  seeded 32 to 64 particles per 

cell.   Having more marker particles per cell than 64 has little effect because there is thorough 

coverage.  Having fewer marker particles per cell may not provide enough coverage and may 

allow volume loss/gain of the level set.   

Enright et al. [6] seeded particles three cells on each side of the interface.  This distance 

was chosen because it works well.  Particles are not needed further from the interface because 

they will not be used to reconstruct the surface.  Seeding particles over a smaller distance from 

the interface might not provide enough coverage.   

Over time, the interface tears and stretches so that the original particle density may not be 

maintained.  Particles need to be reseeded every so often to maintain the desired density (Enright 

et al. reseeded the particles every 20 frames).  Particles that are further than the appropriate 

distance from the interface are removed from the simulation.  The reseeding operation should 

avoid replacing particles that are overlapping or adjacent to the interface.  These particles contain 

very specific information about the fluid surface  If necessary, particles that are further from the 

interface should be removed to reduce the particle density in a cell. 

3.3.3 Particle Radius Adjustment 

 

The radius dynamically changes as the particles are moved relative to the surface as seen 

in Figure 5.  
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Figure 5: Particle radii set by their distance from the fluid surface. 

 

The radius is set by 

 

max max

min max

min min

          if ( )

( )   if r ( )

r           if ( )  

p p

p p p p p

p p

r s x r

r s x s x r

s x r

 φ >
  = φ ≤ φ ≤
 

φ <  



JJG

JJG JJG

JJG
,                                                          (16) 

where and are the minimum and maximum radii that are assigned to particles.  Enright et 

al. [6] used .1 times the width of a cell as the minimum radius and .5 times the width of a cell for 

the maximum radius (which were chosen because they work well).  The radius adjustment puts 

the edge of the spherical particle flush with the zero level set when possible.  This helps makes 

the fluid surface smooth. 

minr maxr

3.3.4 Escaped Particles 

Even though a particle’s volume may be jutting over onto the other side of the level set, 

we only apply error correction once a particle is at least it’s own radius on the wrong side of the 

interface.  As seen in Figure 6, a particle must be entirely on the wrong side of the interface for 

error correction to be applied for that particle. 
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Figure 6: Error correction of positive particles.   Particles not used in error correction (black), particles used in 

error correction (white), and escaped particles (red). 

 

This is done because we only want to apply error correction when there is a large 

disparity between the level set and the particles.  Otherwise, the smoothness of the level set is the 

priority. 

These corrections need to be done after the level set and particles are integrated forward, 

and after the level set is reinitialized to a signed distance function.  The radii of the particles are 

adjusted after the second correction step.  Particles that are 1.5 times their radius on the wrong 

side of the surface may prevent the surface from being smooth  (this is an arbitrary choice that 

works well).  

Foster and Fedkiw [9] suggested that particles that have escaped to the outside of the surface 

could be rendered as spheres simulating drops.  The particles that escape from the outside to the 

inside were just deleted in previous fluid simulations.  In the next section, we will explore the 

use of these escaped particles to create bubbles.   
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4 CREATING BUBBLES FROM ESCAPED MARKER PARTICLES 

 

In the real world, bubbles are created whenever air is trapped inside of a fluid.  Bubbles 

persist at the surface because of the surface tension in the film and the pressure within the 

bubble.   

Surface tension effects can be added to fluid simulations.  The air can be simulated as a 

second fluid, and bubbles can be simulated with the level set and underlying velocities.   

However, the film of the bubble when it reaches the surface is too fine to be simulated with the 

underlying gird. 

For our simulation, we create bubble objects that are moved by the velocities and pressures 

within the fluid simulation.  Our bubbles are passive, and have no effect whatsoever on the 

underlying fluid simulation. 

Our assumption is that in a moving liquid, the effects of relatively small bubbles are not 

significant enough to cause a noticeable change on the surface of the fluid.  In reality, bubbles 

moving through a fluid do affect the motion of the fluid.  Since a bubble is part of the fluid, when 

a bubble moves, what one sees is the motion of the surface of the fluid. Since we are representing 

this surface with the bubble object, the bubble object moves instead of the level set 

representation of the fluid (which is too coarse to represent a thin bubble film). 

At the surface, a single bubble has miniscule mass compared to the water itself, so it will 

not cause noticeable motion if the water is moving.  If the water is still, a single bubble could 

cause noticeable ripples, since that bubble causes the only motion in the water.  A still fluid is 

not the problem that we are interested in anyway, because for a still fluid, the Navier-Stokes 

equations are already excessive. 

Using passive bubbles is simpler and is more practical than the alternative of allowing the 

bubbles to create forces or directly manipulate fluid velocities.  Once the fluid simulation is run 

and saved, the bubble simulation can be tweaked to the needs of the animator.  For example, 

bubbles could be added and removed as desired.  If the bubbles affected the fluid, the entire fluid 

simulation might need to be re-run each time a bubble is changed.  Since the fluid simulation 

takes much longer than the bubble simulation, that is undesirable. 
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4.1 BUBBLE CREATION 

In this thesis, we explore the idea of creating bubbles from escaped marker particles.  When a 

particle that represents air moves too far across the interface, it is a good indication of where 

there might be mixing of air and water. 

We simulated the fluid as specified by Enright et al. [6].  The bubble simulation created is 

independent of how the Navier-Stokes equations are solved, but is dependent on the hybrid-

particle method representation of a fluid surface.  There have to be marker particles representing 

the outside of the fluid in order to use them to create air bubbles. 

4.2 TREATMENT OF AIR POCKETS 

While Enright et al. [6] improved the representation of the fluid surface so that the level set 

did not leak into surrounding air columns, they still did not simulate the air.  By not simulating 

air as an incompressible or compressible fluid, air pockets that form are ignored by the fluid 

simulation and are simply engulfed by fluid.  If this is noticeable, it is very undesirable.  In 

reality, the air pockets would become bubbles and would not lose volume. 

If we did not detect air pockets, the air pocket would shrink, as the fluid velocities flow 

inward.  This would push the marker particles into tighter and tighter spaces, and when the air 

pocket is finally totally empty, a few bubbles would form from the escaped marker particles.  

That much volume loss is very unrealistic. 

Fortunately, it is straightforward to detect these air pockets by looking for cells that do not 

contain fluid and are not connected to the air outside of the fluid.  This is achieved by a flood fill 

algorithm [8].  The cells are treated like pixels, and cells with positive φ  are “painted” as one 

“color” which designates them as air cells.  All other cells including wall cells are “painted” 

another “color” designating that they are not air cells.  The fill algorithm is started from an empty 

cell that is guaranteed to be in the atmosphere (such as a cell at the top of the simulation).  The 

empty cells are “painted” a “color” that designates that these cells are connected to the 

atmosphere.  After the fill algorithm is complete, empty cells that are not “painted” the 

atmosphere “color” are parts of air pockets.  

The only modification needed is that diagonal cells from an atmosphere cell should be 

included only if the value of  between the cells is positive.  If the value of  at the junction φ φ
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between the cells is positive, the air extends diagonally between cells.  Otherwise, the diagonal 

of the cell is blocked off with fluid as seen in Figure 7. 

     

Figure 7: Diagonal inclusion cases. Amosphere cells are marked in yellow.   The fluid is marked in blue.  Case 

when diagonal cell should be included with atmosphere (left) and when it should not (right). 

 

The air pockets are detected before the level set is reinitialized and after it is moved and 

corrected.  When an air pocket is detected, we convert the empty cells to fluid by changing the 

value of φ  to a negative value.  Since the marker particles within these cells are now far from the 

interface, they are considered escaped and become bubbles.  This gives the appearance that the 

air pocket changes into bubbles.  The velocities of the cells in the air pockets will be initialized 

to a reasonable value through the extrapolation of surface velocities (in the surface conservation 

step). 

4.3 AVOIDING UNREALISTIC BUBBLES 

Since, we are creating bubbles from escaped marker particles, we want to avoid creating 

bubbles in cases where it is not feasible for bubbles to form. One precaution taken is to create a 

bubble only if the curvature of  is negative at the position of the particle.  If there is a positive 

curvature, the water is curved outward towards the air, and bubbles should not form.  If there is a 

negative curvature, the air is curving toward the water and it is feasible that bubbles could form.  

φ

4.3.1 Small Particles 

By the Enright et al method [6], particles’ radii are adjusted in order to keep the surface 

smooth.  It is common for the level set to differ from the particles by enough to cause particles of 

the minimum radius to escape.  In many of these situations, it is not appropriate for bubbles to 

 



 18

form, so we want to use caution when using these small particles to create bubbles.  Since a 

particle with larger than the minimum radius represents a larger move of the surface, we accept 

these particles as a basis to create bubbles.  If a bubble is created from a particle with the 

minimum radius, we mark that that is the case.  Once all of the bubbles are created, we check 

that new bubbles created from small particles are in contact with new bubbles created from 

larger particles.  If there is no contact, then we remove the bubble created from a small particle. 

4.4 BUBBLE SIZE 

In our method, the bubbles are based on the position and radius of the escaped marker 

particles.  Since the radius of the particle is between .1 and .5 of the cell width, creating bubbles 

directly from the size of the radius would create extremely tiny bubbles for fine grids.  If the 

escaped particle’s radius were just scaled up by a constant value, there would not be enough 

variation in bubble size.  Even when checking validity, a large proportion of particles with the 

minimum radius escape.  Also, when air pockets form, all of the marker particles are of the 

maximum size away from the surface of the air pocket.  

With just a constant scale, there would be too many bubbles with identical radius.  Bubbles 

radii could be generated totally randomly, but there is valid information in the marker particles’ 

radii to be used.  For common splashing and sloshing, a good proportion of the escaped marker 

particles are small.  For bubbles created from air pockets, a significant proportion of the escaped 

marker particles have a radius of the maximum size.  It makes sense for large air pockets to 

create larger bubbles, so bubbles created from marker particles with the maximum radius should 

have a larger radius on average than bubbles created from marker particles with the minimum 

radius.   

Our method generates bubble radii based on a Gaussian distribution determined by the radius 

of the marker particle.   Particles with the maximum radius create bubbles with one average and 

std. deviation.  Particles with the minimum radius create bubbles with a different average and 

std. deviation.  For particles with radius sizes in between the minimum and maximum, we used 

interpolated values of the averages and standard deviations.  Values that are too large or small 

are recalculated until they are appropriate size (as determined by user defined parameters).  It is 

important that bubbles with sizes that are too small to be sampled effectively by normal 

raytracing should be avoided (unless there is a special case for rendering these bubbles).  This 
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method effectively creates bubbles of varied sizes related to the radius of the marker particle.  As 

shown in Figure 8, this method is independent of the cell width and grid size, so that similar 

bubbles will be created for different grid resolutions.   

 

 

Figure 8: Bubbles created in different grid resolutions. 30x30 grid (left) and 60x60 grid (right). 

4.5 BUBBLE MERGING AND POPPING 

It should be noted that adjacent marker particles overlap.  Further, if the bubbles are larger 

than the original marker particles, then there is significant overlap in the created bubbles.  During 

bubble creation, it might make sense to merge heavily overlapping bubbles into larger bubbles.  

Also, bubbles that meet in the interior of the fluid might merge into larger bubbles.  We chose 

not to implement this, since we model bubbles with spheres, larger bubbles are undesirable.  The 

limitations of large bubbles are discussed in the last section. We did remove bubbles that were 

completely encompassed by other bubbles.   

A bubble pops when one of its films drains too much and breaks.   As discussed in Kück et 

al[13], this can be modeled by removing bubbles randomly.  The larger the surface area, the 

more likely it is that a bubble is going to pop.  Thus, larger bubbles pop sooner than smaller 

bubbles.  When a bubble is adjacent to an obstacle, there is less surface area of film and thus less 

area to break.  

We parameterized this behavior by having a lifetime of a small bubble size, and scaled down 

its lifetime by a scale associated with a larger bubble size as follows 
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where  is the bubble’s radius, br sr is the parameter of the radius where the bubble’s lifetime is 

not scaled down, and  is parameter of the radius associated with the scale A .   Then, at each 

timestep in the simulation it is checked whether 

lr

(1 )L t
T
+

< + ,                                                        (18) 

where   is a uniformly distributed random value between zero and one, T  is the parameter for 

bubble lifetime, and+  is the timestep.  If this condition is true, the bubble is removed. t

We allow  to reach values greater than one to allow increasingly short lifetimes for large 

bubbles.   does not have to be clipped to 0, as bubbles smaller than the reference bubble might 

have longer average lifetimes.  It is arbitrarily clipped to 0 to keep it from reaching -1 where it 

would cause infinite bubble lifetimes. 

L

L

We modeled the behavior of bubbles in contact with obstacles lasting longer by having a 

separate lifetime parameter for bubbles in contact with walls. 

The film that ruptures could be the film between bubbles, and the result of its breakage is the 

merging of bubbles.  This type of merging behavior was not implemented because, as mentioned 

before, we tried to avoid creating large bubbles. 

Also, it should be noted that bubbles should only be removed once they reach the surface.  It 

would not be realistic for bubbles to “pop” while inside of the fluid.     

4.6 PARTICLE DENSITY AND CREATION OF BUBBLES 

Since there are different densities of marker particles per volume, we decided to make the 

number of bubbles formed dependent on volume and not on grid resolution.  A similar fluid 

simulation with twice the resolution in all dimensions has eight times as many maker particles 

per volume for the same number of marker particles per cell.   This is a problem as the larger 

grid may create more bubbles than the smaller grid.  It is useful to test bubble parameters with 

smaller grid sizes, so consistency is important when changing to larger grids.  A marker/volume 

density is chosen in which all escaped particles are considered to create bubbles.  In the step 
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where bubbles are created, the desired bubble marker density is divided by the actual 

marker/volume density.  If a random number is below this threshold, then a bubble is considered 

for creation (it still may be rejected based on curvature or maker particle radius).   That means 

that for a simulation with 8 times the marker particles per volume density of the desired value, 

we only use one eighth of the escaped marker particles to create bubbles. 

 



 22

 

5 BUBBLE SIMULATION 

5.1 SIMULATION OF FOAMS FROM KÜCK ET AL. [13] 

We based our foam simulation on the methods outlined by Kück et al. [13], and this entire 

subsection discusses only these methods.  The exact locations of foam films are not simulated.  

Bubbles are simulated by spheres of fixed radii and are moved according to assumed forces. 

  

 

Figure 9: Attractive forces acting on touching bubbles.  

 

 Attractive and repelling spring forces are created to cause the bubbles to overlap and 

appear to be part of a foam structure.  The desired effect is that the forces will cancel each other 

out when the bubbles overlap the desired amount.   

 The repelling force  (the force on bubble i due to contact with bubble j) is modeled 

with a spring of rest length  

r
ijF

ij i jl r r= + ,                                                                       (19) 
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where  and r  are the radii of bubbles i and j respectively.  The equation for the spring force is 

then 

ir j

1 1 (r
ij r i j

iji j

F k p p
lp p

 
 = −
 − 

),−                                                (20) 

where  is a user defined coefficient that determines how strong the repelling behavior of the 

bubbles is, and  and 

rk

ip jp  are the positions of the spheres representing the bubbles i and j.   

The attractive forces depend not only on the distance between bubbles, but on how many 

bubbles each bubble is in contact with.  More specifically,  
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iNB  is the number of spheres overlapping with sphere i in the current configuration.   is a 

user-defined term that determines how strong the attractive force between bubbles is.  c  causes 

the attraction force to be smaller for bubbles in larger clusters.   becomes zero when the 

center of the smaller bubble rests on the edge of the larger bubble, and c  increases when the 

distance is larger.  It should also be noted that  becomes less than zero when the larger 

bubble encompasses the center of the smaller bubble.  This causes the attraction force to be a 

repelling force preventing bubbles from overlapping too much.   

ak

nb

distc

dist

distc

This viscosity between bubbles as they move with respect to their neighbors is modeled 

by 
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where  is the user defined parameter for the viscosity,  is the velocity of the bubble i, and vk iv iv  

is the mean velocity of the bubbles in contact with bubble i. 

 Also, Kück et al. takes into account friction between a bubble and an obstacle (that the 

bubble is in contact with) by  

(of o
i of i iF k v v= − ),                                                       (26) 

where  is the user defined friction coefficient and ofk o
iv is the average velocity of obstacles in 

contact with bubble i.  A constant force gF  models gravity and acts on all bubbles.  Also, air 

resistance is modeled with 

,air
i airF k= − iv

);ik

                                                        (27) 

where  is the user-defined parameter for air resistance. airk

In order to solve for velocity, Kück et al. grouped forces.  The force groupings are given 

by  

,total ra fr g
i i iF F F F= + +                                                       (28) 

with 
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  ,fr v of air
i i i iF F F F= + +                                                            (30) 

where is the total force acting on bubble i, is the grouping of all attractive and repelling 

forces with adjacent bubbles( ) and objects  ( ), and

total
iF ra

iF

iNOiNB
fr

iF  represents all friction effects on 

bubble i with other bubbles, obstacles, and the air.  It also should be noted that is the 

attractive force on bubble i due to object k, and 

or
ikF

oa
ikF  is the repelling force on bubble i due to 

object k.  These are treated similarly to bubble-to-bubble attraction and repulsion forces. 
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 In order to solve for velocity, Kück et al. assumed that the bubbles are massless.  This 

means that the sum of all forces  is zero, and allows a direct solution for velocity.   By 

combining equations 25 through 30 we get the explicit solution giving  

total
iF

o ra
v i of i i

i
v of air

k v k v F F
v

k k k
+ + +

=
+ +

g

i iV

.                                            (31) 

This is a first order ODE system.  It should be noted that the spring forces are dependent on 

which bubbles overlap.  This information must be updated for each timestep.  The result of the 

preceding timestep is used as the configuration for the timestep.   

To incorporate the bubble simulation model from Kück et al. [13] to work with fluids, we 

have to add forces from the fluid to the bubble simulation.   

5.2 SIMULATION OF BUBBLES WITH FLUID 

5.2.1 Pressure Forces on Bubbles 

Bubbles within the fluid are subject to a force due to pressure.  Foster and Metaxes [10] 

modeled buoyant objects that were subject to a force related to the negative gradient of the 

pressure times the volume.   We created the pressure force  
p

i pF K p= − ∇ ,                                                       (32) 

where ip∇  is the gradient of the pressure at the position of bubble i, V is the volume of bubble i, 

and  is a user defined animation parameter that can adjust the contribution of pressure on a 

bubble’s motion.  Since our forces such as friction are modeled linearly, for large bubbles, 

velocities can get unrealistically large.  For the calculation of  we clipped the value of V  to a 

user defined limit to keep bubbles from moving unrealistically fast. 

i

pK

p
iF i

5.2.2 Fluid Viscosity and Bubbles 

The viscosity of the fluid affects a bubble’s velocity.  This is modeled by 

(visc fluid
i visc iF K v v )i= −  ,                                            (33) 

where  is the force on bubble i due to the viscosity of the fluid, visc
iF fluid

iv  is the velocity of the 
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fluid at the position of bubble i, and v  is the velocity of bubble i.  i viscK  is a user-defined 

coefficient of viscosity.   could be the same as the viscosity coefficient used in the Navier-

Stokes equations; however, we used a separate parameter for more control over the animation. 

viscK

 

5.3 BUBBLE FORCES IN DIFFERENT AREAS 

As in previous work [13], we make the assumption that the bubbles are massless to solve for 

their velocities.  Depending on where the bubble is in the simulation, there is a different 

contribution of different forces.   

The four areas that we defined that a bubble can be in are below, adjacent below, adjacent 

above, and above the surface as seen in Figure 10. 

 

Figure 10: Bubble regions. Above the surface (left), adjacent above (middle left), adjacent below (middle right), and 

below the surface (right).  Fluid surface interface is marked in red. 

5.3.1 Bubble Forces Below the Surface 

In wet foams there is only a repulsion force between bubbles [13], so we did not model 

attractive forces between bubbles when they are totally under the surface of the fluid.  Also, 

under the surface of the fluid, we did not have a friction force between bubbles.  We did not want 

bubbles beneath the surface to remain in contact since they only repel each other.  Also, gravity 
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will not have significant impact, as the pressure force will dominate.  In order to solve for 

velocity, we combine equations 32 , 33, and 35 into one equation giving 

,  total r p visc
i i i iF F F F= + +                                               (34) 

with 
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r
iF  is the grouping of repelling forces between bubbles.  We make a massless assumption like 

Kück et al. [13] used in the derivations of equation 31.  By setting  to zero and solving, we 

get 

total
iF

1 ( r p
i visc fluid i

visc

v K v F
K

= + )F+ ,                                        (36) 

where the only contributions are from viscosity with the fluid, repulsion forces between bubbles 

and other objects, and the force due to pressure.  

It should be noted that we omitted including a friction force between bubbles and object 

as done by Kück et al. [13].  It did not seem necessary as our bubbles do not have much contact 

with objects( , equation 26), and we are interested in bubble movement due to the fluid.  In 

the simulation by Kück et al. [13], was necessary because the bubbles were sliding down a 

plane. 

of
iF

of
iF

We used a stronger  under the surface so that a weaker  could be used at the 

surface to allow the bubbles to overlap significantly creating foams.  It adds greater control by 

having separate parameterization of repulsion forces in order to get the desired behavior in each 

region.  

rK rK

A bubble is in the below surface region when the φ  value at the position of the bubble is 

below a negative multiplier of the bubble’s radius.  This means that the bubble must be a smaller 

distance than its own radius from the surface to be considered at the surface.  The multiplier must 

be between 0 and –1.  We used -.1 which seemed to work well.  If the bubble’s negative radius 

were used as the threshold value of , a bubble below the surface that is adjacent to an obstacle 

would incorrectly be considered to be at the surface, as in the rightmost bubble in Figure 10.  

Using a smaller portion of that bubble’s radius prevents it from being considered at the surface 

when it is in contact with a wall.   Repelling forces with the wall should prevent it from reaching 

φ
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the threshold when below the surface.  When a bubble has a negative value of  that is greater 

than this threshold, it is in the adjacent below region. 

φ

5.3.2 Bubble Forces Adjacent Below the Surface 

When a bubble reaches the surface, there is an attraction force between bubbles.  Also, the 

friction between bubbles is no longer negligible. 

Viscosity with other bubbles causes a bubble velocity to be dependent on the previous 

velocities of its neighboring bubbles (equation 32).  This dependency on previous states is 

undesirable with the massless assumption.  It would be possible to solve the equation implicitly 

to avoid dependency on previous velocities, but this would be costly and difficult to implement.  

Instead, we use the current velocities of the fluid at the position of the adjacent bubbles instead 

of the velocity of the adjacent bubbles themselves from the previous timestep.  The new equation 

for the bubble friction force is 

(v fluid
i v iF K v v )i= −                                                           (37) 
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where fluid
iv is the average of the fluid velocities at bubbles intersecting bubble i, and fluid

iv  is the 

fluid velocity at bubble i. 

Using the fluid velocity can be justified because at the surface, it can be assumed that a 

bubble’s velocity is most influenced by friction with the fluid at that point.  The pressure just 

pushes the bubble up to the surface, and gravity pulls the fluid down to the surface. 

Now we combine the appropriate forces (equations 29,32,33, and 37), we set the total force 

to zero, and we solve for velocity.  This gives  
fluid ra p

visc fluid v i i
i

visc v

K v K v F F
v

K K
+ + +

=
+

.                                              (39) 

5.3.3 Bubble Forces Adjacent Above the Surface 

If the value of  at a bubble’s position is between zero and the bubble’s radius, then that 

bubble is in the adjacent above the surface region.  It is the same as the adjacent below region 

φ
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except that it is influenced by gravity instead of pressure.  Substitution gF for  into equation 

39 gives  

pF

t∆

fluid ra g
visc fluid v i i

i
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K v K v F F
v

K K
+ + +

=
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.                                             (40) 

5.3.4 Bubble Forces Above the Surface 

Once the value of φ  at a bubble position is greater than that bubble’s radius, it is no longer in 

contact with the fluid.  It can then be simulated exactly as discussed in Kück et al.[13]).  It 

should be noted that depending on the desired effect, these bubbles may be popped because 

strictly water bubbles do not exist away from the water’s surface. 

5.4 SIMULATION SCHEME 

The level set and particle surface is updated on a sub-cycle of the timestep used to advance 

the Navier-Stokes equations.  The bubble simulation is a sub-cycle of the timestep used to update 

the fluid surface.  This means that the timestep used while simulating the bubbles may be smaller 

than the timestep used to move forward the level set and marker particles.  The bubbles are 

regulated by the CFL condition 

min

max

rt
v

∆ < ,                                                            (41) 

where is the smallest bubble radius, is the largest bubble velocity, and is the timestep.  

This guarantees that bubbles cannot miss contact with each other.   The bubble simulation step 

comes after the re-initialization of the level set.   At this point, all of the new bubbles for this 

timestep have been created.  When the level set is advanced, we save the old level set.  This 

allows us to know the current value of 

minr maxv

φ  at any point in the bubble subcycle by interpolating 

between previous and past values of φ .  The more accurately we know where the surface of the 

fluid is during a timestep, the better, as the forces applied to a bubble vary drastically in relation 

to its position relative to the fluid surface.  The transition of a bubble between different regions is 

discrete.   

Specifically for simulating our bubbles we used an Euler timestep 100 times smaller than the 

CFL condition stated in equation 40.  This is arbitrary, and may be excessive, but since the 

 



 30

simulation of the bubbles is much faster than the fluid simulation, it did not significantly increase 

run times.  
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6 BUBBLE RENDERING 

6.1 BUBBLE RENDERING FROM KÜCK ET AL. [13] 

Kück et al. [13] discusses creating a contiguous foam structure from an arbitrary 

configuration of spherical bubbles as shown in Figure 11.   This subsection exclusively discusses 

those methods. 

 

Figure 11: Making spheres appear to be foam.  Sphere representation (left)                                                             

and corresponding foam structure (right). 

 

The foam is ray traced and calculations are made at each intersectios of a ray with the 

spheres.  With time saving approximations, Kück et al. succeeded at rendering foams on the 

order of several thousand bubbles with these methods in reasonable time from a medium 

distance. 

6.1.1 Approximated Fresnel Term for Shading Bubble Films 

We use an approximation for Fresnel reflections to shade the bubble’s film that is found in  

[11][13].  The Fresnel term is the ratio of reflected to refracted non-polarized light from a 

dielectric (non-conducting surface) [8].  This approximation is 
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1 cos( )

          1
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N I

θ= −

= − •
 ,                                                              (42) 

where is the approximated Fresnel term,  approxF iθ is the incident angle, N is the normalized 

normal, and I  is the normalized incident vector.  As shown in Figure 12 this creates a smooth 

transition from totally reflective to totally refractive. 

 

Figure 12: Bubble shader from approximated Fresnel term. 

 

Notice that no refraction is calculated at a bubble film.  The assumption is that the film is too thin 

to noticeably change the direction of a light ray[13].    

6.1.2 Two Bubbles Overlapping 

The goal is to create the appearance of a contiguous foam structure from overlapping 

spheres.  When a ray exits from two overlapping spheres, as in Figure 13, the film between the 

two bubbles is calculated[13].  The approximated film’s position and normal is taken as the 

average of the two hit points on the actual spheres.  
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Figure 13: Approximation of intersection with separating film.    

 

No shading calculations are done at the actual surfaces of the spheres where two spheres 

overlap.  This appears correct because with the higher curvature of the smaller bubble, the 

averaged normals give the impression of the surface curved toward the larger bubble.  This does 

not apply for all viewing angles, but this approximation is inexpensive and works for most 

viewing angles.  As shown in the figure, these methods are effective at creating the appearance 

of two bubbles joined together. 

 

Figure 14: Two-bubble cluster. 

 

6.1.3 Three Bubbles Overlapping 

Kück et al [13] defined a plateau border to be where three bubbles overlap.  In reality, this is 

where three films meet, and light is heavily scattered [13].  The space where three spheres 
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overlap may be much larger than an actual plateau border could be.  The plateau border may be 

shaded with an ambient term to represent all scattered light as well as a term that represents 

refracted light on the plateau border [13].  In this method, the ray stops once it reaches the 

plateau border.  In Kück et al. they are interested in dense foams that heavily scatter light and not 

interested in smaller bubble clusters.  The use of an ambient term for a small bubble cluster is 

undesirable, as seen in Figure 15, because it is noticeable that light should travel beyond the 

region where the three spheres overlap. 

 

Figure 15: Three-bubble cluster rendered with ambient term where three bubbles overlap. 

 

6.2 RENDERING BUBBLES WITH FLUID 

Our simulation of foams differs from theirs because they simulated thousands of bubbles 

and we are only interested in hundreds viewed somewhat closer than in the Kück simulations.    

Also, the bubbles in our simulation are sloshed around vigorously and we need to be able to 

shade small groupings of bubbles as well as large.  

 

6.2.1 Two Bubble Case and Transparent Objects 

For the integration of approximated films between two bubbles and transparent objects, a 

special case needs to be addressed.  For the case shown Figure 16, the approximated film is 

inside of an object, and thus it is not rendered. 
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Figure 16: Two-bubble case inside of object. For two bubbles overlapping, it must be checked whether the 

approximated film is behind the surface of an object. 

6.2.2 Our Treatment of Three Bubbles Overlapping 

For a large number of bubbles, the Kück et al.[13] method looks okay.  The problem then 

would be when large groups of bubbles are pushed together, and the ambient lighting suddenly 

appears over a large area. 

For our needs it would be better to avoid an ambient term, so we decided to do something 

different when three bubbles overlap.  It would be acceptable to use more expensive rendering 

methods to render our bubbles because we are rendering fewer bubbles and speed is not as high 

of a priority. 

It would be nice to continue the approximated films from two bubbles so that they met 

somewhere in the three bubble overlap region.  Unfortunately, since the films between two 

bubbles are not explicitly defined, there is no easy way to accomplish that task. 

 Instead we treated the three bubble overlapping case similarly to the two bubble 

overlapping case.  As seen in Figure 17, once a ray enters an area where the bubbles overlap, 

shading is not calculated until the ray exits into a single bubble.  Then the normal is set to the 

average between this hit point, and the original hit point when the ray entered the second bubble.  

The reflection ray leaves the same point as the refraction ray, because there is no simple way of 

knowing which bubbles the average of the hit points is inside.  (In the bubble two case, the 
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average point is inside of the two bubbles so we can send the reflection ray from that point). 

 

 Figure 17: Modified method for shading where three bubbles overlap.  Reflection ray (red) is sent from the final hit 

point because it is unknown which bubbles the averaged point (x) is inside. 

 

Due to an implementation error, the original hit point was used for approximating further film 

intersections around the three bubble region (as the red reflection ray may create in Figure 17).  

After fixing this “bug”, the rendered images looked less desirable, so it was changed back so that 

approximated films always use the original hit point (until the ray travels past the three bubble 

region and there is a new “original” hit point). 

While this method is simply a heuristic, it allows the ray to continue past the three-bubble 

region and does not draw attention to itself.  As seen in Figure 18 it looks better than using the 

ambient term of Figure 15. 
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Figure 18: Three-bubble cluster rendered with our modified method. 

 

The hope is that by rendering the bubbles with this method, these small regions where three 

bubbles overlap will not be noticeable when seen from a distance. 

6.2.3 True Fresnel Term for Fluid Surfaces 

The amount of light that is reflected from a water surface is determined by the angle of the 

incident ray, and the index of refraction.  This means that light is reflected differently depending 

on whether a ray is hitting from outside or inside of the water’s surface.  For water surfaces, we 

use the actual Fresnel term for calculating the reflection ratio, versus the approximated Fresnel 

term for bubble films.  The Fresnel equation [8] can be expressed as 
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where 2 2 2cos( ) , 1i I g λθ η= = • = +c N  and c − /t iλ λ λη η η= .  tλη  is the index of refraction for the 

object hit, and iλη  is the index of refraction for the object that the ray is already inside of. 

As seen in Figure 19, light reflects differently whether hitting a fluid surface from inside or 

outside, or hitting a bubble film.  It should be noted that after calculating the Fresnel term, 

specular highlights are rendered as the actual specular reflection of lights (which is what a 

specular highlight actually is).  For the inside of refractive surfaces, approximating the specular 

highlights with Phong or Blinn shaders for indirect specular highlights is incorrect, as there is no 

direct pathway for light that is being refracted to a surface point. 
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Figure 19: Refracting water surface. From left to right: water sphere, half submerged bubble showing simulated 

Fresnel reflections on left half, and totally submerged bubble. 

6.2.4 Fluid and Obstacle Boundaries 

 While a level set is very powerful at defining numerous shapes, there is little possibility 

that a level set could be defined so that the zero level set sits flush up against an object in the 

simulation (unless that object is a plane).   If the level set is not allowed to overlap, there will be 

a small amount of space between the zero level set (the surface of the fluid) and an object that is 

in contact with the fluid.  Unless this is taken into account, the raytracer will detect two hits, one 

between the fluid and the air and another between the air and the object.  The raytracer should 

only render one surface, the surface between the fluid and the object.  For this case, the raytracer 

would have to check ahead, and if the two hits happen close enough together, it would render 

them as one hit.  To avoid this complication, we set up our scene so that the level set overlaps the 

object when the surface of the fluid is supposed to be against the object. 

6.2.5 Hierarchy Between Overlapping Objects 

  Now the renderer only has to worry about rendering the boundaries of the object 

contained in the fluid.  It does not render the surface of the fluid that is contained in the object.  

Bubbles are treated in a similar fashion, as the boundaries of the level set are not rendered when 

inside of the bubble, but the boundaries of the bubble are rendered when inside of the fluid. 

 This leads to a hierarchy of objects.  Nonfluid/nonbubble objects in the scene get the 
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highest priority.  The next priority is bubbles, and the last priority is the fluid.  This hierarchy can 

be seen in Figure 19 and Figure 20.  

 

Figure 20: Hierarchy of surfaces. Water(left),  glass(right), and bubble(top). 

 

It should be noted that the boundary between a bubble and the surface of the fluid is rendered as 

the fluid surface.  The boundary between a bubble and the air is rendered as a fluid film 

(approximated Fresnel). 
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7 RESULTS AND SUMMARY 

7.1 ISSUES 

Several assumptions and approximations used in this work lead to limitations.  We discuss 

these below.   

7.1.1 Spherical Bubbles 

Simulating bubbles that are based on perfect spheres works reasonably well, but there are 

problems with this approach.  In reality, larger bubbles flatten out at the surface so that they 

resemble domes.  Since we can only simulate and render spheres, we avoid creating larger 

bubbles.  As in Figure 21, a large spherical bubble looks strange at the surface.  A similar 

problem occurs when viewing the bubbles up close, and these methods work best for rendering 

bubbles at a medium distance. 

 

Figure 21: Large spherical bubble at fluid surface. 
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7.1.2 Unfeasible bubbles 

Marker particles may escape occasionally when it is unrealistic and undesired for a 

bubble to form.  While we take steps against this, we cannot guarantee that unwanted bubbles 

will not form.   This may not be an issue, because in a production environment, an animator 

would need the control to add and remove bubbles anyway.  In animation software, the fluid 

surface, velocity and pressure fields, and escaped marker particles could be stored in one pass.  

Once the animator has the desired water motion, the animator could move on to animating the 

bubbles.  Bubbles created from marker particles could be used as the basis for realistic bubbles 

created from mixing fluid.  An animator could combine our techniques with standard particle 

tools to create bubble motion as desired. 

7.1.3 Air Pockets Do Not Disappear Immediately 

Just making the sign of φ  negative is not enough to turn all of the air pocket cells into 

fluid immediately.  Adjacent to the air pocket there are near-zero-negative or zero values of 

(which are not changed because they are not air).  In these regions there may be positive (air) 

marker particles that have not escaped.  These particles may prevent the air pockets from turning 

entirely into fluid.  Since the values of 

φ

φ  are not negative enough to make these marker particles 

escape, they persist and continue to contribute to the air pocket. 

In our simulation, these particles are removed, but the level set still resists changing to 

fluid.  The equations that reinitialize the level set to a signed distance function avoid changing 

the values of  as they approach zero.  This causes portions of the air pocket to remain air; 

however, these parts of the level set are continuously moved by the velocity fields and do not 

exist for more than a few frames.  As seen in Figure 22, these residual pieces of air pockets are 

very tiny.  Further, they are obscured by the bubbles that are created by the air pocket and are not 

noticeable in an animation. 

φ
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Figure 22:  Small residual pieces of air pocket may persist for a few frames. 

7.2 BUBBLES CREATING MORE REALISTIC FLUID 

Our methods of adding bubbles to fluid simulation and rendering can enhance the overall 

realism of creating the appearance of a splashing fluid for computer graphics.  In reality, bubbles 

form in a splashing liquid.  The inclusion of bubbles may be more convincing and aesthetically 

pleasing than not having bubbles.  Also, our treatment of trapped air pockets gives the more 

natural appearance of the trapped air turning into bubbles rather than the trapped air suddenly 

disappearing.  This is a definite case in which bubbles would form in reality.  Our methods 

provide an inexpensive way of dealing with air pockets without simulating the air. 

As seen in Figure 23 and Figure 24, air pockets are removed.  The air pocket disappears 

more abruptly than it would if the air pocket were not removed and the fluid simulation were 

allowed to engulf the air pocket; however, the effect is the same, as the disappearance of air into 

the fluid looks unrealistic. 
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Figure 23:  Frame of animation before removal of air pocket. 
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Figure 24:  Frame of animation after removal of air pocket. 
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The creation of bubbles hides the disintegration of air pockets and creates more true to life 

animations as seen in Figure 25. 

 

Figure 25:  Frame of animation with bubbles instead of disappearing air pocket. 

 

Also, by creating bubbles, the added detail of the bubbles may distract from other 

problems with the fluid’s appearance.  Overall, these methods are a good way of creating 

realistic bubbles if viewed from a medium distance as seen in Figure 26 and Figure 27.
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Figure 26:  High quality frame of fluid column splashing in the center. 
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Figure 27:  Frames from animation with splash on the side. 
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