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ABSTRACT

Nonlinear Analysis of
Smart Composite Plate and Shell Structures. (May 2004)
Seung Joon Lee, B.S., Yeungnam University;
M.S., Yeungnam University

Chair of Advisory Committee: Dr. J. N. Reddy

Theoretical formulations, analytical solutions, and finite element solutions for
laminated composite plate and shell structures with smart material laminae are presented in
the study. A unified third-order shear deformation theory is formulated and used to study
vibration/deflection suppression characteristics of plate and shell structures. The von
Karman type geometric nonlinearity is included in the formulation. Third-order shear
deformation theory based on Donnell and Sanders nonlinear shell theories is chosen for the
shell formulation. The smart material used in this study to achieve damping of transverse
deflection is the Terfenol-D magnetostrictive material. A negative velocity feedback

control is used to control the structural system with the constant control gain.

The Navier solutions of laminated composite plates and shells of rectangular
planeform are obtained for the simply supported boundary conditions using the linear
theories. Displacement finite element models that account for the geometric nonlinearity
and dynamic response are developed. The conforming element which has eight degrees of
freedom per node is used to develop the finite element model. Newmark's time integration
scheme is used to reduce the ordinary differential equations in time to algebraic equations.
Newton-Raphson iteration scheme is used to solve the resulting nonlinear finite element

equations.

A number of parametric studies are carried out to understand the damping

characteristics of laminated composites with embedded smart material layers.
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1. INTRODUCTION

1.1. General

Composite materials are widely used in a variety of structures, including army and
aerospace vehicles, buildings and smart highways (i.e. civil infrastructure applications) as
well in sports equipment and medical prosthetics. Laminated composite structures consist
of several layers of different fiber-reinforced laminae bonded together to obtain desired
structural properties (e.g. stiffness, strength, wear resistance, damping, and so on). The
desired structural properties are achieved by varying the lamina thickness, lamina material

properties, and stacking sequence (Reddy 2004 b).

The increased use of laminated composites in various types of structures led to
considerable interests in their analysis. Composite materials exhibit high strength-to-
weight and stiffness-to-weight ratios, which make them ideally suited for use in weight-
sensitive structures. This weight reduction of structures leads to improvement of their

structural performance, especially in space applications.

With the availability of functional materials and feasibility of embedding or
bonding them to composite structures, new smart structural concepts are emerging to be
attractive for potentially high-performance structural applications (Maugin 1988, Gandhi
and Thompson 1992, and Srinivasan and McFarland 2001). A smart structure is the
structure that has surface mounted or embedded sensors and actuators so that it has a
capability to sense and take corrective action. Numerous conferences, workshops, and
journals dedicated to smart materials and structures stand testimony to this growth. The
technological implications of this class of materials and structures are immense: structures
that monitor their own health, process monitoring, vibration isolation and control, medical

applications, damage detection, noise control and shape control.

This dissertation follows the style and format of Journal of Sructural Engineering.



As applications of active vibration/deflection controls in aerospace, automobile
industries and building applications, the smart structures have received considerable
attention (See Lowey 1997 for example). Vibration and shape control of structures is
essential to achieve the desirable performance in modern structural systems. Advances
made in design and manufacturing of smart structure systems improve the efficiency of the

structural performance.

1.2. Smart Materials

Two of the basic elements of a smart structural system are actuators and sensors.
These sensors and actuators may be either mounted on the flexible passive structure or
embedded inside it. The sensing and control of flexible structures are primarily performed
with the help of sensors and actuators which are made of smart materials. Smart materials
can be divided into two main types: Passive smart materials are those that respond to
external change without assistance. These materials are useful when there is only one
correct response. Active smart materials utilize the feedback loop and recognize the change

and response to the actuator circuit.

The commonly used smart materials are piezoelectric materials, magnetostrictive
materials, electrostrictive materials, shape memory alloys, fiber optics, and electro-
rheological fluids. Each smart material has a unique advantage of its own. Piezoelectric
materials deform by mechanical loads, and deformation occurs due to the application of
electric potential by a converse effect (Bailey and Hubbard 1985, Uchino 1986, Crawley
and Luis 1987, and Yellin and Shen 1996). Examples of piezoelectric materials are
Rochelle salt, quartz, and PZT (Pb(Zr,Ti)O3). Piezoelectric materials exhibit a linear
relationship between the electric field and strains up to 100 V/mm. However, the
relationship becomes nonlinear for large fields, and the material exhibits hysteresis (Uchino
1986). Furthermore, piezoelectric materials show dielectric aging and hence lack
reproducibility of strains, i.e., a drift from zero state of strain is observed under cyclic

electric field conditions (Cross and Jang 1988). Magnetostrictive materials produce



deformation (displacement) under magnetic field. Magnetostriction is the development of
large mechanical deformations due to the rotations of small magnetic domains when
subjected to an external magnetic field (Pratt and Flatau 1995). The shape memory alloys
are suitable for static shape control and low frequency dynamic applications (Baz, Imam
and McCoy 1990, and Anders, Rogers and Fuller 1991). The electro-rheologic fluids are a
class of specially formulated suspensions which undergo a change in the resistance to flow
(i.e. viscosity) due to an applied electric field (Choi, Sprecher and Conrad 1990). Among
these materials, the piezoelectric and magnetostrictive materials have the capability to serve

as sensing and actuation materials.

The magnetostrictive material selected for this study, Terfenol-D, has some
dominant advantages as actuators and sensors over other materials. Terfenol-D is a
commercially available magnetostrictive material in the form of particles deposited on thin
sheets and it is an alloy of terbium, iron, and dysprosium. It can serve both as actuator and

sensor and produce strains up to 2500 #m, which is 10 times more than a piezoceramic

material (Newnham 1993 and Kleinke and Unas 1994 a, b). It also has high energy density,
negligible weight, and point excitation with a wide frequency bandwidth (Goodfriend and
Shoop 1992, Dapino, Flatau, and Calkins 1997, Flatau, Dapino, and Calkins 1998, and
Duenas and Carman 2000).

Mechanics of smart material systems involve coupling between electric, magnetic,
thermal, and mechanical effects. In addition to this coupling, it may be necessary to
account for geometric and material nonlinearities. Toupin (1956) was the first one to
consider the material nonlinearity in electro-elastic formulations. Knops (1963) presented a
two-dimensional theory of electrostriction and solved a simplified boundary value problem
using complex potentials. Rotationally invariant nonlinear thermo-electro-elastic equations
were derived by Tiersten (1971, 1993), Baumhauer and Tiersten (1973), and by Nelson
(1978). Tiersten (1993) has stressed the importance of including nonlinear terms in the
constitutive relations, particularly at large fields. Joshi (1991) presented nonlinear

constitutive relations for piezoceramic materials.



Among the currently available sensors and actuators, the smallest ones are of the
order of few millimeters. The reduction in size has tremendous technological benefits;
however, clear understanding of reliability and system integrity is vital to the efficient and
optimum use of these material systems. As dimensions get smaller, induced electro-
thermo-mechanical fields get larger. Therefore, the material and geometric nonlinearities
should be accounted for (Tzou, Bao, and Ye 1994, Carman and Mitrovic 1995, Kannan and
Dasgupta 1997, Smith 1998, and Armstrong 2000).

1.3. Background Literature

The analysis of laminated composites is difficult due to the anisotropic structural
behavior and complicated constituent interactions (Reddy 2004 b). Since the transverse
shear modulus of composite material is usually very low compared to the in-plane modulus,
the shear deformation effects are more pronounced in laminated composites subjected to
transverse loads than in the isotropic plates under similar loading. A number of
methodologies for the analysis of laminated composite plates and shells are available. The
three-dimensional elasticity theory provides the most accurate solutions while the
traditional plate and shell theories; namely, the classical theory and first-order and third-
order shear deformation theories provide simpler and but adequate solutions for most

applications.

The equivalent single-layer (ESL) theories are derived from the 3-D elasticity
theory by making suitable assumptions concerning the kinematics of deformation through
the thickness of the laminate. These assumptions allow the reduction of a 3-D problem to a
2-D problem. The simplest equivalent single-layer theories are the classical laminate plate
theory (CLPT) (Whitney and Leissa 1969 and Whitney 1970), and the first-order shear
deformation theory (FSDT) (Whitney and Pagano 1970, Reddy and Chao 1981, Reddy
1997, 2004 b). These theories adequately describe the kinematics of most laminated plates.
However, for better inter-laminar stress distributions, higher-order theories need to be used.
Reddy (1984a, b, 1997, 1999a, b) developed the equations of motion for the third-order



shear deformation theory for laminated composites using the principle of virtual
displacements. The third—order shear deformation theory (TSDT) represents the plate
kinematics better and yields better inter-laminar stress distributions. Quadratic variations
of the transverse shear strains and stresses through the thickness of the laminate avoid the
need for shear correction coefficients that are required in the first-order shear deformation

theory.

Surveys of various shell theories can be found in the work of Naghdi (1956) and
Bert (1980). Many of these theories were developed originally for thin shells, and are
based on the Kirchhoff-Love kinematic hypothesis (classical shell theory) that straight lines
normal to the undeformed midsurface remain straight and normal to the midsurface after
deformation (i.e. the transverse shear strains are neglected). These theories often yield
sufficiently accurate results when the material anisotropy is not severe. However, the
classical theories are inadequate for a deformation description of shallow layered composite
shells.

Dong and Tso (1972) and Dong, Pister, and Taylor (1962) presented the theory of
laminated thin shells with orthotropic and anisotropic materials. Ambartsumyan (1964)
analyzed the laminated orthotropic shell and considered the bending-stretching coupling
effects. Gulati and Essenberg (1967) and Zukas and Vinson (1971) considered the effect of
transverse shear deformation and transverse isotropy in the cylindrical shell. The first-
order shear deformation theory of general shells can be found in Sanders (1959), Koiter
(1960), and Kraus (1967). Reddy (1984c, 2004b) presented a shear deformation shell

theory for laminated composite shells.

Higher-order shear deformation shell theories are also developed by Whitney and
Sun 1974, Reddy and Liu (1985), Librescu, Khdeir, and Frederick (1989). They used the
principle of virtual displacements to derive the equations of motion.

For nonlinear shell theory, Donnell (1935) presented a set of shell equations for
cylindrical shells and his approximations were extended to shallow shells of general

geometry which is known as Donnell-Mushtari-Vlasov (DMV) equations. Sanders (1959,



1963) and Koiter (1966) developed more refined nonlinear theory of shell, the Sanders-
Koiter equations (also referred to as Sanders theory; Reddy 2004 b).

Bailey and Hubbard (1985) and Crawley and Luis (1987) demonstrated the
feasibility of using piezoelectric actuators for free vibration reduction of cantilever beams.
A self-sensing active constrained damping layer treatment for Euler-Bernoulli beam was
studied by Yellin and Shen (1996). Baz, Iman and McCoy (1990) have investigated
vibration control using shape memory alloy actuators and their characterization. Anders,
Rogers and Fuller (1991) have analytically demonstrated their control of sound radiation
from shape memory alloy hybrid composite panels. By changing the elastic properties of
the host structure, Choi, Sprecher and Conrad (1990) demonstrated the vibration reduction

effects of electrorheological fluid actuators in a composite beam.

Compared to other smart materials, the magnetostrictive material has significant
advantages as actuators. A commercially available magnetostrictive material Terfenol-D is
an alloy of terbium, iron, and dysprosium. The use of Terfenol-D particle sheets for
vibration suppression has some advantages over other smart materials. In particular, it has
easy embedability into host materials, such as the modern Carbon Fiber-Reinforced

Polimeric (CFRP) composites, without significantly effecting the structural integrity.

Considerable effort is spent to understand the interaction between magnetostrictive
layers and structural composite laminae, and the feasibility of using magnetostrictive
materials for active vibration suppressions. Goodfriend and Shoop (1992), Hudson,
Busbridge, and Piercy (1999, 2000), and Lim et al. (1999) reviewed the material properties
of magenetostrictive material, Terfenol-D, with regard to its use in static and dynamic
applications. Anjanaappa and Bi (1993, 1994 a, b) investigated the feasibility of using
embedded magnetostrictive mini actuators for smart structural applications, such as
vibration suppression of beams. Bryant, Fernandez and Wang (1993) presented results of
an experiment in which a rod of magnetostrictive Terfenol-D was used in the dual capacity
passive structural support element and an active vibration control actuator. A self-sensing

magnetostrictive actuator design based on a linear model of magnetostrictive transduction



for Terfenol-D was developed and analyzed by Pratt and Flatau (1995) and Jones and
Garcia (1996). Eda, et al. (1995), Anjanappa and Wu (1996), Krishna Murty, Anjanappa
and Wu (1997) and Krishna Murty, et al. (1998) proposed magnetostrictive actuators that
take advantage of easy embedablity and remote excitation capability of magnetostrictive
particle sheets as new actuators. Using a combination of magnetostrictive and ferro-
magnetic alloys, the combined passive and active damping strategy was proposed by
Bhattacharya et al. (2000). Recently, Pulliam, McKnight, and Carman (2002) provided
magnetostrictive particulate technology in damping applications.

Reddy (1999b, 2004 b) presented theoretical formulation and finite element
formulation for general laminated composite plates. Ang, Reddy and Wang (2000) adopted
Timoshenko beam theory to study the analytical solution for strain induced actuators.
Reddy and Barbosa (2000) presented a general formulation and analytical solution for
simply supported boundary conditions of laminated composite beams with embedded
magnetostrictive layers. The Levy type analytical solutions for composite plate by third-
order shear deformation theory was presented by Khdeir and Reddy (1999). Pradhan et al.
(2001) employed first-order shear deformation theory to study the vibration control of
laminated plates. They used a velocity feedback with constant gain distributed controller

for vibration suppression.

1.4. Present Study

The main goal of this research is to develop efficient computational procedures for
analyzing laminated composite plate and shell structures with embedded smart layers, while
accounting for geometric nonlinearity (von Karman sense) and thermo-mechanical effects.
The temperature field is assumed to be uniformly distributed through the surface but vary
through the thickness of the laminate, and the material properties are not dependent on
temperature. Both nonlinear Donnell shell theory and Sanders nonlinear shell theory are
used to derive the strains and the equations of motion by third-order shear deformation

theory. Three different shell types, spherical, cylindrical, and doubly-curved shells, are



considered. A simple negative velocity feedback control in a closed loop is used to actively
control the dynamic response of the structure. Newton-Raphson iteration method is used to
solve the nonlinear algebraic equations resulting from the finite element approximation in

space and Newmark’s time integration scheme.

The present study is divided into three parts. First, the theoretical formulations for
laminated composite plates and shells are developed. In the second part, the finite element
formulations based on the previously developed theories are developed, and in the third part,
various parametric studies are carried out to determine the response of laminated composite

structures with smart material layers.

The development of theoretical formulations of composite plates and shells with
smart material layers is based on a unified shear deformation theory that includes the CLPT,
FSDT, and TSDT. The von Karman strains, constitutive relations, equations of motions
and negative velocity feedback are presented in Section 2. In Section 3, analytical solutions
for simply supported laminated composite plate/shell structures are presented using the

linear version of the plate and shell theories.

Development of the general finite element model for laminated composite plates
and shells is discussed in Section 4; linear and nonlinear displacement finite element
models for composite plate and shell structures are presented and computer implementation
is discussed. The numerical results of linear analysis of laminated composite plates and
shells are reported at the end of Section 4.

Section 5 is devoted to numerical results from the various parametric studies of
laminated composite plate and shell structures, respectively. The parametric studies
conducted include the effect of material properties, lamination schemes, smart layer

position, boundary conditions, loading conditions, plate and shell theories, and so on.

Finally, the conclusions and recommendations for the future study of this study are
presented in Section 6.



2. THEORETICAL FORMULATIONS

2.1. Methodology

The equivalent single-layer (ESL) models provide sufficiently accurate descriptions
of global response for the thin to moderately thick laminates, e.g., gross deflection and
fundamental vibration frequencies and associated mode shapes (Reddy 2004 b). The third-
order shear deformation theory, which is based on the same assumptions as the classical
and first-order plate theories, except for the assumptions on the straightness and normality
of a transverse normal during deformation, is used mainly in this study. The reason for
expanding the displacements up to the cubic term in the thickness coordinate is to have
quadratic variation of the transverse shear stresses and strains through the thickness. This
avoids the need for shear correction coefficients as required in the first-order shear
deformation plate theory to account for the parabolic variation of the actual shear stress

through the thickness of the laminate.

2.2. Displacement Field and Strains
2.2.1. Displacement Field and Strains for Plates

The plate under consideration is composed of a finite number of orthotropic layers
of uniform thickness (see Figure 2.1). We begin with the following displacement field
(Reddy, 2004):

u(x, y,z,t) =u, + z¢, + z°y, +2°6, (2.1.a)
v(x,y,2,1) = vy + 2, + 22y, +2°6, (2.1.b)
w(x, y,z,t) =w, (2.1.c)

where ¢ is time, (u,v,w) are the displacements along the (x, y,z) coordinates, (u,,v,,w,)

are the displacements of a point on the middle surface and ¢, (x,y,0,¢) = du/0z and
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é,(x,,0,¢) = dv/dz are the rotations at z =0 of normals to the mid-surface about the y
and x axes, respectively.

The particular choice of the displacement field in the equation is dictated by the
desire to represent the transverse shear strains by quadratic functions of the thickness
coordinate, z , and by the requirement that the transverse normal strain be zero. The

function y, and 6, are determined using the condition that the transverse shear stresses,

o,. and o _vanish on the top and bottom surfaces of the plate.

The displacement field for the third-order shear deformation theory (TSDT) of plate
now can be expressed in the form (Reddy 2004 b)

u(x, y,z,t) = u, (x, y,t) + 28, (x, v, 1) — ¢,2° [(ﬁx + a;}: j (2.2.a)
v(x,y,2,1) = vy (x, ,0) + 28, (x, y,1) — ¢, 2° (¢V + 8;/}0 J (2.2.b)
w(x, y,z,t) = wy(x, y,1) (2.2.c)

where the constant ¢, isgiven by ¢, = 4/3h2 , h being the total thickness of the laminate.

Smart Material Layer

Figure 2.1 Geometry and coordinate system of laminated plate



The nonzero von Karman nonlinear strains in the TSDT are
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Smart Material Layer

1

Figure 2.2 Geometry and coordinate system of laminated shell

2.2.2. Kinetics of Shells
Let (&,<,,¢) denote the orthogonal curvilinear coordinates such that the & — and
&, — curves are lines of curvature on the mid-surface £ =0, and & —curves are straight

lines perpendicular to the surface ¢ = 0(see Figure 2.2). For cylindrical, spherical, and

doubly-curved shells discussed in this study, the lines of principal curvature coincide with
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the coordinate lines. The values of the principal radii of curvature of the middle surface

are denoted by R, and R, . For additional details consult the textbook by Reddy (2004 b).

The total tensile force on the differential element in the & direction is N,«,d¢, .

This force can be computed by integrating o,dA, over the thickness of the shell.

h/2 h/2
N,a,dé&, = j_h/z o,d4, = a, j_h/zal [1+R£jd§2d§ (2.5)
2

where N, is the tensile force per unit length along a &, coordinate line, «, is the surface

metric, and # is the thickness of the shell.

N, = jhz/zz o, (1+R£2jd§ (2.6)

The remaining stress resultants per unit length can be derived in the similar way (Reddy

2004 b). The complete set of force and moment resultants is given by

0'1(1+£

xl o, 1+%

2 _ hf2 1
NI L’/z ) de (2.7.3)

N21 Op 1+R—2

O, 1+£

Rl

O, [:HRiJ
{gl}=jh;2 2 (2.7.b)
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Rl
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gal[1+R£
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M, h/2 R
= d¢ (2.7.0)
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M21 ° R2
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The shear stress resultants N, and N,,, and the twisting moments M,, and M,
are, in general, not equal. However, for shallow shell ( 4/R,, h/R, less than 1/20)
¢/R and {/R, can be neglected in comparison with unity so that one has N,,=N,, = N,

and M,=M,, = M,.
2.2.3. Displacement Field and Strains for Shells

The following form of the displacement field is assumed consistent with moderate
thick shell assumptions (Reddy 2004 b):

u(&,&,,¢,t) =u, +§¢1+§2V/1+§361 (2.8.9)
(&, E,,80 1) = vy +C, + §2W2 + 4/392 (2.8.0)
w(&,8,.¢,1) =w, (2.8.)

where (¢, 4,), (w1, v, ), and (6,, 6,)are functions to be determined. The function v, and

6, can be determined by imposing traction free boundary conditions on the top and bottom

surfaces of the laminated shell:

05(51,§g1i§,tj=0 (2.9.9)
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(2.9.b)

(2.10.a)

(2.10.b)

(2.10.c)

(2.10.d)

(2.10.e)

(2.11.9)

(2.11.b)

(2.11.c)

(2.11.d)
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According to the Donnell’s shell kinematics, the displacement field for the third-

order shear deformation theory (TSDT) that satisfies the traction free boundary conditions
can be expressed such as

=u(&, &, 1) =uy + 44 - clé/ ( Z;jj (2.12.3)

3 oW,
u, =v(&§,8,,8,8) =v, +¢, — & [¢2 + aij (2.12.b)
uy =w(&,6,,6,1) =w, (2.12.c)

where (u,v,w) are the displacements along the orthogonal curvilinear coordinates,
(uq,v,,w,) are the displacements of a point on the middle surface and ¢ and ¢, are the
rotations at ¢ =0 of normals to the mid-surface with respect to the &, — and & — axes,
respectively. The constant ¢, is given by ¢, :4/3h2 , h being the total thickness of the

laminate.

The consistent Donnell’s strains in the third-order shear deformation are

0 0
& 2] K K
_J.0 0 3 2
£y =136 r+C3K,) v+ 7K (2.13.a)
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&6 s Ke Ke
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where ¢, =3¢, and X, denote the Cartesian coordinates (dX, = a,d&,, i=1,2)
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(2.14.9)

(2.14.b)
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The equivalent displacement field for the third-order shear deformation theory for
Sanders kinematics is

ul:”(é"fwélat):“o+§¢1_c1§3(¢1+2_;2_%] (2.15.9)
u, =v(&,&,,4,1) = v, + ¢, _0143 [¢2 + 2;;2 _;_Ozj (2.15.b)
uy =w(&, &, ¢, 1) = w (2.15.c)

and the strains are

%+K+l(%_”_oj2
. ox, R 2\ox, R
& 2
Slol +1+1(%_v_o] (216.3)
-
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(2.16.d)

oy _ Yo

¢, +
1
{"4} S (2.16.€)

vy _ 1y

where, ¢, =3¢

2.3. Equations of Motion

The governing equations of motion are derived using the dynamic version of the

principle of virtual displacements (Hamilton’s principle).
0= IOT (8U + 6V — 5K)dt (2.17)

where U, oV, and 6K denote the virtual strain energy, virtual work done by external
applied forces, and the virtual Kinetic energy, respectively. For shell or plate structures,
laminated or not, the integration over the domain is represented as the product of

integration over the plane and integration over the thickness,

h
_ (2
[ av-= j_,z,jg dQ dz .
Thus, the above Equation (2.17) can be written to

o[ o2 (k)
0= J.o [J. ;,/Z{J.Q (0,06 + 0,06 + 5,06 + 5,06 + 5,66 1dx, dx, }dz

W2 (P oo (2.18)
- IQ gowdx,dx, —J:h/z {J.Q pludi +vov + wowldx,dx, }dz} dt
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The governing equations of motion can be derived from Equation (2.18) by
integrating the displacement gradients by parts to relieve the virtual displacements and

setting the coefficients of ou , ov, ow, og and o¢, to zero separately (i.e. use the

Fundamental Lemma of calculus of variations; see Reddy 2002).

In the derivation, thermal and magnetostrictive effects are taken into consideration
with the understanding that the material properties are independent of temperature and
magnetic fields, and that the temperature 7' is a known function of position. Thus

temperature and magnetic field enter the formulation only through constitutive equations.
2.3.1. Equations of Motion for TSDT Plates

The equations of motion of the third-order shear deformation theory (TSDT) are

aN 2 2 2
ou: N +—=1 ‘ ZZO +J) ‘ ¢;x _C1138_2 & (219.2)
ox oy ot ot ot \ ox
oN, ON,, 2 o’ (o
ov: L=, 0 ‘20 +J, fy _01136_2 S (2.19.b)
ox oy ot ot ot“\ oy
aéx + 8§y +£ %-l- % +£ %+ %
ox Oy ox\ T ox Yoy ) oyl Y oox oy
2P aZP , aZP 2 2 2
Sw: +¢ 0 X 42—+ — g =1, Ll V:O —012168—2 LY vzo + (2.19.c)
ox ox0y Oy ot ot ox
62w0 +c |l 8_2 %4_% +J i a¢x +%
o U0 ox oy Yot ax oy
. aﬁxx aﬁx A 82 ow,
. M., M, — & ow
09, ax} + ay"y -0, 287(le0 +K,4, — ¢ 48_)/0] (2.19¢)

where



Mo =M, —cF, 0,=0,-c¢,R, (a,f=x,1Y)

N pil ,
Ii = ;J.k p(k) (Z)ldz (l = 0; 11 2’ ey 6)1

Ji :[i_cl Ii+2 (i:]-’ 4)

K,=1,-2cl,+clI,
The primary and secondary variables of the third-order theory are

ow,

_’¢n’¢s

Primary variables:
on

u,, u,, wy,

Secondary variables: N

nn?

N

ns!

vV, P, M

nn nn? ns

where ¥, and p are defined as

. & B &
J, b —cly a_xoj n, +[13v0 +J,4, —cd, a_yoj ny}

— — OP,
+ (anx +0.n, ) +P(w,) +¢, as’”

p(wo):[zvm%+ %j 2y, %j
X

xy ay Xy ax yy ay
N
N, n’ n’ 2n.n, x"
N, |~ -nn, nn, n —n’ Ny
'y 'y y ny
M
M, n? n 2n.n, =
M = 2 Myy
ns RO U P

(2.20)

(2.21)

(2.22.9)

(2.22.b)

(2.22.c)

(2.22.d)

21
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and (N,,N,,N,) denote the total in-plane forces, (M, M, M ) the moments, and
(P,,P,,P,)and (R, R,) denote the higher-order stress resultants (see Figure 2.3).
Nxx h XX
N, t=[210, td (2.23.0)
ny i xy
Mxx h XX
M, =30, zd (2.23.b)
Mxy 2 o,
})xx h o-xx
P, t=[310, 2% (2.23.0)
PXy i xy
"o
{Qy}:jg{ “}dz (2.23.d)
Qx _E O-yz
R "o
Yl j 207 227 (2.23.6)
Rx 75 O-yz

Figure 2.3 Force and moment resultants on a plate element
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2.3.2. Equations of Motion for Special Cases

The current third-order shear deformation theory contains the classical and first-

order shear deformation theories as special cases. By setting ¢, =0 and the rotation

become the slopes of the transverse deflection, one can obtain the classical laminated plate

theory and by setting ¢, =0, the first-order shear deformation theory can be obtained.

(1) The Classical Laminated Plate Theory

The displacement field for the classical laminated plate theory (CLPT) is of the

form
ow,
u(x,y,z,t) =uy(x, y,t) —z— (2.24.3)
Ox
ow,
v(x,y,z,t) =vy(x, y,t) —z— (2.24.b)
oy
w(x, y,z,t) = w,(x,»,1) (2.24.c)

where (u,, v,, w,) denote the displacement of a material point at (x, y,0) . Note that
(uq,v,) are associated with extensional deformation of the plate while w, denotes the
bending deflection.

The corresponding von Karmdn strains of classical laminated plate theory are the

following.  The transverse strains (e, ¢, ,&..) are identically zero in the classical

xz !

laminated plate theory.

+z& (2.25)

where
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2
%g(%j
o ox 2\ ox
€ 2
ol Qo 1f0w (2.26.3)
,;y oy 2\ oy
dy Ox Ox Oy

_szo
2
& ox
0w,
g b= ——0 2.26.b
)l’y 6)/2 ( )
j/xy _2 aZWO
oxoy

where ()., €2, 7,,) are the membrane stains, and (&3, ,,, 7,,) are the flexural (bending)

strains, known as the curvatures.

The equations of motion of the classical theory of laminated plates are given by

N 6N 2 2
Su- 6am P 0 % _ 115_2(%) (2.27.9)
X oy ot ot"\ ox
ON, ON 0? 2 (0
S IS _115_2 W (2.27.b)
ox oy ot ot”\ oy

oM. azMnyrazMyy 5[ %+ aWOJ

=+ 2 —+—| N, e
ox Ox0y oy ox ox oy
2
Sw: +§[ xyaaﬁ+Nyy %j+q =1, 86:;}0 - (2.27.c)
Y X

2 2 2 2
O[O Oy O[O Oy
ot ax? oy ot ox oy
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(2) The First-order Shear Deformation Laminated Plate Theory

The displacement field for the first-order shear deformation theory (FSDT) can be

expressed in the form

u(x, y,z,t) =uy(x,y,t) + z¢_(x, ,1) (2.28.a)
v(x, y,2,8) = vy (x, ¥, 1) + 28, (x, y,1) (2.28.b)
w(x, y,z,t) =w,(x,»,1) (2.28.c)

where (u,, v,, w,) denote the displacement of a point on the plane z= 0 and (¢,, ¢,) are

the rotations of a transverse normal about the y — and x — axis, respectively.

The von Ka'rma'n Strains associated with the displacement field are (¢ =0)

e.| [&x| [en
Ey 83)’ ‘C"Jl)y
Vet =17w+29 0 (2.29)
Vel |7 0
Y xy V4 gy 7 i'y

where,

£) | E(GLJ
5,Sy gy 2\ oy
ow,
0
722 = 6_)/0 +9, (2.30.a)
Ve ow,
~0
]/,Sv Oox i ¢X
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9.
ox
£n o9,
ng)y oy
0= 0 (2.30.b)
0 0
7’10’ % + %
oy  Ox

Note that (¢, ¢,,, 7,,) are linear through the plate thickness, while the transverse shear

strains (y,., 7,.) are constant.

The equations of motions of FSDT are derived using the dynamic version of the

principle of virtual displacements.

6N 2 2
51/[ aNxx + o ]0 8 I/ZO + [1 6 ¢;x (231&)
ox oy ot ot
ON_  ©ON 2 0
s Mo Ny O, 00 (2.31.b)
ox oy ot ot
d
aaQX % ai [ N aawo N, aawO j )
sw: Xy * d (2.31.c)
Oy o M),y O
vl Yo Yooy ° o
oM. oM % o%u
5 . X o =] —*X 47 0 231d
¢x Ox ay Qx 2 atZ 1 6t2 ( )
oM oM o’ d%y
56 » »_0 =[] 4 0 2.31l.e
% ox dy Q=1 orr ot ( )



2.3.3. Equations of Motion for TSDT Donnell Shell Theory

where
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The Euler-Lagrange equations of nonlinear Donnell shell theory for TSDT are

ou:

ov:

ow:

o,

09, :

oN, Ny _ :
oxX,  ox, ot

-al,—
Yot ot

ONg ON, _, &, 0%, 0° [awoj
X,

ox, ox, *ar e o

O°u, ey 0’4, I o° [ ow,
0X,

0 2P &°PR,
—+N(w0)+cl[a Ly2 e

N, N, Ow, ., (W,
'y ly—5 —als—5 2
R R, ot ot | 0X,

c | I i %4_% +J i %+%
e \ax, ox,) tertlox, ox,

OM:1 OM¢ — ou 0? 0% ( ow,
= 6_Ql:Jl 20+K2 fl_cl‘]4_2 °
X, oX, ot ot ot | X,
OMs M. — 8%, © o’g, 3 [ ow,
-0, =J, > tK,——qJ,—
oxX,  oX, ot ot or? | ox,

+
0X,0X,

O°F,
oX,’

. o°w, N
oX,’

0
"o o N

|

ow,

Newg) == §, oy, D) 0|
ox,\ tox, ‘ax, ) ox,

L=3[ Py de (=012....6)

J =1 -¢ 1

i+2

ox, ’ox,
Mo=M,-c¢P, (@=126), 0,=0,-c,K, (B=12)

(i=14), K,=1,-2cl,+clI,

(2.32.9)

(2.32.b)

(2.32.c)

(2.32.d)

(2.32.)

(2.33)



2.3.4. Equations of Motion for TSDT Sanders Shell Theory

where

ou:

ov:

ow:

0@,

0@, .

The equations of motion are

F, OF,
N, 8N Ql +N(u0,v0,w0)+ 0 —L1 48
ox, ox, R ox, ox,
_ 2 _ 2 6W
T O%uy o7 o° ¢2§1 o, 0
ot? ot o’ \ ax,
P, F,
ON 6N Q2 +N, (uo,vo,w0)+ OF 6
ox, ox, 'R, R \ox, " ax,
— 0%, -, 0%, - 0 (ow
Sy By (i By i (i X
"o Vo o ax,

A A 2 ZP 2
%-i—agz+N3(uo,vo,w0)+c1 6}2 Ok +6P22
oX, 0X, 0X, 0X,0X, 0X,

N, N, o°w, & 82 o’w, 0°w,
R TR he e )
R, ¢ S| ax?  ox,

2 2

q [ 0 8u0 +Téa_2 % _|_J a¢l i

or* | X, o\ X, 81 oxX, 8X

'Ys A7 . A2 2 2 ow

8M1+8M6_Ql: laL:O_'_Kz@(fl 148 owy

ox,  ox, ot ot o \ ox,

EVa A7 . A2 A2 2 0

My My 5 50 g O 0 (o

ox,  ox, ot ot e
1

N, (g, vy, wp) = —

N, (g, vy, Wy) = ——

|
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(2.34.a)

(2.34.b)

(2.34.c)

(2.34.d)

(2.34.e)

(2.35.9)

(2.35.b)
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0 ow, u ow, v
N, (uy, vy, Wy) =——| N, °o_-0 + N °0o__9
ox,| \ox, R oX, R,

(2.35.c)
N 0 N, Wy Uy N, My Vo
oxX, oX, R oX, R,
Mo=M,-c¢P, (@=126), 0,=0,-c,K, (B=12)
N + .
Ii :z.[: 1p(k)(é/)ldé/ (izo’l’ 2,...,6),
k=1
Jo=1-¢ 1, (i=14), K,=1,-2cl,+cI,,
4 4
& :W, ¢ =h—2 (235d)

2 2
— c c - c c
IO=IO+2E11]3 +[i] 16' IO =IO+2R—113 +£—1j 16’

7. :J1+;—1J4, T =J+2,,

(N,, N,,Ny) denote the total in-plane force resultants, (M,,M,, M) the moment resultants,

and (P, P, B) and (K, K, ) denote the higher-order stress resultants.

dc (2.36.2)

== =
Il
—
Q

g o, 0l dl (2.36.b)

A b
Bt=[%10,1¢%¢ (2.36.c)
f)6 2
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K, ¢%]os] .,

{Kl}_j_lzl{ol}g “ (2359
O, 20'5

{Ql } - I—ﬁ{q}d{; (2.36.¢)

2.4. Constitutive Relations

In Sections 2.4 - 2.6, the equations are based on shell coordinate system. By setting

(&.4,,¢) to (x,y,z), the structural system returns to plate coordinates.

The plate and shell structure under consideration is composed of a finite number of
orthotropic layers of uniform thickness. Each composite lamina of the shell is assumed to
behave as an orthotropic material, with its material axes oriented arbitrarily with respect to
the laminate coordinates. The smart material layer is assumed to be orthotropic in deriving
the relations, but taken to be isotropic in actual calculations.

From the constitutive relations of the magnetostrictive layer (IEEE standard 319,

1976, 1990, Clark 1980), ¢ = So +dH , the constitutive relations for the k£” lamina

(magnetostrictive layer) when referred to the shell laminate coordinates can be written

= = — 7\ r - k)

(o) “ On O, O & o ) 0 0 ean 0

O, = élz ézz éze &, (=10, AT |-{0 O 232 0 (2.37.a)

O Qlﬁ ézs ése 1 s _0 0 e H e

*) — — ) - - @ |0
0

{04} _ 944 945 {54}_ fl4 524 0 (2.37.b)

Os Q45 st s es ex 0 H

4

For the structural part of the composite structure, the part including the electric field

intensity H . should be excluded in the constitutive relations.
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Equation (2.37) can also be written as
{0} =[01"{s - arT}-[e]V{H } (2.38)

where AT is temperature rise from a reference state, AT =7 -17;, and &,, @,,and &,

are the transformed thermal expansion coefficients.

a, = a, Cos” 0+ a, sin” (2.39.3)
a, = a,sin” @ +a, cos’ O (2.39.b)
a; =2(a, —a,)sin@cos (2.39.0)

The transformed stiffnesses @j are calculated from the plane stress-reduced

stiffnesses O, using the transformation relations,
0, =0, c0s" 8 +2(0, +20,,)sin*6cos? @+ 0% sin* 6
0., = (0, +0,, —40,;)sin? B cos? O + O, (sin* O + cos* 6)
0,, = 0, 5in* 0+2(0,, +20,,)sin? fcos? @ + 0* cos* 6
0, = (0, — 0, —20,,)sin0cos® O+ (0, — 0,, + 20, )sin* O cos b
0,5 = (0, - 0, —20,;)sin° Bcos 0 + (0, — O,, + 20, )sinHcos® 6 (2.40)
0y = (0, +0,, — 20, —20,,)sin? 6¢0s? 6 + O, (sin* & + cos* O)
0, =0,,008*0+Q,sin*0
0, = (0, —0,,)cosHsin G

O, =0, c0s*0+Q,,sin’ 0
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Here 6 is the angle measured counter-clockwise from the shell x, coordinate to the material
1-coordinate. The coefficients Q;") are known in terms of engineering constants of the

kth layer:

vipE, vy E, 0, = E,
22

— El —
Qll Q12 1— ViV (241)

- —, - - )
1-vpvy 1-vpvy 1-vpvy,
Ou =Gpr Qs =Gy O =Gy,

and E,J(k’ are the transformed magnetostrictive coupling moduli of the £” lamina.
en = e, C0s% O + ey, sin* O
ex = e, Sin? 0 + e, C0S* 0
e = (e, —e3,)SiNOC0S O
e = (e —e,,)sinOcosd (2.42)
e =e,, C0S° 0 + ¢, sin* 0
e2s = (e, —e,,)siNGc0sH

eis = e, COS° O +e,, Sin° O

2.5. Velocity Feedback Control

The smart layer produces an actuating force required to control vibration and
deflection in a smart plate or shell structure, based on a control law. From a structural point
of view, the two fundamental types for realizing control are the open-loop control and the
closed-loop control known as the feedback control. A sensor to measure the output is not
required for the open-loop control. The feedback strategy requires sensors for control
system design and has the potential to give much better performance than the open-loop
control (Franklin, Powell and Emani-Naeini 2000, Bishop and Dorf 2001). Because of the
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simplicity, direct output measurement feedback control is a promising solution to the
practical problems (Balas 1979, Chung, Liu and Chu 1993).

Magnetostrictive material is selected to actively control the structural system by the
simple control algorithm, a negative velocity feedback control, where the feedback
amplitude varies by the negative velocity. The constant control gain is assumed in this

study.

Considering velocity proportional closed-loop feedback control shown in Figure 2.4,

the magnetic field intensity /. can be expressed in terms of coil constant &, and coil

current 1(&,,&,,t) which is related to the velocity as

H;(§1’§2't) =k, 1(51’52’0 (2.43)
[ S (2.44)
bf+4rc2
&0 81) = () 22 (2.45)
o2t/ = AT, '

where b_is the coil width , », is coil radius, n, is number of turns in the coil, and c¢(¢) is

the control gain (Krishna Murty, Anjanappa and Wu 1977)

Actual Output

Input -4 Error
B Control Device  p—— Actuator 4"1 -

Sensor -
Measured Output T Feedback

Figure 2.4 Closed-loop feedback control system
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2.6. Laminated Constitutive Equations

The force resultants can be expressed in terms of the strain components as follows:

N (141 (8] [E1](€e"y| (N3] [{N'}

{M3}=|[B] [D] [F] |{{c°}t—{M"};—<{M"} (2.46.2)
{7y ] [[E] [F] [H])|{<*} |{P"}| |{P"}

{{Q}H[A] [D]} {{e"}} (2.46.b)
{rR}Y |[D] [F1]|{x}

The stiffnesses 4,, D, , and F; are defined for i, j=1,2,6 as well as i, j=4,5. The
stiffnesses B, E,, and H are defined only for i, j =1, 2, 6. The coefficients of 4,, B,

D,

lj i)

E;, F,, and H, are given in terms of the layer coordinates ¢, and ¢, and lamina

stiffnesses @j :

(A By Dy By By H,) = 3 [0 06087, 64 .60 (247)

The magnetostrictive stress resultants {N"}, {M "}, and {P" }are defined by

- ()

NlM . es1
= I
N b= ) ey H,dg (2.48.a)
NY = e
- (k)
MlM . ea1
- N
MY L= Lk ew( H,¢d¢ (2.48.b)
M, - e
- (k)
PlM N e31
M & {k*’l - 3
P :kzﬂl Lk e H; cde (2.48.c)
ESM €36
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again,

N} ({43 {4}
My =By =gyl (2.49)

{P"y | {EY {E)/}

The magnetostrictive stiffnesses {43 }.{B, '}, and {E }are defined for /=1, 2, 6.

k

(4 By By ) = kc() (4 By Ey) ) = kcc(r)fjj“a, LS.Chde (250)

where e, is the transformed moduli of the actuating/sensing material, and H, is the

electric field intensity, which should be excluded in the constitutive relations for the
structural part of the composite structures.

The thermal stress resultants {N"}, {M"}, and {P" }are defined by

— — — )
N M P v On 9n Y a, “
§k+1 - - - —
N, M, B ZZL On 9» O a, (¢ &P)ATdS (2.51)
k=1""F — — — —
N5T M6T P5T O Qs Qe %

where AT is temperature rise from the reference state and ¢«;, «,, and &, are the

transformed thermal expansion coefficients which are stated in Equation (2.39).
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3. ANALYTICAL SOLUTIONS

3.1. Analytical Solutions for Laminated Composite Plates
3.1.1. Introduction

The exact solutions of partial differential equations on arbitrary domains and for
general conditions are not always possible. However, for the simply supported boundary
conditions, the linear version of Equation (2.19) can be solved exactly, provided the
lamination scheme is cross-ply or anti-symmetric angle-ply laminates. Equations of motion
for the third-order shear deformation theory describe five second-order, nonlinear, partial

differential equations in terms of five generalized displacements (u,v,w,é,,¢ ). For linear
case, the in-plane displacements (u,v) are uncoupled from the bending deflections,
(w,é,,4,), and it is sufficient to consider only the bending equations, Equations (2.19.c),
(2.19.d), and (2.19.e).

3.1.2. Boundary Conditions

For simply supported rectangular plates, it is possible to obtain the Navier solutions.
There are two types of simply supported boundary conditions as shown in Figure 3.1. The

geometry and coordinate system of the rectangular plate are shown in Figure 2.1.

Y y
: ________ | : ________ |
| |
v0=w£=c|)}=0 I | u0=w£=c|)x=0 I |
Nxs;: Mxx: 0 : SS-1 | N\): M_“: 0 : S§-2 |
| |
' | ' |
' | ' |
7074 | V0 |
X
up=w,=0,=0 X Vo=Wo=¢,=0
N =M =0 N =M =0

Figure 3.1 Simply supported boundary conditions (SS-1 and SS-2) for TSDT
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The first type of simply supported boundary condition is denoted by SS-1 (used for
cross-ply laminates), and they are

uy(x,0,¢) =0, uy(x,b,t) =0, v(0,»,8)=0, v, (a,y,t)=0
¢.(x,0,0)=0,  ¢.(x,b1)=0,  ¢(0,»,0)=0, ¢,(a,y1)=0
wy(x,0,6)=0,  w,(x,5,8)=0,  wy(0,3,8)=0, wy(a,y,)=0  (3.1)
N.(0,y,6)=0, N_(a,t)=0, N, (x0£)=0 N, (xb1)=0
Mo(0,y,6)=0, Mu(a,y,t)=0, M,(x,0,)=0, M, (x,b1)=0

The second type of simply supported boundary conditions are denoted by SS-2 (used for
anti-symmetric angle-ply laminates), and they are

uy (0, y,2) =0, uy(a,y,t)=0, vy (%,0,£) =0, v,(x,b,t)=0

$,(x00=0,  $(xb)=0  4(0y.0)=0, ¢,(a.y.1)=0

w,(x,0,7) =0, w, (x,b,t) =0, w,(0,»,6)=0,  w,(a,»,t)=0 (3.2

N, (0,y,1) =0, N, (a,y,t) =0, N, (x,0,¢) =0, N, (x,b,6)=0

M. (0,3,0)=0, Mu(a,y,0)=0, M, (x,0,t)=0, M, (xb)=0

For the case in which the in-plane displacements are uncoupled from the bending

deflections, both the SS-1 and SS-2 boundary conditions reduce to the same, and they are

given by
w,(x,0,7) =0, w, (x,b,t) =0, w,(0,,6)=0, wy(a,»,t)=0
$.(x00)=0, 4 xb0)=0,  $(.x0)=0, $(@rn=0  (33)
M«(0,y,0)=0, Mu(a,y,t)=0, My (x,0,6)=0, M, (x,b,1)=0

3.1.3 Navier Solution

The above boundary conditions can be satisfied by the following expansions of the
displacements for both anti-symmetric cross-ply and angle-ply laminates:



o y.) = S W, ()sinax sin By

n=1 m=1

6.(ry0) =3 S X, (1)cosaxsin By

n=1 m=1

P, (x, 1) = ii Y (t)sinaxcospy

n=1l m=1

where o = and ﬂ:%,(W
a

mn?

The loads are also expanded in double Fourier series

MY (x,3,0)= > > M2, (1) sinaxsin By

m=1 n=1

MY (x,3,0)=>> M2 () sinaxsin By

m=1 n=1

PY (x30) = 33 P (¢) sinax sin By

m=1 n=1

PY (x,y,t)=>.> P2 (t) sinaxsin By

m=1 n=1

mn

1 _ 4 a b M R ;
M (t)—EJ.O IO M (x,y,t) sinax sin By dxdy
2 _ 4 a b M R ;
M (t) = EJ.O IO M, (x,y,t) sinaxsin By dxdy

P (1) = %J.: J.;P)f (x,»,t) sinax sin By dxdy

P2 (f) = ibj‘o .[Ob PY (x,y,t) sinaxsin By dxdy
a

X,..» Y ) are unknowns to be determined.

(3.4.9)

(3.4.b)

(3.4.0)

(3.5.a)

(3.5.b)

(3.5.0)

(3.5.d)

(3.6.9)

(3.6.b)

(3.6.c)

(3.6.d)
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Substituting the above expansions into the governing equations expressed in terms of the

generalized displacements, we obtain



where

Sz Su S mn Cy O W
S 43 S 44 S 45 X mn + C43 O an
53 54 SSS Ymn C53 0 0 Ymn
iy 3.7)
My My My W O
M, M, O = <0
Mg 0 Mg, 0
Sy, = Assa® + Auff? + 2[Hya' + 2(H,, + 2H )’ 2 + H,,
Sy = Assot — Cl[ﬁilaB + (ﬁiz + Zﬁée)aﬂz] =84
S5 = Z44ﬂ — o[B8 + (B, + 2F)a’ Bl = S
Sy = (D12 +566)6¥ﬂ =S,
Su = Ass + Dua? +566ﬂ2, See = A + Dot +522ﬂ2
My =1, +01](05 +ﬁ) My =—cJa=M,, M, =K,=M
=—¢J,f=M, :for cross-ply laminates (3.8)
M, =0=M,, : for Antisymmetric angle-ply laminates '

Cp =Cpy=Cp=Ch=Cyy =Cy =0

Cys = ¢, ("Bl + B°Ey),Cyy = (Byf — ¢, E)
- - Nk ,
ng :ﬂ(Bé\g_clEé\;[)’ Ii :ij p(k)(Z)le (l:O,l, 2,16)
k=1

J =1 -¢ I

i+21

K, =1,-2cl,+c,

A4,=4,-3¢D,, D,=D,-3¢F, F,=F,-cH,

ij ! ij? ij
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3.2. Analytical Solutions for Laminated Composite Shells

3.2.1. Modified Sanders Shell Theory

In this study, Donnell and Sanders nonlinear strain-displacement relations are
utilized to derive the equation of motion. Sanders nonlinear shell theory is modified for

shallow shells by omitting the following terms in the strain-displacement relations;
2 2
U | (Vo] Moo | [Ho ][O | [ Yo |[ O
w) GG GIE) G
U | O | [ Yo | OV (3.9)
R )\ ox, ) (R, ) ox,

The equations of motions for modified Sanders shell theory are

oN, oN, O, oP,  OP,
RRCATIS - W W e S
oX, 0X, R, R oxX, oX,

_ _ 52 (8
-1, ”"JrJa"zjl 0113—82 %o
o ot o? | ax,

(3.10.9)

ON; N, +Q oF, , ok,
oX, 0X, R, ox, ax,
2
o° Vo Jl, 0 ¢;2 0173' o? awo
or? ot or* | ox,

(3.10.b)
=1 =X

e e 2 2 2
%JF_GQZ aP;+2 o'k, +aPZ2
ox, ox, oX2 aX,0X, oxX,

NN, *wy 2 o [ 0w, 6w0
R R, ° o Ao g2 axz oxX,?

2 2
+e | I, — 0" [ Oy + I — O [ +J,— % i
Yot lax, ) Cat | ax, az ox, ' ox,

— - o . 62 _ 2 2 ow
6M1+6M6 s L:0+K28 fl_cl_]4a_2 0 (3.10.d)
ox,  ox, ot ot o\ X,

+N(W0)+Cl(

+q — (3.10.c)

| I |
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P JE— . B 2 _ 2 2
OMe  OM: _ 79 0°¢, 0 [awoJ (3.10.e)

-0, = +K —ed, —| —2%
ox, oX, Qo =i%p the e —align ox,

where

Newg) =2 N, Doy Do |, O |y Oy O
ox,\ ‘tax, °ox,) ox,| ‘ax, ‘ox,

Mo=M,-c¢P, (@=126), 0,=0,-c,K, (B=12)

N g1 ‘
L= p"yds (i=0,12,..,6),

Jo=1-¢ 1, (i=124), K,=1,-2cl,+cI,,

2 2
— C. C. — C. C.
I, =1 +221+| X1 I, =1 +221+| =X I, 3.11
0 0 Rl 3 (RIJ 6 0 0 R2 3 [sz 6 ( )

- c , c
Ji=die Dy Ji=die

1 2

The Sanders nonlinear equations of motion with smart material layers for shallow
shells which is expressed in terms of displacements by substituting for the force and

moment resultants are summarized in the Appendix A.

3.2.2. Navier Solutions of Shell Theories

For simply-supported shells whose projection in the x,x, —plane is a rectangle, the

linear version of Equation (2.32) for Donnell shell theory and Equation (2.34) for Sanders
shell theory can be solved exactly, provided the lamination scheme is of antisymmetric

cross-ply or symmetric cross-ply type. The Navier solution exists if the following stiffness

coefficients are zero:

Ai6 :BiG :Di6 :Ez’6 :F;(i :Hi6 =0, (izl,Z) (3 12)
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The simply supported boundary condition (SS1) for the third-order shear
deformation theory is assumed to be of the form

uy(x,0,2) =0, uy(x,b,t)=0, vy(0,x,,6)=0, v,(a,x,,t)=0
w,(%,,0,£) =0, wy(x,,b,t)=0, w,(0,x,,£)=0, w,(a,x,,t)=0

$,(x,0,6) =0, ¢(x,b,t)=0, ¢(0,x,,t)=0, ¢,(a,x,,t)=0 (3.13)
N,(0,x,,)=0, N,(a,x,,t)=0, N,(x,0,£)=0, N,(x,b,¢)=0

M1(0,x,,6) =0, Mi(a,x,,t)=0, M2(x,,0,{)=0, M2(x,,b,1)=0
where a and b denote the lengths along the x, — and x, — directions, respectively.

Following the Navier solution procedure, we assume the following solution form

that satisfies the boundary conditions.

uy(x,,x,,1) = iiUW (#)cosax, sin fx, (3.14.8)
nel mel
1o () = Y W (1) sinax, cos B, (3.14.b)
ned mel
Wy (5, 0) = 3 S W, (1)sin g, sin fix, (3.14.0)
el mel
@ (x,x,,1) = ii)( (¥)cosax; sin fx, (3.14.d)
nel mel
b (n5,0) =3 37, (1)sinax, cos i, (3.14.)
|
where o = % and g = % . The transverse load ¢ is also expanded in double Fourier
sine series
0ox,1) =3 Y 0, (O)sin e, sin B, (3.15.a)
ned mel

0 ()= % 117 46 x,.1)sin a, sin fe,dnd, (3.15.h)
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Substituting Equations (3.14) and (3.15) into Equation (2.30) for Donnell shell
theory and Equation (2.34) for Sanders’ shell theory, we obtain

I S11 S12 S13 S14 Sls | Umn 0 0 C13 0 0] U’””
Su Sn Su Su Sk ||V 00 C 00 an
Sy Sy Su Sy Sy IV + 10 0 G 00 Wmn
Su Si Siz Su S || X, 00 C; 0 O0||x n

_S51 Ss; Ssz Ses Ses 1 _0 0 G, O O_ Ymn

(3.16)
‘M, 0 M, M, 0 1|Un 0
0 M, M, 0 M, Vo 0
+ | My My, Mg My My Wmn = 10,
M, 0 M, M, 0 X n 0
L 0 M, M, 0 M i Ymn 0

where coefficients Sy Gy and M, are defined below for the two theories.

(1) Donnell shell theory

Sy = _azAll _ﬂZAes’ S, = —af (A, + Ag)

A, A4
Sz = 0{% + R_lzj +aa(a’Ey + fPE, +2[5°E)

1 2
S14 = _azBll _ﬂzBﬁey Sj_s = _aﬂ(BIZ + B66)
Sy = _aera _ﬂZAZZ

A A
Sy = ﬂ(ﬁ + fj + clﬂ(azElZ + IBZEzz + 2a2E66)
2

Sy ==af(By, + Bg), Sy = _azBes _ﬂszz



Sy =—c2[Hyo +2(Hy, + 2H )’ B2 + H,, B]- o A

AL 2ate (E_E_J 2 (E_E_]
RR R R

(A A L[y Ay
R\ R R, R,\ R R, ’

e (B
So = cila’ By + aff* (F, +2F,)] - a s +OK[%+%J
1 2

. .- (B, B
Sps = C;L[,BSFZZ Jrogzlg(Fl2 +2F)]- A, +'B(f+R_ﬂJ
2

1
S44 = _052511 _ﬂZBGB _;155, S45 = —aﬂ(Blz +566)
Sgs = —a® Des —ﬂzﬁzz —;144

B, =B, ~c¢E

) ij?!

D@‘/ =D. —cF

ij i ij i

J— N

D, =D, —¢,F, =D, —2¢,F, +¢*H, (i,j=12,6)

i = Py
A; = A4, -3¢,D;, D, =D, -3c,F,

A4 =4 —30151.1. = 4, —GClDl.j + 9012E.j (I, j=4,5)
M, =-1,, My=acl,, M,=-J, M, =-I,
M, = Bely,, My =-J, My=-1,—c1,(a*+ p?)

M34201J4a, M35=Clc]4ﬂ1 M44:_K21 M55=_K2

M
A31

C, =adl, C,=p4  C,=-c (®E¥ + p*EY )+7+

1

Cp=a (Baj\f —clg'g), Cy=p (Eé‘;{ _015:31\;)
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(3.17)

M
32

R,



(2) Sanders shell theory
Sy =—a’ 4, — B 4
2

1 1 - C
_E{?ASS +2¢, (0’ Ey + B Egy ) - (a?Hy, + B Hyy )
1Y !

Sy, = —af(4, — Ag)

G 4 2 (H H
— —+—|(E E.)-c
aﬂ( 1+R2}( 1o+ Egg ) ﬂR (Hyp + He)

A A
%" 0{% i %] +ca(a’Ey, + f°E, + 28 Eg,)

1 2

~ E E
+£{A55 +cf (O{ZHH +B°H,, + 2ﬂ2H66)+cl [i"kiﬂ
R, R R,

A~ A

1 ~ ~ ~
Sy =—0a’By, — * By +F[A55 —a(a'hy + ﬂZF;%)]

1

~ ~ 1 ~ ~
S;s =—af (B, + By) — ¢ ?aﬂ(FiZ + Fig)

1

Sy = _aere _182‘422

11 - G
_R_z{R_zAM +2¢ (azEes +132E22)—Ri2(052H66 + B Hy )}
g - 4, Ay 2 2 2a’
w =B —=+—= |+af(a’E, + B Ey, + 20 Ey)
R R,

IB{A a 2 2 E, Ey
+—| Ayt (aH,+ P Hy +20°Hyg )+, | —=+
2t el TR

~ ~ 1 ~ ~
S24 = _aﬁ(Bﬂ + Bse) st R_aﬂ(FlZ + FG6)

2

. . - - -
Sy = =0 Bg — f*B,, +R_[A44 ~a(a’Fy +ﬂ2FZZ)J

2

(3.18)
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Sy = _012[H11a4 + 2(le +2H, 6)052:32 +H 2ﬂ4]_0‘2‘255

~ E E E
_ﬂ2A44 20{ cl( 11 ] Zﬂ ( 22)
R R, R R,
(A Ap) L[ Ay Ay
Rl Rl Rz Rz Rl Rz

o (R
Sy = el By v o (B + 263)] - + “[ﬁ*za_nJ
1 2

3 1 2 - B é
S35=cl[,6’F22+a,B(F12+2 6)]— ﬂA44+,B£R1 R, J

Su = ~a’ Du _ﬂZB% _‘:155' Sis = _aﬂ(ﬁﬂ +566)

Ses = —a? Des —,32522 - ;144

A

B,=B,~-c¢E, D,=D,-c¢F, F,=F -cH,

g 7 y g y

5@‘1‘ =D, —clfi/. =D; -2¢F, +¢ ’H,

ij y

(1,7 =12,6)

A, =4, -3¢,D,, D, =D, —3¢F,

i ij

A, =4, -3¢,D, = 4, ~6¢,D, +9¢°F, (i,j=4,5)
M, = _I_o' M, = 0!6‘11_3, My, = _'71
Mzzz_Z;!Mzs:ﬂclfs’szsz_jl’

Mgy =-1, _01216(052 +ﬂ2)’ My =ad,a, My =cJ,p

M44 Z_Ew Mss :_Izz

C, :0{;@{ +%EMJ C, :ﬂ[;gg +;—EMJ

1 2
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AN 4qM

2 =M 2 FM 31 32

Co=—c (@Ey +PEG)+——+—=
1 2

Cp=a (l?é‘f _C1E£f)v C=p (Z?é';[ _clEé;[)

3.3. Vibration Control

For vibration control, the solution of the governing equations are sought in the form

u . ()=U,¢e", Vv @)=V, e", W, (t)=W,e"

- M - B (3.19)
X, O=X,¢e", Y ()=, e

and obtain, for non-trivial solution, the result

Ell §12 513 514 §15
g 21 EZZ §23 E 24 E 25

§31 §32 §33 §34 S35 =0 (3-20)

541 542 §43 §44 S5
Ssi Ss2 Sss Sss  Sss

where
Sy =8,+AC, +A’M, (3.21)
For the plate case, the Equation (3.20) reduces to

Su Su S
Siz Su Sus|=0 (3.22)
Ss3 Ssi Sss

Equations (3.20) and (3.22) give five sets of eigenvalues and three sets of
eignevalues, respectively. The lowest imaginary part corresponds to the transverse motion.

The eigenvalue can be written as 4 = —-a, +iw,, So that the damped motion is given by



48

1 ., . . mmx, . NTX
Wy (x,,X,,2) = —e * sinw,t sin Lsin—-2 (3.23)
0 1 2 d
w, a b

In arriving at the last solution, the following initial conditions are used:
uy(x,x,,0)=0, uy(x,x,,00=0
Vo (x,x,,0)=0, v,(x,x,,0)=0
W (x,%,,0) =0, 1y (x,x,,0) =1 (3.24)
@ (x,x,,0)=0, qfl(xl,xz,O)zo
#,(x,x,,0)=0, ¢'52(x1,x2,0):0

3.4. Analytical Results for Laminated Composite Plates

Using the analytical solutions developed in the previous sections, numerical studies
are carried out. In particular, the effect of the position of the smart material layer, the
thickness of the smart material layer and the elastic composite layer, and the material
properties of the elastic layer, on the frequency and vibration suppression time of the
laminated composite plate. Here, the vibration suppression time is defined as the time
required to reducing the uncontrolled vibration amplitude to one-tenth of its initial
amplitude. Various values of the vibration suppression time ratio 7, (suppression time
divided by the maximum suppression time) are obtained as the distance between the
magnetostrictive layers and the neutral axis is varied. The vibration suppression time ratio

can be shown to be 7, = 5 " where A, is the thickness of the magnetostrictive layer and
z

m

z,, 1s the distance between the mid plane of the magnetostrictive layer and the mid plane of
the plate. Studies involving different lamination schemes, layer thickness, and control gain

values have also been carried out.

Four different kinds of the elastic composite material are used. CFRP [composite

fiber reinforced polymer], Gr-Ep (AS) [graphite-epoxy], GI-Ep [glass epoxy], Br-Ep [boron
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epoxy]. The material properties of magnetostrictive material, Terfenol-D, and typical
composite materials are listed in Table 3.1.

Table 3.1 Material properties of magnetostrictive and elastic composite materials

Material [G%a 1 [G%a 11 5’%2 1 [552 11 5’%2 ] w [Kgpm3 ]
Terfenol-D 265 265 1325 1325 1325  0.00 9250
CFRP 1386 827 496 412 496 026 1824
Gr-Ep(AS) 1379 896 720 621 720 030 1450
GI-Ep 5378  17.93 896 345 896 025 1900
Br-Ep 2069 2069 69 414 69 030 1950

3.4.1. Vibration Suppression of Different Modes

The vibration suppression characteristics of the first five vibration modes of the
composite plates are also studied. Displacement versus time is presented in Figures 3.2(a)
and 3.2(b). From the figures, it can be seen that the vibration suppression time decreases
very rapidly as mode number increases. This is because the amplitude of vibration that has
to be suppressed decreases as the mode number increases. The results have been obtained
for a CFRP (m/90/0/90/0)s and Gr-Ep(AS) (m/90/0/90/0)s laminated composites with 7, =

1 mmand 2, =1 mm. Here m stands for the magnetostrictive material layer and the

subscript “S” stands for symmetric.
3.4.2. Effect of Lamina Material Properties

The influence of lamina material properties on the amplitude of vibration and
vibration suppression times has been studied and the results are tabulated. Table 3.2 lists
the inertial coefficients of the different lamina materials used. The lamination scheme used
in all the materials is (m/90/0/90/0)s. This lamination scheme means that the laminated
plate consists of 10 laminae, the fiber orientation being (72/90/0/90/0/0/90/0/90/m).
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Table 3.2 Inertial coefficients of symmetric cross-ply (m,90,0,90,0)s laminated plate

. o lo I,(x10%)  15(x10°%)  Ig(x10™)
Material Lamination Scheme _
[kg m™] [kg] [kg m’] [kg m*]
CFRP (m/90/0/90/0)s 33.092 45399 8.5208 17.171
Gr-Ep(AS) (m/90/0/90/0)s 30.100 4.3803 8.3676 16.996
GIl-Ep (m/90/0/90/0)s 33.700 45723 8.5519 17.207
Br-Ep (m/90/0/90/0)s 34.100 45937 8.5724 17.230

Table 3.3 contains the frequencies w, and damping coefficient a obtained using
different composite materials. Figures 3.3(a) - 3.3(d) shows the vibration suppression
characteristics of composite plates made up of different materials. Where the thickness of
the lamina 4, is taken to be 1mm and the thickness of the smart material layer %, is taken

to be Imm. It is observed that materials having almost same E; /E; ratios have similar

vibration suppression characteristics.
3.4.3. Effect of Plate Theories

As mentioned in the introduction, the CLPT and FSDT theories are mere special
cases of the TSDT. The comparison of the eigenvalues obtained by using all three theories
is presented in Table 3.4. Figure 3.4 shows the vibration suppression behavior obtained
from the each plate theory. It is observed that the CLPT theory gives higher frequencies of

Table 3.3 Damping coefficients and frequencies for different materials

Material Lamination Scheme —a,; tw,[rads™]
CFRP (m/90/0/90/0)s 11.86+ 184.508
Gr-Ep(AS) (m/90/0/90/0)s 13.043£197.095
GI-Ep (m/90/0/90/0)s 11.516+ 162.968

Br-Ep (m/90/0/90/0)s 11.507+ 212.05
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vibration. This is expected, since the CLPT theory renders the plate stiffer compared to the
other two theories. Where the thickness of the lamina 4. is taken to be 1mm and the

thickness of the smart material layer /,, is taken from 1 to 5 mm based on the ratio of a/A.

Table 3.4 Eigenvaluse (-, + w,) obtained through the different plate theories

Material L"i‘s’“gr']gf:eo” a CLPT FSDT (k=5/6) TSDT
crrp (0/90/0/90/m)s 10  13.199+2049 11570+1911 11.512+ 1935
(0/90/0/90/m)s 20  6.599+1024  6.372+1006  6.368+ 1009
(M/90/0/90/0)s 10  126.95+1045 117.32+1866 116.592+ 1848
Gr-Ep(AS)

(m/90/0/90/0)s 20 65.299+£986.2 63.449+971.8 63.3241+969.2

3.4.4. Effect of Smart Material Position

Next, suppression times for CFRP laminates are studied. The lamina thickness #. is
taken to be 1mm and the thickness of the smart material layer 4, is taken to be Imm. The
natural frequencies and the damping coefficients for different lamination schemes are
obtained. The maximum deflection (7,,.,) of the composite plate and the suppression times

have been calculated.

Figure 3.5 shows the displacement versus time for various laminates. It is observed
that as the smart material layer is moved farther from the mid-plane the suppression time
decreases. This is expected since the moment generated by the actuation of the smart
material is more as the smart material is moved away from the mid-plane. Figure 3.6 shows
the effect of the smart material layer location on the vibration suppression time. It is
observed that the vibration suppression time does not show appreciable change when the
distance of the smart material layer from the mid-plane is reduced from 0.045m to 0.015m,
but then increases by almost an order of magnitude when the smart material layer is moved
from 0.0015m to 0.0005m from the mid-plane. The eigenvalues and suppression time for
each lamination schemes is tabulated in Table 3.5, where z,, denotes the positive distance

from the center of the laminate to the center of the smart layer.
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Table 3.5 Suppression times for different CFRP laminates

Lamination Scheme (?T“]“) -a, tw, (1\3/_?“) t at Wma/10 T,
(0/90/0/90/m)s 0.0005 1.318 204.721 4.823 1.728 1.000
(90/0/90/m/90)s 0.0015 3.954 202.800 4771 0.563 0.333
(0/90/m/90/0)s 0.0025 6.589 198.881 4.769 0.355 0.200
(90/m/90/0/90)s 0.0035 9.224 192.823 4.815 0.253 0.143
(m/90/0/90/0)s 0.0045 11.86 184.507 4.907 0.194 0.111

3.4.5. Effect of Lamina Thickness

The vibration characteristics are obtained for the CFRP laminate with the fiber
orientation of (0/90/0/90/m)s for different thicknesses of the lamina and smart material
layers, keeping the control gain constant. The vibration frequencies, damping factors and
suppression times are presented in Figure 3.7 and Table 3.6 for the different lamina

thickness. Where h, and %, are the thicknesses of the elastic material layer and smart material
layer, respectively.

Table 3.7 shows the effect of the position and thickness of the smart material layer
and the thickness of the composite material laminae on the vibration suppression time ratio.
It is observed that thinner smart material layers result in better attenuation of the vibration.
This is due to a higher mass matrix that is caused by the large increase in the moment of
inertia of the system when thickness of the smart material layer is increased. This increase
IS because the smart material layer has a density of almost five times to that of the

composite material.
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Figure 3.7 Effect of lamina thickness on vibration suppression

Table 3.6 Vibration suppression characteristics for the different lamina thickness

Thickness (mm) -a, t o, Winax (107 m) t at Wppa/10
h.=1,hy,=1 1.318 204.721 4.823 1.728
he=5,hn=2 1.533 1023.00 0.947 1.499
h.=2, hn=5 8.910 442.249 2.140 0.259
h.=5, hn=5 6.368 1009.00 0.920 0.368

3.4.6. Effect of Feedback Coefficients

The value of the feedback coefficient c¢(¢)k. influences the vibration suppression
characteristics. The study is performed on a CFRP laminate with thickness of the elastic
layer to be 1mm and the thickness of the smart material to be 1 mm. Different lamination

schemes are used and the position of the smart material layer is varied. Two different
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values of the feedback coefficient are used: c()k. = 10* and c¢()k. = 10%. The results

obtained are presented in Table 3.8.

Table 3.7 Vibration suppression ratio for the different laminates

Lamination Scheme Thickness (mm) h,/h, Zm(m) Ts
he=1, hy=1 1.0 0.0005 1.0000
he=5, hp =2 2.5 0.0010 1.0000
(0/90/0/90/m)s ¢ "
he=2,hn=5 0.4 0.0025 1.0000
he=5, hy=5 1.0 0.0025 1.0000
he=1, hy=1 1.0 0.0015 0.3333
he=5, hy = 2 2.5 0.0060 0.1667
(90/0/90/m/90)s ¢ "
he=2,hn=5 0.4 0.0045 0.5556
he=5, hy=5 1.0 0.0075 0.3333
he=1, hy=1 1.0 0.0025 0.2000
he=5, hp =2 2.5 0.0110 0.0909
(0/90/m/90/0)s ¢ "
he=2,hn=5 0.4 0.0065 0.3846
he=5, hy =5 1.0 0.0125 0.2000
he=1, hy=1 1.0 0.0035 0.1429
he=5, hy = 2 2.5 0.0160 0.0476
(90/m/90/0/90)s ¢ "
he=2, hy=5 0.4 0.0085 0.2941
he=5, hy =5 1.0 0.0175 0.1429
he=1,hn=1 1.0 0.0045 0.1111
he=5, hy =2 2.5 0.0210 0.0476
(m/90/0/90/0)s ) "
he=2, hy=5 0.4 0.0105 0.2381
he=5, hy =5 1.0 0.0225 0.1111

The variation of the vibration suppression time for different laminates and for two

different values of the feedback control coefficient are presented in Figure 3.8.

It can be

seen that the suppression time increases when the value of the feedback coefficient

decreases. This is because the damping coefficients decrease, thereby resulting in less

damping. However, from Table 3.7, it can be noted that there is no appreciable change in
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the natural frequency of vibration for different lamination schemes when the value of the
feedback coefficient changes.

Table 3.8 Suppression time for two control gains for different laminates

c()k. = 10° c(k. = 10*
Lamination Zm
Scheme (m) W t at W, tat
_ + max _ + max
Do =P 10%m) Woed10 % T D40 (10% m) W10

(0/90/0/90/m)s 0.0005 0.132 204.726 4.868 16.981 1.318 204.721 4.823 1.728
(90/0/90/m/90)s 0.0015 0.395 202.838 4.908 5.612 3.954 202.800 4.771 0.563
(0/90/m/90/0)s 0.0025 0.659 198.989 4.998 3.451 6.589 198.881 4.769 0.355
(90/m/90/0/90)s 0.0035 0.922 193.041 5.140 2.387 9.224 192.823 4.815 0.253
(m/90/0/90/0)s 0.0045 1.186 184.884 5.335 1.745 11.86 184.507 4.907 0.194
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Figure 3.8 Effect of feedback coefficient on the suppression time
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3.4.7. Variation of T, and e, for Different Laminates

The variation of the vibration suppression ratio 7, and the normalized damping

parameter e, =&, / &, is studied for different positions of the smart material layer in the

max
laminated composite plate. The results are tabulated in Table 3.9 and presented in Figure
3.9. From the earlier discussions, the vibration suppression ratio decreases when the smart
material is moved away from the laminate. The normalized damping parameter increases
as the smart material layer is moved away from the neutral axis. This is explained by the
increased damping that is achieved when the smart material layer is moved away from the
neutral axis. The variation is studied on a CFRP laminate with the thickness of the elastic

composite layer and the thickness of the smart material layer being 1mm.

Table 3.9 T, and e, parameter for different CFRP laminates

. Zm _ &y
Laminate Scheme (m) Ts Eq e, £
(0/90/0/90/m)s 0.0005 1.000 0.0295 0.0027
(90/0/90/m/90)s 0.0015 0.333 0.4426 0.0407
(0/90/m/90/0)s 0.0025 0.200 1.9177 0.1762
(90/m/90/0/90)s 0.0035 0.143 5.1631 0.4743

(m/90/0/90/0)s 0.0045 0.111 10.8867 1.0000
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3.5. Analytical Results for Laminated Composite Shells

Using the previously developed analytical solutions based on Donnell and Sanders
shell theory, numerical parametric studies are carried out. Symmetric cross-ply laminated
square shell (a/b =1) with both the upper and lower surfaces embedded magnetostrictive
material, Terfenol-D, is considered under the initial unit velocity in £ direction for simply
supported boundary condition. The laminated composite shells are composed of total 10
layers and all the layers are assumed to be of the same thickness. Three different shell
types, spherical (R, = R, = R), cylindrical (R, = o), and doubly curved shell (R, = 2R, for
this study), are considered with two side-to-thickness ratios a/h =10 and 100 for the thick
and thin shells. The elastic composite materials considered in here to study the effect of the
elastic material are CFRP (composite fiber reinforced polymer), Gr-Ep(AS) (graphite-
epoxy), GI-Ep (glass-epoxy), and Br-Ep (boron-epoxy). The material properties of these

materials are tabulated in Table 3.1.

The inertial coefficients with different elastic material are shown in Table 3.10 for
thin and thick cross-ply (m,90,0,90,0)s laminated shells. Here m represents
magnetostrictive layer, 90 and 0 for the angles of elastic material layer in degree and
subscript s stands for symmetric.

3.5.1. The General

The symmetric cross-ply laminated CFRP spherical shells (R, =R, =R ) are
considered to study the effect of mode and smart layer position on the vibration suppression
characteristics. Table 3.11 shows the frequency @, and damping coefficient —¢, of the
symmetric cross-ply (m,90,0,90,0)s spherical shell with R, /a =10 for different modes in

the case of thin and thick shells. It is observed that the maximum amplitude of vibration
and vibration suppression can be found in the mode (1,1). This is because the amplitude of
vibration that has to be suppressed decreases as the mode number increases. It can be seen

clearly in Figure 3.10.



Table 3.10 Inertial coefficients of symmetric cross-ply (m,90,0,90,0)s laminated shell
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Thickness

Material

lo

I

L4

le

[kg m™] [kg] [kg m*] [kg m*]

CFRP 33.092  0.45399(x10%) 8.5208(x10°)  17.171(x10™)

Thin Shell Br-Ep 34100  0.45937(x10%) 8.5724(x10°)  17.230(x 10
9,=100 " GrEp(AS) 30100  0.43803(x107%) 8.3676(x10°)  16.996(x 10
Gl-Ep 33.700  0.45723(x107°) 8.5519(x10°)  17.207(x10™)

CFRP 330.92 0.45399 8.5208(x10%)  17.171(x107)

Thick Shell Br-Ep 341.00 0.45937 8.5724(x 10  17.230(x107)
9,=10  GrEp(AS)  301.00 0.43803 8.3676(x10%)  16.996(x 107)
GI-Ep 337.00 0.45723 8.5519(x10%)  17.207(x 107

Table 3.11 Effect of the mode on the Eigenvalues of the symmetric cross-ply
(m,90,0,90,0)s CFRP spherical shells with R, /a =10

Thin Shell(a/h =100)

Thick Shell(a/h =10)

Theory Mode (m, n)
-, @, -, @,

mode (1, 1) 16.2933 316.8491 106.8430 1716.3063
mode (1, 3) 66.3169 1200.4960 312.8574 7563.3768
mode (3, 1) 66.5636 979.4863 364.1833 6733.5733

Donnell mode (3, 3) 109.7777 1667.9786 521.5811 10462.7632
mode (1, 5) 159.3204 3112.2032 513.8302 14610.7404
mode (5, 1) 161.1095 2462.9380 643.1361 13498.9662
mode (5, 5) 289.8144 4520.7199 928.7615 20614.5649
mode (1, 1) 16.2814 316.7589 106.5941 1714.9065
mode (1, 3) 66.2975 1200.3622 312.3166 7562.4308
mode (3, 1) 66.5476 979.3728 363.7152 6732.6829

Sanders mode (3, 3) 109.7507 1667.8271 520.8413 10461.8118
mode (1, 5) 159.2856 3112.0733 513.1365 14610.0843
mode (5, 1) 161.0844 2462.8316 642.5241 13498.3567
mode (5, 5) 289.7587 4520.5710 927.7522 20613.9016
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Figure 3.10 Vibration suppression characteristics of CFRP spherical shells (R, /a =10) for

the different mode; (a) Thin shell (/A2 =100), (b) Thick shell (a/# =10)
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The effect of the position of smart material layer is studied with the symmetric

cross-ply spherical shell with R, /a = 3. Four different cross-ply laminates, (m,90,0,90,0)s,
(90,m,0,90,0)s, (90,0,m,90,0)s, and (90,0,90,m,0)s are considered. It is observed that
the damping coefficient —«, increases with the distance between the smart layer and mid-

plane of the shell. Thus, the vibration suppression time decreases as the smart material
layers are moved from the mid-plane. The damping coefficients and frequencies for
different smart layer positions are shown in Table 3.12. Figure 3.11 shows the vibration
suppression characteristics of each lamination case. In case of thin shell, frequencies are
close to each other so that the deviations are not obvious in the Figure. It is clear that

(m,90,0,90,0)s lamination has the maximum vibration suppression and lowest frequency

for thin and thick shells.

Table 3.12 Effect of the lamination scheme on the Eigenvalues of the symmetric cross-ply
CFRP spherical shells with R, /a =3

Thin Shell(a/h =100) Thick Shell(a/h =10)
Theory Laminations
—a, @, -, @,

(m,90,0,90,0)s 26.0966 872.7906 114.6203 1884.9296
Donnell (90,m,0,90,0)s 23.5016 874.6319 91.7248 1964.5621

(90,0,m,90,0)s 20.9074 876.0250 69.4512 2035.5273

(90,0,90,m,0)s 18.3127 876.9696 47.0917 2076.0054

(m,90,0,90,0)s 25.9807 872.4346 113.1522 1870.9359
Sanders (90,m,0,90,0)s 23.4096 874.2427 90.4025 1949.5607

(90,0,m,90,0)s 20.8393 875.6105 68.2815 2019.6510

(90,0,90,m,0)s 18.2687 876.5381 46.1042 2059.6157
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3.5.2. Effect of Shell Theories

First, it should be mentioned that the difference between Donnell and Sanders third-
order shear deformation shell theories is not significant in linear analysis. Tables 3.13 and
3.14 show the eigenvalues of symmetric cross-ply laminated shells by Donnell and Sanders
shell theories. It is observed that Donnell shell theory gives higher frequency and damping
coefficients than Sanders shell theory. As total thickness of shell structures is increasing

and R, /a value is decreasing, the numerical differences in eigenvalues become larger.

Table 3.13 Eigenvalues of the symmetric cross-ply (m,90,0,90,0)s CFRP laminated shells
by Donnell shell theory

Spherical Shell Cylindrical Shell Doubly Curved Shell

Thickness R%
—Q, 2F —Q, 2F —Q, 2F

1 N/A” N/A" N/A" N/A” N/A” N/A”
2 32.2630 1280.8428 22.4376  663.7485  27.6324  973.8544
3 26.0966 ~ 872.7906  19.0867  465.6132  22.6876  667.4403
Thin 4 22.7193  667.9063  17.3330  370.4516  20.0711 516.1883
Shell 5 20.6192  546.3928  16.2604  316.5267  18.4650  427.8527
9,=100 10 162933 316.8491 14.0782 2249291 151902  267.1285
20  14.0853 2249884 129724 1953690  13.5297  208.2258
50  12.7514  191.5289  12.3055  186.2677  12.5286  188.4752
100  12.3057 186.2710  12.0827  184.9354  12.1942  185.4901
10 11.8596  184.5068  11.8596  184.5068  11.8596  184.5068

1 N/A” N/A" N/A" N/A” N/A” N/A"
2  118.6162 2088.2579 110.7055 1795.2084 115.3906 1927.6191
3 114.6203 1884.9296 108.6770 1742.5986 111.9508 1805.1097
Thick 4 1121085 1806.3593 107.4377 1723.5286 109.9357 1759.4761
Shell 5  110.4533 1768.4574 106.6250 1714.5884 108.6401 1737.8266
% —10 10 106.8430 1716.3063 104.8500 1702.5766 105.8701 1708.4458
20  104.9037 1703.0031 103.8907 1699.5774 104.4029 1701.0371
50  103.7019 1699.2899 103.2932 1698.7536 103.4984 1698.9809
100  103.2953 1698.7708 103.0904 1698.6425 103.1931 1698.6966
10%°  102.8859 1698.6124 102.8859 1698.6124 102.8859 1698.6124

" Since R,/h < 20, the current formulation cannot be applied to this case



72

However, when one considers the vibration control behavior it is hard to see the differences
(see Figure 3.12). Thus, the following numerical results and discussion regarding the
vibration control characteristics in linear analysis are common in both Donnell and Sanders

shell theories.

Table 3.14 Eigenvalues of the symmetric cross-ply (m,90,0,90,0)s CFRP laminated shells
by Sanders shell theory

R Spherical Shell Cylindrical Shell Doubly Curved Shell
Thickness %
a -, @, -, w, -, @,

1 N/A” N/A” N/A" N/A” N/A” N/A”
2 32.0114 1280.3174 22.2974 663.0668 27.4689 973.3518
3 25.9807 872.4346  19.0224 465.1745 22.6124 667.1056
Thin 4 22.6525 667.6420 17.2959 370.1398 20.0276 515.9435
Shell 5 20.5756  546.1846  16.2362 316.2927 18.4365 427.6626

9,=100 10 162814 3167589 14.0715 224.8465 151822  267.0518
20  14.0818 2249568 12.9705  195.3450  13.5274  208.2015
50  12.7506 191.5229  12.3050  186.2637  12.5280  188.4708
100  12.3054 186.2695 12.0825  184.9344  12.1940  185.4890
10%°  11.8596 184.5068 11.8596  184.5068  11.8596  184.5068
1 N/A” N/A” N/A” N/A” N/A” N/A”
2 115.7878 2060.5069 109.1022 1774.0591 113.4495 1906.0331
3 113.1522 1870.9359 107.8476 1732.7819 110.9302 1794.7113
Thick 4 1111736 1798.0837 106.9091 1717.9217 109.2775 1753.4483
Shell 5  109.7873 1763.0312 106.2478 1710.9754 108.1661 1733.9142
% —10 10 1065941 1714.9065 104.7078 1701.6671 105.6867 1707.4516
20  104.8007 1702.6525 103.8315 1699.3509 104.3248 1700.7892
50  103.6659 1699.2348 103.2723 1698.7180 103.4705 1698.9421
100  103.2782 1698.7575 103.0805 1698.6339 103.1797 1698.6873
10%°  102.8859 1698.6124 102.8859 1698.6124 102.8859 1698.6124

" Since R, /h < 20, the current formulation cannot be applied to this case.
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3.5.3. Effect of R, /a

Next, the effect of R,/a on the vibration suppression characteristics is studied for

spherical, cylindrical, and doubly curved CFRP shells. In this study doubly curved shell is

chosen as R, =2R, for specific example. Tables 3.13 for Donnell and 3.14 for Sanders
shell theories show the frequency @, and damping coefficient —¢, of the thin and thick
symmetric cross-ply (m,90,0,90,0)s shells with various R, /a values. Here the cases of
R,/a =10 pretends to a laminated composite plate. Note that the case of R, /a =1 is not
available because the basic assumption of shallow shell (4/R,, #/R, less than 1/20) for

current theory is not valid. The center displacements versus time for spherical, cylindrical,
and doubly curved shells are shown in Figures 3.13 to 3.15, respectively. The Figures

clearly show the vibration suppression characteristics for the selected R, /a values for thin

shell case.

It is observed that the damping coefficient —«, and the frequency @, both increase
with decreasing R,/a value. Thus the shell with the smallest R, /a shows the maximum

vibration suppression. The same trend should hold for all shell types. It is also observed
that the spherical shell has the largest damping coefficient and frequency and the
cylindrical shell has the smallest damping coefficient and frequency. It is because of the

fact that spherical shell has the smallest R, and doubly curved shell (in this study R, = 2R,),

and cylindrical shell has the largest R, (R, = ).
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Figure 3.15 Effect of R,/a on vibration suppression characteristics of CFRP doubly curved
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3.5.4. Effect of Shell Types

The comparison of vibration suppression characteristics between three different
shell types could be found in Figure 3.16. Figure 3.16 shows the center displacements in

case of R,/a =5 for thin shell, R,/a = 4for thick shell. It is clear that the spherical shell

shows the maximum vibration suppression results from the Figure. Selected center
displacement values versus time are tabulated in Table 3.15 for Sanders shell theory. The

numerical results are for the thin and thick symmetric cross-ply (m,90,0,90,0)s shells

withR, /a =5.

The maximum deflection and vibration suppression time have been tabulated in
Table 3.16 for CFRP laminated shells. In this study, vibration suppression time is defined
as the time required to reduce the center displacements to 10% of its uncontrolled
magnitude. The maximum transverse deflection and vibration suppression time are

occurred in cylindrical shell with the largest R,/a. The spherical shell with the smallest

R, /a shows the minimum deflection and vibration suppression time.

3.5.5. Effect of Material Properties

Finally, the effect of elastic material property on the vibration suppression
characteristics is studied for spherical, cylindrical, and doubly curved shells. Gr-Ep(AS),
GI-Ep, and Br-Ep are considered in addition to CFRP as elastic materials of laminated

composite shells.  The frequency @, , damping coefficient —«, , the maximum

deflectionw

1 and vibration suppression time of the thin and thick shells with different
elastic materials are tabulated in Tables 3.17 and 3.18. Figure 3.17 shows the vibration
suppression of different elastic materials for the thin shells. The same trend of vibration
suppression characteristics of CFRP shells could be found in the shells with different elastic
materials. It is observed from the tables that GI-Ep shows the largest damping coefficients,
maximum deflections and the minimum vibration suppression time regardless of shell type

and thickness.
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Figure 3.16 Vibration suppression characteristics for different CFRP shells; (a) Thin shell
(a/h =100), (b) Thick shell (a/h =10)
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Table 3.15 Selected center displacement versus time of the symmetric cross-ply
(m,90,0,90,0)s CFRP laminated shells with R, /a =5 by Sanders shell theory

Center Displacement (x10* m)

t Thin Shell (a/h =100) Thick Shell (a/h =10)
4
(107529 Spherical  Cylindrical Doubly Spherical  Cylindrical Doubly
shell shell curved T pal) shell curved
shell shell

1 0.9974 0.9982 0.9979 0.9840 0.9846 0.9843
2 1.9880 1.9920 1.9900 1.9160 1.9200 1.9180
3 2.9680 2.9810 2.9750 2.7690 2.7800 2.7750
4 3.9360 3.9640 3.9510 3.5190 3.5410 3.5310
5 4.8880 4.9390 4.9160 4.1430 4.1840 4.1650
7 6.7330 6.8640 6.8070 4.9580 5.0520 5.0100
10 9.3160 9.6760 9.5210 4.9890 5.2040 5.1070
15 12.9700 14.1000 13.6100 2.2940 2.7110 2.5240
20 15.6000 18.1000 17.0100 -1.7080 -1.3080 -1.4890
30 17.1700 24.4700 21.2100 -3.4200 -3.8790 -3.6800
40 13.7800 28.2600 21.5100 2.5420 2.0320 2.2720
50 6.5950 29.1500 17.9800 1.8760 2.6260 2.3020
70 -9.9890 22.5800 3.0300 -0.5872 -1.5450 -1.1250
90 -14.9000 7.9410 -12.8700 -0.3350 0.6835 0.2234
110 -3.9670 -8.7600 -19.0900 0.8771 -0.0524 0.3889
130 10.2200 -21.1200 -12.1800 -1.0900 -0.3655 -0.7385
150 12.6800 -24.7700 2.3300 1.0570 0.6022 0.8746
200 -12.1000 0.9747 12.3800 -0.4081 0.2315 -0.0799
250 9.6960 21.0400 -14.0700 0.0340 -0.3837 -0.2288
300 -6.1910 -1.2420 3.5030 0.1039 0.2109 0.2211
400 1.1520 1.4080 -11.0200 0.0693 -0.0522 0.0182
500 5.3800 -1.4950 5.3130 0.0044 -0.0191 -0.0247
700 2.2070 -1.5100 -6.4060 -0.0020 0.0013 0.0027
900 -2.5720 -1.3990 3.1620 0.0003 0.0000 -0.0003

1000 -2.1900 1.3200 -3.4700 0.0000 0.0001 -0.0001
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Table 3.16 Maximum transverse deflection and vibration suppression time for the
symmetric cross-ply (m,90,0,90,0)s CFRP laminated shells

Thin Shell (a/h =100) Thick Shell (a/h =10)

R% Shell Type t(sec) at t(sec) at
Wnax Wi /10 Wnax Wonax /10

Spherical Shell 0.001094 0.0887 0.000487 0.0209

3 Cylindrical Shell 0.002018 0.1247 0.000524 0.0225
Doubly Curved Shell 0.001422 0.1059 0.000505 0.0217
Spherical Shell 0.001727 0.1125 0.000514 0.0222

5 Cylindrical Shell 0.002920 0.1451 0.000531 0.0229
Doubly Curved Shell ~ 0.002187 0.1223 0.000523 0.0226
Spherical Shell 0.002916 0.1444 0.000530 0.0229

10 Cylindrical Shell 0.004039 0.1756 0.000534 0.0230
Doubly Curved Shell 0.003430 0.1591 0.000532 0.0230
Spherical Shell 0.004713 0.1895 0.000536 0.0231

50 Cylindrical Shell 0.004850 0.1943 0.000536 0.0231
Doubly Curved Shell 0.004790 0.1914 0.000536 0.0231
Spherical Shell 0.004850 0.1943 0.000536 0.0231

100 Cylindrical Shell 0.004890 0.1975 0.000536 0.0231

Doubly Curved Shell ~ 0.004873 0.1956 0.000536 0.0231
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Table 3.17 Vibration suppression characteristics for the thin symmetric cross-ply
(m,90,0,90,0)s laminated shells with the different composite materials

t(sec) at

_ . R% _
Thickness ~ Material /. Shell Type a, Dy Ym0

Spherical 22.7268 972.4400  0.000992 0.0987
3 Cylindrical ~ 17.2074 520.6025  0.001824 0.1237

Doubly 500674 7445307  0.001288  0.1123
Br-Ep Curved

Spherical 15.0417 356.6537  0.002626 0.1553
10 Cylindrical ~ 13.2753 255.8587  0.003607 0.1778

Doubly 141640  302.0174 0003079  0.1623
Curved

Spherical 31.9361 1006.8317  0.000945 0.0702

Thi 3 Cylindrical ~ 22.6085 532.1451  0.001759 0.1031
In

Doubly
Shell GrEp Cunvey 274022 767.8548 0001232  0.0838
9, =100 (As) Spherical  18.9261  357.2369  0.002579  0.1273
10 Cylindrical 159857  246.9154  0.003666  0.1588
8°“b'y 17.4624  297.9251  0.003066  0.1316

urved

Spherical ~ 40.5446 ~ 933.7043  0.001001  0.0560
3 Cylindrical  26.1841  487.8336  0.001887  0.0876

Doubly 334922 7004313 0001309  0.0733
Gl-Ep Curved

Spherical 20,5195  321.6349  0.002818 0.1219
10 Cylindrical ~ 16.0851 214.3368  0.004158 0.1532

Doubly 163081 2644086  0.003400  0.1261
Curved
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Table 3.18 Vibration suppression characteristics for the thick symmetric cross-ply
(m,90,0,90,0)s laminated shells with the different composite materials

t(sec) at

Thickness  Material § Shell Type d d Wnax Wi /10

Spherical ~ 105.8611 2115.7754  0.000437 0.0213
3 Cylindrical 101.9342 1965.9601  0.000469 0.0230

Doubly 104.3097  2033.2345  0.000452  0.0222
Br-Ep Curved

Spherical  101.1661 1947.3458  0.000474 0.0233
10 Cylindrical  99.6938  1932.9803  0.000478 0.0235

DOubly 4004647  1939.2729  0.000476  0.0235
Curved

Spherical  131.2207 2063.4504  0.000438 0.0189

Thick 3 Cylindrical 123.6701 1892.5972  0.000478 0.0191
IC

Doubly
Shell GrEp Curvey  127:9278 19689198  0.000458  0.0189
4, =10 (AS) Spherical  121.6644 1868.2618  0.000484  0.0209
10 Cylindrical 119.0876 1851.7913  0.000489  0.0195
Doubly 1004154 1858.9472  0.000487  0.0195

Curved

Spherical ~ 131.0681 1782.7453  0.000500 0.0185
3 Cylindrical 118.0475 1604.9161  0.000556 0.0205

Doubly 124.9809 1684.1377  0.000530 0.0195
GlEp Curved

Spherical ~ 113.8741 1575.5661  0.000566 0.0209
10 Cylindrical 109.7757  1558.2955  0.000575 0.0212

Doubly 111.8580 1565.7502  0.000571 0.0210
Curved
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Figure 3.17 Effect of elastic material properties on vibration suppression characteristics for
thin (a/h =100) shells; (a) spherical shell, (b) cylindrical shell, (c) doubly curved shell
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4. FINITE ELEMENT FORMULATIONS"

4.1. Virtual Work Statements

86

In this Section, the linear and nonlinear finite element formulations and numerical

results of the linear analysis of laminated composite plate and shell structures are presented.

Finite element models are developed using the weak forms of governing differential

equations (see Reddy 2004 b).

4.1.1. Virtual Work Statements for Laminated Composite Plates

The virtual work statements of the TSDT over a typical finite element domain Q°

are given by
2 2
0= 00Uy \y 9 N sy 1, Tty g O
ol ox oy Y 0 %ar Tt oat?
) (4.1.9)
o0° [ ow,
Q'ag( axo H}dxdy—gﬁ {0u, (N n, + N, n )}ds
2 82
o_jge{ag‘“ N, + ag;/o N,, +5v{|0—88¥° ) &fy _
X
(4.1.b)
0% ( ow,
cl, ?(Tyoﬂ} dxdy—gﬁr{dvo(NXynX + N, n )}ds
_ _ 2 2
Ozj aaon +65W0Q _¢ 0°OW, P +26 oW, P .
ol ox oy ox oxoy
, (4.1.0)
0 cS\Z/v0 o, |- owq+ 0OW, N oW, N ny% N 0OW,
oy oX oX oy oy

“Part of the data reported in this section is reprinted with permission from “Transient
analysis of laminated composite plates with embedded smart-material layers” by Lee, S.J.,
Reddy, J.N., and Romstan-Abadi, F. (2004), Finite Elements in Analysis and Design, 40,

463-483, Copyright 2004 by Elsevier Science B.V.



87

2 3
N %+N‘ My +0w, Io8 L+l 00w, 9 W°2 +
Y Ox 7 oy ot Ox  OxOt
3 2 2
oow, 0 w02 a1, oow, 0 LZO N oow, 0 \;0 +J4(85w0
oy Oyot Ox ot oy ot ox

ds

- ¢25 05w, 9 ¢y dxdy—(f) ow, V. ds —
ot oy ot r

2

0= j aa@ﬂﬂ a5¢xz\4xy+5¢g + 89, (Ju0+K¢
oy

(4.1.d)
ad, %ﬂ}dxdy 4){5¢ (Mun +Mxyn )Yds
ox
o= 85¢y iy + 20 My +86,0, + 59, az (Jv0+K¢ -
y
(4.1.e)

ow, — —
ad, a—yoﬂ}dxdy - Cf)r{5¢y (Myn, + M yn,)}ds

As a special case of TSDT, the virtual statements for classical laminated plate

theory are

0=[,
4

2 2
0= {%V" N, 65% N, 5v{ 68;0 -1 ; [68% ﬂ}dxdy
(4.2.0)

ox
¢,

2 2
851/!0 N 851/!0 N, +5uo|: a_lzo L 0 (Gw H}dxdy
ot tort | ox (4.2.2)

§u0 N.n +N_n, )}ds

5v0 N n, +Nyvnv)}ds



2 2 2
0:J~ 0 5:V0Mm_28 §W°Mx—a 5:V0Mv_5woq+65WO
o ox : oxoy Y oy ” ox

N Dy D 0 f Dy D) s
: oy Yoo > oy
82w0+1i oow, 8W0+85w0 ow, _16_ oow,
ot ot ax ax oy oy ) o\ ox

L 06w, v, j:|}dxdy - gSr(5w0Vn + P, )ds

Uy

Oy
where
yoo|[ M Py Moy M,
! ox oy T oox Yooy )"
oM oM
vy X y

For the first-order shear deformation theory, the virtual work statements are

05 05 o2 o2
0= ”0 N+ 9y i suy| 1,80 1 1, T | Lavay
o ¥ ot ot

§u0 N n +N_n )}ds

r XYy

2 62
0= 00w, N, 65V° N rovg| 1,201 T gy
o 0 0

(4.2.c)

(4.3.a)

(4.3.b)

(4.4.9)

(4.4.b)
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0 I{aawo x 85W0Q 5W0q+agwo( H%+N awoj
X

x (4.4.0)
2 4.
+ 00w, N, Oy +N Oy +Oow, 1, 2 V;’o dxdy—qg ow V. ds
oy Yoo > oy ot r
0= %% ps 9% rs g0 v op | 1, 2% 41,70 |lacay
o ox o 77 Lot ot’ (4.4.d)
~§ {5, (M., + M., )lds
05, L 06 o2 2
o:j % ¢yM L +69,0, +05p, —¢y+116V2° dxdy
oo Tt Oy ot? ot (4.4.¢)
~§ {5, (M 0, +M,,n, )ds

where

0 0 0 0
v :KQﬂLNm%Jr W‘)Jn +[Q +N Doy ﬁjny} (4.5)

4.1.2. Virtual Work Statements for Laminated Composite Shells

(1) Donnell nonlinear shell theory

2 2
0= j{a&’oz\f 8(;”0N +5u{ [ O, g T

ot ot
(4.6.9)
0% [ ow,
aly— o (&Xo H}dX dx, 4) {Ou, (N,n, + Nyn,)}ds
1
2 2
0:_[ 65VON6 85VON +ov, 6\;0+J18¢;2_
0X, oX Ot Ot
(4.6.b)

2
}} dX,dX, — Cﬁre{&’o (Ngn, + N,n,)}ds
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0ow, — 6§w — 0*Sw 0’Sw 0?Sw
—_[ 0 OQZ_ 20P1 2 OBS"' 20p2
6X2 o0X, 0X,0X, 0X,

N, N 0’ osw, o
—Sw,q +Ow,| = +—= +5W0]0—W20+01216 WO—WOZ+
R R o oX, oX,0t

oow, 0°w, el 00w, 82u0+65w0 o%v, ny, oow, 0°¢,
0X, oX,ot ox, o oX, or oX, ot

85w08¢2 +65w0 N8w0 N ow, 65w0 N ow,
aX ot ax, \ tax, " °ox, aX °ox,

(4.6.c)

+ N,

o n

oy dx,dX, ~§_ow,V,ds - 00w, s
ox, e on

¢ |oop —  osp — — Ou, . 0%,
O—J.Qe{a—XlM1+a—X2Me+§¢lQl+5¢l S K

(4.6.d)

o, s (2}”{0 H}dX dX, —§_{54,(Mn, + Mon,)}ds

¢ |oop,— o5p, — — 82v0 %4,
O_sz{—a)(l M +—8X2 Mo+ 54,0, + 86, | i —3+ K — ot =

(4.6.e)

o° [ ow — —
al,— =7 [6)(0 ﬂ}d){ldXz - qsre{5¢2 (Men, + M2n,)}ds

where

— 16) ) oA OPF, 0P,
Vo=c|| =—=+—|n + + n,
oX, 00X, oX, 00X,
. " oW - " o,
-q Hlsuo +J,0 — ﬁ} n +(13v0 +J,0, —c 1, j) nz} (4.7.9)
1 2

- oP
+(Qumy + Oy )+ N(owy) + ¢, —
Os

0 0 ow 0
N(w,) = (Nlﬂ+ N, ﬁj n, +[N6 M 4N, ﬁ} n, (4.7.b)
ox,  °ax, ox,  lax
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(2) Sanders nonlinear shell theory

o j{%”f’zv ai:oN _u, [ (85uop+85uop

“R F

2 2
I, 0 L;O +71%_le38_2 oy ||, Ot N, Oy _tty + N, (4.8.2)
o o of\ox, )| R | tlax, R

65w0 00w, — 0° 5w, o’ ow, 0° 6w,
= +—-0, - [ P+2 P+ p
I { 2 ox? tooaxex, © ax2 't

N. 0’ oow, ©°
— OW,q + oW, ﬂ+—2 +5WOIO—W2°+01216 A—WOZJr
R R, ot 0X, 0X,ot

oow, 0°w, — 06w, O°u, -, 0w, 0%V, oow,
> |—all s >+, > |+
0X, 0X,0t 0X, ot 0X, ot 0X,

8Zf1 05w, 0° @, +6§w0 N, oWy Uy PN, MWy Vo
ot oX, of o0X, oX, R oX, R,

L0l [ Mo | [ Y dx,dx, - §_ow,V,ds
ox, oX, R oX, R e

(4.8.c)
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2 2
6”0+1?26¢1_

or?

¢ |oog — oo,
O_Lr{ax M+ X M6+5¢1Q1+5¢1[

(4.8.d)
02 (%

ad, 22| ax ﬂ}XmdXz - ¢F6{5¢1 (M1n, + Msn,)}ds
1

06f, +- . 95, - 0%, = 0%
0=| {OXZ M 8X2 M +35¢,0, +5¢{ K
(4.8.e)

0
aJ, (j?[@;:'o H}dX s SB {6¢,(Msn, + M 2n,)}ds
2

where

V,=c aH+ap6 n + aP6+8P2 n
M ex, ax, )t lax, ox, ) C

. " oW - . o,
a Klguo +J,4 — ¢l GTOJ n + []3Vo +J,¢, — 1 870j nz} (4.9.a)
1 2

— — OP
+(anl"'anz)"'cl "+ N, (g, vy, Wy)
Os

N, (uy, vy, wy) =| N, Oy ek + Ng Oy . ny
oX, R 0X, R,

o2ty (O ),
oX, R oX, R,
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For the modified Sanders shell theory for shallow shell, the virtual work statements are

_J- 65u0 N+ oou, N, - oug Ql 85140 Pl+85u° R+
0X, °R, R1 0X,

O’u, -0 - 0% [ow
5%[ oot el o o || [P (4.103)

1

—(_f) . ou, HNl —i—iPljnl +(N6 +insjn2}ds
' R, R,

0-[ {a&ON LMy 5, Qo (65%13 asvopj

oX, R2 ox, * ax,

0%y = 0%, = O Ow
5V0|: atzo +Jl atzz —C1]3 ? 670 XmdXZ (410b)
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_gﬁreé‘vo KNES +R—12Pﬁjnl +(N2 +R—12132Jn2}ds

0=[. {aawo 65WOQ . {azawop , 050w, &*ow, ]
2

+ +
ox, oxz VT axex, T ox I

N, N, 0 6w, 0°
—Sw,q +Ow, | = +—= +5WOIO—W2°+0121 ﬂﬁ—woz+
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05w, 8w, ]_c { ; (aa‘wo Suy , 35w, azv0]+ ; (85% G

4.10.c
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¢ |oos — 004 — 82u0 _ 0%¢,
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0% ( ow, — —
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064, — 354, — — _, 0%, - 0%
0= L}c {WIZMG + 8X: M2 + 69,0, + 69, [Jl at; +K, 81‘22 —
(4.10.e)
o° ( ow, — —
o, £ ox, dx,dX, — Cﬁr“{é‘% (Men, + M2n,)}ds
where
V.=c oR +ai n, + ai+ oF, n,
ox, ox, X, ox,
—cKl_ii +J,4 —cl awojn1+[7'\7 +J,4, — ¢l %]n} (4.11.8)
1 370 4 lﬁaXl 370 472 168X2 2
— — oP
+(Q1"1 + Qz”z)"’ N(wy)+¢ 8:
N(w,) = (Nl Mo, , %j n + [NG Mo, y, %J n, (4.11.b)
ox, °oxX, ox,  ‘oX,

4.2. Finite Element Model

The generalized displacements are approximated over the domain Q by the

expressions

o (X, 1) = Z 1) v (x.5) (4.12.)
Vo (5 ,1) = Z 0) v () (4.12.)
wy (¥, 1) = ZZ (1) ¢ (x,) (4.12.)
6. (x. 1) = ZX (1) v (x.7) (4.12.0)

8, (v 2.0) = Y5 (0) yr () (4.12¢)
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where y; denotes the Lagrange interpolation functions and ¢; denotes the Hermite
interpolation functions. The same Lagrange linear rectangular element for in-plane
displacements (u,,v,) and rotations (¢,,¢,) and the conforming rectangular elements for
bending deflections are used in this study. The conforming element is one of C' plate
bending elements in which the interelement continuity of wy,w, ., w, , are satisfied (see

Reddy 1997, 2004 b). The combined conforming rectangular element, which has eight

degrees of freedom uq, vy, wy, wy . Wy, Wy, » &, @, PEr node, is shown in Figure 4.1. The

: . - — 0 — 0 - &
four nodal values associated with w, are A1 =w,, Az :ﬁ, A3 :ﬂ, Ay =220
ox oy oxoy

Substitution of the approximation, Equation (4.12) for wu,,v,,wy,4,,4,, into the

weak forms yields the semidiscrete finite element model of the third-order shear

deformation theory

= w,  w, w,
Wy, : :
x o oy

Figure 4.1 Conforming rectangular element with eight degrees of freedom per node
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KM KR [KR] O [KM] [KRT [{ed
[K*1 [K”] [K®] [K*] [K*]]|{}
[K*]  [K*] [K®] [K*] [K*]|{{A}} +
[K“1 [K®] [K®] [K*] [K*]|[{x}
K71 [KP] O [K®] O [K¥] O [K*]|{r°D

[€"] €1 [€®] [c*] [c®] ]}
[c*1 [c”1 [c®1 [€*] [c*]|| {7}
[C™] [€*] [C®] [C¥] [C®]|{{a}; +
[C"1 [c"] [€®] [c*] [C®]||{x}
[€*] [€®] [c™] [C] [C¥]]|{F}

[M*]1 [01 [M®] [M*] [0 ]] {#}
[0] [M%] [M®] [0] [M™] {fe}
[M13]T [M23]T [M33] [M34] [M35] {Ze} —

NS N N N S
w

[M14]T [O ] [M34]T [M44] [O ] {X@} F4 (413&)
[0] [M*] [M*[01]1 [M*] ||{¥} 7

or
> 3 (K56 4 P A+ M W)= B =0, 121,20 (413.)
p=1 j=l

where ¢ =1,2,3,4,5; n, =n, =n, =n;, =4 and n, =16 for the conforming element, and

B 1 _ 2 _ 3 A 4 5 _
the nodal values A" are A, =u,, A =v,, A, =A;, A, =X,, A, =Y, .

Since the equations of motion are expressed in terms of the displacements and the
generalized displacements are the primary modal degrees of freedom, this finite element
models are called displacement finite element models (Reddy 1997, 2004 b). The shear and
membrane locking problem (Reddy 2004 a) in this displacement finite element model can

be overcome by using the reduced integration for evaluating the shear stiffness coefficients.
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The thermal source term corresponding to the deflection is nonlinear and this
nonlinearity becomes significant at high temperature. In this study, the nodal values of
deflection are treated as unknowns and the resulting force term is transferred to the left
hand side of the Equation (4.13). Thus the term is included into the direct stiffness matrix
and this avoids re-calculation of tangent stiffness matrix in Newton-Raphson iteration

method.
The stiffness coefficients K7 = (K/”), + (K”),, +(K”)y, , mass coefficients

M

27, and active damping coefficients C;” = (C;”’), +(C;”),, for Donnell and Sanders

nonlinear shell theory are well defined in the Appendice B and C. where (K;;ﬂ)L is the
linear stiffness coefficients, (K;’ﬂ)NL is the geometric and (K;’ﬂ)i,L is the thermal nonlinear
stiffness coefficients, (C;."”)L is the linear and (C,-fﬂ)NL is the nonlinear damping

coefficients. Note by setting R, = R, = from the finite element coefficients of Donnell

nonlinear theory, the coefficients of laminated composite plates by Third-order shear
deformation theory can be obtained. In the case of the first-order shear deformation theory,
the resulting finite element model requires only C° continuity for generalized

displacements.

4.3. Transient Analysis

The linear equations of motion can be solved using analytical methods, but those are
algebraically complicated and require the determination of eignevalues and eigenfunctions,
as in the state-space approach. Newmark’s numerical integration method (Reddy 1983,
1993) that takes advantage of the static solution form for spatial variation and uses a
numerical method to solve the resulting differential equations in time is used to determine
the transient response of laminated composites in this study. The constant-average-

acceleration scheme is used for linear transient problem.
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Using the Newmark’s scheme, a second-order differential equation of the form,
[MI{A}+ [CI{A}+ [K]{A} ={F} (4.14)
can be reduced to the fully discretized form:
KAL), ={F} (4.15)

where the subscript s +1 refers to the time 7, at which the solution is sought, and

s+1

[K({AY, )] = [K (A}, )]+ as[M ], + a[C],., (4.16.2)
{F}, 0 ={F} + M1 {4}, +C),{BY, (4.16.b)
{4}, = a{A}, +a {A}, +a{A}, (4.16.c)
{B}, = a {A}, + a,{A}, + a.{A}, (4.16.d)

where q, are the parameters

a=[1-a)At, a,=alt, a,= 2 >y, = a;At
7(41) (4.17)
1—
aszw, a6=2—a, a7=2—a—1, angt(g—lj
Y y At Y Y

At the end of each time step, the new velocity vector {A} .. and acceleration vector

s+1

{A},,, are computed using
{A},, = a; ({8}, —{A},) - a, {A}, - a{A}, (4.18.a)

{A}. ={A}, +a{A}, +a, {7}, (4.18.0)
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4.3. Nonlinear Analysis

The resulting nonlinear algebraic equations must be solved by an iterative method.
In iterative methods, the nonlinear equations are linearized by evaluating the nonlinear
terms with the known solution from preceding iteration. The Newton-Raphson iteration
method, which is based on the Taylor series expansion and uses the tangent stiffness matrix,
is selected in this study. This Newton-Raphson iteration method yields a symmetric

tangent stiffness matrix for all structural problems.

Solution of Equation (4.15) by the Newton-Raphson iteration method results in the

following linearized equations for the incremental solution at the (r+1)s¢ iteration (see

Reddy, 2004a).

{oAy=[K" {AY. )T{RY., (4.19)

where the tangent stiffness matrix is defined by

S MRy |

K'{AY. )= == 4.20
K" ({AY.))] {G{A}L (4.20)
{RY,., =[K{AY. DHAY . ~{F}, (4.21)

The total solution is obtained from
{AY] ={AY,,, +{oA} (4.22)

Note that the tangent stiffness matrix is evaluated using the latest known solution, while the

residual vector contains contributions from the latest known solution in computing

[K({A}..,)I{A}. ., and previous time step solution in computing {ﬁ}

s,s+1 "

The iteration process is continued until the difference between {A} ., and {A}" is

s+1 s+1

reduced to a preselected error tolerance. The error criterion used in this study is of the form
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n

r+l r2
DAt A
= g (4.23)

n
2
r+l
2.[A;

k=1

where 7 is the tatal number o nodal generalized displacements in the finite element mesh,
and ¢ is the error tolerance. The velocity and acceleration vectors are updated using
Equation (4.18) only after convergence is reached for a given time step. The details of the

tangent stiffness coefficients could be found in the Appendices B and C.

4.5. Computer Implementation

Computer implementation of nonlinear time-dependent problems is complicated by
the fact that one must keep track of the solution vectors at different loads, times, and
iteration. Thus, there are three levels of calculations (see Reddy 2004 a). Often, for a fixed
value of load, one wishes to obtain the transient solution. Thus the outermost loop is on the
number of load steps, followed by a loop on the number of time steps, and the inner most
loop being on nonlinear equilibrium iterations. A flow chart of the general scheme is
shown in Figure 4.2. In the present study the load loop is suppressed as we are dealing with

a single load.

4.6. Preliminary Linear Finite Element Results

Linear finite element analysis is carried out to analyze the deflection suppression
characteristics. The baseline of the simulations is the simply supported square laminate

(a/b =1, a/h =10) under sinusoidal distributions of the initial velocity field

ow

L TX Ty
, v, =0)=sin—sin — 4.24
o (x,y,t=0) - sin— (4.24)
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Load Loop

r

Time Loop
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iter = irer +1

L

Calculate Elementary StifThess, mass,
and damping Matrices and assemble
to form global Matrices

Impose Boundary Conditions
and Solve the equations

Update velocities,
accelerations,
and print solutions

Print o message —b(STUP)

Figure 4.2 Flow chart of the nonlinear transient analysis of a problem

A 4

iter < ittnax

The time step selected in the linear transient study is z = 0.0005sec. The notation for

lamination scheme (6,,6,,6,,0,,m)s means that there are 10 layers symmetrically placed
about the midplane with the fiber orientations being (6,,6,,6,,0,,m,m,0,,0,,6,,0,), where

m stands for the magnetostrictive layer and subscript s stands for symmetric and anti —s
stands for anti-symmetric lamination. The lamination schemes which are used in this study
are symmetric cross-ply (m,90,0,90,0)s, angle-ply (m,30,-30,30-30)s, general angle-ply
(m,45,-45,90,0)s laminates, anti-symmetric cross-ply (m,90,0,90,0) anis, angle-ply (m,30,-
30,30-30) anti-s, and general angle-ply (m,45,-45,90,0)ani.s laminates. Simply supported and
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clamped boundary conditions are selected to study the effect of boundary condition on the
deflection control. The material properties of smart material, Terfenol-D, and the elastic

composite materials which is used in this numerical example are listed in Table 3.1.

In finite element analysis, solution symmetries should be taken advantage of by
identifying the computational domain to reduce computational effort. For a laminated
composite plate with all edges simply-supported or clamped, a quadrant of the plate may be
used as the computational domain as shown in Figure 4.3. Figures 4.4(a)-(d) shows the
effects of the finite element results for the different laminations and boundary conditions.
Quarter plate models with proper boundary conditions can be used in the antisymmetric
laminates with simply supported boundary condition, but not for laminated plates with the
clamped edges. For symmetric laminates, the simply supported cross-ply laminates can be
modeled as a quarter plate. The boundary conditions along a line of symmetry should be
correctly identified and imposed in the finite element model. When one is not sure of the

solution symmetry, it is advised that the whole plate be modeled.

20 22 23 24 28

16 BESO==0--0-—0 20

y |
11 2==0--0--0--015
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I | | 1 I | | ~
% s
- 554 bbb Fo—o3
I 1 1
h > 46 E— 54
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& »
| | 1
:

I |

| |
12 3 4 5 6 7 8 9
Equivalent 8x8 Full Plate Model

Figure 4.3 Finite element meshes of laminated composite plates



103

6.0
——SS1 Cross-ply Quarter
------ SS1 Cross-ply Full
—-—-5S2 Angle-ply Quarter
—SS2 Angle-ply Full
3.0 +

SS2 General angle-ply Quarter

——SS2 General angle-ply Full

Center Displacement, w,(10%m)

-6.0 : '
80 120 160 200
@) Time, ¢ (10*sec)
a
6.0
Quarter Cross-ply
5 Full Cross-ply
"i —-—-Quarter Angle-ply
: ——Full Angle-ply
§ 3.0 r Quarter General angle-ply
- Full General angle-ply
E -
[}
£ 00
o
)
o
L2
(@]
E -3.0 -
o
[<5)
(©)]
-6.0 : '
80 120 160 200
) Time, ¢ (10* sec)

Figure 4.4 Effect of finite element modeling of CFRP composite plates; (a) Simply
supported antisymmetric laminates, (b) Clamped antisymmetric laminates, (c) Simply
supported symmetric laminates, (d) Clamped symmetric laminates
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4.6.1. Simply Supported Laminated Composite Plates

To compare with the analytical results, the SS-1 boundary conditions and quarter
plate model have been used for symmetric cross-ply laminates. The deflections predicted
from the analytical (eigenvalue) analysis and transient finite element analysis are within the
reasonable agreement, as shown in Figure 4.5 for cross-ply (m,90,0,90,0)s. laminated plates
Figure 4.6 shows the central displacements using the different plate theories (CLPT, FSDT,
and TSDT) for two different lamination schemes. It is observed that CLPT shows higher
deflection suppression capacity in both cases. This is expected because the CLPT renders
plate stiffer compared to the other theories. After studying the influence of lamina material
properties on the amplitude of deflection and deflection suppression times, it is observed

that materials having the almost same E,/E, ratio have similar deflection suppression

characteristics under the same lamination, loading and boundary conditions. Figure 4.7

shows the deflection damping characteristics for the different laminate materials

100.0
Analytic solution

€ ——FEA solution (dt=0.0005)
b FEA solution (dt=0.0001)
° 2 A~ Uncontrolled motion
C 500 4 ;o Jneontrolled motion
= -
—
c
<3}
g 00
o
s
o
2 i
o b
s -50.0 -
—
c
<1}
O

-100.0 ' ! L !

0 1000 2000 3000 4000 5000
Time, £ (10* sec)

Figure 4.5 Center deflection predicted by the analytical and finite element methods for the
case of symmetric cross-ply CFRP laminated plate
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Figure 4.6 Center displacements by the different plate theories for simply supported cross-
ply CFRP laminated plates; (a) (m,90,0,90,0)s, (b) (0,90,0,90,m)s
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Figure 4.7 Effect of the lamina material properties on the damping of deflection in
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Figure 4.8 Effect of the smart material layer position on the deflection for the symmetric
cross-ply CFRP laminated plate
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4.6.2. Deflection Suppression Time

As stated earlier, the deflection suppression time is the time required to reduce the
uncontrolled center deflection to one-tenth of its magnitude. The deflection suppression
time ratio (suppression time divided by the maximum suppression time) can be shown to be

T =h,/2z, ,where i, is the thickness of the magnetostrictive layer and z, is the positive

distance between the mid plane of the magnetostrictive layer and the mid plane of the plate.

The effect of the smart layer positions on the deflection suppression can be shown
in the Figure 4.8. It is observed that as the smart material layer is moved farther from the
mid-plane the suppression time decreases, as may be expected because of the moment

effect by smart layer actuations. The maximum deflections (%, ) of the composite plate

ax
and the suppression times for the different position of smart layers are presented in Table
4.1.

Table 4.1 Deflection suppression time for the different smart layer positions on the
symmetric cross-ply CFRP laminated plate (m,90,0,90,0)s

Lamination Scheme z, (m) T, W, (107%m) t at Wma%o
(m,90,0,90,0)s 0.045 0.111 5.21 0.0285
(90,m,90,0,90)s 0.035 0.143 5.09 0.0350
(0,90,m,90,0)s 0.025 0.200 4.90 0.0480
(90,0,90,m,90)s 0.015 0.333 4.85 0.0850
(0,90,0,90,m)s 0.005 1.000 4.87 0.2560

4.6.3. Effect of Lamina Thickness

The effect of the thickness of smart-material layer on deflection damping
characteristics is studied next. It is observed that thicker smart material layers result in
better attenuation of the deflection. This is due to a larger mass inertia that is caused by the

large increase in the moment of inertia of the system when thickness of the smart material
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layer is increased. We note that the smart material layer has a density of five times that of
the composite material. The suppression times and characteristics for different smart layer

thicknesses are shown in Table 4.2 and Figure 4. 9.

Table 4.2 Suppression times for the different smart layer thicknesses in symmetric cross-
ply laminated plate (m,90,0,90,0)s

Lamina Thickness (mm ) z, (m) T, W oo (10*m) tat Wma%
h,=10, h, =2 0.0410 0.0244 4.77 0.0780
h,=10, h, =4 0.0420 0.0476 4.98 0.0485
h,=10, h, =5 0.0425 0.0588 5.05 0.0420
h,=10, h, =6 0.0430 0.0698 5.10 0.0350
h,=10, h, =8 0.0440 0.0909 5.17 0.0320
h, =10, h, =10 0.0450 0.1111 5.21 0.0285
h,=5 h, =5 0.0225 0.1111 9.12 0.0310
h,=5,h =10 0.0250 0.2 9.45 0.0400

4.6.4. Effect of Feedback Coefficients

Figure 4.10 shows the effect of the feedback coefficient ¢(z)k, on the deflection

suppression characteristics. Two different values of the feedback coefficient are used; 10*
and 10%. It can be seen that the suppression time increases when the value of the feedback
coefficient decrease. This is because the coefficients of the damping matrix decrease,

thereby resulting in less damping.
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Figure 4.9 Effect of the thickness of smart material layers on the deflection damping
characteristics of symmetric cross-ply laminated plate (m,90,0,90,0)s
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Figure 4.10 Effect of the magnitude of the feedback coefficients on the suppression time for
symmetric cross-ply CFRP laminated plate (m,90,0,90,0)s

4.6.5. Other Effects on Deflection Control

The deflection damping characteristics of symmetric angle-ply and general angle-
ply laminated composites are studied using full plate F.E. models. Observations made
earlier on various characteristics such as the effects of smart layer position, its thickness,
and magnitude of the feedback coefficient are also valid for these laminates, as shown in
Figures 4.11 and 4.12.

Next, fully clamped laminated plates are analyzed using 8x8 mesh in a full plate.
The effect of the boundary conditions on the deflection is shown in the Figure 4.13. In
Figure 4.13, *S’ represents all edges simply supported and ‘C’ represents all edges clamped

boundary conditions. The maximum displacements of the simply supported plate are
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greater than those of the clamped case, which is expected. Simply supported laminates,
which have larger displacements, take less suppression time compared to the clamped

laminates.

Since laminated composite structures are subjected to a variety of loading
conditions during their service life, understanding of the response of these structures for
various loading conditions is necessary. Numerical studies are also carried out to analyze
smart laminated composites under uniformly distributed load ¢, instead of specified initial
velocity field. Figure 4.14 shows the center deflection for selected simply supported and

clamped laminates under continuously applied uniformly distributed loading, while Figure

4.15 shows the case under suddenly applied step loading. The effect of sinusoidal loading,

q(x,y) =g, sin [ﬂjsin(%j, on the central displacement has been studied. The results of
a

symmetric cross-ply laminates with simply supported boundary conditions and subjected to
sinusoidal and uniformly distributed loads are shown in Figure 4.16. Figures under the

mechanical loading cases, the following nondimensionalized form is used for the transverse

E,h°
.
90

center displacements as w, (100)
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Figure 4.11 Center displacement for symmetric angle-ply CFRP laminated plate
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Figure 4.12 Effect of the smart layer position for symmetric general angle-ply CFRP
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Figure 4.15 Nondimensionalized center deflection under suddenly applied uniform load



117

3.0
% — Uniform loading (m,90,0,90,0)s
e
§ ----- Sinusoidal loading (m,90,0,90,0)s
2 2.0 H
()]
o
(6]
N
©
[y
o
‘> 1.0
[
e
=
[
o
P4 .

00 1 1 1 1

0 200 400 600 800 1000
Time, ¢ (10 sec)
(@)

3.0
E ——Uniform loading (90,m,90,0,90)s
e
% ----- Sinusoidal loading (90,m,90,0,90)s
220 H
)
o
(6]
N
©
[y
o
‘s> 1.0
[y
£
©
[y
o
Z !

00 1 1 1 1

0 200 400 600 800 1000

Time, 7 (10* sec)

(b)
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S. RESULTS OF NONLINEAR ANALYSIS”

In this Section, the numerical studies using the nonlinear finite element models
developed in Section 4 for laminated composite plate and shell structures under mechanical
loading are carried out. Recall that the nonlinearity accounted for is that of the von Karmén

type.

Laminated composite square plate and shell (a/b =1) with both the upper and lower

surfaces embedded magnetostrictive materials is considered. The plate and shell structures
considered here are made of composite fiber reinforced polymer (CFRP) and for
magnetostrictive material, Terfenol-D. The material properties are presented in Table 3.1.
The adhesive used to bond the structural layers or smart-material layers are neglected in the
analysis. The laminated composite structures are composed of total 10 layers and all the

layers are assumed to be of the same thickness. Two side-to-thickness ratios a/h =10 and
a/h =100 are considered to represent the thick and thin laminated composites. Four
different lamination schemes, symmetric cross-ply (m,90,0,90,0)s , symmetric angle-
ply (m,45,—45,45,—45)s, symmetric general angle-ply (m,45,—45,0,90)s and asymmetric
general angle-ply (m,45,—45,15,-15,0,90,30,—30,m) are considered to study the effect of

lamination schemes on the deflection control. Six boundary conditions are considered to
study the effects on deflection control. They are SSSS (SS), CCCC (CC), CCSS (CS),
CCFF (CF), SSFF (SF) and CFSS (CFS) which are well shown in Figure 5.1. As a baseline
of computer simulation, unless otherwise specified, symmetric cross-ply laminates with

simply supported boundary condition are mainly used.

“Part of the data reported in this section is reprinted with permission from “Nonlinear
deflection control of laminated plates using third-order shear deformation theory” by Lee,
S.J., and Reddy, J.N. (2004), Mechanics and Materialsin Design, 1, 1-29, Copyright 2004
by Kluwer Academic Publishers.
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Three different plate theories, CLPT, FSDT, TSDT, are used to analyze plate
structures. The shear correction factor used in FSDT is 5/6. For laminated composite
shells, Donnell and Sanders nonlinear shell theories are used. Three shell types, spherical

(R =R,), cylindrical (R =), and doubly curved shell (R = 2R, ), are considered with

various R, /a values.

As shown in the previous section, the biaxial symmetry may not be assumed even if
the geometry and loading are symmetric but laminates are not symmetric (due to the
bending-stretching coupling). In this study solution symmetries are considered only for the
simply supported cross-ply laminated composite plate and shell to reduce the computational
efforts and 4 x4 meshes in a quadrant are used. For all other cases 8 x 8 meshes of the full
models are used for the computational domains. Since locating smart material layers
farthest from the mid-plane has the best effect on deflection suppression as shown in
Sections 3 and 4, the smart layer position in this study is limited to both top and bottom

layers. Feedback coefficient k_ c(t) is assumed to be a constant,10*, in this nonlinear

analysis. The feedback coefficient effect could be found in section 4.6.4.

¥ ¥ ¥
|
|
|
Simply supported(5555) Clamped(CCCC) CCss
i boundary condition | boundary condition i boundary condition
X X X
¥ ty ¥
CCFF SSFF CFSS i
boundary condition boundary condition i boundary condition |
X X X

Figure 5.1 Six boundary conditions used in this study
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Throughout numerical examples in this study, the center displacements are

nondimensionalized as W, =100xw, E,h’®/a‘q, for transient results. In static analysis
center deflections are nondimensionalized as w/h and load parameter p = g,a*/E,h* has

been used. A tolerance of £ =107 is selected for convergence in the Newton-Raphson

iteration scheme to check for convergence of the nodal displacements.

5.1. Nonlinear Static Results

Four different laminations schemes and six different boundary conditions are
considered. The effect of plate thickness is also investigated. Results are presented tabuler

and/or graphical form.

In Figure 5.2, nondimensionalized deflections from the linear and nonlinear
analyses have been plotted for different lamination schemes under uniformly distributed
load. It is observed that symmetric angle-ply and asymmetric angle-ply laminates show
very similar behavior in nonlinear analysis. The effect of the nonlinearity is apparent with

increasing load intensity from the results presented in Figures.

The effect of different boundary conditions on nonlinear deflections is shown in
Figure 5.3 and Tables 5.1 - 5.4. Nondimensionalized deflections have been plotted for the
six different boundary conditions under uniformly distributed sinusoidal load. The
magnitude of deflections in nonlinear analysis is in order of SSFF, CFSS, SSSS, CCFF,
CCSS, and CCCC from the large value, which could be expected, for the thick and thin
plates. Numerical values of nondimensional center deflection as function of the load
parameter and loading condition for the three boundary conditions and two plate
thicknesses are tabulated in Tables 5.1 and 5.2 for symmetric cross-ply and angle-ply
laminates and Tables 5.3 and 5.4 for symmetric and asymmetric general angle-ply

laminates.
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Table 5.1 Nondimensional center deflection (w/h) for symmetric cross-ply and angle-ply
thick (a/h =10) laminates under different load and boundary conditions

Loading Load Symmetric cross-ply Symmetric angle-ply

condition parameter

SSSS CCSS CCCC SSSS CCSS CCCC

0.01360 0.00615 0.00482 0.01059 0.00684 0.00521
0.04078 0.01844 0.01445 0.03174 0.02052 0.01563
0.06791 0.03073 0.02407 0.05285 0.03419 0.02604
10 0.13519 0.06137 0.04810 0.10522 0.06826 0.05203

(ij_”tif%”ft"é’ 15 0.20128 0.09187 0.07203 0.15666 0.10213 0.07792
IStripute
load 30 0.38866 0.18183 0.14292 0.30270 0.20165 0.15461

45 0.55658 0.26838 0.21170 0.43415 0.29664 0.22905

60 0.70614 0.35070 0.27777 0.55219 0.38629 0.30058

80 0.88245 0.45357 0.36120 0.69315 0.49758 0.39100

100 1.03880 0.54900 0.43938 0.81943 0.60038 0.47584

0.00869 0.00422 0.00348 0.00684 0.00467 0.00376

0.02606 0.01265 0.01044 0.02053 0.01402 0.01129

0.04341 0.02107 0.01740 0.03420 0.02336 0.01881

10 0.08666 0.04213 0.03478 0.06827 0.04669 0.03761

Sinusoidal 15 0.12958 0.06313 0.05213 0.10208 0.06996 0.05636
load 30 0.25519 0.12567 0.10386 0.20102 0.13908 0.11228
45 0.37402 0.18707 0.15477 0.29469 0.20662 0.16731

60 0.48504 0.24690 0.20458 0.38232 0.27205 0.22113

80 0.62070 0.32378 0.26887 0.49002 0.35553 0.29060

100 0.74426  0.39713 0.33055 0.58856 0.43461 0.35724
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Table 5.2 Nondimensional center deflection (w/h) for symmetric cross-ply and angle-ply
thin (a/h =100) laminates under different load and boundary conditions

Loading Load Symmetric cross-ply Symmetric angle-ply

condition parameter

SSSS CCSS CCCC SSSS CCSS CCCC

10 0.11888 0.03977 0.03136 0.08856 0.04832 0.03504
20 0.23513 0.07946 0.06268 0.17548 0.09644 0.07002
30 0.34668 0.11899 0.09390 0.25947 0.14420 0.10487
40 0.45242 0.15827 0.12499 0.33978 0.19142 0.13954

(ij_”tif%”ft"é’ 50 0.55200 0.19725 0.15591 0.41611 0.23799 0.17398
IStripute
load 60 0.64560 0.23585 0.18663 0.48852 0.28378 0.20813

70 0.73368 0.27403 0.21710 0.55724 0.32873 0.24197

80 0.81676 0.31174 0.24730 0.62259 0.37280 0.27544

90 0.89541 0.34896 0.27722 0.68490 0.41594  0.30854

100 0.97013 0.38566 0.30682 0.74449 0.45817 0.34123

10 0.07518 0.02750 0.02290 0.05660 0.03307 0.02558

20 0.14969 0.05497 0.04579 0.11278 0.06608 0.05113

30 0.22294 0.08239 0.06864 0.16816 0.09898 0.07664

40 0.29445 0.10973 0.09144 0.22243 0.13172 0.10208

Sinusoidal 50 0.36386 0.13698 0.11418 0.27537 0.16424 0.12743
load 60 0.43098 0.16411 0.13684 0.32683 0.19651 0.15267
70 0.49572 0.19109 0.15940 0.37674 0.22849 0.17779

80 0.55807 0.21792 0.18186 0.42508 0.26014 0.17974

90 0.61811 0.24457 0.20420 0.47188 0.29143 0.22757

100 0.67592 0.27103 0.22641 0.51719 0.32235 0.25221
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Table 5.3 Nondimensional center deflection (w/h) for symmetric and asymmetric general
angle-ply thick (a/h =10) laminates under different load and boundary conditions

Symmetric general angle-ply

Asymmetric general angle-ply

Loading Load
condition parameter
SSSS CCSS  CcccC  SSSS CCSS  cccc
0.01079 0.00677 0.00514 0.01094 0.00695 0.00509
0.03236  0.02031 0.01542 0.03275 0.02086 0.01528
0.05390 0.03385 0.02569 0.05448 0.03475 0.02546
10 0.10737 0.06759 0.05132 0.10822 0.06940 0.05090
(ijlgt':ﬁ)mé’ 15 0.16006 0.10113 0.07686 0.16091 0.10385 0.07626
load 30 0.31071 0.19974 0.15244 0.31070 0.20539 0.15147
45 0.44778 0.29398 0.22570 0.44668 0.30295 0.22457
60 0.57170 0.38302 0.29599 0.56989 0.39570  0.29489
80 0.72004 0.49362 0.38465 0.71804 051169 0.38379
100 0.85376 0.59593 0.46767 0.85227 0.61950 0.46719
0.00697 0.00463 0.00371 0.00706 0.00474 0.00368
0.02090 0.01389 0.01114 0.02115 0.01422 0.01104
0.03482 0.02314 0.01856 0.03521 0.02370  0.01840
10 0.06952 0.04626 0.03711 0.07018 0.04736 0.03679
Sinusoidal 15 0.10401 0.06931 0.05561 0.10480 0.07096 0.05515
load 30 0.20531 0.13782 0.11077 0.20594 0.14117 0.10995
45 0.30186 0.20480 0.16502 0.30188 0.20997 0.16396
60 0.39279 0.26977 0.21804 0.39204 0.27692 0.21684
80 0.50523 0.35275 0.28640 0.50360 0.36281 0.28516
100 0.60858 0.43147 0.35190 0.60638 0.44467 0.35075
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Table 5.4 Nondimensional center deflection (w/h) for symmetric and asymmetric general
angle-ply thin (a/h =100) laminates under different load and boundary conditions

Symmetric general angle-ply

Asymmetric general angle-ply

Loading Load
condition parameter
SSSS CCSS  CcccC  SSSS CCSS  cccc
10 0.09090 0.04826 0.03450 0.09203 0.05012 0.03411
20 0.18035 0.09633 0.06894 0.18178 0.10000 0.06817
30 0.26716 0.14405 0.10326 0.26831 0.14950 0.10214
40 0.35056 0.19127 0.13742 0.35110 0.19847 0.13595
(ijlgt':ﬁ)mé’ 50 0.43019 0.23786 0.17135 0.43000 0.24679 0.16958
load 60 0.50602 0.28372 0.20502 0.50509 0.29438 0.20296
70 0.57819 0.32877 0.23839 057661 0.34117 0.23607
80 0.64696 0.37296 0.27142 0.64484 0.38710 0.26887
90 0.71261 0.41628 0.30410 0.71009 0.43215 0.30134
100 0.77546  0.45871 0.33639 0.77263 0.47632 0.33345
10 0.05799 0.03302 0.02518 0.05880 0.03418 0.02490
20 0.11560 0.06598 0.05035 0.11687 0.06829  0.04979
30 0.17252 0.09883 0.07547 0.17395 0.10227 0.07465
40 0.22843 0.13154 0.10053 0.22978 0.13607  0.09945
Sinusoidal 50 0.28313 0.16403 0.12550 0.28423 0.16967 0.12418
load 60 0.33646 0.19629 0.15037 0.33719 0.20301  0.14882
70 0.38834 0.22827 0.17513 0.38863 0.23607 0.17335
80 0.43871 0.23446 0.19975 0.43854 0.26881 0.19776
90 0.48759 0.29126 0.22422 0.48696 0.30122 0.22204
100 0.53501 0.32224 0.24853 0.53394 0.33327 0.24617
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Figure 5.2 Load-deflection curve for the different lamination schemes with SSSS boundary
conditions under uniformly distributed loading: (a) a/h=10, (b) a/h=100
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—&—cross-ply laminate with SSSS B.C.
--O--cross-ply laminate with CCSS B.C.
—aA—cross-ply laminate with CCCC B.C. >
--03--cross-ply laminate with CCFF B.C.
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----cross-ply laminate with CFSS B.C.
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Load parameter,
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Load parameter, 7

Figure 5.3 Load-deflection curve for the cross-ply laminates with the different boundary
conditions under uniformly distributed sinusoidal loading: (a) a/h=10, (b) a/h=100
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5.2. Nonlinear Transient Results for Laminated Composite Plates
5.2.1. Load and Time Increments

First, suitable load intensity and time increments are selected to achieve desired the
accuracy and convergence of the solutions. The magnitude of the applied load is selected
such that the problem can be solved without considering the load loop in nonlinear analysis.
Numerical results are presented for simply supported cross-ply laminated plates. Note that
the amplitude and period of the nondimensionalized center displacements decrease with

increasing value of the load as shown in Figures 5.4(a) and 5.4(b). Load values of

q=5.0x10"q, for the thick plates (a/h=10) and q=1.0x10%q, for the thin plates

(a/h=100) are selected for the simply supported boundary conditions.

Newmark’s time scheme with =05 and y=0.5 (the constant-average

acceleration method) is unconditionally stable for the linear analysis; however such
stability is not available for nonlinear problems. Convergence studies were conducted to
select a time increment that yielded a stable and accurate solution while keeping the
computational time to a minimum. As shown in Figures 5.5(a) and 5.5(b), At =0.0001sec

for the thick composite plates (a/h=10) and At =0.0005 sec for the thin composite plates

(a/h=100) is usable for the time step to satisfy the above conditions.

5.2.2. Effect of Plate Theories

Next, the effects of the different plate theories on the transient responses are
considered. Linear and nonlinear responses obtained by the three different theories are
presented in Figure 5.6(a). Figure 5.6(b) shows the controlled and uncontrolled motions for
each theory. It is observed that the effect of nonlinearity on the transient responses is to
decrease the amplitude and increase the frequency. Note that due to the large geometric
nonlinearity effects the nonlinear transient behaviors between TSDT and other two theories
are apparent. It is also observed that the CLPT theory gives higher frequencies and lower
amplitudes. It is because CLPT theory renders the plate stiffer compared to the other two

theories.



128

3.2
--o--Linear, q0 --a--Nonlinear, q0 x E5
----Nonlinear, g0 x E6 —e—Nonlinear, q0 x E7
|§u —a— Nonlinear, 5q0 x E7 —a—Nonlinear, q0 x E8
= 24 ¢
)
e
[N
o
<
o I
2 1.6
o
S
[
—
o
308 |
0.0
0.000 0.002 0.004 0.006 0.008
Time, t (sec)
(a)
2.8
--o--Linear, q0 --=--Nonlinear, q0 x E2
--#--Nonlinear, 590 x E2 —e—Nonlinear, q0 x E3
—a— Nonlinear, 590 x E3 —a—Nonlinear, q0 x E4

Center displacement, w
= N
N =

©
\l

0.0
0.00 0.01 0.02 0.03 0.04
Time, t (sec)

(b)

Figure 5.4 Effect of load intensity on the nonlinear transient responses for the symmetric
cross-ply laminates with SSSS boundary conditions under uniformly distributed loading
using TSDT: (a) a/h=10, (b) a/h=100
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Figure 5.5 Effect of time increments on the nonlinear transient analyses for the symmetric
cross-ply laminates with SSSS boundary conditions under uniformly distributed loading
using TSDT: (a) a/h=10, (b) a/h=100
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Figure 5.6 Effect of plate theories on the nonlinear transient responses for the symmetric
cross-ply thick (a/h =10) laminates with SSSS boundary conditions under uniformly

distributed loading, g, =5x10": (a)Details, (b)Nonlinear responses
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Selected linear and nonlinear numerical results in transient responses are presented

in Tables 5.5 and 5.6 for the composite plates under the uniformly distributed transverse
load of intensity g, =5.0x10" and ¢, =1.0x10", respectively. The 4x4 meshes of the

quadrant plate are used for all three different plate theories.

Table 5.5 Nondimensionalized transverse deflections versus time of the simply supported
cross-ply laminates subjected to uniformly distributed load (a/h=10; At=0.0001; 4x4L
mesh)

Nondimensionalized Center Displacement (W, ) of the thick laminated plate
t

(x10%sec) Linear Analysis Nonlinear Analysis

CLPT FSDT TSDT CLPT FSDT TSDT
05 0.3300 0.3179 0.2842 0.3297 0.3179 0.2841
1.0 1.2578 1.3249 1.3480 1.2233 1.2848 1.3210
15 2.0185 2.1768 2.1916 1.7416 1.8638 1.9535
2.0 2.0672 2.2983 2.5440 1.3522 1.4674 1.8584
3.0 0.7099 0.8962 1.2037 0.3200 0.3235 0.4205
4.0 0.6494 0.5573 0.4342 1.2732 1.2969 0.9988
6.0 1.3321 1.6739 2.0589 0.5533 0.5528 0.7597
8.0 1.2684 1.1432 0.8399 1.0895 1.2449 1.6265
10.0 0.9250 1.2147 1.7084 1.2176 1.2592 0.8573
15.0 1.2394 1.1407 1.0403 0.9007 0.9161 1.2591
20.0 1.1732 1.4209 1.4162 0.9885 1.0943 1.1821
30.0 1.1962 1.3103 1.2874 1.0165 1.0664 1.2147
40.0 1.1817 1.2636 1.3822 1.0219 1.0970 1.1899
60.0 1.1695 1.2750 1.3566 1.0189 1.0882 1.1735
80.0 1.1691 1.2772 1.3602 1.0185 1.0895 1.1747

100.0 1.1692 1.2849 1.3603 1.0185 1.0960 1.1749
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Table 5.6 Nondimensionalized transverse deflections versus time of the simply supported
cross-ply laminates subjected to uniformly distributed load (a/h=100; At=0.0005; 4x4L

mesh)
Nondimensionalized Center Displacement (W, ) of the thin laminated plate
(><10t3 sec) Linear Analysis Nonlinear Analysis

CLPT FSDT TSDT CLPT FSDT TSDT

0.5 0.0016 0.0015 0.0016 0.0016 0.0015 0.0016
1.0 0.0077 0.0072 0.0079 0.0077 0.0072 0.0079

15 0.0200 0.0186 0.0207 0.0200 0.0186 0.0207
2.0 0.0386 0.0385 0.0408 0.0386 0.0385 0.0408
6.0 0.5738 0.5865 0.5499 0.5694 0.5813 0.5464
10.0 1.3316 1.3558 1.3376 1.2035 1.2308 1.2582
15.0 2.0564 2.0410 2.0894 1.2320 1.2271 1.5580
30.0 0.6271 0.5591 0.6741 0.6576 0.6966 0.3694
50.0 1.7982 1.7905 1.8194 0.4658 0.4843 0.6128
70.0 0.6552 0.7000 0.6324 0.5942 0.5808 1.1899
100.0 0.8561 0.8036 0.9235 0.7418 0.7754 0.9260
150.0 1.3147 1.3429 1.2786 0.8565 0.8826 1.0078
200.0 1.1082 1.0487 1.1903 0.8729 0.8840 0.9938
300.0 1.1651 1.1218 1.2202 0.8424 0.8439 0.9344
400.0 1.1727 1.1434 1.2074 0.8350 0.8404 0.9187
500.0 1.1700 1.1483 1.2084 0.8352 0.8414 0.9194

5.2.3. Effect of Lamination Schemes

The deflection suppression characteristics are studied for the different lamination

schemes. The differences between the lamination schemes can be seen in Figure 5.7 for

thick and thin plate cases. The maximum deflections and deflection suppression times of

the linear and nonlinear analyses for the different lamination schemes with simply

supported boundary condition under uniformly distributed loading by TSDT (q=10"q, for

a/h=10, q=10"q, for a/h=100) have been tabulated in Table 5.7.

Since the converged
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transient solutions for each lamination scheme under the uniformly distributed loads are

different the maximum deflection W, are defined as W, =W, —W, Deflection

‘converged *
suppression time is defined as the time required to reduce the center displacements to 10%
of its uncontrolled magnitude. It is observed that it takes less deflection suppression time
with increasing plate thickness and the effect of nonlinear analysis reduces the deflection
suppression time. It is also reported that symmetric cross-ply lamination shows the bigger

amplitude and period under the same boundary and loading conditions.

Table 5.7 Nondimensionalized maximum transverse deflections and deflection suppression
time for different lamination schemes

Linear Analysis Nonlinear Analysis
Th?clitr?ess Lamination Schemes ~ t(sec) at ~ t(sec) at
max W, /10 max W, /10
Symmetric cross-ply 1.1837 0.0245 0.8907 0.0225
a_ 10 Symmetric angle-ply 0.8536 0.0285 0.6648 0.0230
h Symmetric general angle-ply ~ 0.8825 0.0290 0.7153 0.0280
Asymmetric general angle-ply  0.8385 0.0275 0.6907 0.0235
Symmetric cross-ply 1.1984 0.1770 0.9204 0.1750
a 100 Symmetric angle-ply 0.8804 0.2120 0.7094 0.1710

Symmetric general angle-ply ~ 0.9034 0.2150 0.7444 0.1750
Asymmetric general angle-ply  0.9224 0.2170 0.7404 0.1740
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Figure 5.7 Effect of lamination schemes on the transient responses with SSSS boundary
conditions under uniformly distributed loading: (a) a/h=10 (g, =5x10"), (b) a/h=100

(g, =5x10°%)
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5.2.4. Effect of Loading Conditions

The effect of applied loading conditions on the deflection suppression can be seen
from Figures 5.8(a)-(f). The four different loading conditions are considered to study their
effect on the response. They are uniformly distributed load (UMD), uniformly distributed
sinusoidal load (SUMD), uniformly distributed impact load (IMD) and uniformly
distributed sinusoidal impact load (SIMD). Since the first two loadings are continuously
applied over the computational domain during the analysis the converged transient solution
is different for each case. The figures show the differences between the loading conditions

on transient response effects for the different lamination schemes.
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Center displacement, w,
H
(e}

=
(o)
T

0.4

0.00 0.02 0.04 0.06 0.08
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(a)
Figure 5.8 Effect of loading conditions on the transient responses with SSSS boundary
conditions: (a) cross-ply laminates (a/h=10) with q, =5x10, (b) cross-ply laminates
(a/h=100) with g, =10%, (c) angle-ply laminates (a/h=10) with g, =5x10", (d) angle-
ply laminates (a/h=100) with ¢, =10, (e) general angle-ply laminates (a/h=10) with
d, =5x10", (f) the asymmetric general angle-ply laminates (a/h=100) with ¢, =10
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5.2.5. Effect of Boundary Conditions

The effect of boundary conditions on the deflection suppression is studied using the
six different boundary conditions: SSSS (SS), CCCC (CC), CCSS (CS), CCFF (CF), SSFF
(SF) and CFSS (CFS). Figure 5.9 contains the center displacements for various boundary
conditions under different loading. The effect of the boundary conditions on amplitude and
frequency is apparent from this Figure. Regardless of plate thickness and loading condition,
SSFF boundary conditions show the largest amplitude values. The maximum deflections
and deflection suppression times for each boundary condition have been tabulated in Table
5.8.
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Figure 5.9 Effect of boundary conditions on the transient responses under uniformly
distributed loading: (a) cross-ply laminates ( a/h =10) with g, =10", (b) cross-ply
laminates (a/h=100) g, =10*, (c) angle-ply laminates (a/h=10) with g, =10", (d) angle-
ply laminates (a/h=100) g, =10", (e) general angle-ply laminates (a/h=10) with
q, =107, (f) the asymmetric general angle-ply laminates (a/h=100) ¢, =10
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Table 5.8 Nondimensionalized maximum transverse deflections and deflection suppression
time by nonlinear TSDT

Plate Lamination Loading Boundary - W, /
Thickness Schemes Condition Condition W t(sec)at " 10
SSSS 1.1433 0.0245
U_nif_ormly CCSS 0.5183 0.0290
Symmetric distributed ccce 0.4472 0.0280
cross-ply 'Oad; CCFF 0.5983 0.0745
q=10 4y SSFF 1. 8126 0.0475
CFSS 1.5007 0.0475
Uniforml SSSS 0.5320 0.0265
_ distributed CCSS  0.3962 0.0270
Symmetric istributed

a_ Sinusoidal CCCC  0.2997 0.0280

—=10 angle-ply
h load, CCFF 0.4947 0.0615
q=10"q, SSFF 1.3937 0.0575
CFSS 0.7511 0.0570
Uniforml SSSS 0.5349 0.0285
_ distributed CCSS 03914 0.0280
Sinusoidal CCCC  0.2926 0.0605

general angle-

ply load, CCFF 0.4907 0.0575
q= 107 0N SSFF 1.4437 0.0540
CFSS 0.7149 0.0555
SSSS 0.1044 0.2020
Uniformly CCSsS 0.0679 0.1870
Symmetric distributed ccce 0.0588 0.1820
cross-ply Impact I40ad, CCFF 0.0532 0.4840
q=10"q, SSFF 0.1153 0.3890
CFSS 0.0782 0.4380
Uniforml SSSS 0.0547 0.2210
_ distributed CCSS  0.0451 0.1950

angle-ply
Impact load, CCFF 0.0438 0.4410
q= 10* o8 SSFF 0.0696 0.5320
CFSS 0.0479 0.4630
Uniforml SSSS 0.0555 0.2240
y CCSS 0.0459 0.2070

Asymmetric distributed

s cccc 0.0421 0.1910

| angle- Sinusoidal
gener;,;”ge Impact load, ~ CCFF  0.0448 0.4270
q=10'q, SSFF 0.0752 0.4910

CFSS 0.0502 0.4350
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5.3. Nonlinear Transient Results for Laminated Composite Shells
5.3.1. Effect of Shell Theories

The effect of shell theories on the deflection control is studied using the nonlinear
finite element analysis. Figure 5.10 shows the deference between Donnell and Sanders

shell theories on the nonlinear transient analysis. For thin (a/h=100) and thick (a/h=10)
symmetric cross-ply laminated shells, transient behavior from the selected R, /a values are

shown. Tables 5.9 and 5.10 show the numerical values of nondimensionalized center
displacements for thick and thin cross-ply shells, respectively. These tabular values contain
the Donnell and Sanders shell theory results for the cylindrical, spherical and doubly-

curved shell types. It is observed that as a/h and R,/a value is decreasing, the numerical

differences in deflection control become larger. However, as mentioned in Section 3 for
linear case, it is hard to see the big differences in the deflection control effect even in
nonlinear analysis. Thus, Sanders shell theory is selected in this study to show the

numerical results for shallow shell case unless otherwise stated.

As mentioned in the previous section 5.2.1, the time derivatives are approximated
by using the Newmark’s direction integration method. Since no estimate on the time step
for the stable nonlinear analysis is available, a convergence study has been conducted to
select the appropriate time step that yields a stable and accurate solution while keeping the

computational time to a minimum. At =0.0001 sec for the thick ( a/h=10) and
At =0.0005 sec for the thin (a/h=100) shells are selected the end of the convergence

study. Figure 5.11 shows the effect of time increments on the nonlinear transient results of

thick and thin cross-ply cylindrical shell with R, /a =200 under uniform loading.



145

2.0
——Sanders (R2/a=2) ——Donnell (R2/a=2)
i Sanders (R2/a=5) ----- Donnell (R2/a=5)
iy Sanders (R2/a=10) ---- Donnell (R2/a=10)
o
S RN
8 /// \\
o / \ //
% 1 0 = // \\ ///
(@) / \\ /
o ! \ /
IeB) / A //
= / \ /
[3) / \ - ./
@) / \\ ,."/ /Y\
4 N //
00 TN TN
0.00 0.01 0.02 0.03 0.04
Time, t (sec)
(a)
4.0
——Sanders (R2/a=2) —— Donnell (R2/a=2)
Sanders (R2/a=5) ----- Donnel (R2/a=5)

Sanders (R2/a=10) ---- Donnell (R2/a=10)

Center Displacement, w,
N
o
T

OO 1 1 1 1
0.000 0.002 0.004 0.006 0.008 0.010

Time, t (sec)

(b)

Figure 5.10 Effect of shell theory on the nonlinear transient analysis for the symmetric
cross-ply cylindrical shell: (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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Table 5.9 Selected center displacement of the symmetric cross-ply thick (a/h=10) shell

with R,/a =2 by Donnell and Sanders shell theories

Center Displacement (W,)

Donnell Sanders
t (x10°sec)
Cylindrical ~ Spherical EL?rLi/t:aIg Cylindrical ~ Spherical EL?rLi/t:aIg
shell shell shell shell shell shell

1 1.29520 116180  1.24010 1.28720 1.15010 1.23140
2 2.36660 1.48640  1.95170 2.30500 1.42130 1.89360
3 1.04570 0.29116  0.59766 0.97178 0.26968 0.55154
4 0.47827 0.90837  0.65336 0.49720 0.94202 0.68648
5 1.66100 1.37280  1.69060 1.68060 1.29920 1.66800
6 1.83100 0.52019  1.14260 1.73420 0.47227 1.05110
7 0.82918 0.78598  0.56680 0.76024 0.83772 0.57554
8 0.92622 1.26090  1.27600 0.97759 1.19950 1.30600
9 1.71240 0.69047  1.39810 1.70300 0.62236 1.31220
10 1.44620 0.74337  0.77151 1.33000 0.79441 0.72574
15 1.01510 0.87520  1.22950 1.02650 0.79435 1.23580
20 1.40130 0.95693  1.02040 1.38980 0.95405 0.96610
25 1.27050 0.83950  1.10450 1.20140 0.82265 1.10640
30 1.23210 0.92218  1.07920 1.22930 0.88134 1.03530
40 1.26530 0.89282  1.08750 1.22780 0.86167 1.05380
50 1.28010 0.88995  1.08600 1.24660 0.86765 1.05810
60 1.27390 0.89237  1.08420 1.24630 0.86994 1.05890
70 1.27300 0.89318  1.08340 1.24400 0.86948 1.05900
80 1.27370 0.89310  1.08300 1.24390 0.86922 1.05900
90 1.27390 0.89300  1.08290 1.24440 0.86925 1.05890
100 1.27390 0.89300  1.08280 1.24450 0.86928 1.05890
110 1.27370 0.89301  1.08280 1.24420 0.86928 1.05890
120 1.27360 0.89301  1.08290 1.24420 0.86929 1.05890
150 1.27360 0.89298  1.08280 1.24410 0.86926 1.05880
200 1.26760 0.88692  1.07670 1.23820 0.86320 1.05270
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Table 5.10 Selected center displacement of the symmetric cross-ply thin (a/h=100) shell

with R,/a=2 by Donnell and Sanders shell theories

Center Displacement (W, )

Donnell Sanders
t (x10°sec)
Cylindrical ~ Spherical EL?rLi/ZI()j/ Cylindrical ~ Spherical EL?rLi/ZI()j/
shell shell shell shell shell shell

2 0.03714 0.02650  0.03186 0.03713 0.02649 0.03185
3 0.08376 0.03788  0.05981 0.08372 0.03785 0.05978
4 0.12634 0.02106  0.06521 0.12624 0.02101 0.06513
5 0.14099 -0.00204  0.03840 0.14077 -0.00203 0.03831
6 0.12226 0.00678  0.00560 0.12192 0.00683 0.00556
7 0.07968 0.03217  -0.00051 0.07928 0.03216 -0.00046
8 0.02954 0.03372  0.02274 0.02928 0.03364 0.02285
9 -0.00167 0.01511  0.05272 -0.00165 0.01506 0.05274
10 0.00676 0.00412  0.06352 0.00705 0.00414 0.06339
15 0.10740 0.00355 0.04161 0.10689 0.00357 0.04166
20 0.04428 0.00668  0.01046 0.04463 0.00672 0.01055
25 0.07721 0.00765  0.01919 0.07643 0.00768 0.01907
30 0.07849 0.00921  0.04312 0.07893 0.00927 0.04288
40 0.09343 0.01137  0.02776 0.09370 0.01143 0.02797
50 0.09606 0.01317  0.03168 0.09578 0.01323 0.03148
60 0.08870 0.01455  0.03577 0.08806 0.01462 0.03588
70 0.07596 0.01560  0.02762 0.07526 0.01566 0.02753
80 0.06530 0.01637  0.03681 0.06471 0.01642 0.03678
100 0.05989 0.01735  0.03496 0.05995 0.01739 0.03485
150 0.07261 0.01820  0.03277 0.07241 0.01820 0.03277
200 0.06823 0.01831  0.03212 0.06819 0.01830 0.03211
250 0.06972 0.01830  0.03217 0.06959 0.01829 0.03214
300 0.06922 0.01830  0.03223 0.06914 0.01828 0.03220
400 0.06933 0.01829  0.03223 0.06924 0.01828 0.03221
500 0.06783 0.01690  0.03077 0.06774 0.01689 0.03075
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Figure 5.11 Effect of time increments on the nonlinear transient analysis for the symmetric
cross-ply cylindrical shell (R, /a=200): (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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5.3.2. Effectof R, /a

In this section, the effect of R,/a on the deflection suppression is studied. Figure
5.12 shows the effect of R, /a for cylindrical cross-ply shell. The uniform loads g, =10

for thick shell a/h =10, and q, =10° for thin shell a/h =100 are applied with simply

supported boundary condition. The maximum transverse deflection and the deflection

suppression time is tabulated in Table 5.11 for each R,/a value. Here the maximum

deflection W, is defined as W, =W, —W,

converged !

where W, is the maximum

nondimensionalized center displacement and W, is the converged displacement value.

onverged

It is observed that it takes more deflection suppression time with increasing R, /a

value in both thin and thick shells. For the thin shell, the maximum deflection suppression

time is 5 times faster than the others depending on R, /a value. In the thick shell, R, /a
values bigger than R,/a=50 cases have the little differences between the transient

behaviors.
5.3.3. Effect of Shell Types

Next, the effect of shell types on the deflection suppression characteristics is studied
for spherical, cylindrical, and doubly curved CFRP shells. In this study doubly curved shell
is chosen as R =2R, for specific example. The center displacements versus time for
spherical, cylindrical, and doubly curved shells are shown in Figures 5.13 to 5.16. Figures
5.13 and 5.14 show the comparison of transient behavior of three shell types for thin and
thin cases. For the thick shell with bigger R,/a values, the deference between the shell
types is hard to recognize. Selected maximum defection and deflection suppression time
for spherical and doubly curved shells are shown in Table 5.12. It is observed that it takes

less deflection suppression time with decreasing R,/a value for spherical and doubly-
curved shells. Thus the shell with the smallest R,/a shows the maximum deflection

suppression. It is also observed that the spherical shell has the biggest deflection
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suppression and smallest maximum deflection and the cylindrical shell has the smallest
deflection suppression and largest maximum deflection. It is because of the fact that

spherical shell has the smallest R and doubly curved shell (in this study R =2R,), and

cylindrical shell has the largest R (R =) with the same R, value.

Table 5.11 Maximum transverse deflection and deflection suppression time for the
symmetric cross-ply cylindrical shells

Thickness RZA W, t(sec)at W, /10
0.071646 0.114000
0.293180 0.161500
10 0.611730 0.176000
20 0.845500 0.206500
Thin Shell 50 0.983200 0.225500
% =100 100 1.033500 0.228000
200 1.056300 0.232000
500 1.066600 0.234000
1000 1.069600 0.234000
10%° 1.072400 0.235500
2 1.093000 0.024000
5 1.238800 0.025000
10 1.262900 0.025500
20 1.270300 0.025500
Thick Shell 50 1.273200 0.025500
% =10 100 1.274000 0.025500
200 1.274300 0.025500
500 1.274500 0.025500
1000 1.274600 0.025500

10% 1.274600 0.025500
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Figure 5.12 Effect of R,/a for cylindrical cross-ply shell under uniform load in SSSS
boundary condition; (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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Figure 5.13 Effect of shell type for the cross-ply thick (a/h=10) shell under uniform load
in SSSS boundary condition; (a) R,/a=5, (b) R,/a=50
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Figure 5.14 Effect of shell type for the cross-ply thin (a/h=100) shell under uniform load
in SSSS boundary condition; (a) R,/a=5, (b) R,/a=50
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Figure 5.15 Effect of R,/a for spherical cross-ply shell under uniform load in SSSS
boundary condition; (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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Figure 5.16 Effect of R,/a for doubly-curved cross-ply shell under uniform load in SSSS
boundary condition; (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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Table 5.12 Maximum transverse deflection and deflection suppression time for the
symmetric cross-ply shells by Sanders shell theory

Spherical Shell Doubly Curved Shell

Thickness RZA

W t(sec) at W, /10 W t(sec)at W, /10

0.019592 0.077000 0.034506 0.093500
0.123990 0.119000 0.191890 0.137000
Thin Shell 10 0.312520 0.164000 0.424780 0.172000
8, =100 50  0.892100 0.212000 0.946900 0.218500
100 0.978200 0.225000 1.011100 0.227000
1000 1.059900 0.234000 1.073100 0.234500
2 0.726790 0.023500 0.868800 0.022500
5 1.146000 0.024500 1.199200 0.025000
Thick Shell 19 1.237100 0.025000 1.251600 0.025500
% =10 50 1.271300 0.025500 1.272300 0.025500
100 1.273200 0.025500 1.273500 0.025500
1000  1.274500 0.025500 1.274400 0.025500

5.3.4. Effect of Lamination Schemes

The effect of lamination schemes on the deflection suppression characteristics is
studied. Symmetric cross-ply (m,90,0,90,0)s, symmetric angle-ply (m,45,—45,45,—45)s
and symmetric general angle-ply (m,45,—45,0,90)s laminations are considered for
spherical, cylindrical, and doubly curved shells. Figures 5.17 — 5.19 show the effect of

lamination schemes for cylindrical ( R,/a=2), spherical ( R,/a=5) and doubly-curved
(R,/a=200) shells respectively. All the examples are under uniformly distributed load and

SSSS boundary condition. The effect of lamination on the deflection suppression time and
maximum deflection can be seen in Table 5.13 as numerical values. It is reported that
symmetric cross-ply shell has the biggest maximum deflection for all shell types and angle-

ply shell shows the smaller deflection values than other lamination schemes.
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5.3.5. Effect of Boundary Conditions

The effect of boundary condition of laminated composite shells on the deflection
suppression is shown in Figures 5.20 — 5.22. Table 5.14 has the maximum deflection and
deflection suppression time for each boundary condition. Each shell type, cylindrical,

spherical, doubly-curved shell has the different R and R, values, the maximum deflection

can be found in SSFF boundary condition and the maximum deflection suppression occurs

in CCCC boundary condition.
5.3.6. Effect of Loading Conditions

The effect of applied loading conditions on the deflection suppression is shown in
Figure 5.23. Uniformly distributed load, uniformly distributed sinusoidal load, uniformly
distributed impact load and uniformly distributed sinusoidal impact load are considered to
study the loading effect. The deflection under the uniformly distributed load has the largest

value regardless of shell type or thickness.

5.4. Nonlinear Results under Thermomechanical Loads

In this section, parametric studies for laminated composite plate and shell structures
that are subjected to a temperature field in addition to the mechanical loading are conducted.
Temperature changes often represented a significant factor, and sometimes the predominant
cause of failure of composite structures subject to severe environmental loads. In fiber
reinforced laminated composites such as CFRP, the thermal expansion coefficients in the
direction of fibers are usually much smaller than those in the transverse direction.
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Figure 5.17 Effect of lamination schemes for cylindrical shell under uniform load in SSSS
boundary condition; (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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Figure 5.18 Effect of lamination schemes for spherical shell under uniform load in SSSS
boundary condition; (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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Figure 5.19 Effect of lamination schemes for doubly-curved shell under uniform load in
SSSS boundary condition; (a) thin shell (a/h=100), (b) thick shell (a/h=10)
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Table 5.13 Vibration suppression characteristics for the symmetric cross-ply laminated
shells with the different lamination

_ R, o t(sec) at
Thickness Shell Type / Lamination I nax ~
a W, /10
Cross-ply 0.071648 0.114000
Cylindrical 2 Angle-ply 0.020724 0.066500
Th General Angle-ply  0.026657 0.081500
Shell Cross-ply 0.123960 0.119000
~100 Spherical 5 Angle-ply 0.032041 0.074500
h General Angle-ply  0.050940 0.084000
Cross-ply 1.048900 0.231000
Doubly 200 Angle-ply 0534070  0.305500
Curved ' '
General Angle-ply ~ 0.584150 0.335500
Cross-ply 1.092700 0.024000
Cylindrical 2 Angle-ply 0.687550 0.019500
Thick General Angle-ply  0.738630 0.020500
Shell Cross-ply 1.146000 0.024500
?/ ~10 Spherical 5 Angle-ply 0.744220 0.023500
h General Angle-ply  0.778160 0.024000
Cross-ply 1.274100 0.025500
Doubly 200 Angle-ply 0.937800 0.026000
Curved ' '
General Angle-ply  0.965800 0.026000
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Figure 5.20 Effect of boundary conditions for cross-ply cylindrical shell under uniform load;
(a) thin shell (a/h=100, R,/a=100), (b) thick shell (a/h=10, R, /a=50)
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Figure 5.21 Effect of boundary conditions for cross-ply spherical shell under uniform load;
(a) thin shell (a/h=100, R,/a=20), (b) thick shell (a/h=10, R, /a=10)
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Figure 5.22 Effect of boundary conditions for cross-ply doubly-curved shell under uniform
load; (a) thin shell (a/h=100, R, /a=10), (b) thick shell (a/h=10, R, /a=20)
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Table 5.14 Nondimensionalized maximum transverse deflections and deflection
suppression time by nonlinear TSDT

Thickness  Shell Type RZA ggﬁgﬂ?& W, t(sec) at Wm%
SSSS 1024900 0.229500
CCCC  0.307740 0.176000
o CCSS  0.402020 0.179500
Cylindrical 100 CCFE  0.410440 0.392500
SSFF  1.594400 0.436500
CFSS  1.355100 0.468500
SSSS  0.618830 0.202500
CCCC  0.197590 0.111000
a . CCSS  0.278060 0.132000
5100 Spherical 20 CCFF  0.260770 0.234500
SSFF 0.836260 0.317000
CFSS  0.744180 0.444000
SSSS  0.425350 0.171000
CCCC  0.133960 0.089000
Doubly L0 CCSS  0.166440 0.112000
curved CCFF 0.129180 0.150500
SSFF 0550670 0.248500
CFSS  0.556810 0.398500
SSSS  1.273200 0.025500
CCCC  0.449170 0.026500
o CCSS  0.561410 0.027500
Cylindrical S0 CCFF  0.651010 0.059000
SSFF  2.050600 0.046000
CFSS  1.341900 0.048500
SSSS  1.237100 0.025500
. CCCC  0.438030 0.024000
=10 Spherica 0 CCSS  0.530840 0.024500
CCFF  0.632780 0.052000
SSFF  1.942700 0.045000
CFSS  1.337900 0.048500
SSSS  1.266800 0.025500
CCCC  0.389790 0.026500
Doubly 2 CCSS  0.554230 0.027500
curved CCFF  0.638720 0.056000
SSFF 2.029700 0.046000

CFSS 1.339900 0.048500
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Figure 5.23 Effect of loading conditions for cross-ply cylindrical shell in SSSS boundary
condition; (a) thin shell (a/h=100, R,/a=5), (b) thick shell (a/h=10, R, /a=5)
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As mentioned in the previous section, since thermal effects are taken into consider
with the understanding that the material properties are independent of temperature,
temperature enters the formulation only through constitutive equations. The temperature
field considered is assumed to be a constant distribution over the plate/shell structure

surface and thickness. Laminated composite plate and shell models (a/b=1) used in this

section are the same as the previous ones. All numerical results are presented in terms of

nondimensionalized. The nondimensionalized parameters used in this study are

'8 a'

E,h*
w

Load parameter p'= (5.1)

3
Center deflection wW'=—, W, :100><@ (5.2)

4
aq,

The following thermal expansion coefficients are used for this study,

h

a, =12.010° /' cand @, =12.010°/°c  for Terfenol-D

a, =0110°/cand @, =22.010°/°c  for CFRP

a, =1810°/ cand @, =54.010°/°c  for Gr-Ep (AS)

a, =6.310°/ cand @, =20510°/°c  for GI-Ep

o, =4510° /' cand o, =14.410°/°c  for Br-Ep
5.4.1. Satic Results under Thermomechanical Loads

The static analysis is performed for different mechanical and thermal loads. First,
the behavior of the cross-ply laminate with simply supported boundary condition is studied
under uniformly distributed mechanical load and thermal load. To see the effect of shear
deformation on the response of thick laminated plates, CLPT, FSDT, and TSDT solutions
are obtained for side-to-thickness ratio a/h=10 . Figure 5.24 shows the

nondimensionalized center displacements of thick laminates by three different plate
theories. It is observed that CLPT theory renders the plate stiffer compared to the other two
theories. For selected mechanical and thermal loads, the center displacements for each
theory are tabulated in Table 5.15. Next, the behavior of thin laminated plates under



thermomechanical loading is considered.
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Using TSDT, the nonlinearities of center

deflection due to the temperature effect are clearly shown in Figure 5.25 and Table 5.16.

Table 5.15 Nondimensionalized center displacements of the simply supported thick cross-
ply laminate under thermomechanical loading by CLPT, FSDT, and TSD

Tgi';zfrztge 60 °C 100 °C 300 °C

Plate Theory CLPT FSDT TSDT CLPT FSDT TSDT CLPT FSDT TSDT
p'=05  0.0565 0.0615 0.0658 0.0554 0.0601 0.0644 0.0502 0.0542 0.0585
p=1 0.1127 0.1225 0.1310 0.1104 0.1198 0.1283 0.1002 0.1081 0.1167
p'=3 0.3265 0.3526 0.3780 0.3205 0.3457 0.3713 0.2931 0.3149 0.3409
p'=5 0.5146 05513 0.5944 0.5063 0.5422 0.5854 0.4680 0.4999 0.5442
p'=10 0.8777 0.9269 1.0228 0.8678 0.9162 1.0123 0.8201 0.8651 0.9622
p'=15 1.1417 1.1964 13564 1.1318 1.1859 1.3459 1.0835 1.1347 1.2946
p'=25 15234 15847 1.8924 15142 15749 1.8821 1.4687 1.5267 1.8312
p'=35 1.8063 1.8722 2.3406 1.7977 1.8630 2.3304 1.7550 1.8177 2.2802
p' =50 2.1374 2.2081 2.9286 2.1295 2.1997 29186 2.0901 2.1577 2.8693
p' =65 2.4043 2.4779 3.4551 2.3969 2.4700 3.4454 2.3599 2.4306 3.3971

Table 5.16 Nonlinear nondimensionalized center displacements of the simply supported
thin cross-ply laminate under thermomechanical loading by TSDT

Load Temperature rise AT (°C)
Parameter,
p' 0 10 20 30 40 50 60 70
10 (Linear) 0.11933 0.09656 0.08200 0.07188 0.06446 0.05876 0.05426 0.05062
10 0.11888 0.08339 0.06606 0.05581 0.04903 0.04421 0.04061 0.03784
20 0.23513 0.16626 0.13194 0.11154 0.09803 0.08839 0.08124 0.07567
30 0.34668 0.24817 0.19754 0.16712 0.14696 0.13260 0.12182 0.11349
40 0.45242 0.32869 0.26267 0.22254 0.19580 0.17670 0.16233 0.15121
50 0.55200 0.40751 0.32723 0.27772 0.24447 0.22075 0.20284 0.18897
60 0.64560 0.48441 0.39109 0.33260 0.29304 0.26471 0.24331 0.22671
70 0.73368 0.55925 0.45416 0.38713 0.34144 0.30849 0.28382 0.26452
80 0.81676 0.63198 0.51636 0.44127 0.38964 0.35224 0.32415 0.30206
90 0.89541 0.70258 0.57763 0.49497 0.43763 0.39588 0.36429 0.33965
100 0.97013 0.77110 0.63793 0.54821 0.48537 0.43938 0.40464 0.37721
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Figure 5.24 Effect of the plate theories on static behaviors of simply supported thick cross-
ply laminates under mechanical and thermal load; (a) CLPT, (b) FSDT, (c) TSDT



170

——pP'=3 ——P'=5 —¥—=P'=10 —X—P'=15
- P'=25 A P'=35 —— P'=50 =P =65

4.0
rTSDT, simply supported thick cross-ply laminate

3 | | O—8 = = = —=—5
230
3 . ————
g i
8 T A— A A A
ﬂ B [=y (=) X E‘A—\A_\A
22.0 | N
2 | o— —o—o o
A I
-
3 i W
d |
SLO | Fd——¢ %

0.0 : : : : : : : :

0 80 100 150 200 300 400 500
© Temperature, AT (°C)
Figure 5.24 Continued
—— P'=30 —— P =40 —Xk— P'=50 —>— P'=60
1.9 —=—-P' =70 —A— P'=80 —— P'=90 —-=-P'=100

| TSDT, simply supported thin cross-ply laminate

hat
y —

e
w
T

Center Displacement
o o Ak
o )

0.0 : : : : : : : :
0 10 20 30 40 50 60 7
Temperature, AT (°C)

e}
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The typical nonlinear results of center deflection of thick and thin cross-ply and
angle-ply plates are given in Figure 5.26. The effect of temperature rise AT = 200°C for

thick laminate and AT = 20°C for thin laminate is considered, respectively. The effect of
the thermal loading is apparent in the thin laminate with small temperature rise. The
magnitude of center deflections of cross-ply laminate is bigger than that of angle-ply

laminate.

The effects of R,/a on the nonlinear deflection under thermomechanical loads are
shown in Figure 5.27. The nondimensinalized center displacements of thick (a/h=10,
AT =100°C) and thin (a/h=100, AT =10°C ) cross-ply cylindrical shells are plotted.
Figures 5.28 — 5.30 show the temperature effects of cross-ply cylindrical, doubly-curved

and spherical shells, respectively. As thermal loads increase, the center deflections increase

for any shell type or R, /a value.

5.4.2. Laminated Composite Plates under Thermomechanical Loads

Nonlinear transient results of laminated composites under thermomechanical
loadings are presented in this section. The critical time step for Newmark’s scheme in
nonlinear problem is selected to satisfy the stable and accurate solution condition. Time

interval 0.1 and 0.5 milliseconds are chosen for the thick (a/h=10) and the thin

(a/h=100) laminates.
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Figure 5.26 Effect of the laminations on static behaviors of simply supported laminated
plates under mechanical and thermal load; (a) Thick laminate, (b) Thin laminate
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Figure 5.27 Effect of R,/a on static behavior of cross-ply cylindrical shell under
thermomechanical load: (a) Thick shell (a/h=10, AT =100°C), (b) Thin shell (a/h=100,

AT =10°C)
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Figure 5.28 Temperature effect on static behavior of cross-ply cylindrical shell under
thermomechanical load: (a) Thick shell (a/h=10, R,/a=2), (b) Thin shell (a/h=100,

R,/a=2)
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Figure 5.29 Temperature effect on static behavior of cross-ply doubly-curved shell under
thermomechanical load: (a) Thick shell (a/h=10, R,/a=10), (b) Thin shell (a/h=100,

R,/a=10)
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Figure 5.30 Temperature effect on static behavior of cross-ply spherical shell under
thermomechanical load: (a) Thick shell (a/h=10, R,/a=2), (b) Thin shell (a/h=100,
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First, the thermomechanical effect with different laminations is studied. The

transient behavior of the laminated composites under thermomechanical loadings is shown
in Figures 5.31, 5.32 and 5.33. The applied mechanical load parameters are 10’ for thick

laminates and 5x10° for thin laminates, respectively. Each mechanical load is selected to
show the nonlinear behavior of laminates and that selected load makes the nonlinear
problem can be solved without considering the load loop. The thermal load is applied to
the opposite direction of the mechanical load in the thermomechanical simulations of

laminated composite plates.

Uniformly distributed load and suddenly applied uniform load are considered with
simply supported boundary condition in this study. The Figure includes the behaviors of

uncontrolled case, the case without thermal load, and the case with thermal load. The

considered thermal rise values are AT =100,200°C for all thick laminates,

AT =20,50°C for thin cross-ply and angle-ply laminates, and AT =20, 40°C for thin

general laminates. The effect of the thermal load is to reduce the amplitude and vibration
suppression time. Here vibration suppression time is the time required to reduce the center
deflections to 10% of its uncontrolled magnitude. The amplitude and period of the center
deflections decrease with increasing thermal loading. The results of cross-ply, angle-ply
and general laminates under thermomechanical loads can be seen in Figures 5.31, 5.32 and

5.33, respectively.
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Figure 5.31 Transient behavior of the cross-ply laminates with simply supported boundary
condition; (a) Thick laminate under impact load, (b) Thick laminate under uniform load,
(c)Thin laminate under impact load, (d) Thin laminate under uniform load
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Figure 5.32 Transient behavior of the angle-ply laminates with simply supported boundary
condition; (a) Thick laminate under impact load, (b) Thick laminate under uniform load,
(c)Thin laminate under impact load, (d) Thin laminate under uniform load
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Figure 5.33 Transient behavior of the general laminates with simply supported boundary
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(c)Thin laminate under impact load, (d) Thin laminate under uniform load
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The effect of elastic material property on the vibration suppression response is
studied under thermomechanical loading. Gr-Ep(AS), GI-Ep, and Br-Ep are considered in
addition to CFRP material, where the thermal expansion coefficients are shown in the

beginning of this section. Figures 5.34 and 5.35 show the transient responses of thick and
thin laminates, respectively. The mechanical load parameter 10° and thermal rise

AT =150°C are used for thick laminates and p'=10° and AT =20°C for thin laminates.

The maximum deflections and vibration suppression times of cross-ply laminates
with different elastic materials under uniformly distributed mechanical loadings have been
tabulated with and without thermal load in Table 5.17. Since the converged transient

solutions for each material are different, the maximum deflection W, are defined as

Whax = V_Vmax - W,

converged *

It is observed that GI-Ep shows the largest maximum deflection and

the minimum vibration suppression time for thick laminates regardless of thermal effect.

Table 5.17 Nondimensionalized maximum center displacements and vibration suppression
time of cross-ply laminates for different elastic materials

. . . Temperature . W, /
Plate Thickness  Elastic Material Rise W, t(sec)at " ma 10
0 1.0874 0.0265
Ep (A
Gr-Ep (AS) 150 0.9423 0.0240
a 0 2.9160 0.0230
2_19 :
h Gl-Ep 150 25015 0.0245
. 0 2.0213 0.0285
P 150 1.8231 0.0255
0 1.0366 0.2110
Gr-Ep (AS) 20 0.3231 0.2630
a 0 25370 0.2130
— =100 -
h Gl-Ep 20 0.9914 0.2480
Br-Ep 0 1.9293 0.2280

20 0.7680 0.2730
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Figure 5.34 Effect of the elastic materials on the transient behavior of the thick cross-ply

laminates with simply supported boundary condition; (a) Thick laminate under uniform
load, (b) GrEp case, (c) GIEp case, (d) BrEp case
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Figure 5.35 Effect of the elastic materials on the transient behavior of the thin cross-ply
laminates with simply supported boundary condition; (a) Thin laminate under uniform load,

(b) GrEp case, (c) GIEp case, (d) BrEp case
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The following six boundary conditions are considered to see the differences in
transient responses; SSSS, CCCC, CCSS, CCFF, SSFF, and CFSS. Where ‘S’ represents
simply supported, ‘C’ clamped, and ‘F’ free edge conditions. Figure 5.36 contains the
center displacements of cross-ply laminate for different boundary conditions under
thermomechanical loading. The maximum deflections and vibration suppression times for
each boundary condition have been tabulated in Table 5.18. It is observed that SSFF
boundary condition shows the maximum deflection and CCCC shows the minimum
deflection for thin and thick laminate under the thermal load in addition to the uniformly
distributed mechanical load. The order of the boundary conditions with respect to the
maximum center deflection value under thermomechanical loads is SSFF, CFSS, SSSS,
CCFF, CCSS, and CCCC boundary conditions for all thin and thick laminated composite

plates.

Table 5.18 Nondimensionalized maximum center displacements and vibration suppression
time of CFRP cross-ply laminates under thermomechanical loading

Plate Thickness gg;’gﬂféﬁ W, t(sec) at Wma/lo

Ccccc 0.4489 0.0300

CCFF 0.6493 0.0990

a_ 10 CCSS 0.4788 0.0315
h CFSS 1.2685 0.0565
SSFF 1.7966 0.0525

SSSS 1.1163 0.0240

Cccc 0.2774 0.2000

CCFF 0.3980 0.6920

a_ 100 CCSS 0.3473 0.2210
h CFSS 0.7736 0.5000
SSFF 1.2023 0.4970

SSSS 0.7318 0.2200
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Figure 5.36 Effect of the boundary conditions on the transient behavior of the cross-ply

laminates; (a) Thick laminate under thermomechanical load, (b) Thin laminate under
thermomechanical load
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5.4.3. Laminated Composite Shells under Thermomechanical Loads

First, thermomechanical effect with different R,/a value is studied. Nonlinear

transient analysis of laminated composite shells under thermomechanical loadings is

presented. The critical time 0.1 and 0.5milliseconds are chosen for the thick (a/h=10)
and the thin (a/h=100) shell laminates. The applied mechanical loadings are 10* for

thick laminates and 10° for thin laminates. The thermal loading is applied in the same
direction as the mechanical loading in laminated composite shell simulation. Figures 5.37
and 5.38 show the temperature effects on the deflection control of cross-ply cylindrical

shell with different R,/a value, 2, 200, respectively. The maximum deflection and the

deflection suppression time are tabulated in Table 5.19 for different thermal increase. The
deflection suppression characteristics of R,/a effects are shown in Figure 5.39 for
cylindrical and spherical thin shells. It is observed that the maximum deflection value
increase with increasing thermal loading AT and takes more deflection suppression time

with increasing R,/a value in both thin and thick shells.

Figure 5.40 shows the effect of the shell types on the deflection suppression
characteristics under thermomechanical load. Selected maximum defection and deflection
suppression time for each shell theory are tabulated in Table 5.20. Regardless of shell
types, the effect of thermal load in the deflection suppression characteristics leads the

increased maximum deflection and deflection suppression time.

The effect of boundary condition on the deflection suppression under
thermomechanical loadings is shown in Figure 5.41. SSSS, CCCC, CCSS, CCFF and

SSFF boundary conditions are considered with the selected AT and R,/a. It is observed

that the SSFF boundary condition gives the maximum deflection.
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Figure 5.37 Temperature effect on nonlinear transient behavior of cross-ply cylindrical
shell (R,/a=2) under thermomechanical load: (a) Thick shell (a/h=10), (b) Thin shell

(a/h=100)
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Figure 5.38 Temperature effect on nonlinear transient behavior of cross-ply cylindrical
shell (R, /a=200) under thermomechanical load: (a) Thick shell (a/h=10), (b) Thin shell

(a/h=100)



Table 5.19 Maximum transverse deflection and vibration suppression time for the
symmetric cross-ply cylindrical shells
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Thickness AT RZ/a: ? RZ/a: 200
W t(sec)at W, /10 W t(sec) at W, /10
2 0.090926 0.105500 1.130600 0.207000
4 0.110380 0.114500 1.246300 0.216500
6  0.130000 0.114500 1.389800 0.229000
Thin 8  0.151150 0.115000 1.543600 0.242500
Shell 10 0.171970 0.115000 1.751000 0.255500
% =100 12 0.192860 0.115500 1.975500 0.268000
14 0.213850 0.115500 2.242000 0.272500
16 0.234930 0.107000 2.475200 0.266500
18 0.256120 0.107000 2.804500 0.297500
20 0.277430 0.116500 3.125300 0.28100
10 2.388200 0.024000 1.294900 0.025500
20 3.698700 0.024500 1.316600 0.026000
30  5.024100 0.028000 1.338300 0.026000
Thick 40  6.364100 0.028000 1.360100 0.026000
Shell 50  7.719700 0.028000 1.382000 0.026000
% _10 60  9.089000 0.024500 1.403800 0.026000
70 10.474000 0.024500 1.425700 0.026000
80  11.873000 0.024500 1.447400 0.026000
90  13.288000 0.028000 1.469200 0.026000
100 14.717000 0.024500 1.490900 0.026000
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Figure 5.39 Effect of R,/a on nonlinear transient behavior of cross-ply shell under

thermomechanical load: (a) Cylindrical shell (a/h=100, AT =10°C), (b) Spherical shell
(a/h=100, AT =10°C)
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Table 5.20 Nondimensionalized maximum center displacements and vibration suppression
time of cross-ply laminates for different shell types

Thickness Shell Type R,/a AT W, t(sec) at Wma/lo
. 0 1.262900 0.025500
Cylindrical
100 4.381400 0.026000
a i 0 1.237100 0.025000
—=10 Spherical 10
h 100 7.373700 0.026000
0 1.251600 0.025500
Doubly curved
100 5.876900 0.026000
. 0 0.611730 0.176000
Cylindrical
10 1.709800 0.248500
a 0 0.312520 0.164000
—=100 Spherical 100
10 1.586700 0.235500
0 0.424780 0.172000
Doubly curved
10 1.643300 0.240500
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AT =10°C)



8.0

Center Displacement, w,
4> o
o o
T

N
o

——SSSS R2/a=100
——CCCC R2/a=100
------ CCSS R2/a=100

CCFF R2/a=100
- - - SSFF R2/a=100

0.00 0.02 0.04 0.06 0.08

(@)

o
o

Time, t (sec)

0.10

W,
.
o

T

@
o
T

|

n
o
T

Center Displacement,

=
o

0.0 ! '

——SSSS R2/a=20
CCCC R2/a=20
- --CCSS R2/a=20
----CCFF R2/a=20
SSFF R2/a=20

| e

0.00 0.10 0.

20 0.30 0.40

Time, t (sec)

(b)

0.50

198

Figure 5.41 Effect of boundary conditions on nonlinear transient behavior of cross-ply shell
under thermomechanical load: (a) Thick shell (a/h=10, AT =150°C, R,/a=100), (b)

Thin shell (a/h=100, AT=10°C, R, /a=20)
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6. CONCLUSIONS

6.1. Concluding Remarks

Theoretical formulations, analytical solutions for the linear case and finite element
analysis results for laminated composite plate and shell structures with smart material
laminae are presented in the study. A unified third-order shear deformation formulation
that includes the classical plate theory and the first-order shear deformation theory as
special cases is used to study vibration/deflection suppression characteristics. The von
Karman type geometric nonlinearity is accounted for in formulations of laminated
composite plates. Third-order shear deformation theory based on Donnell and Sanders

nonlinear shell kinematics is chosen for the laminated composite shell formulations.

The smart material used in this study to achieve damping of transverse deflection is
the Terfenol-D magnetostrictive material, although in principle any other actuating material
can be used. The simple control algorithm, a negative velocity feedback control, where the
feedback amplitude varies by the negative velocity is used to control the structural system.

The constant control gain is assumed in this study.

The exact solution of the linear equations of motion is based on the Navier solution
procedure for the simply supported boundary condition. Displacement finite element
formulation that considers the geometric nonlinearity and thermal loading through the
third-order shear deformation theory is presented. The conforming element which has eight

degrees of freedom, (uq, vy, wy, Wy, Wo . Wo 1 @,,9,) , PEr node is used to develop the
finite element model.

Newton-Raphson iteration method which has the symmetric tangent stiffens matrix
for all structural problems is used to solve the nonlinear problem. Newmark's time
integration method, the constant average acceleration scheme, is selected to determine the

transient response.
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A number of parametric studies are carried out to understand the damping
characteristics of laminated composites with embedded smart material layers. The effect of

the different thickness, loading condition, material properties, boundary conditions, R, /a

and so on are presented. The observations are summarized below.

From the analytical result, it can be seen that the vibration suppression time
decreases very rapidly as mode number increases. This is because the amplitude of

vibration that has to be suppressed decreases as the mode number increases.

It is observed that the damping coefficient —«, increases with the distance between

the smart layer and mid-plane of the structures. This is because as the effect of the moment
applied by the actuation of the smart material on the structure is more as the smart material
is moved away from the mid-plane section. Thus, the vibration suppression time decreases

as the smart material layers are moved from the mid-plane.

The effect of using different values of the feedback coefficient has also been
studied. It is observed that for a lower value of the feedback coefficient the time taken to
suppress the vibration is longer. This is because as the amount of actuation done by the
smart material layer onto the laminated composites becomes less as the feedback value is

less.

Use of quarter or full finite element models is validated first. It is found that for
antisymmetric cross-ply, angle-ply, and general angle-ply laminates and symmetric cross-
ply laminates with simply supported boundary conditions, a quadrant model of the plate
and shell structures with proper symmetry boundary conditions may be used to reduce the

computational effort.

It is observed that the CLPT theory gives higher frequencies of vibration than shear
deformation theories. This is expected, as the CLPT theory renders the plate stiffer
compared to the other two theories, FSDT and TSDT.

It is observed that Donnell shell theory gives higher frequency and damping
coefficients than Sanders shell theory. As total thickness of shell structures is increasing
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and R,/a value is decreasing, the numerical differences in eigenvalue and deflection

become larger. However, when one considers the vibration control behavior it is hard to

see the differences.

The effect of R,/a value in the laminated composite shell structure on the

deflection suppression characteristics is studied. It is found that it takes more deflection
suppression time with increasing R,/a value in both thin and thick shells. It is observed
that the spherical shell has the largest damping coefficient and frequency and the
cylindrical shell has the smallest damping coefficient and frequency from the eigenvalue
analysis. It is also observed that the spherical shell has the biggest deflection suppression
and smallest maximum deflection and the cylindrical shell has the smallest deflection
suppression and largest maximum deflection. It is because of the fact that spherical shell

has the smallest R, and doubly curved shell (in this study R, = 2R,), and cylindrical shell
has the largest R, (R, = x).
The behavior of laminated composites with embedded magnetostrictive layers for

different kinds of structural material has been studied. CFRP, Gr-Ep (AS), GI-Ep and Br-
Ep are the elastic materials used in this study. It is found that the suppression

characteristics are similar for elastic materials having similar % ratios. It is also
2

observed that GI-Ep shows the minimum vibration suppression time.

The nonlinear thermal effects are also investigated for various simulation conditions.
The amplitude and period of the center deflections decrease with increasing thermal loading

for all cases.

6.2. Recommendations for Future Work

The result of this study is a general nonlinear formulation and analytical and finite
element solutions for the laminated composite plate and shell structures with linear

constitutive relations of smart material.
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As a possible continuation of this work is development of nonlinear constitutive
relations for the magnetostrictive material followed by computer implementation of
nonlinear finite element analysis of laminated composite plate/shell structures including the
nonlinear constitutive relations of smart materials. Also, studies relating to the placement
of smart material patches, instead of full layers, thereby achieving discreet actuation could

be performed.
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APPENDIX A

EULER-LAGRANGE EQUATIONS OF TSDT SANDERS SHELL THEORY IN
TERMS OF DISPLACEMENTS
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APPENDIX B

FINITE ELEMENT COEFFICIENTS BY TSDT DONNELL (DMV) SHELL
THEORY

B.1 Linear coefficients of laminated composite shells by Donnell shell theory
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B.2 Additional nonlinear coefficients of laminated composite shells by Donnell shell theory
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B.3 Tangent stiffness coefficients of laminated composite shells by Donnell shell theory
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APPENDIX C

FINITE ELEMENT COEFFICIENTS BY TSDT SANDERS (SANDERS-KOITER)
SHELL THEORY

C.1 Linear coefficients of laminated composite shells by Sanders shell theory
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