
CLOCK TREE SYNTHESIS FOR PRESCRIBED SKEW SPECIFICATIONS

A Thesis

by

RISHI CHATURVEDI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2004

Major Subject: Computer Engineering

CLOCK TREE SYNTHESIS FOR PRESCRIBED SKEW SPECIFICATIONS

A Thesis

by

RISHI CHATURVEDI

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

J. Hu
(Chair of Committee)

W. Shi
(Member)

U. Cilingiroglu
(Member)

D. M. H. Walker
(Member)

C. Singh
(Head of Department)

May 2004

Major Subject: Computer Engineering

iii

ABSTRACT

Clock Tree Synthesis for Prescribed Skew Specifications. (May 2004)

Rishi Chaturvedi, B. Tech., Indian Institute of Technology, Kanpur

Chair of Advisory Committee: Dr. Jiang Hu

In ultra-deep submicron VLSI designs, clock network layout plays an increasingly

important role in determining circuit performance including timing, power consump-

tion, cost, power supply noise and tolerance to process variations. It is required that

a clock layout algorithm can achieve any prescribed skews with the minimum wire

length and acceptable slew rate. Traditional zero-skew clock routing methods are not

adequate to address this demand, since they tend to yield excessive wire length for

prescribed skew targets. The interactions among skew targets, sink location proxim-

ities and capacitive load balance are analyzed. Based on this analysis, a maximum

delay-target ordering merging scheme is suggested to minimize wire and buffer area,

which results in lesser cost, power consumption and vulnerability to process varia-

tions. During the clock routing, buffers are inserted simultaneously to facilitate a

proper slew rate level and reduce wire snaking. The proposed algorithm is simple

and fast for practical applications. Experimental results on benchmark circuits show

that the algorithm can reduce the total wire and buffer capacitance by 60% over an

extension of the existing zero-skew routing method.

iv

To my parents

v

ACKNOWLEDGMENTS

I am greatly indebted to my advisor, Dr. Jiang Hu, for giving me an opportunity

to work under him. I would like to thank him for all the invaluable guidance he

provided me throughout the course of this research. I really appreciate the freedom

he gave me while working on my research.

I am thankful to Dr.Weiping Shi for valuable discussions and to Dr. G. Ellis

for providing a test case with prescribed skew specifications. I would also like to

express my sincere appreciation to all my committee members for their interest in my

research. Last, but not the least I would like to thank my parents for their absolute

confidence in me. They have always been a constant source of inspiration to me.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II PRELIMINARY . 9

A. Models Used . 10

B. Delay Balancing . 11

III ALGORITHM . 14

A. Review of the Deferred-Merge Embedding (DME) Algorithm 14

1. Bottom-Up Phase: Construction of the Tree of

Merging Segments . 14

2. Top-Down Phase: Embedding of Nodes 19

B. The Merging Scheme . 22

C. Buffer Insertion . 25

1. Load Constraint . 25

2. Delay Balancing . 26

D. Complexity . 28

IV EXPERIMENTS AND RESULTS 29

A. Experimental Setup . 29

B. Unbuffered Prescribed-skew Clock-tree 29

C. Buffered Prescribed-skew Clock-tree 36

D. Zero-skew Clock-tree . 40

V CONCLUSION . 41

REFERENCES . 42

APPENDIX A . 46

VITA . 49

vii

LIST OF TABLES

TABLE Page

I Comparisons of clock routing with different merging schemes un-

der non-zero skew targets. The wirelength reduction is with re-

spect to the wirelength from NS of [13]. 31

II Comparison of our buffered clock tree routing and an extension

to the NS algorithm [13]. 37

III Wirelength from our MAT algorithm and CL algorithm in [13].

The number in each parentheses is the ratio with respect to wire-

length from CL+I6 algorithm in [13]. 40

viii

LIST OF FIGURES

FIGURE Page

1 With delay targets for four sinks t4 > t3 >> t2 > t1, a traditional

merging scheme may result in an abstract tree in (a) and embed-

ding in (b) with wire snakings. A different abstract tree in (c)

and its layout embedding in (d) may yield less wirelength. 3

2 An example of level by level buffer insertion (a) abstract tree; (b)

physical tree. 6

3 Clock tree for H-tree based internal nodes placement results in

higher wire delay due to long wires connecting to the top level buffer. 7

4 An example of balanced buffer insertion (a) abstract tree; (b)

physical tree. 8

5 Interconnect model. 10

6 Buffer model. 10

7 Equivalent RC circuit using the interconnect model and the buffer

model. 11

8 Examples of merging subtrees without wire snaking in (a) and

with wire snaking when delay-target tj at vj is significantly greater

than delay-target tk at vk in (b). 12

9 Construction of merging segment with: (a) no wiresnaking (b)

wiresnaking. 16

10 Construction of the tree of segments. 17

11 An example of the bottom-up construction of the merging segment tree. 18

12 Fixing the exact location of internal nodes in the zero skew clock tree. 19

13 Fix the location of v given the placement of the parent p. 20

ix

FIGURE Page

14 An example of the top-down embedding of internal nodes. 21

15 Algorithm of the merging selection scheme. 25

16 Algorithm for applying the load constraint. 26

17 Buffer insertion to reduce wire snaking. Delay target tj > tk. 27

18 Clock tree obtained by NS. 32

19 Clock tree obtained by minimum merging cost based algorithm - MIC. 33

20 Clock tree obtained by maximum delay target based ordering al-

gorithm - MAT. 34

21 Clock tree obtained by maximum delay target and minimummerg-

ing cost based ordering algorithm - MAT-MIC. 35

22 Buffered clock tree obtained by extended zero skew tree along

with load constraint. 38

23 Buffered clock tree obtained by maximum delay target and mini-

mum merging cost based ordering along with load constraint. 39

1

CHAPTER I

INTRODUCTION

The quality of a synchronous digital integrated circuit heavily depends on clock net-

work design, especially under current ultra-deep submicron technology. First, the

clock signal determines the pace of data transfer and operation frequency[1]. Second,

the clock network is one of the largest nets and one of the most frequently switching

nets at the same time, thus it has a paramount influence on power efficiency of the cir-

cuit. Third, due to its large size, the switching of clock signal may draw huge current

from power/ground network and incur power supply noise. Last but not least, clock

signal is vulnerable to process variations[2, 3] and the induced clock signal variation

may in term affect circuit design and timing. Therefore, it is vitally important to

have a clock layout algorithm addressing these concerns for a high quality integrated

circuit design.

A clock network design usually starts with specifying delay-targets from the

source to each sink which is either a flip-flop or a latch. Since clock skew, which

is the difference of delay between clock sinks, is more important than the delay it-

self, this specifying process is often called skew scheduling. The basic objective of

skew scheduling is to minimize the clock period subject to setup-time and hold-time

constraints [1, 4]. After skew scheduling, the delay-targets or skew specifications are

achieved through clock network routing.

It was observed long time ago that certain non-zero skew could be utilized to im-

prove clock frequency [1, 5]. Such skew is called prescribed skew to be distinguished

from any unwanted non-zero skew. In this scenario, a skew refers to the delay dif-

The journal model is IEEE Transactions on Automatic Control.

2

ference between a certain sink pair. In addition to timing improvement, prescribed

non-zero skews also help to reduce simultaneous signal switching and power supply

noise[6]. Moreover, tolerance to process variations can be improved by setting each

skew value close to the center of its permissible range[7]. Therefore, prescribed non-

zero skew is a very promising approach to improve circuit timing, power supply noise

and reliability. Then, is there any clock network layout algorithm that can accomplish

the prescribed skews with minimum size and desired slew rate? In general, a small

clock network size implies less cost, less power consumption and less vulnerability to

process variations.

A common structure for clock network is a routing tree where the clock source

drives the root node and the clock sinks are the leaf nodes. Without loss of gen-

erality, we can conceive the clock tree routing as a process that recursively merges

a set of subtrees in a bottom-up fashion. Initially, each clock sink is a subtree and

then the subtrees are merged in pairs. A pair of subtrees is merged to form a new

subtree whose root is the merging node. This procedure proceeds till there is only

one subtree left and this single subtree is connected to the source directly. There are

two major decision-makings in this clock tree routing process: (i) merging scheme

that tells which subtrees should be merged together; (ii) layout embedding that de-

cides locations for the merging nodes. The merging scheme can be extracted out

and performed in advance to construct an abstract tree. The internal nodes in the

abstract tree correspond to the merging nodes without specifying locations. Abstract

tree construction and layout embedding can be performed either separately or in an

integrated manner. Examples of abstract tree and embedding are shown in Figure 1.

The figure 1(a) and figure 1 (c) are the two possible abstract trees, and figure 1 (b)

and figure 1 (d) are their physical trees respectively.

Most of previous works on clock network design attempt to minimize clock skew

3

v5

v7

v9
v9

v6 v4

(a)

v7

v5 v6

v4v3v1 v2

v6

v0

v1

v8

v1

v1

v6

(b)

v3

v8

v0

v4

(d)

v2

v2

v3
v0

(c)

v4v3

v0

v2

Fig. 1. With delay targets for four sinks t4 > t3 >> t2 > t1, a traditional merging

scheme may result in an abstract tree in (a) and embedding in (b) with wire

snakings. A different abstract tree in (c) and its layout embedding in (d) may

yield less wirelength.

or obtain zero skew, because the skew is a lower bound for clock period time [5]. In

this scenario, a more precise definition of skew is the maximum delay difference among

all clock sinks. Early influential zero skew routing works include H-tree [5], top-down

recursive partitioning [8] and bottom-up recursive matching method [9]. However,

these methods emphasize on load balancing without evaluating actual delay. In [10],

Tsay introduced an Elmore delay based layout embedding technique that can achieve

exact zero skew for any given abstract tree. In order to further reduce wirelength,

4

the DME (Deferred Merge Embedding) algorithm was developed in [11] according

to the observation that there are multiple locations for a merging node to satisfy

skew specifications. Instead of committing a merging node to particular location

immediately, DME identifies and maintains merging segment for each merging node

in a bottom-up tree traversal. After merging segments for all merging nodes are

found, a top-down tree traversal is conducted to choose one location on each merging

segment such that the total wirelength is minimized. Both Tsay’s embedding and

DME embedding technique can be applied to achieve any non-zero skew as well.

For any given abstract tree and Elmore delay model, DME is a very mature layout

embedding technique to obtain any skew specifications with minimal wirelength and

becomes a basis for many subsequent clock routing works [12, 13, 14, 15].

For merging schemes, a widely accepted conclusion is that a subtree should be

merged with its nearest neighboring subtree to save wirelength. For early VLSI

technologies, interconnect delay is dominated by capacitive load, thus many previous

merging schemes [8, 9, 11] sought for a balanced abstract tree to facilitate zero skew.

However, Edahiro noted in [13] that sometimes an unbalanced abstract tree might

yield less wirelength even for zero skew clock routing. This is due to the fact that

distributed wire RC delay started to dominate and merely balancing capacitive load

is not adequate. In [13], the merging selection is integrated with DME embedding.

At each step, Edahiro chose a subset (generally less than a half) of subtrees to be

merged in pairs in contrast to choosing all subtrees in other works. The work of [13]

reported so far the best wirelength for zero skew routing.

In contrast to numerous works on zero skew clock routing, there are very few

works reported on prescribed non-zero skew routing despite its great importance.

Perhaps this is due to the misconception that existing zero skew routing techniques

can be applied to non-zero skew directly. Indeed, the layout embedding techniques

5

originally designed for zero skew [10, 11] can be adopted directly to achieve non-

zero skews. However, zero skew driven merging schemes do not necessarily work

well for non-zero skew clock routing. In fact, we discover that huge wirelength is

generated through traditional merging scheme in which only subtree spatial proximity

is considered while delay-target differences are ignored. This is especially true when

the differences among delay-targets are large so that a lot of wire snakings [10] are

incurred. The example in Figure 1 illustrates that different merging schemes (abstract

trees) may provide different wirelength for non-zero skew clock routing.

A few works [14, 15] integrate skew scheduling with clock routing to exploit

the useful skews. Starting with a zero skew routing tree, the work of [15] performs

merging segment perturbation and gate sizing to minimize power consumption subject

to setup-time and hold-time constraints for a fixed clock period time.

In [14], an incremental scheduling algorithm is proposed and combined with the

DME embedding for a given abstract tree. However, skew scheduling is often carried

out individually ahead of clock routing in practical design flows.

Since a clock network is normally very large, buffers are often employed to ensure

an acceptable slew rate. Many previous works[16, 17, 18, 19, 20, 21, 22] place buffers

of the same size at nodes of the same level in the clock tree as shown in Figure 2. This

is done for two reasons: (1) zero skew routing generally results in a balanced tree; (2)

this level by level buffering scheme can reduce the effect of inter-die process variations.

A conventional H-tree based buffered clock-tree helps in skew minimization via its

symmetry as shown in Figure 3 but the wires connecting to the top-level buffer are

much more longer than the wires connecting to the flip-flops. This leads to higher

wire delays according to the Elmore delay model. Figure 2 and Figure 4 which

show balanced buffer insertion technique and level by level buffer insertion technique

may not be applicable to non-zero skew routing as it may generate unbalanced trees.

6

(b)(a)

S6 S1S2S3S4

SOURCE

S5
S2

S6S5

S3S4

SOURCE

S1

Fig. 2. An example of level by level buffer insertion (a) abstract tree; (b) physical tree.

Further, the increasingly significant intra-die process variations[23] request for a more

general variation tolerant technique such as non-zero skew scheduling[7]. A buffered

clock tree algorithm for prescribed skews is proposed in [24]. However, this method

restricts that the prescribed skew can take only a few discrete values.

The goal of this work is to develop a clock routing algorithm that facilitates a

high performance, low power, low noise and variation tolerant clock network. In this

work, we analyze the interactions among skew targets, sink location proximities and

capacitive load balance in clock routing. According to this analysis, a maximum delay-

target based merging scheme is proposed. This merging scheme is integrated with

buffer insertion and DME embedding to achieve any continuous prescribed skews. The

total capacitance of wire and buffers is minimized to restrict cost, power consumption

and vulnerability to process variations. Buffer insertion plays two roles here: (1)

7

Flip-Flop

Top level buffer

Fig. 3. Clock tree for H-tree based internal nodes placement results in higher wire

delay due to long wires connecting to the top level buffer.

enforce a maximum load constraint to ensure signal slew rate; (2) reduce wire snaking

by balancing delay targets.

The proposed buffered clock routing method is simple and fast for practical

applications. We compared our routing method with extension to traditional zero

skew clock routing method [13] on benchmark circuits. The experimental results

show that our method can meet non-zero skew specifications and load capacitance

constraint with 60% less wire and buffer capacitance.

8

(b)(a)

S1S3S4

SOURCE

S6 S5 S2

S1

S2

S6

SOURCE

S5

S3S4

Fig. 4. An example of balanced buffer insertion (a) abstract tree; (b) physical tree.

9

CHAPTER II

PRELIMINARY

Same as other clock routing works, we adopt the Elmore delay model for delay com-

putation [25]. The wire cost and buffer cost are expressed through their capacitance.

The total wire and buffer capacitance is also an indication of the dynamic power

consumption. The problem we will solve is formally stated as follows.

Prescribed Skew Buffered Clock Routing Problem: Given a set of clock sinks

V = {v1, v2, ...vn}, load capacitance Ci for each sink vi ∈ V , skew specifications qi,j

for every pair of sinks vi, vj ∈ V , a buffer type b, find a buffered Steiner tree with

clock sinks as leaf nodes such that the total buffer and wire capacitance is minimized,

the skew specification qi,j = di − dj is satisfied for root-to-sink delay di and dj of any

sink pair vi, vj ∈ V and the maximum load constraint Cmax is met for every buffer

and the driver.

Please note that the minimum required number of skew specifications for n nodes

is n−1. The other specifications can be derived from the n−1 specifications. If more

than n − 1 skew specifications are there, it must be ensured that they are coherent

with each other. The skew specifications can also be expressed through root-to-sink

delay-target ti for each sink vi ∈ V , as long as qi,j = ti − tj∀vi, vj ∈ V is satisfied. In

reality, it does not matter whether or not the delay di of sink vi in a clock tree is equal

to its delay-target ti. The skew specifications can be satisfied whenever we can find

a single constant C such that ti = di + C is true for every sink vi ∈ V . The concept

of delay-target is employed for the convenience of computation and description. The

zero skew requirement can be obtained by letting t1 = t2 = ... = tn.

10

(a)

X

YX

Y

cl/2 cl/2

(b)

rl

Fig. 5. Interconnect model.

A. Models Used

To calculate the delays, we replace a wire of length l by the RC equivalent circuit

shown in Figure 5 using a Pi equivalent. Here r and l are the resistance and ca-

pacitance per unit length. A buffer is replaced by the equivalent circuit shown in

Figure 6 where input capacitance Cb, intrinsic delay tb and output resistance Rb are

the buffer parameters. Figure 7 shows how a RC tree is created using the buffer and

interconnect model.

Input Output

Cb

(b)

Rbtb
Input Output

(a)

Fig. 6. Buffer model.

11

rl2 rl3

l1

l2 j

rl1

cl3/2 cl3/2 Cj

cl1/2cl1/2 Ck

Cbcl2/2cl2/2

(b)

l3

(a)

i

k

i

Rbtb

k

j

Fig. 7. Equivalent RC circuit using the interconnect model and the buffer model.

B. Delay Balancing

Now we generalize the concept of delay-target to include subtrees. Let Ti denote a

subtree rooted at node vi. This subtree can be characterized by delay-target ti and

downstream capacitance Ci at its root vi. If vi is a sink node, its delay-target ti is

given. If vi is a merging node, its delay-target ti can be computed recursively as

follows. If we merge subtree Tj and Tk at merging node vi as shown in Figure 8(a),

let the wirelength from vi to vj and vk be li,j and li,k, respectively. Then the delay

12

kvivjv

(a) (b)

vj vi vk

Fig. 8. Examples of merging subtrees without wire snaking in (a) and with wire

snaking when delay-target tj at vj is significantly greater than delay-target

tk at vk in (b).

from vi to vj and vk are:

di,j =
1

2
rcl2i,j + rli,jCj (2.1)

di,k =
1

2
rcl2i,k + rli,kCk

where r and c are wire resistance and capacitance per unit length, respectively. In

order to meet skew specifications, these delays have to satisfy the following equality:

di,j − di,k = tj − tk (2.2)

Then the delay-target ti can be obtained by rearranging the above equality as

ti = tj − di,j = tk − di,k (2.3)

Since the delay-targets are propagated bottom-up based on the above equation, the

skew specifications can be enforced by only considering Equation (2.2) without check-

ing delays at sink/leaf nodes. The downstream capacitance Ci can be obtained di-

rectly as Ci = Cj + Ck + cli,j + cli,k.

The minimum feasible wirelength for the merging is the Manhattan distance lj,k

between vj and vk. The wirelength from vi to vj and vk need to satisfy lj,k = li,j+ li,k.

When there is great difference between delay-targets, for example, when tj is much

greater than tk, we have to let li,k = 0 and let li,j > lj,k to ensure that the constraint

13

of Equation (2.2) is met. The actual wirelength of li,j can be obtained by solving the

following equation.

1

2
rcl2i,j + rli,jCj = tj − tk (2.4)

The method of using wirelength greater than lj,k is called wire snaking [10] which is

demonstrated in Figure 8(b).

A given buffer type b is characterized by it input capacitance Cb, intrinsic delay

tb and output resistance Rb. When a buffer is inserted at a node vi, then the delay

target at vi is reduced by tb + RbCi and the downstream capacitance at vi becomes

Cb. Even though a single buffer type is considered in this work, our method can be

extended to handle multiple buffer types.

14

CHAPTER III

ALGORITHM

A. Review of the Deferred-Merge Embedding (DME) Algorithm

The Deffered-Merge Embedding[12] is the best known layout embedding technique

and embeds internal nodes of the given topology G using a two-step process. The

bottom-up process builds a tree of line segments, where a line segment represents the

loci of possible placements of the internal nodes satisfying the skew criterion. This

is followed by a top-down process, which resolves the exact locations of all internal

nodes in the clock-tree.

1. Bottom-Up Phase: Construction of the Tree of Merging Segments

The abstract tree topology G for the set of sinks is given according to which we

need to build the tree of merging segments. Each node v is associated with a merging

segment, which depends upon the children of the node v. That is why the construction

of the tree of merging segments is a bottom-up process. A length is also assigned to

each edge in G and this length is retained in the final embedding of the clock-tree.

Let a and b be the children of the node v of G. TSa and TSb are the sub-trees of

merging segments rooted at a and b, respectively. We have to find a placement for v

which satisfies the skew criterion for the sub-trees TSa and TSb and adds minimum

wirelength. Let ra and rb be the edge lengths assigned to the segment connecting the

node v to the sub-trees TSa and TSb respectively. The merging cost is defined as the

sum of the edge lengths - ra + rb. As the delay is a monotone increasing function of

the wirelength, the optimal wirelength assignment is unique.

A Manhattan arc is defined as a +45 or -45 degrees line segment from the wiring

15

directions. The loci of the points which are at a fixed distance from the Manhattan

arc is called a tilted rectangular region, or TRR. The Manhattan arc at the center of

the TRR is called the core and the shortest distance between the core and TRR is the

radius. While constructing the merging segment for the node v, we find the TRRs of

the children a and b. Here we should be aware that the two children of the node v can

be both sinks or one sink, one merging segment or both merging segments. In each of

these cases, it is proved that the resulting merging segment will also be a Manhattan

arc[12].

Let us consider two important scenarios of the construction of the merging seg-

ment. The first scenario has the skew criterion specified such that wiresnaking is not

required to balance the delay. Hence the merging cost at the node v in this case is the

minimum distance between ms(a) and ms(b) which is equal to ra + rb. Since more

than one location can satisfy the skew criterion, the merging segment of the node v is

found by first drawing the TRRa and TRRb using ms(a) and ms(b) as the core and

ra and rb as the radius and then, calculating ms(v) as the intersection of TRRa and

TRRb. Figure 9(a) illustrates the algorithm for the case where the merging cost is

equal to the minimum distance between the merging segments of the nodes a and b,

and wiresnaking is not required.

The second scenario has skew criterion specified such that wiresnaking is required

to balance the delay. This makes one of the edge lengths as 0 and the other equal

to the merging cost. The merging cost is higher than the minimum distance between

ms(a) and ms(b). Again we can have multiple locations satisfying the skew criterion

and the merging segment is found as shown in Figure 9(b). Note that in this case

only one TRR is drawn to find the merging segment.

16

A

B

ms(b)

ms(c)

(a)

ra

rb

ms(b)

ms(a)

ms(c)

ra

(b)

ms(a)

Fig. 9. Construction of merging segment with: (a) no wiresnaking (b) wiresnaking.

17

The merging segments are found for each of the node of G and edge lengths are

stored. The details of the construction of the tree of merging segments is shown in

Figure 10. One example of the bottom-up process of construction of the merging

segments is shown in Figure 11.

Procedure: BuildTreeOfSegments(G,V)

Input: Topology G; set of sink locations V

Output: Tree of merging segments T’ containing ms(v) for each

node v in G and edge length rv for each v 6= clocksource

1. for each v in G (bottom-up order)

2. if v is a sink node and pl(v) is its location or placement

3. ms(v)← pl(v)

4. else

5. Let a and b be the children of v

6. Calculate edge lengths ra and rb. Create TRRs TRRa and TRRb

using the edge lengths

7. ms(v)← TRRa ∩ TRRb

8. endif

Fig. 10. Construction of the tree of segments.

18

(a) (b)

S1

S2

S3

S5

S6

S1

S2

S3

S4

S5

S6

(c) (d)

S1

S2

S3

S4

S5

S6

S1

S2

S3

S4

S5

S6

S1

S2

S3

S4

S5

S6

S1

S2

S3

S4

S5

S6

(f)(e)

S4

Fig. 11. An example of the bottom-up construction of the merging segment tree.

19

2. Top-Down Phase: Embedding of Nodes

Once the tree of merging segments is created and the edge lengths are fixed, the

embedding of the internal nodes in the clock-tree is done in a top-down process. If

the node v is the root node, then select pl(v) to be the point on ms(v), which is

closest to the clock-source.Otherwise, choose pl(v) to be the point which is closest to

the parent of the node v. The distance between pl(v) and the parent of the node v

will always be less than the edge length stored during the bottom-up construction of

the merging segments. TRR of the parent, TRRp is drawn using the edge length as

the radius and pl(v) is found as any point from ms(v) ∩ TRRp . The details of the

procedure FindExactP lacement is shown in Figure 12 and the possible placements of

the node v given the placement of the parent p is shown in Figure 13.The continuation

of the example used in the bottom-up process of construction of the merging segments

is shown in Figure 14, which gives the physical clock-tree.

Procedure: FindExactP lacement(T S)

Input: Tree of segments T S containing ms(v) and rv for each node v.

Output: Zero skew tree

1. for each v in G (top-down order)

2. if v is the root

3. Choose pl(v) on ms(v),which is nearest to clock source

4. else

5. Let p be the parent node of v

6. Construct TRRp using the edge length rp

7. Choose any pl(v) on ms(v) ∩ TRRp

8. endif

Fig. 12. Fixing the exact location of internal nodes in the zero skew clock tree.

20

rp

TRRp

ms(v)

pl(p)

Possible placements of v

Fig. 13. Fix the location of v given the placement of the parent p.

21

(a) (b)

(c) (d)

(e) (f)

S1

S2

S3

S4

S5

S6

SOURCE

S1

S2

S3

S4

S5

S6

SOURCE

S1

S2

S3

S4

S5

S6

SOURCE

S1

S2

S3

S4

S5

S6

SOURCE

S1

S2

S3

S4

S5

SOURCE

S6

S1

S2

S3

S4

S5

SOURCE

S6

Fig. 14. An example of the top-down embedding of internal nodes.

22

B. The Merging Scheme

The top-level framework of our algorithm[26] is similar to Edahiro’s NS algorithm[13],

however, we propose a merging scheme and a buffering method that are designed

particularly for prescribed non-zero skew clock routing. The proposed merging scheme

and buffering method will be described in detail as follows.

Most of previous merging schemes [9, 13] choose the subtree pair with the mini-

mum distance between their roots and merge them first. Their attentions are only at

subtree spatial proximities, since delay-targets are identical for all sinks in zero skew

routing. It is shown in the previous section that great difference between delay-targets

may cause wire snakings, thus traditional merging schemes tend to result in excessive

wirelength because of their neglection of the delay-target differences. We demonstrate

this problem through the example in Figure 1. Assume that the given delay-targets

are quite different from each other and they follow the inequality t1 < t2 << t3 < t4,

especially t3 and t4 are much greater than t1 and t2. We merge T1 with T2 first, since

their distance is the smallest among all sink pairs. Because t2 is significantly greater

than t1, it is quite likely that a wire snaking occurs when we merge T1 with T2 at

node v5 as shown in Figure 1(b). Similarly, T3 is merged with T4 at node v6. Since

t3 and t4 are much greater than t1 and t2, it is quite possible that t6 is much greater

than t5 and another wire snaking results from merging subtree T5 with T6 at node v7.

Since wire snaking is more likely to happen when the difference of delay-targets

between two subtrees is large, it can be reduced if we choose a merging order that can

reduce the delay-target differences among all subtrees. According to Equation (2.3),

the delay-target of the newly created subtree is always smaller than the delay-targets

of the two subtrees it is merged from. Thus, if we choose to merge the subtree with

the maximum delay-target first, the overall delay-target differences among subtrees

23

will be reduced. We can analogize the set of subtrees as a group of runners. We let the

runner lagging behind run first so that he/she is closer to runners ahead of him/her.

According to Equation (2.1), if Cj is much greater than Ck, it is easier to achieve

great di,j − di,k without wire snaking. When the maximum delay-target subtree is

merged first, the newly created subtree from this merging has not only a smaller

delay-target but also a greater load capacitance that makes the matching to other

small delay-target subtrees easier. Therefore, the maximum delay-target ordered

merging can reduce the chance of wire snaking by decreasing delay-target imbalance

and increasing load imbalance that is coherent with the delay-target imbalance.

We further illustrate the advantage of this maximum delay-target ordered merg-

ing through the example in Figure 1. In Figure 1(d), we first merge T3 with T4 to

obtain subtree T6 rooted at v6, as v4 has the maximum delay-target. Since t4 and t3

are much greater than t2 and t1, it is very likely that t6 is still greater than t1 and

t2. Next, we merge T6 with T2 at node v8 and denote this merging as T6 + T2 ; v8.

We can compare this merging with T6 + T5 ; v7 in Figure 1(b), since both mergings

start from v6. On one hand, there is less imbalance on delay-targets for merging

T6 + T2 ; v8 since t6 − t2 < t6 − t5. On the other hand, as C2 < C5, the merging

T6 + T2 ; v8 has greater imbalance on load capacitance which makes it easier to

achieve imbalanced delay-targets without wire snaking. If we compare the merging

T1 + T8 ; v9 in Figure 1(d) and the merging T1 + T2 ; v5 in Figure 1(b), same con-

clusion can be obtained. Therefore, the maximum delay-target first merging indeed

reduces the chance of wire snaking.

Besides the maximum delay-target criterion, there is another major difference

between our merging scheme and previous works. Previous works such as [13] evaluate

every pair of subtrees and choose a pair according to the minimum distance criterion.

Our maximum delay-target criterion only selects a single subtree instead of a pair

24

at once, and we will apply another criterion to choose another subtree (we call it

companion subtree) to be merged with the maximum delay-target subtree. If we

pick the subtree which is closest to the maximum delay-target tree as a companion,

then the neglection on the delay-target difference between them may again result

in wire snakings. If we pick the subtree with the closest delay-target, these two

subtrees may be far apart from each other and the merging may cause large wirelength

too. Therefore, a subtree needs to be merged to another subtree that is not only

nearby but also with similar delay-target. In other words, we need to play in a three-

dimensional space of (x, y, delay target). We introduce a merging cost to include the

concern on distance and delay-targets in a unified form. This merging cost is simply

the wirelength needed for the merging to satisfy the delay-target constraint (2.2).

Therefore, the merging cost is same as the Manhattan distance between the roots

of two subtrees if there is no wire snaking. Otherwise, the merging cost is obtained

through solving Equation(2.4) to include the extra wirelength due to wire snaking.

Therefore we choose the companion subtree, which will lead to the minimum merging

cost.

The algorithm description for this merging scheme is given in Figure 15. In

fact, the proposed merging scheme is effective on reducing wirelength for zero skew

routing as well. Even though every sink initially has the same delay-target in zero

skew routing, delay-targets of the subtrees after merging are quite likely to be different

from each other. If we treat the post-merging subtrees as pseudo sinks, the remaining

clock routing task is equivalent to a non-zero skew clock routing. The effect of our

merging scheme depends on how large the delay-target differences are. The larger the

delay-target difference, the more effective our merging scheme is.

25

Procedure: FindSubtreesToBeMerged(T)

Input: A set of subtrees T

Output: Two subtrees to be merged

1. Ti ← subtree with the maximum delay-target in T

2. minCost←∞

3. For each subtree Tj ∈ T \Ti

4. cost← merging cost between Ti and Tj

5. If cost < minCost

6. minCost← cost, Tk ← Tj

7. Return Ti and Tk

Fig. 15. Algorithm of the merging selection scheme.

C. Buffer Insertion

Buffers are inserted during the process of merging subtrees to accomplish two objec-

tives: (1) enforcing a load capacitance constraint; and (2) reducing wire snakings.

1. Load Constraint

The load capacitance constraint Cmax specifies the maximum load capacitance which

a buffer/driver can drive. Since the output slew rate of a buffer/driver is mainly

determined by its load capacitance[27], restraining the load capacitance can virtually

keep a signal slew rate at proper level. The load capacitance constraint can be

satisfied through either dynamic programming style algorithms[22, 28] or a greedy

approach[24]. In a dynamic programming algorithm, since a set of candidate solutions

are maintained, any candidate solution with violation on the constraint can be simply

pruned out. Aimed to a fast and practical solution, this work adopts the greedy

approach as in [24].

26

If we check the load constraint criterion at the root of sub-trees and insert buffers

at the root only, then we may have a load constraint violation at some intermediate

point on the edges even after buffer insertion. To avoid this, we do not merge those

sub-trees whose merging point violates the load constraint but we do insert buffers

at the root of such sub-trees[29]. This lowers the node capacitance and prevents

the load constraint violation in the future merging of the sub-tree. The merging

selection is done again to get the new pair of sub-trees. The details of the procedure

ApplyLoadConstraint is shown in Figure 16.

Procedure: ApplyLoadConstraint(TS1, TS2)

Input: Two subtrees to be merged

Output: Two subtrees which do not violate load constraint

1. Let TS be the resultant sub-tree which would be obtained by merging TS1, TS2

2. If downstream capacitance CTS at TS > Cmax

3. Insert buffers at root of sub-trees TS1, TS2 appropriately.

4. FindSubtreesToBeMerged(T). Let the returned sub-trees be TS1, TS2.

5. ApplyLoadConstraint(TS1, TS2)

6. else Return TS1, TS2

Fig. 16. Algorithm for applying the load constraint.

2. Delay Balancing

Sometimes a buffer may be inserted to reduce wire snaking[29]. A buffer is inserted

only if the extra wire capacitance due to the wire snaking is greater than the input

capacitance Cb of the buffer. A remarkable wire snaking often happens when there

is great imbalance between the delay-targets of the two subtrees to be merged. The

delay-target tj for subtree Tj can be reduced by RbCj + tb through adding buffer at

27

kvjvj
vi vk

vi

x

(a) (b)

v

Fig. 17. Buffer insertion to reduce wire snaking. Delay target tj > tk.

root vj. Please note this conclusion is contrary to the case in signal routing where

buffers are usually employed to reduce delay[30]. For the example in Figure 17, since

tj > tk, a buffer is inserted to drive the branch with Tj as in Figure 17(b).

Next, the buffer location needs to be decided in addition to the merging node

vi location. The work of [24] would simply fix the buffer location at the root vj. In

contrast, we do not restrict the buffer location at vj so that a larger solution space can

be explored. In order to avoid solving two separate location variables simultaneously,

we let the buffer and the merging node vi be at a same location. This simplification

does not sacrifice any solution space for a reason that is illustrated by the example

in Figure 17(b). In Figure 17(b), the maximum delay dmax between vi and vj occurs

when both the buffer and the merging node vi are at the location of vk, i.e., x = lj,k.

Similarly, the minimum delay dmin between vi and vj occurs when the buffer and vi

are at the location of vj, i.e., x = 0. By moving the buffer and vi together between vj

and vk (varying x in [0, lj,k]), any value in [dmin, dmax] can be obtained for the delay

between vi and vj. The value of x is decided according to skew specifications.

The buffer insertion for wire snaking reduction may introduce inaccuracy to the

merging cost in searching the companion subtree, since the merging cost does not

count the buffer insertion effect. However, this inaccuracy is limited because the

28

neglected snaking cost reduction is offset by the extra buffer cost. On the other hand,

neglecting the buffer effect makes the merging scheme faster.

D. Complexity

When integrated with the DME embedding as in [13], the merging will be performed

n− 1 times for n clock sinks. The complexity of merging selection is O(n) due to the

loop of line 3-6 in Figure 15. For each merging, the computation of buffer location

and merging node location takes constant time. Thus, the overall complexity of our

buffered clock routing algorithm is O(n2).

29

CHAPTER IV

EXPERIMENTS AND RESULTS

A. Experimental Setup

We implemented the proposed buffered clock tree algorithm in C and experiments are

performed on a PC with 1.7GHz Pentium 4 microprocessor and 512Mb memory. The

benchmark circuits are prim1, prim2 and r1-r5 downloaded from the GSRC Bookshelf

(http : //vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/). The delay-targets are

generated through running the BST [12] code with a global skew bound of 100ps and

taking the non-zero skew results. The BST code is also downloaded from the GSRC

Bookshelf.

ip sample is a small testcase with prescribed-skew specifications taken from a

real chip of IBM. The details of ip sample testcase is shown in Appendix A.

B. Unbuffered Prescribed-skew Clock-tree

For non-zero skew targets, we also implemented and extended the NS algorithm [13],

one of the best zero skew routing algorithms, for comparison. Since our merging

scheme includes two major components: (i) the maximum delay-target subtree first

and (ii) choosing companion subtree according to the minimum merging cost, we

tried them separately to observe each individual effect[26]. Therefore, we compared

the following four clock routing algorithms with different merging schemes:

• NS: The Nearest-neighbor Selection algorithm in[13] using the minimum dis-

tance merging. The DME implementation is extended such that non-zero skew

can be achieved. Figure 18 shows the resultant clock-tree generated, along with

the node numbers, by this algorithm for the testcase ip sample.

30

• MIC: The MInimum merging-Cost merging which is very similar to NS except

that the merging selection is based on the merging cost between two subtrees

instead of the distance between them. Figure 19 shows the resultant clock-

tree generated, along with the node numbers, by this algorithm for the testcase

ip sample.

• MAT: Choose the MAximum delay-Target subtree first and find its compan-

ion subtree that is its nearest neighbor(with minimum distance). Figure 20

shows the resultant clock-tree generated, along with the node numbers, by this

algorithm for the testcase ip sample.

• MAT-MIC: This is the complete version of our proposed merging scheme, which

is a combination of previous two techniques. First choose the maximum delay-

target subtree and then find its companion subtree which results in the minimum

merging cost between them. Figure 21 shows the resultant clock-tree generated,

along with the node numbers, by this algorithm for the testcase ip sample.

The experimental results for non-zero skew targets are shown in Table I. Since

these clock routing algorithms all deliver the same prescribed non-zero skews, we only

report the total wirelength here. The percentage reduction on wirelength with respect

to NS are listed in column 5. We can see that either the maximum delay-target or

the minimum merging-cost technique itself can make significant improvement on wire-

length over the naive extension from previous zero skew routing NS. The improvement

from the merging-cost based criterion alone is from 24% to 51%. The effect from the

maximum delay-target ordering is more remarkable and shows 39%-53% wirelength

reduction. The combination of these two techniques, which is our proposed merging

scheme, yields wirelength improvement of 53%-61%. The CPU time for each routing

algorithm are shown in the rightmost column of Table I.

31

Table I. Comparisons of clock routing with different merging schemes under non-zero

skew targets. The wirelength reduction is with respect to the wirelength from

NS of [13].

Testcase #sinks Merging Wirelength Wire reduction CPU(sec)

prim1 269 NS 271746 - 2

MIC 152636 44.0% 5

MAT 161248 40.6% 1

MAT-MIC 109056 59.9% 1

prim2 603 NS 645248 - 22

MIC 490895 23.9% 41

MAT 314455 51.3% 1

MAT-MIC 259751 59.7% 1

r1 267 NS 2477975 - 1

MIC 1515972 38.8% 4

MAT 1491833 39.8% 1

MAT-MIC 1160145 53.18% 1

r2 598 NS 4935718 - 20

MIC 2936488 40.5% 44

MAT 2656833 46.1% 1

MAT-MIC 2243723 54.5% 1

r3 862 NS 6847146 - 56

MIC 3927066 42.7% 118

MAT 3242982 52.6% 1

MAT-MIC 2851177 58.4% 1

r4 1903 NS 15123351 - 462

MIC 7358685 51.3% 1250

MAT 7283887 51.9% 3

MAT-MIC 5819055 61.5% 4

r5 3101 NS 23013115 - 2572

MIC 11076659 51.9% 6234

MAT 10695010 53.5% 8

MAT-MIC 8810532 61.7% 11

32

0

1

3

4

9

10

11

12

13

28

2,22,23

8,18,24,27

7,16,19

5,15,21

14,20

6,17

ROOT

25,26

No Wiresnaking

Wiresnaking

Fig. 18. Clock tree obtained by NS.

33

1

4

9

10

11

12

13

16

5,18

7,15

14,20,25

19,228,23,24,26

2,17

0

3

6,21

27,28

ROOT

No Wiresnaking

Wiresnaking

Fig. 19. Clock tree obtained by minimum merging cost based algorithm - MIC.

34

3

9

10

11

12

20

23

4

13

14

1

26,27

5,24,25

7,16,21

0
6,15

8,19

22

2,17,18

28

ROOT

No Wiresnaking

Wiresnaking

Fig. 20. Clock tree obtained by maximum delay target based ordering algorithm -

MAT.

35

1

5

7
10

11

12

17

23

26

4
25

24

14

27

9,21

28

ROOT

0

13

3

2,18

19

8,22

20
6,16

15

No Wiresnaking

Wiresnaking

Fig. 21. Clock tree obtained by maximum delay target and minimum merging cost

based ordering algorithm - MAT-MIC.

36

C. Buffered Prescribed-skew Clock-tree

For comparison, the NS(Nearest-neighbor Selection) algorithm proposed in[13] is ex-

tended for non-zero skew targets and combined with the same buffering scheme as

ours[29].

The experimental results are shown in Table II. Since both algorithms deliver the

same prescribed non-zero skews, we only report the resource consumptions including

total wirelength, the number of buffers inserted and the total wire and buffer capac-

itance. The overall improvements are listed in the last row. For all three resource

consumption metrics, our algorithm results in huge improvement. The CPU time are

shown in the rightmost column of Table II. Note that our buffered clock routing is

not only effective but also fast for practical applications. Figure 22 and Figure 23

show the resultant buffered clock-tree generated by the Nearest-neighbor Selection

algorithm and MAT-MIC algorithm, respectively, for the testcase ip sample.

37

Table II. Comparison of our buffered clock tree routing and an extension to the NS

algorithm [13].

Testcase #sinks Algorithm Wirelength #bufs Wire cap + Buf cap(pF) CPU(sec)

prim1 269 NS+ 718533 59 20.8 1

Ours 181982 34 5.7 1

prim2 603 NS+ 2030400 139 58.1 11

Ours 480017 73 14.7 1

r1 267 NS+ 2917614 49 59.5 1

Ours 1293616 13 26.2 1

r2 598 NS+ 5881313 93 119.8 13

Ours 2541324 25 51.4 1

r3 862 NS+ 7287088 112 148.4 42

Ours 3265058 28 66.0 1

r4 1903 NS+ 16276930 474 331.1 474

Ours 6659865 62 134.6 3

r5 3101 NS+ 24933092 1968 507.7 1968

Ours 9860004 99 199.5 10

Overall improvement 59.6% 69.0% 60.0% 99.3%

38

9

10

11

12

13

4

5,15,21,25

14,20

7,16,19,26

6,17

8,18,24,27

1

2,22,23

3

0

28
ROOT

No Wiresnaking

Wiresnaking

Fig. 22. Buffered clock tree obtained by extended zero skew tree along with load con-

straint.

39

5

7
10

12

13

20

24

14

28
ROOT

25,26

4 23

9,25

11

0

6,16

15

8,22,27

2,18
3

1

17

19

No Wiresnaking

Wiresnaking

Fig. 23. Buffered clock tree obtained by maximum delay target and minimum merging

cost based ordering along with load constraint.

40

D. Zero-skew Clock-tree

We also compared our algorithm[31] for zero skew routings with algorithms in [13]. In

[13], besides the basic version NS, a speed-up version CL is proposed together with a

local exhaustive search based post processing algorithm which is notated as I6. The

speed-up version CL results in moderately less wirelength than the basic version NS

in practice. The post processing step can be performed iteratively to further reduce

wirelength for a given clock tree. We compared zero skew clock routing wirelength

from our algorithm with the CL in Table III. Since the delay-target differences among

subtrees in zero skew routing are normally not large, the MIC technique is rarely

useful. However, the MAT merging scheme always yields less wirelength than CL as

shown in Table III. The wirelength data of CL are from [13]. The CPU time is not

provided in [13]. In Table III, the ratio of wirelength with respect to the CL+I6 flow

for each test is listed in parentheses. Our MAT algorithm results in slightly greater

wirelength than CL+I6, though never more than 4%. It is expected that a MAT+I6

flow may make the gap even smaller or diminished. For single pass constructive

algorithms, our MAT algorithm always provides better solution than CL. Moreover,

without Delaunay triangulations, the implementation of MAT is easier than CL.

Table III. Wirelength from our MAT algorithm and CL algorithm in [13]. The number

in each parentheses is the ratio with respect to wirelength from CL+I6

algorithm in [13].
Testcase CL(/[CL+I6]) MAT(/[CL+I6])
prim1 132980 (1.03) 131716 (1.02)
prim2 334107 (1.10) 312504 (1.03)
r1 1421307 (1.13) 1289459 (1.03)
r2 2627494 (1.06) 2587492 (1.04)
r3 3550494 (1.11) 3282424 (1.03)
r4 6794605 (1.05) 6643357 (1.02)
r5 10195581 (1.05) 9839246 (1.01)

41

CHAPTER V

CONCLUSION

Even though traditional zero skew routing methods can be applied to achieve non-

zero skews, they may bring huge wire and buffer area overhead as the difference

among sink delay-targets are ignored in their merging schemes. We propose a merg-

ing scheme based on the maximum delay-target and minimum merging cost based

ordering and integrate it with deferred-merge embedding technique. This merging

scheme helps in avoiding the wiresnaking by increasing the node capacitance and

decreasing the delay-target difference between the sinks. Buffers are also inserted to

apply the load constraint and bring the slew rate under acceptable range. Buffers

also help in balancing the delay of the sinks with huge delay-target difference and re-

sults in less wiresnakings. Experimental results on benchmark circuits show that our

buffered clock routing algorithm is effective on minimizing wire and buffer area for

non-zero skew specifications. The proposed algorithm is effective in case of zero-skew

clock-trees and performs even better if the number of sinks increases.

42

REFERENCES

[1] J. P. Fishburn. “Clock skew optimization,” IEEE Trans. on Computers, vol. 39,

pp. 945–951, July 1990.

[2] Y. Liu, S. R. Nassif, L. T. Pileggi, and A. J. Strojwas. “Impact of interconnect

variations on the clock skew of a gigahertz microprocessor,” In Proc. Design

Automation Conference, Los Angeles, CA, June 2000, pp. 168–171.

[3] S. Zanella, A. Nardi, A. Neviani, M. Quarantelli, S. Saxena, and C. Guardiani.

“Analysis of the impact of process variations on clock skew,” IEEE Trans. on

Semiconductor Manufacturing, vol. 13(4), pp. 401–407, Nov. 2000.

[4] R. B. Deokar and S. S. Sapatnekar. “A graph-theoretic approach to clock skew

optimization,” In Proc. Int. Symposium on Circuits and Systems, London, May

1994, pp. 1.407–1.410.

[5] H. B. Bakoglu, Circuits, interconnections and packaging for VLSI. Reading,

MA: Addison-Wesley, 1990.

[6] W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao. “Power supply noise suppression

via clock skew scheduling,” In Proc. IEEE Int. Symposium on Quality Electronic

Design, San Jose, CA, March 2002, pp. 355–360.

[7] I. S. Kourtev and E. G. Friedman. “Clock skew scheduling for improved reliabil-

ity via quadratic programming,” In Proc. Int. Conf. on Computer Aided Design,

San Jose, CA, Nov. 1999, pp. 239–243.

[8] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh. “Clock routing for high-

performance ICs,” In Proc. Design Automation Conference, Orlando, FL, July

1990, pp. 573–579.

43

[9] A. B. Kahng, J. Cong, and G. Robins. “High-performance clock routing based

on recursive geometric matching,” In Proc. Design Automation Conference, San

Francisco, CA, June 1991, pp. 322–327.

[10] R.-S. Tsay. “Exact zero skew,” In Proc. Int. Conf. on Computer Aided Design,

Santa Clara, CA, Nov. 1991, pp. 336–339.

[11] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B. Kahng. “Zero skew

clock routing with minimum wirelength,” IEEE Trans. on Circuits and Systems

- Analog and Digital Signal Processing, vol. 39(11), pp. 799–814, Nov. 1992.

[12] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. “Bounded-skew clock

and Steiner routing,” ACM Trans. on Design Automation of Electronic Systems,

vol. 3(3), pp. 341–388, July 1998.

[13] M. Edahiro. “A clustering-based optimization algorithm in zero-skew routings,”

In Proc. Design Automation Conference, Dallas, TX, June 1993, pp. 612–616.

[14] C.-W. A. Tsao and C.-K. Koh. “UST/DME: a clock tree router for general skew

constraints,” In Proc. Int. Conf. on Computer Aided Design, San Jose, CA, Nov.

2000, pp. 400–405.

[15] J. G. Xi and W. W.-M. Dai. “Useful-skew clock routing with gate sizing for low

power design,” Journal of VLSI Signal Processing, vol. 16(2/3), pp. 163–179,

June/July 1997.

[16] S. Pullela, N. Menezes, J. Omar, and L. T. Pillage. “Skew and delay optimization

for reliable buffered clock trees,” In Proc. Int. Conf. on Computer Aided Design,

San Jose, CA, Nov. 1993, pp. 556–562.

44

[17] Y. P. Chen and D. F. Wong. “An algorithm for zero-skew clock tree routing with

buffer insertion,” In Proc. European Design and Test Conference, Paris, France,

March 1996, pp. 230–236.

[18] J. G. Xi and W. W.-M. Dai. “Buffer insertion and sizing under process variations

for low power clock distribution,” In Proc. Design Automation Conference, San

Francisco, CA, June 1995, pp. 491–496.

[19] M. Edahiro and R. J. Lipton. “Clock buffer placement algorithm for wire-delay-

dominated timing model,” In Proc. Great Lake Symposium on VLSI, Ames, IA,

March 1996, pp. 143–147.

[20] A. Vittal and M. Marek-Sadowska. “Power optimal buffered clock tree design,”

In Proc. Design Automation Conference, Las Vegas, NV, June 1996, pp. 230–236.

[21] X. Zeng, D. Zhou, and W. Li. Buffer insertion for clock delay and skew min-

imization. In Proc. Int. Symposium on Physical Design, Monterey, CA, April

1999, pp. 36–41.

[22] I-M. Liu, T.-L. Chou, A. Aziz, and D. F. Wong. “Zero-skew clock tree construc-

tion by simultaneous routing, wire sizing and buffer insertion,” In Proc. Int.

Symposium on Physical Design, San Diego, CA, April 2000, pp. 33–38.

[23] S. R. Nassif. “Modeling and analysis of manufacturing variations,” In Proc.

Custom Integrated Circuits Conference, San Diego, CA, May 2001, pp. 223–228.

[24] A. Takahashi, K. Inoue, and Y. Kajitani. “Clock-tree routing realizing a clock-

schedule for semi-synchronous circuits,” In Proc. Int. Conf. on Computer Aided

Design, San Jose, CA, Nov. 1997, pp. 260–265.

45

[25] W. C. Elmore. “The transient response of damped linear networks with partic-

ular regard to wideband amplifiers,” Journal of Applied Physics, vol. 19(no.1),

pp. 155–163, Jan. 1948.

[26] Rishi Chaturvedi and Jiang Hu. “A simple yet effective merging scheme for

prescribed-skew clock routing,” In Proc. Int. Conf. on Computer Design, San

Jose, CA, Oct. 2003, pp. 282–287.

[27] C.-K. Cheng, J. Lillis, S. Lin, and N. Chang. Interconnect analysis and synthesis.

New York: Wiley Interscience, 2000.

[28] J. Chung and C.-K. Cheng. “Skew sensitivity minimization of buffered clock

tree,” In Proc. Int. Conf. on Computer Aided Design, San Jose, CA, Nov. 1994,

pp. 280–283.

[29] Rishi Chaturvedi and Jiang Hu. “Buffered clock tree for high quality IC design,”

In Proc. IEEE Int. Symposium on Quality Electronic Design, San Jose, CA,

March 2004, pp. 381–386.

[30] L. P. P P. van Ginneken. “Buffer placement in distributed RC-tree networks for

minimal Elmore delay,” In Proc. Int. Symposium on Circuits and Systems, New

Orleans, LA, May 1990, pp. 865–868.

[31] Rishi Chaturvedi and Jiang Hu. “An efficient merging scheme for clock routing

with general skew targets,” In Proc. TAU Workshop, Austin, TX, Feb. 2004, pp.

112–118.

46

APPENDIX A

SAMPLE TESTCASE: IP SAMPLE

Following is a small sample testcase from IBM, which is obtained from an actual

prescribed-skew clock tree. PerUnitResistance is the resistance per unit length in

ohms and PerUnitCapacitance is the capacitance per unit length in farads. Delay-

target is the target delay for the sink in fermiseconds.

NumPins : 15

PerUnitResistance : 0.006000

PerUnitCapacitance : 56.000000e-17

Sink : 0

Coordinate : 2460 1895

Capacitive Load : 16.600000e-14

delay-target : 043000

Sink : 1

Coordinate : 1900 1032

Capacitive Load : 16.600000e-14

delay-target : 038000

Sink : 2

Coordinate : 2186 503

Capacitive Load : 16.600000e-14

delay-target : 034000

Sink : 3

Coordinate : 1402 647

Capacitive Load : 16.600000e-14

47

delay-target : 038000

Sink : 4

Coordinate : 828 2807

Capacitive Load : 16.600000e-14

delay-target : 013000

Sink : 5

Coordinate : 1132 3287

Capacitive Load : 16.600000e-14

delay-target : 010000

Sink : 6

Coordinate : 3214 1919

Capacitive Load : 16.600000e-14

delay-target : 031000

Sink : 7

Coordinate : 2428 2471

Capacitive Load : 16.600000e-14

delay-target : 026000

Sink : 8

Coordinate : 2652 1103

Capacitive Load : 16.600000e-14

delay-target : 014000

Sink : 9

Coordinate : 1454 3456

Capacitive Load : 16.600000e-14

delay-target : 023000

Sink : 10

48

Coordinate : 3382 2376

Capacitive Load : 16.600000e-14

delay-target : 043000

Sink : 11

Coordinate : 2393 3119

Capacitive Load : 16.600000e-14

delay-target : 028000

Sink : 12

Coordinate : 3104 912

Capacitive Load : 16.600000e-14

delay-target : 029000

Sink : 13

Coordinate : 807 1704

Capacitive Load : 16.600000e-14

delay-target : 006000

Sink : 14

Coordinate : 1091 2160

Capacitive Load : 16.600000e-14

delay-target : 000000

49

VITA

Name Rishi Chaturvedi

Address 4, Brahmmanand Colony, Durgakund

Varanasi, Uttar Pradesh, India-221005

Education Master of Science (May 2004)

Major - Computer Engineering

Texas A&M University, College Station, TX.

Bachelor of Technology (May 2000)

Major - Electrical and Electronics Engineering

Indian Institute of Technology (IIT)

Kanpur, Uttar Pradesh, India - 208016

Work Experience Asic Design Engineer (June 2000- Aug 2002)

Transwitch Corporation, Delhi, India.

The typist for this thesis was Rishi Chaturvedi.

