
DETERMINING LONG-TERM PERFORMANCE OF COOL
STORAGE SYSTEMS FROM SHORT-TERM TESTS

ASHRAE Research Project 1004

LITERATURE REVIEW AND SITE SELECTION

Jeff S. Haberl, Ph.D.,P.E. Agami Reddy, Ph.D.,P.E. Jim Elleson, P.E.
David E. Claridge, Ph.D.,P.,E- Department of Civil & Elleson Engineering
Energy Systems Lab Architectural Engineering Black Earth, WI
Texas A&M University Drexel University
College Station, Texas Philadelphia, PA

NOVEMBER 1997

ESL-TR-97/11-01



ASHRAE RP1004, p. i

ABSTRACT

DETERMINING LONG-TERM PERFORMANCE OF COOL
STORAGE SYSTEMS FROM SHORT-TERM TESTS

ASHRAE Research Project 1004
LITERATURE REVIEW AND SITE SELECTION

This is the preliminary report contains the literature review and site selection recommendations for
ASHRAE Research Project RP 1004 — "Determining Long-term Performance of Cool Storage
Systems From Short-term Tests".

The literature review covers the relevant literature concerning: 1) different inverse analysis
methods, including: building simulation models, regression models, multicollinearity and function
forms, 2) methods for predicting long-term performance from short-term measurements, 3)
analytical models for chillers, fans and pumps, including a discussion of component-based models
versus overall systems models, 4) in-situ testing of chillers, fans and pumps, 5) methods for
determining the long-term performance of cool storage systems, including field performance
testing, methods for determing annual load frequency distribution, characterization of cool storage
system performance, and annual performance projections, and 6) methods for determining the
uncertainty associated with measurement and analysis, including: measurement uncertainty, bias
and random errors, propagation errors, and regression errors. Information for 14 thermal storage
sites is also presented including recommendations for a short list of 5 sites for further study.

This report completes Task la (Literature Review), and Task lb (Preliminary Report), and
presents our recommendations for approaching Task 2a (Method to estimate long-term building
loads from short-term data), Task 2b (Development of analytical methods for TES), Task 2c
(Development of initial list of TES sites and submit to PMS), Task 3 c (Uncertainty analysis), and
Task 3d (Development of long-term TES performance methodology).
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1.0 INTRODUCTION

This report presents the results of a literature review and preliminary investigation of methods for
determining the long-term performance of cool storage systems based on short-term tests. Over
100 cool storage references were reviewed for relevance to this project. Pertinent references are
briefly described below, and bibliographic citations are provided under References.

For the purpose of this report, the term "performance" refers to peak energy demand and annual
energy usage. In addition, the methods to be developed are intended to determine the "degree of
load shifted", which refers to the reduction in the peak energy demand and annual energy usage
relative to a comparison system not using cool storage.

2.0 DETERMINE HVAC SYSTEM LOADS FROM SHORT-TERM DATA

2.1 Objective

The specific objective of ASHRAE RP-1004 is to propose and validate a short term in-situ
measurement protocol along with associated model development and analysis methods which
would provide accurate predictions of the long-term performance of a cool storage system in
terms of demand and energy savings. Crucial to this objective is the ability to accurately determine
the building loads1. This is not only intuitively obvious, but has also been explicitly stated in
several studies (for example, Kawashima et al., 1995, 1996) where the ability to predict building
loads 24 hours in advance is key to deciding on how to optimally operate the cool storage plant.
In this project, the objective is not a 24 hr forecast but, rather, the ability to accurately predict the
long-term (i.e., seasonal or annual) hourly cooling loads on the HVAC system from building
short-term measurements. This issue is complex because of the effect of diurnal and seasonal
variations (i) in the climatic variables that impact building loads (for example, the outdoor dry-
bulb temperature, the outdoor humidity and the solar radiation), (ii) in the unpredictability of
building internal loads, and (iii) in the manner in which the building HVAC system is operated.
Therefore, the intent of this literature review is to discuss the different attempts at modeling
HVAC system loads of actual buildings and to summarize the findings of the relatively few studies
which have attempted to predict seasonal or long-term hourly building loads from relatively short
measurement periods (which in this study are defined as periods ranging from two weeks to three
months)

Another sort of distinction needs to be made in terms of model prediction. Forecasting (or
prediction) is the technique used to predict future values based upon past and present values
(Montgomery and Johnson, 1976). There are two types of forecasts: expost and exante. In the
expost forecast, the forecast period is such that observations of both the driving variables and the
response variable are known with certainty. Thus expost forecasts can be checked with existing
data and provide a means of evaluating the model. An exante forecast predicts values of the
response variable (i.e., building energy use) when those of the influential or regressor variables are
either (i) known with certainty (conditional exante forecast), or (ii) not known with certainty

1 Though there is a connotational difference between the two terms, building loads and HVAC loads, we shall use
them interchangeably in this report to mean HVAC loads.
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(unconditional exante forecast). Thus the unconditional forecast is more demanding than
conditional forecasting since the driving variables need also to be predicted into the future (along
with the associated uncertainty which it entails). The studies by Kawashima et al. pertain to
unconditional exante forecasts. This is not the objective of this research, rather, we propose to (i)
evaluate our building load prediction model approach by means of expost forecasts, and (ii) then,
use the model for circumstances pertaining to conditional exante type of forecasts.

2.2 Background

At the onset, one needs to distinguish between forward models and inverse models. Forward
modeling describes the traditional computer simulation programs such as DOE-2 or BLAST that
calculate building loads. Forward modeling is most often employed for design purposes, such as
(i) for calculating the energy performance of a prospective building based on its detailed blueprint
description and how the building is likely to be operated, or (ii) for sizing the HVAC equipment to
be installed in the new building. Inverse modeling identifies basic building models and model
parameters from measured data of building energy use and other influential variables. Inverse
modeling is most appropriate for analyzing existing performance data of building energy use either
in the framework of statistical models or macro-models of the building energy flows (Rabl, 1988,
ASFIRAE, 1997). We shall limit the scope of this literature review to inverse models only since it
is obviously the one relevant to this research.

The inverse approach to analyzing energy use in buildings is relatively new dating back perhaps 20
years. It arose primarily as a result of the drive to implement energy conservation programs in
residential buildings just after the first oil shock in the early 1970s. In one of the earliest methods,
data analysts having utility bill data from a residence both prior to and after the retrofit
implementation, applied the variable base degree-day (VBDD) concept (ASHRAE, 1997) to
normalize energy use for differences in outdoor- dry-bulb temperature prior to and after the
retrofit. Analysis methods subsequently developed have increased in number and in sophistication
as a result of widening objectives and different types of data availability. The amount of monitored
data available for analysis has increased substantially in part due to a dramatic increase in data
monitoring technology, but more importantly, due to a motivation arising from the increasing
awareness that existing means of predicting energy use in a building using forward models were
inadequate and sometimes misleading for the purpose of evaluating the effect of energy
conservation programs or for identifying (and correcting) improperly operated buildings. For
example, a study by Greely et al. (1990) of 1,700 buildings in the U.S. indicated that the estimated
savings in fewer than 16% of the case study buildings came within 20% of the measured savings.
Another study by Jamieson and Qualmann (1990) showed an even larger difference (165%)
between the predicted and measured energy savings in 16 commercial building retrofits. A
common theme in these studies, as well as others of a similar nature, is the need for better
measurement methodologies and more complete data which would restore the faith in the
prospective efficiency investments. The development of guidelines on measuring retrofit savings
has been ongoing during the last few years, and documents are available (NEMVP, 1996; GPC-
14P, 1997). These protocols are, however, not appropriate for the purpose of this research since
the issue of short-term to long-term load predictions is not addressed at all.
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2.3 Different inverse analysis methods

Different authors have chosen to group the various inverse models for building energy use in
different ways. One of the preferred grouping is that of MacDonald and Wasserman (1989) who
have suggested the following five groups:

(a) annual total energy and energy intensity comparisons (using metered or utility bills),
(b) linear regression and component models (based on monitored data)
(c) multiple linear regression models,
(d) building simulation models, and
(e) dynamic thermal performance models.

When building or HVAC system loads need to be predicted for the purpose of assessing cool
thermal storage performance, the "building loads" model ought to be able to predict hourly
heating and cooling HVAC system loads. Thus group (a) above which is primarily at monthly time
scales is unsuitable. Also, given the complexity and size of commercial buildings, one would like
to keep the in-situ monitoring protocol to a minimum. Dynamic models (group e above) would
require a level of monitoring and analysis which are too complex to the current objectives (as
testified, for example, by the PSTAR method suggested by Subbarao,1988 and limited to heat
flows in residential building envelopes). Though attempts have been made to extend PSTAR to
commercial buildings, these studies are still limited to smaller size buildings whose loads are
primarily determined by the building shell interactions as against the HVAC system effects which
are by far the more important determinant of building energy use in large commercial buildings.
Hence such protocols are inappropriate for cool thermal storage tests. Other attempts, such as the
study by Reichmuth and Robison (1990) are more at the conceptual stage rather than field-tested
over several buildings. Hence only groups (b), © and (d) are appropriate for consideration in the
framework of the current research study. We shall briefly discuss the concepts and the status of
these three methodologies in the sections that follow.

2.3.1 Building simulation models

The building simulation approach relies on adopting a particular engineering simulation model of
energy use in a building and "tuning" or adjusting the inputs of the program so that simulated and
measured values of building energy use match closely. A simulation program thus calibrated,
could then serve as a more reliable means of predicting the energy use of the building when
operated under different climatic or different pre-specified operating conditions. One can
distinguish two different types of engineering simulation models:

(i) "detailed", general purpose, fixed schematic models such as DOE-2 (Diamond and Hunn,
1981; Norford et al., 1989; Bronson et al., 1992; Bou-Saada, 1994), and BLAST (Manke and
Hittle, 1996); or

(ii) the "simplified" fixed schematic HVAC systems models based on the models documented
by ASHRAE TC 4.7 (Knebel, 1983) and adopted in slightly different forms by many workers, for
example by Katipamula and Claridge (1993), Liu and Claridge (1995). Typically, the building is
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divided into two zones: an exterior or perimeter zone and an interior or a core zone. The core
zone is assumed to be insulated from the envelope heat losses/gains, while the solar heat gains,
infiltration heat loss/gain, the conduction gains/losses from the roof are taken to appear as loads
on the external zone. Given the internal load schedule, the building description, the type of HVAC
system and the climatic parameters, the HVAC system loads can be estimated for each hour of the
day and for as many days of the year as needed by the simplified systems model. Since there are
fewer parameters to vary, the calibration process is much faster.

The detailed calibrated simulation model approach, on the other hand, is more tedious and
requires knowledge of how the mechanical systems of the building are operated and a certain
proficiency in using the particular building energy code. It is typically resorted to under two
circumstances: (i) when the analyst would like to model sub-aggregated electric use from
monitored whole-building monitored energy use, or (ii) when the quality or length of the data
period is not adequate to enable proper regression model identification. Both the detailed and the
simplified calibrated model approaches have yet to reach a stage of maturity in methodology
development where they can be used routinely and with confidence by people other than skilled
analysts. Thus, whenever appropriate, model development using the regression approach is
preferred because it is generally the least demanding in effort and user-expertise, yields adequate
results and permits uncertainty calculations associated with savings to be quantified using
accepted statistical procedures. This is described below.

2.3.2 Regression models

Groups (b) and © stated earlier are essentially similar, except for the number of regressor
variables in the model. Both rely on the ability to formulate energy use in a building as a function
of one or more driving forces which impact building energy use. An important aspect in
identifying statistical models of baseline energy use is the choice of the functional form and that of
the independent (or regressor) variables. Extensive studies in the past (for example, see Fels 1986;
Kissock 1993; Katipamula et al. 1994) have clearly indicated that the outdoor dry-bulb
temperature is the most important regressor variable, especially at monthly time scales, and even
at daily time scales. Classical linear functions are usually not appropriate for describing energy use
in many commercial buildings because of the presence of functional discontinuities, called "change
points". These change-points exist due to the presence of control mechanisms which include, (i)
thermostats in residences, (ii) HVAC operating and control schedules, and (iii) economizer cycles
in commercial buildings (Reddy et al. 1995). The various types of single variable (SV) models
that have been used to model energy use in commercial and residential buildings are described in
numerous publications (for example, Kissock, 1993; ASHRAE, 1997; Reddy et al., 1997), and the
reader is referred to these publications for additional details. However, the use of multiple linear
regression (MLR) models for modeling building energy use is less known by the professional
community, and so we shall provide a brief description of MLR below.

November 1997, Preliminary Report Texas A&M, Drexel University, Elleson Engineering



ASHRAE RP1004, p. 5

2.3.3 Multiple Linear Regression Models (MLR)

Three basic types of MLR models have been used with some success to model the hourly
variation of the heating and cooling energy use in commercial buildings for the purpose of long-
term prediction2 (Reddy et al., 1994):

(a) Standard multiple linear or change point regression models where the set of data observations
are treated without retaining the time series nature of the data,

(b) Fourier series models which retain the time series nature of the building energy use data and
capture the diurnal and seasonal cycles according to which buildings are operated (for example,
Seem and Braun, 1991; Dhar et al., 1994), and

(c) ANN or Artificial Neural Network models (for example, Kreider and Wang, 1991; Cohen and
Krarti, 1997) where automated algorithms are used to model the time series trend in a non-linear
manner.

How the standard MLR and the ANN fare with respect to the others can be gauged from the
ASHRAE Energy Predictor II (Haberl and Thamilseran, 1996) where these and other approaches
were used to model the same data set of monitored building energy use and then used to predict
energy use into a future time period. Monitored building load data being available during the
future time period allowed the various modeling approaches to be evaluated against each other in
an absolute manner. Given that Fourier series models and ANN models do not have standard
software suitable for building energy professionals they are, therefore, limited in their present
applicability. Furthermore, since the standard MLR model approach was only marginally less
accurate than the ANN models, we have chosen to use this approach in the framework of the
present research. We shall discuss the standard MLR models below.

2.3.4 Standard MLR

The goal of modeling energy use by the MLR approach is to characterize building energy use with
a few readily available and reliable input variables. In addition, each independent variable must be
unaffected by the changes in building equipment or building operation intended by the energy
retrofit. Environmental variables which meet the above criteria for modeling heating and cooling
energy use include outdoor air dry-bulb temperature (To) , solar radiation and specific humidity.
In commercial buildings, internally generated loads, such as the heat given off by people, lights
and electrical equipment, also impact heating and cooling energy use. Such internal loads are
difficult to measure in their entirety given the ambiguous nature of people loads and latent loads.
However, we find that the monitored electricity used by internal lights and equipment qj is a good

surrogate of the total internal sensible loads (Deng, 1997). For example, when the building is fully
occupied, it is also likely to be experiencing high internal electric loads, and vice versa.

2 Note that the building prediction models in the framework of this study cannot be of the transfer function or the
ARIMA type of models (Montgomery and Johnson, 1976). Such models are appropriate only when the forecasts
can be updated as the prediction interval slides forward in time.
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The use of a single variable (SV) 3-P model like the PRISM model (Fels, 1986) has a physical
basis only when energy use above a base level is linearly proportional to degree days. This is a
good approximation in case of heating energy use in residential buildings. Commercial buildings,
in general, have higher internal heat generation with simultaneous heating and cooling energy use
and are strongly influenced by HVAC system type and control strategy. This makes energy use in
commercial buildings to be less strongly influenced by To alone. It is not surprising that blind use

of S V models has had mixed success at modeling energy use in commercial buildings (MacDonald
and Wasserman, 1989). MLR regression models are a logical extension to SV models provided
the choice of the variables to be included and their functional forms are based on the engineering
principles on which HVAC systems and other systems in commercial buildings operate.

2.3.5 Multicollinearity

Although, physically, energy use is dependent on several variables, there are strong practical
incentives for identifying the simplest model that results in acceptable accuracy. Multivariable
models require more metering and are unusable if even one of the variables becomes unavailable.
In addition, some of the regressor variables may be linearly correlated. This condition, called
multicollinearity. can result in large uncertainty in the estimates of the regression coefficients, and
can also lead to poorer model prediction accuracy as compared to a model where the regressors
are not linearly correlated (Ruch et al., 1993). Several authors recommend using Principal
Component Analysis (PC A) to overcome multicollinearity effects. Analysis of multi-year
monitored daily energy use in a grocery store found a clear superiority of PC A over multivariate
models (Ruch et al., 1993). However, for building energy use, this conclusion is unproved. Stated
in simple terms, the significant collinearity between the predictor variables themselves is likely to
lead to two different problems:

(a) though the PCA model may provide a good fit to the current data, its usefulness as a
reliable predictor of future consumption is suspect; and

(b) the regression coefficients in the PCA model may no longer be proper indicators of the
relative physical importance of the regressor parameters.

A more general evaluation by Reddy and Claridge (1994) of both analysis techniques using
synthetic data from four different geographic locations in the U.S. found that injudicious use of
PCA may exacerbate rather than overcome problems associated with multicollinearity ( Draper
and Smith, 1981 is one of the few text-books which cautions against indiscriminate use of PCA).
The results of the study suggest that multicollinearity may not be as big a problem as originally
thought to overcome problem (a) stated above, primarily because multivariate regression models
for most buildings with clean data (such as the Texas LoanSTAR program (Claridge et al., 1991,

for example) have high values of R^ (typically higher than 0.8). However, problem (b) stated
above still needs to be overcome (as illustrated by the study by Deng, 1997) and so our proposed
analysis methodology should explicitly circumvent this limitation.
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2.3,6 Functional form

Engineering equations describing the performance of HVAC components and systems are well
known (see for example, Knebel, 1983). Studies by Kissock (1993), Reddy et al., (1994) and
Katipamula et al., (1994) specially aimed at investigating the functional basis of energy use in
HVAC systems with monitoring data analysis in mind, indicate that no single empirical model is
appropriate for all energy types and HVAC systems. The energy use is a complex function of
climatic conditions, internal loads, building characteristics (such as loss coefficient and heat
capacity), HVAC system characteristics (air flow rate, outdoor air fraction, economizer operation
and control options like deck settings and scheduling,...), and HVAC type (whether CV or VAV,
for example). Some of these parameters are difficult to estimate or measure in an actual building
and hence, they are not good candidates for regressor variables. Further, some of the variables
vary but little during the short in-situ monitoring period (or even during a season) and though
their effect on energy use may be important, MLR would suggest that they not be retained in the
final set of regressor variables, their effect being implicitly lumped into the constant parameter of
the regression model.

The functional basis of air-side heating and cooling use in various HVAC system types has been
addressed by Reddy et al. (1994) and subsequently applied to monitored data in commercial
buildings (Katipamula et al., 1994). Since none of the quadratic and cross-product terms of the
engineering equations are usually picked up by the MLR models, we are left with models for
energy use which are strictly linear. In addition to To, internal loads q[, solar loads qsoi and latent

effects via the outdoor dew point temperature T^p are candidate regressor variables. In

commercial buildings, a major portion of the latent load is due to fresh air ventilation. However,
this load appears only when the outdoor air dew point temperature exceeds the cold deck

temperature. Hence the term (Tjp - T s)
+ (where the + sign indicates that the term is to be set to

zero if negative, and T s is the mean surface temperature of the cooling coil, typically about 11 -

13°C) is a more realistic descriptor of the latent loads than is Tjp alone. Consequently, the use of

(T^p - T s)
+ as a regressor in the model is a simplification which seems to yield good accuracy

(Katipamula et al., 1994).

Thus a MLR regression model with an engineering basis has the following structure:
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Because of the above discussion /34 = 0. Introducing indicator variable terminology ( Draper and
Smith, 1981), the above equation becomes identical to Katipamula et al., (1994):

(2.2a)

where the indicator variable (I) is introduced to handle the change in slope of the energy use due
to To. The variable I is set equal to 1 for To values to the right of the change point (i.e., for high
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T o range) and set equal to 0 for low To values. As for the SV segmented models (i.e., 3-P and 4-

P models), a search method is used in order to determine the change point which minimizes the
total sum of squares. How the above model is able to remove the effects of patterned residuals (an
indication of improper model structure as discussed in most statistical textbooks, for example,
Draper and Smith, 1981) is illustrated by Fig. 2.0a with daily monitored cooling data from a
Texas LoanSTAR building under VAV operation (Katipamula et al., 1994). The simple 2-P SV
model is clearly inadequate, while the model given by eqs. (2.2a, 2.2b) seems to result in a more
or less random residual pattern indicating a satisfactory model.

Another finding from the Katipamula et al. study was that though the model given by eq.(2.2a)
was appropriate for VAV operation, a simpler model as given below is adequate when the
building is operated under CV operation:

Most of the MLR analysis performed as part of the Texas LoanSTAR buildings which are
buildings with conservative amounts of glazing, have found the solar term to be statistically
insignificant. This is due to the strong correlation between solar radiation and outdoor
temperature which results in the latter variable picking up some or all of the contribution of the
latter. Thus, we could further simplify the model by dropping the solar term and assuming the
solar contribution to be implicitly present in the outdoor temperature contribution (this is also the
basis of the ASHRAE modified bin method- see Knebel, 1983).

The MLR model suggested by Katipamula et al. (1994) has been found to be very accurate for
daily time scales, and slightly less so for hourly time scales. This is because changes in the way the
building is operated during the daytime and the nighttime for example, lead to different relative
effects of the various regressors on energy use, which cannot be accurately modeled by one single
model. Breaking up the energy use data in hourly bins corresponding to each hour of the day and
then identifying 24 individual hourly models lead to appreciably greater accuracy (Katipamula et
al., 1994). Unfortunately, this is probably too tedious for the current project, and a method which
seems to yield comparable accuracy, is to divide the day into as many periods as there are
operating modes. For example, dividing the day into two periods, one corresponding to occupied
periods and one to unoccupied periods seems to be an acceptable compromise for buildings
operated in more or less two operating modes. Usually not more than two or three such modes
are necessary for modeling hourly building energy use. Obviously, it is advisable to determine the
number of operating models of a building from monitored data, rather than from hypothetical
considerations.
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(2.2b)

Note that instead of using (Tdp-T8)
+ one could equally use the absolute humidity potential (w0 -

ws)
+where wo is the outdoor absolute humidity and ws is typically about 0.009 kg/kg. A final

aspect to be kept in mind is that, contrary to cooling energy use, latent loads do not appear on

the heating coil of the HVAC system and hence the term T+j- should be omitted from the

regressor variable set when regressing heating energy use.
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2.4 Short-term to long-term predictions

Although there are no absolute rules for determining the minimum acceptable length of the pre-
retrofit period for the regression model to accurately predict long-term HVAC system loads, a full
year of energy consumption data is likely to encompass the entire range of variation of both
climatic conditions and the different operating modes of the building and of the HVAC system.
However, in many cases a full year of data are not available and one is constrained to develop
models using less than a full year of data. The problem in such cases is exactly similar to the one
faced in in-situ monitoring of the building for the purpose of long-term prediction of building
loads. The accuracy with which temperature-dependent regression models of energy use identified
from short data sets (i.e., data sets of less than one year) are able to predict annual energy use has
been investigated with monitored data by Kissock et al., (1993) for 2-P SV models and by
Katipamula et al., (1995) for standard MLR models. Further investigation has also been
performed with synthetic energy use data generated from engineering models (Reddy et al.,
1998). The same type of general conclusions were reached by all these studies, which are
discussed below.

The study by Kissock et al. (1993) limited to three LoanSTAR buildings with constant air volume
(CV) systems, and that by Katipamula et al. (1995) where buildings under both CV and VAV
operation were selected, found certain general characteristics of how, when and to what extent
regression models based on short data-sets incorrectly predict annual energy use in the climate of
central Texas.

(a) As expected, longer data sets provide a better estimate of annual energy use than shorter data
sets. In the sample of buildings chosen, the average annual cooling prediction error of short data
sets decreased from 7.3% to 3.0% and the average annual heating prediction error decreased from
27.5% to 12.9% as the length of data sets increased from one month to five months.

(b) More important than the length of the data set, however, was the season during which it
occurred. When 2P models are used, cooling models identified from months with above-average
temperatures tend to over-predict annual energy and underpredict energy use if identified from
months with below-average temperatures. The converse seems to hold for heating models.

Tests with synthetic data found that these observations are applicable for other types of models
(say 4P models) as well (Reddy et al., 1998). The best predictors of both cooling and heating
annual energy use are models from data-sets with mean temperatures close to the annual mean
temperature and with the range of variation of daily temperature values in the data set
encompassing as much as the annual variation as possible. One month data sets in spring and fall,
when the above condition applies, are frequently better predictors of annual energy than five
month data sets from a portion of winter and the summer. Figure 2.0b taken from Reddy et al.
(1998) illustrates this feature using synthetic cooling energy use data from a heavily scheduled
building. The figure shows the monthly range of temperature variation as well as how well the
seasonal cooling energy use data are fit by 4P models. The error in using the seasonal models for
annual prediction is expressed as a percentage bias which is also indicated in Fig. 2.0b. Though
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the seasonal models fit the data very well (as shown by the R2 and CV-RMSE values in Fig.2.0b),
only the October-December model is satisfactory for predicting annual energy use as evidenced by
its low bias error. Note that judging a model's predictive ability from the goodness-of-fit criteria
is erroneous. This is illustrated by the fact that though CV-RMSE is poorer for the model
identified from Oct.-Dec. data than that of the April-June and July-Sept, seasonal models, the
annual predictive bias is much smaller. The low predictive error of the regression model identified
during the Oct.-Dec period may not be too surprising since the variation of outdoor temperature
during this period covers most of the annual temperature range (Fig. 2.0b)The best way to avoid
the problem of improper long-term prediction is to insure that the outdoor temperature spread in
the data set from which the regression model is to be identified captures most of the annual
outdoor temperature spread of that location (this is an application of the concept of "proper
experimental design" in statistics, (see Montgomery, 1991).

To conclude, the important inferences drawn from the various studies on this issue of short-term
to long-term load predictions are that:

(a) only if the monitoring, (in our case, the in-situ tests) are performed during the swing seasons
can one expect to have good long-term load predictions, and

(b) there is no way of adjusting regression models to accurately predict annual energy use once
improperly identified from short data sets.

These findings and the strategy suggested are, however, unacceptable for the current project since
one does not have the luxury of waiting until the climatic conditions are favorable to perform the
in-situ tests. Further, practical considerations dictate that in-situ tests (even if they entail non-
intrusive monitoring left at site with automated data collection and retrieval) cannot last 3 months,
but should be limited to 2-3 weeks at the most. Finally, we reiterate that the objective of this
research is to estimate the energy and demand savings from a TES system. Though the long-term
building load predictions are likely to be more accurate from models identified from short-term
tests performed during the shoulder months, this may not necessarily be the best for characterizing
the TES performance. It may be better from the overall TES system point of view to monitor
during the peak summer season with a limited range of loads rather than the shoulder seasons
where the building loads are relatively low but with greater variability. Therefore, we propose to
evaluate a slightly different in-situ testing and monitoring strategy as described below.

2.5 Proposed methodology

One possible approach to predicting long-term building loads from short-term data is to use a
calibrated systems model. However, as discussed earlier, this requires specialized skills beyond
most energy professionals. Further, HVAC systems have set points (such as the cold or hot deck
reset temperatures) which are season dependent, or the building may be operated differently
during different seasons of the year which a short-term monitoring protocol will fail to adequately
capture unless the analyst acquires such information by other means (say, from the EMCS system
or from the building energy manager). Hence, we propose to use a standard MLR model in this
research.
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Further, the regression model approach, even when a MLR model or a Fourier series model are
adopted, is adequate when say 14 days or even 1 month of monitored data are available. We are
proposing in this research project a Short-term Monitoring - Long-term Prediction method
(SMLP) by using 14 days (two weeks) of monitored hourly data (which can be provided by an
non-intrusive or passive in-situ monitoring protocol) supplemented with year-long utility bills of
the building. This combination could provide the necessary detailed short-term (i.e., hourly)
data as well as the long-term data to meet the objective of this research phase. The short-term
data is likely to provide the large variation in internal loads (along with the necessary insight to
separate the different operating modes of the building) necessary for proper identification of the
regression coefficient associated with this variable, while the utility bills will provide the necessary
variability in energy use, outdoor temperature and outdoor humidity levels over an annual cycle to
be able to identify the associated model coefficients in a robust fashion.

As a final note, it is important to realize that the SMLP method, or any method based on short-
term measurements to predict long-term building energy use, explicitly relies on building
operation being consistent within the day-type chosen.

2.5.1 Selection of monitoring periods ;,

In order to evaluate and refine the SMLP method, year-long monitored hourly building energy use
data should be available. We could then select different two-week periods (and "assume" that the
required in-situ monitored data was gathered during that period) in order to evaluate how the
two-week selection process affects the prediction accuracy of long-term building loads. This
would give insights into (i) time of the year when the in-situ monitoring is likely to yield a
regression model that is most accurate in its long-term predictions, and (ii) the extent to which the
accuracy of the building load predictions become poorer when periods other than this optimal
period are chosen for the in-situ monitoring period. Given that there are several permutations
possible, we have narrowed down the search by selecting time periods using the following
objective criteria which are based on findings from past studies (described earlier in section 4),
namely that building load prediction accuracy will be best when models are identified from data
periods during which the outdoor dry-bulb temperature (which is usually the single most
influential driver of building energy use) is closest to the annual mean and has a large day-to-day
variability.

These criteria for selecting the "best" two-week period have been quantified as follows:

1. Calculate the yearly average outdoor dry bulb temperature.

2. Among the 52 weeks of the year, choose the weeks where the yearly average temperature lies
between the weekly Minimum and Maximum hourly values, i.e., Weekly Min < Yearly Avg <
Weekly Max.

3. Narrow down the list of candidate periods to periods where two consecutive weeks satisfy the
above condition.
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4. Rank them based on how close they are to the yearly average value, (1: for best,....).

5. Rank them based on their hour-to-hour variability, by simply using the range between the
Maximum and the Minimum values, (1: for best,...).

6. Find, for each pair which satisfies step (3), the mean of the ranks of steps (4)and (5). The
"best" two-week period will be the one with lowest mean rank (closest to 1).

The "worst" two-week period can also be determined in an analogous manner. Further, how a
particular two-week period compares with the best and worst periods can also be evaluated in a
quantitative manner.

2.5.2 Modeling variants

The SMLP approach is based on the condition that two weeks of monitored data (entailing chilled
water energy use, internal lights and equipment loads, outdoor dry-bulb temperature and outdoor
humidity) and 12 monthly utility bills are available for model identification. We have identified
four different variants by which the SMLP approach could be implemented statistically to identify
the regression model coefficients.

Variant 1: Addition of monthly residuals into an hourly model

Using the two weeks of hourly data for building energy use and corresponding weather
conditions, an hourly MLR model assuming a functional form given by eqs.(2.2a, 2.2b) is first
developed. This model is then used repetitively for all the hours in a month (or over each utility
billing cycle period), and a monthly predicted energy use is determined by aggregating the hourly
predictions. The residuals Rk resulting from the difference between the predicted monthly values
and the monthly utility bills are then determined for each month (k) of the year. These 12 values
are then added to the basic hourly model to get the complete model:
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(2.3)

where, E ^ is the predicted hourly energy consumption during month k,
Rk is the residual for month k,
T; is the outdoor dry bulb temperature,
(w; - 0.009)+ is the adjusted specific humidity difference (set to be zero if negative),

OCCUPi is an indicator (dummy) variable accounting for occupancy (0 for occupied hours, and 1
for unoccupied hours) which is determined from the monitored internal loads during the
14 day period.

Variant 2: Addition of individual hourly and monthly regression coefficients
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Here, we proceed as previously, and using two weeks of hourly data for energy consumption and
weather conditions, an hourly MLR model is first developed. The residuals resulting from the
difference between the predicted monthly values (aggregated from predicted hourly values) and
the monthly utility bills are again regressed against monthly weather conditions and internal loads
(monthly values for internal loads might not be available in a real application). The complete
model is formed by adding the individual monthly and hourly coefficients of each of the regressor
terms.

Variant 3: Weighted regression of hourly and monthly values

Here, unlike the previous two variants, the complete model is identified in one step. First, the
monthly utility bill and weather variables are converted to hourly mean values by dividing them by
the total number of hours for each month. These 12 hourly-mean monthly values are grouped
with the data set of the two-week hourly values. Since the hourly-mean monthly and in-situ hourly
values are deduced from different time scales, one needs to distinguish between both during
regression by performing a weighted regression (Draper and Smith, 1982). The monthly-mean
values can be seen as being an average of (24xj) where j is the number of days in the month.
Recall from basic statistics that the sampling distribution of a population varies as the square root
of the sample size. Thus the logical manner of regressing the mixed time scale data is to weight
the hourly-mean monthly values by (24x j)1/2 and the hourly values by 1.

Variant 4: Two-stage regression model

In order to minimize the confounding effects of collinearity discussed in section 3.3.3, a two-stage
approach has been shown to be advantageous in other building related studies (Deng, 1997). This
variant involves using the monthly data to identify the coefficients associated with weather
variables only, and then using the model residuals at an hourly time scale to identify the occupant
and building related diurnal schedules. For instance, a model such as

(2.4a)

is first identified from utility data. Then an hourly model (MLR) is developed using the
coefficients b and c found by the monthly model, and two weeks of hourly energy consumption
data (for instance, CW or H -W), internal loads (LTEQ), and an occupancy indicator variable, in
the following fashion:

This method retains the simplicity in model identification of variant 3 while offering the possibility
of identifying more physically-meaningful model coefficient values.
5.3 Proposed variant

The four variants were first evaluated with monitored data from the Fine Arts Building of the
University of Arlington monitored by ESL under the LoanSTAR project. It was found that
variants (3) and (4) were distinctly better than the other two in terms of ease in model
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identification effort and in subsequent model prediction accuracy. However, the coefficients of the
regressor term of variant (3) were not physical. For example, chilled water use should increase
when internal loads increase. A negative regression coefficient was found when variant (3) was
used. Consequently, we determined that variant (4) was the best since it had the potential of
providing a better physical interpretation of the regression coefficients. The short-term data is
likely to provide the large variation in internal loads (along with the necessary insight to separate
the different operating modes of the building) necessary for proper identification of the regression
coefficient associated with this variable, while the utility bills will provide the necessary variability
in energy use, outdoor temperature and outdoor humidity levels to be able to identify the
associated model coefficients in a robust fashion. A more complete evaluation along with
documented analysis results of all four methods is being done as part of an ongoing Ph.D. thesis at
Texas A&M University.

2.6 Evaluation of proposed methodology

The results of an evaluation of the SMLP method using variant (4) is presented in this section.
The same data set of the Engineering Center analyzed in the Great ASHRAE Energy Predictor
Shootout II (Haberl and Thamilseran 1996) was selected because this would provide an absolute
means of evaluating the SMLP method as against other sophisticated modeling techniques
proposed by researchers world-wide.

The Engineering Center is an institutional building located in College Station, Texas. It comprises
32,440 m2 of classes, laboratories, computer rooms, offices, and an unconditioned underground
parking garage. It is a heavy structure building with precast concrete walls. The building is
occupied on weekdays from 7:30am to 6:30pm and on weekends from 7:30am to 5:30pm.
Computer facilities operate 24 hours a day. The building is primarily served with 12 dual-duct air
handlers operating 24 hours a day. Chilled and hot water for cooling and heating are supplied to
the building by the campus physical plants.

The best two weeks of hourly data of the Engineering Center were chosen according to the
criteria described above. Figure 2.1 presents the weekly variations of the outdoor dry bulb
temperature for College Station, Texas in the year 1990. Table 2.1 assembles intermediate results
obtained during the selection of the "best" two weeks of monitored data. In this manner, the
period from May 7th till May 20 th was finally selected.

The monthly utility bills were created by aggregating hourly values available for the Engineering
Center. Average monthly weather conditions were also calculating from hourly values. The
monthly chilled water use (CW) and the corresponding weather conditions are shown in Table
2.2. Some monthly values could not be used due to large gaps of missing hourly values for those
months, and for some months, only a few days were missing. The number of days for each month
for which we had clean and complete data are given in Table 2.2 along with monthly mean values
of the CW energy use and the climatic regressor variables. The ACW variable which represents
CW use on an average day of the month has been determined by only considering the actual
number of days per month when data was available.
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The following MLR monthly models were fit to the data by ordinary least squares regression:

ACW = 29.0706 + 1.5171T. with R2 = 0.7997 (2.5a)

and ACW = 159.379- 0.8049T.+ 4991.4729(w.-0.009)+ withR2 = 0.9019

The first model was chosen since the negative coefficient of the outdoor dry bulb temperature in
the second model is doubtful and misleading, even though a better correlation was obtained.
Since the ACW variable was used instead of the monthly CW, the outdoor dry bulb temperature
coefficient (1.5171) was converted to hourly values by dividing by 24.

The hourly MLR model was developed as follows. An hourly variable [CWi - (1.517 Ti)/24] was
calculated and regressed against the internal loads (LTEQi) and the occupancy indicator variable
(OCCUPj). The variable OCCUPi was assigned the following values from how the internal load
schedule varied at the Engineering Center:

OCCUPi = 0 for Weekdays, 7:00am - 7:00pm; 1 otherwise

0 for Weekends, Holidays, Semester Breaks, 7:00am - 6:00pm; 1 otherwise.

The following MLR hourly model was finally obtained:

CW - (L517 / 24) T. = 1.2581 + 0.00036(LTEQ ) + 0.02079(OCCUP.) (2.6)

i l ; *

This hourly model was used to predict CW use during days when monitored CW data was
intentionally removed by the organizers of the ASHRAE Energy Predictor Shootout II to evaluate
the accuracy of the models developed by the contestants. Time series plots of the removed data in
the Shootout competition, predicted with the SMLP method and measured, are shown in Figs. 2.2
- 2.7 different periods of the year. Generally the model seems to be satisfactory, though large
differences do appear. Some of the differences between model predicted and observed values
could be due to the fact that the building is operated differently that it was during the 14-day
period used for model identification. There is often no definite way to determine this, and it is in
such cases, that performing an evaluation with synthetically generated data (i.e., using a building
energy simulation program) can provide certain insights which actual field data cannot.

A comparison of the accuracy of the SMLP model's prediction with other models is shown in
Table 2.3. It is clear that the SMLP is only slightly poorer than the top contestants. The SMLP
prediction error on an hourly time scale had a CV (%) of 8.82 and an MBE (%) of 2.63. It is
worth mentioning that the top contestants used more sophisticated and involved methods such as
neural networks, MLR models for each hour of the day, and inverse binning method (Haberl and
Thamilseran 1995). All these methods made use of the approximately full year of hourly data set
to identify a model while the SMLP Method utilized only two weeks of hourly data, supplemented
by monthly utility bills and weather conditions (that can be obtained in a real situation from the
national weather service or from normalized weather conditions). Hence, not only are the
predicted hourly values accurate for the SMLP approach, but the results compare very favorably
with other more sophisticated approaches.
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2.7 Future Work

The above findings are limited to the specific case when the SMLP model used non-intrusive data
from the "best" two weeks of the year. We are currently evaluating the prediction accuracy of this
method, with other two-week periods. Specifically, we propose to repeat such analyses using the
"worst" two weeks as well as a "mediocre" two week period with the same Great Energy
Predictor Shootout II data.

Further, we propose to select 6-7 more buildings monitored under the Texas Loan STAR
program and repeat the above analyses. We shall select buildings of different types (offices,
classes, hospitals, dormitories), different HVAC types (CV, VAV), and different climates (Texas
and Minnesota). Actual monitored data presents a challenge in evaluating the proposed prediction
method since the operation of the building might (and does) change (without us being cognizant
of the fact) from year to year, or even, from season to season. Another problem arises from the
availability of clean hourly data covering at least one complete year, and preferably two years (one
for model identification, and the other year for evaluating the model prediction accuracy). Since
the conclusions of our study would be directly impacted by such considerations, we shall give
adequate care to selecting the proper buildings and "clean" data periods for further analysis.

Finally, there are two additional factors which we propose to explicitly consider. Some buildings
are monitored by the electric utility and 15 minute demand data may be available to supplement
the in-situ measurements. In such cases, a more accurate building load model could be identified
than resorting to utility bills. Secondly, the presence of a TES system will affect the proposed
building load model identification scheme since the billing data will also implicitly contain the
performance of the TES system. How to separate the effect of the TES system from that of the
building loads and the chiller needs to be investigated further.
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Figure 2.0a. Building Load Report (Katipamula et al. 1994)
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Figure 2.0b. Building Load Report Statistics.
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Figure 2.1. Time series plot of the weekly maximum, minimum and average outdoor dry bulb
temperature for the Engineering Center case study (for the year 1990).

Figure 2.2. Time series plot of the chilled water use (CW) of the Engineering Center for the week
ofMayl5-21 1990.
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Figure 2.3. Time series plot of the chilled water use (CW) of the Engineering Center for the week
of June 12-18 1990.

Figure 2.4. Time series plot of the chilled water use (CW) of the Engineering Center for the week
of July 7-13 1990.
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Figure 2.5. Time series plot of the chilled water use (CW) of the Engineering Center for the week
of August 7-13 1990. The model overpredicted the energy use during this period which falls
in the break between the Summer and the Fall semesters (Aug. 10-26 1990). The model
assumed an occupancy during this period similar to the occupancy of the weekends during the
semesters.

Figure 2.6. Time series plot of the chilled water use (CW) of the Engineering Center for the week
of September 4-10 1990.
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Figure 2.7. Time series plot of the chilled water use (CW) of the Engineering Center for the day
of November 27 1990
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Table 2.1. The two-weeks period selection procedure for the Engineering Center (College
Station, Texas) for the year 1990.
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Table 2.3. Comparison of the accuracy of the models of the top contestants in the Predictor
Shootout II competition and the SMLP for the chilled water use (CW) of the Engineering
Center.

(El to E5 stand for the competition entries, Haberl and Thamilseran 1996).
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3.0 ANALYTICAL MODELS FOR CHILLERS, FANS AND PUMPS

3.1 Background and Objectives

The final intent of the research performed under ASHRAE RP-1004 is to develop a practical
methodology for estimating the degree of seasonal and annual electric load (both in terms of
energy and demand savings) shifted by a thermal energy storage (TES) system that has been
installed in an existing commercial building. The methodology shall be usable by professionals
with some expertise in field testing and analysis. The emphasis shall be on practical usefulness and
wide applicability rather than on precision. Because of the numerous system and control variants
that may exist in the field, this research will devise a framework that defines the recommended
approach to tackling this problem. To this end, this research will consist of essentially three major
tasks:

(i) developing or evaluating existing methods to perform in-situ short-term tests that includes
recommendations on the duration and the time of the year when such tests are to be performed,

(ii) developing or evaluating existing models of the building and the cooling system in the
framework of which the in-situ, short-term test results can be analyzed and long-term predictions
of the electric load shifted can be predicted; and

(iii) illustrating/validating the merit of the two above tasks with monitored data from 3 TES sites.

Task la and 2b of our proposal involve a literature review and a description of the proposed
analytical models. The section pertaining to a literature review and proposed methodology of
predicting long-term building loads from short-term data is described in a separate document. This
document limits itself to the equipment associated with the cooling system that supplies cooling to
the HVAC system.

We have suggested, in our proposal, to evaluate two different analytical approaches:

(a) a component based approach that involves developing and characterizing individual
components of the system (such as the building, storage tank, chiller, cooling pumps and
circulating fans) in terms of climatic variables and other appropriate parameters. The performance
of the cooling system under different operating modes is then predicted by assembling these
components appropriately and performing a chronological hour-by-hour simulation during the
entire season or the entire year;

(b) a lumped model approach where macro-models of the entire cooling system will be developed
for each operating mode, and a modified bin-method (ASHRAE, 1997) type of analysis over the
pre-specified day-types (typically weekdays and weekends) will be used to determine the seasonal
or annual energy and demand savings as a result of the TES system.

This section will limit itself to approach (a) described above, while a separate section will concern
itself with analytical approach (b). The objective of this section is to review existing literature of
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appropriate component models and in-situ measurements for chillers, fans, pumps and TES
systems which we deem appropriate to our research, and state the types of models which we shall
evaluate with the monitored data collected in the framework of this research.

Much of the literature on testing of HVAC equipment is based on stand-alone testing of a single
component in a dedicated test facility with laboratory-grade measurements and limited specific
objectives. Accurate evaluation of energy efficiency improvements/alternatives of installed
equipment requires their in-situ field performance. Unfortunately, manufacturers' data and
laboratory performance measurements are inadequate because often there is considerable
differences between the two. Field testing can have many different objectives, as well as involve
widely varying equipment configurations and limits on measurement techniques and accuracy.
Further, the mathematical models based on which the monitored data will be analyzed in order to
characterize the equipment in-situ performance are different than those used for design purposes.
They are typically macro-models consisting of a relatively few model parameters whose
coefficients need to be identified from the monitored data, usually by regression analysis. This
approach falls under "inverse modeling" approach described in ASHRAE (1997).

The effort in performing a literature review on cooling pumps, fans and chillers and in proposing
analytical models and in-situ monitoring protocols of such equipment is considerably reduced
since the ASHRAE-funded research (RP-827) has recently been completed. The results from this
research are documented in Phelan et al. (1994, 1996, 1997 a, b c) and we shall use many of their
conclusions and recommendations in the frame work of this research. An overview of the
methods, specifically as they relate to this research is briefly presented.

3.2 General approach of the component based model

3.2.1 Overall system model

Typically, a TES system consists of several air handler terminal units in the building which supply
the required cooling (and heating) energy to meet the building loads, several pumps, as well as
several chillers. In the framework of this research, we shall assume these to be lumped into one
piece of equipment of each type as shown in Fig.3.0 Following Braun (1992), the total electrical
power consumed in order to provide the necessary cooling energy to the building is given by:
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(3.1)

where E ahu is the power consumed by the air handlers in the building,
E wdgpump is the power consumed by the pump(s) to circulate chilled water in the building,
E Chiiier is the power consumed by the chiller(s),
E chiiier pump is the power consumption of the cooling plant consisting of the condenser

water pump to the cooling tower (and the fan in the cooling tower fan which we assume to be
operated under constant air flow rate), and the pump used to circulate chilled water in the
primary loop of the evaporator (which is often different than EbidgPump), and
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E storage pump is the pump(s) used by the TES.

The component-based method involves taking in-situ measurements of each of these equipment
individually and identifying the empirical coefficients of the appropriate performance models by
regressing the monitored data. Subsequently, depending on how the entire system comprising of
the building, chiller and TES is operated, the appropriate individual component model equations
are simultaneously solved to predict the associate power (or the hourly energy used) by the
individual equipment, and consequently that of the entire cooling system. These equations would
then directly allow the analyst to determine the seasonal or annual energy and demand in that
building for a given set of conditions. If the equations have been developed for the baseline (i.e.,
non-TES system) and TES cases, then the energy and/or demand reductions can be accurately
assessed for normalized conditions.

3.2.2 Approach used in RP-827

The approach adopted in RP-827 is directly pertinent to this research, and a brief description of
RP-827 is given below. In 1994, ASHRAE undertook research project RP-827, entitled
Methodology Development to Measure In-Situ Chiller, Fan, and Pump Performance. The overall
objective of this research was to develop and evaluate methods for performing in-situ testing of
mechanical equipment to determine annual energy use characteristics. More specifically, a set of
short-term, in-situ test methods were developed to provide performance information that could be
used in long-term energy calculations. For fans and pumps, six different test methods were
evaluated, such as single point measurements, single point measurements along with
manufacturers performance curves, multiple point tests with loads imposed either artificially at the
pump or at the building zone level, and passive monitoring methods. The methods generally result
in statistical relationships that express power consumption as functions of part-load ratio and, in
the case of chillers, system operating temperatures.

The development of these methods was based on the literature survey of laboratory and field
testing methods described by Phelan et al. (1994). The methods have been guided by the
following philosophy:

(a) There will not be a single best method for all situations. In some situations, limited resources
for testing and evaluation may allow only a single field measurement. In other cases, a mechanical
system can be monitored for a full day, but the methods cannot intrude on normal system
operations. In yet other situations, false loads can be readily imposed on the systems outside of
normal operating schedules. Therefore, a set of test procedures has been developed, each having
different minimum measurement requirements.

(b) There are many existing standards for experimental measurements and laboratory testing of
mechanical equipment performance. The in-situ methods draw on the existing component testing
procedures as much as possible, extending these methods to account for the effects of system
installation, operation, and control.
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(c) The evaluation of annual energy consumption and peak demand characteristics for installed
HVAC equipment requires knowledge of the operating load on the system, both at design
conditions and throughout the year. However, measurement and characterization of equipment
loads were outside the scope of RP-827. (This aspect of building load prediction from short-term
tests is explicitly addressed in the framework of the current RP-1004 research). Therefore, the test
methods require the user to provide the load distribution, often presented as the number of hours
of occurrence of a particular load range.

(d) Annual energy consumption of mechanical equipment is significantly affected by the system
control strategy. Therefore, any effort to measure equipment performance for energy
characteristics must include the control system within the measurement environment. In particular,
any methods of artificially loading the equipment to obtain a rich data set must be applied outside
the equipment control envelope.

(e) The prediction of annual energy use from in-situ measurements involves several distinct
uncertainties. The in-situ test methods should be accompanied by comprehensive methods of
uncertainty analysis accounting for each of these sources.

Given the considerations outlined above, a set of in-situ test methods has been developed for
chillers, fans, and pumps (Phelan et al., 1996, 1997 a, b). In all cases, a relationship between
power consumption and "load", which varies with each equipment type, is developed for the
equipment and system using a combination of direct measurements, statistical regression analysis,
manufacturer's data, and engineering principles. Details of the protocols for individual
measurements, including guidelines for placement of instrumentation and accuracy of
instrumentation, are based on accepted industry standards for stand-alone equipment testing.

In general, each testing guideline specifies the following test characteristics:

(i) physical characteristic to be measured (power, flow, pressure, etc.)

(ii) number of data points required

(iii) accuracy of measurements

(iv) reference to existing applicable measurement standards

(v) methods of artificial loading (as required)

(vi) calculation equations and uncertainty analysis.

Several of the methods involve measurements under a range of load conditions. In some
methods, the measurements are taken during times of natural load changes while in others, the
load variations are imposed by the user. In such cases, the loads are imposed to represent
variations as they would normally occur.
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The methods developed under RP-827 were evaluated using long-term measured data on fans,
pumps, and chillers. Typically, energy consumption estimates were determined by applying the
test methods to equipment monitored under the Texas LoanSTAR program (Haberl et al., 1996).
(Additional evaluation was also performed using other field data, as necessary.) The suitability of
the test methods was evaluated by comparing predicted long-term energy consumption with
measured energy use.

3.4 Electric power consumed by building air handling units

The theoretical aspects of calculating fan performance are well understood and documented. Fan
capacity and efficiency are calculated from measurements of static pressure, velocity pressure,
flow rate, fan speed, and power input. The necessary instrumentation is shown schematically in
Fig.2. Measurement techniques and calculations are detailed in the ASHRAE, AMCA, and
ASME standards described by Phelan et al. (1997a), and this research proposes to base the
measurement protocols on these recommendations if needed.

In order to model electricity used by air-handling units, we need to distinguish between three
building air distribution system types and their control (Phelan et al., 1997a):

(a) constant air volume (CV) systems;

(b) variable air volume (VAV) systems with no fan control (i.e., fan operates at constant speed
and flow modulation is achieved by means of dampers); and

(c) variable air volume systems (VAV) with fan control (i.e., fan speed is varied along with
damper position to regulate flow; this being more energy efficient than (b) above).

In CV systems, E ahu is essentially constant during the period during which the building HVAC
system is operated. There may be minor variations in power consumption as the density of the air
varies with changes in the air temperature. Hence a one-time measurement during the occupied
period of the building (and, perhaps, one during the unoccupied period in case the AHU is shut
down) is adequate.

In both cases (b) and (c), E ahU is a function of the building loads, or more specifically the air
supplied to the building mair;bidg. Phelan et al., (1997a) have studied the predictive ability of linear
and quadratic models between Eahu and mair,bidg and concluded that though quadratic models are
superior in terms of predicting energy use, the linear model seems to be the better overall
predictor of both energy and demand (i.e., maximum monthly power consumed by the fan). This
is a noteworthy conclusion given that theoretically as well as monitored field data presented by
previous authors (for example, Englander and Norford, 1992 and Lorenzetti and Norford, 1993)
indicates a third order polynomial. Therefore, we propose to evaluate the linear, quadratic and the
third order polynomial functional forms for Eahu and investigate the predictive ability of these
models with both m^bidg and Qbidg as the regressor variables. If models based on the latter
variable perform well, then one need not measure mair,bidg during the in-situ measurement protocol.
We realize that in a VAV system, there is a one-to-one correlation between these two variables
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only until the minimum threshold flow rate to the building is reached, and so appropriate
corrections need to be included in a model with Qbidg as the regressor variable.

3.5 Power consumed by pump(s)

3.5.1 General considerations

The theoretical aspects of calculating pump performance are well understood and documented.
Pump capacity and efficiency are calculated from measurements of pump head, flow rate, and
power input. The type of instrumentation needed is shown schematically in Fig.3. These
calculations and measurement techniques are detailed in the Standards promulgated by ASME and
the Hydraulics Institute, as described by Phelan et al., (1997a). Recommendations on how to
perform pump measurements have also been made by Phelan et al., (1997a).

In the same manner as fans, we need to distinguish the operation of circulating pumps in buildings
and in cooling equipment depending on how they are modulated during part-load operation for
the following types of pumps:

(a) constant flow pump with a three way bypass valve to control the amount of heat transfer in the
cooling coils;

(b) variable flow pump with a two-way valve to throttle the flow; and

(c) variable flow pump with a variable speed drive.

3.5.2 Power consumed by the building pump(s)

In constant flow systems, E bidgPump is essentially constant during the period in which the building
HVAC system is operated in a constant manner (i.e., there are no major pressure variations in the
system). Hence a one-time measurement during the occupied period of the building (and, perhaps,
one during the unoccupied period) is adequate for those cases where the building pump energy
needs to be measured.

However, in both cases (b) and (c), EbidgPump is a function of the building loads or more
specifically of the fluid flow rate mwater,bidg. Phelan et al., (1997a) have studied the predictive ability
of linear and quadratic models between EbidgPump and mwater,bidg and concluded that quadratic
models are superior to linear models. We propose to evaluate both linear and quadratic functional
forms for Ebidg,PumP and investigate the predictive ability of these models with both mwater)bidg and
Qwdg as the regressor variables If models based on the latter variable perform well, then one need
not measure mwatersbidg during the in-situ measurement protocol. We realize that in a VAV system,
there is a one-to-one correlation between these two variables only until the minimum threshold
flow rate to the building is reached, and so appropriate corrections need to be included to a model
with Qwdg as the regressor variable.
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3.5.3 Power consumed by the chiller pump(s)

Normally, there are two separate pumps used by chillers: the condenser pump used to circulate
the water to the cooling tower, and the pump which circulates water through the evaporator.
More strictly, there are two pumps at the evaporator (Hartman, 1996): one for the primary circuit
which maintains a constant chilled-water flow through the chiller, and one for the secondary
chilled-water flow to the building. In this section, we deal specifically with the primary loop
pump, while the secondary loop pump can be (if present) be combined with the building pump
addressed in section 4.2. As discussed by Eppelheimer (1996), controlling head pressure in
water-cooled chillers has long been achieved by varying the condenser flow rate. However, flow
rate through the evaporators is normally not varied. Though several people have suggested ways
and means of modifying the present day controls in order to achieve variable evaporator flow and
hence better energy efficiency, the current generation of chillers can be assumed to have constant
flow through the evaporator.

3.5.4 Power consumed by the TES pump(s)

The flow rate to the TES whether during charging or during discharging may or may not be
constant depending on the specific design. Further, not all TES systems use a separate pump for
storage. Such factors need to be explicitly recognized during data collection and model
identification.

3.5.5 Aggregated model for all auxiliary equipment

Submetering each and every pump (or fan) and then developing appropriate individual models
may be too complex for practical applications. Since the net electricity used by the various pumps
is usually small compared to that of the chiller, it would be more practical to only monitor the
combined electricity used by all pumps and develop one aggregated model for all the auxiliary
equipment. Models as discussed above can be evaluated with gathered data to identify the most
appropriate model. This is the approach which we advocate in the framework of this research
project.

3.6 Power consumed by chiller

3.6.1 Description of different models

The theoretical aspects of calculating chiller performance are well understood and documented.
Chiller capacity and efficiency are calculated from measurements of water flow, temperature
difference, and power input (see for example, Liu et al., 1994, Hydeman, 1997, Phelan et al.,
1997b). Typical measurement locations are shown schematically in Fig.4. Calculations can also
be checked by a heat balance performed on the entire system. These calculations and ARI and
other ASHRAE measurement techniques are detailed in Phelan et al., (1997b).

There are basically two types of models to describe chiller performance, polynomial and
thermodynamic types. These are described below:
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3.6.1.1 Polynomial models

This type of model assumes a polynomial function to correlate chiller (or evaporator) thermal
cooling capacity or load Qevap and the electrical power consumed by the chiller (or compressor)
Pcomp with the relevant number of influential physical parameters. For example, based on the
functional form of the building simulation software DOE-2 (LBL, 1980) models for part-load
performance of energy equipment and plant, Pcomp can be modeled as the following tri-quadratic
model:
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(3.2)

In this model, there are 11 model parameters to identify, but since all of them are unlikely to be
statistically significant, a step-wise regression to the sample data set would yield the optimal set of
parameters to retain in a given model.

Braun (1992) has used bi-quadratic model with two regressor variables and containing six
empirical coefficients, namely cooling load on the chiller (Qevap) and the difference between the
ambient wet-bulb temperature TWb and the fluid temperature leaving the evaporator (or the supply
temperature to the building) T^"'p:

The model coefficients ao to as are determined by regressing data obtained from actual monitoring.
We propose to evaluate slight variants of this model, for example, use the inlet temperature to the
condenser or the temperature of the water leaving the cooling tower rather than Twb so as to be
consistent with the chiller thermodynamic model described below. This is an important criterion in
that models for the different components should be formulated in terms of as few physical and
climatic parameters as possible in order to minimize the number of channels that need to be
monitored during the in-situ testing. Several other authors (for example Hydeman, 1997) have
also proposed slightly different variants of such polynomial models. Therefore, we propose to
evaluate these generic models with the monitored data collected in the framework of this research.

3.6.1.2 Thermodynamic models

In contrast to polynomial models, which have no physical basis (merely a convenient statistical
one), thermodynamic models are based on thermodynamic considerations for a chiller. Such
models are preferred because they generally have fewer model parameters that appear in a
functional form with a scientific basis. Hence the model coefficients tend to be more robust,
leading to sounder model predictions. Currently there is only one such thermodynamic model,
which has appeared in two forms, described below.

(3.3)
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3.6.1.2a Complete Gordon-Ng model

The complete chiller model proposed by Gordon and Ng (1994,1995) and by Gordon et al.
(1995) is a simple, analytical, universal model for the chiller performance based on
thermodynamic considerations and linearization of heat losses. These thermodynamic models were
also recommended bin RP-827 (Phelan et al., 1997b). The model predicts the dependence of
chiller COP (defined as the ratio of chiller (or evaporator) thermal cooling capacity QevaP divided
by the electrical power consumed by the chiller (or compressor) Pcomp ) with certain key (and
easily measurable) parameters such as the fluid (water or refrigerant) return temperature from the
condenser Tc'"nd, fluid temperature leaving the evaporator (or the chilled water supply temperature

to the building) T "̂'p , and the thermal cooling capacity of the evaporator. The complete Gordon-
Ng model is a three-parameter model which takes the following form for model parameter
identification by regression:

(3.4)

from which the three parameters are identified by multiple linear regression.

3.6.1.2b Simple Gordon-Ng model

Uniform and systematic procedures for in-situ field measurements of centrifugal chillers were also
developed/proposed by Phelan et al. (1997) under the ASHRAE RP-827 project in order to be
able to use the Gordon-Ng chiller model to evaluate annual electrical energy consumption and
peak demand loads. They found that many chiller systems, in which in-situ tests are being
performed during one season of the year, do not exhibit the required variation in Tc'"nd and T "̂'p to

support a model such as given by eq.(3.4). Under such conditions a simpler two-parameter model
has been advocated, namely:

(3.5)

3.7 In-situ testing of chillers

Phelan et al. (1997b) also found that the simple Gordon-Ng model identified from in-situ data
does an excellent job of predicting the total electricity consumed by the chiller (a difference of
only 0.54% is reported on a seasonal basis) while the predicted maximum demand is poorer but
acceptable (with a difference of 4.3% from the measured maximum). Haberl et al. (1997) have
also presented results of an analysis involving predicting electricity use and demand of a chiller
during different summer months of the year using chiller parameters identified from in-situ chiller
measurements. Since the results of this study are directly relevant to the objectives of this
research, we shall describe the procedure and the conclusions of the Phelan et al.,(1997b) and
Haberl et al., (1997) studies.
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Haberl et al. (1997) used hourly monitored data during the entire cooling season to determine
predictive accuracy of three chiller modeling approaches, namely: (i) the complete Gordon and
Ng model (Gordon and Ng, 1994, 1995), (ii) the simplified Gordon and Ng model (which was
advocated by Phelan et al. (1997b) in the framework of the ASHRAE RP-827 in-situ chiller
measurement project), and (iii) the quadratic functional form used by DOE-2 to model part-load
equipment and plant performance. The comparison has been made by identifying chiller model
parameters from monitored hourly data of chiller under passive conditions, (i.e, normal operation
from two different periods): (a) from the first 10 days of May, and (b) from two days each of
May, June, July, August and September, in order to illustrate the corresponding differences in
prediction accuracy which may result from the choice of the time of the year during which the in-
situ test is performed.

The study by Haberl et al., (1997) applied the three above models to monitored data from the
ASHRAE RP-827 site in Texas in order to predict chiller power during a complete summer
period. The site is Victoria High School located in Victoria, Texas, and is the same one used by
Phelan et al., (1997b). Two water-cooled centrifugal chillers supply cooling to approximately
257,000 square feet of conditioned space. All HVAC equipment operate only during occupied
hours, i.e. from 6:00 a.m. till 8:00 p.m.. The HVAC system is manually shut down during
unoccupied periods and weekends. The analysis which follows is based on monitored data from
one chiller only.

Monitoring equipment was installed as part of the Texas LoanSTAR program (Haberl et al.,
1996) which included monitoring the following at an hourly time scale:

(a) evaporator thermal load, Qevap

(b) compressor power, Pcomp

(c) Supply and return chilled water flows (only the supply temperature T™a'p is actually needed by

the model)

(d) cooling water supply and return temperatures (only the inlet temperature to the
condenser Tc'̂ d is actually needed by the model)

(e) other quantities such as electricity used by the pumps and the flow rate to the evaporator are
also measured, but do not appear in the model.

The procedure to evaluate how well the three chiller models fare as in-situ models consists of
identifying the model parameters from a relatively short data period (akin to an in-situ test) and
determining the accuracy of the model in predicting hourly Pcomp values during an entire summer,
(specifically May to September 1996). Since model parameters of building energy related
equipment are usually better identified from regressor data, an earlier premise was that the in-situ
test procedure would yield more representative model parameters if the monitoring time scale of
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one hour be reduced so that initial transients would provide the needed variability. Thus, one
minute data was gathered during two days in summer for model parameter identification. The one
minute data was not compatible with the resolution of the digital measuring instrument and so 5
minute averaging of the data was performed as described by Figueroa (1997). However, it was
found that the model identified from one day's data gave a bias in predicting Pcomp when applied to
data from the other test data. Since the Gordon-Ng model is applicable to steady-state
performance, it is clear that the model parameters should not be identified from a start-up
transient test (which contain dynamic conditions) in an effort to obtain a larger scatter in the range
of variation of the regressor variables (namely, T™a'p, Tc'"nd and Qevap)- It is better to use part of the

hourly monitored data itself, and study the predictive accuracy of the corresponding model over
the entire summer period.

In a effort to systematically study the prediction accuracy of the three chiller models whose
parameters have been identified from in-situ data, Haberl et al. (1997) have considered two
different periods containing the same number of hourly data: (a) data taken from one season only
(first 10 days of May 1996), and (b) data taken from several months (2 days each from the 5
months, namely May, June, July, August and September). It is obvious that in-situ test (b) would
provide a wider range of variation in the regressor variables than would 5 days in May alone, and
hence allow more representative model parameters to be identified. The general conclusions of the
study were as follows:

(a) the simple Gordon-Ng model (eq. 3.5) allows accurate prediction of monthly chiller electricity
use and demand irrespective of the time of the year from which in-situ tests are performed in
order to determine model parameters. The prediction accuracy for monthly energy use is less than
3% while that for demand is less than 3.5%. Both these findings are in general agreement with
those of Phelan et al. (1997b).

(b) the tri-quadratic model (eq. 3.2) is very accurate only when the model parameters are
identified from monitored data that cover the full range of variation of climatic and load variation
which the chiller is likely to experience; otherwise it is very unstable and can give grossly
misleading predictions.

(c) the complete Gordon-Ng model (eq. 3.4) has little to recommend it in predictive accuracy. For
water cooled chillers, the variation in the water entering the chiller may not be enough to support
such a model. Hence only in climates and for chillers which are operated and controlled such that
they experience large variations in T "̂'p and Tc'"nd during the year is there a merit in considering
such a model.

(d) It is very important to realize that the Gordon-Ng model is strictly applicable for steady-state
operation of the chiller and should not be used to predict COP or power use during start up or
shut-down periods (which may be of the order of one hour or more in many cases). Note that the
model was originally developed and validated from steady-state data gathered from laboratory
tests by Gordon and Ng (1994, 1995). Though Gordon et al., (1995) have applied the model to
chiller data in the field as a case study, there seems to be a need for energy and chiller equipment
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professionals to better understand and appreciate the finer nuances of analyzing in-situ chiller
performance data in the framework of the various chiller models. We propose to passively
analyze monitored chiller data from another site the same way as described in the Haberl et al.
(1997) paper for the site of Victoria, TX, in order to assure ourselves of the generality of these
conclusions.

3.8 Summary of Analytical Models for Chillers. Fans and Pumps

This document reviewed existing literature on in-situ test methods for fans, pumps and chillers so
that appropriate performance models can be identified to be used for long-term performance
prediction. Since an ASHRAE project (RP-827) was recently completed, we propose to largely
use their recommendations. However, there are some alternate models for fans, pumps and
chillers which have been described in this document, and which we shall evaluate with monitored
data gathered in the framework of this research project. The thrust of this research is towards
developing and evaluating in-situ test methods and models for the TES system, while those of the
associated equipment are less of a concern given that it was researched by RP-827.
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Figure 3.0 Schematic of combined building HVAC system and thermal storage system (Braun
1992).
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Figure
Figure 3.2: Typical Centrifiigal Pump with Minimum Required Instrumentation (from Phelan et
al., 1997a)
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Figure 3.3: Typical Chiller with Minimum Required Instrumentation (from Phelan et al., 1997b)
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4.0 DETERMINATION OF THE LONG-TERM PERFORMANCE OF COOL STORAGE
SYSTEMS

4.0 Background.

A method for determining the long-term performance of cool storage systems should include the
following steps:

• Carry out field performance testing. This step requires definition of the following:

a. Data points to be monitored

b. Appropriate monitoring period

c. Data collection procedures

• Determine the annual load frequency distribution.

• Characterize the performance of the cool storage system during the monitoring period.

• Estimate the annual performance of the cool storage system with the annual load distribution.

• Define an appropriate comparison system.

• Characterize the performance of the comparison system.

• Estimate the annual performance of the comparison system with the annual load distribution.

Each of these steps is discussed below.

4.1 Field Performance Testing

ARI (n.d.) described a laboratory test method for the purpose of rating cool storage devices at a
specific test condition. NAESCO (1993) outlined a basic method of determining thermal storage
system energy and demand savings. ASHRAE Standard 150P (ASHRAE n.d.) included
instrumentation requirements, methods for verifying instrument accuracy, and information
required prior to testing. EPRI (1988) provided recommendations for monitoring cool storage
systems. Gillespie (1997) described instrumentation selection, installation, and uncertainty issues
for monitoring a cool storage system. Hensel et al. (1991) determined flow to and from a chilled
water storage tank by correlating pitot-tube measurements with a mass balance based on orifice-
plate measurements at other locations in the system. Dorgan and Dorgan (1995) and Dorgan et
al. (1995) described methods for data verification and post-processing.
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4.1.1 Data Points to be Monitored

Our review indicates that minimum data points to be monitored include the electric demand and
energy use of the chiller(s) and auxiliaries, and the thermal energy (cooling) supplied to or from
storage, chiller(s), and load. Requirements for monitoring individual temperatures and flow rates
will be determined in Task 2 for the specific analytical approach(es) evaluated under that task.
Instrumentation requirements will be defined according to the recommendations of ASHRAE
Standard 150P (ASHRAE n.d.).

4.1.2 Appropriate Monitoring Period

The monitoring period must be short enough that it will be practical to apply. However, it must
be long enough, and occur at an appropriate time of year, to capture sufficient variation in loads
to accurately predict long-term performance. A two-week data collection period is proposed as a
starting point. The length and appropriate season of the data collection period will be evaluated
in Task 2.

4.1.3 Data Collection Procedures

The specific data to be collected will be determined by the selected approach for characterizing
the system performance. The test methods will be in accordance with the requirements of
ASHRAE Standard 150P (ASHRAE n.d.) where applicable.

4.2 Determine the Annual Load Frequency Distribution

Depending on the selected analytical approach, the load frequency distribution may be defined in
terms of day-type, outdoor temperature-time of day bins, or mode of system operation.
Determination of load frequency distributions is discussed in detail in a separate section of the
report.

4.3 Characterize the Performance of the Cool Storage System During the Monitoring Period.

Two possible simulation schemes have been identified for characterizing the cool storage system
performance:

• Chronological or hour-by-hour simulation, performing a calculation for each of 8760 hours in
the year.

• Characteristic daily profile approach, whereby the cool storage system operation is
characterized on the basis of 24-hour daily cycles.

Bou Saada and Haberl (1995a, 1995b) described the use of weather daytyping for characterizing
building energy usage. Baughman et al. (1993) developed a "characteristic days method" for
evaluating cool storage system performance. Daily cooling coil loads (kBtu/day) were found to
be correlated with the peak daily temperature. A set of fifteen days was selected to represent the
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range of variation of cooling coil loads over the year. Performance of a cool storage system was
estimated for each of these days using a computer model. Each month of the year was
characterized according to the number of each of the characteristic day-types occurring in the
month. (Presumably weather data for a typical year was used to perform this characterization.)
The storage system demand and energy use for each month was determined from the maximum
demand and total energy use of the day-types in the month.

We anticipate that the characteristic daily profile approach will involve defining a number of
representative daily load profiles, in terms of the daily peak load, the high temperature for the day,
or some other appropriate parameter. The response of the cool storage system to each of these
daily load profiles is modeled in detail. Monthly and annual load distributions are defined in terms
of the number of occurrences of each of the representative daily profiles. Annual performance is
determined by multiplying the results for each profile by the number of occurrences. Details of
this approach will be developed under Task 2.

Elovitz (1990) used a spreadsheet-based method to estimate savings of several proposed thermal
storage systems, using a degree-hour method based on bin data to estimate annual load
distributions. This concept will be considered for applicability to the Task 2 development of
methodologies.

In addition to the two simulation schemes, we shall consider three different types of modeling
approaches:

• Individual component models of each piece of equipment
• Simplified lumped component physical models for each mode of system operation
• Simplified lumped regression or "black-box" models for each mode of system operation

The two component modeling approaches involve selecting appropriate model parameters to
characterize the cool storage system operation and its performance in response to building loads,
and in that sense, are similar to the calibrated simulation approach of ASHRAE Guideline 14P
(ASHRAE n.d.).

The individual component modeling approach would simulate the performance of each individual
chiller, pump, heat rejection device, and storage device, in response to the appropriate
temperatures and flow rates, for each time step. Simulation of these components is discussed in a
separate section of the report.

The storage device model should capture the heat transfer and fluid dynamic processes in the
storage tank. Several authors have described models for simulation of cool storage devices. Jekel
(1991), Jekel et al. (1993), Vick et al. (1996a, 1996b), Neto and Krarti (1997a, 1997b), and
Drees and Braun (1995) have developed models for internal melt ice-on-coil systems. Silver et al.
(1989) modeled an external melt ice-on-coil system. Strand et al. (1994) and Pederson et al. (n.d.)
describe the development of models for internal melt, encapsulated ice, and ice harvester systems,
and their implementation in the BLAST program. Gretarsson et al. (1994) developed a model for
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stratified thermal storage. Zurigat (1989) surveyed stratified thermal storage tank models and
compared several of the models against experimental data.

The component model approach also requires a characterization of the cool storage system
operating strategy. Braun (1992), Drees and Braun (1996), Ruchti et al. (1996), and Kawashima
et al. (1996) discussed conventional and optimized cool storage operation and control strategies.
We will use these references, and recent unpublished work by Elleson, to incorporate appropriate
modeling of operating strategies.

The simplified lumped component model would be limited to simulation of four generalized
components:

• building loads,
• chiller,
• storage, and
• auxiliaries (pumps and fans).

Several authors have addressed the use of single indices to describe cool storage system
performance. Tran et al. (1989) described the use of the Figure of Merit to characterize the
measured thermal performance of six chilled water storage systems. Rosen et al. (1988) discussed
the use of exergy analysis, rather than energy analysis, for the evaluation of sensible thermal
energy storage systems. Rosen (1992) developed several definitions of energy and exergy
efficiency for sensible thermal energy storage, for the overall storage process and for charging,
storing, and discharging periods. These indices may be applicable for use with the simplified
lumped component model approach.

The "black-box" models would be based on empirical or semi-empirical correlations of the
system's responses to load conditions. The system model, developed by regression, ANN, or
other techniques, returns the daily cooling system demand and energy use as a function of
maximum daily load, and possibly of day of week, time of year, or other parameters. The load
frequency distribution is expressed in terms of the maximum daily load as a function of weather,
and possibly of day of week, time of year, or other parameters.

The two component modeling approaches can be used in conjunction with either the hour-by-hour
or characteristic daily profile simulation schemes. The "black-box" modeling approach would be
most effectively used with the characteristic daily profile simulation scheme.

In Task 2, the simulation schemes and modeling approaches will be evaluated in more detail and
compared in terms of implementation cost, reliability, and uncertainty.

4.4 Estimate the Annual Performance of the Cool Storage System

The annual system performance is determined by combining the cool storage system model with
the load frequency distribution.
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• For the component model approach, the model is run with hourly loads for the year.

• For the characteristic daily profiles approach, the performance for each characteristic profile
is multiplied by the number of occurrences of each of the representative daily profiles.

• For the lumped system model approach, the model is run with the daily peak loads for the
year.

4.5 Define an Appropriate Comparison System

The primary goals of the proposed RP 1004 methodology are to determine energy savings and
demand shift. Therefore, it will be critical to address how the comparison system or "base case"
is to be defined.

The simplest case is one where: 1) the storage system uses a chiller that is clearly of the same type
that would have been used in a non-storage system, and 2) there is some operation of the storage
chiller at "conventional" chilling temperatures. The practitioner can determine the chiller
performance for conventional operation, and apply this performance to the annual loads.

The problem is more difficult in cases where

1. The storage cooling plant is of a different type than the most likely non-storage alternative.
For example, chiller vs. DX, air-cooled vs. water-cooled, multiple chiller types or sizes. The
methodology must address how to determine the comparison system's performance
characteristics.

2. There is no obvious choice for the system type that "would-have-been" installed in place of
the storage system. The methodology must address how to determine the comparison system
type.

3. The storage system has been designed with a "total system" approach, incorporating design
features such as a large chilled water temperature range, cold air distribution, an innovative
pumping configuration, or a nonstandard condenser flow rate. The methodology must address
to what extent auxiliary energy savings stemming from these features are credited to the cool
storage system, or whether they might also have been achieved with a non-storage system.

4. Actual performance falls short of the design intent or the manufacturers' equipment ratings.
The methodology must address whether a non-storage system would also have fallen short.

Akbari and Sezgen (1992) provided a methodology for comparing measured TES performance
with modeled nonstorage system performance. EPRI (1988) provided recommendations for
defining a simulated nonstorage system for performance comparison. Merten et al. (1989)
described measured performance of six cool storage systems monitored during 1987, and seven
systems monitored during 1988, and also describe a method for determining the appropriate
efficiency for the simulated nonstorage comparison system. Liu et al. (1994) used an average
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kW/ton vs. percent full load performance curve, based on field data from 30 centrifugal chillers,
to determine base-case system performance for comparison with cool storage field data collected
by Merten et al. (1989). Sohn (1989, 1991a, 1991b) described the results of field monitoring of
three ice storage systems, and a comparison with nonstorage system performance. Abbas et al.
(1995) and Abbas et al. (1996) presented results of field monitoring at seven cool storage sites.

Our intention is for the RP 1004 methodology to provide guidance for addressing these issues, but
it would be impossible to provide prescriptive methods that would apply to every case.
Ultimately, the basis for defining the base case that determines "savings" and "demand shift" will
need to be specified up front by the party that is interested in determining these quantities.
Therefore, we will seek guidance from the RP 1004 Project Monitoring Subcommittee regarding
this issue.

4.6 Characterize the Performance of the Comparison System

The performance of the comparison system is characterized by the same method as that of the
cool storage system.

4.7 Estimate the Annual Performance of the Comparison System

The annual performance of the comparison system is determined by the same method as that of
the cool storage system.
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5.0 PROPOSED METHODOLOGIES FOR PERFORMING UNCERTAINTY ANALYSIS

5.1 Objectives

The need for uncertainty analysis and its methodology is well documented in the literature, and
there are several textbooks which treat this subject with varying levels of detail. A proper
uncertainty analysis can be very complex and cumbersome especially if the potential user strives to
be very meticulous. There are three good references in the HVAC literature which we draw
attention to: ASHRAE Guideline 2-1986 (ASHRAE, 1990), ASHRAE RP-827 (Phelan et
al., 1997) and Appendix B of ASHRAE Standard 15OP on cool storage performance testing
(ASHRAE, 1997). The last reference is especially pertinent to this research given that it applies to
thermal energy storage (TES) systems and that a simplified and fairly complete treatment of the
various sources of uncertainty and simplified ways to deal with them is provided.

The objective of this document is to outline how we propose to deal with the issue of uncertainty
in the framework of the current research. We shall start with a brief discussion of the concept of
uncertainty, present the causes of uncertainty in what we think is a novel outlook, outline how we
propose to deal with (i) measurement errors in equations, (ii) errors related to the use regression
models, (iii) errors arising from both measurement errors and the use of regression models, and
(iv) errors in time series data.

5.2 Introduction

The concept of uncertainty is better understood in terms of confidence limits. Confidence limits
define the range of values which can be expected to include the true value with a stated
probability of obtaining that value (ASHRAE, 1990). Thus, a statement that the 95% confidence
limits are 5.1 to 8.2 implies that the true value will be contained between the interval bounded by
5.1 and 8.2 in 19 out of 20 predictions, or more loosely, that we are 95% confident that the true
value lies between 5.1 and 8.2. For a given set of n observations with normal or gaussian error

distribution, the total variance (var) about the mean predicted value (X') provides a direct

indication of the confidence limits. Thus the "true" mean value X of the random variable is
bounded by:

where talln_x is the t-statistic with probability of (1 - a 12) and (n-1) degrees of freedom

(tabulated in most statistical textbooks), and er2 is the estimated variance.

There are two separate sources of uncertainty or error (terms which we shall use interchangeably
though others like Phelan et al., 1997a distinguish between both) when dealing with analysis of
observed data such as that encountered in the framework of this research: (i) measurement errors,
and (ii) prediction error due to the regression model. A clear conceptual understanding of when
these arise is provided below.
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Consider a model such as: y =ao + ai. xi + a2. x2 where the x's are the independent variables and
a's are model coefficients. An uncertainty in the variable y can arise from three sources:

(a) in case the coefficients ao, ai and a2 are known with zero uncertainty (i.e., either they are
constants or are values which one can look up from tables such as steam tables, for example). The
uncertainty in the derived variable y is then only due to the measurement uncertainties present in
the x's. How to determine the uncertainty in y for such models or equations is given by the
"propagation of errors" formulae which most engineers are familiar with (and which is presented
in section 3). An example of this type of uncertainty is when charging capacity of the TES system
is deduced from measurements of mass flow rate and inlet and outlet temperature differences.

(b) when the x's are assumed to have no error in themselves but the coefficients ao, ai and a2 have
some inherent error (as a result of identifying them from regression to measured data). We have
prediction errors in the y variable under such a case since any regression model cannot explain the
entire variation in the regressor variable (this source of error, called model prediction error, is
addressed in section 4). An example of this source of uncertainty is when a simple regression
model is used to predict building loads from outdoor temperature (T). If the measurement error in
T is so small as to be negligible, then the uncertainty in predicting building loads falls in this
category.

when both the x's and the coefficients a's have uncertainties, the former due to measurement
errors and the latter because a regression model is identified from monitored data. The standard
practice in classical regression analyses is to assume no measurement error in the regressor
variables. Such an assumption is perhaps inadmissible for this research since we may then be
placing too much confidence in our predictions, i.e., underestimating the uncertainty. An example
of this source of uncertainty is when a polynomial model is used to predict pump electricity
consumption from measured values of fluid flow rate (which inherently have non-negligible
measurement errors). Although the statistical complexity is substantially enhanced when dealing
with this case, we shall address this issue in the current research (see section 5 below).

Finally, we shall try, at a later stage during this research project, to simplify some of these
formulae so as to be more usable by the ASHRAE community. This simplification will, however,
not be attempted in this document but later on as monitored data becomes available and the
validity of the simplifications can be tested.

5.3 Measurement uncertainty

5.3.1 Bias and random errors

Both measurement and model uncertainties consist of two types of error: a systematic or biased
error (b) and a random or "white noise" error (e ). The terms accuracy and precision are often
used to distinguish between bias and random errors. A set of measurements with small bias errors
is said to have high accuracy, while a set of measurements with small random errors is said to
have high precision (ASHRAE, 1990). Since bias and random errors are usually uncorrelated, we
can express measurement variance as:
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(5-3)

For some of the basic operations:

addition or subtraction:
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The error sources of monitoring equipment can be further divided into: (i) calibration errors, (ii)
data acquisition errors, and (iii) data reduction errors. The interested reader can refer to
ANSI/ASME standard (1990) for a more complete discussion. Bias errors include: (i) those which
are known and can be calibrated out by adjusting the data points after the measurements are
made, (ii) those which are negligible and are ignored, and (iii) those which are estimated and are
included in the uncertainty analysis.

It is usually cumbersome to perform an uncertainty analysis with data having known biases and
this is treated in ASHRAE (1997). It is far simpler to remove known biases from the data prior to
data analysis and only treat random errors. This is what will be done in the framework of this
research.

As for the random errors, the well-known Kline and McClintock (1953) method, described in
section 3.2, is widely used to determine measurement uncertainties in the derived variables.

5.3.2. Propagation of random errors (Kline and McClintock. 1953).

The uncertainty in a measurement or variable x is described by specifying the expected or mean

value x for the variable followed by the absolute uncertainty Ax at a certain confidence level

(usually 90% or 95%). This is written as: x = x± Ax . In general, the uncertainty Ay of a function
y = y(xi, x2,..,xn) whose independently measured variables are all given with the same confidence
level, is obtained by the first order expansion of the Taylor series (ASHRAE, 1997):

(5.2)

(5.4)

(5.5)

(5.6)

multiplication:

division:

For multiplication and division, the fractional error is given by the same expression. Say R = xy/z.
Then

(5.7)
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These approximations can be introduced into any equation to determine the uncertainty in the
result. This method is most convenient for complicated functional forms or for sets of
simultaneous equations. The types of equations encountered in this research are usually simple
equations or polynomials, which we shall use to a large extent.

5.4 Uncertainty due to regression models

5.4.1 Different sources of error

The determination of prediction errors from using regression models is subject to different types
of problems. The various sources of error can be classified into three categories (Reddy et
al., 1992):

(a) Model mis-specification errors which are due to the fact that the functional form of the
regression model is usually an approximation of the true driving function of the response variable.
Typical causes are: (i) inclusion of irrelevant regressor variables or non-inclusion of important
regressor variables (for example, neglecting humidity effects); (ii) assumption of a linear model,
when the physical equations suggest non-linear interaction among the regressor variables; and (iii)
incorrect order of the model, i.e., either a lower order or a higher order model than the physical
equations suggest. Engineering insight into the physical behavior of the system helps minimize
this type of error.

(b) Model prediction errors which arise due to the fact that a model is never "perfect". Invariably
a certain amount of the observed variance in the response variable is unexplained by the model.
This variance introduces an uncertainty in prediction. In essence, this uncertainty arises because
even though the "exact" functional form of the regression model may be known, the model
parameters are random variables as a result of randomness in the regressor and response variables.

(c) Model extrapolation errors which arise when a model is used for prediction outside the region
covered by the original data from which the model has been identified. Models identified from
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In many cases, deriving partial derivatives of complex analytical functions could be a tedious affair
and is error-prone mathematically. A simple computer routine could be written to perform the
task of calculating uncertainties without resorting to analytical methods (Holman and Gajda,
1994). Such a method is based on approximating partial derivatives by finite differences as
follows.
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short data sets, which do not satisfactorily represent the annual behavior of the system, will be
subject to this source of error. Although we cannot quantify this error in statistical terms alone,
but we can suggest experimental conditions to be satisfied which are likely to lead to accurate
predictive models. The prediction of building loads from short-term in-situ tests will suffer from
this type of error.

Both sources (a) and (c) are likely to introduce bias and random error in the predictions. If
ordinary least squares (OLS) regression is used for parameter estimation and if the model is
subsequently used for prediction, error due to source (b) will be purely random with no bias.
Thus, models identified from short data sets and used to predict seasonal or annual energy use are
affected by both (a) and (c) sources of error. The best way to minimize all the above sources of
error is to calibrate the instruments properly (so as not to have any bias errors) and increase the
number of data observations (or sampling points) and take observations under different operating
conditions that cover the entire range of variation of system operation.

It should be noted that no statistical assumptions regarding the errors need be made in obtaining
OLS parameter estimates. Information regarding the model residuals or errors is required only
when one wishes to specify confidence limits of these parameter estimates (Beck and Arnold,
1977).

Finally, the statistically efficient way of dealing with improper residual behavior (i.e., residuals
which have non-constant variance or show distinct patterns implying a serial correlation) is not to
use OLS but to use other regression schemes which will yield unbiased parameter estimates and
narrower confidence intervals. This is probably too demanding statistically for most ASHRAE
members, and an alternative approach, is to use OLS parameter estimates but to widen the
confidence intervals. Papers by Reddy et al., (1994), Ruch et al., (1997) and Reddy et al., (1998)
discuss these issues, especially as they pertain to statistical models for building energy use. Such
sources of error are usually secondary compared to the model prediction error and make the error
analysis much more complex. We propose to evaluate such effects with the data gathered in this
research project, and overlook such effects if they are small.

5.5 Prediction error of single variate linear models

Let us consider a simple linear model given by y = a + b.x which has been used to perform a least
squares regression to monitored x and y data. This regression equation can be used to predict
future values of y provided the x value is within the domain of the original data from which the
model was identified. We differentiate between the two types of predictions, as follows:

A mean response is where we would like to predict the mean value of y for a large number of
repeated xo values. The mean value is directly deduced from the regression equation while the
variance is (Draper and Smith, 1982):
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where MSE is the mean square error of the model, given by
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(5.9)

in the case of the simple linear model with two parameters.

(b) An individual or specific response where we would like to predict the specific value of y for a
specific value Xo. The specific response is directly deduced from the regression equation but its
variance is larger than the previous case and is given by (Draper and Smith, 1982):

(5.10)

(5.11)

Thus the 95% confidence interval for the individual response at level Xo is:

(5.12)

where to.025 is the value of the t-student distribution at an error level of 0.025 or 2.5% (i.e., a two-
tailed error distribution is assumed). In eq.(5.12) the confidence intervals for individual responses
will be wider than those of the mean response

(c) sum of values where we would like to determine the error in the sum of n values. For example,
we would like to determine the uncertainty in the electric power consumed by a pump during the
entire year where the hourly pump consumption is determined by using a regression model. If the
sum is made up of n predictions, we could determine the uncertainty in each prediction and then
use eq. (3.3.) to determine the uncertainty in the sum. It is often simpler to do a bin type of
calculation, and the appropriate equations are presented by Phelan et al. (1997).

5.6 Prediction error of multi-variate (or polynomial) regression models (Draper and Smith. 1981)

When dealing with multiple regression, it is advantageous to resort to matrix algebra because of
the compactness and ease of manipulation it offers. Consider a data set of n readings that include
k regressor variables. The corresponding multiple linear regression model is:

(5.13)
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Note that the same model formulation (as well as the subsequent error analysis provided the
prediction range is within the range used to identify the model) is equally valid to polynomial
models of the following type (Montgomery and Runger, 1994):

(5.17)

provided matrix X is non-singular and where b is the least square estimator matrix of /?

Pure regression models, even when they fit the data extremely well, should not be blindly used for
predictions outside the range of variation of the original data. One has a better chance of doing so
with models based on engineering (such as thermodynamic or heat transfer) considerations
specially if the model parameters are estimated accurately. It is practically impossible to
statistically determine the uncertainty or variance of predictions outside the range of variation of
the original data. Hence, the short-term to long-term prediction of building loads, for example,
which is part of this research, defies a rigorous uncertainty analysis. The only recourse is to
estimate the prediction uncertainty under specific case studies during which year-long monitored
data is available, and assume that the error would be approximately the same for other instances
as well. (This type of reasoning is what has been implicitly done in the framework of the
ASHRAE RP-827 research, Phelan et al., 1997). Also, since we shall be comparing two
alternatives, i.e., without (the baseline case) and with the TES system, the large uncertainty in the
load profile determination is likely to affect both alternatives equally, thus minimizing its
importance to this research.
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(5.14)

Let Xy denote the f1 observation of parameter j . Then eq.(4.13) can be re-written as a linearized
equation:

(5.15)

In matrix notation (with y' denoting the transpose of y), eq.(4.13) can be expressed as follows
(with the matrix dimension shown as subscripted brackets):

(5.16)

where p is the number of parameters in the model

and

and

(5.18)

The classical least-squares approach used by the majority of analysts is the OLS method where the

parameter set fi is determined such that the sum of squares function is minimized. This results

in the regression coefficients being determined from the following equation:
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(c) For the sum of m individual responses, the prediction error is given by Theil (1971):

where I is an identity matrix, i.e., a diagonal matrix of unity. Note that pre and post multiplying
the matrix within the square brackets by an unit vector is akin to summing all the elements of the
matrix.

5.7 Uncertainty of models identified with error in the regressor variables

How to determine prediction uncertainty of models identified from data where the regressor
variables had inherent measurement errors is extremely complex statistically. Most of the standard
text-books (for example, Draper and Smith, 1982) do no more than cursorily acknowledge this
case without providing the appropriate mathematical equations. However, this type of uncertainty
has direct bearing on this research; for example, the electric power consumed by a fan or pump is
a polynomial function of the fluid flow rate, which can only be measured to within 8-10%
uncertainty in the field. We have been able to identify a book (Fuller, 1987) which treats this
subject thoroughly. We shall apply the equations in that book to the current research.

5.8 Uncertainty in time series data

Time series data used to determine charging or discharging capacity of TES systems needs to be
handled differently from the cases described above. A fairly complete discussion is provided in
Annex B of the proposed ASHRAE standard 150P (ASHRAE, 1997). We propose to use the
procedures described in that standard as a starting point for our own research.

5.9 Concluding remarks

This document reviews the various sources of uncertainty which have to be explicitly considered
in our research. Appropriate equations of how we propose to determine the uncertainty in our
predictions are also presented. We realize that the statistical equations to determine prediction
uncertainty of regression models other than the simple one variable regression model are complex
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(b) The variance of an individual prediction is

(5.21)

(5.22)

(5.20)

(5.19)

where 1 is a column vector of unity.

Confidence limits at a significance level a are:

However, for predictions within the range of variation of the original data, the equations for
determining the variance in model predictions are well known.

(a) For the mean response at a specific set of xo values, the variance is:
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and may be beyond the comprehension of most energy professionals. Consequently, as part of this
research, we shall forsake some statistical rigor and endeavor to simplify these equations to a level
that practicing engineers could use.
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6.0 CANDIDATE TEST SITES

This section of the contains a complete list of sites that were considered candidates for monitoring
for the ASHRAE RP 1004 project. In the first column is the agency or university where the
system is located followed by the site contact, phone and FAX number. In the next column the
design engineering firm and design engineer are then listed with phone and FAX number. This is
followed by the chiller capacity, thermal storage capacity, chiller type, chiller manufacturer,
storage type, storage manufacturer. Finally, each site was asked whether or not they would be
willing to participate in the ASHRAE project and whether or not the plans were available for
photocopying.
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Table 6.1: Complete list of Thermal Storage sites considered for the RP 1004 project.
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The sites in Table 6.1 were evaluated according to the following criteria:

• Over 1000 ton-hours storage capacity
• Provides for diversity in storage technologies
• Load profile is representative of common storage applications
• Available and accessible for testing
• Owner willing to cooperate
• Currently instrumented with all or most of required instrumentation.

The most promising sites are listed in the following table.

Table 6.2 Short List of Sites for RP 1004 project.

These sites will be further evaluated for their suitability for testing, and the final candidates will be
selected with the concurrence of the PMS. The sites will be evaluated according to the following
criteria:

• Over 1000 ton-hours storage capacity
• Provides for diversity in storage technologies
• Load profile is representative of common storage applications
• Available and accessible for testing
• Owner willing to cooperate
• Currently instrumented with all or most of required instrumentation.
• Datalogger
• Storage flow
• Temperature entering storage
• Temperature leaving storage
• Load Btu measurement, or flow and entering/leaving temperatures
• Chiller power
• Auxiliaries power
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7.0 NOMENCLATURE
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bias error
number of regression parameters in the model
number of observation points (months, days, hours,...)
number of model parameters (=k+l)
t-statistic
mean value of X
model predicted value of X
significance level
random error
estimated variance of the model error
model prediction uncertainty
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APPENDIX

Specific information for selected thermal storage monitoring sites.
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Site #143

Delmar College
Corpus Christi, TX

Chilled Water
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DELMAR COLLEGE

Building Envelope:
• 681,592 sq. ft.
• 23 buildings, built in in 1940-present
• Conditioned floor area: 636,707 sq. ft.
• walls: variable construction
• windows: N/A
• roof: built-up flat

Building Schedule:
• Monday - Friday 7:30 am to 12:00 pm
• Saturday and Sunday - some buildings partially occupied

Building HVAC and Auxiliary Equipment
• Information for the individual AHUs in each building is not available. Campus has a mixture of single duct,

double duct constant volume, variable volume and DX units. All the new buildings have variable volume
system with DDC control.

• 1 - 1000 ton Trane Centrifugal Chiller
• 1 - 1000 ton Westinghouse Centrifugal Chiller
• Several DX units, total cooling capacity 300 tons
• 2 hot water boilers, 300 hp each

HVAC Schedule
• 24 hrs/day

Lighting
• mixture of florescent, incandescent in the classrooms, offices, and corridors
• metal halides, H.P. sodium and L.P. sodium in the Gym, swimming pool, for parking and security lights.

Proposed Maintenance and Operation Measures
• None

Proposed Retrofits
• thermal energy storage/industrial water source heat pump
• capacitors for power factor improvement
• interior lighting controls
• exterior lighting conversions
• fixture relamping
• Total loan amount $1,157,404 with audit estimated savings of $287,930/yr

Status of Retrofits
• Capacitors were installed in July 1992.
• Thermal storage system will be completed in November 1993. Heat pump became operational on June 30,

1993.

Delmar College - Whole Campus - April 1994
Texas Stale Energy Conservation Office Monthly Energy C o n s u m p t i o n R e p o r t ® Energy Systems Lab
LoanSTAR Monitoring k Analysis Ptogtam Version 2.2 Texas A&M University
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Delmar College Whole Campus June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University

92-00017-2-009-0 CL036 Paee 326



Delmar College Whole Campus June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University

Data points for the current month are shown as letters. Points from this month last year are shown as +.
Monday through Sunday are represented as M,T,W,HiF,S,U. All other points are shown as *.
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Delmar College - Whole Campus - June 1997

Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t © Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas A&M University



Delmar College - Whole Campus - June 1997
Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t © Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas A&M University
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Delmar College - Whole Campus - June 1997 _

LoanSTAR Monitoring k Analysis Program
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DEL MAR COLLEGE

Building Envelope:
• 681,592 sq.ft.
• 23 buildings, built in 1940-present
• conditioned floor area: 636,707 sq.ft.
• walls: variable construction
• windows: N/A
• roof: built-up flat

Building Schedule:
• Monday - Friday 7:30 am to 12:00 midnight
• Saturday and Sunday - some buildings partially occupied

Building HVAC and Auxiliary Equipment
• information for the individual AHUs in each building is not available. Campus has a mixture of single duct,

double duct constant volume, variable volume and DX units. All the new buildings have variable volume
system with DDC control

• 1 - 1000 ton Trane Centrifugal Chiller
• 1 - 1000 ton Westinghouse Centrifugal Chiller
• several DX units, total cooling capacity 300 tons
• 2 hot water boilers, 300 hp each

HVAC Schedule
• 24 hrs/day

Lighting
• mixture of fluorescent, incandescent in the classrooms, offices, and corridors
• metal halides, H.P. sodium and L.P. sodium in the Gym, swimming pool, for parking and security lights

Proposed Maintenance and Operation Measures
• none

Proposed Retrofits
• thermal energy storage/industrial water source heat pump
• capacitors for power factor improvement
• interior lighting controls
• exterior lighting conversions
• fixture relamping
• total loan amount $1,157,404 with audit estimated savings of $287,930/yr

Status of Retrofits
• capacitors were installed in July 1992
• thermal storage system was completed in November 1993. The heat pump became operational on June 30,

1993

Delmar College - Whole Campus - June 1997
Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t © Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas A&M University



Delmar College Whole Campus
Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program

1996 Annual Energy Consumption Report© Energy Systems Lab
Texas A&M University
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Delmar College - Whole Campus
Texas State Energy Conservation Office
LoanSTAR Monitoring &: Analysis Program

1996 Annual Energy Consumption Report© Energy Systems Lab

Texas AfcM University
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DEL MAR COLLEGE

Building Envelope:
• 681,592 sq.ft.
• 23 buildings, built in 1940-present
• conditioned floor area: 636,707 sq.ft.
• walls: variable construction
• windows: N/A
• roof: built-up flat

Building Schedule:
• Monday - Friday 7:30 am to 12:00 midnight
• Saturday and Sunday - some buildings partially occupied

Building HVAC and Auxiliary Equipment
• information for the individual AHUs in each building is not available. Campus has a mixture of single duct,

double duct constant volume, variable volume and DX units. All the new buildings have variable volume
system with DDC control

• 1-1000 ton Trane Centrifugal Chiller
• 1 - 1000 ton Westinghouse Centrifugal Chiller
• several DX units, total cooling capacity 300 tons
• 2 hot water boilers, 300 hp each

HVAC Schedule
• 24 hrs/day

Lighting
• mixture of fluorescent, incandescent in the classrooms, offices, and corridors
• metal halides, H.P. sodium and L.P. sodium in the Gym, swimming pool, for parking and security lights

Proposed Maintenance and Operation Measures
• none

Proposed Retrofits
• thermal energy storage/industrial water source heat pump
• capacitors for power factor improvement
• interior lighting controls
• exterior lighting conversions
• fixture relamping
• total loan amount $1,157,404 with audit estimated savings of $287,930/yr

Status of Retrofits
• capacitors were installed in July 1992
• thermal storage system was completed in November 1993. The heat pump became operational on June 30,

1993

Delmar College - Whole Campus
Texas State Energy Conservation Office 1996 Annual Energy Consumption Report® Energy Systems Lab
LoanSTAR Monitoring i: Analysis Program Texas AfcM University
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Site #144

Midland County Courthouse
Midland, TX

Internal melt - ice
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Midland County, Courthouse

Courthouse:
90,100 sq.ft. Five story and a basement, constructed in 1930.
The building is constructed with reinforced concrete foundation, structure, and walls.
Exterior walls have plaster and interior walls are wood or metal studs with painted gypsum board.
Windows are slightly tinted, single glaze with metal frame.
Flat roof is built up with gravel ballast. Roof is insulated.
Fifth floor houses a jail. Other floors house courtrooms and offices for support personnel.
Jail operates 24 hours/day. 365 days/year.
Other floors usually operate from 6:00a.m. to 8:00p.m. 6 days/week.

HVAC Equipment:
4 15 h.p. AHU's
1 10 h.p. AHU
1 3 h.p. AHU's
1 43 h.p. heating strip
7 rooftop packaged air conditioning units
1 3.4 MMBtu (input) boiler
1 7.5 h.p. CWP
1 210 ton screw chiller

Lighting:
945 2 lamp fixtures (34 watts) (operates 2756 hours/year)
142 2 lamp fixtures (34 watts) (operates 8760 hours/year)

Recommended ECRMs:
Energy Management System
Occupancy senors
Modify chiller piping and control
Electronic ballasts

Date of Retrofit:
Energy Management System & thermal storage was completed in August 1992
2-85 ton chillers were replaced by one 210 ton screw
chiller on 5/14/92. One of the old chillers has been taken out while one will be used as a backup.
Lighting modifications are still in progress

41
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Midland County Courthouse June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University

91-00009-4-008-0 CL031 Page 346



Data points for the current month are shown as letters.
Monday through Sunday are represented as M,T,W,H,F,S,U.

Points from this month last year are shown as +.
All other points are shown as *.

Midland County Courthouse June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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Midland County Courthouse - June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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Midland County Courthouse - June 1997

Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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MIDLAND COUNTY COURTHOUSE

Courthouse:
90,100 sq.ft.
five story and a basement; constructed in 1930
the building is constructed with reinforced concrete foundation, structure, and walls
exterior walls have plaster and interior walls are wood or metal studs with painted gypsum board
windows are slightly tinted, single glaze with metal frame
flat roof is built-up with gravel ballast, roof is insulated
fifth floor houses a jail. Other floors house courtrooms and offices for support personnel
jail operates 24 hours/day, 365 days/year
other floors usually operate from 6:00 am to 8:00 pm six days/week

HVAC Equipment:
4 15 h.p. AHUs
1 10 h.p. AHU
1 3 h.p. AHUs
1 43 h.p. heating strip
7 rooftop packaged air conditioning units
1 3.4 MMBtu (input) boiler
1 7.5 h.p. CHWP
1 210 ton screw chiller

Lighting:
945 2 lamp fixtures (34 watts) (operates 2756 hours/year)
142 2 lamp fixtures (34 watts) (operates 8760 hours/year)

Recommended ECRMs:
Energy Management System
occupancy sensors
modify chiller piping and control
electronic ballasts

Date of Retrofit:
Energy Management System & thermal storage was completed in August 1992
2-85 ton chillers were replaced by one 210-ton screw chiller on 5/14/92. One of the old chillers has been
taken out while one will be used as a backup
lighting modifications are still in progress

Comments:
the W/ft2 scale on the electricity consumption graph is only valid for the total electricity consumption
demand reported on the first page is the peak demand. It is not used for calculating the demand savings
from the thermal storage system. Billed demand based on the on-peak demand is used to calculate the
demand savings

Midland County Courthouse - June 1997
Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t ® Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas A&M University



Midland County Courthouse

Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program

1996 Annual Energy Consumption Report© Energy Systems Lab
Texas AfcM University

91-00009-4-008-0 CL031 Page 237

Comments
•k The percent columns indicate the number of hours reported in that month.

•k The LoanSTAR monitoring began in December 1991.

-k All the proposed retrofits were completed in August 1992.

* The unit costs used for estimating the audit and measured savings are: $0.0300/kWh and $10.72/kW-mo (ELED).

• Audit estimated savings from the completed retrofits are: $12,600 (ELE), $18,300 (ELED), and $30,900 (Total).
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Solid line represents measured energy use while the dashed line indicates
the energy that would have been consumed had the retrofit not been installed

A Electric 0 Cooling

Midland County Courthouse
Texas State Energy Conservation Office

LoanSTAR Monitoring i: Analysis Program
1996 Annual Energy Consumption Report© Energy Systems Lab

Texas A&M University
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Site #230

Austin Convention Center
Austin, TX

Internal melt - ice

November 1997, Preliminary Report Texas A&M, Drexel University, Elleson Engineering
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Monthly Retrofit Savings

All retrofits are in the bidding phase.
Expected start date of construction is December 1997.

Comments

Austin Convention Center City of Austin June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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Austin Convention Center City of Austin June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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Austin Convention Center - City of Austin - June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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Austin Convention Center - City of Austin - June 1997

Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t © Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas A&M University
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01 May97

Austin Convention Center City of Austin June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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CITY OF AUSTIN

Austin Convention Center

Building Envelope:
• 411,000 gross sq.ft.; 174,456 sq.ft. conditioned area
• 3 floors; comprised of Exhibit Halls, Ballrooms and Meeting rooms
• walls: granite with no insulation
• roof: flat built-up roof

Building Schedule:
• occupancy depends on events scheduleed, varies a lot. No events at night

Building HVAC and Equipment:
• two electric centrifugal chillers
• one 150Hp gas boiler
• several AHU's ranging from 5Hp to 50Hp
• several pumps ranging from 30Hp to 125Hp
• 2-spd, 40Hp CT fans

HVAC Schedule:
• not available

Lighting:
• metal halides, incandescent and fluorescent

Proposed Retrofits:
• lighting controls
• variable volume pumping conversion
• control modifications for building pressurization

Status of Retrofits:
• all retrofits are in the bidding phase. Expected start date of construction is December 1997

Other Information:
• lighting can be programmed through computer

Austin Convention Center - City of Austin - June 1997
Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t © Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas A&M University



Comments
•k The percent columns indicate the number of hours reported in that month.

•k The LoanSTAR monitoring began in July 1993.

• The unit costs used for estimating energy costs are: $0.0613/kWh and $5.00/MMBtu (CW).

Austin Convention Center City of Austin
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

1996 Annual Energy Consumption Report© Energy Systems Lab
Texas A&M University
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Austin Convention Center - City of Austin

Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

1996 Annual Energy Consumption Report© Energy Systems Lab
Texas A&M University
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CITY OF AUSTIN

Austin Convention Center

Building Envelope:
• 411,000 gross sq.ft., 174,456 sq.ft. conditioned area
• 3 floors, comprised of Exhibit Halls, Ballrooms and Meeting rooms
• walls: granite with no insulation
• roof: flat built-up roof

Building Schedule:
• occupancy depends on events scheduleed, varies a lot. No events at night

Building HVAC and Equipment:
• two electric centrifugal chillers
• one 150Hp gas boiler
• several AHU's ranging from 5Hp to 50Hp
• several pumps ranging from 30Hp to 125Hp
• 2-spd, 40Hp CT fans

HVAC Schedule:
• not avaliable

Lighting:
• metal halides, incandescent and fluorescent

Proposed Retrofits:
• lighting controls
• variable volume pumping conversion
• control modifications for building pressurization

Status of Retrofits:
• all retrofits are in construction phase

Other Information:
• lighting can be programmed through computer

Austin Convention Center - City of Austin
Texas State Energy Conservation Office 1996 Annual Energy Consumption R e p o r t © Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Texas A&M University
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Site #322

University of Houston - Clearlake
Houston, TX

Ice on coil

November 1997, Preliminary Report Texas A&M, Drexel University, Elleson Engineering
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University of Houston-Clear Lake: Bayou Building

Building Envelope:
• 460,576 sq. ft.
• Walls: precast
• Roof: built up
• Year of construction: 1975

Building Schedule:
• The average occupancy schedule is 8 am to 5 pm Monday through Friday

Building HVAC and Equipment:
• 3 chilled water pumps ranging from 40 - 50Hp
• 32 AHUs ranging from 30 - 75Hp
• 3 cooling tower fans, 50Hp each

HVAC Schedule:
• All HVAC equipment operates for 5,450 hours annually and is controlled by automation. Operating hours

are 6:00 am to 10:00 pm

Lighting:
• 12,210 two lamp 40W fixtures

Completed Retrofits:
• Thermal Storage - December 1995

Other Information:
• Electricity is supplied by Houston Lighting & Power and natural gas is supplied by General Land Office.

85

35a.
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University of Houston-Clear Lake: Bayou Building

Building Envelope:
• 460,576 sq. ft.
• Walls: precast
• Roof: built up
• Year of construction: 1975

Building Schedule:
• The average occupancy schedule is 8 am to 5 pm Monday through Friday

Building HVAC and Equipment: C/ j CA I T~oi J
• 3 chilled water pumps ranging from 40 - 50Hp * *
• 17 AHUs ranging from 30 - 75Hp F ^ i C^ 1 To AS
• 3 cooling tower fans, 50Hp each

HVAC Schedule:
• All HVAC equipment operates for 5,450 hours annually and is controlled by automation.

Lighting:
• 12,210 two lamp 40W fixtures

Proposed Retrofits:
• Thermal Storage

Other Information:
• Electricity is supplied by Houston Lighting & Power and natural gas is supplied by General Land Office.

University of Houston - Clear Lake - - July 1995

Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t ^ Energy Systems Lab
LoanSTAR Monitoring U Analysis Program Version 2.2 Texas A&M University
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Comments

TAT Electricity consumption data are missing from 6/1/97 to 6/30/97
due to a monitoring hardware problem.
TAT Chilled water and natural gas energy use data are missing from
6/24/97 to 6/31/97 due to a monitoring hardware problem.

University of Houston - Clear Lake June 1997
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report
Version 2.2

Energy Systems Lab
Texas A&M University
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Data points for the current month are shown as letters. Points from this month last year are shown as +.
Monday through Sunday are represented as M,T,W,H,F,S,U. All other points are shown as *.

University of Houston - Clear Lake - June 1997

Texas State Energy Conservation Office
LoanSTAR Monitoring k. Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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University of Houston - Clear Lake June 1997

Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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University of Houston - Clear Lake June 1997

Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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UNIVERSITY OF HOUSTON-CLEAR LAKE

Bayou Building

Building Envelope:
• 460,576 sq.ft.
• walls: precast
• roof: built up
• year of construction: 1975

Building Schedule:
• the average occupancy schedule is 8 am to 5 pm Monday through Friday

Building HVAC and Equipment:
• 3 chilled water pumps ranging from 40 - 50 hp
• 32 AHUs ranging from 30 - 75 hp
• 3 cooling tower fans, 50 hp each

HVAC Schedule:
• all HVAC equipment operates for 5,450 hours annually and is controlled by automation. Operating hours

are 6:00 am to 10:00 pm

Lighting:
• 12,210 two lamp 40W fixtures

Completed Retrofits:
• thermal storage - December 1995

Other Information:
• electricity is supplied by Houston Lighting & Power and natural gas is supplied by General Land Office

University of Houston - Clear Lake - June 1997
Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t ^ Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas A&M University



Comments
~k The percent columns indicate the number of hours reported in that month.

• The LoanSTAR monitoring began in August 1994.
• The unit costs used for estimating the energy costs and savings are: $0.027/kWh (ELE), $12.19/kW-mo (ELED), $5.00/MMBtu

(CW), and $3.J78/MMBtu (NG).

•k Electricity, chilled water and natural gas consumption data for parts of August and September 1996 are missing due to a

monitoring hardware problem.

k The audit estimated savings for the completed thermal storage system are $76,700 (ELED).

University of Houston - Clear Lake
Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program

1996 Annual Energy Consumption Report© Energy* Systems Lab
Texas AfcM University

94-00072-2-027-0 CL072 Page 343
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University of Houston - Clear Lake
Texas State Energy Conservation Office

LoanSTAR Monitoring & Analysis Program
1996 Annual Energy Consumption Report© Energy Systems Lab

Texas A&M University
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UNIVERSITY OF HOUSTON-CLEAR LAKE

Bayou Building

Building Envelope:
• 460,576 sq.ft.
• walls: precast
• roof: built up
• year of construction: 1975

Building Schedule:
• the average occupancy schedule is 8 am to 5 pm Monday through Friday

Building HVAC and Equipment:
• 3 chilled water pumps ranging from 40 - 50 hp
• 32 AHUs ranging from 30 - 75 hp
• 3 cooling tower fans, 50 hp each

HVAC Schedule:
• all HVAC equipment operates for 5,450 hours annually and is controlled by automation. Operating hours

are 6:00 am to 10:00 pm

Lighting:
• 12,210 two lamp 40W fixtures

Completed Retrofits:
• thermal storage - December 1995

Other Information:
• electricity is supplied by Houston Lighting & Power and natural gas is supplied by General Land Office

University of Houston - Clear Lake

Texas State Energy Conservation Office 1996 Annual Energy Consumption Report© Energy Systems Lab
LoanSTAR Monitoring k Analysis Program Texas AfcM University



Comments

ifc- Chilled water energy use data are missing from 8/23/96 to
8/31/96, natural gas use data are missing from 8/27/96 to 8/31/96,
and electricity use data are missing from 8/8/96 to 8/17/96 and
from 8/27/96 to 8/31/96 - due to a monitoring hardware problem.

University of Houston - Clear Lake - August 1996

Monthly Energy Consumption Report©Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program Version 2.2

Energy Systems Lab
Texas A&M University
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20 40 60 80
Average Daily Temperature (F)

Data points for the current month are shown as letters. Points from this month last year are shown as +.
Monday through Sunday are represented as M,T,W,H,F,S,U. All other points are shown as *.

University of Houston - Clear Lake - August 1996
Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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University of Houston - Clear Lake - August 1996
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2
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Energy Systems Lab
Texas A&M University
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University of Houston - Clear Lake - August 1996
Texas State Energy Conservation Office
LoanSTAR Monitoring & Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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University of Houston - Clear Lake August 1996
Texas State Energy Conservation Office
LoanSTAR Monitoring k Analysis Program

Monthly Energy Consumption Report©
Version 2.2

Energy Systems Lab
Texas A&M University
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UNIVERSITY OF HOUSTON-CLEAR LAKE

! Bayou Building

Building Envelope:
• 460,576 sq.ft.
• walls: precast
• roof: built up
• year of construction: 1975

Building Schedule:
• the average occupancy schedule is 8 am to 5 pm Monday through FViday

Building HVAC and Equipment:
• 3 chilled water pumps ranging from 40 - 50 hp
• 32 AHUs ranging from 30 - 75 hp
• 3 cooling tower fans, 50 hp each

HVAC Schedule:
• all HVAC equipment operates for 5,450 hours annually and is controlled by automation. Operating hours

are 6:00 am to 10:00 pm

Lighting:
• 12,210 two lamp 40W fixtures

Completed Retrofits:
• thermal storage - December 1995

Other Information:
• electricity is supplied by Houston Lighting & Power and natural gas is supplied by General Land Office

University of Houston - Clear Lake - August 1996

Texas State Energy Conservation Office Monthly Energy Consumption R e p o r t © Energy Systems Lab
LoanSTAR Monitoring & Analysis Program Version 2.2 Texas University


