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ABSTRACT

This report has been prepared for the United States Army Construction Engineering Research

Laboratories (USACERL) located in Champaign, IL by the Energy Systems Laboratory (ESL) of Texas

A&M University. The first phase of this study, completed in 1995, developed a methodology suitable

for tracking and evaluating the extent to which Presidential Executive Order 12902, which mandates a

30% decrease in utility bills from 1985 to 2005, is being met at DoD facilities. The methodology was

then applied to clean data from one Army base provided by USACERL. The objectives of the current

study were:

(1) to evaluate the methodology when used with monthly mean temperature data and

"uncleaned" data available from a central Army database; and

(2) to prepare a primer describing the tracking methodology and its application.

This study used electricity consumption, gas consumption, base area, and population data

obtained from the central Defense Energy Information System (DEIS) database by USACERL, and

monthly mean temperature data obtained from the National Climatic Data Center in Asheville, NC.

The earlier study had used daily temperature data and billing data obtained directly from the Army

base. Data for eight DoD installations were obtained from DEIS by USACERL. It was found that the

data from DEIS did not include meter reading dates, needed for accurate baseline creation, but a

statistical method was developed which adequately estimates the meter reading dates, thereby

overcoming this deficiency. It was also found that base population data is not generally useful, but that

base area changes should be taken into account while tracking energy use. Estimates of change in

energy use determined using DEIS and NCDC input data were very consistent with the results

obtained using local billing data and daily temperature data. This indicates that valid estimates of the

change in energy use at a particular DoD installation with respect to a baseline year can be reached

with DEIS and NCDC data unless these data include transcription errors.

This report also includes a primer which describes the baselining and tracking methodology

suitable for use by other analysts who wish to evaluate the changes in energy use at other Army

installations.
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EXECUTIVE SUMMARY

This report has been prepared for the United States Army Construction Engineering Research

Laboratories (USACERL) located at Champaign, IL by the Energy Systems Laboratory (ESL) of Texas

A&M University with the objective of developing monthly baseline utility models for electricity and gas

use for eight army bases around the U.S. and illustrate their use as screening tools for detecting

changes in future utility bills and also to track/evaluate the extent to which Presidential Executive Order

12902 mandating 30% decrease in energy utility bills from 1985 to 2005 is being met.

With the above objective in mind, USACERL commissioned a first study, in mid-1995, with

ESL. The objectives were to: (i) to investigate different types of energy modeling software- PRISM and

EModel- in order to ascertain which is more appropriate for modeling energy use in DoD installations,

(ii) to propose criteria for selecting the baseline year depending on the availability and "cleanliness" of

the utility bill data and the associated outdoor temperature data, and (iii) develop/propose statistical

equations in order to determine the uncertainty in using these baseline models for predicting monthly

(or utility) energy use and annual energy use. For this preliminary study, we wanted to select a base

whose utility data had undergone some sort of "reality check". Fort Hood, a large army installation

located in central Texas was chosen in view of the fact that extensive data gathering and analyses has

been done on this base over the years, and a comprehensive report on utility and services data was

available. The results of our previous study, documented in a report by Saman et al.(1995), indicated

that reliable baseline models of electricity use, electricity demand, gas use and water use could be

identified from utility billing data and that these models were sound enough to be useful as screening

tools for detecting changes in future utility bills.

The basic objective of the current study was to apply/evaluate the previous methodology to

utility data from eight army bases from various parts of the country. The utility data and other data such

as base area and population which were to be used for the analysis were downloaded from the central

Defense Energy Information System (DEIS) database by USACERL and sent to the ESL (Table 1).

One could not expect such data to be as "clean" as that from Fort Hood since the former is usually not

subjected to a careful "reality check" before being entered into the database. Further, unlike the

preliminary study where daily mean outdoor temperature data for Temple, TX (a town very close to

Fort Hood) was available for the analysis, USACERL decided to use monthly mean temperature data

from the National Climatic Data Center (NCDC) at Ashville, NC where such data for numerous sites

throughout the U.S. is available to the general public. It was the intent of this study to evaluate whether

baseline models identified from DEIS and temperature data are appropriate to use as screening tools
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for detecting changes in future utility bills. Further, the data from DEIS did not include meter reading

dates, needed for accurate baseline modeling, but a statistical method was developed which

adequately estimates the meter reading dates, thereby overcoming this deficiency. We found very

consistent estimates of annual change in energy use from both methods. This indicates that conclusive

estimates of how energy use in a particular DoD installation varied over the years with respect to a

baseline year can be reached with "unproofed" DEIS and NCDC data.

The lack of concurrent temperature and utility bill data for three months of FY85 forced us to

reject FY85 as the starting year and choose FY86 instead. The results of our baseline model

identification effort are summarized in Table 2. The CV-RMSE of the model is the deciding factor in

determining the category of the model fit. We note that of the eight electricity use models, two are

excellent, four are good and only one is mediocre. Of the eight gas use models, none is excellent, two

are good, four are mediocre and two are poor. Hence, gas use models seem to be generally poorer

than electricity use models.

The analyses for all Army bases other than the two Army depots also involved computing

percentage changes in annual energy use with respect to baseline year (FY86) normalized by (i)

conditioned area, and (ii) conditioned area and population. Though generally the changes in energy

use by both means of normalization have more or less similar patterns, the quantitative values are

appreciably different during certain years. One cannot place as much confidence in the population

values as in the conditioned area values, and so it would probably be better to draw conclusions

regarding the extent to which Presidential Executive Order 12902 is being met based on conditioned

area normalization only.

The extent to which the annual energy use with respect to the baseline year has changed from

the baseline year FY86 until the final year for which data was available, can also be determined from

Table 2. We note that of the sixteen gas and electricity use channels evaluated, five showed

significant decrease, i.e. showed negative changes larger than the uncertainty, by an average of 37%.

Five others were unchanged within the uncertainty, and six had increased significantly (by an average

of 40%).

A final objective of this study was to prepare a primer describing our baselining and tracking

methodology which can be used by other analysts who wish to perform similar evaluations with data

from other army installations. If analyses such as these are to find widespread application, they should

be such that they could be applied routinely to all bases every year when annual utility bill data is

entered into the central army database.
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Table 1. Table giving an indication of the size and energy use of the eight army bases
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Texas A&M University
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Table 2. Summary of baseline models and change in energy use normalized by conditioned building area.
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1.0 Background

Presidential Executive order 12902 states that all federal facilities shall reduce energy

consumption per gross square foot by 30% from 1985 levels by the year 2005 (Chalifoux et al., 1996).

Subsequently the U.S. Army Construction Engineering Research Laboratories (USACERL) at

Champaign, IL formulated the Model Energy Installation Program (MEIP). The MEIP is a 5-year pilot

project to investigate the feasibility of instituting energy efficiency on an installation-wide (i.e., base-

wide) scale in the United States Army (USACERL, 1993). One of the basic intents was to meet the

mandate of the above Executive Order in 5 years by reducing the energy consumption and utility bills

by 30%.

Each year, the U.S. Army publishes property management data on each of its army bases.

Through collection of this property management data, a large database of historic energy utility bills of

the numerous installations throughout the country has thus been established over the years. This data

is referred to as the Defense Energy Information System (DEIS). A central agency has been charged

with gathering the utility bills of the various installations during the previous year and updating the DEIS

database each year. Other than a cursory look, no effort is made to assure the accuracy of this data.

USACERL wanted to test the feasibility of using this data to track how energy use on a particular

installation has been varying, on a year-to-year basis, from some baseline year. This type of ongoing

evaluation would provide a "real time" feedback as to the extent to which Presidential Executive Order

12902 is being met.

With the above objective in mind (as well as providing technical advice on the MEIP),

USACERL commissioned a first study, in mid-1995, with the Energy Systems Laboratory (ESL) of

Texas A&M University. The objectives were to: (i) to investigate different types of energy modeling

software- PRISM (Fels et al.,1995) and EModel (Kissock et al., 1994)- in order to ascertain which is

more appropriate for baselining energy use on DoD installations, (ii) to propose criteria for selecting the

baseline year depending on the availability and "cleanliness" of the utility bill data and the associated

outdoor temperature data, and (iii) develop/propose statistical equations in order to determine the

uncertainty in using these baseline models for predicting monthly (or utility) energy use and annual

energy use. For this preliminary study, we wanted to select a base whose utility data had undergone

some sort of "reality check". USACERL instructed the ESL to develop baseline models for Fort Hood.

Fort Hood is a large Army installation located in central Texas. It has a daytime population of about

60,000 and contains over 5200 individual buildings covering about 25.5 million square feet. It was

chosen in view of the fact that extensive data gathering and analyses has been done on this base over
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the years and a comprehensive report on utility and services data was available (USACERL, 1993).

The results of our previous study, documented in a report by Saman et al.(1995), indicated that sound

baseline models of electricity use, electricity demand, gas use and water use could be identified from

utility billing data and that these models were good enough to be useful as screening tools for detecting

changes in future utility bills.

Developing baseline models is the first step in determining how energy use has been varying

over the years. There are also other effects which need to be considered. Total energy use in a

building, or even in a group of buildings such as in a DoD installation, is affected by changes in the

following five sets of parameters:

(i) climatic variables;

(ii) conditioned building floor area;

(iii) population, i.e., the number of occupants;

(iv) energy efficiency and operation and maintenance (O&M) measures; and

(v) connected load.

What the Presidential Order mandates is that the combined effects of (iv) and (v) should be reduced by

30% from 1985 to 2005. The baseline model only corrects for changes in climatic variables from year

to year. Further, energy use from one year to the next needs also to be normalized, i.e., be removed of

the effects of parameter sets (ii) and (iii) in order to isolate the effects of parameters (iv) and (v). The

procedure to perform the baseline modeling and the above normalization is called the 'baselining

methodology'.

2.0 Objectives and Scope

2.1 Objectives

The basic objective of the current study is to apply/evaluate the methodology previously

developed for Fort Hood using locally obtained data, to eight army bases using centrally-obtained DEIS

data. One could not expect such data to be as "clean" as that obtained directly from Fort Hood, since

the former is usually not subjected to careful "reality check" before being entered into the database.

Further, unlike the preliminary study where daily mean outdoor temperature data for Temple, TX (a

town very close to Fort Hood) was available for the analysis, it was decided to use monthly mean

temperature data from the National Climatic Data Center (NCDC,-) where such data for numerous

sites throughout the U.S. is available to the general public. The intent of this study was to evaluate

whether baseline models identified from DEIS and NCDC data are good enough to use as screening

tools for detecting changes in utility bills. Note that the self-imposed condition that only data from such
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easily accessible sources would be used to evaluate the baseline model development is essential if the

present modeling methodology is to find application to DoD facilities nation-wide.

Another objective of this study is to prepare a primer describing our baselining and tracking

methodology which can be used by other analysts who wish to perform similar evaluations with data

from other Army installations. If baselining analyses such as the analysis presented herein are to find

widespread application, they should be simple enough that they could be applied routinely to data from

all bases every year when annual utility bill data is entered into DEIS.

2.2 Data provided

USACERL obtained utility data on energy use, building square footage and population from

DEIS, and monthly average dry-bulb temperature from NCDC for eight army bases from various parts

of the continental U.S. The data were sent to the ESL for analysis. Note that the army maintains such

data on a fiscal year (FY) basis (which extends from October of the previous year to September of the

current year) rather than on a calendar year basis. Table 2.1 summarizes the data received. Other than

Pueblo Army Depot in Colorado and Sacramento Army Depot in California which are army depot

centers, the six other bases are densely inhabited. Data from Fort Hood, TX (which was used in the

previous study by Saman et al., 1995) was also available for comparative purposes. The intent was to

determine how utility and temperature data gathered from different sources would affect the baseline

modeling and future tracking evaluation. Table 2.2 shows the size and energy use of the bases for

FY86. Fort Hood, TX and Fort Bragg, NC are the largest army bases with about 23 million square feet

of total area and populations of over 60,000. Fort Ord, CA is next in size, followed by Fort Carson, CO,

Fort Huachuca, AZ and Fort Drum, NY. The latter two bases are much smaller in size than the others.

The data provided by USACERL was complete in terms of building area of the base and utility

bill data, i.e., electricity use and gas use. However, population data (also on a month-by-month basis)

for the two army depots was incomplete (see Table 2.1 and Table 2.5). The previous study (Saman et

al., 1995) had investigated incorporating population data during baseline modeling and found no

statistical merit in doing so. USACERL expressed doubts about the usefulness of population data, due

to the rather arbitrary manner in which the population of an army base is determined. Hence the year-

to-year changes in the size of the Army installations (see Tables 2.3 and 2.4), reflected by changes in

population as well as total square footage of buildings, are better captured by the latter variable than by

the former. However, we shall not reject population data at this stage, but also perform the analyses

with both these variables.
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Table 2.1 Summary and status of data received for the eight Army bases. Fiscal year ranges from

October of previous year to September of present year.
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Table 2.5 Annual mean population for all eight Army bases.

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas

Table 2.4 Annual mean conditioned building areas for all eight Army bases.

Table 2.3 Annual mean total building areas for all eight Army bases.
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Information provided on the building area of the Army base is on an annual (fiscal year) basis

rather than on a monthly basis (as were the utility bill data and the population data). So, annual

changes in energy use can be normalized for the influence of changes in this variable only. Also,

though Presidential Order 12902 requires that the energy reduction be based on gross square footage,

it was jointly decided by USACERL and the ESL that building conditioned area would provide a more

rational basis for evaluating changes in energy use over the years. An important issue to note is that

the DEIS database does not specifically include information about the conditioned building area. The

database contains information about square footage of the following categories: (i) buildings, (ii)

training, (iii) maintenance and production, (iv) research, development and test, (v) storage building, (vi)

hospital and medical, (vii) administration, (viii) bachelor housing, (ix) community, (x) family housing,

and (xi) operational buildings. USACERL informed the ESL that the conditioned area would be best

represented by subtracting the areas associated with maintenance and production, storage buildings

and operational buildings categories from the total area of the base (see Table 2.4). ESL did so with

the tacit realization that the conditioned area thus determined had a certain element of uncertainty

associated with it. This affects our evaluation of the year-to-year variation in the utility bills (but not the

baseline model goodness-of-fit itself since this is done on a monthly level during the baseline year).

There were some serious problems associated with monthly mean outdoor temperature data

downloaded from the National Climatic Data Center at Ashville, NC. One problem was that the data

sets for all eight bases were from January 1985 and not from October 1984 (which is the start of

FY85). The lack of concurrent temperature and utility bill data for three months of FY85 forced us to

reject FY85 as the baseline year from which proper analyses could be done and choose FY86 instead.

Hence, energy data for a certain number of months at the beginning of the data set (namely January to

September 1985) were simply rejected. Further, Fort Carson, Fort Ord and Pueblo Army Depot have

temperature data till December 1993 only. Thus, the evaluation of how energy has changed over the

years with respect to the baseline year will be curtailed till FY93 only (as against FY94 for the other

bases). Also, temperature data for Fort Huachuca is fragmentary (see Table 2.1) and analysis can be

done for FY86 and FY88 - FY90 only.

However, the most serious problem has to do with the lack of certainty that the monthly interval

during which the daily temperature data is averaged corresponds to the utility bill period. USACERL

informed us that utility reading dates are not exactly known but are close to the first day of the calendar

month, and that the start and end of the utility bill readings dates can be assumed to be the first and

last day respectively of each month. Initially, the ESL manipulated the temperature data based on this

assumption. However, our subsequent analysis (described fully later on in this report) revealed this

Energy Systems Laboratory Texas A&M University
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presumption to be false in a number of cases. Though corrective action was taken, a certain amount of

uncertainty is still present, thereby compromising the accuracy of our baseline models. Section 3.6

describes how we have tried to correct for this potential mis-match between utility bill period and

temperature data.

USACERL also supplied monthly degree-day information (CDD and HDD) for all eight army

bases for all the years. However, this data is not directly relevant to our current study since these are to

a fixed base of 65 °F. Our baseline modeling allows for variable base temperatures (ASHRAE, 1993)

which renders the modeling more flexible and accurate.

2.3 Scope of study

The reader may recall that the main objective of this study was to determine whether a monthly

baseline model of an army base identified from data obtained from general sources, namely utility bill

data gathered from DEIS in conjunction with ambient temperature data downloaded from the NCDC

database in Ashville, NC is robust enough to provide a meaningful indication of how energy use in that

army base has varied over subsequent years. The scope of the study is limited to analyzing such data

for eight army bases located in different parts of the continental U.S. The baseline year, due to reasons

described above, was chosen as FY86. The baseline models will include both electricity and gas use.

We shall also ascertain, albeit in a simplified manner, if the utility bills correspond to calendar months.

If not, we will make appropriate corrections as best as possible. The comparative evaluation of two

energy analysis software, namely PRISM (Fels et al., 1995) and EModel (Kissock et al., 1994) in a

former study (Saman et al., 1995) determined EModel to be more appropriate for baseline modeling of

energy use in DoD installations. Consequently, only the EModel software will be used for baseline

model development in the framework of the current study. Energy use over different years will be

normalized by conditioned square footage (which has a certain amount of uncertainty associated with

it) in order to detect changes in utility bills over subsequent years. This screening will be performed for

all eight Army installations until FY94 or till such year as data permits. The study shall also present

values of fractional changes in energy use over the years as compared to FY86 which have been

normalized by year-to-year changes in both building conditioned area and population. Though the

Presidential Order makes no mention of population changes, it was deemed necessary that some sort

of analysis be also done explicitly with this variable.
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3.0 Mathematical Basis of Regression Models

3.1 Pertinent background

An important aspect in identifying statistical models of baseline energy use is the choice of the

functional form and that of the independent (or regressor) variables. Extensive studies in the past (for

example, see Fels, 1986; or Reddy et al., 1994) have clearly indicated that the outdoor dry-bulb

temperature is the most important regressor variable, especially at monthly time scales. Classical

linear functions are usually not appropriate because of the presence of functional discontinuities, called

"change points". Figure 4.1 shows the various types of single variable (SV) models that have been

used to model energy use in commercial and residential buildings (Reddy et al., 1994). One should

note how the shape of the functions can be captured by progressively introducing more parameters. A

widely adopted convention is to refer to a single variable model with, say, three parameters as a 3P SV

model. This study will limit itself to SV models only. Consequently the term SV will not be explicitly

mentioned in the rest of this report.

The criteria used to select the most appropriate model is to maximize the goodness-of-fit using

the simplest model or combination of models (Draper and Smith,1981). Although several measures of

a model's goodness-of-fit are available, we prefer to use the coefficient of determination (R2) and the

coefficient of variation of the root mean square error (CV-RMSE). Though the two measures are

related, both are useful indices. When model R2 is very high or very low, the CV-RMSE may be a more

appropriate measure to study.

R2 can be interpreted as the fraction of the variation in the dependent variable Y (in this study:

electricity use and natural gas use) that is explained by the model. It has a maximum value of 1.0. A

value of, say, R2 =0.9 would indicate that 90% of the variation in Y is explained by the model, thus

leaving only 10% of the variation in Y unexplained.

Root Mean Square Error (RMSE) is a measure of the deviation of the data from the model and

has units similar to the dependent quantity (i.e., for example, cubic feet per month for the gas use

model). CV-RMSE is a non-dimensional measure that is found by dividing RMSE by the mean value of

Y. It is usually presented as a percentage. Hence, say, a value of 5% would indicate that the variation

in Y not explained by the regression model is only 5% of the mean value of Y. RMSE can be calculated

as follows:
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As a rough indication, models with R2 >0.7 and CV-RMSE < 7% can be deemed "good"

models. In certain cases, the R2 may be very low indicating that energy use is not much affected by

temperature variations. In such cases, regression models with CV-RMSE (or CV-STD) < 12% can still

be considered satisfactory. Models with CV-RMSE > 20% can be taken as poor models.

Another important statistical measure is the standard error (SE) which is a measure of how

accurately the regression model is able to identify the individual model coefficients (Draper and Smith,

1981). Each coefficient has a SE associated with it, and the smaller the measure, the more confidence

you can place on the regression coefficient. Most statistical regression programs always present the

SE of the model coefficients along with the output and one does not have to compute this statistic

separately. In this report, we shall always present, in conjunction with the regression coefficients, the

SE of the coefficients also.

3.2 Simple regression models using EModel

EModel (Kissock et al., 1994) is a tool for the analysis of building energy use data that is

especially useful for analyzing hourly or daily data for commercial buildings. It can also be used for

Energy Systems Laboratory Texas A&M University
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A

where Y is the value of Y predicted by the regression model, n the number of observations and p is

the number of model parameters. For example, for regression models with three parameters, p=3.

The CV-RMSE is related to the RMSE as follows:

(3.1a)

(3.1b)

In the case of one-parameter, or mean, model, the RMSE is no longer the appropriate statistic

to use, and the standard deviation (STD) defined below should be used:

(3.2a)

The associated normalized measure is simply the coefficient of variation of the standard deviation (CV-

STD) defined as:

(3.2b)



3/96-Final Report, p. 10

monthly data analysis provided the user performs certain data pre-processing steps to calculate

average billing period temperature from daily data. EModel integrates the previously laborious tasks of

data processing, graphing and modeling in a user-friendly, Microsoft Windows environment. It's easy-

to-use features can quickly determine baseline energy consumption. It allows one to edit data files and

create new columns of data. Variables can also be plotted as time series data, as relational (XY) plots

and as histograms. EModel can apply the following models to data sets: mean, simple linear

regression, multiple linear regression, 3 and 4 parameter change- point regression and bin fit.

The dependent variable Y should be taken as the monthly mean daily energy use rather than

the monthly total energy use as given by the utility bill. This normalization would remove the small

difference in month to month variations in the number of days of each month.

The functional forms of the various models shown in Fig.3.1 are:

(a) Mean or one-parameter (1P) models appropriate for weather independent energy use:

Energy Systems Laboratory Texas A&M University
Texas Engineering Experiment Station College Station, Texas

(3.3)

(b) Two parameter (2P) models for weather dependent energy use:

- for energy use which increases with increasing outdoor temperature T (like electricity use for air-

conditioning):

(3.4a)

- for energy use which increases with decreasing outdoor temperature T (like gas use):

where Yo is the intercept which represents the value of energy use when T = 0°F (since all our

analyses are done with temperature data in degrees Fahrenheit).

(c) Three parameter (3P) models for weather dependent energy use (often used to model residential

energy use):

- for energy use which increases with increasing outdoor temperature T:

(3.5a)

- for energy use which increases with decreasing T:

(3.5b)

where

()+ is a mathematical symbolism which denotes that the term within the brackets should be set

to zero if it is negative. Y^ is the temperature independent energy use, RS the right-hand slope, LS the
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Figure 3.1 Empirical SV energy use models appropriate for building energy use: (a) one-

parameter model, (b) two-parameter cooling energy use model, (c) three-

parameter heating energy use model, (d) three-parameter cooling energy use model,

(e) four-parameter heating energy use model, and (f) four-parameter cooling energy use

model.
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Figure 3.2 Other types of empirical SV building energy use models.

(a) Five-parameter model, and (b) Approximation of five-parameter

model used in this study (wherever required). Note that this is a

special type of four-parameter model shown in Figure 3.1 (e & f).
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Texas Engineering Experiment Station

Texas A&M University
College Station, Texas
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left hand slope (the values of this coefficient should always be negative), and Xcp the change point

outdoor temperature. Because Y is a monthly mean daily values, T should be also taken as the

monthly mean daily outdoor temperature value. Thus, unlike PRISM where daily mean T for individual

days should be known, here one needs to be given monthly mean T values only. Also, EModel while

performing a regression with 12 data points representing one year's worth of utility bills automatically

presents the user with both R2 and CV-RMSE of the particular year.

(d) Four-parameter (4P) models for energy use which do not have a constant base-level energy use as

do the 3P models (see Fig.3.1). Such variation of energy use with T is often noticed in commercial

buildings which have large air-handler units for heating and cooling the supply air stream, and in

supermarkets which have large refrigeration loads:

Energy Systems Laboratory Texas A&M University
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(3.6)

(e) Five parameter (5P) models (see Fig.3.2) for energy use like electricity, which increases both with

increasing outdoor temperature (as for air-conditioning) and with decreasing outdoor temperature (as

for heat pumps and strip heating);

(3.7)

where Xcpih and Xcp,c are the change point temperatures for heating and cooling respectively. Note that

the basic difference between a 4P and a 5P model is that the former has only one change point

temperature while a 5P model has two. Physically, one would expect a residence not to use either

heating nor cooling over a certain outdoor temperature range, and this behavior is well captured by the

5P model. However, for commercial buildings and for modeling energy use across several buildings of

different types (such as whole-base level energy use of an Army installation), one may not be able to

detect such a temperature range. Further EModel, in its current form is incapable of modeling such a

5P behavior. Consequently, whenever energy use in a DoD facility does exhibit such a behavior, we

shall model it with the functional form shown in Fig.3.2(b). Note that the functional form of such a

behavior is given by the 4P equation, namely eq.(3.6).

The functional forms of the regression models discussed above have a certain amount of

engineering basis. The interested reader can refer, for example, to Fels (1986) in case of energy use in

residences and to Reddy et al., (1995) in case of energy use in commercial buildings.

3.3 Generation of 95% uncertainty bands for individual months

The baseline models developed from one year (in this study, fiscal year 1986 has been

chosen) can be used to predict weather-adjusted monthly energy use into the future (or even into the
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past). Comparison of these projected values with actual monthly use values would provide a means of

ascertaining whether actual use has changed as compared to this baseline. Regression-based model

predictions invariably have a certain amount of uncertainty, and for the model to be useful as a

screening tool, we should be able to ascribe uncertainty bounds to our predictions. The degree of

credibility that may be attached to results is expressed by the level of statistical confidence.

Specifications of confidence are conventions only. Though 90% confidence levels are the standard in

load research (Vine and Kushler, 1995), we shall use bounds of 95% uncertainty bands or 95%

prediction interval (PI). Physically, this means that if Y is the value predicted by the model, then 95 out
A A

of 100 times, the next measured value of Y will be between (7+PI) and (Y -P\). ( Fora simple linear

model (i.e., a 2P SV model), PI for predicting Y for a given Xo (i.e., for a given month) is well known

(Draper and Smith, 1981):

where t - the t-statistic evaluated at (1 - a 12, n-p)

oc -significance level (which for 95% confidence bands is equal to 0.05)

n - number of observations (in this study equal to 12 since utility bills for a year are used)

p - number of parameters in the model

RMSE - root mean square, defined by eq.(3.1)

Xo - individual independent variable (in this study, the outdoor dry-bulb temperature)

X - mean value of X, (in our case, mean annual value of the outdoor temperature during

model identification, i.e., for the baseline year).

For a 3P model with n = 12, the term t(1-a 12, n-p) from statistical tables (Draper and Smith,

1981) is equal to 2.262. Note that for the 3P model using EModel, X is the mean daily outdoor

temperature during the billing period.

Predicting Pis for change point SV models such as PRISM and EModel 3P is very complex

and is not to be found in textbooks. Simply calculating the Pis for a 3P model using eq.(3.8) would lead

to an over-estimation especially for the baseline portion of the fit (i.e., for the months when energy use

is independent of outdoor temperature). Our baseline model would then be a rather ineffective

screening tool. Though not strictly accurate in the statistical sense, we propose that Pis for 3P models

Energy Systems Laboratory Texas A&M University
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be determined separately for each of the two segments of the model (Hebert and Ruch, 1995). Let ni

and n2 be the number of months in the year which respectively fall in the lower temperature portion and

in the higher temperature portion of the model. (Note that n, + n2 =12). Then, we suggest that RMSE

and X be calculated separately for each portion. Subsequently, for the model predictions falling on the

lower temperature range (i.e., the left-hand side portion of the model), we shall use

and, for the higher temperature range (i.e., the right-hand side portion of the model):

Note that for a 3P model, the value of t will still correspond to n-p = 9 degrees of freedom

(n=12, p=3) and that RMSEi and RMSE2 will be determined using eq.(3.1) with n=12 (and not. with n,

and n2 respectively). Such a procedure gives more realistic Pis over the entire range of the model and

has a certain amount of statistical basis as well (Hebert and Ruch, 1995). Graphically, the two Pis for

the 3-P model appear as a band that narrows during the base-level months (i.e., winter months for

electricity and water, and summer months for natural gas) and expands during the months when

energy use is linearly related to an outdoor temperature difference above the change point.

3.4 Generation of 95% uncertainty bands on an annual basis

The previous section presented relevant equations for calculating Pis on an individual monthly

mean daily basis which is appropriate if the baseline models are used as screening tools for detecting

month-to-month variations. These equations cannot be used to track year-to-year changes in energy

use which is one of the objectives of this study. For this purpose, the annual total energy use along

with an estimate of the amount of confidence one can place on these values needs to determined. The

total use is easily determined: the twelve monthly mean daily energy use values are simply averaged.

However, the 95% Pis for this annual energy use value cannot be determined by simply averaging the

Pis of the individual twelve monthly mean daily values since this would lead to a gross over-prediction.

Energy Systems Laboratory Texas A&M University
Texas Engineering Experiment Station College Station, Texas

(3.9)

(3.10)



4/96-Final Report, p. 17

For a simple linear model (i.e., a 2P SV model), Draper and Smith (1981) give the equation for

PI of a sum of m number of individual points:

As mentioned earlier in section 3.3, the corresponding equations to calculate PI of 3P change

point models are not available. Following a similar development as adopted earlier for monthly

predictions, the annual mean daily PI can be determined from the following:

where ITH and m2 are the number of months that fall on the left-hand side portion and the right-hand

side portion respectively of the model line, and m =12 if all 12 monthly utility bills are available.

Equation (3.12) is rather cumbersome, and we suggest that the following simplified equation

be used instead:

In this study where annual predictions are determined by using a monthly baseline model, m=12. The

above equation simplifies to

Energy Systems Laboratory Texas A&M University
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We have used eq.(3.14) in determining the 95% PI of the annual mean daily energy use predicted by

our baseline monthly models.

Note that the statistical equations presented above for determining uncertainty are subject to

an explicit assumption. We have assumed no measurement uncertainty in the temperature variable

(i.e., the X variable), an assumption which considerably simplifies the statistical equations. Most

statistical textbooks limit their treatment to this case, and though equations are available which can be

used to predict model uncertainty when measurement uncertainty in the independent variables of a

regression model are present (see for example, Beck and Arnold, 1977), the corresponding equations

are complex and outside the purview of the present study.

3.5 Percentage change in normalized energy use on an annual basis

We need to properly define change in energy use on an annual basis since this is one of the

objectives of this study. The baseline model described above can be used to correct for changes in

energy use due to changes in temperature from one year to the next. As described in section 1, we

need also to remove the effects of year to year changes in conditioned area and population in order to

determine that the remaining change in energy use is due to energy efficiency and O&M measures in

the particular Army base. Normalizing annual mean daily energy use at an Army base due to changes

in conditioned area from one year to the next is straight forward since most studies in the literature

seem to have consistently assumed a proportional relationship between the two variables. Thus, the

area-normalized energy use is merely the annual mean daily energy use divided by the conditioned

area for that particular year.

Normalizing energy use for changes in population is not simple since a proportional

relationship is obviously incorrect. Energy use in a building, for example, would not double if the

number of occupants were doubled. Our earlier attempts (see Saman et al., 1995) at explicitly

including population as a variable in our basic regression model of energy and temperature were

unsuccessful. Figure 3.3, with data from Fort Bragg indicates no relation between the year-to-year

change in annual energy use from FY86 and corresponding changes in population. One could

speculate that population could be related to conditioned area, i.e., there could be a tendency to

increase the conditioned area if more people had to be accommodated. If this were the case,

normalizing energy use by conditioned area would also implicitly normalize energy use for population

changes, and no further correction would be needed. We investigated this possibility with data from the

various Army bases and unfortunately, found no such relationship. This is illustrated in Fig. 3.4 with

data from Fort Bragg. The lack of a relation between the data scatter led us to reject such a possibility.

Energy Systems Laboratory Texas A&M University
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A second possibility of correcting annual energy use for year to year variations in population is

to assume a linear relationship such as the following:

Annual mean daily energy use = a +b* ( Population) (3.15)

We shall assume such a relationship, and derive expressions for changes in normalized energy use

from year to year w.r.t. to a baseline year.

We shall define annual change in energy A Y for, say FY92, with respect to the baseline year

(FY86 has been selected for this study) as follows:

Energy Systems Laboratory Texas A&M University
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(3.16)

where Y Baseline model (FY92) is the conditioned area normalized annual energy determined as the

average of the twelve monthly values of normalized energy use predicted by the baseline model using

the corresponding monthly mean temperatures for FY92, and Y Measured(FY92) is the conditioned area

normalized measured annual mean daily energy use found by averaging the twelve monthly utility bills

for FY92 and dividing by the conditioned area for that year.

By defining change in energy use as done above, a positive value of A Y implies a increase in

energy use and vice versa. Finally, percentage change on an annual basis is defined as:

(3.17)

Note that one could have used Y Baseline modei(FY92) in the denominator of eq.(3.17) instead of

Y Measured(FY92) since this would provide a common base when comparing energy use over several

years. However, this value is determined from a model and consequently is subject to all the

uncertainty (more specifically, bias which any model used for predictive purposes is subject to) which is

associated with any model predictions. Hence in order to decrease the uncertainty in our percentage

change as far as possible, we deliberately chose to define percentage annual change as given by

eq.(3.17).

Note that the above equations are equally valid for energy use normalized by population. When

a difference between two years (A Y) is taken, one need not explicitly know the value of the intercept
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a in eq.(3.15). Further, when we are computing a fractional change, i.e., dividing A Y by YMeasured, we

need not explicitly know the value of the slope b in eq.(3.15). Thus eq.(3.17) is equally valid for

normalizing energy use for population changes provided one simply takes the variable as annual mean

daily energy use normalized by conditioned area and divides it by the population value for that year.

Finally, in case one wishes to compute percentage change by the simple utility bill comparison

method, i.e., without using a baseline model that accounts for changes in temperature between the

baseline and the specific year in question, the following equation should be used in order to be

consistent with eqs.(3.16 and 3.17):

Energy Systems Laboratory Texas A&M University
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Fig. 3.3. Scatter plot of changes in area-normalized annual electricity use w.r.t. FY86 to those of

population over the years for Fort Bragg.

Fig.3.4. Scatter plot of mean annual conditioned area and population over the years for Fort Bragg.
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Texas A&M University
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3.6 A statistical means of correcting for mis-match between utility bills and associated temperature

data

Perhaps the essential element in our study is the identification of the baseline model, i.e.,

models for monthly electricity and gas use during the baseline year. As discussed earlier in section 2,

the baseline year is chosen as FY86. Also, as discussed in section 2, there is an ambiguity concerning

the exact read dates of the utility bills. Our Project Monitor suggested that we assume these to

correspond to calendar months since more specific information was not available from the DEIS

database. Because choosing the proper concurrent monthly mean outdoor dry-bulb temperature (T) is

essential in identifying a proper baseline model, we chose to perform additional regression model runs

as follows:

Case 1: We use temperature data corresponding to the same calendar month as the utility bill.

Case 2: Since utility personnel may read the meter in the first few days of a month, a common

oversight of a data-entry clerk who subsequently has to transfer the utility bills along with the

associated month (without the exact read-day) into a central database would be to associate the

energy use with the end-date of the utility bill period. Hence such an oversight could cause a

shift of one month (even if we were to assume that utility bills corresponded to calendar month

periods). Therefore, the second set of models will be run by using temperature data of the

previous month.

Case 3: The two above cases still assumed that read dates more or less corresponded to

calendar months. Just as a safety verification, we decided to take the average value of the

temperature of the present month (concurrent with the utility bill reading in question) and that of

the previous month, and associate that value to the particular utility bill. If the model turns out to

be substantially better than the two previous cases, this would imply that the utility bill was read

sometime around the middle of the month as against the beginning. Though the same

methodology can be used for increments finer than the 15-day period assumed here, we

decided that such a procedure (which has still not been tested properly) would be too laborious,

and consequently, we have limited the scope of the present search to mid-monthly corrections

only.

Energy Systems Laboratory Texas A&M University
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For each of our baseline models, we shall perform regressions of energy use with the three

types of temperature data sets. The one which gives superior statistical fits to the utility data will be

taken as the appropriate choice. We have also evaluated this methodology with billing data from a

couple of residences and office buildings where utility read dates were known , and it was found that

this statistical means was able to properly identify the read dates to within 3-4 days in over two-third of

the cases. A more thorough investigation is currently underway. The statistical means of correcting for

mis-match between utility bills and associated temperature data does, nevertheless, lack a certain

amount of statistical rigor. However, in the face of the time constraints of the project and the intended

purpose of evolving the screening methodology to DoD facilities nation-wide where such a problem

would exist, both the USACERL Project Monitor and the ESL felt that the above statistical procedure

was adequate for the current study.

Energy Systems Laboratory Texas A&M University
Texas Engineering Experiment Station College Station, Texas



3/96-Final Report, p. 24

4.0 Analysis of Fort Bragg, NC

4.1 Preliminary data analysis

Time series plots of monthly electricity use and gas use from FY86 to FY94 are shown in

Fig.4.1 along with concurrent outdoor temperature. The variation patterns are fairly consistent over the

years. As expected, gas use peaks in winter while electricity use seems to be mostly in summer due to

air-conditioning. There does seem to be a slight increase in electricity use during the winter months.

This leads us to suspect electric heating applications such as heat pumps or electric strip heating in a

portion of the buildings. •

Figure 4.2 shows the change in total building area and conditioned area (determined as

described in section 2.2) over the years. Both these areas seem to have generally increased from

FY86 to FY90, decreased abruptly after FY90, remained constant till FY93 and increased again in

FY94. Total area exhibits more increase over the years, about 20% from FY86 to FY94. The

conditioned area seems to have increased only about 10% during the same period. Annual mean daily

population data is also plotted in Fig.4.2. Population seems to have increased by about 8% till FY92

and then decreased to less than the FY86 value by FY94.

Figure 4.3 shows the changes in annual mean daily energy use per unit conditioned area over

the years. Except for an increase in gas use in FY87, both gas use and electricity use are fairly

consistent over the years. The annual mean outdoor temperature is also plotted in order to enable the

reader to associate changes in energy use with temperature changes. For example, FY90 is a hot year

and gas use seems to have decreased that year. Plots such as these only provide a general qualitative

trend and one should not try to read too much from them.

Figure 4.4 presents time series graphs of monthly electricity and gas use normalized by

building conditioned area. We notice, despite consistent temperature patterns, that generally gas use

has decreased during summer with the winter use remaining unchanged. However, gas use is lower

during FY88 and again in FY91 and FY91. Electricity use seems to show a gradual increase over the

years with both troughs and peaks showing an increase.

Figure 4.5 depicts the average monthly outdoor temperatures during a year for all years from

FY86 to FY94. We note that the weather during these years seems to be remarkably consistent over

the years though certain monthly excursions from the overall annual pattern can be noted.
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Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. The

summary model statistics of our baseline model identification effort for all three cases are summarized

in Table 4.1. We notice that the improvement in electricity use models is substantial when mid-month

temperature values (i.e., case 3 in section 3.6) are used for regression. This leads us to conclude that

the electricity bills do not span calendar monthly intervals but are closer to a period from the mid-month

to the next. For electricity, the 4P model seems to be the best choice for a baseline model (see Table

4.1). How the model line fits the data points can be noted in Fig. 4.8(a), while how the 4P model

compares with the next-best model, namely the 3P cooling model, can be gauged by Fig. 4.8(b).
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Temperature data for FY86, our baseline year, seems to be fairly characteristic except for being lower

than the average during October and November and above average in December.

Figures 4.6 and 4.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY94. This type of representation allows

clearer visualization of how energy use has changed over the years for a given month. The sharp

increases in electricity use in July and gas use during the winter are obvious. One notices the odd

behavior of gas use during FY87 where February and March uses are abnormally high as are the uses

for June and August. Finally, we notice in Fig.4.6 the slight increase in electricity use during January

and February for most years indicating some heating application as discussed earlier.

4.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3-P models rather than

4P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.
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Regarding the baseline model for gas use, we note from Table 4.1 that using case 1, i.e.,

temperature data corresponding to the same calendar months as the utility bills, results in best models.

Further, the small improvement in R2 and CV-RMSE as we go from a 3P heating model to a 4P model

is not enough to justify using the unphysical 4P model. Consequently, we decided to choose the 3P

heating model as our baseline model for gas use. How the individual monthly data points scatter

around the 3P heating baseline model line can be seen in Fig. 4.9 (a) while how they are captured by

the next-best 4P model can be gauged in Fig. 4.9 (b).

4.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our FY86 baseline models to forecast into the future up to FY94.

Figures 4.10 and 4.12 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the FY86 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that both electricity and gas use data are well contained within the Pis bands which is not

surprising since the models are very good (see Table 4.1).

How well the FY86 baseline models for electricity and gas use are able to predict monthly

energy use from FY86 till FY94 can be seen in Figs. 4.11 and 4.13 respectively. Note that the energy

use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note that electricity use is consistently above the

Pis indicating a large increase in electricity use. Gas, on the other hand, is generally bounded by the

Pis (see Fig. 4.13) partly because the Pis for gas are wider than those for electricity (since the model is

slightly poorer). So statistically speaking, one cannot draw any definite conclusions about how gas use

has varied over the years. However, plots such as this are useful to the energy manager of the

corresponding Army base who is in a position to look for (as well as discern and evaluate) changes in

Energy Systems Laboratory Texas A&M University
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energy use as a result of certain specific actions taken (such as O&M measures or say, changes in

equipment in the power plants).

On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (FY86) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in

sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a

year by year basis and plotted them in Figs. 4.14 for both electricity and gas. Note that a negative

change indicates a decrease in energy use. Both electricity and gas use are clearly positive. Generally

electricity use over the years as compared to the baseline year shows an increasing trend, with,

however, FY94 use being lower than the two previous years. Gas use, on the other hand, shows a

decreasing trend (a small increase in FY94 compared to FY92 and FY93) which is contrary to how

electricity use behaved. However, this change is not very significant statistically because of the wide

error bands for gas. On the whole, we note that electricity use in FY94 has increased by about 23%

(±3%) with respect to FY86, while gas use has increased by about 9% ( ± 10%). The uncertainty

bands of the change in electricity use are relatively small and we can be confident of our estimates of

electricity change. On the other hand, there is a relatively large uncertainty in our estimates of gas use

in FY94 as compared to our baseline year of FY86.

4.4 Concluding remarks

The baseline models identified for FY86 for Fort Bragg were found to be very good with the

electricity model having R2 = 0.95 and the gas model Ft2 = 0.87. Our analysis indicated that electricity

utility bills were read close to mid-month and so a correction had to be made to the calendar monthly

mean temperature data that we received. No such correction seems to be necessary for gas use. The

best model for electricity was a 4P model, which though slightly unphysical, was so much superior to

the next-best 3P cooling model that we had to select it nevertheless. The best model for gas was a 3P

heating model.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation. (As described above, this quantity is not directly available from the database but

had to be inferred from areas of several categories of building types which were listed in the database).

This leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening

Energy Systems Laboratory Texas A&M University
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and tracking aspects of the baseline models. We found that electricity use in FY94 has increased by

about 23% (±3%) with respect to FY86, while gas use has increased by about 9% ( ± 10%).

We also investigated another issue with the energy use data from Fort Bragg. One could

question the need to have such an involved baselining and evaluation methodology as the one adopted

here, specially since the month to month variation patterns of outdoor temperature over the years were

fairly consistent (see Fig.4.5). One would be curious to ascertain the differences in our estimates of

how energy use over the years has changed with respect to a baseline year by the present approach

and by a much simpler approach involving direct annual utility bills comparison without any weather

correction (see eq.3.18). Figure 4.15 illustrates the amount of differences in percentage changes

between the two approaches, namely with and without weather correction. We notice that though the

differences are small in certain cases (say FY93 for electricity use), the difference is by no means

negligible in cases when the percentage change with respect to the baseline year are small.

Differences between both methods are in the range of 3-6% points for electricity and gas. The above

comparison serves to underline the need to perform weather correction in order to obtain reliable

estimates of how energy use has varied over the years.

Finally, Fig.4.16 and Table 5.4 assemble the year to year percentage changes in annual

energy use with respect to baseline year (FY86) normalized by (i) conditioned area, and (ii) conditioned

area and population. Though generally the changes in energy use by both means of normalization

have more or less similar patterns, the quantitative values are appreciably different during certain

years. As described in section 3.5, one cannot place as much confidence in the population values as in

the conditioned area values, and so it would probably be better to draw conclusions regarding the

extent to which Presidential Executive Order 12902 is being met based on conditioned area

normalization only.

Energy Systems Laboratory Texas A&M University
Texas Engineering Experiment Station College Station, Texas



3/96-Final Report, p. 29

Table 4.1. Fort Bragg: model identification summary statistics for baseline year (FY86). Final models
selected are shown in bold face.

Energy Systems Laboratory
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Texas A&M University
College Station, Texas

Table 4.2. Fort Bragg electricity use: model coefficients (and standard errors) and pertinent regression
model statistics for FY86.

Table 4.3. Fort Bragg gas use: model coefficients (and standard errors) and pertinent regression model
statistics for FY86 r ^ _ _ _

Table 4.4 Baseline models and percentage change in energy use w.r.t baseline year for Fort Bragg.
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Fig. 4.1(a) Electricity use.

Fig. 4.1(b) Gas use.

Figure 4.1. Time series plots of monthly electricity and gas consumption for Fort Bragg from
FY86 to FY94. The concurrent outdoor dry-bulb temperature variation is also shown.
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Figure 4.2. Changes in total and conditioned areas (in ksq.ft) and annual mean daily
population for Fort Bragg from FY86 to FY94.

Figure 4.3 Changes in annual mean daily energy use per unit conditioned area and annual mean
outdoor temperature for Fort Bragg from FY86 to FY94.
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Figure 4.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Fort Bragg from FY86 to FY94.

Figure 4.5. Time series plots of average monthly temperatures at Fort Bragg from FY86 to
FY94.
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Figure 4.6. Time series plots of electricity use per unit conditioned area for Fort Bragg from
FY86 to FY94.

Figure 4.7.Time series plots of gas use per unit conditioned area for Fort Bragg from FY86 to
FY94.
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Figure 4.8. EModel change point model line and data points for Fort Bragg electricity consumption for

baseline year (FY86). A 15-day shift in temperature led to substantial model improvement,

(a) 4P model selected as baseline, (b) 4P model line and next-best model, namely the 3P

model line, are shown for comparative purposes.
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Figure 4.9. EModel change point model line and data points for Fort Bragg natural gas consumption for

baseline year (FY86). (a) 3P model selected as baseline, (b) next-best model, namely the 4P

model line, is shown for comparative purposes.
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Figure 4.10. Predictive ability of the baseline model (FY86) for Fort Bragg electricity use during
FY86. 95% prediction intervals for the model as well as for the model residuals are
shown.

Figure 4.11. Predictive ability of electricity baseline model (FY86) for Fort Bragg from FY86 to
FY94. 95% prediction intervals for the model as well as for the residuals are shown.
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Figure 4.12. Predictive ability of the baseline model (FY86) for Fort Bragg gas use during FY86.
95% prediction intervals for the model as well as for the model residuals are shown.

Figure 4.13. Predictive ability of gas baseline model (FY86) for Fort Bragg from FY86 to FY94.
95% prediction intervals for the model as well as for the residuals are shown.
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Fig. 4. 14 (a) Electricity use.

Fig. 4.14 (b) Gas use.

Figure 4.14. Percentage change in annual energy use per conditioned area with respect to
baseline year (FY86) for Fort Bragg. Negative change indicates decrease in energy
use and vice versa. 95% confidence intervals for the percentage change are also
shown.

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas



3/96-FinaI Report, p. 39

Fig. 4.15 (a) Electricity use.

Fig. 4.15(b) Gas use.

Figure 4.15. Differences in percentage change in annual energy use per conditioned area with
respect to baseline year (FY86) for Fort Bragg determined by the present
methodology and by direct utility bill comparison method. Negative change indicates
decrease in energy use and vice versa.

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas



3/96-Final Report, p. 40

Fig.4.16 (a) Electricity use

Ftg.4.16 (b) Gas use.

Figure. 4.16. Percentage changes in annual energy use with respect to baseline year (FY86) for
Fort Bragg with conditioned area normalization as well as with area and population
normalization.
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5.0 Analysis of Fort Carson, CO

5.1 Preliminary data analysis >

Outdoor temperature data provided by USACERL extended only until December 1993, and so

all analyses for Fort Carson can be done only until FY93 (i.e., till September 1993). Time series plots of

monthly electricity use and gas use from FY86 to FY94 are shown in Fig. 5.1 along with concurrent

outdoor temperature. The variation patterns of temperature are fairly consistent over the years while

those of electricity do not seem to be very much temperature driven. Gas use is fairly consistent with,

as expected, peaks in winter.

Figure 5.2 shows the change in total building area and conditioned area (determined as

described in section 2.2) over the years. Both these areas seem to have generally remained constant

from FY86 to FY93, though both these areas seem to have had a maximum variation of about 10%

over the years. Annual mean daily population data is also plotted in Fig.5.2. Population seems to have

remained constant for the first four years, decreased for the next three years, and increased to the

FY86 level in FY94.

Figure 5.3 shows the changes in annual mean daily energy use per unit conditioned area over

the years. Except for an increase in gas use in FY87 and FY88, gas use seems to have decreased by

FY89. Electricity use seems fairly constant over the years. The annual mean outdoor temperature is

also plotted in order to enable the reader to associate changes in energy use with temperature

changes. For example, FY87 is a cold year and gas use seems to have increased that year. Plots such

as these only provide a general qualitative trend and one should not try to read too much from them.

Figure 5.4 presents time series graphs of monthly electricity and gas use normalized by

building conditioned area. We notice, despite consistent temperature patterns, that generally gas use

has decreased during summer from FY91 onwards with the winter use remaining unchanged. Further

gas use in FY86 (our baseline year) exhibits a bi-modal behavior which is strikingly different from all

other years shown.

Figure 5.5 depicts the average monthly outdoor temperatures during a year for all years from

FY86 to FY93. We note that the weather during these years seems to be also consistent over the

years though certain monthly excursions from the overall annual pattern can be noted. Temperature
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data for FY86, our baseline year, seems to be fairly characteristic except for being lower than the

average during November and above average in January and March.

Figures 5.6 and 5.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY93. This type of representation allows

clearer visualization of how energy use has changed over the years for a given month. Clearly, we

notice that electricity use has little, if any, seasonal variation and so we do not expect to have a strong

temperature dependent model. The sharp increases in electricity use in July and gas use during the

winter are obvious. One notices the odd behavior of gas use during FY87 where February and March

uses are abnormally high. Finally, we notice in Fig. 5.6 the very slight increase in electricity use during

January and February for most years indicating some heating application.

5.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest Ft2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3-P models rather than

4P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.

Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. The

summary model statistics of our baseline model identification effort for all three cases are summarized

in Table 5.1. We notice by looking at the CV statistics (as is obvious from Fig. 5.6) that a mean

electricity use model is as good as the 3P-cooling or the 4P models, and so it would be most

appropriate to choose this mean model. In this case the issue of whether the electricity bills span

calendar monthly intervals is of no consequence. How the mean model line fits the data points can be

noted in Fig. 5.8(a), while how the next-best model, namely the 4P model fits the data points, can be

gauged by Fig. 5.8(b).
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Regarding the baseline model for gas use, we note from Table 5.1 that using case 1, i.e.,

temperature data corresponding to the same calendar months as the utility bills, results in best models.

Further, there is no improvement in R2 and CV-RMSE as we go from a 3P- heating model to a 4P

model, and consequently, the choice of the 3P heating model as our baseline model for gas use is

unambiguous. How the individual monthly data points scatter around the 3P heating baseline model

line can be seen in Fig. 5.9. We note that despite the bi-modal behavior in the variation of gas use

during the baseline year (see Fig. 5.4) the model identified has a high R2 (= 0.94) while the CV-RMSE

is also on the high side.

5.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our FY86 baseline models to forecast into the future up to FY94.

Figures 5.10 and 5.12 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the FY86 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that both electricity and gas use data are well contained within the Pis bands which is not

surprising since the models are very good (see Table 5.1).

How well the FY86 baseline models for electricity and gas use are able to predict monthly

energy use from FY86 till FY94 can be seen in Figs. 5.11 and 5.13 respectively. Note that the energy

use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note that electricity use is almost always

contained within the Pis indicating no appreciable change over the years in electricity use. A similar

behavior is also observed for gas use. So statistically speaking, one cannot draw any definite

conclusions about how gas use has varied over the years. However, plots such as this are useful to the

energy manager of the corresponding Army base who is in a position to look for (as well as discern and
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evaluate) changes in energy use as a result of certain specific actions taken (such as O&M measures

or say, changes in equipment in the power plants).

On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (FY86) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in

sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a

year by year basis and plotted them in Figs. 5.14 for both electricity and gas. Note that a negative

change indicates a decrease in energy use. Both electricity and gas use seem to have increased and

decreased over the years. Electricity use during the first two years has increased as compared to the

baseline year and then seems to have increased and decreased with respect to the baseline year.

Electricity use for FY86 and FY93 seems to be almost unchanged. Gas use, on the other hand, seems

to have decreased over the years. Gas use in FY93 is about 24% lower than that of the baseline year,

with this change being very significant statistically because error bands for gas are smaller than the

magnitude of the variation itself.

5.4 Concluding remarks

The baseline models identified for FY86 for Fort Carson were found to be very good with the

mean electricity model having a CV-STD of 8% and the 3P-heating gas model had a R2 = 0.94. Our

analysis indicated that correction needs to be made to the calendar monthly mean temperature data

that we received.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation. (As described above, this quantity is not directly available from the database but

has to be inferred from areas of several categories of building types which were listed in the database).

This leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening

and tracking aspects of the baseline models. We found almost no change in electricity use in FY93

with respect to FY86, while gas use has decreased by about 24% (±9%).

Finally, Fig.5.15 and Table 5.4 assemble the year to year percentage changes in annual

energy use with respect to baseline year (FY86) normalized by (i) conditioned area, and (ii) conditioned

area and population. Though generally the changes in energy use by both means of normalization

have more or less similar patterns, the quantitative values are appreciably different during certain
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years. As described in section 3.5, one cannot place as much confidence in the population values as in

the conditioned area values, and so it would probably be better to draw conclusions regarding the

extent to which Presidential Executive Order 12902 is being met based on conditioned area

normalization only.
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Table 5.1. Fort Carson: model identification summary statistics for baseline year (FY 86). Final models
selected are shown in bold face.

Table 5.2. Fort Carson electricity use: model coefficients (and standard errors) and pertinent regression
model statistics for FY86.

Table 5.3. Fort Carson gas use: model coefficients (and standard errors) and pertinent regression
model statistics for FY86.

Table 5.4 Baseline models and percentage change in energy use w.r.t baseline year for Fort Carson.
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60 £

Fig.5.1(b) Gas use

Figure 5.1. Time series plots of monthly electricity and gas consumption for Fort Carson from
FY86 to FY93. The concurrent outdoor dry-bulb temperature variation is also shown.
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Figure 5.2. Changes in total and conditioned building areas (in ksq.ft) and annual mean daily
population for Fort Carson from FY86 to FY93

Figure 5.3 Changes in annual mean daily energy use per conditioned area and annual mean
outdoor temperature for Fort Carson from FY86 to FY93.
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Figure 5.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Fort Carson from FY86 to FY93.

Figure 5.5.Time series plots of average monthly temperatures at Fort Carson from FY86 to
FY93.
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Figure 5.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Fort Carson from FY86 to FY93.

Figure 5.5.Time series plots of average monthly temperatures at Fort Carson from FY86 to
FY93.
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Figure 5.6. Time series plots of electricity use per unit conditioned area for Fort Carson from
FY86 to FY93.

Figure 5.7. Time series plots of gas use per unit conditioned area for Fort Carson from FY86 to
FY93.
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Figure 5.8. EModel change point model line and data points for Fort Carson electricity consumption for

baseline year (FY86). No shift in temperature data was needed, (a) mean model selected as

baseline, (b) next-best model, namely the 4P model line, and data points are shown for

comparative purposes.
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Figure 5.9. EModel change point model line (3-P heating model) and data points for Fort Carson natural

gas consumption for baseline year (FY86).

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas



3/96-FinaI Report, p. 53

Figure 5.10. Predictive ability of the baseline model (FY86) for Fort Carson electricity use during
FY86. 95% prediction intervals for the model as well as for the model residuals are
shown.

Figure 5.11. Predictive ability of electricity baseline model (FY86) for Fort Carson from FY86 to
FY93. 95% prediction intervals for the model as well as for the residuals are
shown.
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Figure 5.12. Predictive ability of the baseline model (FY86) for Fort Carson gas use during FY86.
95% prediction intervals for the model as well as for the model residuals are shown.

Figure 5.13. Predictive ability of gas baseline model (FY86) for Fort Carson from FY86 to FY93.
95% prediction intervals for the model as well as for the residuals are shown.

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas



3/96-Final Report, p. 55

Fiscal Year (Oct - Sept)

Fig.5.15(a) Electricity use

Fig.5.15(b)Gasuse

Figure 5.14. Percentage change in annual energy use per conditioned area with respect to
baseline year (FY86) for Fort Carson. Negative change indicates decrease in energy
use and vice versa. 95% confidence intervals for the percentage change are also
shown.
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Fig.5.15 (a) Electricity use

Fig.5.15(b) Gas use

Fig.5.15 Percentage changes in annual energy use with respect to baseline year (FY86) for
Fort Carson with conditioned area normalization as well as with area and population
normalization.
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6.0 Analysis of Fort Drum, NY

6.1 Preliminary data analysis

Time series plots of monthly electricity use and gas use from FY86 to FY94 are shown in Fig.

6.1 along with concurrent outdoor temperature. It is strikingly obvious that gas use has dramatically

increased from FY88, with electricity use also increasing four-fold over the years. The variation

patterns for temperature are fairly consistent over the years. As expected, gas use peaks in winter

while electricity use patterns are more difficult to discern.

Figure 6.2 shows the change in total building area and conditioned building area (determined

as described in section 2.2) over the years. Both these areas seem to have dramatically increased

from FY86 to FY94, almost doubling over the years. Total area increased by about 60% from FY86 to

FY94. The conditioned area increased by about 30% during the same period. Building areas during the

last 3-4 years seem to be fairly constant. Annual mean daily population data is also plotted in Fig.6.2.

Population also seems to have increased four-fold from FY86 to FY94 with an abnormal increase in

FY91.

Figure 6.3 shows the changes in annual mean daily energy use per unit conditioned area over

the years. Both gas use and electricity use are fairly consistent over the years. The annual mean

outdoor temperature is also plotted in order to enable the reader to associate changes in energy use

with temperature changes. For example, FY91 is a hot year and gas use seems to have decreased

that year. Plots such as these provide a general qualitative trend and one should not try to read too

much from them.

Figure 6.4 presents time series graphs of monthly electricity and gas use normalized by

building conditioned area. We notice, despite large increases in conditioned building area that gas use

still exhibits the dramatic increase in FY88 seen in Fig. 6.1. Electricity use normalized by conditioned

area shows less increase over the years than the total use (see Fig. 6.1), but there is a gradual

increase over the years nonetheless.

Figure 6.5 depicts the average monthly outdoor temperatures during a year for all years from

FY86 to FY94. We note that the weather during these years seems to be fairly consistent over the

years though certain monthly excursions from the overall annual pattern can be noted (FY90 for

example). Temperature data for FY86, our baseline year, seems to be fairly characteristic.
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Figures 6.6 and 6.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY94. This type of representation allows

clearer visualization of how energy use has changed over the years for a given month. Electricity use is

fairly constant during the year with a small increase during winter indicating space heating applications.

However, differences from one year to the next in annual electricity patterns are important. Gas use, as

expected, peaks in winter. One notices clearly the lower gas use during FY86 and FY87 as compared

to the other years. Finally, we notice in Fig. 6.7 the rather abrupt increases in gas use during February

for three years for reasons unknown to us.

6.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3-P models rather than

4-P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.

Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. The

summary model statistics of our baseline model identification effort for all three cases are summarized

in Table 6.1. We notice that the improvement in electricity and gas use models is substantial when

previous month temperature values (i.e., case 2 in section 3.6) are used for regression. This leads us

to conclude that the electricity bills are mis-matched to utility bills by one month. For electricity, the 3P-

heating model seems to be the best choice for a baseline model (see Table 6.1). How the model line

fits the data points can be noted in Fig. 6.8(a), while how the 3P model compares with the next-best

model, namely the 4P model, can be gauged by Fig. 6.8(b). The model R2 is rather low though the CV-

RMSE is acceptable. These values are basically a reflection of our previous observation that electricity

use during the year is not affected much by temperature and is fairly constant.
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Regarding the baseline model for gas use, we note from Table 6.1 that using case 2, i.e.,

temperature data shifted by one month compared to the utility bills, results in best models. Further, the

small improvement in R2 and CV-RMSE as we go from a 3P- heating model to a 4P model is not

enough to justify using the unphysical 4P model. Also we preferred to use previous month in order to

be consistent with electricity use models rather than adopt case 3 runs which seem slightly better.

Consequently, we decided to choose the 3P-heating model as our baseline model for gas use. How

the individual monthly data points scatter around the 3P-heating baseline model line can be seen in

Fig. 6.9(a) while how they are captured by the next-best 4P model (clearly an unphysical behavior) can

be gauged in Fig. 6.9(b). The gas models are very poor (low R2 and very high CV-RMSE).

The main objective of the modeling effort is to develop models for the baseline year (FY86) for

energy use. Instead of limiting ourselves to this year alone, we have also identified models for the

years ranging from FY86 to FY94 in an effort to study, (i) how well the models fit the data over the

years, and (ii) the extent to which the model coefficients vary from year to year. The model statistical

indices R2 and CV-RMSE which describe the goodness-of-fit of the models identified by EModel, are

shown for individual years in Table 6.2 for electricity use and Table 6.3 for gas use. Figures 6.10 and

6.11, which are XY plots of the R2 values and CV-RMSE values of the 9 electricity and gas models

respectively for Fort Drum from FY86 to FY94, permit convenient visualization of how well the models

are able to explain the variation in the utility data. As expected, data from different years would have

yielded models with different goodness-of-fits. However, except for one year, these models are fairly

consistent. It can be seen that for electricity the best model is for FY87, and the worst model is for

FY90. For gas, the best model is for FY87 and the worst for FY86 (our baseline year). This suggests

that perhaps the choice of the baseline model should not be done simply based on the first year of data

availability (FY86 in this study) but based on the goodness-of-fit of models identified from the first few

years of data available.

6.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our FY86 baseline models to forecast into the future up to FY94.
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Figures 6.12 and 6.14 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the FY86 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that electricity use data are well contained within the Pis bands. Those for gas are also contained

within the Pis, which however are large.

How well the FY86 baseline models for electricity and gas use are able to predict monthly

energy use from FY86 till FY94 can be seen in Figs. 6.13 and 6.15 respectively. Note that the energy

use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note, as was expected from our observation of

the time series plot that electricity use is consistently above the Pis indicating a very large increase in

electricity use. Gas use also seems to have increased appreciably. However, plots such as this are

useful to the energy manager of the corresponding Army base who is in a position to look for (as well

as discern and evaluate) changes in energy use as a result of certain specific actions taken (such as

O&M measures or say, changes in equipment in the power plants).

On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (FY86) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in

sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a

year by year basis and plotted them in Fig. 6.16 for both electricity and gas. Note that a negative

change indicates a decrease in energy use. Both electricity and gas use are clearly positive. Generally

electricity use over the years as compared to the baseline year shows an increasing trend, with,

however, FY94 use being lower than the previous years. Gas use has also increased with respect to

the baseline, but seems to have remained constant from FY89 onwards. On the whole, we note that

electricity use in FY94 has increased by about 37% (±7%) with respect to FY86, while gas use has

increased by about 68% (±25%). Though both electricity and gas models are poor (which result in

large uncertainty bands), the magnitude of the changes in both quantities are such that we can be

confident of our estimates of change in energy use in FY94 as compared to our baseline year of FY86.
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6.4 Concluding remarks

The best models for both electricity and gas were 3P-heating models indicating that energy

use is predominantly used for space heating. The baseline electricity model identified for FY86 for Fort

Drum was found to be mediocre with R2 = 0.66 and CV-RMSE = 10.7%. The baseline gas model was

very poor, R2 = 0.69 and CV-RMSE = 36.5%. Our analysis indicated that electricity utility bills were mis-

matched by a whole month and so a correction had to be made to the calendar monthly mean

temperature data that we received. No such correction seems to be necessary for gas use.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation. (As described earlier, this quantity is not directly available from the database but

has to be inferred from areas of several categories of building types which were listed in the database).

This leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening

and tracking aspects of the baseline models. We found that electricity use in FY94 has increased by

about 37% (±7%) with respect to FY86, while gas use has increased by about 68% (±25%).

Finally, Fig.6.17 and Table 6.4 assemble the year to year percentage changes in annual

energy use with respect to baseline year (FY86) normalized by (i) conditioned area, and (ii) conditioned

area and population. Contrary to the earlier bases, the changes in energy use by both means of

normalization are drastically different in view of the large increase in population over the years. If

normalized according to (ii), both electricity and gas use over the years exhibit a significant decrease.

As described in section 3.5, one cannot place as much confidence in the population values as in the

conditioned area values, and so it would probably be better to draw conclusions regarding the extent to

which Presidential Executive Order 12902 is being met based on conditioned area normalization only.
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Table 6.1. Fort Drum: model identification summary statistics for baseline year (FY86). Final models
selected are shown in bold face.

Table 6.2. Fort Drum electricity use: 3P-heating model coefficients (and standard errors) and pertinent
regression model statistics for all years

Table 6.3. Fort Drum gas use: 3P-heating model coefficients (and standard errors) and pertinent
regression model statistics for all years
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Table 6.4 Baseline models and percentage change in energy use w.r.t baseline year for Fort Drum.
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Fig.6.1(a) Electricity use.

Fig.6. l(b) Gas use

Figure 6.1. Time series plots of monthly electricity and gas consumption for Fort Drum from FY86
to FY94. The concurrent outdoor dry-bulb temperature variation is also shown.
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Figure 6.2. Changes in total and conditioned areas (in ksq.ft) and annual mean daily population
for Fort Drum from FY86 to FY94.

Fort Drum-Year to Year Variations

Figure 6.3 Changes in annual mean daily energy use per conditioned area and annual mean
outdoor temperature for Fort Drum from FY86 to FY94.
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Figure 6.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Fort Drum from FY86 to FY94.

Figure 6.5. Time series plots of average monthly temperatures at Fort Drum from FY86 to FY94.
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Figure 6.6. Time series plots of electricity use per unit conditioned area for Fort Drum from FY86
to FY94.

Figure 6.7. Time series plots of gas use per unit conditioned area for Fort Drum from FY86 to
FY94.
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Figure 6.8. EModel change point model line and data points for Fort Drum electricity consumption for

baseline year (FY86). A one-month shift in temperature led to substantial model

improvement, (a) 3P-heating model selected as baseline, (b) 3P model line and next-best

model, namely the 4P model line, are shown for comparative purposes.
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Figure 6.9. EModel change point model line and data points for Fort Drum natural gas consumption for

baseline year (FY86). A one-month shift in temperature led to substantial model

improvement, (a) 3P-heating model selected as baseline, (b) next-best model, namely the

4P model line, is shown for comparative purposes.
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Figure 6.10. R2 and CV-RMSE of electricity models for the years from FY86 to FY94 for Fort
Drum.

Figure 6.11 R2 and CV-RMSE of gas models for the years from FY86 to FY94 for Fort Drum.
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Figure 6.12. Predictive ability of the baseline model (FY86) for Fort Drum electricity use during
FY86. 95% prediction intervals for the model as well as for the model residuals are
shown.

Figure 6.13. Predictive ability of electricity baseline model (FY86) for Fort Drum from FY86 to
FY94. 95% prediction intervals for the model as well as for the residuals are shown.
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Figure 6.14. Predictive ability of the baseline model (FY86) for Fort Drum gas use during FY86.
95% prediction intervals for the model as well as for the model residuals are shown.

Figure 6.15. Predictive ability of gas baseline model (FY86) for Fort Drum from FY86 to FY94.
95% prediction intervals for the model as well as for the residuals are shown.
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Fig.6.16(a) Electricity use

Fort Drum - Gas per unit area

Fig.6.16(b)Gasuse

Figure 6.16. Percentage change in annual energy use per conditioned area with respect to
baseline year (FY86) for Fort Drum. Negative change indicates decrease in energy
use and vice versa. 95% confidence intervals for the percentage change are also
shown.
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Fig.6.17(a) Electricity use

Fig6.17(b)Gasuse

Figure 6.17. Percentage changes in annual energy use with respect to baseline year (FY86) for
Fort Drum with conditioned area normalization as well as with area and population
normalization.
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7.0 Analysis of Fort Hood, TX

7.1 Preliminary data analysis

Time series plots of monthly electricity use and gas use from FY86 to FY94 are shown in Fig.

7.1 along with concurrent outdoor temperature. The variation patterns of all three channels are fairly

consistent over the years. As expected, gas use peaks in winter while electricity use seems to be

mostly in summer due to air-conditioning. There does seem to be a slight increase in electricity use

during the winter months also leading us to suspect electric heating applications such as heat pumps

or electric strip heating in a portion of the buildings.

Figure 7.2 shows the change in total building area and conditioned area (determined as

described in section 2.2) over the years. Both these areas seem to have been generally constant over

the years. Total building area has increased a little over the years, about 8% from FY86 to FY94. The

conditioned area does not seem to have changed at all over the years. Annual mean daily population

data is also plotted in Fig.7.2. Population seems to have decreased by about 8% from FY86 till FY94

with increases and decreases occurring over the years.

Figure 7.3 shows the changes in annual mean daily energy use per unit conditioned area over

the years. Except for an increase in gas use in FY87, both gas use and electricity use are fairly

consistent over the years. The annual mean outdoor temperature is also plotted in order to enable the

reader to associate changes in energy use with temperature changes. For example, FY87 is a cold

year and gas use seems to have increased that year. Plots such as these provide a general qualitative

trend and one should not try to read too much from them.

Figure 7.4 presents time series graphs of monthly electricity and gas use normalized by

building conditioned area. We notice that generally gas use has been constant until FY91 and then

decreased from FY92 onwards. Electricity use seems to have increased gradually over the years.

Figure 7.5 depicts the average monthly outdoor temperatures during a year for all years from

FY86 to FY94. We note that the weather during these years seems to be remarkably consistent over

the years. Temperature data for FY86, our baseline year, seems to be fairly characteristic except for

November which is hotter and January and September which is cooler than other years.

Figures 7.6 and 7.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY94. This type of representation allows
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clearer visualization of how energy use has changed over the years for a given month. The sharp

increases in electricity use in July and gas use during the winter are obvious. One notices the odd

behavior in both electricity and gas uses during FY94 as compared to the rest of the years.

7.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3-P models rather than

4-P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.

Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. The

summary model statistics of our baseline model identification effort for all three cases are summarized

in Table 7.1. We notice that the utility bill and the associated temperature data are well matched and so

no correction is required (i.e., case 1 in section 3.6) are used for regression. For electricity, the 3P-

cooling model seems to be the best choice for a baseline model (see Table 6.1). How the model line

fits the data points can be noted in Fig.7.8. The model is excellent with R2 = 0.98 and CV-RMSE = 5.2

Regarding the baseline model for gas use, we note from Table 7.1 that using case 1, i.e.,

temperature data corresponding to the same calendar months as the utility bills, results in best models.

Further, the small improvement in R2 and CV-RMSE as we go from a 3P-heating model to a 4P model

is not enough to justify using the unphysical 4P model. Consequently, we decided to choose the 3P

heating model as our baseline model for gas use. How the individual monthly data points scatter

around the 3P heating baseline model line can be seen in Fig. 7.9(a) while how they are captured by

the next-best 4P model can be gauged in Fig. 7.9(b). The model is very good with R2 = 0.98 and CV-

RMSE =10.1 %.
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7.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our FY86 baseline models to forecast into the future up to FY94.

Figures 7.10 and 7.12 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the FY86 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that both electricity and gas use data have rather narrow Pis bands which is not surprising since

the models are very good (see Table 7.1).

How well the FY86 baseline models for electricity and gas use are able to predict monthly

energy use from FY86 till FY94 can be seen in Figs. 7.11 and 7.13 respectively. Note that the energy

use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note that electricity use is generally contained

within the Pis indicating no consistent increase in electricity use. The only exception is during FY94

where an abnormal increase can be noticed. Gas use is also generally bounded by the Pis (see Fig.

7.13) with however, gas use showing a statistically significant decrease both in summer of FY93 and

FY94. However, plots such as this are useful to the energy manager of the corresponding Army base

who is in a position to look for (as well as discern and evaluate) changes in energy use as a result of

certain specific actions taken (such as O&M measures or say, changes in equipment in the power

plants).

On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (FY86) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in

sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a
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year by year basis (see Table 7.4) and plotted them in Figs. 7.14 for both electricity and gas. Note that

a negative change indicates a decrease in energy use. Generally electricity use over the years as

compared to the baseline year shows an increasing trend, with a rather large increase in FY94. Gas

use, on the other hand, has decreased specially from FY91 - FY94 with respect to the baseline year.

Interestingly, gas use in FY94 has increased compared to FY92 and FY93. On the whole, we note that

electricity use in FY94 has increased by about 21% (±3%) with respect to FY86, while gas use has

decreased by about 13% ( ± 7%).

7.4 Concluding remarks

The baseline models identified for FY86 for Fort Hood were found to be very good with the

electricity model having R2 = 0.98 and CV-RMSE = 5.2%, and the gas model having R2 = 0.98 and

CV-RMSE = 10.1%. Our analysis indicated that no correction was necessary between utility bills and

calendar monthly mean temperature data that we received. This observation is consistent with our

previous study done at Fort Hood (Saman et al., 1995). The best model for electricity was a 3P-cooling

model while the best model for gas was a 3P-heating model.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation. (As described earlier, this quantity is not directly available from the database but

has to be inferred from areas of several categories of building types which were listed in the database).

This leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening

and tracking aspects of the baseline models. We found that electricity use in FY94 has increased by

about 21 % ( ± 3%) with respect to FY86, while gas use has decreased by about 13% ( ± 7%).

In our previous Fort Hood study (Saman et al., 1995), we had used calendar year (not fiscal

year as done in this study) for all analyses. Further, we used 1987 as the baseline year (while here we

have used FY86 as the baseline year), and compared annual changes in electricity use and gas use till

calendar year 1993. Despite these differences, we can still acquire an indication as to the extent to

which the results of both studies differ with each other. Recall that the former study used carefully

monitored on-site data which was subsequently "reality-checked" while the temperature data was

acquired by ESL from Temple, TX (a nearby location). The data of the current study was from general

sources such as the army central utility bills database and the NCDC climatic data. One of the

objectives of this study was also to investigate the extent to which data from such general sources

would yield reliable estimates of how energy use in a particular DoD installation is varying over the

years. The previous study found that electricity use normalized by conditioned area from calendar year
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1987 till 1993 increased by 4.7% while gas use decreased by 20.4%. Looking at Fig. 7.14, we find that

the difference in electricity use between FY93 and FY87 suggests an increase of about 7%, while that

for gas use is about 20%. These figures are fairly consistent with those of the previous study thereby

indicating that conclusive estimates of how energy use in a particular DoD installation has varied over

the years with respect to a baseline year can be reached even with "unproofed" data obtained from

general sources.

We also investigated another issue with the energy use data from Fort Hood. One could

question the need to have such an involved baselining and evaluation methodology as the one adopted

here specially since the month to month variation patterns of outdoor temperature over the years were

fairly consistent (see Fig. 7.5). One would be curious to ascertain the differences in our estimates of

how energy use over the years has changed with respect to a baseline year by the present approach

and by a much simpler approach involving direct annual utility bills comparison without any weather

correction (see eq.3.18). Figure 7.15 illustrates the amount of differences in percentage changes

between the two approaches, namely with and without weather correction. We notice that though the

differences are small during certain years, these are very large during other years (for example, gas

use during FY87 and FY93). More importantly, these seems to be no pattern to the differences in

percentage changes between both methods. The above comparison serves to reinforce a similar

conclusion reached with Fort Bragg data (see Fig. 4.15), namely that weather correction is absolutely

necessary in order to obtain reliable estimates of how energy use has varied over the years.

Finally, Fig.7.16 and Table 7.4 assemble the year to year percentage changes in annual

energy use with respect to baseline year (FY86) normalized by (i) conditioned area, and (ii) conditioned

area and population. The changes in energy use by both means of normalization are very different, the

difference being pronounced for gas. As described in section 3.5, one cannot place as much

confidence in the population values as in the conditioned area values, and so it would probably be

better to draw conclusions regarding the extent to which Presidential Executive Order 12902 is being

met based on conditioned area normalization only.
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Table 7.1. Fort Hood: model identification summary statistics for baseline year (FY86). Final models
selected are shown in bold face.

Table 7.2. Fort Hood electricity use: model coefficients (and standard errors) and pertinent regression
model statistics for FY86.

Table 7.3. Fort Hood gas use: model coefficients (and standard errors) and pertinent regression model
statistics for FY86.
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Fig.7.1(a) Electricity use

Fig.7.1(b) Gas use

Figure 7.1. Time series plots of monthly electricity and gas consumption for Fort Hood from FY86
to FY94. The concurrent outdoor dry-bulb temperature variation is also shown.
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Figure 7.2. Changes in total and conditioned areas (in ksq.ft) and annual mean daily
population for Fort Hood from FY86 to FY94.

Figure 7.3 Changes in annual mean daily energy use per conditioned area and annual mean
outdoor temperature for Fort Hood from FY86 to FY94.
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Figure 7.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Fort Hood from FY86 to FY94.

Figure 7.5. Time series plots of average monthly temperatures at Fort Hood from FY86 to FY94
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Figure 7.6. Time series plots of electricity use per unit conditioned area for Fort Hood from FY86
to FY94.

Figure 7.7. Time series plots of gas use per unit conditioned area for Fort Hood from FY86 to
FY94.
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Figure 7.8. EModel change point model line and data points for Fort Hood electricity consumption for

baseline year (FY86). 3P-cooling model selected as baseline.
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Figure 7.9. EModel change point model line and data points for Fort Hood natural gas consumption for

baseline year (FY86). (a) 3P-heating model selected as baseline, (b) next-best model,

namely the 4P model line, is shown for comparative purposes.
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Figure 7.10. Predictive ability of the baseline model (FY86) for Fort Hood electricity use during
FY86. 95% prediction intervals for the model as well as for the model residuals are
shown.

Figure 7.11. Predictive ability of electricity baseline model (FY86) for Fort Hood from FY86 to
FY94. 95% prediction intervals for the model as well as for the residuals are shown.
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Figure 7.12. Predictive ability of the baseline model (FY86) for Fort Hood gas use during FY86.
95% prediction intervals for the model as well as for the model residuals are shown.

Figure 7.13. Predictive ability of gas baseline model (FY86) for Fort Hood from FY86 to FY94.
95% prediction intervals for the model as well as for the residuals are shown.
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Fig.7.14(a) Electricity use

Fig.7.14(b)Gasuse

Figure 7.14. Percentage change in annual energy use per conditioned area with respect to
baseline year (FY86) for Fort Hood. Negative change indicates decrease in energy
use and vice versa. 95% confidence intervals for the percentage change are also
shown.
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Fig.7.15(a) Electricity use

Fig.7.15(b)Gasuse

Figure 7.15. Differences in percentage change in annual energy use per conditioned area with
respect to baseline year (FY86) for Fort Hood determined by the present
methodology and by direct utility bill comparison method. Negative change indicates
decrease in energy use and vice versa.
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Fig.7.16(a) Electricity use

Fig.7.16(b)Gasuse

Figure 7.16. Percentage changes in annual energy use with respect to baseline year (FY86) for
Fort Hood with conditioned area normalization as well as with area and population
normalization.
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8.0 Analysis of Fort Huachuca, AZ

8.1 Preliminary data analysis

Though energy utility bill data for this installation are complete till FY94, temperature data is

fragmentary (see Table 2.1). Consequently our evaluations can only be done till FY90. Further

temperature data from September 1986 till December 1986 is missing. Hence a baseline model for

FY86 (as was chosen for all other installations in this study) is difficult to identify since 3 months of data

(October - December 1995) would be missing. Hence, we decided to identify the model from calendar

year 1985 and use it for evaluating energy use over subsequent fiscal year basis. Time series plots of

monthly electricity use and gas use from January 1985 to FY94 are shown in Fig. 8.1 along with

concurrent outdoor temperature (which, however, is missing from January 1991 onwards). The

temperature variation patterns are fairly consistent over the years. As expected, gas use peaks in

winter while electricity use seems to be mostly in summer due to air-conditioning. Gas use during

several years is rather erratic: bi-modal over several years and abnormal during summer of 1986. Our

decision to use calendar year 1985 as our baseline year seems to have been wise since this would

avoid the abnormal behavior in gas use seen during summer of 1986.

Figure 8.2 shows the change in total building area and conditioned area (determined as

described in section 2.2) over the years. Both these areas seem to have generally remained constant

till FY91 and then increased from FY92 onwards. Since our evaluation is limited till FY90, we can

assume for our purpose that conditioned area over the years has remained unchanged. Annual mean

daily population data is also plotted in Fig.8.2. Population seems to have been fairly constant over the

years, except for FY87 and FY94.

i

Figure 8.3 shows the changes in annual mean daily energy use per unit conditioned area over

the years. The energy use seems fairly constant. The annual mean outdoor temperature is also plotted

in order to enable the reader to associate changes in energy use with temperature changes. For

example, FY87 is a hot year and gas use seems to have decreased that year. Plots such as these

provide a general qualitative trend and one should not try to read too much from them.

Figure 8.4 presents time series graphs of monthly electricity and gas use normalized by

building conditioned area. Gas use has decreased from FY92 onwards but will not appear in our

analysis results because of our cut-off year of FY90. Electricity use is fairly erratic with a gradual

increase over the years

Energy Systems Laboratory Texas A&M University
Texas Engineering Experiment Station College Station, Texas



3/96-Final Report, p. 93

Figure 8.5 depicts the average monthly outdoor temperatures during a year for all years from

January 1985 to FY90. We note that despite the limited data the weather during these years seems to

be fairly consistent over the years.

Figures 8.6 and 8.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY94. This type of representation allows

clearer visualization of how energy use has changed over the years for a given month. Electricity use in

rather erratic from month to month and shows no pronounced seasonal effect, though one can detect a

slight increase in summer use (presumably due to air-conditioning). Gas use is obviously for space

heating as it is higher during the winter. One notices the odd behavior of gas use during FY86 where

December use is abnormally high.

8.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3P models rather than

4P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.

Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. As discussed

earlier, calendar year data for 1985 has been used for identifying the baseline model. The summary

model statistics of our baseline model identification effort for all three cases are summarized in Table

8.1. We notice that the improvement in electricity use models is substantial when mid-month

temperature values (i.e., case 3 in section 3.6) are used for regression. This leads us to conclude that

the electricity bills do not span calendar monthly intervals but are closer to a period from the mid-month

to the next. For electricity, the 3P-cooling model seems to be the best choice for a baseline model (see

Table 8.1). How the 3P model line fits the data points can be noted in Fig. 8.8(a), while how the 3P

model compares with the next-best model, namely the 4P model, can be gauged by Fig. 8.8(b).
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Though the model R2 is low (R2 = 0.66), the low CV-RMSE (= 7.1%) makes the electricity use model

satisfactory.

Regarding the baseline model for gas use, we note from Table 8.1 that using case 1, i.e.,

temperature data corresponding to the same calendar months as the utility bills, results in best models.

Further, the 3P heating model is clearly the best and so we have selected it as our baseline model for

gas use. How the individual monthly data points scatter around the 3P heating baseline model line can

be seen in Fig. 8.9. Though the model R2 is high (R2 = 0.93), the high CV-RMSE (= 18.4%) makes the

gas model a poor one.

8.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our 1985 baseline models to forecast into the future up to FY90.

Figures 8.10 and 8.12 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the 1985 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that electricity use data have strayed outside the Pis bands in February. Some of the gas data

points are also outside the PI bands. This deviation (not seen in data from any of the other bases)

should not be a cause of undue concern since the data points are for FY86 while the Pis pertain to the

calendar 1985 baseline model.

How well the calendar 1985 baseline models for electricity and gas use are able to predict

monthly energy use from FY86 till FY90 can be seen in Figs. 8.11 and 8.13 respectively. Note that the

energy use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note that electricity use is consistently above the

Pis from FY89 onwards indicating a large increase in electricity use. Gas use, on the other hand,
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seems generally bounded by the Pis (see Fig. 8.13). The large seasonal fluctuations in gas use and

the relatively large 95% PI bands make the figure difficult to read and thence draw statistically sound

conclusions. However, plots such as this are useful to the energy manager of the corresponding Army

base who is in a position to look for (as well as discern and evaluate) changes in energy use as a result

of certain specific actions taken (such as O&M measures or say, changes in equipment in the power

plants).

On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (1985) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in

sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a

year by year basis and plotted them in Figs. 8.14 for both electricity and gas. Note that a negative

change indicates a decrease in energy use. Both electricity and gas use are clearly positive. Generally

electricity use over the years as compared to the baseline year (calendar 1985) has increased, with,

however, FY94 use being lower than the previous year. Gas use, on the other hand, shows a

decreasing trend in FY90 which, however, is still higher than that in 1985. The relatively poorer model

for gas use has resulted in wider error bands for gas. On the whole, we note that electricity use in FY90

has increased by about 8% ( ± 5%) with respect to 1985, while gas use has increased by about 11 %

( ± 13%). The uncertainty bands of the change in electricity use are relatively small and we can be

confident of our estimates of electricity change. On the other hand, there is a relatively large

uncertainty in our estimates of gas use in FY90 as compared to our baseline year of 1985.

8.4 Concluding remarks

The baseline models identified for calendar year 1985 for Fort Huachuca were found to be

satisfactory for the electricity model (CV-RMSE = 7.1 % for a 3P-cooling model) and unsatisfactory for

the gas model (CV-RMSE=18.4% for a 3P-heating model). Our analysis indicated that electricity utility

bills were read close to mid-month and so a correction had to be made to the calendar monthly mean

temperature data that we received. No such correction seems to be necessary for gas use.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation. (As described earlier, this quantity is not directly available from the database but

has to be inferred from areas of several categories of building types which were listed in the database).

This leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening
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and tracking aspects of the baseline models. We found that electricity use in FY90 has increased by

about 8% (±5%) with respect to calendar year 1985, while gas use has increased by about 11%

( ± 13%). Given the relative size of the error bands, we can be fairly confident of our conclusions

regarding change in electricity use while we need to be more cautious about that of gas use.

Finally, Fig.8.15 and Table 8.4 assemble the year to year percentage changes in annual

energy use with respect to baseline year (FY86) normalized by (i) conditioned area, and (ii) conditioned

area and population. Though generally the changes in energy use by both means of normalization

have more or less similar patterns, the quantitative values are appreciably different during certain

years. As described in section 3.5, one cannot place as much confidence in the population values as in

the conditioned area values, and so it would probably be better to draw conclusions regarding the

extent to which Presidential Executive Order 12902 is being met based on conditioned area

normalization only.
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Table 8.1. Fort Huachuca: model identification summary statistics for baseline year (calender year 1985).
Final models selected are shown in bold face.

Table 8.2. Fort Huachuca electricity use: model coefficients (and standard errors) and pertinent regression
model statistics for calender year 1985

Table 8.3. Fort Huachuca gas use: model coefficients (and standard errors) and pertinent regression model
statistics for calender year 1985.

Table 8.4 Baseline models and percentage change in energy use w.r.t baseline year for Fort Huachuca.
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Fig.8.1(a) Electricity use

Fig8.1(b)Gasuse

Figure 8.1. Time series plots of monthly electricity and gas consumption for Fort Huachuca from
January 1985 to FY94. Note that the concurrent outdoor dry-bulb temperature data is
fragmentary and extends only till December 1990.
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Figure 8.2. Changes in total and conditioned areas (in ksq.ft) and annual mean daily
population for Fort Huachuca from FY86 to FY94.

Figure 8.3 Changes in annual mean daily energy use per conditioned area and annual mean
outdoor temperature for Fort Huachuca from FY86 to FY90.
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Figure 8.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Fort Huachuca from January 1985 to FY94.

Figure 8.5. Time series plots of average monthly temperatures at Fort Huachuca from FY86 to
FY90.

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas



3/96-Final Report, p. 101

Figure 8.6. Time series plots of electricity use per unit conditioned area for Fort Huachuca from
FY86 to FY94.

Figure 8.7. Time series plots of gas use per unit conditioned area for Fort Huachuca from FY86
to FY94.
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Figure 8.8. EModel change point model line and data points for Fort Huachuca electricity consumption for

baseline year (calendar year 1985). A 15-day shift in temperature led to substantial model

improvement, (a) 3P-cooling model selected as baseline, (b) 3P cooling model line and next-

best model, namely the 4P model line, are shown for comparative purposes.
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Figure 8.9. EModel change point model line and data points for Fort Huachuca natural gas consumption

for baseline year (calendar year 1985). 3P model selected as baseline.
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Figure 8.10. Predictive ability of the baseline model (calendar year 1985) for Fort Huachuca
electricity use during FY86. 95% prediction intervals for the model as well as for the
model residuals are shown.

Figure 8.11. Predictive ability of electricity baseline model (calendar year 1985) for Fort Huachuca
from FY86 to FY90. 95% prediction intervals for the model as well as for the
residuals are shown.
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Figure 8.12. Predictive ability of the baseline model (calendar year 1985) for Fort Huachuca gas
use during FY86. 95% prediction intervals for the model as well as for the model
residuals are shown.

Figure 8.13. Predictive ability of gas baseline model (calendar year 1985) for Fort Huachuca from
FY86 to FY90. 95% prediction intervals for the model as well as for the residuals are
shown.
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Fig.8.14(a) Electricity use

Fig.8.14(b)Gasuse

Figure 8.14. Percentage change in annual energy use per conditioned area with respect to
baseline year (calendar year 1985) for Fort Huachuca. Negative change indicates
decrease in energy use and vice versa. 95% confidence bands are also shown.
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Fig.8.15(a) Electricity use

Fig.8.15(b)Gasuse

Figure 8.15. Percentage changes in annual energy use with respect to baseline year (FY86) for
Fort Huachuca with conditioned area normalization as well as with area and
population normalization.
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9.0 Analysis of Fort Ord, CA

9.1 Preliminary data analysis

Outdoor temperature data provided to us extended only until December 1993, and so all

analyses at Fort Ord can be done only until FY93. Time series plots of monthly electricity use and gas

use from FY86 to FY94 are shown in Fig. 9.1 along with concurrent outdoor temperature. The variation

patterns for gas use are not very consistent over the years. As expected, gas use peaks in winter while

electricity use seems to be very flat signifying little seasonal change as well as little year to year

changes.

Figure 9.2 shows the change in total building area and conditioned area (determined as

described in section 2.2) over the years. Total area decreased during FY87, then increased to a

maximum during FY89 and has remained constant ever since. The conditioned area seems to have

generally followed the same trend and has increased by about 7% from FY86 to FY93. Annual

mean daily population data is also plotted in Fig.9.2. Population seems to have increased suddenly in

FY87 as compared to FY86, and then decreased to a constant value over the last 5 years.

Figure 9.3 shows the changes in annual mean daily energy use per unit conditioned area over

the years. Gas use exhibits variations over the years, while electricity use is fairly constant. The annual

mean outdoor temperature is also plotted in order to enable the reader to associate changes in energy

use with temperature changes. For example, FY88 and FY89 are cold years and gas use seems to

have increased during those years. Plots such as these provide a general qualitative trend and one

should not try to read too much from them.

Figure 9.4 presents time series graphs of monthly electricity and gas use normalized by

conditioned area. Gas use has increased from FY88 onwards and remained more or less constant

from then. Electricity use shows little seasonal variation but has shown a long term patterns of

decrease and increase over the years

Figure 9.5 depicts the average monthly outdoor temperatures during a year for all years from

FY86 to FY93. We note, as mentioned earlier, smaller swings and more year-to-year. Temperature

data for FY86, our baseline year, does not seem to be very characteristic as it is lower than the other

years during November, March and April, and higher in January than the other years.
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Figures 9.6 and 9.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY93. This type of representation allows

clearer visualization of how energy use has changed over the years for a given month. Electricity use is

fairly constant over the year and over the years, while gas use during the winter months is high due to

space heating applications. There is also more variability from year to year.

9.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3-P models rather than

4P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.

Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. The

summary model statistics of our baseline model identification effort for all three cases are summarized

in Table 9.1. We note that the R2 values of the 3P-heating and cooling models and of the 4P models

are very low indicating almost no temperature dependence. The mean model seems to be the best

choice for the baseline model even though the 4P model has slightly lower CV-RMSE. How the mean

model line fits the data points can be noted in Fig. 9.8(a), while how the mean model compares with

the next-best model, namely the 4P model, can be gauged by Fig. 9.8(b). The mean model is

satisfactory since the CV-STD is low indicating not much variability in the utility bills from month to

month.

Regarding the baseline model for gas use, we note from Table 9.1 that using case 1, i.e.,

temperature data corresponding to the same calendar months as the utility bills, results in best models.

Further, the small improvement in R2 as we go from a 3P-heating model to a 4P model is not enough

to justify using the unphysical 4-P model. Consequently, we decided to choose the 3P-heating model

as our baseline model for gas use. How the individual monthly data points scatter around the 3P-
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heating baseline model line can be seen in Fig. 9.9. The model is not very good with R2 = 0.69 and CV-

STD = 16.2%.

9.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our FY86 baseline models to forecast into the future up to FY93.

Figures 9.10 and 9.12 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the FY86 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that the Pis for the gas use are rather wide since the model is not very good (see Table 9.1).

How well the FY86 baseline models for electricity and gas use are able to predict monthly

energy use from FY86 till FY93 can be seen in Figs. 9.11 and 9.13 respectively. Note that the energy

use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note that electricity use is bounded by the Pis

indicating no statistical increase in electricity use over the years. Gas use also exhibits similar behavior

(see Fig. 9.13). So statistically speaking, one cannot draw any definite conclusions about how gas use

has varied over the years. However, plots such as this are useful to the energy manager of the

corresponding Army base who is in a position to look for (as well as discern and evaluate) changes in

energy use as a result of certain specific actions taken (such as O&M measures or say, changes in

equipment in the power plants).

On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (FY86) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in
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sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a

year by year basis (see Table 9.4) and plotted them in Figs. 9.14 for both electricity and gas. Note that

a negative change indicates a decrease in energy use. Electricity use over the years seems to have

varied considerably. There was a statistically significant increase in energy use from FY90 till FY92 as

compared to the baseline year FY86. Subsequently, energy use during FY93 seems to have

decreased. Gas use, on the other hand, seems to have been always less than that during the baseline

year, with a rather abrupt decrease in FY93. However this change is not very significant statistically

because of the wide error bands for gas. On the whole, we note that electricity use in FY93 has

decreased by about 4% (±6%) with respect to FY86, while gas use has decreased by about 9%

(±11 %). The uncertainty bands of the change in electricity use and gas use are wider than the extent

of energy decrease and so one cannot place much confidence in these savings estimates.

9.4 Concluding remarks

The electricity baseline model identified for FY86 for Fort Ord was a mean model with CV-

STD= 8.3%, while the 3P-heating gas model with R2 = 0.69 and CV-RMSE = 16.2% was quite poor.

Our analysis indicated that no correction to the utility bill data is necessary in order to match them with

the calendar monthly mean temperature data that we received.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation. (As described earlier, this quantity is not directly available from the database but

has to be inferred from areas of several categories of building types which were listed in the database).

This leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening

and tracking aspects of the baseline models. We found that electricity use in FY93 has decreased by

about 4% (± 6%) with respect to FY86, while gas use has decreased by about 9% (±11 %). Since the

uncertainty bands are wider than our estimates of energy decrease from FY86, not much confidence

can be placed on these estimates.

Finally, Fig.9.15 and Table 9.4 assemble the year to year percentage changes in annual

energy use with respect to baseline year (FY86) normalized by (i) conditioned area, and (ii) conditioned

area and population. The changes in energy use by both means of normalization are widely. Population

over the years having decreased from the FY86 value, normalization by approach (ii) would suggest

that energy use has increased substantially as compared to FY86. As described in section 3.5, one

cannot place as much confidence in the population values as in the conditioned area values, and so it
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would probably be better to draw conclusions regarding the extent to which Presidential Executive

Order 12902 is being met based on conditioned area normalization only.
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Table 9.1. Fort Ord: model identification summary statistics for baseline year (FY86). Final models
selected are shown in bold face.

Plots of these models are shown in the report

Table 9.3. Fort Ord gas use: model coefficients (and standard errors) and pertinent regression model
statistics for FY86.

Table 9.4 Baseline models and percentage change in energy use w.r.t baseline year for Fort Ord.
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Fig.9.1(b)Gasuse.

Figure 9.1. Time series plots of monthly electricity and gas consumption for Fort Ord from FY86
to FY93. The concurrent outdoor dry-bulb temperature variation is also shown.
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Figure 9.2. Changes in total and conditioned areas (in ksq.ft) and annual mean daily
population for Fort Ord from FY86 to FY93.

Figure 9.3 Changes in annual mean daily energy use per unit conditioned area and annual mean
outdoor temperature for Fort Ord from FY86 to FY94.

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas



3/96-Final Report, p. 116

Figure 9.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Fort Ord from FY86 to FY93.

Figure 9.5. Time series plots of average monthly temperatures at Fort Ord from FY86 to FY93.
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Figure 9.6. Time series plots of electricity use per unit conditioned area for Fort Ord from FY86 to
FY93.

Figure 9.7. Time series plots of gas use per unit conditioned area for Fort Ord from FY86 to
FY93.
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Figure 9.8. EModel change point model line and data points for Fort Ord electricity consumption for

baseline year (FY86). (a) Mean model selected as baseline, (b) mean model line and next-

best model, namely the 4P model line, are shown for comparative purposes.
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Figure 9.9. EModel change point model line and data points for Fort Ord natural gas consumption for

baseline year (FY86). 3P-heating model selected as baseline.
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Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept
Month (FY IMC)

Figure 9.10. Predictive ability of the baseline model (FY86) for Fort Ord electricity use during
FY86. 95% prediction intervals for the model as well as for the model residuals are
shown.

Figure 9.11. Predictive ability of electricity baseline model (FY86) for Fort Ord from FY86 to FY93.
95% prediction intervals for the model as well as for the residuals are shown.
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Figure 9.12. Predictive ability of the baseline model (FY86) for Fort Ord gas use during FY86.
95% prediction intervals for the model as well as for the model residuals are shown.

Figure 9.13. Predictive ability of gas baseline model (FY86) for Fort Ord from FY86 to FY93.
95% prediction intervals for the model as well as for the residuals are shown.
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Fig.9.14(a) Electricity use

Fig.9.14(b)Gasuse

Figure 9.14. Percentage change in annual energy use per conditioned area with respect to
baseline year (FY86) for Fort Ord. Negative change indicates decrease in energy
use and vice versa. 95% confidence intervals for the percentage change are also
shown.
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Fig.9.15 (a) Electricity use.

Fig.9.15 (b) Gas use

Figure 9.15. Percentage changes in annual energy use with respect to baseline year (FY86) for
Fort Ord with conditioned area normalization as well as with area and population
normalization.
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10.0 Analysis of Pueblo Army Depot, CO

10.1 Preliminary data analysis

Outdoor temperature data till December 1993 only was provided to us and so all analyses at

Pueblo Army Depot can be done only until FY93. Time series plots of monthly electricity use and gas

use from FY86 to FY93 are shown in Fig. 10.1 along with concurrent outdoor temperature. The

variation patterns of outdoor temperature and gas use are fairly consistent over the years except for a

very large increase in the gas use during FY93. The magnitude of order increase leads us to suspect a

transcription error in the decimal point while entering gas utility bills into the database, but we shall

leave this as is until we get a confirmation on our speculation. Electricity use seems to be fairly

constant seasonally but does show variability over the years.

Recall that this installation is an army depot center which is probably sparsely populated

(population data for this installation was unavailable, see Table 2.2). Figure 10.2 which shows the

change in total building area and conditioned area (determined as described in section 2.2) over the

years, is striking in two respects. The conditioned area is only about 5% of the total building area, and

both the areas have remained unchanged over the years. Annual mean daily population data is also

plotted in Fig.10.2. from FY90 onwards. As expected, the population is low but does exhibit a variation

from year to year.

Figure 10.3 shows the changes in annual mean daily energy use per unit conditioned area

over the years. Electricity use seems to be gradually decreasing while gas use (except for FY93 as

mentioned earlier) is fairly consistent over the years. The annual mean outdoor temperature is also

plotted in order to enable the reader to associate changes in energy use with temperature changes.

Plots such as these provide a general qualitative trend and one should not try to read too much from

them.

Figure 10.4 presents time series graphs of monthly electricity and gas use normalized by

conditioned area. With conditioned area constant over the years, these plots are almost identical to

those in Fig. 10.1.

Figure 10.5 depicts the average monthly outdoor temperatures during a year for all years from

FY86 to FY94. We note that the weather during these years seems to be fairly consistent over the

years though certain monthly excursions from the overall annual pattern can be noted. Temperature
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data for FY86, our baseline year, seems to be fairly characteristic except for being higher than the rest

during January.

Figures 10.6 and 10.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY93. This type of representation allows

clearer visualization of how energy use has changed over the years for a given month. Electricity use in

July is almost constant throughout the year and fairly erratic. Gas use from FY86 till FY92 is very

consistent while the order of magnitude increase in FY93 has already been pointed out earlier.

10.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3-P models rather than

4P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.

Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. The

summary model statistics of our baseline model identification effort for all three cases are summarized

in Table 10.1. We note that the R2 values of the 3P-heating and cooling models and of the 4P models

are very low indicating almost no temperature dependence. The mean model, though having slightly

higher CV values than the others, seems to be the best choice. How the model line fits the data points

can be noted in Fig. 10.8(a), while how the next-best model, namely the 4P model fits the data points,

can be gauged by Fig. 10.8(b). The mean model is not very good, having a CV-STD = 17.3%, which is

large.

Regarding the baseline model for gas use, we note from Table 10.1 that using case 1, i.e.,

temperature data corresponding to the same calendar months as the utility bills, results in best models.

Further, the R2 and CV-RMSE of the 3P- heating model are so good, and the model line fits the data

Energy Systems Laboratory Texas A&M University
Texas Engineering Experiment Station College Station, Texas



3/96-Final Report, p. 126

points so well (see Fig. 10.9), that investigation with a 4P model was deemed unnecessary. The 3P-

heating model is very good with R2 = 0.98 and CV-RMSE = 9.2%.

10.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our FY86 baseline models to forecast into the future up to FY93.

Figures 10.10 and 10.12 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the FY86 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that electricity use has very wide Pis bands which is not surprising since the model was rather

poor (see Table 10.1). The gas use model (which was very good) has narrow 95% uncertainty bands.

How well the FY86 baseline models for electricity and gas use are able to predict monthly

energy use from FY86 till FY93 can be seen in Figs. 10.11 and 10.13 respectively. Note that the energy

use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note that electricity use is well contained within

the Pis while showing a decrease from FY90 onwards. Gas use also seems well bounded by the Pis

(see Fig. 10.13) except for the very large increase in FY93. Plots such as this are useful to the energy

manager of the corresponding Army base who is in a position to look for (as well as discern and

evaluate) changes in energy use as a result of certain specific actions taken (such as O&M measures

or say, changes in equipment in the power plants).

On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (FY86) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in
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sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a

year by year basis (Table 10.4) and plotted them in Figs.10.14 for both electricity and gas. Note that a

negative change indicates a decrease in energy use. Clearly electricity use has decreased over the

years. Though FY87 - FY89 do not exhibit statistically conclusive decreases in energy use with respect

to FY86 (since the 95% PI bands are wider than the estimates of change themselves), decrease in

electricity use from FY90 onwards is significant. Gas use, on the other hand, does not seem to have

varied over the years except for FY93 which we suspect to be erroneous as discussed above.

On the whole, we note that electricity use in FY93 has decreased by about 44% (±12%) with

respect to FY86, while gas use in FY92 (omitting the anomalous use in FY93), has increased by about

4% (±6%). While electricity use decrease is statistically significant, that for gas is not.

10.4 Concluding remarks

The mean electricity baseline model identified for FY86 for Pueblo Army Depot was found to

be quite poor with CV-STD = 17.3%. The 3P-heating gas model was fairly good with R2 = 0.98 and CV-

RMSE = 9.2%. Our analysis indicated that there was no mis-match between the utility bills and the

calendar monthly mean temperature data that we received.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation (a quantity which is not directly available from the database but which had to be

inferred from areas of several categories of building types which were listed in the database). This

leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening and

tracking aspects of the baseline models. We found that electricity use in FY93 has decreased by about

44% ( ± 12%) with respect to FY86, while gas use, omitting the anomalous FY93, has increased by

about 4% ( ± 6%) from FY86 till FY92 which is, however, statistically uncertain. Since data for

population was missing for a number of years, and since this variable would have little effect on energy

use in an Army depot, we have not done any investigation with energy normalizing by population as

was done in the previous bases.
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Table 10.2. Pueblo Army Depot electricity use: model coefficients (and standard errors) and pertinent
regression model statistics for FY86.

Table 10.4 Baseline models and percentage change in energy use w.r.t baseline year for Pueblo Army
Depot. Data for population was missing for a certain number of years and so percentage change
numbers normalized by population were not calculated

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas

Table 10.3. Pueblo Army Depot gas use: model coefficients (and standard errors) and pertinent regression
model statistics for FY86. _ _ ^

Table 10.1. Pueblo Army Depot: model identification summary statistics for baseline year (FY86). Final
models selected are shown in bold face.
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Fig. 10. l(b)

Figure 10.1. Time series plots of monthly electricity and gas consumption for Pueblo Army Depot
from FY86 to FY93. The concurrent outdoor dry-bulb temperature variation is also
shown.
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Figure 10.2. Changes in total and conditioned areas (in ksq.ft) and annual mean daily population
for Pueblo Army Depot from FY86 to FY93.

Fig.10.3 Changes in annual mean daily energy use per unit conditioned area and annual mean
outdoor temperature for Pueblo Army Depot from FY86 to FY93.
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Figure 10.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Pueblo Army Depot from FY86 to FY93.

Figure 10.5. Time series plots of average monthly temperatures at Pueblo Army Depot from
FY86 to FY93.
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Figure 10.6.Time series plots of electricity use per unit conditioned area for Pueblo Army Depot
from FY86 to FY93.

Figure 10.7. Time series plots of gas use per unit conditioned area for Pueblo Army Depot from
FY86 to FY93.
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Figure 10.8. EModel change point model line and data points for Pueblo Army Depot electricity

consumption for baseline year (FY86). (a) Mean model selected as baseline, (b) next-best

model, namely the 4P model line, are shown for comparative purposes.
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Figure 10.9. EModel change point model line and data points for Pueblo Army Depot natural gas

consumption for baseline year (FY86). 3P-heating model selected as baseline.
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O d N o v D a c J a n F e b M a r A p r M a y June Jury Aug Sepl

Month (FY 19«C)

Figure lO.IO.Predictive ability of the baseline model (FY86) for Pueblo Army Depot electricity use
during FY86. 95% prediction intervals for the model as well as for the model
residuals are shown.

Figure 10.11. Predictive ability of electricity baseline model (FY86) for Pueblo Army Depot from
FY86 to FY93. 95% prediction intervals for the model as well as for the residuals
are shown.
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Figure 10.12. Predictive ability of the baseline model (FY86) for Pueblo Army Depot gas use
during FY86. 95% prediction intervals for the model as well as for the model
residuals are shown.

Figure 10.13. Predictive ability of gas baseline model (FY86) for Pueblo Army Depot from FY86
to FY93. 95% prediction intervals for the model as well as for the residuals are shown.
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Fig.lO.14(a) Electricity use

Fig.10.14(b)Gasuse

Figure 10.14. Percentage change in annual energy use per conditioned area with respect to
baseline year (FY86) for Pueblo Army Depot. Negative change indicates decrease
in energy use and vice versa. 95% confidence intervals for the percentage change
are also shown.
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11.0 Analysis of Sacramento Army Depot, CA

11.1 Preliminary data analysis

Time series plots of monthly electricity use and gas use from FY86 to FY94 are shown in Fig.

11.1 along with concurrent outdoor temperature. The variation patterns for gas and temperature are

fairly consistent over the years. As expected, gas use peaks in winter. Electricity use seems to be

constant over the year while a general increase and then a decrease over the years is noticeable.

Sacramento Army Depot is an army depot and one would except a relatively small fraction of

the total building area to be conditioned. Figure 11.2 shows the change in total area and conditioned

area (determined as described in section 2.2) over the years. Both these areas seem to have generally

increased from FY86 to FY90, and then decreased again so that the values in FY94 are close to those

in FY86. The conditioned area seems to be about 15% of the total building area of the base. Annual

mean daily population data from FY90 is also plotted in Fig.11.2. Population seems to have dropped

significantly in FY94.

Figure 11.3 shows the changes in annual mean daily energy use per unit conditioned area

over the years. Both gas use and electricity use are variable over the years. The annual mean outdoor

temperature is also plotted in order to enable the reader to associate changes in energy use with

temperature changes. Plots such as these provide a general qualitative trend and one should not try to

read too much from them.

Figure 11.4 presents time series graphs of monthly electricity and gas use normalized by

conditioned area. We notice that generally gas use has decreased during summer with the winter use

remaining unchanged till FY93 and then decreased in FY94. Also, gas use during FY91 is lower and

also bi-modal. Electricity use seems to show a gradual decrease over the years.

Figure 11.5 depicts the average monthly outdoor temperatures during a year for all years from

FY86 to FY94. We note that the weather during these years seems to be fairly consistent over the

years though certain monthly excursions from the overall annual pattern can be noted. Temperature

data for FY86, our baseline year, seems to be fairly characteristic except for being higher than the rest

of the years during January.
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Figures 11.6 and 11.7 are time series plots of electricity use and gas use normalized by

conditioned area during a year for all years from FY86 to FY94. This type of representation allows

clearer visualization of how energy use has changed over the years for a given month. Electricity use

looks fairly constant over the year with, however, important year to year variations. We note that

electricity use data for FY94 is much lower than that during the other years. Gas is obviously used

largely for space heating since it peaks in winter. One notices the odd behavior of gas use during

January 1986 and from January till September 1994 where gas use is lower than in the other years.

11.2 Baseline modeling

As described earlier, there is an ambiguity regarding proper match between the utility bill

period and the corresponding temperature data supplied to us. In section 3.6, we had suggested a

method whereby we would identify the best model from three different sets of runs where the

temperature data has been taken in slightly different ways. The criteria for selecting the optimum

model among the various runs are as follows:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii) it would be more appropriate from physical considerations, to select 3-P models rather than

4P models. Only if the improvement in R2 and CV-RMSE is substantial, would we relax this

rule.

Note that both electricity and gas use during the year have been normalized with the

conditioned area of the army base during that particular year prior to model identification. The

summary model statistics of our baseline model identification effort for all three cases are summarized

in Table 11.1. We notice that the improvement in electricity use models is substantial when previous

month temperature values (i.e., case 2 in section 3.6) are used for regression. This leads us to

conclude that the electricity bills do not span calendar monthly intervals but have been shifted by one

month. For electricity, the 4P model seems to be the best choice for a baseline model (see Table

11.1). How the model line fits the data points can be noted in Fig. 11.8. Though the R2 value is poor (=

0.67), CV-RMSE = 7.3% which makes the baseline electricity model a good one.

Regarding the baseline model for gas use, we note from Table 11.1 that using case 2, i.e.,

temperature data shifted by one month compared to the utility bills, results in best models. Further,

from the R2 and CV-RMSE values, a 3P-heating model is clearly the best choice. How the individual

monthly data points scatter around the 3P-heating baseline model line can be seen in Fig. 11.9.
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Though the R2 value is satisfactory (R2 = 0.88), the CV-RMSE =26.4% which is very large.

Consequently, the model has to be deemed unsatisfactory.

11.3 Baseline models for screening and tracking

Once baseline models have been developed, it is possible to use them as screening tools by

comparing forecast levels with actual energy use. Effect of changes in weather from year-to-year

(more accurately, outdoor temperature) on the energy use is explicitly accounted for by the baseline

model forecasts. Deviations from expectations must be studied to determine whether known

extraneous changes have contributed to this variation or whether these changes are a result of energy

efficiency measures or DSM programs that have been initiated. How the Pis of the model are to be

calculated have been described in section 3.3 for individual months and in section 3.4 on an annual

basis. We have used our FY86 baseline models to forecast into the future up to FY94.

Figures 11.10 and 11.12 depict the extent to which the monthly energy use utility bills are

bounded by the Pis of the FY86 baseline model for electricity use and gas use respectively. For clearer

visualization, we have also shown the residuals (residual = measured value minus model predicted

value) along with the Pis. If, say, the utility bill data for a month fall below the lower 95% PI, one can

safely affirm that energy use during that month has decreased as compared to model predictions. We

note that the 95% PI bands for electricity use are relatively narrow which is not surprising since the

model is satisfactory with low CV-RMSE (see Table 10.1). The prediction bands for gas use, on the

other hand, are relatively large since the model is a poor one.

How well the FY86 baseline models for electricity and gas use are able to predict monthly

energy use from FY86 till FY94 can be seen in Figs. 11.11 and 11.13 respectively. Note that the energy

use is on a monthly mean daily basis per unit conditioned area but has not been normalized for

changes in population from one year to the next. We note that electricity use is generally contained

within the Pis till FY92 and then seems to have decreased subsequently. Gas use data, on the other

hand, is generally bounded by the Pis (see Fig. 11.13) partly because the Pis for gas are wider than

those for electricity (since the model is slightly poorer). So statistically speaking, one cannot draw any

definite conclusions about how gas use has varied over the years. However, plots such as this are

useful to the energy manager of the corresponding Army base who is in a position to look for (as well

as discern and evaluate) changes in energy use as a result of certain specific actions taken (such as

O&M measures or say, changes in equipment in the power plants).
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On an annual time scale, however, determination of percentage changes in energy use

(normalized by conditioned area) with respect to the baseline year (FY86) permit rather well-defined

conclusions to be drawn regarding the extent to which the Executive Order 12902 has been met. How

these changes are to be determined as well as the 95% Pis of these changes have been described in

sections 3.4 and 3.5. Following eqs.(3.16) and (3.17), we have computed the percentage changes on a

year by year basis (see Table 11.4) and plotted them in Figs. 11.14 for both electricity and gas. Note

that a negative change indicates a decrease in energy use. Clearly both electricity and gas use have

decreased with respect to FY86. Except for FY87 when electricity use has increased from that of

FY86, electricity use has progressively decreased more so from FY90 onwards. Gas use also has

decreased from FY93 onwards. The changes during the last two years, for both electricity and gas use,

are significant statistically in view of the relatively narrow uncertainty bands. On the whole, we note that

electricity use in FY94 has decreased by about 53% ( ± 5%) with respect to FY86, while gas use has

decreased also by about 54% (+ 18%). The uncertainty bands of the change in electricity use are

relatively smaller than those of the gas, but nonetheless both these estimates of change compared to

our baseline year of FY86 are significant.

11.4 Concluding remarks

The 4P electricity baseline model identified for FY86 for Sacramento Army Depot was found to

be satisfactory in terms of acceptable CV-RMSE value though the R2 value was low. On the other

hand, the gas model has high R2 (= 0.88), but since the CV-RMSE = 26.4%, the model was deemed

unsatisfactory. Our analysis indicated that both electricity and gas utility bills were recorded with a one

month mis-match with the calendar monthly mean temperature data that we received.

Using the baseline models to track how energy use has increased (or decreased) over the

years required that energy use during each year be normalized by the associated conditioned area of

the army installation. (As described earlier, this quantity is not directly available from the database but

has to be inferred from areas of several categories of building types which were listed in the database).

This leads to a certain amount of unavoidable uncertainty in our conclusions regarding the screening

and tracking aspects of the baseline models. We found that electricity use in FY94 has decreased by

about 53% (±5%) with respect to FY86, while gas use has decreased also by about 54% (+ 18%).

Since data for population was missing for a number of years, and since this variable would have little

effect on energy use in an Army depot, we have not done any investigation with energy normalizing by

population as was done in the previous bases.
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Table 11.1. Sacramento Army Depot: model identification summary statistics for baseline year (FY86).
Final models selected are shown in bold face.

Table 11.2. Sacramento Army Depot electricity use: model coefficients (and standard errors) and pertinent
regression model statistics for FY86.

Table 11.4 Baseline models and percentage change in energy use w.r.t baseline year for Sacramento Army
Depot. Data for population was missing for a certain number of years and so percentage change
numbers normalized by population were not calculated.

Energy Systems Laboratory
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Texas A&M University
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Table 11.3. Sacramento Army Depot gas use: model coefficients (and standard errors) and pertinent
regression model statistics for FY86.
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§ S

Fig.ll.l(a)

Fig. 11. l(b)

Figure 11.1. Time series plots of monthly electricity and gas consumption for Sacramento Army
Depot from FY86 to FY94. The concurrent outdoor dry-bulb temperature variation is
also shown.
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Figure 11.2. Changes in total and conditioned areas (in ksq.ft) and annual mean daily
population for Sacramento Army Depot from FY86 to FY94.

Fig.11.3 Changes in annual mean daily energy use per unit conditioned area and annual mean
outdoor temperature for Sacramento Army Depot from FY86 to FY94.
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Figure 11.4. Time series graphs of monthly electricity and gas consumption per unit conditioned
area for Sacramento Army Depot from FY86 to FY94.

Figure 11.5. Time series plots of average monthly temperatures at Sacramento Army Depot
from FY86 to FY94.
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Figure 11.6. Time series plots of electricity use per unit conditioned area for Sacramento Army
Depot from FY86 to FY94.

Figure 11.7. Time series plots of gas use per unit conditioned area for Sacramento Army Depot
from FY86 to FY94.
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Figure 11.8. EModel change point model line and data points for Sacramento Army Depot electricity

consumption for baseline year (FY86). A one-month shift in temperature led to substantial

model improvement. 4P model selected as baseline.

Figure 11.9. EModel change point model line and data points for Sacramento Army Depot natural gas

consumption for baseline year (FY86). A one-month shift in temperature led to substantial

model improvement. 3P-heating model selected as baseline.
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Figure 11.10. Predictive ability of the baseline model (FY86) for Sacramento Army Depot
electricity use during FY86. 95% prediction intervals for the model as well as for the
model residuals are shown.

Figure 11.11. Predictive ability of electricity baseline model (FY86) for Sacramento Army Depot
from FY86 to FY94. 95% prediction intervals for the model as well as for the
residuals are shown.

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas



3/96-Final Report, p. 149

Figure 11.12. Predictive ability of the baseline model (FY86) for Sacramento Army Depot gas
use during FY86. 95% prediction intervals for the model as well as for the model
residuals are shown.

Figure 11.13. Predictive ability of gas baseline model (FY86) for Sacramento Army Depot from
FY86 to FY94. 95% prediction intervals for the model as well as for the residuals
are shown.
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Fig. 11.14(a) Electricity use

Sacramento Army Depot - Gas use per unit area

Fig.ll.l4(b)Gasuse

Figure 11.14. Percentage change in annual energy use per conditioned area with respect to
baseline year (FY86) for Sacramento Army Depot. Negative change indicates
decrease in energy use and vice versa. 95% confidence intervals for the percentage
change are also shown.
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12.0 Overall Summary and Conclusions

This report has been prepared for the United States Army Construction Engineering Research

Laboratories (USACERL) located at Champaign, IL by the Energy Systems Laboratory (ESL) of Texas

A&M University with the objective of developing monthly baseline utility models for electricity and gas

use for eight army bases around the U.S. and illustrate their use as screening tools for detecting

changes in future utility bills and also to track/evaluate the extent to which Presidential Executive Order

12902 mandating 30% decrease in energy utility bills from 1985 to 2005 is being met.

With the above objective in mind , USACERL commissioned a first study, in mid-1995, with

ESL. The objectives were to: (i) to investigate different types of energy modeling software- PRISM and

EModel- in order to ascertain which is more appropriate for modeling energy use in DoD installations,

(ii) to propose criteria for selecting the baseline year depending on the availability and "cleanliness" of

the utility bill data and the associated outdoor temperature data, and (iii) develop/propose statistical

equations in order to determine the uncertainty in using these baseline models for predicting monthly

(or utility) energy use and annual energy use. For this preliminary study, we wanted to select a base

whose utility data had undergone some sort of "reality check". Fort Hood, a large army installation

located in central Texas was chosen in view of the fact that extensive data gathering and analyses has

been done on this base over the years, and a comprehensive report on utility and services data was

available. The results of our previous study, documented in a report by Saman et al.(1995), indicated

that reliable baseline models of electricity use, electricity demand, gas use and water use could be

identified from utility billing data and that these models were sound enough to be useful as screening

tools for detecting changes in future utility bills.

The basic objective of the current study was to apply/evaluate the previous methodology to

utility data from eight army bases from various parts of the country. The utility data and other data such

as base area and population which were to be used for the analysis were downloaded from the central

Defense Energy Information System (DEIS) database. One could not expect such data to be as "clean"

as that from Fort Hood since the former is usually not subjected to careful "reality check" before being

entered into the database. Further, unlike the preliminary study where daily mean outdoor temperature

data for Temple, TX (a town very close to Fort Hood) was available for the analysis, USACERL

decided to use monthly mean temperature data from the National Climatic Data Center (NCDC) at

Ashville, NC where such data for numerous sites throughout the U.S. is available to the general public.

It was the intent of this study to evaluate whether baseline models identified from DEIS and

temperature data are appropriate to use as screening tools for detecting changes in future utility bills.

Note the self-imposed condition that only data from such easily accessible sources would be used to
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generate and evaluate the baseline models. The intent was to determine if the baseline modeling

methodology, used with success on locally obtained data at Fort Hood, is applicable to DoD facilities

nation-wide using data easily obtained from the DEIS and NCDC databases.

A final objective of this study was to prepare a primer describing our baselining and tracking

methodology which can be used by other analysts who wish to perform similar evaluations with data

from other army installations. If analyses such as these are to find widespread application, they should

be such that they could be applied routinely to all bases every year when annual utility bill data is

entered into the central army database.

USACERL sent utility data (i.e., monthly energy use data) for eight army bases from various

parts of the continental U.S. Note that the army maintains such data on a fiscal year (FY) basis (which

extends from October of the previous year to September of the current year) rather than on a calendar

year basis. The names of the bases and the size and energy use of the bases is provided by Table

12.1. Data from Fort Hood, TX (which was obtained directly from Fort Hood and used in the previous

study by Saman et al., 1995) was also sent for comparative purposes in order to determine how utility

and temperature data gathered from different sources would affect the baseline modeling and future

tracking evaluation.

There were some serious problems associated with monthly mean outdoor temperature data

downloaded from the National Climatic Data Center at Ashville, NC. One problem was that the data

sets for all eight bases were from January 1985 and not from October 1984 (which is the start of FY85,

the baseline year for the Presidential Executive Order). The lack of concurrent temperature and utility

bill data for three months of FY85 forced us to reject FY85 as the starting year and choose FY86

instead. Further, Fort Carson, Fort Ord and Pueblo Army Depot have temperature data till December

1993 only. Thus the evaluation of how energy has changed over the years with respect to the baseline

year has been curtailed till FY93 only (as against FY94 for the other bases). Also, temperature data for

Fort Huachuca is fragmentary and analysis was done for FY86 and FY88 - FY90 only.

However, the most serious problem was the lack of certainty that the monthly interval during

which the daily temperature data is averaged corresponds to the utility bill period. USACERL informed

us that utility reading dates are not exactly known but are close to the first day of the calendar month,

and that the start and end of the utility bill readings dates can be assumed to be the first and last day

respectively of each month. Initially, the ESL manipulated the temperature data based on this

assumption. However, our subsequent analysis (described fully later on in this report) revealed this

presumption to be false in a number of cases. Though corrective action was taken, a certain amount of
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uncertainty was present, thereby compromising the accuracy of our baseline models. How the ESL

proceeded to detect, and if necessary correct, for this potential mis-match between utility bill period

and temperature data is also described in this report.

Our previous study concluded that the EModel software developed by the Energy Systems

Laboratory to model baseline energy use in commercial buildings has more flexibility to handle different

types of linear, single-variate change-point models than PRISM . EModel also gave more accurate

modeling results. Hence EModel software was used to develop all the models presented in this report.

The results of our baseline model identification effort are summarized in Table 12.2. The

model type and whether an adjustment was needed (to match the temperature data with the utility bill

period) is also indicated. We note that both electricity and gas use at Fort Carson and Sacramento

Army Depot needed an adjustment of one month, while electricity use at Fort Bragg and Fort

Huachuca needed a 15-day adjustment.

How well the models fit the data can be ascertained from Table 12.2. The CV-RMSE of the

model is the deciding factor in determining the category of the model fit. We note that of the eight

electricity use models, two are excellent, four are good and only one is mediocre. Of the eight gas use

models, none is excellent, two are good, four are mediocre and two are poor. Hence, gas use models

seem to be generally poorer than electricity use models. Finally, we note that all gas models are 4P-

heating models while electricity use models are mixed.

The analyses for all Army bases other than the two Army depots also involved computing

percentage changes in annual energy use with respect to baseline year (FY86) normalized by (i)

conditioned area, and (ii) conditioned area and population. Though generally the changes in energy

use by both means of normalization have more or less similar patterns, the quantitative values are

appreciably different during certain years. As described in section 3.5, one cannot place as much

confidence in the population values as in the conditioned area values, and so it would probably be

better to draw conclusions regarding the extent to which Presidential Executive Order 12902 is being

met based on conditioned area normalization only.

The extent to which the annual energy use with respect to the baseline year has changed from

the baseline year FY86 till the final year for which data was available, can also be determined from

Table 12.2. We note that overall, nine of the eighteen gas and electricity use estimates are positive

(i.e., energy use has increased), five of the estimates being very large (more than 20%). Only in five of
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the sixteen estimates of annual percentage change in energy use are the 95% prediction intervals

larger than the estimates themselves implying than one should not place much confidence in these

estimates.

We also investigated another issue with the energy use data from Fort Bragg and Fort Hood.

One could question the need to have as involved a baselining and evaluation methodology as the one

adopted here specially since the month to month variation patterns of outdoor temperature over the

years is generally fairly consistent. One would be curious to ascertain the differences in our estimates

of how energy use over the years has changed with respect to a baseline year by the present approach

and by a much simpler approach involving direct annual utility bills comparison without any weather.

We notice that though the differences in fractional change in annual energy use are small in certain

years, they are relatively very important during other years. More importantly, there seems to be no

pattern to the differences in percent change in annual energy consumption calculated by both

methods. Such a comparison served to underline the need to perform weather correction in order to

obtain reliable estimates of how energy use has varied over the years.

A final issue that we studied was the extent to which our estimates of annual energy changes

with respect to a baseline year would be affected by "unproofed" data such as that used in the

framework of the present study. This was possible since the previous study used carefully monitored

utility data from Fort Hood along with specially obtained temperature data, while the current study used

data from DEIS and NCDC. We found very consistent estimates of annual change in energy use from

both methods. This indicates that conclusive estimates of how energy use in a particular DoD

installation varied over the years with respect to a baseline year can be reached with "unproofed" DEIS

and NCDC data.
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Table 12.1. Table giving an indication of the size and energy use of the eight army bases

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas

Table 12.2. Summary of baseline models and change in energy use normalized by conditioned building area.
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Nomenclature

left slope of a multiple slope model

number of model predicted values that are summed (mostly m = 12)

number of observations in the model (mostly n = 12)

number of observations in the lower temperature range of the model

number of observations in the higher temperature range of the model

number of parameters in the regression model

coefficient of determination

right slope of a multiple slope model

monthly mean daily outdoor dry-bulb temperature

independent or regressor variable (which is T in this study)

X change-point of a multiple slope model

dependent variable ( monthly mean daily values of the utility bills)

intercept of a 2P model (i.e., energy use value when T = 0° F)

Y change point of a multiple slope model

mean value of Y

model-predicted value of Y

annual sum of monthly energy use values

cooling degree days

coefficient of variation of the root mean square error

coefficient of variation of the standard deviation

degree days

Software developed by Energy Systems Laboratory to perform change

point regressions

heating degree days

prediction intervals

Princeton Scorekeeping Method and software

root mean square error

standard error

standard deviation

single variate model

Energy Systems Laboratory
Texas Engineering Experiment Station

Texas A&M University
College Station, Texas

Acronyms
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Appendix A: Baseline Model Development Primer

This primer provides a step-by-step procedure by which a user can identify the most

appropriate baseline model from monthly utility bills of a facility, and then use it for discerning changes

or verifying energy savings from future utility bills. The user is assumed to have basic statistical

expertise, be able to use the EModel energy software developed by the Energy Systems Laboratory of

Texas A&M University, and be familiar with a spreadsheet program from which most of the calculations

and plotting will be done.

A1. Determine objectives of modeling

The first step is to define the objective or the purpose for which baseline modeling is to be

done. For example, the objective may be to evaluate the extent to which Presidential Executive Order

12902 (which mandates that all federal facilities shall reduce energy consumption per gross square

foot by 30% from 1985 levels by the year 2005) is being met on a "real time" basis. Another example

may be that the Energy Manager of the facility has initiated certain Demand Side Management

practices, or O&M measures, or replaced existing equipment by high-efficiency equipment, and he

wishes to determine or verify the amount of energy saved as a result. Yet another example could be

that it would facilitate the implementation of performance based shared energy savings contracts. At

this step, the user should also choose a tentative baseline year.

A2. Obtain relevant data

This second step involves gathering the relevant utility bill data (in energy units, not dollars). If

both electricity use and gas use need to be modeled, then utility bills of both types of energy uses

should be gathered. It would be preferable to obtain at least 1-2 years of utility bills prior to and

following the baseline year tentatively chosen in step 1. Also, the user should obtain all utility bills for

each year following the chosen baseline year, through the present year, and enter this data into the

spreadsheet. Usually, utility bills specify the exact read dates of the billing period. This information for

each bill should also be entered into the spreadsheet. If this information is lacking, then the user will

have to resort to a statistical procedure as described in section 3.6 of this report. This procedure,

however, will introduce uncertainty in our baseline modeling, and should be performed only as a last

resort.

The user should obtain daily mean outdoor dry-bulb temperature for the specific location (or a

nearby location) for the period of analysis. Using these daily mean dry-bulb temperatures, the user

Energy Systems Laboratory Texas A&M University
Texas Engineering Experiment Station College Station, Texas
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should calculate the monthly mean hourly outdoor dry-bulb temperatures corresponding to each

monthly utility bill period . (The National Weather Service often provides users with the mean of the

daily maximum and minimum hourly values, and these are also adequate provided the user

consistently uses these values throughout the entire analysis.)

In case daily mean hourly values cannot be obtained, the following simplified procedure can be

followed. The monthly mean values (corresponding to the calender months) for the specific or nearby

location, are more easily obtained from published handbooks. Usually the read dates of the utility bills

over the years are consistent to within a few days. Hence the two monthly temperature values of the

two straddling months are weighted according to the number of days during each month contained in

the billing period. For example, let the utility bill read date be the 10th of the month. Then the monthly

mean temperature value of the previous month is weighted by a factor of two, added to the mean

monthly temperature of the current month and divided by three in order to give the weighted monthly

mean temperature. This weighting is then done for all the months during which the energy bills need to

be analyzed.

In case conditioned building area or occupancy rates change from month to month (or year to

year), such information should also be entered into the spreadsheet. The user should also determine,

by talking to the relevant personnel, the procedure used to obtain occupancy and square footage data.

This will also provide an indication of the accuracy of the data.

A3. Preliminary data analysis

At this stage, the monthly utility bill data and corresponding outdoor temperature, conditioned

building area and occupancy rates have been entered in columnar form into the spreadsheet. The user

should first generate time series plots of these quantities and study these plots for discrepancies or

abnormal behavior. Often the latter is due to erroneous or spurious data, in which case, plotting the

data would serve to flag such occurrences. The data during the chosen baseline year and for a year on

either side of the baseline year

should be paid particular attention.

Next, the user should normalize monthly energy use data into energy use per day by dividing

the utility bill by the number of days in that particular billing period ( due care for leap years to be

taken). This would remove the effect, albeit small, of the month to month differences in the number of

days.
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If data showing changes in conditioned area are available only on an annual basis (this is most

common), another column should be created in the spreadsheet for billed energy use per day per

square foot. This normalization should remove the effect of changes in conditioned area from year to

year. This energy use data will be used in all subsequent analysis.

Normalizing energy use for the effect of occupancy is difficult because of the nebulous nature

of this variable. Occupancy rates are not explicitly measured, and even a "best guess" estimate may

have enough uncertainty in it to "smother" a lot of the year to year differences in energy use which the

user is trying to discern. Further, one could speculate that (i) small changes (say about 20% or so) in

occupancy rates would not affect the conditioned building area, while (ii) large changes would result in

additional conditioned area being built to accommodate the increased occupancy rate, or in buildings

being shut down if occupancy rates decrease. Hence, one would expect some inter-dependency

between conditioned building area and occupancy rates only if any one of them varies significantly.

Thus, it is suggested that the user normalize energy use by both variables, resulting in energy use per

day per conditioned area per occupant, only if sufficient confidence can be placed in the occupancy

rate data and if the variation in conditioned building area is not substantial. Otherwise, it is

recommended that the user limit himself to analyzing energy use normalized by conditioned building

area only.

A4. Choice of baseline year and model identification

Once the utility bills have been normalized by the number of days of the billing period and by

conditioned area, the user is ready to proceed to model identification. (Note that if changes in

occupancy rates are important and well determined on a month by month basis, it is advisable to

normalize energy use for this variable also prior to model identification. If only annual values of

occupancy are known, then it is better not to normalize for this variable at this stage, but to do so when

percentage change in annual energy use is determined according to the equations described in section

3.5 of the main report.)

It could so happen that the year chosen for the preliminary baseline year has abnormal

behavior (due to a number of reasons, known or unknown), and so a model identified from monthly

data for the baseline year would be either poor or unrepresentative. In the former case, the subsequent

uncertainty bands would be too large and have limited diagnostic capability. In the latter case, the

baseline model would have a large bias which negates whatever benefits the baseline model may have

to offer in terms of predictive ability. Therefore it is advisable to identify models for each of the following

three years: (i) one year prior to the baseline year, (ii) the baseline year, and (iii) one year subsequent
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to the baseline year. The model identification is to be done with all twelve monthly normalized utility

bills. The entire year should be rejected even if the bill for one month is missing or is spurious. Further,

the user should be careful in using periods of one year only and not have billing data for the same

month during successive years (say, in an effort to have twelve data points when data for one month

had to be rejected for some reason or another) because this would introduce a bias in our baseline

model.

EModel software should be used with the twelve monthly data points and the twelve monthly

outdoor temperature data points, to identify the most appropriate regression model. The identification

process involves performing 1P (i.e., mean), 2P, 3P and 4P regressions for each of the three years

and then selecting the optimum functional form based on the following criteria:

(i) highest R2 and lowest CV-RMSE,

(ii) if R2 values for all models are low, CV-RMSE is to be given more consideration, and

(iii)it would be more appropriate from physical considerations, to select 3-P models rather than

4P models. Only if the improvement in R2 and CV-RMSE is substantial, would the user relax

this rule.

If the optimum regression model for the preliminary baseline year is better, or only slightly

poorer, than those of the other two years, the baseline year model can be chosen as the final baseline

model. If not, the user has to decide which of the three yearly models is most appropriate.

Though there is little the user can do at this stage to improve a model, he should at least make

a note of how "good" the baseline model is, since this would provide an indication of how good his

subsequent detection and screening process is likely to be. As a rough indication, models with R2 >0.7

and CV-RMSE < 7% can be deemed "good" models. In certain cases, the R2 may be very low

indicating that energy use is not much affected by temperature variations. In such cases, regression

models with CV-RMSE (or CV-STD) < 12% can still be considered satisfactory. Models with CV-

RMSE > 20% can be taken as poor models.

It must be pointed out that EModel software also yields, apart from the R2 and the CV-RMSE

values, other statistics as well. There are two statistical indices which the user should make a careful

note of: the Root Mean Square Error (RMSE) and the number of data points (n, in the main report)

which fall on the lower temperature region of the change point regression line based on 3P and 4P

models (the latter is not required for "IP and 2P models). Since there are 12 data points, the number of

data points falling on the right side of the change point (n in the main report) is easily deduced.
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