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ABSTRACT
A modified analytical model is presented which discretizes the

ground-coupled heat exchanger of a ground-coupled heat pump
and utilized a separate cylindrical source solution for each
element. First law expressions are utilized for each element to
derive a set of fully implicit finite difference equations for the
pipe wall temperature and the fluid temperature profile inside
the ground-coupled heat exchanger. This method entails less
computational overhead than methods which utilize numerical
solutions inside the soil, and comes closer than previous
analytical methods to satisfying the constant heat flux
assumption of the original analytical solution. The thermal
capacitance effects of the fluid inside the ground-coupled heat
exchanger are included to allow proper prediction of the entering
water temperature (EWT) profile at start-up. Comparisons with
experimental data on EWT, capacity, energy input and cycling
are provided.

INTRODUCTION
Over the past 20 years, there has been renewed interest in

utilizing the ground as a heat source/sink for heat pumps. Using
the soil rather than the ambient air as the heat source in
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heating and the heat sink in cooling offers potential
thermodynamic advantages since the earth is normally at a more
favorable temperature for heat extraction or rejection.
Quantifying the performance of ground-coupled heat pumps
(GCHPs) requires an accurate assessment of the water
temperature entering the GCHP (EWT). An accurate model
must account for the heat transfer interactions between the
GCHP, the circulating fluid, and the soil. The modeling process
is complicated by various factors such as thermal interaction
between adjacent tubes and the transient nature of the heat
transfer which occurs due to on/off cycling of the GCHP.

Models of ground-coupled heat exchangers have proceeded in
two different directions: (1) numerical solutions of the heat
diffusion equation in the soil and the ground-coil [Mei and
Fischer, 1984] and (2) modified analytical solutions [Al-
Juwayhel, 1981; Bose et al., 1985; Deerman, 1991]. The
numerical solutions, while based on fewer assumptions than the
analytical solutions, require significant run times. They were
intended primarily as a check of simpler models or for
performing parametric analyses [Cane and Forgas, 1991].

Two analytical solutions have been employed previously to
model ground-coupled heat exchangers, the Kelvin line source
solution [Ingersoll et al., 1954; Claesson and Dunard, 1983], and
a cylindrical source solution [Jaeger, 1940, 1942; Carslaw and
Jaeger,1959]. Both predict the temperature field as a function of
radius and time in an infinite medium of constant properties
bounded internally by a constant heat flux source. The line
source solution assumes the source is of zero radius, and is
therefore inaccurate for simulating finite diameter pipes for
values of dimensionless time (at/R2) less than 20 [Ingersoll et
al., 1954]. For the system simulated in this study, this
requirement corresponded to a heat pump on-time of 78 minutes.
The average heat pump on-time was only 21 minutes, though,
and significant transients were exhibited in the first minute of
the on-cycle [Dobson, 1991]. The necessity of an accurate
solution for short times rendered the line source solution
inappropriate for the present study.

The model presented herein utilizes the cylindrical source
solution to simulate a ground-coupled heat pump, with the cyclic
behavior of the GCHP determined by a load model of the
building structure. This method includes several important
improvements over previous methods. First, the ground-coil is
discretized into elements for which the assumption of spatially
uniform heat flux is more appropriate. Second, thermal
interaction between adjacent legs of the heat exchanger is
modeled directly by superposition, rather than utilizing steady-
state solutions modified by empirically determined constants
[Deerman, 1991]. Third and most importantly, the model
simulates the GCHP on a time scale that is small enough to
capture the transient phenomena within individual cycles and
over longer time intervals. Neither moisture migration within
the soil nor soil freezing around the ground-coil are modeled,
hence the model is not appropriate where either of these
phenomena is expected to be important.

The purpose of this paper is to present, in detail, the
mathematical model which is summarized above. This
mathematical model was implemented into a computer program
which has been successfully verified against experimental data
Dobson, 1991].

MODEL DEVELOPMENT
The constant heat flux solution for a finite diameter pipe (or

cylindrical source solution), as presented by Ingersoll et al.
[1954], is as follows:

(1)

The integral expression for G was solved numerically at various
z for integer values of p from 1 to 10 for this study.

The heat flux and the far-field temperature of the soil (Tfj) vary
with both distance along the ground-coil and with time. The coil
is divided into elements for which the assumption of spatially
uniform heat flux is more acceptable. A separate solution is
then applied for each element. To allow for temporal variations
in heat flux for each element, the method of superposition,
originally suggested by higersoll [1954], is used, hi this way, the
temperature rise from the far-field to the pipe wall (Tg-Tg-, or
DT~) is represented as the sum of the temperature rises caused
by the heat inputs for each prior time increment. The value of
time used in the

FIGURE 1 -METHOD OF SUPERPOSITION
FOR CYLINDRICAL SOURCE SOLUTION

Fourier number (z) for each increment is the time since the
particular interval began or ended, not the time since
calculations began (Figure 1). The methodology is equivalent to
imposing a positive heat input at the beginning of the time
interval in conjunction with a negative heat input of the same
strength at the end of the time interval [Claesson and Dunard,
1983]. When applying this methodology to a series of m heat
inputs, one obtains:

A T g =

(2)
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With a method in place for computing the soil temperature at
the pipe wall, the task remains of formulating the finite
difference equations for solving the fluid temperature field
inside the pipe. Figure 2 presents a schematic of the
computational domain, and the unknown temperatures. Because
the fluid temperatures are defined at the ends of the elements
rather than in the middle, it is necessary to define a mean fluid
temperature for each element:

(3)
Also, the major assumptions made for each element include:

1. Thermal interference from adjacent legs of the U-
tube is modeled using superposition,

2. Heat conduction is one dimensional in (r) the soil,
3. The thermal storage capacity of the pipe wall is

negligible,
4. Axial conduction inside the fluid is negligible,
5. Radial temperature gradients inside the fluid are

negligible, and
6. The convection coefficient and all thermal

properties are constant.
Modeling the thermal interference by superposition partitions
the temperature rise at each leg of the U-tube into a contribution
from itself and its thermal interference partner. The temperature
rise from the thermal interference partner represents an average
around the circumference of the tube, since the temperature rise
around the circumference varies. This approach is clearly an
approximation, but more realistic than treating the U-tube as an
equivalent single tube since varying U-tube separations can be
modeled.
On cycle

Using the aforementioned assumptions, an energy
balance on each fluid element yields:

Equation 4 states that the net energy entering the element by
advection minus the energy leaving the element by convection
equals the time rate of change of internal energy within the
element. The fully implicit finite difference method was utilized
in the present study, so that all temperatures on the left hand
side of Equation 4 should be evaluated at time p+1. This
method is unconditionally stable.

Equation 4 can be rearranged by separating terms in p and p+1:

Li the present study, it is assumed that no thermal resistance
exists between the pipe and the earth. If an appropriate value
were known, however, it could be combined in series with the
thermal resistance of the U-tube.

FIGURE 2 - SCHEMATIC OF COMPUTATIONAL DOMAIN
AND UNKNOWN TEMPERATURES

The convection coefficient (h) in the above equations was
calculated using the Dittus-Boelter correlation [hicropera and
Dewitt, 1985] which is acceptable for Red> 10,000 and Prandtl
numbers between 0.7 and 160. These conditions were both met
for all regions of the ground-coil in this study.

If n denotes the number of fluid temperatures and n-1 denotes
the number of elements (or wall temperatures), Equation 5
generates n-1 equations and 2n-l unknowns. One additional
equation is obtained by writing an energy balance on the
condenser:

Evaluating the left hand side at time p+1, representing Qcon(j as

a linear function of T f n ( a o + a j T f n J , and defining h as

above, one obtains:

hi addition to Equation 7, n-1 additional equations are obtained
by employing Equation 2 to calculate T:
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In Equation 8, j is used to subscript the prior heat inputs for
element i, with the m ^ being the final heat input. The j * heat
input for the i"1 element can be written as:

"~~ f i r I \.f ~~ A
J \ 1 I W 1

(9)

Equation 9 is used to compute Q'; for each time increment once
the temperatures are known for time p+1. Thus, all terms in the
summation of Equation 8 are known. The quantity Q'm,
however, contains unknown fluid and inner wall temperatures at
time p+1. Equation 8 also adds a new set of unknowns, the
outer wall temperatures Tg. Because the thermal capacitance of
the pipe is neglected, the convective heat flux at any time is
equal to the conductive heat flux through the pipe:

T . - T .
, . = . _ wi gi

fi wi j ^ 1

(10)

Imposing Equation 10 at time p+1, solving for

substituting this into Equation 8, and grouping terms in p+1
yields:

G(zml,i)hP hPR1

where: V = + •
2ks 2

In Equation 11, all G values are understood to be for a p value of
1. The subscripts on the z values refer to the time values to be
used. Equation 11 adds n-1 equations to the n equations
previously written, thereby closing the problem mathematically
(assuming that initial conditions are known).

Recalling that the U-tube configuration has two pipes
dissipating heat near one another, it is apparent that Equation 11
must be altered to include the effect of the other leg of the U-
tube. This is often referred to as thermal short circuiting, and is
modeled using superposition [Claesson and Dunard, 1983].
With this method, DT» includes the effect of both legs of the U-
tube.

Applying the method of superposition to compute the surface
temperature of element i, whose "thermal interference partner"
is element k, at the end of the nfi1 heat input, one obtains:
The G values for element i utilize a p value of 1 because the
temperature is desired at the pipe wall of element i. For element
j , the G values are computed for a p value which is the ratio of
the distance between the two pipe centers to the radius of pipe i
(Figure 3). When computed in this way, the outer pipe wall

temperature is an average value over the pipe surface because
there are angular temperature variations around the pipe.

U-tube leg 1 U-tube leg 2

Figure 3 - Geometric Definition of p for Two Neighboring
Elements

It should be noted that for the two elements at the bottom of the
U-tube, two fluid temperatures which are subscripted differently
in Equation 12 actually refer to the same fluid temperature (the
one at the bottom). The correct coefficient for this fluid
temperature is the sum of both coefficients which reference it.

Provided that the same time step and indoor air conditions are
used throughout the simulation, all coefficients of the p+1 terms
are time invariant. Thus, the coefficient matrix can be inverted
before simulation begins and multiplied at each time step by the
new row vector provided by the right hand side of Equations 5,
7, and 12. This is considerably faster than solving a new set of
equations at each time step.

Off cycle
Equations 5, 7, and 12 are derived assuming that the unit and

the water circulating pump are on. A GCHP cycles on and off to
meet the cooling load on the home, however, so this condition is
not met at all times. These equations must be re-evaluated
during the off cycle. For Equation 5, the advection term
vanishes and the convective heat transfer changes from forced
convection to free convection. The necessary changes can be
accomplished merely by setting h equal to zero, and
remembering that h must be computed with a free convection
coefficient. Kavanaugh [1984] determined a bulk free
convection coefficient for an entire U-tube with water as the
fluid, and obtained a value of 137 W/m2-K which was used in
this study.

The true physical model for the condenser element during the
off cycle is much more complicated. First, the advection term
vanishes as the water circulating pump shuts off. Second, the
heat supplied to the water, which during the on cycle represents
the capacity and power input of the refrigeration cycle, changes
as the refrigeration cycle is halted. These are both of the energy
exchange modes accounted for in Equation 7, and when they
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vanish it merely degenerates to state that the fluid temperatures
do not change with time. During the off cycle, the water actually
exchanges heat with both the refrigerant in the condenser and
the ambient air. The only mode of energy transport accounted
for in the present model is free convection with the ambient air.
Thermal storage capability of the condenser wall is again
neglected, so the heat transfer from the water in the condenser to
the ambient air can be framed in resistance concepts. The
energy balance then yields:

Grouping Equation 13 into terms for time p and time p+1, one
obtains:

Unlike Equations 5 and 7, Equation 14 remains valid during the
off cycle. The only necessary modification is that the convection
coefficient inside the tube be changed from a forced convection
coefficient to a free convection coefficient.

Initial Conditions
The analytical solution to the soil temperature distribution of

Equation 1 assumes that the temperatures are initially uniform in
the radial direction for each element. This would be acceptable
if one always started simulations at the time the heat pump
began operation. This is not always desirable or feasible,
however. The effect of the initial conditions can be included by
characterizing the heat rejection history of the ground-coil. The
prior heat inputs contribute to the temperature increase DTg in
the same way as "old" heat inputs do during a simulation, and
are appended to the prior heat inputs at each time step. The
value of time to be used in the Fourier number is again the time
since the heat input began, not the time since the beginning of
simulation. The temperature increase at the pipe wall (p=l)
caused by n heat inputs which served as initial conditions and m
heat inputs which occurred since the simulation began is:

The m heat input in Equation 15 is included in the summation
(unlike Equation 2), but the result is the same because the value
of G for ^ is equal to zero.

LOAD AND CYCLING MODEL
To model the cyclic behavior of the heat pump, two first law

relations are used. First, assuming that the thermostat is not
changed, an energy balance over a complete cycle yields:

(16)

Next, an energy balance over the on-time only yields:

The right hand side of Equation 17 represents the amount of
energy removed from the home during the on-time. For the site
simulated, this quantity and a simplified load model of the
residence were estimated from experimental data [Dobson,
1991].

When a cycle began, the energy input via the load and the
energy extracted via the capacity were set to zero. For each time
step, the energy added (load) and the energy removed (capacity)
were calculated and added to the respective totals. The unit was
kept on until the energy removed minus the energy added was

greater than - ( m e ) (T 2 — Tj ). After the unit cycled off,

no energy was removed for the remainder of the cycle. Thus, at
each time step the energy added was incremented until it
equaled or exceeded the energy removed for the cycle. When
this condition was met, a new cycle began and the process was
repeated.

MODEL VERIFICATION
The model was verified with actual data from a field-

monitored, 10.5 kW GCHP which is located in Abilene, TX.
Details of the unit and experimental measurements on the unit
are available in a previous paper (Dobson et al., 1992).
Predictions were compared to field data from September 3 to
September 7, 1990, a five day period during which data were
continuously collected on time intervals of 5 minutes or shorter.
The actual load was computed from experimental data and used
as input to verify the ground-coil model independently of errors
in load prediction. Monitored data were also used to deduce the
ground-coil heat rejection history which was needed for initial
conditions. The fraction of the total heat which was dissipated
in each element was computed from results of a seven day
simulation with no initial conditions.

The simulation began on September 1 to allow the program to
accumulate several days of actual heat inputs in common with
the unit before comparisons were begun. The load was
computed using weather data from the National Weather Service
in conjunction with a field-determined regression equation until
the first data on short time intervals were available (9:00 A.M.
on September 3). Actual load data were available from this date
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until September 7 at 10:30 A.M. The load for the rest of
September 7 was computed using a field-determined load model
[Dobson, 1991].

Knowledge of the thermal conductivity, k, and the thermal
diffusivity, a, is required for simulation purposes. This is
normally the limiting factor in the accuracy of GCHP simulations
[Kavanaugh, 1984]. Deerman [1991] suggested using a model
based on the constant heat flux cylindrical source solution to
determine k and a. He used a 6-hour continuous cycle and
adjusted both properties to obtain a good fit of the data. At the
Abilene installation, however, the density was known from soil
core samples which were taken at depths up to 30.5 m. The
results of this core sample are presented in Table 2. An average
value of density weighted by depth was estimated as 2080
kg/m3. Also, data from Deerman [1990] showed that the
specific heat for a large variety of soils was approximately 0.84
kJ/kg-°K. Knowledge of these properties meant that only the

thermal conductivity, k, had to be estimated from field data.
Estimated average values of k and a were 1.73 W/m-°K and
9.72xlO"7 m2/sec, respectively.

The daily experimental EWT for September 3 through
September 7 were compared to the simulation results. Figure 4
shows a comparison of the smoothed curve fits of the means of
the experimental and simulated data for September 4. This
figure shows that the model tracks the daily trends in EWT quite
well, being accurate to within 0.8 °C most of the time. The
model also showed similar agreement between the simulated and
experimental EWT for the other days between September 3 and
7. Verifying the model against actual usage patterns presents a
more challenging and more useful test than the long, continuous
cycles often chosen for verification.

TABLE 2 - RESULTS OF SOIL CORE SAMPLES

The data in Figure 4 are useful for verifying that the model is
representative of the data over long time periods, but offers little
insight as to how it tracks start-up data. A more detailed view is
provided in Figures 5, which presents the simulated and
experimental values of EWT over a 22 minute on-time which
began at approximately 11 A.M. on September 4. Both the
model and the experimental data showed the rapid decrease in
EWT at start-up as the water from the bottom of the ground-coil
entered the condenser. The prediction of the minimum EWT by
the model following the off cycle never differed from the
measured value by more than 1.1 °C. One limitation of the
model appears to be that it is stiffer than the actual physical
system in that it under predicts the cooling of the water during
the off cycle. One possible reason for this discrepancy is that
constant soil properties were used for all elements in the
simulation, while the core samples show that the soil properties
actually varied significantly with depth. The higher density at
greater depths normally corresponds with an increased
conductivity, which would allow greater cooling of the water at
the bottom of the coil during the off cycle. The value used in the
simulation represents an average over the entire coil which
appears to work well for normal cycling patterns. The stair-step
effect of the simulated data occurred because EWT was output to
one decimal place only.

FIGURE 4 -COMPARISON OF SIMULATED
AND EXPERIMENTAL EWT VALUES ON
SEPTEMBER 4, 1990
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FIGURE 5 - COMPARISON OF SIMULATED AND EXPERIMANTAL EWT
VALUES DURING A 22-MINUTE ON-TIME

Daily comparisons of the energy input, heat removal from the
home, coefficient of performance (COP), EWT, and number of
cycles are presented in Table 3. The data verify that the model
accurately simulates the physical system. The most important
quantity is the daily COP, which had a maximum percent error
of less than 5% and an average percent error of slightly over 2%.
The cyclic behavior was also well simulated, as indicated by the

nearly identical numbers of cycles per day. The largest error
was on September 7, and occurred during the period from 10:30
A.M. until 4:10 P.M. when actual load data were not available
for input to the model. The load was slightly under predicted,
which allowed the simulated unit to cycle more frequently than
the actual system. The daily averaged EWT values were within
0.9 °C in the worst case, and within 0.3 °C on the average

TABLE 3 - DAILY COMPARISONS BETWEEN MODEL PREDICTIONS
AND EXPERIMENTAL DATA FROM SEPTEMBER 3 TO SEPTEMBER 7.

SUMMARY
A numerical model is presented which utilizes the analytical

solution of a constant heat flux cylindrical source emitting into
an infinite medium to predict the soil temperature at the pipe
wall of a vertical U-tube GCHP. The coil is discretized into
elements for which the assumption of spatially uniform heat flux
is acceptable, and a separate analytical solution is used for each
element. The fluid temperatures inside the coil are solved for

using a fully implicit finite difference scheme. Thermal
interference between adjacent legs of the U-tube is accounted for
by using superposition.

A computer program was written to solve the mathematical
model. This model was verified against field-data for a 5-day
period in September for which data on short time-intervals were
available. The model tracked experimental data well, with an
average difference between predicted daily average EWT and the



experimentally determined value of only 0.3 °C. The model also
successfully simulated the rapid decrease in EWT at start-up,
although the model appeared to not allow the water to cool as
much during the off cycle as did the physical system. This
discrepancy is believed to have been caused by the use of
constant soil thermal properties throughout the coil, when in
actuality the thermal properties varied with depth.
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